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Welcome to San Diego!

Dear friends,
We are looking forward to a successful conference and the organizers are happy to

be hosting FPSAC in San Diego this year. San Diego is a major tourist destination
with such attractions as the San Diego Zoo, Wild Animal Park, Sea World, the
Stephen Birch Aquarium, beaches and a proximity to mountains and deserts. We
hope that many of you who are traveling here will take some time before or after
the conference and see a little of southern California.

The organizers are very grateful to the National Security Agency and the Na-
tional Science Foundation who have both provided generous support to qualified
applicants.

We would also like to acknowledge the financial support provided by the Math-
ematical Sciences Research Institute (MSRI) and the Center for Communications
Research as well as from York University and University of California, San Diego.
We would also like to thank Anita McKee and Natalie Powell, staff at UCSD, who
have worked to provide logistic support to the organizing committee.

Finally, we would also like to thank the members of the organizing committee
who have donated many hours of work towards the tasks which are required to put
on an event like this.

Sincerely, on behalf of the organizing committee,

Jeff Remmel Mike Zabrocki
University of California, San Diego York University
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FPSAC at 18

For Canadians, 18 is the age of majority and, more importantly, 18 is the age at
which one has the right to buy alcohol. Even though, this year’s conference is being
in the held in the USA (where the alcohol buying majority is at 21), we feel that we
can safely say that 2006 FPSAC Conference has reached maturity as this is its 18th
incarnation. This is certainly reflected in the depth and variety of subjects that are
going to be discussed at the 2006 FPSAC in San Diego.

The invited speakers, M. Bayer, F. Chung, J. Haglund, S.J. Kang, T. Koorn-
winder, N. Ray, B. Sagan and M. Wachs, represent expertise a great variety of well
established research areas, spanning important and interesting aspects of combina-
torics, algebra, and geometry, among others. It is also the case that an exceptionally
broad list of subjects are represented in the contributed papers and posters. These
contributions clearly reflect the richness and liveliness of our subject. We note that
many of the submissions are from young researchers which reflects well on the vital-
ity of algebraic combinatorics. It was a conscious ”bias” of the program committee
to give preference to submissions from young researchers in its selection process.

More then half of the contributed talks are by young researchers and this pro-
portion is even higher in the contributed posters. Despite this bias, the main criteria
used by the Program Committee to select papers for presentations or for posters
was the overall excellence of the contribution. Clear trends appear to emerge from
even a cursory study of the list of titles of all contributions.

Our combinatorial community is showing a marked interest in interactions be-
tween its subject and other areas of mathematics and physics. This is a clear
indication of a subject that has both maturity and scope. It also spells out the
need for continuing the FPSAC series, and we look forward to next year’s meeting
in Nankai University, Tianjin, China.

François Bergeron (chair) and Jeff Remmel (co-chair), for the Program Com-
mittee.
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Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique

San Diego, California 2006

Flag Vectors of Polytopes: An Overview

Margaret M. Bayer

A convex polytope is the convex hull of a finite set of points in R
d. A d-dimensional polytope has

faces of dimension 0 through d − 1; each face is itself a convex polytope. The faces (along with ∅ and P

itself), ordered by inclusion, form a lattice. This talk is concerned with a study of the face lattices of convex
polytopes.

Of historical importance is the problem of characterizing the face vectors of polytopes; these vectors give
the number of faces of each dimension. The characterization of face vectors of 3-dimensional polytopes was
done by Steinitz a century ago. For 4-dimensional polytopes the problem is still open. The biggest advance
since Steinitz was the characterization of face vectors of simplicial polytopes (where all faces are simplices)
by Stanley, and Billera and Lee in 1980.

The face vector is apparently not robust enough for attempts at characterization by combinatorial and
algebraic techniques. We turn instead to the flag vector of a polytope. For a d-dimensional polytope P , and
S = {s1, s2, . . . , sk} ⊆ {0, 1, . . . , d − 1}, fS(P ) is the number of chains of faces ∅ ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ P

with dimFi = si. The flag vector of P is the length 2d vector (fS(P ))S⊂{0,1,...,d−1}. In the cases of 3-
dimensional polytopes and simplicial polytopes the flag vector is determined linearly by the face vector; in
general it can be viewed as an extension of the face vector.

Richard Stanley (1979) studied flag vectors of Cohen-Macaulay posets, a class that contains face lattices
of convex polytopes. Bayer and Billera (1985) proved the generalized Dehn-Sommerville equations, the
complete set of linear equations satisfied by the flag vectors of all convex polytopes. Since then a wide
variety of approaches have been used in the study of flag vectors.

A crucial ingredient in the characterization of face vectors of simplicial polytopes is the connection with
toric varieties. In the nonsimplicial case, the middle perversity intersection homology of the toric variety
gives an h-vector, linearly dependent on the flag vector. Results from algebraic geometry translate into linear
inequalities on the flag vector (Stanley 1987). Another main source of linear inequalities is the cd-index of a
polytope, discovered by Jonathan Fine (1985). The cd-index is a vector linearly equivalent to the flag vector;
it can be viewed as a reduction of the flag vector by the generalized Dehn-Sommerville equations.

Rigidity theory, shellings, and co-algebras have been used to generate inequalities on flag vectors of
polytopes. The talk will survey results and highlight techniques. Some results pertain to special classes of
polytopes, such as cubical polytopes and zonotopes. Others hold for more general classes of combinatorial
objects, such as general graded posets, Eulerian posets, and Gorenstein∗ lattices.

We are still, apparently, far from a characterization of flag vectors of polytopes. In fact, we do not even
know if the closed convex cone of flag vectors is finitely generated. This is an area of active research. It has
exposed interesting connections with other areas of combinatorics, algebra and geometry.

Department of Mathematics, University of Kansas, 405 Snow Hall, 1460 Jayhawk Blvd, Lawrence, KS 66045-

7523
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Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique

San Diego, California 2006

The diameter and Laplacian of directed graphs

Fan Chung Graham

We consider Laplacians for directed graphs. The spectral gap of the Laplacian can be used to establish
an upper bound for the diameter of a directed graph. In addition, the Laplacian eigenvalues of a directed
graph capture various isoperimetric properties of the directed graph. For example, we will discuss several
versions of the Cheeger inequalities and derive bounds for mixing time for random walks on directed graphs
or non-reversible Markov chains.

As to related links, there are some relavant papers at my homepage: http://www.math.ucsd.edu/ fan

Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112
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Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique

San Diego, California 2006

Recent Combinatorial Results Involving Macdonald Polynomials and Diagonal

Harmonics

Jim Haglund

The theory of nonsymmetric Macdonald polynomials was developed by Cherednik, Macdonald and
Opdam. Like their symmetric counterparts, they have versions for arbitrary root systems, which satisfy an
orthogonality relation and a norm evaluation (generalizing Macdonald’s constant term conjecture), and which
feature in a generalization of Selberg’s integral. Their construction of these polynomials was existential, and
up to now no particularly nice expressions for them were known. In this talk we overview some of this
history, and then present an explicit combinatorial formula for the type A versions of these polynomials,
which is recent joint work with M. Haiman and N. Loehr. We then discuss connections of our formula to the
theory of symmetric functions and earlier conjectures involving the character of diagonal harmonics. Time
permitting, some recent results on diagonal harmonics will be highlighted.

Department of Mathematics, University of Pennsylvania, 209 South 33rd, St.David Rittenhouse Laboratory,

Philadelphia, PA 19104-6395
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Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique

San Diego, California 2006

Crystal bases for quantum generalized Kac-Moody algebras

Seok-Jin Kang

We develop the crystal basis theory for quantum generalized Kac-Moody algebras. We define the notion
of crystal bases for Uq(g)-modules in the category Oint and prove the standard properties of crystal bases
including the tensor product rule. We then prove that there exist crystal bases (and global bases) for V (λ)
(λ ∈ P

+) and U
−

q (g).
We also introduce the notion of abstract crystals for quantum generalized Kac-Moody algebras and study

their fundamental properties. Finally, we prove the crystal embedding theorem and give a characterization
of the crystals B(∞) and B(λ).

