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Abstract. There is a simple formula for the Ehrhart polynomial of a cyclic polytope. The purpose of this
paper is to show that the same formula holds for a more general class of polytopes, lattice-face polytopes.
We develop a way of decomposing any d dimensional simplex in general position into d! signed sets, each of
which corresponds to a permutation in the symmetric group Sd, and reduce the problem of counting lattice
points in a polytope in general position to counting lattice points in these special signed sets. Applying this
decomposition to a lattice-face simplex, we obtain signed sets with special properties that allow us to count
the number of lattice points inside them. We are thus able to conclude the desired formula for the Ehrhart
polynomials of lattice-face polytopes.

Résumé. Il y a une formule simple pour le polynôme d’Ehrhart d’un polytope cyclique. Le but de cet

article est de prouver que la même formule est vraie pour une classe plus générale de polytope, les polytopes
”treillis-faces”. Nous donnons une manière de décomposer n’importe quel simplexe de dimension d en position
générale en d! ensembles signés. Chacun de ces ensembles correspond à une permutation dans le groupe
symétrique Sd, et ramène le problème de compter des points de treillis dans un polytope en position générale
à compter des points de treillis dans ces ensembles signés particuliers. Appliquant cette décomposition à
un simplexe de treillis-faces, nous obtenons des ensembles signés dont les propriétés nous permettent de
compter le nombre de points de treillis qu’ils contiennent. Nous obtenons ainsi la formule désirée pour les
polynômes d’Ehrhart des polytopes de treillis-faces.

1. Introduction

A d-dimensional lattice Z
d = {x = (x1, . . . , xd) | ∀xi ∈ Z} is the collection of all points with integer

coordinates in R
d. Any point in a lattice is called a lattice point.

A convex polytope is a convex hull of a finite set of points. We often omit convex and just say polytope.
For any polytope P and some positive integer m ∈ N, we use i(m, P ) to denote the number of lattice points
in mP, where mP = {mx|x ∈ P} is the mth dilated polytope of P.

An integral or lattice polytope is a convex polytope whose vertices are all lattice points. Eugène Ehrhart
[4] showed that for any d-dimensional integral polytope, i(P, m) is a polynomial in m of degree d. Thus, we
call i(P, m) the Ehrhart polynomial of P when P is an integral polytope. Please see [2, 3] for more reference
to the literature of lattice point counting. Although Ehrhart’s theory was developed in 1960’s, we still do
not know much about the coefficients of Ehrhart polynomials for general polytopes except that the leading,
second and last coefficients of i(P, m) are the normalized volume of P , one half of the normalized volume of
the boundary of P and 1, respectively.

In [6], the author showed that for any d-dimensional cyclic polytope P , we have that

(1.1) i(P, m) = Vol(mP ) + i(π(P ), m) =

d∑

k=0

Volk(π(d−k)(P ))mk,

where π(k) is the map which ignores the last k coordinates of a point, and asked whether there are other
integral polytopes that have the the same form of Ehrhart polynomials.
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In this paper, we define a new family of integral polytopes, lattice-face polytopes, and show (Theorem
3.4) that their Ehrhart polynomials are in the form of (1.1).

The main method of [6] is a decomposition of an arbitrary d dimensional simplex cyclic polytope into d!
signed sets, each of which corresponds to a permutation in the symmetric group Sd and has the same sign
as the corresponding permutation. However, for general polytopes, such a decomposition does not work.

In this paper, we develop a way of decomposing any d dimensional simplex in general position into d!
signed sets, where the sign of each set is not necessarily the same as the corresponding permutation. Applying
the new decomposition to a lattice-face simplex, we are able to show (Theorem 3.5) that the number of lattice
points in terms of a formula (6.1) involving Bernoulli polynomials, signs of permutations, and determinants,
and then to analyze this formula further to derive the theorem. Theorem 3.5, together with some simple
observation in section 2 and 3, imply Theorem 3.4.

2. Preliminaries

We first give some definitions and notations, most of which follows [6].
All polytopes we will consider are full-dimensional, so for any convex polytope P, we use d to denote

both the dimension of the ambient space R
d and the dimension of P. We call a d-dimensional polytope a

d-polytope. Also, We use ∂P and I(P ) to denote the boundary and the interior of P, respectively.
For any set S, we use conv(S) to denote the convex hull of all of points in S.
Recall that the projection π : R

d → R
d−1 is the map that forgets the last coordinate. For any set S ⊂ R

d

and any point y ∈ R
d−1, let ρ(y, S) = π−1(y) ∩ S be the intersection of S with the inverse image of y under

π. Let p(y, S) and n(y, S) be the point in ρ(y, S) with the largest and smallest last coordinate, respectively.
If ρ(y, S) is the empty set, i.e., y 6∈ π(S), then let p(y, S) and n(y, S) be empty sets as well. Clearly, if S is
a d-polytope, p(y, S) and n(y, S) are on the boundary of S. Also, we let ρ+(y, S) = ρ(y, S) \ n(y, S), and for
any T ⊂ R

d−1, ρ+(T, S) = ∪y∈T ρ+(y, S).

Definition 2.1. Define PB(P ) =
⋃

y∈π(P ) p(y, P ) to be the positive boundary of P ; NB(P ) = ∪y∈π(P )n(y, P )

to be the negative boundary of P and Ω(P ) = P \ NB(P ) = ρ+(π(P ), P ) = ∪y∈π(P )ρ
+(y, P ) to be the non-

negative part of P.

