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Coincidences among skew Schur functions
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Abstract. We define an equivalence relation on skew diagrams such that two skew diagrams are equivalent
if and only if they give rise to equal skew Schur functions. Then we derive some necessary and sufficient
conditions for equivalence.

Résumé. Nous étudions quand deux fonctions de skew Schur sont égales. Avec plus précision, nous derivons
quelques règles nécessaires et quelques règles suffisantes pour l’égalité.

1. Introduction

Schur functions are ubiquitous in algebraic combinatorics. They have recently been connected to branch-
ing rules for classical Lie groups [8, 11], and eigenvalues and singular values of sums of Hermitian and of
complex matrices [1, 5, 8] via the study of inequalities among products of skew Schur functions.

With this in mind, a natural problem is to describe all equalities among products of skew Schur functions,
or equivalently, to describe all binomial syzygies among skew Schur functions. As we shall see in Section 2
this is equivalent to describing all equalities among individual skew Schur functions indexed by connected
skew diagrams. This is a more tractable instance of a problem that currently seems intractable: describe
all syzygies among skew Schur functions. Famous non-binomial syzygies include various formulations of the
Littlewood-Richardson rule, which give some indication of the complexity that any such description would
involve.

The study of equalities among skew Schur functions can also be regarded as part of the calculus of shapes.
For an arbitrary subset D of Z2, there are polynomial representations SD and WD of GLN (C) known as
a Schur or Weyl modules respectively. These GLN (C)-representations are obtained by row-symmetrizing
and column-antisymmetrizing tensors whose tensor positions are indexed by the cells of D. In general, these
representations have GLN (C)-character equal to a symmetric function sD(x1, . . . , xN ); when D is a skew
diagram, this is a skew Schur function. Therefore, the question of when two skew Schur or Weyl modules
are equivalent in characteristic zero is precisely the question of equalities among skew Schur functions.

Thus we wish to study the following equivalence relation.

Definition 1.1. Given two skew diagrams D1 and D2 we say they are skew-equivalent denoted D1 ∼ D2

if and only if sD1
= sD2

.

For the sake of brevity, in this abstract we assume that the reader is familiar with the basic tenets
of algebraic combinatorics such as skew diagrams and Schur functions. If this is not the case, then we
refer them to the excellent texts [9, 12, 13], whose lead we follow by using english notation throughout. One
further indispensable tool for us will be the more recent Hamel-Goulden determinant, expressing a skew Schur
function sD, for a skew diagram D, in terms of a determinant based on an outside decomposition of D, and
the cutting strip associated to the decomposition; see [4, 7] for further details.
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2. Reduction to connected diagrams

We begin by explaining two easy reductions:

A. Understanding all binomial syzygies among the skew Schur functions is equivalent to understanding
the equivalence relation ∼ on all skew diagrams, and

B. the latter is equivalent to understanding ∼ among connected skew diagrams.

These reductions follow from some observations about the matrix

JT (λ/µ) := (hλi−µj−i+j)
`(λ)
i,j=1,

which appears in the Jacobi-Trudi formula for a skew diagram λ/µ. We collect these observations in the
following proposition, whose straightforward proof is omitted in this abstract.

Proposition 2.1. Let λ/µ be a skew diagram with ` := `(λ).

(i) The largest subscript k occurring on any nonzero entry hk in the Jacobi-Trudi matrix JT (λ/µ) is

L := λ1 + ` − 1

and this subscript occurs exactly once, on the (1, `)-entry hL.
(ii) The subscripts on the diagonal entries in JT (λ/µ) are exactly the row lengths

(r1, . . . , r`) := (λ1 − µ1, . . . , λ` − µ`)

and the monomial hr1
· · ·hr`

occurs in the determinant sD

(a) with coefficient +1, and
(b) as the monomial whose subscripts rearranged into weakly decreasing order give the smallest parti-

tion of |λ/µ| in dominance order among all nonzero monomials.
(iii) The subscripts on the nonzero subdiagonal entries in JT (λ/µ) are exactly one less than the adjacent

row overlap lengths:

(λ2 − µ1, λ3 − µ2, . . . , λ` − µ`−1).

Corollary 2.1. For a disconnected skew diagram D = D1⊕D2, one has the factorization sD = sD1
sD2

.
For a connected skew diagram D, the polynomial sD is irreducible in Z[h1, h2, . . .].

