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Abstract. We introduce Coxeter-sortable elements of a Coxeter group W. For finite W, we give bijective
proofs that Coxeter-sortable elements are equinumerous with clusters and with noncrossing partitions. We
characterize Coxeter-sortable elements in terms of their inversion sets and, in the classical cases, in terms of

permutations.

Résumé. Nous introduisons dans ce travail la notion d’éléments sortables pour un groupe de Coxeter W .
Dans le cas où W est fini, nous montrons que les éléments sortables sont en bijection avec les clusters ainsi
qu’avec les partitions non croisées. Nous donnons une caractérisation des éléments sortables au moyen de
leurs ensembles d’inversion et, dans les cas classiques, en terme de permutations.

Introduction

The famous Catalan numbers can be viewed as a special case of the W -Catalan number, which counts
various objects related to a finite Coxeter group W. In many cases, the common numerology is the only
known connection between different objects counted by the W -Catalan number. One collection of objects
counted by the W -Catalan number is the set of noncrossing partitions associated to W, which play a role
in low-dimensional topology, geometric group theory and non-commutative probability [17]. Another is the
set of maximal cones of the cluster fan. The cluster fan is dual to the generalized associahedron [9, 11], a
polytope whose combinatorial structure underlies cluster algebras of finite type [12].

This paper connects noncrossing partitions to associahedra via certain elements of W which we call
Coxeter-sortable elements or simply sortable elements. For each Coxeter element c of W, there is a set of
c-sortable elements, defined in the context of the combinatorics of reduced words. We prove bijectively that
sortable elements are equinumerous with clusters and with noncrossing partitions. Sortable elements and
the bijections are defined without reference to the classification of finite Coxeter groups, but the proof that
these maps are indeed bijections refers to the classification. The bijections are well-behaved with respect to
the refined enumerations associated to the Narayana numbers and to positive clusters.

In the course of establishing the bijections, we characterize1 the sortable elements in terms of their
inversion sets. Loosely speaking, we “orient” each rank-two parabolic subgroup of W and require that the
inversion set of the element be “aligned” with these orientations. In particular, we obtain a characterization
of the sortable elements in types An, Bn and Dn as permutations.

Because sortable elements are defined in terms of reduced words, it is natural to partially order them
as an induced subposet of the weak order. Indeed, the definition of sortable elements arose from the study
of certain lattice quotients of the weak order called Cambrian lattices. In the sequel [22] to this paper, we
show that sortable elements are indeed a combinatorial model for the Cambrian lattices.
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Recently, Brady and Watt [8] observed that the cluster fan arises naturally in the context of noncrossing
partitions. Their work and the present work constitute two seemingly different approaches to connecting
noncrossing partitions to clusters. The relationship between these approaches is not yet understood.

The term “sortable” has reference to the special case where W is the symmetric group. For one particular
choice of c, the definition of c-sortable elements of the symmetric group is as follows: Perform a bubble sort
on a permutation π by repeatedly passing from left to right in the permutation and, whenever two adjacent
elements are out of order, transposing them. For each pass, record the set of positions at which transpositions
were performed. Then π is c-sortable if this sequence of sets is weakly decreasing in the containment order.
There is also a choice of c (see Example 1.8) such that the c-sortable elements are exactly the 231-avoiding
or stack-sortable permutations [15, Exercise 2.2.1.4–5].

1. Coxeter-sortable elements

Throughout this paper, W denotes a finite Coxeter group with simple generators S and reflections T .
Some definitions apply also to the case of infinite W, but we confine the treatment of the infinite case to a
series of remarks (Remarks 1.5, 2.4 and 3.5.).

The term “word” always means “word in the alphabet S.” Later, we consider words in the alphabet
T which, to avoid confusion, are called “T -words.” A cover reflection of w ∈ W is a reflection t such that
tw = ws with l(ws) < l(w). The term “cover reflection” refers to the (right) weak order. This is the partial
order on W whose cover relations are the relations of the form w ·> ws for l(ws) < l(w), or equivalently,
w ·> tw for a cover reflection t of w. For each J ⊆ S, let WJ be the subgroup of W generated by J . The
notation 〈s〉 stands for the set S − {s}.

For the rest of the paper, c denotes a Coxeter element, that is, an element of W with a reduced word
which is a permutation of S. An orientation of the Coxeter diagram for W is obtained by replacing each edge
of the diagram by a single directed edge, connecting the same pair of vertices in either direction. Orientations
of the Coxeter diagram correspond to Coxeter elements (cf. [25]) as follows: Given a Coxeter element c, any
two reduced words for c are related by commutations of simple generators. An edge s—t in the diagram
represents a pair of noncommuting simple generators, and the edge is oriented s −→ t if and only if s precedes
t in every reduced word for c.