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
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Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique

San Diego, California 2006

Structure relation and raising/lowering operators for orthogonal polynomials

Tom H. Koornwinder

The structure relation for classical orthogonal polynomials (OP’s), is traditionally defined as a fixed
polynomial times the derivative of the n-th degree OP being equal to some explicit linear combination of
the OP’s of degree n-1, n and n+1, with coefficients depending on n. By substitution of the three-term
recurrence relation, the structure relation gives rise to a relation with a raising of lowering operator. A
variant of the structure relation can be obtained, for all OP’s in the Askey scheme and the q-Askey scheme,
by taking the commutator of the second order operator having the OP’s as eigenfunctions and the operator
of multiplication by x. The lecture will survey past approaches and results on structure relations etc. for
OP’s in the (q-)Askey scheme and for multivariable OP’s associated with root systems. The so-called string
equation also pops up here. Then some new results, in particular in the multivariable case will be presented.

Some references:

(1) W.A. Al-Salam and T.S. Chihara,
Another characterization of the classical orthogonal polynomials,
SIAM J. Math. Anal. 3 (1972), 65-70.

(2) A.S. Zhedanov, ”Hidden symmetry” of Askey-Wilson polynomials,
Theoret. and Math. Phys. 89 (1991), 1146-1157.

(3) T.H. Koornwinder, Lowering and raising operators for some special orthogonal polynomials,
arXiv:math.CA/0505378.

(4) T.H. Koornwinder The structure relation for Askey-Wilson polynomials,
arXiv:math.CA/0601303.

University of Amsterdam,Plantage Muidergracht 24 1018 TV Amsterdam The Netherlands
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Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique

San Diego, California 2006

Hopf algebroids: can combinatorialists help?

Nigel Ray

In this talk I shall attempt to explain certain algebraic concepts which seem ripe for combinatorial

modelling. I shall avoid technical details by focusing on the underlying ideas, and will concentrate on a few

basic examples that I hope convey the flavour of the challenge to those who may not be algebraic experts. I

shall certainly not presuppose any familiarity with algebraic topology!

The study of Hopf algebras was initiated by algebraic topologists in the 1930s, and has been permeating

other areas of mathematics and theoretical physics ever since. Thanks to the vision of Gian-Carlo Rota and

his associates, the theory entered combinatorics during the 1960s, and their viewpoint has now begun to

enjoy modest feedback into topology. During the 1970s, however, topologists had already discovered that

certain generalisations of Hopf algebras arise rather naturally in stable homotopy theory, and the resulting

structures came of age when their status as cogroupoid objects was properly understood.

I shall describe these ideas in terms of examples of two main types. First are those which are particularly

straightforward, and therefore illustrate the basic principles rather well to a general audience, and second

are those which are relevant to the study of formal power series, and have close ties with algebraic topology.

In some of these cases the structures in question are merely Hopf algebras; in others, the full power of

algebroids is required. It would be exciting for topologists if combinatorial models could be constructed

in these situations, and I shall outline a couple of situations where some success has been achieved in this

direction.

Topics I hope to mention include partitions of finite sets, composition of formal power series, and

groupoids as graphs.

School of Mathematics University of Manchester Oxford Road Manchester M13 9PL England
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Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique

San Diego, California 2006

The Incidence Algebra of a Composition Poset

Bruce E. Sagan

A composition is just a sequence w = k1k2 . . . kr of positive integers. A number of partial orders on the
set of all compositions have been studied recently. For example, Björner and Stanley have defined a poset
on compositions which has many of the properties of Young’s lattice for partitions. We consider a ordering
that was first defined by Bergeron, Bousquet-Mélou, and Dulucq: Given u = k1 . . . kr and w = l1 . . . ls then
we have u ≤ w if there is a subsequence li1 . . . lir

of w which is componentwise bigger than u, i.e.,

(1) kj ≤ lij
for 1 ≤ j ≤ r.

Call this poset C. It is interesting, in part, because it is related to the poset of all permutations ordered by
pattern containment.

In the first half of the talk, we will study the zeta function, ζ, of the incidence algebra I(C). This is
joint work with Anders Björner and full details can be found in the paper at

http://www.math.msu.edu/
˜
sagan/Papers/rmf.pdf

If w = k1 . . . kr satisfies
∑

i ki = N , then w is said to be a composition of N and we write |w| = N . Let
cN be the number of compositions of N . It is well known (and easy to prove) that

(2)
∑

N≥0

cNxN =
1 − x

1 − 2x

which is a rational function of x. Now given u ∈ C, consider the generating function

Z(u) =
∑

w≥u

x|w| =
∑

w∈C

ζ(u, w)x|w|.

So equation 2 is just Z(ε), where ε is the empty composition. We show that Z(u) is always a rational function
by using techniques from the theory of formal languages. We also investigate similar generating function for
powers of ζ. Surprisingly, to evaluate the sums, hypergeometric series identities are needed.

In the second half of the talk, we will study the Möbius function, µ = ζ−1, in I(C). This is joint work
with Vincent Vatter and full details can be found in the paper at

http://www.math.msu.edu/
˜
sagan/Papers/mfc.pdf

A set of indices I = {i1, . . . , ir} such that 1 holds is called an embedding of u into w. We show that
µ(u, w) gives a signed counting of certain embeddings of u into w. In fact, there are three proofs of this
result: one combinatorial via an involution, one topological using discrete Morse theory, and one using the
machinery discussed in the previous paragraph (this last being work with Björner). We will present the
topological proof, giving an introduction to discrete Morse theory in the process.

The results above have analogues in the work Björner, some of it with Reutenauer, on subword order.
We will show that both their results and ours are part of a more general framework. In particular, let P be
any poset and consider the Kleene closure of all words over P :

P ∗ = {w = k1k2 . . . kr : ki ∈ P for all i and r ≥ 0}.

Then 1 defines a partial order u ≤ w on elements of P ∗, where the inequalities kj ≤ lij
are taken in P . With

little extra effort, one can prove theorems about P ∗ which specialize to those about composition order or
about subword order by taking P to be a chain or an antichain, respectively.

8



Bruce E. Sagan

We will end with a list of intriguing conjectures and open questions concerning these ideas. As another
surprise, the Tchebyshev polynomials of the first kind enter into a conjectured formula for the Möbius
function of certain intervals of P ∗ for a particular 3-element poset, P .

Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027

9



Formal Power Series and Algebraic Combinatorics
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Poset topology and permutation statistics

Michelle Wachs

Various connections between permutation statistics and poset topology have been explored in the litera-

ture over the past three decades originating with the work of Stanley. In this talk I will present a connection,

recently discovered with John Shareshian. I will discuss how a study of the topology of a certain interesting

class of posets has led to results and conjectures on a new q-analog of the Eulerian polynomials. These

new q-Eulerian polynomials are the enumerators for the joint distribution of the excedance number and the

major index. One of our conjectures is a formula for their q-exponential generating function, which is a nice

q-analog of a well-known formula for the exponential generating function of the Eulerian polynomials. A

more general version of this conjecture involves an intriguing new class of quasisymmetric functions and a

representation of the symmetric group on the cohomology of the toric variety associated with the Coxeter

complex of the symmetric group, studied by Procesi, Stanley, and Stembridge.

Department of Mathematics, University of Miami, Coral Gables, FL 33124
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Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique

San Diego, California 2006

Flag arrangements and triangulations of products of simplices.

Federico Ardila and Sara Billey

Abstract. We investigate the line arrangement that results from intersecting d complete flags in Cn. We
give a combinatorial description of the matroid Tn,d that keeps track of the linear dependence relations
among these lines.