Proof. (sketch) The first assertion of the proposition is well-known, and follows, for example, immedi-
ately from the definition of skew Schur functions using tableaux.

For the second assertion, let D = λ/µ with ` := `(λ) and L := λ1 + `−1. Then the Jacobi-Trudi formula
and Proposition 2.1(i) imply that the expansion of sD as a polynomial in the hr is of the form

(2.1) s · hL + r

where s, r are polynomials containing no occurrences of hL. Proposition 2.1(ii) implies that r is not the zero
polynomial, and hence if one can show that s is also nonzero, Equation (2.1) would exhibit sD as a linear
polynomial in hL with nonzero constant term, and hence clearly irreducible in Z[h1, h2, . . .]. The latter is
argued using the fact that D is connected, so that its adjacent row overlaps are all positive, along with
Proposition 2.1(iii). �

We can now infer reductions A and B from the beginning of the section. Given a binomial syzygy

c sD1
sD2

· · · sDm
− c′ sD′

1
sD′

2
· · · sD′

m
= 0

among the skew Schur functions, one can rewrite this as c sD = c′sD′ , where

D := D1 ⊕ D2 ⊕ · · · ⊕ Dm

D′ := D′
1 ⊕ D′

2 ⊕ · · · ⊕ D′
m.

Then Proposition 2.1 (ii) implies the unitriangular expansion sD = hρ +
∑

µ:µ>domρ cµhµ in which ρ is the

weakly decreasing rearrangement of the row lengths in D. This forces c = c′ and hence sD = sD′ , achieving
reduction A.

For reduction B, use the fact that Λ = Z[h1, h2, . . .] is a unique factorization domain, along with Corol-
lary 2.1.
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3. Sufficient conditions

The most basic skew-equivalence is the following well-known fact.

Proposition 3.1. [13, Exercise 7.56(a)] If D is a skew diagram then D ∼ D∗, where D∗ is the antipodal
rotation of D.

It transpires that there are several other constructions and operations on skew diagrams that give rise
to more skew-equivalences.

3.1. Composition with ribbons. Recall the subset of skew diagrams that contain no 2×2 subdiagram,
often known as ribbons. In this subsection we generalize in two different ways the composition operation
α ◦ β on ribbons α, β that was introduced in [2].

Given two skew diagrams D1, D2, aside from their disjoint sum D1 ⊕ D2, there are two closely related
important operations called their concatentation D1 ·D2 and their near-concatenation D1 �D2. The conca-
tentation D1 ·D2 (resp. near concatentation D1 �D2) is obtained from the disjoint sum D1 ⊕D2 by moving
all cells of D2 one column west (resp. one row south), so that the same column (resp. row) is occupied by
the rightmost column (resp. topmost row) of D1 and the leftmost column (resp. bottommost row) of D2.
For example, if D1 = (2, 2), D2 = (3, 2)/(1) then

D1 ⊕ D2 =

2 2
2 2

1 1
1 1

D1 · D2 =

2 2
2 2

1 1
1 1

D1 � D2 =
2 2

1 1 2 2
1 1

.

Observe we have used the numbers 1 and 2 to distinguish between those cells in D1 and those cells in D2.
The reason for the names “concatentation” and “near-concatentation” becomes clearer when we restrict
to ribbons. Observe that in this case there exists a natural correspondence that identifies a composition
α = α1 . . . αk with the ribbon whose row lengths are α1, . . . , αk read from the bottom. Hence, if we identify
ribbons with compositions via this natural correspondence, to get α = (α1, . . . , α`) and β = (β1, . . . , βm),
we have

α · β = (α1, . . . , α`, β1, . . . , βm)

α � β = (α1, . . . , α`−1, α` + β1, β2, . . . , βm),

which are the definitions for concatenation and near concatenation given in [6].
Note that the operations · and � are each associative, and associate with each other:

(3.1)

(D1 · D2) · D3 = D1 · (D2 · D3)

(D1 � D2) � D3 = D1 � (D2 � D3)

(D1 � D2) · D3 = D1 � (D2 · D3)

(D1 · D2) � D3 = D1 · (D2 � D3)

.

Consequently a string of operations D1 ?1 D2 ?2 · · · ?k−1 Dk in which each ?i is either · or � is well-defined
without any parenethesization. Also note that ribbons are exactly the skew diagrams that can be written
uniquely as a string of the form

(3.2) α = � ?1 � ?2 · · · ?k−1 �

where � is the Ferrers diagram with exactly one cell.
Given a ribbon α and a skew diagram D, define α ◦ D to be the result of replacing each cell � in the

expression (3.2) for α with D:

α ◦ D := D ?1 D ?2 · · · ?k−1 D.