Definition 2.2. For any facet F of P, if F has an interior point in the positive boundary of P, then
we call F a positive facet of P and define the sign of F as +1 : sign(F ) = +1. Similarly, we can define the
negative facets of P with associated sign −1. For the facets that are neither positive nor negative, we call
them neutral facets and define the sign as 0.

It’s easy to see that F ⊂ PB(P ) if F is a positive facet and F ⊂ NB(P ) if F is a negative facet.
Because the usual set union and set minus operation do not count the number of occurrences of an

elements, which is important in our paper, from now on we will consider any polytopes or sets as multisets
which allow negative multiplicities. In other words, we consider any element of a multiset as a pair (x, m),
where m is the multiplicity of element x. Then for any multisets M1, M2 and any integers m, n and i, we
define the following operators:

a) Scalar product: iM1 = i · M1 = {(x, im) | (x, m) ∈ M1}.
b) Addition: M1 ⊕ M2 = {(x, m + n) | (x, m) ∈ M1, (x, n) ∈ M2}.
c) Subtraction: M1 	 M2 = M1 ⊕ ((−1) · M2).

It’s clear the following holds:

Lemma 2.3. For any polytope P ⊂ R
d, ∀R1, . . . , Rk ⊂ R

d−1, ∀i1, . . . , ik ∈ Z :

ρ+




k⊕

j=1

ijRj , P



 =

k⊕

j=1

ijρ
+(Rj , P ).

Definition 2.4. We say a set S has weight w, if each of its elements has multiplicity either 0 or w. And
S is a signed set if it has weight 1 or −1.

Let P be a convex polytope. For any y an interior point of π(P ), since π is a continuous open map,
the inverse image of y contains an interior point of P. Thus π−1(y) intersects the boundary of P exactly
twice. For any y a boundary point of π(P ), again because π is an open map, we have that ρ(y, P ) ⊂ ∂P, so
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ρ(y, P ) = π−1(y) ∩ ∂P is either one point or a line segment. The polytopes P we will be interested in are
those satisfying ρ(y, P ) has has only one point.

Lemma 2.5. If a polytope P satisfies:

(2.1) |ρ(y, P )| = 1, ∀y ∈ ∂π(P ),

then P has the following properties:

(i) For any y ∈ I(π(P )), π−1(y) ∩ ∂P = {p(y, P ), n(y, P )}.
(ii) For any y ∈ ∂π(P ), π−1(y) ∩ ∂P = ρ(y, P ) = p(y, P ) = n(y, P ), so ρ+(y, P ) = ∅.

(iii) If P =
⊔k

i=1 Pi, where the Pi’s all satisfy (2.1), then Ω(P ) =
⊕k

i=1 Ω(Pi). (P =
⊔k

i=1 Pi means

that Pi’s give a decomposition of P, i.e., P =
⋃k

i=1 Pi, and for any i 6= j, Pi ∩ Pj is contained in
their boundaries.)

(iv) The set of facets of P are partitioned into the set of positive facets and the set of negative facets,
i.e., there is no neutral facets.

The proof of this lemma is straightforward, so we won’t include it here.
The main purpose of this paper is to discuss the number of lattice points in a polytope. Therefore, for

simplicity, for any set S ∈ R
d, we denote by L(S) = S ∩Z

d the set of lattice points in S. It’s not hard to see
that L commutes with some of the operations we defined earlier, e.g. ρ, ρ+, Ω.

3. Lattice-face polytopes

A d-simplex is a polytope given as the convex hull of d + 1 affinely independent points in R
d.

Definition 3.1. We define lattice-face polytopes recursively. We call a one dimensional polytope a
lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any d-subset
U ⊂ V,

a) π(conv(U)) is a lattice-face polytope, and
b) π(L(HU )) = Z

d−1, where HU is the affine space spanned by U. In other words, after dropping the
last coordinate of the lattice of HU , we get the (d − 1)-dimensional lattice.

To understand the definition, let’s look at examples of 2-polytopes.

Example 3.2. Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1). Clearly, for
any 2-subset U, condition a) is always satisfied. When U = {v1, v2}, HU is {(x, 0) | x ∈ R}. So π(L(HU )) = Z,
i.e., b) holds. When U = {v1, v3}, HU is {(x, y) | x = 2y}. Then L(HU ) = {(2z, z) | z ∈ Z} ⇒ π(L(HU )) =
2Z 6= Z. When U = {v2, v3}, HU is {(2, y) |y ∈ R }. Then π(L(HU )) = {2} 6= Z. Therefore, P1 is not a
lattice-face polytope.

Let P2 be the polytope with vertices (0, 0), (1, 1) and (2, 0). One can check that P2 is a lattice-face
polytope.

Lemma 3.3. Let P be a lattice-face d-polytope with vertex set V, then we have:

(i) π(P ) is a lattice-face (d − 1)-polytope.
(ii) mP is a lattice-face d-polytope, for any positive integer m.
(iii) π induces a bijection between L(NB(P )) and L(π(P )).
(iv) Any d-subset U of V forms a (d − 1)-simplex. Thus π(conv(U)) is a (d − 1)-simplex.
(v) Let H be the hyperplane determined by some d-subset of V. Then for any lattice point y ∈ Z

d−1, we
have that ρ(y, H) is a lattice point.