We prove that the bases of the matroid Tn,3 characterize the triangles with holes which can be tiled with
unit rhombi. More generally, we provide evidence for a conjectural connection between the matroid Tn,d,
the triangulations of the product of simplices ∆n−1 ×∆d−1, and the arrangements of d tropical hyperplanes
in tropical (n − 1)-space.

Our work provides a simple and effective criterion to ensure the vanishing of many Schubert structure
constants in the flag manifold, and a new perspective on Billey and Vakil’s method for computing the
non-vanishing ones.

Résumé. Nous étudions l’arrangement de droites qui résulte de l’intersection de d drapeaux complets dans
Cn. Nous donnons une description combinatoire du matroide Tn,d défini par les dépendances linéaires entre
ces droites.

Nous démontrons que les bases du matroide Tn,3 caractérisent les triangles sans trou qui peuvent être
pavés par des losanges unitaires. Plus généralement, nous étayons une relation conjecturale entre le matroide
Tn,d, les triangulations du produit de simplexes ∆n−1×∆d−1 et les arrangements de d hyperplans tropicaux
dans l’espace tropical de dimension n − 1.

Nos travaux produisent un critère simple et efficace pour déterminer quand de nombreuses constantes
de structure de Schubert sont nulles, et une nouvelle façon de voir la méthode de Billey et Vakil pour calculer
celles qui sont non-nulles..

1. Introduction.

Let E1
•
, . . . , Ed

•
be d generically chosen complete flags in Cn. Write

Ek
•

= {{0} = Ek
0 ⊂ Ek

1 ⊂ · · · ⊂ Ek
n = C

n},

where Ek
i is a vector space of dimension i. Consider the set En,d of one-dimensional intersections determined

by the flags; that is, all lines of the form E1
a1

∩ E2
a2

∩ · · · ∩ Ed
ad

.
The initial goal of this paper is to characterize the line arrangements Cn which arise in this way from

d generically chosen complete flags. We will then show an unexpected connection between these line ar-
rangements and an important and ubiquitous family of subdivisions of polytopes: the triangulations of the
product of simplices ∆n−1 × ∆d−1. These triangulations appear naturally in studying the geometry of the
product of all minors of a matrix [1], tropical geometry [4], and transportation problems [17]. To finish,
we will illustrate some of the consequences that the combinatorics of these line arrangements have on the
Schubert calculus of the flag variety.

The results of the paper are roughly divided into four parts as follows. First of all, Section 2 is devoted
to studying the line arrangement determined by the intersections of a generic arrangement of hyperplanes.
This will serve as a warmup before we investigate generic arrangements of complete flags, and the results we
obtain will be useful in that investigation.

2000 Mathematics Subject Classification. Primary 52C35; Secondary 05B35,14N15, 52C22.
Key words and phrases. flag variety, matroids, permutation arrays, tilings, triangulations, Schubert calculus.
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Federico Ardila and Sara Billey

The second part consists of Sections 3 and 4, where we will characterize the line arrangements that
arise as intersections of a “matroid-generic” arrangement of d flags in Cn. Section 3 is a short discussion
of the combinatorial setup that we will use to encode these geometric objects. In Section 4, we propose
a combinatorial definition of a matroid Tn,d, and show that it is the matroid of the line arrangement of
any d flags in Cn which are generic enough. Finally, we show that these line arrangements are completely
characterized combinatorially: any line arrangement in Cn whose matroid is Tn,d arises as an intersection of
d flags.

The third part establishes a surprising connection between these line arrangements and an important
class of subdivisions of polytopes. The bases of Tn,3 exactly describe the ways of punching n triangular holes
into the equilateral triangle of size n, so that the resulting holey triangle can be tiled with unit rhombi. A
consequence of this is a very explicit geometric representation of Tn,3. We show these results in Section 5. We
then pursue a higher-dimensional generalization of this result. In Section 6, we suggest that the fine mixed
subdivisions of the Minkowski sum n∆d−1 are an adequate (d−1)-dimensional generalization of the rhombus
tilings of holey triangles. We give a completely combinatorial description of these subdivisions. Finally, in
Section 7, we prove that each pure mixed subdivision of the Minkowski sum n∆d−1 (or equivalently, each
triangulation of the product of simplices ∆n−1 × ∆d−1) gives rise to a basis of Tn,d. We conjecture that
every basis of Tn,d arises in this way. In fact, we conjecture that every basis of Tn,d arises from a coherent
subdivision or, equivalently, from an arrangement of d tropical hyperplanes in tropical (n − 1)-space.

The fourth and last part of the paper, Section 8, presents some of the consequences of our work in the
Schubert calculus of the flag variety. We start by recalling Eriksson and Linusson’s permutation arrays,
and Billey and Vakil’s related method for explicitly intersecting Schubert varieties. In Section 8.1 we show
how the geometric representation of the matroid Tn,3 of Section 5 gives us a new perspective on Billey and
Vakil’s method for computing the structure constants cuvw of the cohomology ring of the flag variety. Finally,
Section 8.2 presents a simple and effective criterion for guaranteeing that many Schubert structure constants
are equal to zero.

2. The lines in a generic hyperplane arrangement.

Before thinking about flags, let us start by studying the slightly easier problem of understanding the
matroid of lines of a generic arrangement of m hyperplanes in Cn. We will start by presenting, in Proposition
2.1, a combinatorial definition of this matroid Hn,m. Theorem 2.2 then shows that this is, indeed, the right
matroid. As it turns out, this warmup exercise will play an important role in Section 4.

Throughout this section, we will consider an arrangement of m generically chosen hyperplanes H1, . . . , Hm

in Cn passing through the origin. For each subset A of [m], let

HA =
⋂

a∈A

Ha.

By genericity,

dimHA =

{

n − |A| if |A| ≤ n,
0 otherwise.

Therefore, the set Ln,m of one-dimensional intersections of the His consists of the
(

m
n−1

)

lines HA for |A| =
n − 1.

There are several “combinatorial” dependence relations among the lines in Ln,m, as follows. Each t-
dimensional intersection HB (where B is an (n − t)-subset of [m]) contains the lines HA with B ⊆ A.
Therefore, in an independent set HA1

, . . . , HAk
of Ln,m, we cannot have t + 1 Ais which contain a fixed

(n − t)-set B.
At first sight, it seems intuitively clear that, in a generic hyperplane arrangement, these will be the only

dependence relations among the lines in Ln,m. This is not as obvious as it may seem: let us illustrate a
situation in L4,5 which is surprisingly close to a counterexample to this statement. For simplicity, we will
draw the projective picture, and denote hyperplanes H1, . . . , H5 simply by 1, . . . , 5, and an intersection like
H124 simply by 124.

In Figure 1, we have started by drawing the triangles T and T ′ with vertices 124, 234, 134 and 125, 235, 135,
respectively. The three lines connecting the pairs (124, 125), (234, 235) and (134, 135), are the lines 12, 23,
and 13, respectively. They intersect at the point 123, so that the triangles T and T ′ are perspective with
respect to this point.
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234

134

235

125

123

245145

124

345

135

Figure 1. The Desargues configuration in L4,5.

Now, Desargues’ theorem applies, and it predicts an unexpected dependence relation. It tells us that the
three points of intersection of the corresponding sides of T and T ′ are collinear. The lines 14 (which connects
124 and 134) and 15 (which connects 125 and 135) intersect at the point 145. Similarly, 24 and 25 intersect
at 245, and 34 and 35 intersect at 345. Desargues’ theorem says that the points 145, 245, and 345 are
collinear. In principle, this new dependence relation does not seem to be one of our predicted “combinatorial
relations”. Somewhat surprisingly, it is: it simply states that these three points are on the line 45.

