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Pieri’s Formula for Generalized Schur Polynomials

NUMATA, Yasuhide

Abstract. We define a generalization of Schur polynomials as a expansion coefficient of generalized Schur
operators. We generalize the Pieri’s formula to the generalized Schur polynomials.

Résumé. Nous définissons une généralisation de polynômes de Schur comme un coefficient de l’expansion
d’opérateurs de Schur généralisés. Nous généralisons la formule du Pieri aux polynômes de Schur généralisés.

1. Introduction

Young’s lattice is a prototypical example of differential posets defined by Stanley [9]. Young’s lattice
has so called the Robinson correspondence, the correspondence between permutations and pairs of standard
tableaux whose shapes are the same Young diagram. This correspondence is generalized for differential
posets or dual graphs (that is a generalization of differential posets) by Fomin [3].

Young’s lattice also has the Robinson-Schensted-Knuth correspondence, the correspondence between
certain matrices and pairs of semi-standard tableaux. Fomin generalizes the method of the Robinson cor-
respondence to that of the Robinson-Schensted-Knuth correspondence in his paper [4]. The operators in
Fomin [4] are called generalized Schur operators. We can define a generalization of Schur polynomials by
generalized Schur operators.

A complete symmetric polynomial is a Schur polynomial associated with a Young diagram consisting of
only one row. Schur polynomials satisfy the Pieri’s formula, the formula describing products of a complete
symmetric polynomial and a Schur polynomial as sums of Schur polynomials like the following;

hi(t1, . . . , tn)sλ(t1, . . . , tn) =
∑

µ

sµ(t1, . . . , tn),

where the sum is over all µ’s that are obtained from λ by adding i boxes, with no two in the same column,
hi is the i-th complete symmetric polynomial and sλ is the Schur polynomial associated with λ.

We generalize the Pieri’s formula to generalized Schur polynomials (Theorem 3.2 and Proposition 3.3).

2. Definition

We introduce two types of polynomials in this section. One of them is a generalization of Schur poly-
nomials. The other is a generalization of complete symmetric polynomials. We will show Pieri’s formula for
these polynomials in Section 3.

2.1. Schur Operators. First we recall generalized Schur operators defined by Fomin [4]. We define a
generalization of Schur function as expansion coefficients of generalized Schur operators.

Let K be a field of characteristic zero that contains all formal power series of variables t, t′, t1, t2, . . ..
Let Vi be finite dimensional K-vector spaces for all i ∈ Z. Fix a basis Yi of each Vi so that Vi = KYi and
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V = KY where Y =
⋃

i Yi. The rank function on V which maps λ ∈ Vi to i is denoted by ρ. We say that V
has the minimum ∅ if Yi = ∅ for i < 0 and Y0 = {∅}.

For a sequence {Ai} and a formal variable x, we write A(x) for the generating function
∑

i≥0 Aix
i.

Hereafter, for i > 0, let Di and Ui be linear operators on V satisfying ρ(Uiλ) = ρ(λ) + i and ρ(Diλ) =
ρ(λ) − i for λ ∈ Y . In other words, the images Dj(Vi) and Uj(Vi) of Vi by Dj and Uj are contained in
Vi−j and Vi+j for i ∈ Z and j ∈ N respectively. We call Di or D(t) and Ui or U(t) down operators and up
operators.

Definition 2.1. Let {ai} be a sequence of elements of K. Down and up operators D(t1) · · ·D(tn) and
U(tn) · · ·U(t1) are said to be generalized Schur operators if the equation D(t′)U(t) = a(tt′)U(t)D(t′) holds.

We write ∗ for the conjugation with respect to the natural pairing 〈 , 〉 in KY . For all i, U∗
i and D∗

i

act as down and up operators, respectively. By definition, U∗(t′)D∗(t) = a(tt′)D∗(t)U∗(t′) if D(t′)U(t) =
U(t)D(t′)a(tt′). Hence down and up operators U∗(tn) · · ·U∗(t1) and D∗(t1) · · ·D∗(tn) are also generalized
Schur operators when D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur operators.