We now define Coxeter-sortable elements. Fix a reduced word a1a2 · · · an for a Coxeter element c. Write
a half-infinite word

c∞ = a1a2 · · · ana1a2 · · · ana1a2 · · · an . . .

The c-sorting word for w ∈ W is the lexicographically first (as a sequence of positions in c∞) subword of
c∞ which is a reduced word for w. The c-sorting word can be interpreted as a sequence of subsets of S by
rewriting

c∞ = a1a2 · · · an|a1a2 · · ·an|a1a2 · · ·an| . . .

where the symbol “|” is called a divider. The subsets in the sequence are the sets of letters of the c-sorting
word which occur between adjacent dividers. This sequence contains a finite number of non-empty subsets,
and furthermore if any subset in the sequence is empty, then every later subset is also empty. For clarity in
examples, we often retain the dividers when writing c-sorting words for c-sortable elements.

An element w ∈ W is c-sortable if its c-sorting word defines a sequence of subsets which is decreasing
under inclusion. This definition of c-sortable elements requires a choice of reduced word for c. However, for a
given w, the c-sorting words for w arising from different reduced words for c are related by commutations of
letters, with no commutations across dividers. In particular, the set of c-sortable elements does not depend
on the choice of reduced word for c.

Remark 1.1. The c-sortable elements have a natural search-tree structure rooted at the identity element.
The edges are pairs v, w of c-sortable elements such that the c-sorting word for v is obtained from the c-
sorting word for w by deleting the rightmost letter. This makes possible an efficient traversal of the set
of c-sortable elements of W which, although it does not explicitly appear in what follows, allows various
properties of c-sortable elements to be checked computationally in low ranks. Also, in light of the bijections
of Theorems 2.1 and 3.2, an efficient traversal of the c-sortable elements leads to an efficient traversal of
noncrossing partitions or of clusters.
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The next two lemmas are immediate from the definition of c-sortable elements. Together with the fact
that 1 is c-sortable for any c, they completely characterize c-sortability. A simple generator s ∈ S is initial
in (or is an initial letter of) a Coxeter element c if it is the first letter of some reduced word for c.

Lemma 1.2. Let s be an initial letter of c and let w ∈ W have l(sw) > l(w). Then w is c-sortable if and
only if it is an sc-sortable element of W〈s〉.

Lemma 1.3. Let s be an initial letter of c and let w ∈ W have l(sw) < l(w). Then w is c-sortable if and
only if sw is scs-sortable.

Remark 1.4. In the dictionary between orientations of Coxeter diagrams (i.e. quivers) and Coxeter
elements, the operation of replacing c by scs corresponds to the operation on quivers which changes a source
into a sink by reversing all arrows from the source. This operation was used in [16] in generalizing the
clusters of [11] to Γ-clusters, where Γ is a quiver of finite type. We thank Andrei Zelevinsky for pointing
out the usefulness of this operation, which plays a key role throughout the paper.

Remark 1.5. The definition of c-sortable elements is equally valid for infinite W . Lemmas 1.2 and 1.3
are valid and characterize c-sortability in the infinite case as well. However, we remind the reader that for
all stated results in this paper, W is assumed to be finite.

Example 1.6. Consider W = B2 with c = s0s1. The c-sortable elements are 1, s0, s0s1, s0s1|s0,
s0s1|s0s1 and s1. The elements s1|s0 and s1|s0s1 are not c-sortable.

We close the section with a discussion of the sortable elements of the Coxeter group W = An, realized
combinatorially as the symmetric group Sn+1. Permutations π ∈ Sn+1 are written in one-line notation as
π1π2 · · ·πn+1 with πi = π(i). The simple generators of Sn+1 are si = (i i+1) for i ∈ [n].