The previous discussion illustrates two points. First, it shows that Desargues’ theorem is really a
combinatorial statement about incidence structures, rather than a geometric statement about points on the
Euclidean plane. Second, and more important to us, it shows that even five generic hyperplanes in C4

give rise to interesting geometric configurations. It is not unreasonable to think that larger arrangements
Ln,m will contain other configurations, such as the Pappus configuration, which have nontrivial and honestly
geometric dependence relations that we may not have predicted.

Having told our readers what they might need to worry about, we now intend to convince them not to
worry about it.

First we show that the combinatorial dependence relations in Ln,m are consistent, in the sense that they
define a matroid.

Proposition 2.1. Let I consist of the collections I of subsets of [m], each containing n − 1 elements,
such that no t + 1 of the sets in I contain an (n − t)-set. In symbols,

I :=

{

I ⊆

(

[m]

n − 1

)

such that for all S ⊆ I,
∣

∣

⋂

A∈S

A
∣

∣ ≤ n − |S|

}

.

Then I is the collection of independent sets of a matroid Hn,m.

Proof. Omitted. �

Then we show that this matroid Hn,m is the one determined by the lines in a generic hyperplane
arrangement.

Theorem 2.2. If a central1 hyperplane arrangement A = {H1, . . . , Hm} in Cn is generic enough, then
the matroid of the

(

m
n−1

)

lines HA is isomorphic to Hn,m.

Proof. We already observed that the one-dimensional intersections of A satisfy all the dependence
relations of Hn,m. Now we wish to show that, if A is “generic enough”, these are the only relations.

It is enough to construct one “generic enough” hyperplane arrangement, and we do it as follows. Consider
the m coordinate hyperplanes in Cm, numbered J1, . . . , Jm. Pick a sufficiently generic n-dimensional subspace
V of Cm, and consider the ((n − 1)-dimensional) hyperplanes H1 = J1 ∩ V, . . . , Hm = Jm ∩ V in V . The
theory of Dilworth truncations of matroids precisely guarantees that V can be chosen in such a way that the
lines determined by the His satisfy no new relations. We omit the details. �

3. From lines in a flag arrangement to lattice points in a simplex.

Having understood the matroid of lines in a generic hyperplane arrangement, we proceed to study the
case of complete flags. In the following two sections, we will describe the matroid of lines of a generic
arrangement of d complete flags in Cn. We start, in this section, with a short discussion of the combinatorial

1A hyperplane arrangement is central if all its hyperplanes go through the origin.

14



Federico Ardila and Sara Billey

setup that we will use to encode these geometric objects. We then propose, in Section 4, a combinatorial
definition of the matroid Tn,d, and show that this is, indeed, the matroid we are looking for.

Let E1
•
, . . . , Ed

•
be d generically chosen complete flags in Cn. Write

Ek
•

= {{0} = Ek
0 ⊂ Ek

1 ⊂ · · · ⊂ Ek
n = C

n},

where Ek
i is a vector space of dimension i.

These d flags determine a line arrangement En,d in Cn as follows. Look at all the possible intersections
of the subspaces under consideration; they are of the form Ea1,...,ad

= E1
a1
∩E2

a2
∩· · ·∩Ed

ad
. We are interested

in the one-dimensional intersections. Since the Ek
•
s were chosen generically, Ea1,...,ad

has codimension (n −
a1) + . . . + (n − ad) (or n if this sum exceeds n). Therefore, the one-dimensional intersections are the lines

Ea1,...,ad
for a1 + · · ·+ ad = (d− 1)n + 1. There are

(

n+d−2
d−1

)

such lines, corresponding to the ways of writing
n − 1 as a sum of d nonnegative integers n − a1, . . . , n − ad.

Let Tn,d be the set of lattice points in the following (d − 1)-dimensional simplex in Rd:

{ (x1, . . . , xd) ∈ R
d | x1 + · · · + xd = n − 1 and xi ≥ 0 for all i}.

The d vertices of this simplex are (n − 1, 0, 0, . . . , 0), (0, n − 1, 0, . . . , 0), . . . , (0, 0, . . . , n − 1).
For example, Tn,3 is simply a triangular array of dots of size n; that is, with n dots on each side. We

will call Tn,d the (d − 1)-simplex of size n.
It will be convenient to identify the line Ea1,...,ad

(where a1 + · · ·+ad = (d−1)n+1 and 1 ≤ ai ≤ n) with
the vector of codimensions (n − a1, . . . , n − ad). This clearly gives us a one-to-one correspondence between
the set Tn,d and the lines in our line arrangement En,d.

We illustrate this correspondence for d = 3 and n = 4 in Figure 2. This picture is easier to visualize
in real projective 3-space. Now each one of the flags E•, F•, and G• is represented by a point in a line in a
plane. The lines in our line arrangement are now the 10 intersection points we see in the picture.

F

G

E 300

210 201

120 111 102

012 003030 021

144

414

432

441

342

243

333

423

324

234

Figure 2. The lines determined by three flags in C4, and the array T4,3.

We are interested in the dependence relations among the lines in the line arrangement En,d. As in the
case of hyperplane arrangements, there are several combinatorial relations which arise as follows. Consider a
k-dimensional subspace Eb1,...,bd

with b1+ · · ·+bd = (d−1)n+k. Every line of the form Ea1,...,ad
with ai ≤ bi

is in this subspace, so no k + 1 of them can be independent. The corresponding points (n − a1, . . . , n − ad)
are the lattice points inside a parallel translate of Tk,d, the simplex of size k, in Tn,d. In other words, in a
set of independent lines of our arrangement, we cannot have more than k lines whose corresponding dots are
in a simplex of size k in Tn,d.

For example, no four of the lines E144, E234, E243, E324, E333, and E342 are independent, because they
are in the 3-dimensional hyperplane E344. The dots corresponding to these six lines form the upper T3,3

found in our T4,3.
In principle, there could be other hidden dependence relations among the lines in En,d. The goal of

the next section is to show that this is not the case. In fact, these combinatorial relations are the only
dependence relations of the line arrangement associated to d generically chosen flags in Cn.

We will proceed as in the case of hyperplane arrangements. We will start by showing that the combi-
natorial relations do give rise to a matroid Tn,d. We will then show that this is, indeed, the matroid we are
looking for.
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4. The lines in a generic flag arrangement.

We first show that the combinatorial dependence relations defined in Section 3 do determine a matroid.

Theorem 4.1. Let In,d be the collection of subsets I of Tn,d such that every parallel translate of Tk,d

contains at most k points of I, for every k ≤ n.
Then In,d is the collection of independent sets of a matroid Tn,d on the ground set Tn,d.

Proof. Omitted. �

We now show that the matroid Tn,d of Section 4 is, indeed, the matroid that arises from intersecting d
flags in Cn which are generic enough.

Theorem 4.2. If d complete flags E1
•
, . . . , Ed

•
in Cn are generic enough, then the matroid of the

(

n+d−2
d−1

)

lines Ea1,...,ad
is isomorphic to Tn,d.

Proof. As mentioned in Section 3, the one-dimensional intersections of the Ei
•
s satisfy the following

combinatorial relations: each k dimensional subspace Eb1...bd
with b1 + · · ·+ bd = (d− 1)n + k, contains the

lines Ea1...ad
with ai ≤ bi; therefore, it is impossible for k +1 of these lines to be independent. The subspace

Eb1...bd
corresponds to the simplex of dots which is labelled Tn−b1,...,n−bd

, and has size n −
∑

(n − bi) = k.
The lines Ea1...ad

with ai ≤ bi correspond precisely the dots in this copy of Tk,d. So these “combinatorial
relations” are precisely the dependence relations of Tn,d.

Now we need to show that, if the flags are “generic enough”, these are the only linear relations among
these lines. It is enough to construct one set of flags which satisfies no other relations.