Let down and up operators D(t) and U(t) be generalized Schur operators with {ai} where a0 6= 0. Since
a0 6= 0, there exists {bi} such that a(t)b(t) = 1. Hence the equation D(t′)U(t) = a(tt′)U(t)D(t′) implies

U(t)D(t′) = b(tt′)D(t′)U(t)(2.1)

and

D∗(t′)U∗(t) = b(tt′)U∗(t)D∗(t′).(2.2)

Let ρ′ be −ρ. We take ρ′ as rank function for the same vertex set V . For this rank function ρ′ and the vector
space V , D∗

i and U∗
i act as down and up operators, respectively. Since they satisfy the equation (2.2), down

and up operators D∗(t) and U∗(t) are generalized Schur operators with {bi}. Similarly, it follows from the
equation (2.1) that down and up operators U(t) and D(t) are also generalized Schur operators with {bi} for
ρ′ and V .

Definition 2.2. Let D(t1) · · ·D(tn) and U(tn) · · ·U(t1) be generalized Schur operators. For λ ∈ V

and µ ∈ Y , we write sD
λ,µ(t1, . . . , tn) and sµ,λ

U (t1, . . . , tn) for the coefficient of µ in D(t1) · · ·D(tn)λ and

U(tn) · · ·U(t1)λ, respectively. We call these polynomials sD
λ,µ(t1, . . . , tn) and sµ,λ

U (t1, . . . , tn) generalized

Schur polynomials.

Generalized Schur polynomials sD
λ,µ(t1, . . . , tn) are symmetric in the case when D(t)D(t′) = D(t′)D(t)

but not symmetric in general. It follows by definition that

sD
λ,µ(t1, . . . , tn) = 〈D(t1) · · ·D(tn)λ, µ〉

= 〈λ, D∗(tn) · · ·D∗(t1)µ〉

= sλ,µ
D∗ (t1, . . . , tn)

for λ, µ ∈ Y .

Example 2.3. Our prototypical example is Young’s lattice Y that consists of all Young diagrams. Let a
basis Y , K-vector space V and rank function ρ be Young lattice Y, the K-vector space KY and the ordinal
rank function ρ which maps Young diagram λ to the number of boxes in λ. Young’s lattice Y has the
minimum ∅ the Young diagram with no boxes. Define Ui and Di by Ui(µ) =

∑

λ λ, where the sum is over
all λ’s that are obtained from µ by adding i boxes, with no two in the same column; and by Di(λ) =

∑

µ µ,
where the sum is over all µ’s that are obtained from λ by removing i boxes, with no two in the same column.
Then the operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur operators with {ai = 1}. In

this case, both sD
λ,µ(t1, . . . , tn) and sλ,µ

U (t1, . . . , tn) are equal to the skew Schur polynomial sλ/µ(t1, . . . , tn)
for λ and µ ∈ Y.

2.2. Weighted Complete Symmetric Polynomials. Next we introduce a generalization of complete
symmetric polynomials. We define weighted symmetric polynomials inductively.
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Definition 2.4. Let {am} be a sequence of elements of K. We define the i-th weighted complete

symmetric polynomial h
{am}
i (t1, . . . , tn) by

h{an}
m (t1, . . . , tn) =

{

∑i
j=0 h

{am}
j (t1, . . . , tn−1)h

{am}
i−j (tn), (for n > 1)

h
{am}
i (t1) = ait

i
1 (for n = 1).

(2.3)

By definition, the i-th weighted complete symmetric polynomial h
{am}
i (t1, . . . , tn) is a homogeneous

symmetric polynomial of degree i.

Example 2.5. When ai equal 1 for all i, h
{1,1,...}
j (t1, . . . , tn) equals the complete symmetric polynomial

hj(t1, . . . , tn). In this case, the formal power series
∑

i hi(t) equals the generating function a(t) =
∑

i ti =
1

1−t .

Example 2.6. When ai equal 1
i! for all i, h

{ 1
m!

}
j (t1, . . . , tn) = 1

i! (t1 + · · · + tn)i and
∑

j h
{ 1

m!
}

j (t) =

exp(t) = a(t).

In general, the formal power series
∑

i h
{am}
i (t) equals the generating function a(t) =

∑

ait
i by the

definition of weighted complete symmetric polynomials. It follows from the equation (2.3) that a(t1)a(t2) =
∑

i h
{am}
i (t1)

∑

j h
{am}
j (t2) =

∑

j h
{am}
j (t1, t2). Since the weighted complete symmetric polynomials satisfy

the equation (2.3),

a(t1) · · · a(tn−1)a(tn) =
∑

i

h
{am}
i (t1, . . . , tn−1)

∑

j

h
{am}
j (tn)

=
∑

i

i
∑

k=0

h
{am}
i−k (t1, . . . , tn−1)h

{am}
k (tn)

=
∑

i

h
{am}
i (t1, . . . , tn)

if a(t1) · · · a(tn−1) =
∑

h
{am}
i (t1, . . . , tn−1). Hence

a(t1) · · · a(tn) =
∑

i

h
{am}
i (t1, . . . , tn)

as in the case when ai = 1 for all i. It follows from this relation that h
{am}
0 (t1, . . . , tn) = an

0 .

