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Classifying ascents and descents with specified equivalences mod k

Jeffrey Liese

Abstract. Given a permutation τ of length j, we say that a permutation σ has a τ -match starting at
position i, if the elements in position i, i + 1, . . . , i + j − 1 in σ have the same relative order as the elements
of τ . If Υ is set of permutations of length j, then we say that a permutation σ has an Υ-match starting
at position j if it has a τ -match at position j for some τ ∈ Υ. A number of recent papers have studied
the distribution of τ -matches and Υ-matches in permutations. In this paper, we consider a more refined
pattern matching condition where we take into account conditions involving the equivalence classes of the
elements mod k for some integer k ≥ 2. In general, when one includes parity conditions or conditions
involving equivalence mod k, then the problem of counting the number of pattern matchings becomes more
complicated. In this paper, we prove explicit formulas for the number of permutations of n which have s τ -
equivalence mod k matches when τ is of length 2. We also show that similar formulas hold for Υ-equivalence
mod k matches for certain subsets of permutations of length two.

Résumé. Étant donnée une permutation τ de longueur j, on dit qu’une permutation σ a un τ -motif débutant
en position i si les éléments en position i, i + 1, . . . , i + j − 1 de σ ont le même ordre relatif que les éléments
de τ . Si Υ est un ensemble de permutations de longueur j, alors on dit que σ a un Υ-motif en position i

si σ a un τ -motif en position i pour une permutation τ de Υ. Plusieurs travaux récents ont portés sur la
distribution des τ -occurrences et Υ-occurrences dans les permutations. Dans ce travail, nous étudions un
raffinement de la notion de motif prenant en compte de conditions basée sur les classes d’équivalences des
éléments mod k. De manière générale, lorsque l’on prend en compte la parité ou l’équivalence mod k, le
problème de l’énumération du nombre d’occurrences d’un motif devient plus compliqué. Nous démontrons
une formule explicite pour le nombre de permutations de n qui ont s τ -motifs équivalents mod k quand τ

est de longueur 2. Nous montrons aussi que des formules similaires existent pour les Υ-motifs quand Υ est
limité à certains sous-ensembles de permutations de longueur 2.

1. Introduction

Given any sequence σ = σ1 · · ·σn of distinct integers, we let red(σ) be the permutation that results
by replacing the i-th largest integer that appears in the sequence σ by i. For example, if σ = 2 7 5 4,
then red(σ) = 1 4 3 2. Given a permutation τ in the symmetric group Sj , we define a permutation
σ = σ1 · · ·σn ∈ Sn to have a τ -match at place i provided red(σi · · ·σi+j−1) = τ . Let τ -mch(σ) be the
number of τ -matches in the permutation σ. To prevent confusion, we note that a permutation not having
a τ -match is different than a permutation being τ -avoiding. A permutation is called τ -avoiding if there are
no indices i1 < · · · < ij such that red[σi1 · · ·σij

] = τ . For example, if τ = 2 1 4 3, then the permutation
3 2 1 4 6 5 does not have a τ -match but it does not avoid τ since red[2 1 6 5] = τ .

In the case where |τ | = 2, then τ -mch(σ) reduces to familiar permutation statistics. That is, if σ =
σ1 · · ·σn ∈ Sn, let Des(σ) = {i : σi > σi+1} and Rise(σ) = {i : σi < σi+1}. Then it is easy to see that
(2 1)-mch(σ) = des(σ) = |Des(σ)| and (1 2)-mch(σ) = rise(σ) = |Rise(σ)|.

A number of recent publications have analyzed the distribution of τ -matches in permutations. See, for
example, [EN03, Kit03, Kit]. A number of interesting results have been proved. For example, let τ -nlap(σ)
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be the maximum number of non-overlapping τ -matches in σ where two τ -matches are said to overlap if they
contain any of the same integers. Then Kitaev [Kit03, Kit] proved the following.

Theorem 1.1.

(1.1)
∑

n≥0

tn

n!

∑

σ∈Sn

xτ-nlap(σ) =
A(t)

(1− x) + x(1 − t)A(t)

where A(t) =
∑

n≥0
tn

n! |{σ ∈ Sn : τ-mch(σ) = 0}|.

In other words, if the exponential generating function for the number of permutations in Sn without any
τ -matches is known, then so is the exponential generating function for the entire distribution of the statistic
τ -nlap.

In this paper, we consider a more refined pattern matching condition where we take into account con-
ditions involving equivalence mod k for some integer k ≥ 2. That is, suppose we fix k ≥ 2 and we are given
some sequence of distinct integers τ = τ1 · · · τj . Then we say that a permutation σ = σ1 · · ·σn ∈ Sn has a τ -
k-equivalence match at place i provided red(σi · · ·σi+j−1) = red(τ) and for all s ∈ {0, . . . , j−1}, σi+s = τ1+s

mod k. For example, if τ = 1 2 and σ = 5 1 7 4 3 6 8 2, then σ has τ -matches starting at positions 2, 5, and
6. However, if k = 2, then only the τ -match starting at position 5 is a τ -2-equivalence match. Later, it will
be explained that the τ -match starting a position 2 is a (1 3)-2-equivalence match and the τ -match starting
a position 6 is a (2 4)-2-equivalence match. Let τ -k-emch(σ) be the number of τ -k-equivalence matches in
the permutation σ. Let τ -k-enlap(σ) be the maximum number of non-overlapping τ -k-equivalence matches
in σ where two τ -matches are said to overlap if they contain any of the same integers.

More generally, if Υ is a set of sequences of distinct integers of length j, then we say that a permu-
tation σ = σ1 · · ·σn ∈ Sn has a Υ-k-equivalence match at place i provided there is a τ ∈ Υ such that
red(σi · · ·σi+j−1) = red(τ) and for all s ∈ {0, . . . , j − 1}, σi+s = τ1+s mod k. Let Υ-k-emch(σ) be the
number of Υ-k-equivalence matches in the permutation σ and Υ-k-enlap(σ) be the maximum number of
non-overlapping Υ-k-equivalence matches in σ.

In this paper, we shall begin the study of the polynomials

Tτ,k,n(x) =
∑

σ∈Sn

xτ-k-emch(σ) =

n
∑

s=0

T s
τ,k,nxs and(1.2)

UΥ,k,n(x) =
∑

σ∈Sn

xΥ-k-emch(σ) =

n
∑

s=0

Us
Υ,k,nxs.(1.3)

In particular, we shall focus on certain special cases of these polynomials where we consider only patterns
of length 2. That is, fix k ≥ 2 and let Ak equal the set of all sequences (a b) such that 1 ≤ a < b ≤ 2k where
there is no lexicographically smaller sequence x y having the property that x ≡ a mod k and y ≡ b mod k.
For example,

A4 = {1 2, 1 3, 1 4, 1 5, 2 3, 2 4, 2 5, 2 6, 3 4, 3 5, 3 6, 3 7, 4 5, 4 6, 4 7, 4 8}.