Consider a set H of d(n − 1) hyperplanes Hi
j in Cn (for 1 ≤ i ≤ d and 1 ≤ j ≤ n − 1) which are generic

in the sense of Theorem 2.2, so the only dependence relations among their one-dimensional intersections are
the combinatorial ones. Now, for i = 1, . . . , d, define the flag Ei

•
by:

Ei
n−1 = Hi

n−1

Ei
n−2 = Hi

n−1 ∩ Hi
n−2

...

Ei
1 = Hi

n−1 ∩ Hi
n−2 ∩ · · · ∩ Hi

1,

We show that these d flags are generic enough; in other words, the matroid of their one-dimensional inter-
sections is Tn,d. We omit the details. �

With Theorem 4.2 in mind, we will say that the complete flags E1
•
, . . . , Ed

•
in Cn are matroid-generic if

the matroid of the
(

n+d−2
d−1

)

lines Ea1,...,ad
is isomorphic to Tn,d.

We conclude this section by showing that the one-dimensional intersections of matroid-generic flag
arrangements are completely characterized by their combinatorial properties.

Proposition 4.3. If a line arrangement L in Cn has matroid Tn,d, then it can be realized as the
arrangement of one-dimensional intersections of d complete flags in Cn.

Proof. Omitted. �

5. Rhombus tilings of holey triangles and the matroid Tn,3.

Let us change the subject for a moment.
Let T (n) be an equilateral triangle with side length n. Suppose we wanted to tile T (n) using unit rhombi

with angles equal to 60◦ and 120◦. It is easy to see that this task is impossible, for the following reason.
Cut T (n) into n2 unit equilateral triangles; n(n + 1)/2 of these triangles point upward, and n(n − 1)/2 of
them point downward. Since a rhombus always covers one upward and one downward triangle, we cannot
use them to tile T (n).

Suppose, then, that we make n holes in the triangle T (n), by cutting out n of the upward triangles. Now
we have an equal number of upward and downward triangles, and it may or may not be possible to tile the
remaining shape with rhombi.

The main question we address in this section is the following:
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Question 5.1. Given n holes in T (n), is there a simple criterion to determine whether there exists a
rhombus tiling of the holey triangle that remains?

A rhombus tiling is equivalent to a perfect matching between the upward triangles and the downward
triangles. Hall’s theorem then gives us an answer to Question 5.1: It is necessary and sufficient that any k
downward triangles have a total of at least k upward triangles to match to.

However, the geometry of T (n) allows us to give a simpler criterion. Furthermore, in view of Theorem
4.1, this criterion reveals an unexpected connection between these rhombus tilings and the line arrangement
determined by 3 generically chosen flags in Cn.

Theorem 5.2. Let S be a set of n holes in T (n). The triangle T (n) with holes at S can be tiled with
rhombi if and only if every T (k) in T (n) contains at most k holes, for all k ≤ n.

Proof. Omitted. �

Corollary 5.3. The possible locations of n holes for which a rhombus tiling of the holey triangle T (n)
exists correspond to the bases of the matroid Tn,3.

Proof. This is just a restatement of Theorem 5.2. �

Corollary 5.3 allows us to say more about the structure of the matroid Tn,3. We first remind the reader
of the definition of an important family of matroids, called cotransversal matroids. For more information,
we refer the reader to [13].

Let G be a directed graph with vertex set V , and let A = {v1, . . . , vr} be a subset of V . We say that
an r-subset B of V can be linked to A if there exist r vertex-disjoint directed paths whose initial vertex is
in B and whose final vertex is in A. We will call these r paths a routing from B to A. The collection of
r-subsets which can be linked to A are the bases of a matroid denoted L(G, A). Such a matroid is called a
strict gammoid or a cotransversal matroid.

Theorem 5.4. The matroid Tn,3 is cotransversal.

e f

g

d

k

c

h

a b

i j l

2 431

Figure 3. The graph G4.

Proof. Let Gn be the directed graph whose set of vertices is the triangular array Tn,3, where each dot
not on the bottom row is connected to the two dots directly below it. Label the dots on the bottom row
1, 2, . . . , n. Figure 3 shows G4; all the edges of the graph point down.

There is a bijection between the rhombus tilings of the holey triangles of size n, and the routings (sets
of n non-intersecting paths) in the graph Gn which end at vertices 1, 2, . . . , n. This correspondence is best
understood in an example; see Figure 4. We leave it to the reader to check the details.

In this correspondence, the holes of the holey triangle correspond to the starting points of the n paths
in the graph. From Corollary 5.3, it follows that Tn,3 is the cotransversal matroid L(Gn, [n]). �

Theorem 5.5. Assign algebraically independent weights to the edges of Gn.2 For each dot D in the
triangular array Tn,3 and each 1 ≤ i ≤ n, let vD,i be the sum of the weights of all paths3 from dot D to dot
i on the bottom row.

Then the path vectors vD = (vD,1, . . . , vD,n) are a geometric representation of the matroid Tn,3.

2Integer weights which increase extremely quickly will also work.
3The weight of a path is defined to be the product of the weights of its edges.
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1 2 3 4

Figure 4. A tiling of a holey T (4) and the corresponding routing of G4.

For example, the top dot of T4,3 in Figure 3 would be assigned the path vector (acg, ach+adi+bei, adj+
bej + bfk, bf l) Similarly, focusing our attention on the top three rows, the representation we obtain for the
matroid T3,3 is given by the columns of the following matrix:





1 0 0 c 0 ac
0 1 0 d e ad + be
0 0 1 0 f bf





Proof of Theorem 5.5. This is a consequence of the Lindström-Gessel-Viennot lemma [7, 8, 10, 12];
we omit the details. �

The very simple and explicit representation of Tn,3 of Theorem 5.5 will be shown in Section 8 to have
an unexpected consequence in the Schubert calculus: it provides us with a reasonably efficient method for
computing Schubert structure constants in the flag variety.

6. Fine mixed subdivisions of n∆d−1 and triangulations of ∆n−1 × ∆d−1.

The surprising relationship between the geometry of three flags in Cn and the rhombus tilings of holey
triangles is useful to us in two ways: it explains the structure of the matroid Tn,3, and it clarifies the
conditions for a rhombus tiling of such a region to exist. We now investigate a similar connection between
the geometry of d flags in Cn, and certain well-studied (d − 1)-dimensional analogs of these tilings.

Instead of thinking of rhombus tilings of a holey triangle, it will be slightly more convenient to think of
them as lozenge tilings of the triangle: these are the tilings of the triangle using unit rhombi and upward
unit triangles. A good high-dimensional analogue of the lozenge tilings of the triangle n∆2 are the fine mixed
subdivisions of the simplex n∆d−1; we briefly recall their definition. Define a fine mixed cell of the simplex
∆d−1 to be a Minkowski sum B1 + · · ·+ Bn, where the Bis are faces of ∆d−1 which lie in independent affine
subspaces, and whose dimensions add up to d − 1. A fine mixed subdivision of n∆d−1 is a subdivision of
n∆d−1 into fine mixed cells[15, Theorem 2.6].

In the same way that we identified arrays of triangles with triangular arrays of dots in Section 5, we
can identify the array of possible locations of the simplices in n∆d−1 with the array of dots Tn,d defined in
Section 3. A conjectural generalization of Corollary 5.3, which we now state, would show that fine mixed
subdivisions of n∆d−1 are also closely connected to the matroid Tn,d.

Conjecture 6.1. The possible locations of the simplices in a fine mixed subdivision of n∆d−1 are
precisely the bases of the matroid Tn,d.

In the remainder of this section, we will give a completely combinatorial description of the fine mixed
subdivisions of n∆d−1. We will use this description to prove one direction of this conjecture in Section 7.