3. Main Theorem

We show some properties of generalized Schur polynomials and weighted complete symmetric polynomials
in this section. We show Pieri’s formula (Theorem 3.2 and Proposition 3.3) generalized to our polynomials,
the main results in this paper.

First we describe the commuting relation of Ui and D(t1) · · ·D(tn). This relation implies Pieri’s formula
for our polynomials. It also follows from this relation that the weighted complete symmetric polynomials
are written as linear combinations of generalized Schur polynomials when V has the minimum.

Proposition 3.1. Generalized Schur operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1) with {ai} satisfy

D(t1) · · ·D(tn)Ui =

i
∑

j=0

h
{am}
i−j (t1, . . . , tn)UjD(t1) · · ·D(tn).

In the case when the K-vector space V has the minimum ∅, weighted complete symmetric polynomials
are written as linear combinations of generalized Schur polynomials.

Proposition 3.2. For generalized Schur operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1) with {ai} on V
with the minimum ∅, the following equations hold for all i ≥ 0;

sD
Ui∅,∅(t1, . . . , tn) = h

{am}
i (t1, . . . , tn)dn

0 u0,

where u0 and d0 ∈ K satisfy D0∅ = d0∅ and U0∅ = u0∅.
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Example 3.1. In the prototypical example Y, Proposition 3.2 means that the Schur polynomial s(i)

corresponding to Young diagram with only one row equals the complete symmetric polynomial hi.

Next we consider the case when Y may not have a minimum. It follows from Proposition 3.1 that

〈D(t1) · · ·D(tn)Uiλ, µ〉 = 〈
i

∑

j=0

h
{am}
i−j (t1, . . . , tn)UjD(t1) · · ·D(tn)λ, µ〉

for λ ∈ V and µ ∈ Y . This equation implies Theorem 3.2, the main result in this paper.

Theorem 3.2 (Pieri’s formula). For any µ ∈ Yk and any λ ∈ V , generalized Schur operators satisfy

sD
Uiλ,µ(t1, . . . , tn) =

i
∑

j=0

h
{am}
i−j (t1, . . . , tn)

∑

ν(∈Yk−j)

〈Ujν, µ〉sD
λ,ν(t1, . . . , tn).

If Y has the minimum ∅, this theorem implies the following proposition.

Proposition 3.3. For all λ ∈ V , the following equations hold;

sD
Uiλ,∅(t1, . . . , tn) = h

{am}
i (t1, . . . , tn)u0s

D
λ,∅(t1, . . . , tn)

= sD
Ui∅,∅(t1, . . . , tn)u0s

D
λ,∅(t1, . . . , tn),

where U0∅ = u0∅.

Example 3.3. In the prototypical example Y, for any λ ∈ Y, Uiλ means the sum of all Young diagrams
obtained from λ by adding i boxes, with no two in the same column. Thus Proposition 3.3 is nothing but the
classical Pieri’s formula. Theorem 3.2 means Pieri’s formula for skew Schur polynomials; for a skew Young
diagram λ/µ and i ∈ N,

∑

κ

sκ/µ(t1, . . . , tn) =

i
∑

j=0

∑

ν

hi−j(t1, . . . , tn)sλ/ν(t1, . . . , tn),

where the first sum is over all κ’s that are obtained from λ by adding i boxes, with no two in the same
column; the last sum is over all ν’s that are obtained from µ by removing j boxes, with no two in the same
column.

4. More Examples

In this section, we see some examples of generalized Schur operators.

4.1. Shifted Shapes. This example is the same as Fomin [4, Example 2.1].
Let Y be the set of all shifted shapes. (i.e., Y = {{(i, j)|i ≤ j < λi + i}|λ = (λ1 > λ2 > · · · ), λi ∈ N}.)
Down operators Di are defined for λ ∈ Y by

Diλ =
∑

ν

2cc0(λ\ν)ν,

where cc0(λ \ ν) is the number of connected components of λ \ ν which do not intersect the main diagonal;
and the sum is over all ν’s that are satisfying ν ⊂ λ, ρ(ν) = ρ(λ) − i and λ \ ν contains at most one box on
each diagonal.