Let Dk = {b a : a b ∈ Ak} and Ek = Ak ∪ Dk. Thus Ek consists of all k-equivalence patterns of length 2
that we could possibly consider. Note that if Υ = Ak, then Υ-k-emch(σ) = rise(σ) and if Υ = Dk, then
Υ-k-emch(σ) = des(σ).

Our goal is to give explicit formulas for the coefficients of T s
τ,k,n and Us

Υ,k,n. First we shall show that we
can use inclusion-exclusion to find a formula for Us

Υ,k,n for any Υ ⊂ Ek in terms of certain rook numbers of
a sequences of boards associated with Υ. While this approach is straightforward, it is unsatisfactory since it
reduces the computation of Us

Υ,k,n to another difficult problem, namely, computing rook numbers for general
boards. However, we can give two other more direct formulas for the coefficients T s

τ,k,n where τ ∈ Ek. For
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example, in the case where τ = (1 k), our results will imply that for all 0 ≤ s ≤ n and for all 0 ≤ j ≤ k − 1,

T s
(1 k),k,kn+j =

n
∑

r=s

(−1)r−s(kn + j − r)!

(

r

s

)

Sn+1,n+1−r(1.4)

= ((k − 1)n + j)!
s

∑

r=0

(−1)s−r((k − 1)n + j + r)n

(

(k − 1)n + j + r

r

)(

kn + j + 1

s− r

)

= ((k − 1)n + j)!

n−s
∑

r=0

(−1)n−s−r(1 + r)n

(

(k − 1)n + j + r

r

)(

kn + j + 1

n− s− r

)

where Sn,k is the Stirling number of the second kind, i.e., Sn,k is the number of partitions of an n-set into
k parts. These formulas lead to interesting identities in their own right. For example, we see that for all
k ≥ 2, 0 ≤ s ≤ n and 0 ≤ j ≤ k − 1,

s
∑

r=0

(−1)s−r((k − 1)n + j + r)n

(

(k − 1)n + j + r

r

)(

kn + j + 1

s− r

)

=

n−s
∑

r=0

(−1)n−s−r(1 + r)n

(

(k − 1)n + j + r

r

)(

kn + j + 1

n− s− r

)

.

The general problem of finding explicit expressions for the coefficients Us
Υ,k,n for arbitrary Υ is open.

However, Kitaev and Remmel [KR05, KR06] have developed formulas for Us
Υ,k,n in certain other special

cases. In particular, Kitaev and Remmel studied permutation statistics which classified the descents of a
permutation according to whether either the first element or the second element of a descent pair is equivalent
to 0 mod k. In our language, they computed explicit formulas for Us

Υ,k,n where either Υ = {b a : (b a) ∈

Dk & b ≡ 0 mod k} or Υ = {b a : (b a) ∈ Dk & a ≡ 0 mod k}. In this paper, we shall generalize some
of their results by deriving explicit formulas for Us

Υ,k,n in the special cases where Υ is a subset of the form

{(x1, y1), (x2, y2), . . . , (xn, yn)} where for all i, j yi ≡ yj mod k and either Υ ⊆ Ak or Υ ⊆ Dk.
The outline of this paper is as follows. In section 2, we shall discuss some of the previous results of Kitaev

and Remmel [KR05, KR06] and give some examples of the polynomials Tτ,k,n(x). In section 3, we will show
how to one can use inclusion-exclusion to derive an UΥ,k,n(x) in terms of certain rook numbers. In section
4, we shall prove formulas in the case where Υ consists of a sequences of pairs {(x1, y1), . . . , (xt, yt)} ⊆ Ak

such that for all i and j, yi = yj mod k. Using the bijection which sends each permutation σ = σ1 · · ·σn to
its reverse, σr = σn · · · , σ1, one can show that the same formulas hold for Υr = {(y1, x1), . . . , (yt, xt)} ⊆ Dk.
We shall also see that the identities that result by equating the different formulas for any given coefficient are
interesting in their own right. Then, we shall make a few comments about the problem of finding UΥ,k,n(x)
for arbitrary Υ.

2. Previous results and examples

In this section, we shall state some previous results and give some examples of the polynomials Tτ,k,n(x)
and UΥ,k,n(x). As mentioned in the introduction, Kitaev and Remmel [KR05, KR06], found explicit
formulas for the coefficients Us

Υ,k,n in certain special cases. In particular, they studied descents according
to the equivalence class mod k of either the first or second element in a descent pair. That is, for any set
X ⊆ {0, 1, 2, . . .}, define

•
←−−
DesX(σ) = {i : σi > σi+1 & σi ∈ X} and

←−
desX(σ) = |

←−−
DesX(σ)|

•
−−→
DesX(σ) = {i : σi > σi+1 & σi+1 ∈ X} and

−→
desX(σ) = |

−−→
DesX(σ)|

In [KR05], Kitaev and Remmel studied the following polynomials.

(1) Rn(x) =
∑

σ∈Sn
x
←−
desE(σ) =

∑n

k=0 Rk,nxk,

(2) Pn(x, z) =
∑

σ∈Sn
x
−→
desE(σ)zχ(σ1∈E) =

∑n

k=0

∑1
j=0 Pj,k,nzjxk

(3) Mn(x) =
∑

σ∈Sn
x
←−
desO(σ) =

∑n
k=0 Mk,nxk, and

(4) Qn(x, z) =
∑

σ∈Sn
x
−→
desO(σ)zχ(σ1∈O) =

∑n

k=0

∑1
j=0 Qj,k,nzjxk.
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where E = {0, 2, 4, . . . , } is the set of even numbers, O = {1, 3, 5, . . .} is the set of odd numbers, and for any
statement A, we let χ(A) = 1 is A is true and χ(A) = 0 if A is false. Thus, for example, in our language,
Rn(x) = UΥ,2,n(x) where Υ = {2 1, 4 2} and Pn(x, 1) = UΥ,2,n(x) where Υ = {3 2, 4 2}. In this case,
there are some surprisingly simple formulas for the coefficients of this polynomials. For example, Kitaev and
Remmel [KR05] proved the following.

Theorem 2.1.