We start by recalling the one-to-one correspondence between the fine mixed subdivisions of n∆d−1 and
the triangulations of the polytope ∆n−1 ×∆d−1. This equivalent point of view has the drawback of bringing
us to a higher-dimensional picture. Its advantage is that it simplifies greatly the combinatorics of the tiles,
which are now just simplices.

Let v1, . . . , vn and w1, . . . , wd be the vertices of ∆n−1 and ∆d−1, so that the vertices of ∆n−1 × ∆d−1

are of the form vi × wj . A triangulation T of ∆n−1 × ∆d−1 is given by a collection of simplices. For each
simplex t in T , consider the fine mixed cell whose i-th summand is wawb . . . wc, where a, b, . . . , c are the
indexes j such that vi × wj is a vertex of t. These fine mixed cells constitute the fine mixed subdivision of
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n∆d−1 corresponding to T . (This bijection is only a special case of the more general Cayley trick, which is
discussed in detail in [15].)

For instance, Figure 5 shows a triangulation of the triangular prism ∆1 × ∆2 = 12 × ABC, and the
corresponding fine mixed subdivision of 2∆2, whose three tiles are ABC + B, AC + AB, and C + ABC.

B

2C

C

2B

1C

1A

2A

1B

A

Figure 5. The Cayley trick.

Consider the complete bipartite graph Kn,d whose vertices are v1, . . . , vn and w1, . . . , wd. Each vertex
of ∆n−1 × ∆d−1 corresponds to an edge of Kn,d. The vertices of each simplex in ∆n−1 × ∆d−1 determine a
subgraph of Kn,d. Each triangulation of ∆n−1 ×∆d−1 is then encoded by a collection of subgraphs of Kn,d.
Figure 6 shows the three trees that encode the triangulation of Figure 5.

2

A

2

1

C

B

C

B

1

C

B

A

2

A

1

Figure 6. The trees corresponding to the triangulation of Figure 5.

Our next result is a combinatorial characterization of the triangulations of ∆n−1 × ∆d−1.

Proposition 6.2. A collection of subgraphs t1, . . . , tk of Kn,d encodes a triangulation of ∆n−1 × ∆d−1

if and only if:

(1) Each ti is a spanning tree.
(2) For each ti and each internal4 edge e of ti, there exists an edge f and a tree tj with tj = ti − e∪ f .
(3) There do not exist two trees ti and tj, and a circuit C of Kn,d which alternates between edges of ti

and edges of tj.

Proof. Omitted. �

In light of Proposition 6.2, we will call a collection of spanning trees satisfying the above properties a
triangulation of ∆n−1 × ∆d−1.

7. Subdivisions of n∆d−1 and the matroid Tn,d.

Having given a combinatorial characterization of the triangulations of the polytope ∆n−1 × ∆d−1 in
Proposition 6.2, we are now in a position to prove the forward direction of Conjecture 6.1, which relates
these triangulations to the matroid Tn,d. The following combinatorial lemma will play an important role in
our proof.

Proposition 7.1. Let n, d, and a1, . . . , ad be non-negative integers such that a1 + · · · + ad ≤ n − 1.
Suppose we have a coloring of the n(n − 1) edges of the directed complete graph Kn with d colors, such that
each color defines a poset on [n]; in other words,

(a) the edges u → v and v → u have different colors, and
(b) if u → v and v → w have the same color, then u → w has that same color.

4An edge of a tree is internal if it is not a leaf.
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Call a vertex v outgoing if, for every i, there exist at least ai vertices w such that v → w has color i.
Then the number of outgoing vertices is at most n − a1 − · · · − ad.

Proof. Omitted. The intuition is the following. We have d poset structures on the set [n], and this
statement essentially says that we cannot have “too many” elements which are “very large” in all the
posets. �

We have now laid down the necessary groundwork to prove one direction of Conjecture 6.1.

Proposition 7.2. In any fine mixed subdivision of n∆d−1,

(a) there are exactly n tiles which are simplices, and
(b) the locations of the n simplices give a basis of the matroid Tn,d.

Proof of Proposition 7.2. Let us look back at the way we defined the correspondence between a
triangulation T of ∆n−1 × ∆d−1 and a fine mixed subdivision f(T ) of n∆d−1. It is clear that the simplices
f(t) of f(T ) arise from those simplices t of T whose vertices are vi × w1, . . . , vi × wd (for some i), and one
vj × wg(j) for each j 6= i. Furthermore, the location of f(t) in n∆d−1 is given by the sum of the wg(j)s.

3 4

vv 5vv v32 4

2

1

w w1 ww

Figure 7. A spanning tree of K5,4.

For instance the spanning tree of K5,4 shown in Figure 7 gives rise to a simplex in a fine mixed subdivision
of 5∆3 = 5w1w2w3w4 given by the Minkowski sum w1 + w1 + w3 + w1w2w3w4 + w2. The location of this
simplex in 5∆3 corresponds to the point (2, 1, 1, 0) of T5,4, because the Minkowski sum above contains two
w1 summands, one w2, and one w3.

The simplices of the fine mixed subdivision of n∆d−1 come from spanning trees t of Kn,d for which one
vertex vi has degree d and the other vjs have degree 1. The coordinates of the location of f(t) in n∆d−1 are
simply (degt w1 − 1, . . . , degt wd − 1). Call such a simplex, and the corresponding tree, i-pure. For instance,
in Figure 5, there is a 1-pure tree and a 2-pure tree, which give simplices in locations (0, 1, 0) and (0, 0, 1) of
2∆2, respectively.
Proof of (a). We prove that in a triangulation T of ∆n−1×∆d−1 there is exactly one i-pure simplex for each
i with 1 ≤ i ≤ n. The details are omitted.
Proof of (b). The idea is to construct a coloring of the directed complete graph Kn which economically
stores a description of the n pure trees, and invoke Proposition 7.1. Again, we omit the details. �

For the converse of Conjecture 6.1, we would need to show that every basis of Tn,d arises from a fine
mixed subdivision of n∆d−1. We conjecture a stronger result.

Conjecture 7.3. For any basis B of Tn,d, there is a coherent fine mixed subdivision of n∆d−1 whose
n simplices are located at B.

Given the correspondence between coherent fine mixed subdivisions of n∆d−1 and the combinatorial
types of arrangements of d generic tropical hyperplanes in tropical (n − 1)-space [4, 15], Conjecture 7.3 is
an invitation to study more closely those combinatorial types. This can naturally be thought of as the study
of tropical oriented matroids.

8. Applications to Schubert calculus.

In this section, we show some of the implications of our work in the Schubert calculus of the flag variety.
Throughout this section, we will assume some familiarity with the Schubert calculus, though we will recall
some of the definitions and conventions that we will use; for more information, see for example [6, 11]. We
will also need some of the results of Eriksson and Linusson [5] and Billey and Vakil [2] on Schubert varieties
and permutation arrays.

Eriksson and Linusson [5] introduced certain higher-dimensional analogs of permutation matrices, called
permutation arrays. A permutation array is an array of dots in the cells of a d-dimensional n × n × · · · × n
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box, satisfying some quite restrictive properties. From a permutation array P , via a simple combinatorial
rule, one can construct a rank array of integers, also of shape [n]d. We denote it rk P .

This definition is motivated by the observation that the relative position of d flags E1
•
, . . . , Ed

•
in F`n is

described by a unique permutation array P , via the equations

dim
(

E1
x1

∩ · · · ∩ Ed
xd

)

= rkP [x1, . . . , xd] for all 1 ≤ x1, . . . , xd ≤ n.

This result initiated the study of permutation array schemes, which generalize Schubert varieties in the flag
variety F`n.

The relative position of d generic flags is described by the transversal permutation array

{

(x1, . . . , xd) ∈ [n]d
∣

∣

d
∑

i=1

xi = (d − 1)n + 1
}

.