For example, if

α =
×

× × ×
× ×

and D =
× ×
× ×
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then
α = � � � · � � � � � · �

α ◦ D = D � D · D � D � D · D

=

6 6
6 6

5 5
4 4 5 5

3 3 4 4
3 3

2 2
1 1 2 2
1 1

where we have used numbers to distinguish between copies of D.
It is easily seen that when D = β is a ribbon, then α ◦ β is also a ribbon, and agrees with the definition

in [2].
Similarly, given a skew diagram D and a ribbon β, we can also define D◦β as follows. Create a copy β(i)

of the ribbon β for each of the cells of D, numbered i = 1, 2, . . . , n arbitrarily. Then assemble the ribbons
β(i) into a disjoint decomposition of D ◦ β by translating them in the plane in such a way that β(i) t β(j)

forms a copy of
{

β(i) � β(j) if i is just left of j in some row of D,

β(i) · β(j) if i is just below j in some column of D.

For example, if

D =
1 2

3 4 5
, β =

× × ×
× ×

then D ◦ β is the skew diagram

2 2 2
1 1 1 2 2

1 1 5 5 5
4 4 4 5 5

3 3 3 4 4
3 3

where we have used numbers to distinguish between copies of β.
Again it is clear that when D = α is a ribbon, then α ◦ β is another ribbon agreeing with that in [2].

The following distributivity properties should also be clear.

Proposition 3.2. For a skew diagram D and ribbons α and β the operation ◦ distributes over · and �,
that is

(α · β) ◦ D = (α ◦ D) · (β ◦ D)

(α � β) ◦ D = (α ◦ D) � (β ◦ D)

and
(D1 · D2) ◦ β = (D1 ◦ β) · (D2 ◦ β)

(D1 � D2) ◦ β = (D1 ◦ β) � (D2 ◦ β)
.

Remark 3.1. Observe that D1 ◦ D2 has not been defined for both D1 and D2 being non-ribbons, and
we invite the reader to investigate this situation in order to appreciate the complexities that can arise.

In the meantime, we show that the notation for the operations α ◦ D and D ◦ β is consistent with the
notation for skew Schur functions. These operations also lead to nontrivial skew-equivalences, generalizing
the constructions of [2].

We begin by reviewing the presentation of the ring Λ of symmetric functions by the generating set of
ribbon Schur functions sα, that is, those skew Schur functions indexed by ribbons. Let Q[zα] denote a
polynomial algebra in infinitely many variables zα indexed by all compositions α.
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Proposition 3.3. [2, Proposition 2.2]. The algebra homomorphism

Q[zα] → Λ
zα 7→ sα

is a surjection, whose kernel is the ideal generated by the relations

(3.3) zαzβ − (zα·β + zα�β).

In fact, this same syzygy is well-known to be satisfied [9, Chapter 1.5, Example 21 part (a)] by all skew
diagrams D1, D2:

(3.4) sD1
sD2

= sD1·D2
+ sD1�D2

.

As a consequence, one deduces the following.

Corollary 3.2. For a fixed skew diagram D the map

Q[zα]
(−)◦sD
−→ Λ

zα 7−→ sα◦D

descends to a well-defined map Λ −→ Λ. In other words, for any symmetric function f , one can arbitrarily
write f as a polynomial in ribbon Schur functions f = p(sα) and then set f ◦ sD := p(sα◦D).

We are abusing notation here by using ◦ both for the map (−) ◦ sD on symmetric functions, as well as
the two diagrammatic operations α ◦ D and D ◦ β. The previous corollary says that it is well-defined to set

(3.5) sα ◦ sD = sα◦D

so that we are at least consistent with one of the diagrammatic operations. The next result says that we are
also consistent with the other.

Proposition 3.4. For any skew diagram D and ribbon β

sD◦β = sD ◦ sβ.