A barring of a set U of integers is a partition of that set into two sets U and U . Elements of U are

upper-barred integers denoted i and lower-barred integers are elements of U , denoted i .
Recall that orientations of the Coxeter diagram correspond to Coxeter elements. The Coxeter diagram

for Sn+1 has unlabeled edges connecting si to si+1 for i ∈ [n − 1]. We encode orientations of the Coxeter

diagram for Sn+1 as barrings of [2, n] by directing si → si−1 for every i ∈ [2, n] and si−1 → si for every
i ∈ [2, n], as illustrated in Figure 1 for c = s8s7s4s1s2s3s5s6 in S9. Given a choice of Coxeter element, the
corresponding barring is assumed.

barA.ps

Figure 1. Orientation and barring in S9

We now define condition (A), which characterizes c-sortability of permutations. Condition (A) depends
on the choice of c as follows: a fixed choice of c defines a barring as described above, and condition (A)
depends on that fixed barring. A permutation π ∈ Sn+1 satisfies condition (A) if both of the following
conditions hold:

(A1) π contains no subsequence j k i with i < j < k, and
(A2) π contains no subsequence k i j with i < j < k.

Notice that i and k appear in (A1) and (A2) without explicit barrings. This is because the barrings of i

and k are irrelevant to the conditions. For example, to satisfy (A1), π may not contain any sequence of the

form j k i, regardless of the barrings of i and k.

Theorem 1.7. A permutation π ∈ Sn+1 is c-sortable if and only if it satisfies condition (A) with respect
to the barring corresponding to c.

Example 1.8. For W = Sn+1 and c = (n n+1) · · · (2 3)(1 2), the c-sortable elements are exactly the
231-avoiding or stack-sortable permutations defined in [15, Exercise 2.2.1.4–5].

2. Sortable elements and noncrossing partitions

In this section, we define a bijection between sortable elements and noncrossing partitions. Recall that
T is the set of reflections of W . Any element w ∈ W can be written as a word in the alphabet T . To avoid
confusion we always refer to a word in the alphabet T as a T -word. Any other use of the term “word” is
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assumed to refer to a word in the alphabet S. A reduced T -word for w is a T -word for w which has minimal
length among all T -words for w. The absolute length of an element w of W is the length of a reduced T -word
for w. This is not the usual length l(w) of w, which is the length of a reduced word for w in the alphabet S.

The notion of reduced T -words leads to a prefix partial order on W, analogous to the weak order. Say
x ≤T y if x possesses a reduced T -word which is a prefix of some reduced T -word for y. Equivalently, x ≤T y

if every reduced T -word for x is a prefix of some reduced T -word for y. Since the alphabet T is closed under
conjugation by arbitrary elements of W, the partial order ≤T is invariant under conjugation. The partial
order ≤T can also be defined as a subword order: x ≤T y if and only if there is a reduced T -word for y

having as a subword some reduced T -word for x. In particular, x ≤T y if and only if x−1y ≤ y.
The noncrossing partition lattice in W (with respect to the Coxeter element c) is the interval [1, c]T , and

the elements of this interval are called noncrossing partitions. The poset [1, c]T is graded and the rank of a
noncrossing partition is its absolute length.

Let w be a c-sortable element and let a = a1a2 · · · ak be a c-sorting word for w. Totally order the
inversions of w such that the ith reflection in the order is a1a2 · · ·ai−1aiai−1 · · ·a2a1. Equivalently, t is the
ith reflection in the order if and only if tw = a1a2 · · · âi · · · ak, where âi indicates that ai is deleted from the
word. Write the set of cover reflections of w as a subsequence t1, t2, . . . , tl of this order on inversions. Let
ncc be the map which sends w to the product t1t2 · · · tl. Recall that the construction of a c-sorting word
begins with an arbitrary choice of a reduced word for c. However, since any two c-sorting words for w are
related by commutation of simple generators, ncc(w) does not depend of the choice of reduced word for c.

Theorem 2.1. For any Coxeter element c, the map w 7→ ncc(w) is a bijection from the set of c-sortable
elements to the set of noncrossing partitions with respect to c. Furthermore ncc maps c-sortable elements
with k descents to noncrossing partitions of rank k.

Recall that the descents of w are the simple generators s ∈ S such that l(ws) < l(w). Recall also that
these are in bijection with the cover reflections of w. The basic tool for proving Theorem 2.1 is induction on
rank and length, using Lemmas 1.2 and 1.3. A more complicated induction is used to prove the existence of
the inverse map.

Example 2.2. We again consider the case W = B2 and c = s0s1. As a special case of the combinatorial
realization of noncrossing partitions of type B given in [24], the noncrossing partitions in B2 with respect
to c are the centrally symmetric noncrossing partitions of the cycle shown below.