The dot at position (x1, . . . , xd) represents a one-dimensional intersection E1
x1

∩ · · · ∩ Ed
xd

. Naturally, we
identify the dots in the transversal permutation array with the corresponding element of the matroid Tn,d.

Given a fixed flag E• in Cn and a permutation w in Sn, denote the Schubert cell and Schubert variety
by

X◦

w(E•) = {F• |E• and F• have relative position w}

= {F• | dim(Ei ∩ Fj) = rkw[i, j] for all 1 ≤ i, j ≤ n.}, and

Xw(E•) = {F• | dim(Ei ∩ Fj) ≥ rkw[i, j] for all 1 ≤ i, j ≤ n.},

respectively.
A Schubert problem asks for the number of flags F• whose relative positions with respect to d given fixed

flags E1
•
, . . . , Ed

•
are given by the permutations w1, . . . , wd. This question only makes sense when

X = Xw1(E1
•
) ∩ · · · ∩ Xwd(Ed

•
)

is 0-dimensional; that is, when l(w1)+· · ·+l(wd) =
(

n
2

)

. If E1
•
, . . . , Ed

•
are sufficiently generic, the intersection

X has a fixed number of points cw1...wd which only depends on the permutations w1, . . . , wd.
This question is a fundamental one for several reasons. The numbers cw1...wd which answer this question

appear in several different contexts. For instance, the cycles [Xw] corresponding to the Schubert varieties
form a Z-basis for the cohomology ring of the flag variety F`n, and the numbers cuvw are the multiplicative
structure constants. (For this reason, if we know the answer to all Schubert problems with d = 3, we can
easily obtain them for higher d.) The analogous structure constants in the Grassmannian are the Littlewood-
Richardson coefficients, which are much better understood. For instance, even though the cuvws are known
to be positive integers, it is a long standing open problem to find a combinatorial interpretation of them.

Billey and Vakil [2] showed that the permutation arrays of Eriksson and Linusson can be used to explicitly
intersect Schubert varieties, and compute the numbers cw1...wd .

Theorem 8.1. (Billey-Vakil, [2]) Suppose that

X = Xw1(E1
•
) ∩ · · · ∩ Xwd(Ed

•
)

is a 0-dimensional and nonempty intersection, with E1
•
, . . . , Ed

•
generic.

(1) There exists a unique permutation array P ⊂ [n]d+1, easily constructed from w1, . . . , wd, such that

dim
(

E1
x1

∩ · · · ∩ Ed
xd

∩ Fxd+1

)

= rkP [x1, . . . , xd, xd+1],

for all F• ∈ X and all 1 ≤ x1, . . . , xd+1 ≤ n.
(2) Given the permutation array P , and a vector va1,...,ad

in each one-dimensional intersection Ea1,...,ad
=

E1
a1

∩ · · · ∩ Ed
ad

, we can write down an explicit set of polynomial equations defining X.

Theorem 8.1 highlights the importance of studying the line arrangements En,d determined by intersecting
d generic complete flags in Cn. In principle, if we are able to construct such a line arrangement, we can
compute the structure constants cuvw for any u, v, w ∈ Sn. (In practice, we still have to solve the system of
polynomial equations, which is not easy for large n.) Let us make two observations in this direction.
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8.1. Matroid genericity versus Schubert genericity. We have been talking about the line arrange-
ment En,d determined by a generic flag arrangement E1

•
, . . . , Ed

•
in Cn. We need to be careful, because we

have given two different meanings to the word generic.
In Sections 3 and 4, we have shown that, if E1

•
, . . . , Ed

•
are sufficiently generic, then the linear dependence

relations in the line arrangement En,d are described by a fixed matroid Tn,d. Let us say that the flags are
matroid-generic if this is the case.

Recall that in the Schubert problem described by permutations w1, . . . , wd with
∑

l(wi) =
(

n
2

)

, the
0-dimensional intersection

X = Xw1(E1
•
) ∩ · · · ∩ Xwd(Ed

•
)

contains a fixed number of points cw1...wd , provided that E1
•
, . . . , Ed

•
are sufficiently generic. Let us say that

the flags are Schubert-generic if they are sufficiently generic for any Schubert problem.
These notions depend only on the line arrangement En,d. The line arrangement En,d is matroid-generic

if its matroid is Tn,d, and it is Schubert-generic if the equations of Theorem 8.1 give the correct number of
solutions to every Schubert problem.

Our characterization of matroid-generic line arrangements (i.e., our description of the matroid Tn,d)
does not tell us how to construct a Schubert-generic line arrangement. However, when d = 3 (which is the
interesting case in the Schubert calculus),the cotransversality of the matroid Tn,3 allows us to present such
a line arrangement explicitly.

Proposition 8.2. The
(

n
2

)

path vectors of Theorem 5.5 are Schubert-generic.

Proof. Omitted. �

Proposition 8.2 shows that when we plug the path vectors into the polynomial equations of Theorem
8.1, and compute the intersection X , we will have |X | = cuvw. The advantage of this point of view is that
the equations are now written in terms of combinatorial objects, without any reference to an initial choice
of flags.

Problem 8.3. Interpret combinatorially the cuvw solutions of the above system of equations, thereby
obtaining a combinatorial interpretation for the structure constants cuvw.

8.2. A criterion for vanishing Schubert structure constants. Consider the Schubert problem

X = Xw1(E1
•
) ∩ · · · ∩ Xwd(Ed

•
).

Let P ∈ [n]d+1 be the permutation array which describes the dimensions dim(E1
x1

∩ · · · ∩ Ed
xd

∩ Fxd+1
) for

any flag F• ∈ X . Let P1, . . . , Pn be the n “floors” of P , corresponding to F1, . . . , Fn, respectively. Each one
of them is itself a permutation array of shape [n]d.

Billey and Vakil proposed a simple criterion which is very efficient in detecting that many Schubert
structure constants are equal to zero.

Proposition 8.4. (Billey-Vakil, [2]) If Pn is not the transversal permutation array, then X = ∅ and
cw1...wd = 0.

Knowing the structure of the matroid Tn,d, we can strengthen this criterion as follows.

Proposition 8.5. Suppose Pn is the transversal permutation array, and identify it with the set Tn,d. If,
for some k, the rank of Pk ∩ Pn in Tn,d is greater than k, then X = ∅ and cw1...wd = 0.

Proof. Each dot in Pn corresponds to a one-dimensional intersection of the form E1
x1

∩ · · · ∩ Ed
xd

.
Therefore, each dot in Pk ∩ Pn corresponds to a line that Fk is supposed to contain, if F• is a solution to
the Schubert problem. The rank of Pk ∩ Pn is the dimension of the subspace spanned by those lines; if F•

exists, that dimension must be at most k. �

Let us see how to apply Proposition 8.5 in an example. Following the algorithm of [2], the permutations
u = v = w = 213 in S3 give rise to the four-dimensional permutation array consisting of the dots (3, 3, 1, 1),
(1, 3, 3, 2), (3, 1, 3, 2), (3, 3, 1, 2), (1, 3, 3, 3), (2, 2, 3, 3), (2, 3, 2, 3), (3, 1, 3, 3), (3, 2, 2, 3), and (3, 3, 1, 3). We
follow [5, 18] in representing it as follows:
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1

3

3 1

3
3 2

3 2 1
The three boards shown represent the three-dimensional floors P1, P2, and P3 of P , form left to right.

In each one of them, a dot in cell (i, j, k) is represented in two dimensions by a number k in cell (i, j).
It takes some practice to interpret these tables; but once one is used to them, it is very easy to proceed.

Simply notice that P2 ∩ P3 is a set of rank 3 in the matroid T3,3, and we are done! We conclude that
c213,213,213 = 0. For n = 3, this is the only vanishing cuvw which is not explained by Proposition 8.4.