(vi) P is an integral polytope.

Proof. (i), (ii), (iii), (iv) and (v) are easy to prove. We prove (vi) by induction on d.
Any 1-dimensional lattice-face polytope is integral by definition.
For d ≥ 2, suppose any (d − 1) dimensional lattice-face polytope is an integral polytope. Let P be a

d dimensional lattice-face polytope with vertex set V. For any vertex v0 ∈ V, let U be a subset of V that
contains v0. Let U = {v0, v1, . . . , vd−1}. We know that P ′ = π(conv(U)) is a lattice-face (d−1)-simplex with
vertices {π(v0), . . . , π(vd−1)}. Thus, by the induction hypothesis, P ′ is an integral polytope. In particular,
π(v0) is a lattice point. Therefore, v0 = ρ(π(v0), H) is a lattice point. �



Fu Liu

The main theorem of this paper is to describe all of the coefficients of the Ehrhart polynomial of a
lattice-face polytope.

Theorem 3.4. Let P be a lattice-face d-polytope, then

(3.1) i(P, m) = Vol(mP ) + i(π(P ), m) =

d∑

k=0

Volk(π(d−k)(P ))mk.

However, by Lemma 3.3/(ii),(iii), we have that

i(P, m) = |L(Ω(mP ))| + i(π(P ), m).

Therefore, to prove Theorem 3.4 it is sufficient to prove the following theorem:

Theorem 3.5. For any P a lattice-face polytope,

|L(Ω(P ))| = Vol(P ).

Remark 3.6. We have an alternative definition of lattice-face polytopes, which is equivalent to Definition
3.1. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all k with 0 ≤ k ≤ d−1,

(3.2) for any (k + 1)-subset U ⊂ V, πd−k(L(HU )) ∼= Z
k,

where HU is the affine space determined by U. In other words, after dropping the last d − k coordinates of
the lattice of HU , we get the k-dimensional lattice.

4. A signed decomposition of the nonnegative part of a simplex in general position

The volume of a polytope is not very hard to characterize. So our main problem is to find the a way to
describe the number of lattice points in the nonnegative part of a lattice-face polytope. We are going to do
this via a signed decomposition.

4.1. Polytopes in general position. For the decomposition, we will work with a more general type
of polytope (which contains the family of lattice-face polytopes).

Definition 4.1. We say that a d-polytope P with vertex set V is in general position if for any k : 0 ≤
k ≤ d − 1, and any (k + 1)-subset U ⊂ V, πd−k(conv(U)) is a k-simplex, where conv(U) is the convex hull
of all of points in U.

It’s easy to see that a lattice-face polytope is a polytope in general position. Therefore, the following
discussion can be applied to lattice-face polytopes.

The following lemma states some properties of a polytope in general position. The proof is omitted.

Lemma 4.2. Given a d-polytope P in general position with vertex set V, then

(i) P satisfies (2.1).
(ii) For any nonempty subset U of V, let Q = conv(U). If U has dimension k(0 ≤ k ≤ d), then πd−k(Q)

is a k-polytope in general position. In particular, for any facet F of P, π(F ) is a (d − 1)-polytope
in general position.

(iii) For any triangulation of P =
⊔k

i=1 Pi without introducing new vertices, Ω(P ) =
⊕k

i=1 Ω(Pi). Thus,

L(Ω(P )) =
⊕k

i=1 L(Ω(Pi)).
(iv) For any hyperplane H determined by one facet of P and any y ∈ R

d−1, ρ(y, H) is one point.

Remark 4.3. By (iii), and because Vol(
⊔k

i=1 Pi) =
∑k

i=1 Vol(Pi), to prove Theorem 3.5 it is sufficient
to prove the case when P is a lattice-face simplex.

Therefore, we will only construct our decomposition in the case of simplices in general position. However,
before the construction, we need one more proposition about the nonnegative part of a polytope in general
position.

Proposition 4.4. Let P be a d-polytope in general position with facets F1, F2 . . . Fk. Let H be the
hyperplane determined by Fk. For i : 1 ≤ i ≤ k, let F ′

i = π−1(π(Fi)) ∩ H and Qi = conv(Fi ∪ F ′
i ).

Then

(4.1) Ω(P ) = − sign(Fk)

k−1⊕

i=1

sign(Fi)ρ
+(Ω(π(Fi)), Qi).
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The proof of Proposition 4.4 is similar to the proof of Proposition 2.6 in [6], so we do not include it here.
Now, we can use this proposition to inductively construct a decomposition of the nonnegative part Ω(P )

of a d-simplex P in general position into d! signed sets.

Decomposition of Ω(P ):

• If d = 1, we do nothing: Ω(P ) = Ω(P ).
• If d ≥ 2, then by applying Proposition 4.4 to P and letting k = d + 1, we have

Ω(P ) = − sign(Fd+1)

d⊕

i=1

sign(Fi)ρ
+(Ω(π(Fi)), Qi).

However, by Lemma 4.2/(ii), each π(Fi) is a (d − 1)-simplex in general position. By the

induction hypothesis, Ω(π(Fi)) =
⊕(d−1)!

j=1 Si,j , where Si,j ’s are signed sets.

ρ+(Ω(π(Fi)), Qi) = ρ+(

(d−1)!⊕

j=1

Si,j , Qi) =

(d−1)!⊕

j=1

ρ+(Si,j , Qi).