Up operators Ui are defined for λ ∈ Y by

Uiλ =
∑

µ

2cc(µ\λ)µ,

where cc(λ\µ) is the number of connected components of λ\ν; and the sum is over all µ’s that are satisfying
λ ⊂ µ, ρ(µ) = ρ(λ) + i and λ \ µ contains at most one box on each diagonal.

In this case, since down and up operators D(t) and U(t) satisfy

D(t′)U(t) =
1 + tt′

1 − tt′
U(t)D(t′),
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down and up operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur operators with a0 = 1,

ai = 2 for i ≥ 1. In this case, for λ, µ ∈ Y , generalized Schur polynomials sD
λ,µ and sλ,µ

U are respectively

Qλ/µ(t1, . . . , tn) and Pλ/µ(t1, . . . , tn), where P · · · and Q · · · are the shifted skew Schur polynomials.
In this case, Proposition 3.2 means

h
{1,2,2,2,...}
i (t1, . . . , tn) =

{

2Q(i)(t1, . . . , tn) i > 0

Q∅(t1, . . . , tn) i = 0
.

It also follows that

h
{1,2,2,2,...}
i (t1, . . . , tn) = P(i)(t1, . . . , tn).

Proposition 3.3 means

h
{1,2,2,2,...}
i Qλ(t1, . . . , tn) =

∑

κ

2cc(λ\µ)Qκ(t1, . . . , tn),

where cc(λ\µ) is the number of connected components of λ\ν; and the sum is over all µ’s that are satisfying
λ ⊂ µ, ρ(µ) = ρ(λ) + i and λ \ µ contains at most one box on each diagonal.

4.2. Young’s Lattice: Dual Identities. This example is the same as Fomin [4, Example 2.4]. We
take Young’s lattice Y for Y. Up operators Ui are the same as in the prototypical example, (i.e., Uiλ =

∑

µ µ,

where the sum is over all µ’s that are obtained from λ by adding i boxes, with no two in the same column.)
Down operators D′

i are defined by D′
i =

∑

µ µ, where the sum is over all µ’s that are obtained from λ by

adding i boxes, with no two in the same row. (In other words, down operators D′
i remove a vertical strip,

while up operators Ui add a horizontal strip.)
In this case, since down and up operators D′(t) and U(t) satisfy

D′(t′)U(t) = (1 + tt′)U(t)D′(t′),

down and up operators D′(t1) · · ·D′(tn) and U(tn) · · ·U(t1) are generalized Schur operators with a0 = a1 = 1

ai = 0 for i ≥ 2. In this case, for λ, µ ∈ Y , generalized Schur polynomials sD′

λ,µ equal sλ′/µ′(t1, . . . , tn), where

λ′ and µ′ are the transposes of λ and µ, sλ′/µ′(t1, . . . , tn) are the shifted Schur polynomials.
In this case, Proposition 3.2 means

h
{1,1,0,0,0,...}
i (t1, . . . , tn) = s(1i)(t1, . . . , tn) = ei(t1, . . . , tn),

where ei(t1, . . . , tn) stands for the i-th elementally symmetric polynomials.
Proposition 3.3 means

ei(t1, . . . , tn)sλ(t1, . . . , tn) =
∑

µ

sµ(t1, . . . , tn),

where the sum is over all µ’s that are obtained from λ by adding i boxes, with no two in the same row.
For a skew Young diagram λ/µ and i ∈ N, Theorem 3.2 means

∑

κ

sκ/µ(t1, . . . , tn) =

i
∑

j=0

∑

ν

hi−j(t1, . . . , tn)sλ/ν(t1, . . . , tn),

where the first sum is over all κ’s that are obtained from λ by adding i boxes, with no two in the same row;
the last sum is over all ν’s that are obtained from µ by removing j boxes, with no two in the same row.

4.3. Planar Binary Trees. Let F be the monoid of words generated by the alphabet {1, 2} and 0
denotes the word of length 0. We identify F with a poset by v ≤ vw for v, w ∈ F . We call an ideal of poset F
a planar binary tree or shortly a tree. An element of a tree is called a node of the tree. We write T for the set
of trees and Ti for the set of trees of i nodes. For T ∈ T and v ∈ F , we define Tv by Tv := {w ∈ T |v ≤ w}.

Definition 4.1. Let T be a tree and m a positive integer. We call a map ϕ : T → {1, . . . , m} a
left-strictly-increasing labeling if

• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) ≤ ϕ(v) for w ∈ T and v ∈ Tw2.

We call a map ϕ : T → {1, . . . , m} a right-strictly-increasing labeling if
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• ϕ(w) ≤ ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw2.