Rk,2n =

(

n

k

)2

(n!)2,(2.1)

Rk,2n+1 = (k + 1)

(

n

k + 1

)2

(n!)2 + (2n + 1− k)

(

n

k

)2

(n!)2 =
1

k + 1

(

n

k

)2

((n + 1)!)2,(2.2)

P1,k,2n =

(

n− 1

k

)(

n

k + 1

)

(n!)2,(2.3)

P0,k,2n =

(

n− 1

k

)(

n

k

)

(n!)2,(2.4)

P0,k,2n+1 = (k + 1)

(

n

k

)(

n + 1

k + 1

)

(n!)2 = (n + 1)

(

n

k

)2

(n!)2, and(2.5)

P0,k,2n+1 =

(

n

k

)

(n!)2
(

n

(

n− 1

k

)

+ (k + 1)

(

n

k

))

.(2.6)

In [KR06], Kitaev and Remmel studied the polynomials

(1) A
(k)
n (x) =

∑

σ∈Sn
x
←−
deskN (σ) =

∑bn
k
c

j=0 A
(k)
j,nxj and

(2) B
(k)
n (x, z) =

∑

σ∈Sn
x
−→
deskN (σ)zχ(σ1∈kN) =

∑bn
k
c

j=0

∑1
i=0 B

(k)
i,j,nzixj .

where kN = {0, k, 2k, . . .}. Again both A
(k)
n (x) and B

(k)
n (x, z) are special cases of UΥ,k,n(x). When k ≥ 2,

the formulas for A
(k)
n (x) and B

(k)
n (x, z) become more complicated. Nevertheless, certain nice formulas arise.

For example, Kitaev and Remmel [KR06] proved the following.

Theorem 2.2. For all 0 ≤ j ≤ k − 1 and all n ≥ 0, we have

A
(k)
s,kn+j = ((k − 1)n + j)!

s
∑

r=0

(−1)s−r

(

(k − 1)n + j + r

r

)(

kn + j + 1

s− r

) n−1
∏

i=0

(r + 1 + j + (k − 1)i)(2.7)

= ((k − 1)n + j)!

n−s
∑

r=0

(−1)n−s−r

(

(k − 1)n + j + r

r

)(

kn + j + 1

n− s− r

) n
∏

i=1

(r + (k − 1)i)(2.8)

In general, when one includes parity conditions or conditions involving equivalence mod k, then the
problem of counting the number of pattern matchings become more complicated. For example, if τ = 2 1,
then the number of permutations of Sn with no τ -matches is 1 since the only permutation of Sn with
no (2 1)-matches is the identity permutation 1 2 · · · n − 1 n. However, according to Theorem 2.1, the
number of permutations of Sm with no {(2 1), (4 2)}-2-equivalences matches is (n!)2 if m = 2n and is
((n + 1)!)2 if m = 2n + 1. Similarly, the analogue of the Kitaev’s result (1.1) fails to hold in general. For
example, in the case where k = 2 and τ = 1 2, then (1.4) implies that for n ≥ 1, T 0

(1 2),2,2n
= nn(n!) and

T 0
(1 2),2,2n+1 = (n + 1)n((n + 1)!),

A(t) =
∑

n≥0

tn

n!
|{σ ∈ Sn : (1 2)-2-emch(σ) = 0}| = 1 +

∑

n≥1

t2n

(2n)!
nn(n!) +

∑

n≥0

t2n+1

(2n + 1)!
(n + 1)n(n + 1)!.

Moreover for any σ ∈ Sn, (1 2)-2-emch(σ) = (1 2)-2-enlap(σ). But is easy to check that

∑

n≥0

tn

n!

∑

σ∈Sn

x(1 2)-2-emch(σ) 6=
A(t)

(1− x) + x(1 − t)A(t)
.
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Next we give some examples of our polynomials. Here is a table that lists T(a b),k,n(x) for all possible
values of a and b where k = 3 and 2 ≤ n ≤ 8.

T(12),3,2(x) = 1 + x T(13),3,2(x) = 2 T(14),3,2(x) = 2

T(12),3,3(x) = 4 + 2x T(13),3,3(x) = 4 + 2x T(14),3,3(x) = 6

T(12),3,4(x) = 18 + 6x T(13),3,4(x) = 18 + 6x T(14),3,4(x) = 18 + 6x

T(12),3,5(x) = 54 + 60x + 6x
2

T(13),3,5(x) = 96 + 24x T(14),3,5(x) = 96 + 24x

T(12),3,6(x) = 384 + 312x + 24x
2

T(13),3,6(x) = 384 + 312x + 24x
2

T(14),3,6(x) = 600 + 120x

T(12),3,7(x) = 3000 + 1920x + 120x
2

T(13),3,7(x) = 3000 + 1920x + 120x
2

T(14),3,7(x) = 3000 + 1920x + 120x
2

T(12),3,8(x) = 15000 + 20520x + 4680x
2

+ 120x
3

T(13),3,8(x) = 25920 + 13680x + 720x
2

T(14),3,8(x) = 25920 + 13680x + 720x
2

Glancing at these values, certain things become apparent. First, observe that for each of these polynomials
all the coefficients are divisible by the coefficient of the highest power of x appearing in the polynomial.
Second, one can observe that polynomials T(ab),3,n(x) depend only on b. Finally, one can also observe that
for any given n, the function T(ab),k,n(x) takes at most three distinct values. For example when n = 5, one
can see that all the polynomials T(ab),3,5(x) are equal to one of T(12),3,5(x), T(13),3,5(x), or T(36),3,5(x) and
that these three polynomials are distinct. All of these facts are true in general for any k and n since they
follow from our closed forms for T(ab),k,n(x).