Since each ρ+(Si,j , Qi) is a signed set, we have decomposed Ω(P ) into d! signed sets.

Now we know that we can decompose Ω(P ) into d! signed sets. But we still need to figure out what
these sets are and which signs they have. In the next subsection, we are going to discuss the sign of a facet
of a d-simplex, which is going to help us determine the signs in our decomposition.

4.2. The sign of a facet of a d-simplex. From now on, we will always use the following setup for a
d-simplex unless otherwise stated:

Suppose P is a d-simplex in general position with vertex set V = {v1, v2, . . . , vd+1}, where the coordinates
of vi are xi = (xi,1, xi,2, . . . , xi,d).

For any i, we denote by Fi the facet determined by vertices in V \{vi} and Hi the hyperplane determined
by Fi.

For any σ ∈ Sd and k : 1 ≤ k ≤ d, we define matrices X(σ, k) and Y (σ, k) to be the matrices

X(σ, k) =





1 xσ(1),1 xσ(1),2 · · · xσ(1),k

1 xσ(2),1 xσ(2),2 · · · xσ(2),k

...
...

...
. . .

...
1 xσ(k),1 xσ(k),2 · · · xσ(k),k

1 xd+1,1 xd+1,2 · · · xd+1,k





(k+1)×(k+1)

,

Y (σ, k) =





1 xσ(1),1 xσ(1),2 · · · xσ(1),k−1

1 xσ(2),1 xσ(2),2 · · · xσ(2),k−1

...
...

...
. . .

...
1 xσ(k),1 xσ(k),2 · · · xσ(k),k−1





k×k

.

We also define z(σ, k) to be

z(σ, k) = det(X(σ, k))/ det(Y (σ, k)),

where det(M) is the determinant of a matrix M.
Now we can determine the sign of a facet Fi of P by looking at the determinants of these matrices,

denoting by sign(x) the usual definition of sign of a real number x.

Lemma 4.5. (i) ∀i : 1 ≤ i ≤ d and ∀σ ∈ Sd with σ(d) = i,

(4.2) sign(Fi) = sign(det(X(σ, d))/ det(X(σ, d − 1))).

(ii) When i = d + 1 and for ∀σ ∈ Sd,

(4.3) sign(Fd+1) = − sign(det(X(σ, d))/ det(Y (σ, d))) = − sign(z(σ, d)).
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Proof. For any i : 1 ≤ i ≤ d + 1, let v′i = ρ(π(vi), Hi), i.e. v′i is the unique point of the hyperplane
spanned by Fi which has the same coordinates as vi except for the last one. Suppose the coordinates of v′i
are (xi,1, . . . , xi,d−1, x

′
i,d). Then

sign(Fi) = − sign(xi,d − x′
i,d).

∀i : 1 ≤ i ≤ d and ∀σ ∈ Sd with σ(d) = i, because v′i is in the hyperplane determined by Fi, we have
that

det









1 xσ(1),1 · · · xσ(1),d−1 xσ(1),d

...
...

. . .
...

...
1 xσ(d−1),1 · · · xσ(d−1),d−1 xσ(d−1),d

1 xσ(d),1 · · · xσ(d),d−1 x′
σ(d),d

1 xd+1,1 · · · xd+1,d−1 xd+1,d








= 0.

Therefore,

det(X(σ, d)) = (−1)2d+1(xi,d − x′
i,d) det(X(σ, d − 1)).

Thus,

sign(det(X(σ, d))/ det(X(σ, d − 1))) = − sign(xi,d − x′
i,d) = sign(Fi).

We can similarly prove the formula for i = d + 1. �

4.3. Decomposition formulas. The following theorem describes the signed sets in our decomposition.

Theorem 4.6. Let P be a d-simplex with vertex set V = {v1, v2, . . . , vd+1}, where the coordinates of
vi are xi = (xi,1, xi,2, . . . , xi,d). For any σ ∈ Sd, and k : 0 ≤ k ≤ d − 1, let vσ,k be the point with first
k coordinates the same as vd+1 and affinely dependent with vσ(1), vσ(2), . . . , vσ(k), vσ(k+1). (Because P is in
general position, one sees that there exists one and only one such point.) We also let vσ,d = vd+1. Then

Ω(P ) =
⊕

σ∈Sd

sign(σ, P )Sσ,

where

(4.4) sign(σ, P ) = sign(det(X(σ, d)))

d∏

i=1

sign(z(σ, i)),

and

(4.5) Sσ = {s ∈ R
d | πd−k(s) ∈ Ω(πd−k(conv({vσ,0, . . . , vσ,k})))∀1 ≤ k ≤ d}

is a set of weight 1, i.e. a regular set.
Hence,

L(Ω(P )) =
⊕

σ∈Sd

sign(σ, P )L(Sσ).

Proof. Proof by induction. �

Corollary 4.7. If P is a d-simplex in general position, then

(4.6) |L(Ω(P ))| =
∑

σ∈Sd

sign(σ, P )|L(Sσ)|.

Therefore, if we can calculate the number of lattice points in Sσ’s, then we can calculate the number of
lattice points in the nonnegative part of a d-simplex in general position. However, it’s not so easy to find
|L(Sσ)|’s for an arbitrary polytope. But we can do it for any lattice-face d-polytope.