Proof. (sketch) One uses the Hamel-Goulden determinant for sD, which starts with an outside decom-
position of D into ribbons (θ1, . . . , θm). The induced outside decomposition (θ1 ◦ β, . . . , θm ◦ β) for D ◦ β
leads to a Hamel-Goulden determinant for sD◦β . The proposition then follows because various operations
commute with each other. �

Theorem 3.3. Assume one has ribbons α, α′ and skew diagrams D, D′ satisfying α ∼ α′ and D ∼ D′.
Then

(i) α ◦ D ∼ α′ ◦ D,
(ii) D ◦ α ∼ D′ ◦ α,
(iii) D ◦ α ∼ D ◦ α′, and
(iv) α ◦ D ∼ α ◦ D∗.

Proof. Assertions (i) and (ii) both follow from the fact that if E is any skew diagram, then D ∼ D′

means sD = sD′ , and hence

(3.6) sD ◦ sE = sD′ ◦ sE .

The third follows by Proposition 3.4 if one can show it when D = α is a ribbon. This special case α◦β1 ∼ α◦β2

was shown in [2]. Assertion (iv) follows from assertion (i) and Proposition 3.1:

α ◦ D ∼ (α ◦ D)∗ = α∗ ◦ D∗ ∼ α ◦ D∗.

�

Remark 3.4. The last skew-equivalence begs the question of whether D1 ∼ D2 for skew diagrams
D1, D2 implies α ◦ D1 ∼ α ◦ D2 for any ribbon α. This turns out to be false. For example, one can check
that

D1 =

× × ×
× ×

× ×
×

∼

× ×
× × ×
× ×
×

= D2,
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e.g. by Corollary 3.20. However, if one takes α = (2), that is, the ribbon having one row with two cells, then
we find

α ◦ D1 =

× × ×
× ×

× ×
× × × ×
× ×

× ×
×

α ◦ D2 =

× ×
× × ×
× ×

× × ×
× × ×
× ×
×

and α ◦ D1 6∼ α ◦ D2, e.g. by Theorem 4.4.

3.2. Amalgamation and amalgamated composition of ribbons. Now in a third way we generalize
the operation α ◦ β to an operation α ◦ω β, which we will call the amalgamated composition of α and β with
respect to ω.

Definition 3.5.
Given a skew diagram D and a nonempty ribbon ω, say that ω lies in the top (resp. bottom) of D if the
restriction of D to its |ω| northeasternmost (resp. southwesternmost) diagonals is (a translated copy of) the
ribbon ω.

Given two skew diagrams D1, D2 and a nonempty ribbon ω lying in the top of D1 and the bottom of D2,
the amalgamation of D1 and D2 along ω, denoted D1 qω D2, is the new ribbon obtained from the disjoint
union D1 ⊕ D2 by identifying the copy of ω in the northeast of D1 with the copy of ω in the southwest of
D2.

Say that ω protrudes from the top (resp. bottom) of D if there is another ribbon ω+ having |ω+| = |ω|+1
such that both ω, ω+ lie at the top (resp. bottom) of D. Equivlalently, ω protrudes from the top (resp.
bottom) of D if it lies at the top (resp. bottom) of D and the restriction of D to its |ω|+1 northeasternmost
(resp. southwesternmost) diagonals is also a ribbon, namely ω+.

Example 3.6.
Consider the skew diagram

D =
× × ×

× × ×
.

Then D has ω1 = × protruding from the top and bottom. It has ω2 = ×× lying in its top and bottom, but
protruding from neither top nor bottom. Furthermore,

D qω1
D =

× × ×
× × o × ×

× × ×
, D qω2

D =
× × ×

× o o ×
× × ×

in which the copies of ω1 and ω2 that have been amalgamated are indicated with the letter o.

Definition 3.7.
When ω lies in the top of D1 and bottom of D2, one can form the outer (resp. inner) projection of D1 onto
D2 with respect to ω. This is a new diagram in the plane, not necessarily skew, obtained from the disjoint
union D1 ⊕D2 by translating D2 until it is underneath and to the right (resp. above and to the left) of D1,
in such a way that the two copies of ω in D1, D2 are adjacent and occupy the same set of diagonals.

One can see that if ω not only lies in the top of D1 and bottom of D2, but actually protrudes from the
top of D1 and from the bottom of D2, then at most one of these two projections can be a skew diagram
(and possibly neither one is). When one of them is a skew diagram, call it D1 ·ω D2, and say that D1 ·ω D2

is defined in this case.