T(23),3,2(x) = 2 T(24),3,2(x) = 2 T(25),3,2(x) = 2

T(23),3,3(x) = 4 + 2x T(24),3,3(x) = 6 T(25),3,3(x) = 6

T(23),3,4(x) = 18 + 6x T(24),3,4(x) = 18 + 6x T(25),3,4(x) = 24

T(23),3,5(x) = 96 + 24x T(24),3,5(x) = 96 + 24x T(25),3,5(x) = 96 + 24x

T(23),3,6(x) = 384 + 312x + 24x
2

T(24),3,6(x) = 600 + 120x T(25),3,6(x) = 600 + 120x

T(23),3,7(x) = 3000 + 1920x + 120x
2

T(24),3,7(x) = 3000 + 1920x + 120x
2

T(25),3,7(x) = 4320 + 720x

T(23),3,8(x) = 25920 + 13680x + 720x
2

T(24),3,8(x) = 25920 + 13680x + 720x
2

T(25),3,8(x) = 25920 + 13680x + 720x
2

T(34),3,2(x) = 2 T(35),3,2(x) = 2 T(36),3,2(x) = 2

T(34),3,3(x) = 6 T(35),3,3(x) = 6 T(36),3,3(x) = 6

T(34),3,4(x) = 18 + 6x T(35),3,4(x) = 24 T(36),3,4(x) = 24

T(34),3,5(x) = 96 + 24x T(35),3,5(x) = 96 + 24x T(36),3,5(x) = 120

T(34),3,6(x) = 600 + 120x T(35),3,6(x) = 600 + 120x T(36),3,6(x) = 600 + 120x

T(34),3,7(x) = 3000 + 1920x + 120x
2

T(35),3,7(x) = 4320 + 720x T(36),3,7(x) = 4320 + 720x

T(34),3,8(x) = 25920 + 13680x + 720x
2

T(35),3,8(x) = 25920 + 13680x + 720x
2

T(36),3,8(x) = 25920 + 13680x + 720x
2

3. Finding the coefficients for UΥ,k,n(x) by inclusion-exclusion

In this section, we shall show how we can use inclusion-exclusion to obtain an expression for UΥ,k,n(x)
for any Υ ⊂ Ek. The idea is as follows. Suppose that we fix k and Υ ⊆ Ek. Given any two element sequence
ab ∈ Ek, we shall write ab u xy mod k if (i) x ≡ a mod k, (ii) y ≡ b mod k, (iii) a < b implies x < y, and
(iv) a > b implies x > y. Then for each n ≥ 1, we let Υn = {xy : 1 ≤ x, y ≤ n & xy u ab mod k where
(ab) ∈ Υ}. For each xy ∈ Υn, we let Cxy,n equal the set of all σ = σ1 · · ·σn ∈ Sn such that there exist an
1 ≤ i < n such that σi = x and σi+1 = y. Given σ ∈ Sn, we define PrΥ,n(σ), the property set of σ relative
to Υ, to be the set of all xy ∈ Υn such that σ ∈ Cxy,n. Then we define the following.

(1) For each T ⊆ Υn, let E=T,Υ,n = {σ ∈ Sn : PrΥ,n(σ) = T } and βT,Υ,n = |E=T,Υ,n|.
(2) For each T ⊆ Υn, let E⊇T,Υ,n = {σ ∈ Sn : PrΥ,n(σ) ⊇ T } and αT,Υ,n = |E⊇T,Υ,n|.
(3) For each r ≥ 0, let βr,Υ,n =

∑

S⊆Υn,|S|=r βS,Υ,n and αr,Υ,n =
∑

S⊆Υn,|S|=r αS,Υ,n.

It is an easy consequence of the inclusion-exclusion principle that

(3.1)
∑

t≥0

βt,Υ,nxt =
∑

t≥0

αt,Υ,n(x− 1)t.

It is also easy to see from our definitions that

(3.2)
∑

t≥0

βt,Υ,nxt = UΥ,k,n(x).

Thus we get an expression for UΥ,k,n(x) by calculating the RHS of (3.1).
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Next we observe that it is easy to compute αT,Υ,n. We say that T ⊆ Υn is consistent if there does not
exist distinct ab and cd in T such that either a = c or b = d. For example, if k = 4 and Υ = {12, 34, 32, 46},
then Υ7 = {12, 16, 56, 34, 32, 72, 76, 46}. Then T1 = {12, 16, 34} and T2 = {12, 32, 76} are not consistent
while T3 = {12, 34, 46} is consistent. First we claim that if T is consistent, then αT,Υ,n = (n−|T |)!. That is,
we need to construct E⊇T,Υ,n which consists of all permutations σ ∈ Sn such that each pattern in T occurs
consecutively in σ. We do this by first constructing the maximal blocks of elements of {1, . . . , n} where xy
occurs consecutively in a block if and only if xy ∈ T . For example, if n = 7 and T = T3 as given above, then
the maximal blocks constructed from T are 12, 346, 5 and 7. Then it is easy to see that any permutation
of the maximal blocks constructed from T corresponds to a permutation σ ∈ E⊇T,Υ,n. For example, the
permutation of the maximal blocks 346 5 12 7 corresponds to the permutation 3 4 6 5 1 2 7 ∈ E⊇T3,Υ,7.
Now it is easy to see that the number of maximal blocks of {1, . . . , n} constructed from T is n− |T |. Thus
αT,Υ,n = |E⊇T,Υ,n| = (n− |T |)!. Of course, if T is inconsistent, there there is no permutation σ ∈ Sn such
that all the sequences in T occur consecutively in σ. In this situation, αT,Υ,n = 0.

Thus to compute αt,Υ,n, we need only count the number of consistent subsets of size t in Υn. We can
think of this problems as counting the number of rook placements of size t in a certain board associated
with Υn. That is, given Υn, let BΥ,n be the set of all (x, y) such that xy ∈ Υn. For example, if k = 4 and
Υ = {12, 34, 32, 46} so that Υ7 = {12, 16, 56, 34, 32, 72, 76, 46}, then BΥ,7 consists of the shaded squares on
the board pictured in Figure 1.

1

3

4

5

7

2 4 6

Figure 1. The board BΥ,7.

Given any board B ⊆ {1, . . . , n} × {1, . . . , n}, we let rk(B) denote the number of placements of k rooks
in B such that no two rooks lie in the same row or the same column. It is then easy to see that number of
consistent subsets of size t in Υn equals rt(BΥ,n) and thus, αt,Υ,n = (n− t)!rt((BΥ,n). It follows that

UΥ,k,n(x) =
∑

t≥0

βt,Υ,nxt =
∑

t≥0

αt,Υ,n(x − 1)t

=
∑

t≥0

(n− t)!rt(BΥ,n)

t
∑

s=0

(−1)t−s

(

t

s

)

xs =
∑

s≥0

xs

n
∑

t=s

(n− t)!(−1)t−s

(

t

s

)

rt(BΥ,n).

The problem with formula (3.3) is that we obtain an expression for the coefficients of UΥ,k,n(x) in terms
of the numbers rt(BΥ,n) which are not easy to compute in general. There are however some special cases
of (3.3) where the numbers rt(BΥ,n) are familiar. That is, suppose Υ = {(1k)}. Then it is easy to see that
BΥ,kn+j consists of the set of squares {(1 + ik, jk) : 0 ≤ i < j ≤ n}. For example, if k = 3 and Υ = {(13)},
then BΥ,12 consists of the shaded squares on the board pictured in Figure 2.

1

4

7

10

3 6 9 12

Figure 2. The board B{13},12.

It is well known that the Stirling number of the second kind, Sn+1,k, is the number of placements of
n + 1− k rooks on the staircase board, consisting of columns of heights 0, 1, . . . , n reading from right to left,
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so that no two rooks lie in the same row or column. It then easily follows that

(3.3) T s
(1k),k,kn+j = Us

{(1k)},k,kn+j =
n

∑

r=s

(−1)r−s

(

r

s

)

(kn + j − r)!Sn+1,n+1−r .