5. Lattice enumeration in Sσ and Bernoulli polynomials

In this section, we will count the number of lattice points in Sσ’s when P is a lattice-face d-simplex.
This calculation involves Bernoulli polynomials.
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5.1. Counting lattice points in Sσ. We say a map from R
d → R

d is lattice preserving if it is invertible
and it maps lattice points to lattice points. Clearly, given a lattice preserving map f, for any set S ∈ R

d we
have that |L(S)| = |L(f(S))|.

Let P be a lattice face d-simplex with vertex set V = {v1, . . . , vd+1}, where we use the same setup as
before for d-simplices.

Given any σ ∈ Sd, recall that Sσ is defined as in (4.5). To count the number of lattice points in Sσ, we
want to find a lattice preserving affine transformation which simplifies the form of Sσ.

Before trying to find such a transformation, we will define more notations.
For any σ ∈ Sd, k : 1 ≤ k ≤ d and x = (x1, x2, . . . , xd) ∈ R

d, we define matrix X̃(σ, k; x) as

X̃(σ, k; x) =





1 xσ(1),1 xσ(1),2 · · · xσ(1),k

1 xσ(2),1 xσ(2),2 · · · xσ(2),k

...
...

...
. . .

...
1 xσ(k),1 xσ(k),2 · · · xσ(k),k

1 x1 x2 · · · xk





(k+1)×(k+1)

,

and for j : 0 ≤ j ≤ k, let M(σ, k; j) be the minor of the matrix X̃(σ, k; x) obtained by omitting the last
row and the (j + 1)th column. Then

(5.1) det(X̃(σ, k; x)) = (−1)k(M(σ, k; 0) +

k∑

j=1

(−1)jM(σ, k; j)xj).

Note that M(σ, k; k) = det(Y (σ, k)). Therefore,

(5.2)
det(X̃(σ, k; x))

det(Y (σ, k))
= (−1)k M(σ, k; 0)

det(Y (σ, k))
+

k−1∑

j=1

(−1)k+j M(σ, k; j)

det(Y (σ, k))
xj + xk.

Lemma 5.1. Suppose P is a lattice-face d-simplex. ∀σ ∈ Sd, ∀k : 1 ≤ k ≤ d, and ∀j : 0 ≤ j ≤ k − 1, we
have that

M(σ, k; j)

det(Y (σ, k))
∈ Z.

This lemma, as well as Lemma 5.6, can be directly derived from the definition of the lattice-face polytopes.
We omit the proofs here.

Given this lemma, we have the following proposition.

Proposition 5.2. There exist a lattice-preserving affine transformation Tσ which maps x = (x1, x2, . . . , xd) ∈
R

d to

(
det(X̃(σ, 1; x))

det(Y (σ, 1))
,
det(X̃(σ, 2; x))

det(Y (σ, 2))
, . . . ,

det(X̃(σ, d; x))

det(Y (σ, d))
).

Proof. Let ασ = (− M(σ,1;0)
det(Y (σ,1)) ,

M(σ,2;0)
det(Y (σ,2)) , . . . , (−1)d M(σ,d;0)

det(Y (σ,d))) and Mσ = (mσ,j,k)d×d, where

mσ,j,k =






1, if j = k

0, if j > k

(−1)k+j M(σ,k;j)
det(Y (σ,k)) if j < k

.

We define Tσ : R
d → R

d by mapping x to ασ + xMσ. By (5.2),

ασ + xMσ = (
det(X̃(σ, 1; x))

det(Y (σ, 1))
,
det(X̃(σ, 2; x))

det(Y (σ, 2))
, . . . ,

det(X̃(σ, d; x))

det(Y (σ, d))
).

Also, because all of the entries in Mσ and ασ are integers and the determinant of Mσ is 1, Tσ is lattice
preserving. �

Corollary 5.3. Given P a lattice-face polytope with vertex set V = {v1, v2, . . . , vd+1}, we have that

(i) ∀i : 1 ≤ i ≤ d, the last d + 1 − i coordinates of Tσ(vσ(i)) are all zero.
(ii) Tσ(vd+1) = (z(σ, 1), z(σ, 2), . . . , z(σ, d)).
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(iii) Recall that for k : 0 ≤ k ≤ d − 1, vσ,k is the point with first k coordinates the same as vd+1 and
affinely dependent with vσ(1), vσ(2), . . . , vσ(k), vσ(k+1). Then the first k coordinates of Tσ(vσ,k) are
the same as Tσ(vd+1) and the rest of the coordinates are zero.

Proof. (i) This follows from that fact that det(X̃(σ, k; xσ(i))) = 0 if i ≤ k ≤ d.

(ii) This follows from the fact that X̃(σ, k; xd+1) = X(σ, k) and z(σ, k) = det(X(σ, k))/ det(Y (σ, k)).
(iii) Because for any x ∈ R

d, the kth coordinate of Tσ only depends on the first k coordinates of x,
Tσ(vσ,k) has the same first k coordinates as Tσ(vd+1). Tσ is an affine transformation. So Tσ(vσ,k)
is affinely dependent with Tσ(vσ(1)), Tσ(vσ(2)), . . . , Tσ(vσ(k)), Tσ(vσ(k+1)), the last d−k coordinates
of which are all zero. Therefore the last d − k coordinates of Tσ(vσ,k) are all zero as well.