B2cycle.ps

Figure 2 illustrates the map ncc for this choice of W and c.

w 1 ŝ0 s0ŝ1 s0s1|ŝ0 ŝ0s1|s0ŝ1 ŝ1

ncc(w) 1 s0 s0s1s0 s1s0s1 s0 · s1 s1

B2.1.ps B2.a.ps B2.ab.ps B2.aba.ps B2.ababi.ps B2.b.ps

↓
B2.ababii.ps

Figure 2. The map ncc

Example 2.3. Covering reflections of a permutation π ∈ Sn+1 are the transpositions corresponding to
descents (pairs (πi, πi+1) with πi > πi+1). The map ncc sends π to the product of these transpositions.
The relations πi ≡ πi+1 for descents (πi, πi+1) generate an equivalence relation on [n + 1] which can be
interpreted as a noncrossing partition (in the classical sense) of the cycle c. For c = (n n+1) · · · (2 3)(1 2)
as in Example 1.8, this map between 231-avoiding permutations and classical (i.e. type A) noncrossing
partitions is presumably known.

Remark 2.4. The definition of ncc is valid for infinite W . However, Theorem 2.1 address the finite
case only. In particular, for infinite W it is not even known whether ncc maps c-sortable elements into the
interval [1, c]T .
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Remark 2.5. As a byproduct of Theorem 2.1, we obtain a canonical reduced T -word for every x in
[1, c]T . The letters are the canonical generators of the associated parabolic subgroup, or equivalently the
cover reflections of (ncc)

−1(x), occurring in the order induced by the c-sorting word for (ncc)
−1(x). This

is canonical, up to the choice of reduced word for c. Changing the reduced word for c alters the choice of
canonical reduced T -word for x by commutations of letters.

In [1], it is shown that for c bipartite, the natural labeling of [1, c]T is an EL-shelling with respect to the
reflection order obtained from what we here call the c-sorting word for w0. In particular, the labels on the
unique maximal chain in [1, x]T constitute a canonical reduced T -word for x. It is apparent from the proof of
[1, Theorem 3.5(ii)] that these two choices of canonical reduced T -words are identical in the bipartite case,
for W crystallographic. Presumably the same is true for non-crystallographic W .

3. Sortable elements and clusters

In this section we define c-clusters, a slight generalization (from crystallographic Coxeter groups to all
finite Coxeter groups) of the Γ-clusters of [16]. These in turn generalize the clusters of [11]. The main result
of this section is a bijection between c-sortable elements and c-clusters.

We build the theory of clusters within the framework of Coxeter groups, rather than in the framework of
root systems. This is done in order to avoid countless explicit references to the map between positive roots
and reflections in what follows. Readers familiar with root systems will easily make the translation to the
language of almost positive roots of [11] and [16].

Let −S denote the set {−s : s ∈ S} of formal negatives of the simple generators of W, and let T≥−1 be
T ∪ (−S). (Recall that T is the set of all reflections of W.) The notation TJ stands for T ∩WJ and (TJ)≥−1

denotes TJ ∪ (−J).
For each s ∈ S, define an involution σs : T≥−1 → T≥−1 by

σs(t) :=







−t if t = ±s,

t if t ∈ (−S) and t 6= −s, or
sts if t ∈ T − {s}.

We now define a symmetric binary relation ‖c called the c-compatibility relation.

Proposition 3.1. There exists a unique family of symmetric binary relations ‖c on T≥−1, indexed by
Coxeter elements c, with the following properties:

(i) For any s ∈ S, t ∈ T≥−1 and Coxeter element c,

−s ‖c t if and only if t ∈ (T〈s〉)≥−1.

(ii) For any t1, t2 ∈ T≥−1 and any initial letter s of c,

t1 ‖c t2 if and only if σs(t1) ‖scs σs(t2).

A c-compatible subset of T≥−1 is a set of pairwise c-compatible elements of T≥−1. A c-cluster is a maximal
c-compatible subset. A c-cluster is called positive if it contains no element of −S.

Let w be a c-sortable element with c-sorting word a1a2 · · · ak. If s ∈ S occurs in a then the last reflection
for s in w is a1a2 · · · ajaj−1 · · · a2a1, where aj is the rightmost occurrence of s in a. If s does not occur in
a then the last reflection for s in w is the formal negative −s. Let clc(w) be the set of last reflections of w.
This is an n-element subset of T≥−1. This map does not depend on the choice of reduced word for c, because
any two c-sorting words for w are related by commutations of simple generators.

Theorem 3.2. The map w 7→ clc(w) is a bijection from the set of c-sortable elements to the set of
c-clusters. Furthermore, clc restricts to a bijection between c-sortable elements with full support and positive
c-clusters.

The strategy for proving Theorem 3.2 is the same as for Theorem 2.1, but with fewer complications. We
argue by induction on rank and length.