SKEW SCHUR COINCIDENCES

Example 3.8.
Let D, ω1, ω2 be as in the previous example. Then the outer and inner projections of D onto D with respect
to ω2 are

× o o × × ×
× × × o o ×

× × ×
o o ×
× o o

× × ×

,

which are both skew diagrams. On the other hand, the outer and inner projections of D onto D with respect
to ω1 are

× × o × × ×
× × × o × ×

× × ×
o × ×

× × o
× × ×

= D ·ω1
D

in which only the latter is a skew diagram.

Definition 3.9.
Given a skew diagram D, and ω a ribbon lying in both the top and bottom of D, one can define

Dqωn = D qω D qω · · · qω D
︸ ︷︷ ︸

n factors

:= ((D qω D) qω D) qω · · · qω D.

If one assumes that D ·ω D is also defined so that, in particular, ω protrudes from the top and bottom of
D, then one can check that this will imply that for any positive integers m, n, we have (Dqωm) ·ω (Dqωn) is
also defined. Under this assumption, for any ribbon α = (α1, . . . , αk), define the amalgamated composition
of α and D with respect to ω to be the diagram

(3.7) α ◦ω D := (Dqωα1) ·ω . . . ·ω (Dqωαk).

The following theorems are obtained by consideration of an appropriate Hamel-Goulden determinant.

Theorem 3.10. Let D be a connected skew diagram, and ω a ribbon which protrudes from the top and
bottom of D, with D ·ω D defined. Assume further that the two copies of ω in the top and bottom of D are
separated by at least one diagonal,that is, there is a nonempty diagonal in D intersecting neither copy of ω.

Then for any ribbon α one has
sα◦ωD = sα ◦ω sD.

Theorem 3.11. Let α, α′ be ribbons with α ∼ α′, and assume that D, ω satisfy the hypotheses of Theo-
rem 3.10. Then one has the following skew-equivalences:

α′ ◦ω D ∼ α ◦ω D ∼ α ◦ω∗ D∗.

Theorem 3.12. Let {βi}k
i=1, {γi}k

i=1 be ribbons, and for each i either γi = βi or γi = β∗
i . If the skew

diagrams D, ω satisfy the hypotheses of Theorem 3.10, then

γ1 ◦ω γ2 ◦ω . . . ◦ω γk ◦ω D

∼ β1 ◦ω β2 ◦ω . . . ◦ω βk ◦ω D

∼ β1 ◦ω∗ β2 ◦ω∗ . . . ◦ω∗ βk ◦ω∗ D∗

where all the operations ◦ω or ◦ω∗ are performed from right to left.

Remark 3.13. Theorem 3.11 is analogous to [2, Theorem 4.4 parts 1 and 2], whereas Theorem 3.12 is
analogous to the reverse direction of [2, Theorem 4.1].

3.3. Conjugation and ribbon staircases. The goal here is to construct skew diagrams D that are
skew-equivalent to their conjugates Dt. We first define two decompositions of a connected skew diagram
D into ribbons; when one of these decompositions takes on a very special form, we will show that implies
D ∼ Dt.

Definition 3.14.
Given a connected skew diagram D define the southeast decomposition to be the following unique decompo-
sition into ribbons. The first ribbon θ is the unique ribbon that starts at the cell on the lower left, traverses
the southeast border of D, and ends at the cell on the upper right. Now consider D with θ removed, which
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may decompose into several connected component skew shapes, and iterate the above procedure on each of
these shapes. The northwest decomposition is similarly defined, starting with a ribbon θ that traverses the
northwest border of D.

Note that both of these are outside decompositions of D, and hence give rise to Hamel-Goulden deter-
minants for sD. In both cases, the associated cutting strip for the decomposition coincides with its first and
largest ribbon θ. We will be interested in the case where all of the ribbons in the southeast or northwest
decomposition of D arise in a very special way from the amalgamation construction of Section 3.2.

Definition 3.15.
Let α = (α1, . . . , αk) and β = (β1, . . . , β`) be ribbons. For an integer m ≥ 1, say that the m-intersection
α∩m β exists if there is a ribbon ω = (ω1, . . . , ωm) with m rows lying in the top of α and the bottom of β for
which ω1 = β1 and ωm = αk; when m = 1, we set ω1 := min{αk, β1}. In this case, define the m-intersection
α ∩m β and the m-union α ∪m β to be

α ∩m β := ω

α ∪m β := α qω β
.