�

Recalling that vσ,d = vd+1, we are able to describe Tσ(Sσ) now.

Proposition 5.4. Let Ŝσ = Tσ(Sσ). Then

(5.3) s = (s1, s2, . . . , sd) ∈ Ŝσ ⇔ ∀1 ≤ k ≤ d, sk ∈ Ω(conv(0,
z(σ, k)

z(σ, k − 1)
sk−1)),

where by convention we let z(σ, 0) = 1 and s0 = 1.

Proof. This can be deduced from the fact that

Ŝσ = {s ∈ R
d | πd−k(s) ∈ Ω(πd−k(conv({v̂σ,0, . . . , v̂σ,k})))∀1 ≤ k ≤ d},

where v̂σ,i = (z(σ, 1), . . . , z(σ, i), 0, . . . , 0), for 0 ≤ i ≤ d.
�

Because Tσ is a lattice preserving map, |L(Sσ)| = |L(Ŝσ)|. Hence, our problem becomes to find the

number of lattice points in Ŝσ. However, Ŝσ is much nicer than Sσ. Actually, we can give a formula to

calculate all of the sets having the same shape as Ŝσ.

Lemma 5.5. Given real nonzero numbers b0 = 1, b1, b2, . . . , bd, let a′
k = bk/bk−1 and ak = bk/|bk−1|, ∀k :

1 ≤ k ≤ d. Let S be the set defined by the following:

s = (s1, s2, . . . , sd) ∈ S ⇔ ∀1 ≤ k ≤ d, sk ∈ Ω(conv(0, a′
ksk−1)),

where s0 is set to 1. Then

|L(S)| =
∑

s1∈L(Ω(conv(0,a′

1
)))

∑

s2∈L(Ω(conv(0,a′

2
s1)))

· · ·
∑

sd∈L(Ω(conv(0,a′

d
sd−1)))

1.

In particular, if bd > 0, then

|L(S)| =

ba1c∑

s1=1

ba2s1c∑

s2=1

· · ·

badsd−1c∑

sd=1

1,

where for any real number x, bxc is the largest integer no greater than x and x is defined as

x =

{
x, if x ≥ 0

−x − 1, if x < 0
.

Proof. The first formula is straightforward. The second formula follows from the facts that for any
real numbers x,

L(Ω(conv(0, x))) =

{
{z ∈ Z | 1 ≤ z ≤ bxc} if x ≥ 0

{z ∈ Z | − bxc ≤ z ≤ 0} if x < 0
,

the sign of si is the same as the sign of bi, and because bd > 0, all the si’s are non-zero. �

However, for lattice-polytopes, we have another good property of the z(σ, k)’s.

Lemma 5.6. If P is a lattice-polytope d-simplex, then

z(σ, k)/z(σ, k − 1) ∈ Z.
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For any lattice-face d-simplex P, we can always find a way to order its vertices into V = {v1, v2, . . . , vd+1},
so that the corresponding det(X(1, d)) and det(Y (1, d)) are positive, where 1 stands for the identity permu-
tation in Sd. Note z(σ, d) is independent of σ. So it is positive. Therefore, by Lemma 5.5 and Lemma 5.6,
we have the following result.

Proposition 5.7. Let P be a lattice-face d-simplex with vertex set V, where the order of vertices makes
both det(X(1, d)) and det(Y (1, d)) positive. Define

a(σ, k) =
z(σ, k)

|z(σ, k − 1)|
, ∀k : 1 ≤ k ≤ d.

Then

(5.4) |L(Sσ)| =

a(σ,1)∑

s1=1

a(σ,2)s1∑

s2=1

· · ·

a(σ,d)sd−1∑

sd=1

1.

Because of (5.4), it’s natural for us to define

(5.5) fd(a1, a2, . . . , ad) =

a1∑

s1=1

a2s1∑

s2=1

· · ·

adsd−1∑

sd=1

1,

for any positive integers a1, a2, . . . , ad. However, since fd is just a polynomial in the ai’s, we can extend
the domain of fd from Z

d
>0 to Z

d or even R
d. And for convenience, we still use the form of (5.5) to write

fd(a1, . . . , an) even when ai’s are not all positive integers.
Also, fixing b0 = 1, we define

gd(b1, b2, . . . , bd) = fd(b1/b0, b2/b1, . . . , bd/bd−1),

for any (b1, b2, . . . , bd) ∈ (R \ {0})d.
fd and gd are closely related to formula (5.4). In next subsection, we will discuss Bernoulli polynomials

and power sums, which are connected to fd and gd, and then rewrite (5.4) in terms of gd. Please refer to [3,
Section 2.4] for other examples about Bernoulli polynomials and their relation to lattice polytopes.

5.2. Power sums and Bernoulli polynomials. The kth Bernoulli polynomials, Bk(x), is defined as
[1, p. 804]

tetx

et − 1
=

∞∑

k=0

Bk(x)
tk

k!
,

The Bernoulli polynomials satisfy [5]

(5.6) Bk(1 − x) = (−1)kBk(x), ∀k ≥ 0,

as well as the relation [8, p. 127]

(5.7) Bk(x + 1) − Bk(x) = kxk−1, ∀k ≥ 1.

We call Bk = Bk(0) a Bernoulli number. It satisfies [7] that

(5.8) Bk(0) = 0, for any odd number k ≥ 3.