Another case that involves the Stirling numbers is when Υ = Dk. As pointed out in the introduction,
in that case, Υ-k-emch(σ) = des(σ). In this case the board the BΥ,n equals {(j, i) : 0 ≤ i < j ≤ n} which is
equivalent to a staircase board with column heights 0, 1, . . . , n− 1.

It is also well known that the Eulerian numbers, Em,n counts the number of permutations in Sm that
have exactly n descents. Thus we can derive the following formula for the Eulerian numbers in terms of the
Stirling numbers.

(3.4) En,s = Us
Ak,k,n(x) =

n
∑

r=s

(−1)r−s

(

r

s

)

(n− r)!Sn,n−r.

In some other cases, we have been able to derive formulas that involve sums over products of Stirling
numbers. In such cases, the board BΥ,n naturally breaks up as a disjoint union of staircase boards. However,
because of lack of space, we shall not give such examples in this paper.

4. Finding the coefficients of UΥ,k,n by iterating recursions

In this section, we shall give an alternative approach to finding the UΥ,k,n that exploits the fact that we
can find simple recursion for the polynomials UΥ,k,n.

Given any permutation σ = σ1 · · ·σn ∈ Sn, we label with the integers from 0 to n (from left to right)
the possible positions of where we can insert n + 1 to get a permutation in Sn+1. In other words, inserting
n + 1 in position 0 means that we insert n + 1 at the beginning of σ and for i ≥ 1, inserting n + 1 in position
i means we insert n+1 immediately after σi. In such a situation, we let σ(i) denote the permutation of Sn+1

that results by inserting n + 1 in position i.
Throughout the rest of this section, we shall assume that k ≥ 2 and Υ ⊆ Ak is a subset of the

form {(x1, y1), (x2, y2), . . . , (xt, yt)} where for all i, j yi ≡ yj mod k. Now, define y = min({y1, . . . , yt})
and α = |{xi : xi < y}|. We then let AscΥ,k(σ) = {i : σi < σi+1 & σi ≡ xj mod k & σi+1 ≡ yj

mod k for some (xj , yj) ∈ Υ}. We shall call the elements of AscΥ,k(σ) the Υ-ascents of σ.
For j = y − k + 1, . . . , y − 1, let ∆kn+j be the operator which sends xs to sxs−1 + (kn + j − s)xs and

Γkn+y be the operator that sends xs to ((k − |Υ|)n + y + s− α)xs + (|Υ|n + α− s)xs+1. Then we have the
following.

Theorem 4.1. Given Υ, y, and α as described above, the polynomials {UΥ,k,n(x)}n≥1 satisfy the fol-

lowing recursions.

(1) UΥ,k,1(x) = 1,
(2) For j = y − k + 1, . . . , y − 1, UΥ,k,kn+j(x) = ∆kn+j(UΥ,k,kn+j−1(x)), and

(3) UΥ,k,kn+y(x) = Γkn+y(UΥ,k,kn+y−1(x)).

Proof. Part (1) is trivial.
For part (2), fix j such that y − k + 1 ≤ j ≤ y − 1. Now suppose σ = σ1 · · ·σkn+j−1 ∈ Skn+j−1 and

ascΥ,k(σ) = s. It is then easy to see that if we insert kn + j in position i where i ∈ AscΥ,k(σ), then

ascΥ,k(σ(i)) = s− 1. However, if we insert kn + j in position i where i /∈ AscΥ,k(σ), then ascΥ,k(σ(i)) = s.

Thus {σ(i) : i = 0, . . . , kn + j − 1} gives a contribution of sxs−1 + (kn + j − s)xs to UΥ,k,kn+j .
For part (3), suppose σ = σ1 · · ·σkn+y−1 ∈ Skn+y−1 and ascΥ,k(σ) = s. In this situation we can create

a Υ-ascent, but we can’t lose one. That is, if we place kn + y after any element equivalent to xi mod k for
some (xi, yi) ∈ Υ which isn’t already part of a Υ-ascent, we would create an additional Υ-ascent. There are
|Υ|n + α − s such locations. This means that the number of locations that keep the number of ascents the
same must be (k− |Υ|)n + y + s−α as the two must sum to kn + y. Thus {σ(i) : i = 0, . . . , kn + y− 1} gives
a contribution of ((k − |Υ|)n + y + s− α)xs + (|Υ|n + α− s)xs+1 to UΥ,k,kn+y. �

We can give combinatorial proofs of two simple formulas for the extreme coefficients of UΥ,k,n(x).
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Theorem 4.2. Let Υ, y, and α be as described above. Then for all k ≥ 2, for all j = y − k, . . . , y − 1
and n such that kn + j > 0,

U0
Υ,k,kn+j = ((k − 1)n + j)!

n−1
∏

i=0

(k − 1)n + j + 1− α− i(|Υ| − 1)(4.1)

Un
Υ,k,kn+j = ((k − 1)n + j)!

n−1
∏

i=0

α + i(|Υ| − 1)(4.2)

Proof. Clearly when n = 0, the only j ∈ {y − k, . . . , y − 1} such that kn + j > 0 are j = 1, . . . y − 1.
In these cases, no permutation σ of Sj can have an Υ-k- equivalence match so that UΥ,k,j(x) = j!. By
convention, we assume the empty product is equal to 1 so that our formulas holds when n = 0.

Next assume that n ≥ 1 and Υ = {(xi, yi) : i = 1, . . . t} where x1, . . . xα consist of those xi’s such that
(xi, y) ∈ Υ. Suppose that j ∈ {y − k, . . . , y − 1}.

First we consider those permutations σ ∈ Skn+j such that Υ-k-emch(σ) = 0. We claim that we can
construct all such σ as follows. By our definition, there are (k−1)n+ j elements in {1, . . . , kn+ j} which are
not equivalent to y mod k. We can arrange these elements in ((k− 1)n+ j)! ways. Given an arrangement τ
of the elements in {1, . . . , kn + j} which are not equivalent to y mod k, we can extend τ to a permutation
σ ∈ Skn+j such that Υ-k-emch(σ) = 0 as follows. First we can insert y into τ so that we do not create any
Υ-k-equivalence matches. Clearly this can be done in (k− 1)n + j + 1−α ways since all we have to do is to
ensure that we do not insert y immediately after any of x1, . . . xα. Now suppose τ1 is a sequence that results
from inserting y into τ so that we do not create any Υ-k-equivalence matches. Then, the number of ways to
insert y + k into τ1 so that we do not create any Υ-k-equivalence matches is (k− 1)n + j + 1−α− (|Υ| − 1).
That is there are (k − 1)n + j + 2 possible ways to insert y + k into τ1 but that are α+|Υ| elements z
such that if we insert y + k after z, then we would form an Υ-k-equivalence match. Now suppose τ2 is a
sequence that results from inserting y + k into τ1 so that we do not create any Υ-k-equivalence matches.
Then, the number of ways to insert y + 2k into τ2 so that we do not create any Υ-k-equivalence matches is
(k−1)n+j+1−α−2(|Υ|−1). That is there are (k−1)n+j+3 possible ways to insert y+2k into τ2 but that
are α+2|Υ| elements z such that if we insert y + 2k after z, then we would form an Υ-k-equivalence match.