If α ∪m β = α or β (resp. or α ∩m β = α or β) then we say the m-union (resp. m-intersection) is trivial. If
α is a ribbon such that α ∩m α exists and is non-trivial then

εk
m(α) := α ∪m α ∪m . . . ∪m α

︸ ︷︷ ︸

k factors

is the ribbon staircase of height k and depth m generated by α.

Example 3.16.
Let α be the ribbon (2, 3). Then

ε3
1(α) = ε3

1

(
× × ×

× ×

)

=

× × ×
× × ×

× × ×
× ×

.

Definition 3.17.
Say that a skew diagram D has a southeast ribbon staircase decomposition if there exists an m < `(α) and
a ribbon α such that all ribbons in the southeast decomposition of D are of the forms α ∩m α or εp

m(α) for
various integers p ≥ 1.

In this situation, let k be the maximum value of p occurring among the εp
m(α) above, so that the largest

ribbon θ equals εk
m(α). We will think of θ as containing k copies of α, numbered 1, 2, . . . , k from southwest

to northeast. We now wish to define the nesting N associated to this decomposition. The nesting N is a
word of length k − 1 using as letters the four symbols, dot “.”, left parenthesis “(”, right parenthesis “)” and
vertical slash “|”. Considering the ribbons in the southeast decomposition of D,

• a ribbon of the form εp
m(α) creates a pair of left and right parentheses in positions i and j if the

ribbon occupies the same diagonals as the i + 1, i + 2, . . . , j − 1, j copies of α in θ, while
• a ribbon of the form α ∩m α creates a vertice slash in position i if it occupies the same diagonals

as the intersection of the i, i + 1 copies of α in θ, and
• all other letters in N are dots.

With this notation, say that D = (εk
m(α),N )se. Analogously define the notation D = (εk

m(α),N )nw using
the northwest decomposition.

Lastly, given a nesting N , denote the reverse nesting, which is the reverse of the word N , by N ∗.
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Example 3.18. Consider the following skew diagram D, with its southeast decomposition into ribbons
θ1, θ2, θ3, θ4 distinguished by the numbers 1, 2, 3, 4 respectively:

D =

4 3 3 1 1
3 3 1 1
3 1 1

2 1 1
1 1

1 1
1

.

This happens to be a southeast ribbon staircase decomposition, in which

α =
× ×
×

, m = 1, k = 6, N = . | ( | ),

that is, D = (ε6
1(α),N )se. Here N ∗ = ( | ) | ., and additionally note that the skew diagram D′ = (ε6

1(α),N ∗)
is the same as the conjugate skew diagram Dt.

The following is a consequence of the Hamel-Goulden determinant associated to the southeast (or north-
west) decomposition of D, when its decomposition is a ribbon staircase decomposition.

Theorem 3.19. Let α be a ribbon, and let

D1 = (εk
m(α),N )x

D2 = (εk
m(α),N ∗)x

where m < `(α) and x = se or nw. Then D1 ∼ D2.

This leads to the following interesting corollary.

Corollary 3.20. Let D = (εk
m(α),N )x where α is a self-conjugate ribbon, m < l(α) and x = se or

nw. Then D ∼ Dt. Furthermore, for any Ferrers diagram µ contained in the staircase partition δn :=
(n − 1, n− 2, . . . , 1) `

(
n
2

)
, one has

δn/µ ∼ (δn/µ)
t
.

We conjecture the following converse, which has been verified for all skew diagrams D with |D| ≤ 18.

Conjecture 3.21. If a skew diagram D satisfies D ∼ Dt, then D = (εk
m(α),N )x for some self-conjugate

ribbon α, some m < `(α) and x = se or nw.

3.4. Adding a full column/row, and complementation within a rectangle. Let D be thought
of as any finite subset of the plane Z2. We wish to consider two operations on D, which turn out to be
closely related.

• Adding a full column (resp. row): Add to the shape a new column (resp. row) which has a cell in
every previously nonempty row (resp. column), and possibly in some new rows (resp. columns).

• Complementation within a rectangle: If R is a rectangular Ferrers diagram containing D, consider
the complementary shape R\D.

When D is a Ferrers diagram λ, it is not hard to see that the result of the latter is at least a skew diagram.
However, when D is only assumed to be a skew diagram, after performing either of these operations, it is
generally not true that the result is another skew diagram. Nevertheless, in some cases, after performing
these operations, one may be able to reorder the columns (resp. rows) so as to obtain a skew diagram again.
This combined with the following definition allows us to derive another sufficiency.