Example 3.3. We continue the example of W = B2 and c = s0s1. Clusters in B2 correspond to
collections of diagonals which define centrally symmetric triangulations of the hexagon shown below.

B2seed.ps
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Each element of T≥−1 is represented by a diameter or a centrally symmetric pair of diagonals. For details,
see [11, Section 3.5]. Figure 3 illustrates the map clc on c-sortable elements for this choice of W and c.

w 1 s0 s0s1 s0s1|s0 s0s1|s0s1 s1

clc(w) −s0,−s1 s0,−s1 s0, s0s1s0 s1s0s1, s0s1s0 s1s0s1, s1 −s0, s1

B2cl.1.ps B2cl.a.ps B2cl.ab.ps B2cl.aba.ps B2cl.abab.ps B2cl.b.ps

Figure 3. The map clc

Example 3.4. By way of contrast with Example 2.3, we offer no characterization of the map clc on
permutations satisfying (A), even in the 231-avoiding case. Such a characterization is not immediately
apparent, due to the dependence of clc(w) on a specific choice of reduced word for w.

Remark 3.5. Even for infinite W, the map clc associates to each c-sortable element an n-element
subset of T≥−1. However, for infinite W, it is not even clear how c-compatibility should be defined, and in
particular the proofs in this section apply to the finite case only. As mentioned in the proof of Proposition 3.1,
Theorem 3.2 implies the following characterization of c-compatibility: Distinct elements t1 and t2 of T≥−1

are c-compatible if and only if there exists a c-sortable element w such that t1, t2 ∈ clc(w). Thus the map
clc itself might conceivably provide some insight into compatibility in the infinite case.

4. Enumeration

In this section we briefly discuss the enumeration of sortable elements. The W -Catalan number is given
by the following formula, in which h is the Coxeter number of W and the ei are the exponents of W.

Cat(W ) =

n
∏

i=1

ei + h + 1

ei + 1
.

The values of the W -Catalan number for finite irreducible W are tabulated below.

An Bn Dn E6 E7 E8 F4 G2 H3 H4 I2(m)

1

n+2

(

2n+2

n+1

) (

2n

n

)

3n−2

n

(

2n−2

n−1

)

833 4160 25080 105 8 32 280 m + 2

The noncrossing partitions (with respect to any Coxeter element) in an irreducible finite Coxeter group W

are counted by the W -Catalan number [3, 18, 24]. The c-clusters (for any Coxeter element c) of an
irreducible finite Coxeter group W are also counted by Cat(W ). This follows from [16, Corollary 4.11] and
[11, Proposition 3.8] for the crystallographic case, or is proved in any finite case by combining Theorems 2.1
and 3.2. We refer the reader to [13, Section 5.1] for a brief account of other objects counted by the W -Catalan
number. By Theorem 2.1 or Theorem 3.2 we have the following.

Theorem 4.1. For any Coxeter element c of W, the c-sortable elements of W are counted by Cat(W ).

The positive W -Catalan number is the number of positive c-clusters (c-clusters containing no element of
−S). The following is an immediate corollary of Theorem 3.2.

Corollary 4.2. For any Coxeter element c, the c-sortable elements not contained in any proper stan-
dard parabolic subgroup are counted by the positive W -Catalan number.

The map ncc also respects this positive W -Catalan enumeration: The map ncc maps the sortable elements
not contained in any proper standard parabolic subgroup to the noncrossing partitions not contained in any
proper standard parabolic subgroup.

The W -Narayana numbers count noncrossing partitions by their rank. That is, the kth W -Narayana
number is the number of elements of [1, c]T whose absolute length is k. The following is an immediate
corollary of Theorem 2.1.

Corollary 4.3. For any Coxeter element c, the c-sortable elements of W which have exactly k descents
are counted by the kth W -Narayana number.
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Remark 4.4. The kth W -Narayana number is also the kth component in the h-vector of the simpli-
cial W -associahedron. Using results from [20] and [22], one associates a complete fan to c-sortable elements.
This fan has the property that any linear extension of the weak order on c-sortable elements is a shelling.
In [23], David Speyer and the author show that the map clc induces a combinatorial isomorphism. Thus as
a special case of a general fact explained in the discussion following [20, Proposition 3.5], the h-vector of
∆c has entry hk equal to the number of c-sortable elements with exactly k descents. This gives an alternate
proof of Corollary 4.3 and, by composing bijections, a bijective explanation of why counting noncrossing
partitions by rank recovers the h-vector of the W -associahedron.
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