Continuing on in this way, we see that U0
Υ,k,kn+j = ((k− 1)n + j)!

∏n−1
i=0 (k− 1)n + r + j + 1−α− i(|Υ| − 1).

Next we consider those permutations σ ∈ Skn+j such that Υ-k-emch(σ) = n. We claim that we can
construct all such σ as follows. By our definition, there are (k−1)n+ j elements in {1, . . . , kn+ j} which are
not equivalent to y mod k. We can arrange these elements in ((k− 1)n+ j)! ways. Given an arrangement τ
of the elements in {1, . . . , kn + j} which are not equivalent to y mod k, we can extend τ to a permutation
σ ∈ Skn+j such that Υ-k-emch(σ) = n as follows. Clearly, we must insert y, y + k, . . . , y + (n− 1)k in such
a way that each of these elements create an Υ-k-equivalence match. Thus we must insert y into τ so that
it immediately follows one of x1, . . . , xα. Hence we have α ways to insert y. Now suppose τ1 is a sequence
that results from inserting y into τ so that we did create a Υ-k-equivalence match. Then the number of
ways to insert y + k into τ1 so that we create another Υ-k-equivalence match is α + (|Υ| − 1) since there
α + |Υ| elements x < y + k such that (x (y + k)) would be an Υ-k-equivalence match and we can not insert
y + k immediately before y. Now suppose τ2 is a sequence that results from inserting y + k into τ1 so that
we have created a second Υ-k-equivalence match. Then the number of ways to insert y + 2k into τ2 so that
we create an additional Υ-k-equivalence matches is α = 2(|Υ| − 1) since there α + 2|Υ| elements x < y + k
such that (x (y + 2k)) would be an Υ-k-equivalence match and we can not insert y + 2k immediately before

y or y + 2k. Continuing on in this way, we see that Un
Υ,k,kn+j = ((k − 1)n + j)!

∏n−1
i=0 α + i(|Υ| − 1). �

This given, we can derive a general formula Us
Υ,k,n using the recursions implicit in Theorem 4.1. It is

easy to see from Theorem 4.1 that we have two following recursions for the coefficients Us
Υ,k,n.

For y − k + 1 ≤ j ≤ y − 1,

(4.3) Us
Υ,k,kn+j = (kn + j − s)Us

Υ,k,kn+j−1 + (s + 1)Us+1
Υ,k,kn+j−1

Similarly, we have

(4.4) Us
Υ,k,kn+y = ((k − |Υ|)n + y − α + s)Us

Υ,k,kn+y−1 + (|Υ|n + α− s + 1)Us−1
Υ,k,kn+y−1

We will now turn to a closed form for Us
Υ,k,kn+j . This formula was obtained by using (4.3) and iterating

these recursions from the bottom up.
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Theorem 4.3. For all y − k ≤ j ≤ y − 1 and all s ≤ n such that kn + j > 0, we have

Us
Υ,k,kn+j = ((k − 1)n + j)!

[

s
∑

r=0

(−1)s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

s− r

)

Γ(r, j, n)

]

where Γ(r, j, n) =

n−1
∏

i=0

((k − 1)n + r + j + 1− α− i(|Υ| − 1))

Proof. We shall prove by induction, first on s, and then n that our formulas hold. That is, by Theorem
4.2, our formulas hold when s = 0 for all n ≥ 0 and and y − k ≤ j ≤ y − 1 if kn + j > 0. Next assume
that our formulas satisfy the recursions (4.3) and (4.4), which we will verify later in the proof. Then, we
can complete the induction as follows. First assume that that our formulas hold at some s for all n ≥ s and
y − k ≤ j ≤ y − 1 if kn + j > 0. Note that the recursions (4.3) and (4.4) can be rewritten as

(4.5) Us+1
Υ,k,kn+j−1 =

1

s + 1
(Us

Υ,k,kn+j − (kn + j − s)Us
Υ,k,kn+j−1),

for y − k + 1 ≤ j ≤ y − 1, and

(4.6) Us+1
Υ,k,kn+y−1 =

1

((k − |Υ|)n + y − α + s + 1)
(Us+1

Υ,k,kn+y − (|Υ|+ α− s)Us
Υ,k,kn+y−1)

Thus in particular, (4.5) implies our formulas hold at s + 1 when n ≥ s + 1 and j = y− k, . . . , y− 2. We are
then able to use (4.6) to establish that our formula holds at s + 1 when n ≥ s + 1 and j = y − 1.

Thus to complete our proof, we need only verify that our formulas satisfy the recursions (4.3) and (4.4).
In order to simplify the algebra, we will convert the form from (4.5) to the following

(4.7) Us
Υ,k,kn+j =

s
∑

r=0

(−1)s−r((k − 1)n + r + j)!(kn + j + 1)!Γ(r, j, n)

(kn + j − s + r + 1)!r!(s − r)!
.

So, for y − k + 1 ≤ j ≤ y − 1 plugging in the above form into the RHS of (4.3) gives

(kn + j − s)

[

s
∑

r=0

(−1)s−r((k − 1)n + r + j − 1)!(kn + j)!Γ(r, j − 1, n)

(kn + j − s + r)!r!(s − r)!

]

+(s + 1)

[

s+1
∑

r=0

(−1)s+1−r((k − 1)n + r + j − 1)!(kn + j)!Γ(r, j − 1, n)

(kn + j − s + r − 1)!r!(s + 1− r)!

]

Removing the s + 1 term from the second summand, recognizing that Γ(r, j − 1, n) = Γ(r − 1, j, n) and
combining the rest of the terms yields

s
∑

r=0

(−1)s−r((k − 1)n + r + j − 1)!(kn + j)!Γ(r − 1, j, n) [−r(kn + j + 1)]

(kn + j − s + r)!r!(s + 1− r)!
+

((k − 1)n + s + j)!Γ(s + 1, j − 1, n)

s!

Since there is a factor of r in the numerator, we may omit the r = 0 term from the summand, shift indices
and recognize that Γ(s + 1, j − 1, n) = Γ(s, j, n) to get

s−1
∑

r=0

(−1)s−r((k − 1)n + r + j)!(kn + j + 1)!Γ(r, j, n)

(kn + j − s + r + 1)!r!(s− r)!
+

((k − 1)n + s + j)!Γ(s, j, n)

s!