For k ≥ 0, let

Sk(x) =
Bk+1(x + 1) − Bk+1

k + 1
.

Given any n a nonnegative integer, by (5.7), we have that

Sk(n) =

n∑

i=0

ik =

{∑n

i=1 ik if k ≥ 1

n + 1 if k = 0
.

Therefore, we call Sk(x) the kth power sum polynomial.

Lemma 5.8. For any k ≥ 1, the constant term of Sk(x) is 0, i.e., x is a factor of Sk(x), and

(5.9) Sk(x) = (−1)k+1Sk(−x − 1).

Proof. The constant term of Sk(x) is Sk(0) = 0. The formula follows from (5.6) and (5.8). �
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Lemma 5.9. fd(a1, . . . , ad) is a polynomial in a1 of degree d. And
∏d

i=1 ai is a factor of it. In particular,
fd can be written as

(5.10) fd(a1, . . . , ad) =

d∑

k=1

fd,k(a2, . . . , ad)a
k
1 ,

where fd,k(a2, . . . , ad) is a polynomial in a2, . . . , ad with a factor
∏d

i=2 ai.

Proof. This can be proved by induction on d, using the fact that Sk(x) has a factor x. �

Proposition 5.10. Given s0 = 1, a = (a1, a2, . . . , ad) ∈ R
d, for any j : 1 ≤ j ≤ d − 1,

fd(a1, a2, . . . , ad) = −
a1s0∑

s1=1

· · ·

aj−1sj−2∑

sj−1=1

−ajsj−1−1∑

sj=1

−aj+1sj∑

sj+1=1

aj+2sj+1∑

sj+2=1

. . .

adsd−1∑

sd=1

1.

Given b = (b1, b2, . . . , bd) ∈ (R \ {0})d with bd > 0, let ak = bk/|bk−1|, then

(5.11) gd(b1, b2, . . . , bd) = sign

(
d∏

i=1

bi

)
a1∑

s1=1

a2s1∑

s2=1

· · ·

adsd−1∑

sd=1

1.

Proof. This follows from (5.9), (5.10) and an inductive argument. �

Proposition 5.11. Let P be a lattice-face d-simplex with vertex set V, where the order of vertices makes
both det(X(1, d)) and det(Y (1, d)) positive. Then

(5.12) |L(Sσ)| = sign

(
d∏

i=1

z(σ, i)

)
gd(z(σ, 1), z(σ, 2), . . . , z(σ, d)).

Therefore,

(5.13) |L(Ω(P ))| =
∑

σ∈Sd

sign(σ)gd(z(σ, 1), z(σ, 2), . . . , z(σ, d)).

Proof. We can get (5.12) by comparing (5.4) and (5.11). And (5.13) follows from (4.6), (4.4), (5.12)
and the fact that det(X(σ, d)) = sign(σ) det(X(1, d)). �

6. Proof of the Main Theorems

We now have all the ingredients but one to prove Theorem 3.5. The missing one is stated as the following
proposition.

Proposition 6.1. Let V = {v1, v2, . . . , vd+1} be the vertex set of a d-simplex in general position, where
the coordinates of vi are xi = (xi,1, xi,2, . . . , xi,d). Then

(6.1)
∑

σ∈Sd

sign(σ)gd(z(σ, 1), z(σ, 2), . . . , z(σ, d)) =
1

d!
det(X(1, d)).

Given this proposition, we can prove Theorem 3.5.

Proof of Theorem 3.5. As we mentioned in Remark 4.3, to prove Theorem 3.5, it is sufficient to
prove the case when P is a lattice-face simplex.

When P is a lattice-face d-simplex, we still assume that the order of the vertices of P makes both
det(X(1, d)) and det(Y (1, d)) positive. Thus, (5.13), (6.1) and the fact that the volume of P is 1

d! | det(X(1, d))|
imply that

|L(Ω(P ))| = Vol(P ).

�

As we mentioned earlier, Theorem 3.4 follows from Theorem 3.5.
The proof of Proposition 6.1 is lengthy and self-contained, so we do not include it here.
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7. Examples and Further discussion

7.1. Examples of lattice-face polytopes. In this subsection, we use a fixed family of lattice-face
polytopes to illustrate our results. Let d = 3, and for any positive integer k, let Pk be the polytope with
the vertex set V = {v1 = (0, 0, 0), v2 = (4, 0, 0), v3 = (3, 6, 0), v4 = (2, 2, 10k)}. One can check that Pk is a
lattice-face polytope.

Example 7.1 (Example of Theorem 3.4). The volume of Pk is 40k, and

i(Pk, m) = 40km3 + 12m2 + 4m + 1.

π(Pk) = conv{(0, 0), (4, 0), (3, 6)}, where

i(π(Pk), m) = 12m2 + 4m + 1.

So
i(Pk, m) = 40km3 + i(π(Pk), m),

which agrees with Theorem 3.4.

Example 7.2 (Example of Formula (4.1)). F4 = conv(v1, v2, v3) is a negative facet. The hyperplane
determined by F4 is H = {(x1, x2, x3) | x3 = 0}. Thus, v′4 = π−1(π(v4)) ∩ H = (2, 2, 0).