Definition 3.22.
A skew diagram D has spinal columns if it contains either a single column or a union of two adjacent columns
whose union intersects every nonempty row of D. One can similarly define when D has spinal rows.

The following can be proved using results from [10].
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Theorem 3.23. Let Di for i = 1, 2 be skew diagrams, both having spinal columns, and ` nonempty rows.
Let R be a rectangle with ` rows that contains D1, D2. Let D+

i be obtained from Di by adding a full column
of length ` to form a skew diagram. Then

D1 ∼ D2 if and only if D+
1 ∼ D+

2 if and only if R\D1 ∼ R\D2.

4. Necessary conditions

We now present some combinatorial invariants for the skew-equivalence relation D1 ∼ D2 on connected
skew diagrams.

4.1. Frobenius rank. Recall that the Durfee or Frobenius rank of a skew diagram D is defined to be
the minimum number of ribbons in any decomposition of D into ribbons. It was recently conjectured by
Stanley [14], and proven by Chen and Yang [3], that the rank coincides with the highest power of t dividing
the polynomial sD(1, 1, . . . , 1, 0, 0, . . .), where t of the variables have been set to 1, and the rest to zero. This
implies the following.

Corollary 4.1. Frobenius rank is an invariant of skew-equivalence, that is, two skew-equivalent dia-
grams must have the same Frobenius rank.

In particular, skew-equivalence restricts to the subset of ribbons as they are the skew diagrams of Frobenius
rank 1.

4.2. Overlaps. Data about the amount of overlap between sets of rows or columns in the skew diagram
D can be recovered from its skew Schur function sD.

Definition 4.2.
Let D be a skew diagram occupying r rows. For each k in {1, 2, . . . , r}, define the k-row overlap composition

r(k) = (r
(k)
1 , . . . , r

(k)
r−k+1) to be the sequence where r

(k)
i is the number of columns occupied in common by the

rows i, i+1, · · · , i+k−1. Let ρ(k) be the k-row overlap partition that is the weakly decreasing rearrangement
of r(k). Similarly define column overlap compositions c(k) and column overlap partitions γ(k).

Example 4.3. If D =
× ×

× × ×
×

, then the 1-row, 2-row and 3-row overlap compositions are

r(1) = (2, 3, 1)

r(2) = (2, 1)

r(3) = (0).

With this is mind we are able to prove

Theorem 4.4. If D1 ∼ D2 then D1, D2 have the same k-row overlap partitions and the same k-column
overlap partitions for all k.

It transpires that the row overlap partitions (ρ(k))k≥1 and the column overlap partitions (γ(k))k≥1

determine each other uniquely. To see this, we define a third form of data on a skew diagram D, which
mediates between the two, and which is more symmetric under conjugation.

Proposition 4.1. Given a skew diagram D, consider the doubly-indexed array (ak,`)k,`≥1 where ak,` is
defined to be the number of k × ` rectangular subdiagrams contained inside D. Then we have

ak,` =
∑

`′≥`

(

ρ(k)
)t

`′

=
∑

k′≥k

(

γ(`)
)t

k′

.

Consequently, any one of the three forms of data

(ρ(k))k≥1, (γ(k))k≥1, (ak,`)k,`≥1

on D determines the other two uniquely.
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Remark 4.5. Unfortunately, having the same row and column overlap partitions ρ(k), γ(k) is not suffi-
cient for the skew-equivalence of two skew diagrams as

× ×
× × ×
×

6∼
× × ×

× ×
×

even though they have the same row and column overlap partitions ρ(k), γ(k) for every k.

5. Complete classification

The sufficient conditions discussed in this abstract explain all but six of the skew-equivalences among
skew diagrams with up to 18 cells. For example, the following skew-equivalence cannot yet be explained:

× ×
× × ×

× × × ×
× ×

× ×
× ×

∼

× ×
× ×
× ×

× × ×
× × × ×
× ×

.

We end with the following conjectures.

Conjecture 5.1. The skew-equivalence relation ∼, when restricted to skew diagrams of Frobenius rank
at most 3, is explained by all of the constructions in this paper. In other words, it is the equivalence relation
generated by the equivalences listed in

• Proposition 3.1,
• Theorem 3.3,
• Theorem 3.11,
• Theorem 3.19, and
• Theorem 3.23.

Conjecture 5.2. Every skew-equivalence class of skew diagrams has cardinality a power of 2.
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