=

s
∑

r=0

(−1)s−r((k − 1)n + r + j)!(kn + j + 1)!Γ(r, j, n)

(kn + j − s + r + 1)!r!(s − r)!
= Us

Υ,k,kn+j

Thus we have shown that our formula for Us
Υ,k,kn+j satisfies (4.3) for y − k + 1 ≤ j ≤ y − 1. We will now

show that our formula satisfies (4.4). The RHS of (4.4) becomes

((k − |Υ|)n + s + y − α)

[

s
∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y)!Γ(r, y − 1, n)

(kn + y − s + r)!r!(s − r)!

]

+(|Υ|n + α− s + 1)

[

s−1
∑

r=0

(−1)s−r−1((k − 1)n + r + y − 1)!(kn + y)Γ(r, y − 1, n)!

(kn + y − s + r + 1)!r!(s − r − 1)!

]
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Removing the s term from the first summand, and combining the rest of the terms yields

s−1
∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y)!Γ(r, y − 1, n) [(kn + y + 1)(kn− n|Υ|+ r + y − α)]

(kn + y − s + r + 1)!r!(s− r)!

+
((k − |Υ|)n + s + y − α)((k − 1)n + y + s− 1)!Γ(s, y − 1, n)

s!

=
s−1
∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y + 1)!Γ(r, y − 1, n)

(kn + y − s + r + 1)!r!(s− r)!

+
((k − |Υ|)n + s + y − α)((k − 1)n + y + s− 1)!Γ(s, y − 1, n)

s!

=
s

∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y + 1)!Γ(r, y − 1, n)((k − |Υ|)n + r + y − α)

(kn + y − s + r + 1)!r!(s − r)!

=

s
∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y + 1)!Γ(r, y − k, n + 1)

(kn + y − s + r + 1)!r!(s− r)!
= Us

Υ,k,kn+y

Thus we have shown that our formula for Us
Υ,k,kn+j satisfies (4.4) as desired. �

Here is another formula for Us
Υ,k,kn+j . This one was obtained by iterating the recursions (4.3) and (4.4)

from the top down.

Theorem 4.4. For all y − k ≤ j ≤ y − 1 and all s ≤ n such that kn + j > 0, we have

Un−s
Υ,k,kn+j = ((k − 1)n + j)!

[

s
∑

r=0

(−1)s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

s− r

)

Ω(r, n)

]

(4.8)

where Ω(r, n) =

n−1
∏

i=0

(r + α + i(|Υ| − 1)).

Proof. We shall prove by induction, first on s and then on kn + j that our formulas hold. Theorem
4.2 proves our formulas hold when s = 0 for all n ≥ 0 and y − k ≤ j ≤ y − 1 such that kn + j > 0. Now
assume that our formulas for Un−s

Υ,k,kn+j satisfy the the recursions, (4.3) and (4.4), which we will verify later

in the proof. Then, we can complete our induction as follows. Assume that our formulas for Un−s
Υ,k,kn+j hold

at s for all n ≥ s and and y − k ≤ j ≤ y − 1 such that kn + j > 0. Then, the recursions can be rewritten as

(4.9) U
n−(s+1)
Υ,k,kn+j = (kn + j − n + s + 1)U

n−(s+1)
Υ,k,kn+j−1 + (n− s)Un−s

Υ,k,kn+j−1

for y − k + 1 ≤ j ≤ y − 1, and

(4.10) U
(n+1)−(s+1)
Υ,k,k(n+1)+y−k

= ((k − |Υ|)n + y − α + n− s)Un−s
Υ,k,kn+y−1) + (|Υ|+ α− n + s + 1)U

n−(s+1)
Υ,k,kn+y−1

It is easy to see that the recursions (4.10) and (4.10) will allow us to prove our formulas hold for U
n−(s+1)
Υ,k,kn+j ,

for all n ≥ s + 1 and y− k ≤ j ≤ y− 1 such that kn + j > 0, by induction on kn + j so long as we can prove
a base case. In the base case, we can prove the recursion

(4.11) U
(s+1)−(s+1)
Υ,k,k(n+1)+y−k

= (k − |Υ|)n + y − α + s− s)Us−s
Υ,k,kn+y−1 + (|Υ|+ α− s + s + 1)U

s−(s+1)
Υ,k,kn+y−1

if we interpret each term in the sense of the RHS of (4.8). The problem is that our formulas make sense
even in the case

(4.12) U
s−(s+1)
Υ,k,kn+y−1 = ((k − 1)n + y − 1)!

[

s+1
∑

r=0

(−1)s+1−r

(

(k − 1)n + r + y − 1

r

)(

kn + y

s + 1− r

)

Ω(r, s)

]

.

However, by our definitions, it must be the case that U
s−(s+1)
Υ,k,kn+y−1 = U−1

Υ,k,kn+y−1 = 0. Thus in order to

establish the base case, we need an independent proof that the RHS of (4.12) is 0. In fact, we can prove
much more. That is, we can give a direct combinatorial proof that

Un+1
Υ,k,kn+j = ((k − 1)n + j)!

[

n+1
∑

r=0

(−1)n+1−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

n + 1− r

)

Ω(r, n)

]

= 0
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for any y − k ≤ j ≤ y − 1. We will not give this combinatorial proof here due to lack of space.
Thus to complete our induction, we need only show that our formulas satisfy the recursions (4.3) and

(4.4). In order to simplify the algebra, we will again convert the form from (4.8) to the following

Us
Υ,k,kn+j =

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + j)!(kn + j + 1)!Ω(r, n)

((k − 1)n + j + s + r + 1)!r!(n − s− r)!

So, for y − k + 1 ≤ j ≤ y − 1 plugging in the above form into the RHS of (4.3) gives

(kn + j − s)

[

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + j − 1)!(kn + j)!Ω(r, n)

((k − 1)n + j + s + r)!r!(n − s− r)!

]

+(s + 1)

[

n−s−1
∑

r=0

(−1)n−s−r−1((k − 1)n + r + j − 1)!(kn + j)!Ω(r, n)

((k − 1)n + j + s + r + 1)!r!(n− s− r − 1)!

]

Removing the n− s term from the first summand, and combining the rest of the terms yields

n−s−1
∑

r=0

(−1)n−s−r((k − 1)n + r + j − 1)!(kn + j)!Ω(r, n) [(kn + j + 1)((k − 1)n + j + r)]

((k − 1)n + j + s + r + 1)!r!(n− s− r)!

+
(kn + j − s)!Ω(n− s, n)

(n− s)!