We call a map ϕ : T → {1, . . . , m} a binary-searching labeling if

• ϕ(w) ≥ ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw2.

First we consider a presentation of increasing labelings as sequences of trees. For a tree T ∈ T, we
call a node w ∈ T an l-node in T if Tw ⊂ {w1n|n ∈ N}. A node w ∈ T is called an r-node in T if Tw ⊂
{w2n|n ∈ N}. By the definition of increasing labelings ϕ, the inverse image ϕ−1({1, . . . , n}) is a tree for each
n. For a right-strictly-increasing labeling ϕ, ϕ−1({1, . . . , n+1})\ϕ−1({1, . . . , n}) consists of some l-nodes in
ϕ−1({1, . . . , n+1}). Conversely, for a left-strictly-increasing labeling ϕ, ϕ−1({1, . . . , n+1})\ϕ−1({1, . . . , n})
consists of some r-nodes in ϕ−1({1, . . . , n + 1}). Hence we respectively identify right-strictly-increasing and
left-strictly-increasing labelings ϕ with sequences (∅ = T 0, T 1, . . . , T m) of m + 1 trees such that T i+1 \ T i

consists of some l-nodes and r-nodes in T i+1 for all i.
We define linear operators D and D′ on KT by

DT :=
∑

T ′ ⊂ T ; T \ T ′ consists of some l-nodes

T ′,

D′T :=
∑

T ′ ⊂ T ; T \ T ′ consists of some r-nodes

T ′.

Next we consider binary-searching trees. For T ∈ T, let sT be {w ∈ T | If w = v1w′ then v2 6∈ T .
w2 6∈ T.}. The set sT is a chain. We define ST by the set of ideals of sT . For s ∈ ST , we define T 	 s by

T 	 s :=

{

T (s = ∅)

(T − max(s)) 	 (s \ {max(s)}) (s 6= ∅),

where

T − w = (T \ Tw) ∪ {wv|w1v ∈ Tw}

for w ∈ T such that w2 6∈ T . There exists the natural inclusion ν from T − w to T defined by

ν(v′) =

{

w1v v′ = wv ∈ Tw

v′ v′ 6∈ Tw.

This inclusion induces the inclusion ν : T 	 s → T . For a binary-searching labeling ϕ from T ∈ T to
{1, . . . , m}, by the definition of binary-searching labeling, the inverse image ϕ−1({m}) is in ST . The map
ϕ ◦ ν induced from ϕ by the natural inclusion ν : T 	 ϕ−1({m}) → T is a binary-searching labeling
from T 	 ϕ−1({m}) to {1, . . . , m − 1}. Hence we identify binary-searching labelings ϕ with sequences
(∅ = T 0, T 1, . . . , T m) of m + 1 trees such that there exists s ∈ ST i+1 satisfying T i = T i+1 	 s for each i.

We define linear operators U on KT by

UT :=
∑

s∈ST

T 	 s.

These operators D(t′), D′(t′) and U(t) satisfy the following equations;

D(t′)U(t) =
1

1 − tt′
U(t)D(t′),

D′(t′)U(t) = (1 + tt′)U(t)D′(t′).

Hence the generalized Schur polynomials for these operators satisfy the same Pieri’s formula as in the case
of the classical Young’s lattice and its dual construction.

In this case, generalized Schur polynomials are not symmetric in general. For example, since

U∗(t1)U
∗(t2){0, 1, 12}

= U∗(t1)({0, 1, 12}+ t2{0, 2} + t22{0})

= ({0, 1, 12}+ t1{0, 2}+ t21{0}) + t2({0, 2} + t1{0}) + t22({0} + t1∅),
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sU∗

{0,1,12},∅(t1, t2) = s
{0,1,12},∅
U (t1, t2) = t1t

2
2 is not symmetric.

For a labeling ϕ from T to {1, . . . , m}, we define tϕ =
∏

w∈T tϕ(w). For a tree T , it follows that

sT,∅
U (t1, . . . , tn) =

∑

ϕ; a binary-searching labeling

tϕ,

sD
T,∅(t1, . . . , tn) =

∑

ϕ; a right-strictly-increasing labeling

tϕ,

sD′

T,∅(t1, . . . , tn) =
∑

ϕ; a left-strictly-increasing labeling

tϕ.

These generalized Schur polynomials sT,∅
U (t1, . . . , tn) in this case are the commutativizations of the basis

elements PT of PBT in Hivert-Novelli-Thibon [7].
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