F3 = conv(v1, v2, v4) is a positive facet. π(F3) = conv((0, 0), (4, 0), (2, 2)). Ω(π(F3)) = π(F3)\conv((0, 0), (4, 0)).
F ′

3 = π−1(π(F3)) ∩ H = conv(v1, v2, v
′
4). So

Q3 = conv(F3 ∪ F ′
3) = conv(v1, v2, v4, v

′
4),

ρ+(Ω(π(F3)), Q3) = Q3 \ F ′
3.

F2 = conv(v1, v3, v4) is a positive facet. π(F2) = conv((0, 0), (3, 6), (2, 2)). Ω(π(F2)) = π(F2)\(conv((0, 0), (2, 2))∪
conv((2, 2), (3, 6))). F ′

2 = π−1(π(F2)) ∩ H = conv(v1, v3, v
′
4). So

Q2 = conv(F2 ∪ F ′
2) = conv(v1, v3, v4, v

′
4),

ρ+(Ω(π(F2)), Q2) = Q2 \ (F ′
2 ∪ conv(v1, v4, v

′
4) ∪ conv(v3, v4, v

′
4)).

F1 = conv(v2, v3, v4) is a positive facet. π(F1) = conv((4, 0), (3, 6), (2, 2)). Ω(π(F1)) = π(F1)\conv((4, 0), (2, 2)).
F ′

1 = π−1(π(F1)) ∩ H = conv(v2, v3, v
′
4). So

Q1 = conv(F1 ∪ F ′
1) = conv(v2, v3, v4, v

′
4),

ρ+(Ω(π(F1)), Q1) = Q1 \ (F ′
1 ∪ conv(v2, v4, v

′
4)).

Therefore,

Ω(Pk) = Pk \ F4 = − sign(F4)

3⊕

i=1

sign(Fi)ρ
+(Ω(π(Fi)), Qi),

which agrees with Proposition 4.4.

Example 7.3 (Example of Decomposition). In this example, we decompose Pk into 3! sets, where 5 of
them have positive signs and one has negative sign, which is different from the cases for cyclic polytopes,
where half of the sets have positive signs and the other half have negative signs.

Recall that vσ,3 = v4 = (2, 2, 10k), for any σ ∈ S3.
When σ = 123 ∈ S3, v123,2 = v′4 = (2, 2, 0), v123,1 = (2, 0, 0) and v123,0 = v1 = (0, 0, 0). Then

S123 = conv({v123,i}0≤i≤3) \ conv({v123,i}0≤i≤2),

with sign(123, Pk) = +1.
When σ = 213 ∈ S3, v213,2 = v′4 = (2, 2, 0), v213,1 = (2, 0, 0) and v213,0 = v2 = (4, 0, 0). Then

S213 = conv({v213,i}0≤i≤3) \ (conv({v213,i}0≤i≤2) ∪ conv({v213,i}1≤i≤3)),

with sign(213, Pk) = +1.
One can check that

S123 ⊕ S213 = ρ+(Ω(π(F3)), Q3).

When σ = 231 ∈ S3, v231,2 = v′4 = (2, 2, 0), v231,1 = (2, 12, 0) and v231,0 = v2 = (4, 0, 0). Then

S231 = conv({v231,i}0≤i≤3) \ (conv({v231,i}0≤i≤2) ∪ conv({v231,i}i=0,2,3 ∪ conv({v231,i}1≤i≤3)),

with sign(231, Pk) = +1.
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When σ = 321 ∈ S3, v321,2 = v′4 = (2, 2, 0), v321,1 = (2, 12, 0) and v321,0 = v3 = (3, 6, 0). Then

S321 = conv({v321,i}0≤i≤3) \ (conv({v321,i}0≤i≤2) ∪ conv({v321,i}i=0,2,3 ∪ conv({v321,i}1≤i≤3)),

with sign(321, Pk) = −1.
One can check that

S231 	 S321 = ρ+(Ω(π(F1)), Q1).

Similarly, we have that
S132 ⊕ S312 = ρ+(Ω(π(F2)), Q2).

Therefore, Ω(Pk) =
⊕

σ∈S3
sign(σ, Pk)Sσ, which coincides with Theorem 4.6.

7.2. Further discussion. Recall that Remark 3.6 gives an alternative definition for lattice-face poly-
topes. Note in this definition, when k = 0, satisfying (3.2) is equivalent to say that P is an integral polytope,
which implies that the last coefficient of the Ehrhart polynomial of P is 1. Therefore, one may ask

Question 7.4. If P is a polytope that satisfies (3.2) for all k ∈ K, where K is a fixed subset of
{0, 1, . . . , d − 1}, can we say something about the Ehrhart polynomials of P?

A special set K can be chosen as the set of consecutive integers from 0 to d′, where d′ is an integer no
greater than d − 1. Based on some examples in this case, the Ehrhart polynomials seems to follow a certain
pattern, so we conjecture the following:

Conjecture 7.5. Given d′ ≤ d − 1, if P is a d-polytope with vertex set V such that ∀k : 0 ≤ k ≤ d′,
(3.2) is satisfied, then for 0 ≤ k ≤ d′, the coefficient of mk in i(P, m) is the same as in i(πd−d′

(P ), m). In
other words,

i(P, m) = i(πd−d′

(P ), m) +

d∑

i=d′+1

cim
i.

When d′ = 0, the condition on P is simply that it is integral. And when d′ = d − 1, we are in the case
that P is a lattice-face polytope. Therefore, for these two cases, this conjecture is true.
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