=

n−s−1
∑

r=0

(−1)n−s−r((k − 1)n + r + j)!(kn + j + 1)!Ω(r, n)

((k − 1)n + j + s + r + 1)!r!(n − s− r)!
+

(kn + j − s)!Ω(n− s, n)

(n− s)!

=

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + j)!(kn + j + 1)!Ω(r, n)

((k − 1)n + j + s + r + 1)!r!(n − s− r)!
= Us

Υ,k,kn+j

Thus we have shown that our formula for Us
Υ,k,kn+j satisfies (4.3) for y − k + 1 ≤ j ≤ y − 1. We will now

show that our formula satisfies (4.4). The RHS of (4.4) becomes

((k − |Υ|)n + s + y − α)

[

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + y − 1)!(kn + y)!Ω(r, n)

((k − 1)n + y + s + r)!r!(n − s− r)!

]

+(|Υ|n + α− s + 1)

[

n−s+1
∑

r=0

(−1)n−s−r+1((k − 1)n + r + y − 1)!(kn + y)!Ω(r, n)

((k − 1)n + y + s + r − 1)!r!(n− s− r + 1)!

]

Removing the n− s + 1 term from the second summand, and combining the rest of the terms yields

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + y − 1)!(kn + y)!Ω(r, n) [(−1)(α + r + n(|Υ| − 1))(kn + y + 1)]

((k − 1)n + y + s + r)!r!(n − s− r + 1)!

+
(|Υ|n + α− s + 1)(kn + y − s)!Ω(n− s + 1, n)

(n− s + 1)!
n−s+1
∑

r=0

(−1)n−s−r+1((k − 1)n + r + y − 1)!(kn + y + 1)!Ω(r, n)(α + r + n(|Υ| − 1))

((k − 1)n + y + s + r)!r!(n − s− r + 1)!

n−s+1
∑

r=0

(−1)n−s−r+1((k − 1)n + r + y − 1)!(kn + y + 1)!Ω(r, n + 1)

((k − 1)n + y + s + r)!r!(n − s− r + 1)!
= Us

Υ,k,kn+y

Thus we have shown that our formula for Us
Υ,k,kn+j satisfies (4.4) as desired. �

5. Conclusion and perspectives

This paper can be regarded as some initial results on the study of pattern matching in permutations
that include conditions on the equivalence class modulo k of the elements of the pattern. In particular, we
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studied the polynomials

Tτ,k,n(x) =
∑

σ∈Sn

xτ-k-emch(σ) =

n
∑

s=0

T s
τ,k,nxs and UΥ,k,n(x) =

∑

σ∈Sn

xΥ-k-emch(σ) =

n
∑

s=0

Us
Υ,k,nxs.

We developed a number of explicit formulas for these polynomials in the case where τ is a two-element
sequence or when Υ is a set of ascents of the form {(x1, y1), . . . , (xt, yt)} where for all i and j, yi ≡ yj

mod k or a set of descents of the form {(y1, x1), . . . , (yt, xt)} where for all i and j, yi ≡ yj mod k. Our
formulas for the coefficients of these polynomials lead to a number of interesting identities. For example, it
follows from Theorems 4.3 and 4.4 that we have Υ is set of ascents of the form {(x1, y1), . . . , (xt, yt)} where
for all i and j, yi ≡ yj mod k, y = min({y1, . . . , yk}), and α = |{xi : xi < y}|, then

[

s
∑

r=0

(−1)s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

s− r

)

Γ(r, j, n)

]

=

[

n−s
∑

r=0

(−1)n−s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

n− s− r

)

Ω(r, n)

]

where Γ(r, j, n) =
∏n−1

i=0 ((k − 1)n + r + j + 1 − α − i(|Υ| − 1)) and Ω(r, n) =
∏n−1

i=0 (r + α + i(|Υ| − 1)). It
would be nice to have a more general explanation as to how these types of identities arise.

Also the results of this paper give rise to a number of interesting bijective questions. For example, our
formulas show that many of the polynomials T(ab),n,kn+j(x) are identical for certain values of a, b, n and j.
One can ask to give a bijective proof of such facts. We have not been able to do this in all cases, but we
can give can a bijective proof that T(ab),k,kn+j(x) = T(cd),k,kn+j(x) where for all n and 1 ≤ j ≤ k whenever
n− χ(b > k) + χ(j ≥ b mod k) = n− χ(d > k) + χ(j ≥ d mod k).

There is still much work to be done on the structure of the polynomials Tτ,k,n(x) and UΥ,k,n(x). First
one can consider generalized Wilf equivalence questions, i.e., given k, for which patterns α and β do we have
Tα,k,n(x) = Tβ,k,n(x) for all n. We can also consider more complicated sets of patterns. We should note that
when we consider more complicated patterns, the problems get considerably harder. For example, consider
UΥ,k,kn+j(x) where k = 3 and Υ = {12, 23}. We can no longer get simple recursions for the coefficients
Us

Υ,k,kn+j since we need to keep track of more information than just the number of Υ-k-equivalence matches.
That is, let

An(x, y) =
∑

σ∈Sn

x(12)-3-emch(σ)y(23)-3-emch(σ) =
∑

r,s≥0

As,t
n xsyt.

Using the methods of this paper, we can derive simple recursions for the coefficients of Ar,s
n

As,t
3n+1 = (s + 1)As+1,t

3n + (t + 1)As,t+1
3n + (3n + 1− s− t)As,t

3n

As,t
3n+2 = (2 + n− s)As−1,t

3n+1 + (t + 1)As,t+1
3n+1 + (2n + 1 + s− t)As,t

3n+1

As,t
3n+3 = (s + 1)As+1,t

3n+2 + (2 + n− t)As,t−1
3n+2 + (2n + 2 + t− s)As,t

3n+2.

These recursions are more difficult to iterate, but we have found explicit formulas similar to the ones described
in this paper for the coefficients Ar,s

n when either r is the maximum power of x that appears in An(x, y) or
s is the maximum power of y that appears in An(x, y). Similarly, we can use extend the inclusion-exclusion
approach of section 3 to show that An(x, y) =

∑

k,l(n− k − l)!rk(B(12),n)rl(B(23),n).
Similar problems arise when we consider patterns of length ≥ 3. For example, if one is going to study

the number of (123)-k-equivalence matches, then to develop simple recursive formulas, one needs to also
keep track of the number of (12)-k-equivalence matches so that one ends up studying polynomials like

Bn(x, y) =
∑

σ∈Sn

x(12)-3-emch(σ)y(123)-3-emch(σ) =
∑

r,s≥0

Br,s
n xsyt.

Finally, we should note we have derived q-analogues of the results of this paper.
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