We remark that there are other methods for detecting the vanishing of Schubert structure constants,
due to Knutson, Lascoux and Schutzenberger, and Purbhoo. In comparing these methods for small values of
n, we have found Proposition 8.5 to be quicker and simpler, but less complete than some of these methods.

However, Proposition 8.5 is only the very first observation that we can make from our understanding
of the structure of Tn,d. Our argument can be easily fine-tuned to explain all vanishing Schubert structure
constants with n ≤ 5. A systematic way of doing this in general would be very desirable.
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Abstract. Let A be a commutative Noetherian ring, and let R = A[X] be the polynomial ring in an infinite
collection X of indeterminates over A. Let SX be the symmetric group of X. The group SX acts on R in
a natural way, and this in turn gives R the structure of a left module over the group ring R[SX ]. We prove
that all ideals of R invariant under the action of SX are finitely generated as R[SX ]-modules. The proof
involves introducing a certain partial order on monomials and showing that it is a well-quasi-ordering. We
also consider the concept of an invariant chain of ideals for finite-dimensional polynomial rings and relate it
to the finite generation result mentioned above. Finally, a motivating question from chemistry is presented,
with the above framework providing a suitable context in which to study it.

Résumé. Soit A un anneau Noetherien commutatif, et R = A[X] l’anneau des polynomes en une infinité
d’indéterminées X sur A. Soit SX le groupe symétrique de X. Le groupe SX agit sur R de manière naturelle,
ce qui donne à R la structure d’un module gauche sur l’anneau R[SX ]. Nous prouvons que tous les idéaux
de R invariants sous l’action de SX sont finitement engendrés comme R[SX ]-modules. La démonstration
utilise le fait qu’un certain ordre partiel sur les monomes est un quasi-ordre. Nous utilisons aussi le concept
de chaˆine invariante des idéaux pour les anneaux de polynômes de dimension finie, que nous relions au
résultat de génération finie mentionné plus haut. Finalement, nous présentons une motivation pour notre
travail issue de la chimie.

1. Introduction

A pervasive theme in invariant theory is that of finite generation. A fundamental example is a theorem
of Hilbert stating that the invariant subrings of finite-dimensional polynomial algebras over finite groups
are finitely generated [5, Corollary 1.5]. In this article, we study invariant ideals of infinite-dimensional
polynomial rings. Of course, when the number of indeterminates is finite, Hilbert’s basis theorem tells us
that any ideal (invariant or not) is finitely generated.

Our setup is as follows. Let X be an infinite collection of indeterminates, and let SX be the group of
permutations of X . Fix a commutative Noetherian ring A and let R = A[X ] be the polynomial ring in the
indeterminates X . The group SX acts naturally on R: if σ ∈ SX and f ∈ A[x1, . . . , xn] where xi ∈ X , then

σf(x1, x2, . . . , xn) = f(σx1, σx2, . . . , σxn) ∈ R.

This in turn gives R the structure of a left module over the (non-commutative) group ring R[SX ]. An ideal
I ⊆ R is called invariant under SX (or simply invariant) if

SXI := {σf : σ ∈ SX , f ∈ I} ⊆ I.

Notice that invariant ideals are simply the R[SX ]-submodules of R. We may now state our main result.
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Key words and phrases. Invariant ideal, well-quasi-ordering, symmetric group.
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Theorem 1.1. Every ideal of R = A[X ] invariant under SX is finitely generated as an R[SX ]-module.

(Stated more succinctly, R is a Noetherian R[SX ]-module.)

For the purposes of this work, we will use the following notation. Let B be a ring and let G be a subset
of a B-module M . Then 〈f : f ∈ G〉B will denote the B-submodule of M generated by elements of G.

Example 1.2. Suppose that X = {x1, x2, . . .}. The invariant ideal I = 〈x1, x2, . . .〉R is clearly not
finitely generated over R, however, it does have the compact representation I = 〈x1〉R[SX ].

The outline of this paper is as follows. In Section 2, we define a partial order on monomials and show
that it can be used to obtain a well-quasi-ordering of the monomials in R. Section 3 then goes on to detail our
proof of Theorem 1.1, using the main result of Section 2 in a fundamental way. In the penultimate section,
we discuss a relationship between invariant ideals of R and chains of increasing ideals in finite-dimensional
polynomial rings. The notions introduced there provide a suitable framework for studying a problem arising
from chemistry, the subject of the final section of this article.

2. The Symmetric Cancellation Ordering

We begin this section by briefly recalling some basic order-theoretic notions. We also discuss some
fundamental results due to Higman and Nash-Williams and some of their consequences. We define the
ordering mentioned in the section heading, and give a sufficient condition for it to be a well-quasi-ordering;
this is needed in the proof of Theorem 1.1.

2.1. Preliminaries. A quasi-ordering on a set S is a binary relation ≤ on S which is reflexive and
transitive. A quasi-ordered set is a pair (S,≤) consisting of a set S and a quasi-ordering ≤ on S. When there
is no confusion, we will omit ≤ from the notation, and simply call S a quasi-ordered set. If in addition the
relation ≤ is anti-symmetric (s ≤ t ∧ t ≤ s⇒ s = t, for all s, t ∈ S), then ≤ is called an ordering (sometimes
also called a partial ordering) on the set S. The trivial ordering on S is given by s ≤ t ⇐⇒ s = t for all
s, t ∈ S. A quasi-ordering ≤ on a set S induces an ordering on the set S/∼ = {s/∼ : s ∈ S} of equivalence
classes of the equivalence relation s ∼ t⇐⇒ s ≤ t ∧ t ≤ s on S. If s and t are elements of a quasi-ordered
set, we write as usual s ≤ t also as t ≥ s, and we write s < t if s ≤ t and t 6≤ s.

A map ϕ : S → T between quasi-ordered sets S and T is called increasing if s ≤ t ⇒ ϕ(s) ≤ ϕ(t) for
all s, t ∈ S, and strictly increasing if s < t ⇒ ϕ(s) < ϕ(t) for all s, t ∈ S. We also say that ϕ : S → T is a
quasi-embedding if ϕ(s) ≤ ϕ(t) ⇒ s ≤ t for all s, t ∈ S.

An antichain of S is a subset A ⊆ S such that s 6≤ t and t 6≤ s for all s 6∼ t in A. A final segment of
a quasi-ordered set (S,≤) is a subset F ⊆ S which is closed upwards: s ≤ t ∧ s ∈ F ⇒ t ∈ F , for all
s, t ∈ S. We can view the set F(S) of final segments of S as an ordered set, with the ordering given by
reverse inclusion. Given a subset M of S, the set

{
t ∈ S : ∃s ∈ M with s ≤ t

}
is a final segment of S, the

final segment generated by M . An initial segment of S is a subset of S whose complement is a final segment.
An initial segment I of S is proper if I 6= S. For a ∈ S we denote by S≤a the initial segment consisting of
all s ∈ S with s ≤ a.

A quasi-ordered set S is said to be well-founded if there is no infinite strictly decreasing sequence
s1 > s2 > · · · in S, and well-quasi-ordered if in addition every antichain of S is finite. The following
characterization of well-quasi-orderings is classical (see, for example, [8]). An infinite sequence s1, s2, . . . in
S is called good if si ≤ sj for some indices i < j, and bad otherwise.

Proposition 2.1. The following are equivalent, for a quasi-ordered set S:

(1) S is well-quasi-ordered.

(2) Every infinite sequence in S is good.

(3) Every infinite sequence in S contains an infinite increasing subsequence.

(4) Any final segment of S is finitely generated.

(5)
(
F(S),⊇

)
is well-founded (i.e., the ascending chain condition holds for final segments of S). �

Let (S,≤S) and (T,≤T ) be quasi-ordered sets. If there exists an increasing surjection S → T and S
is well-quasi-ordered, then T is well-quasi-ordered, and if there exists a quasi-embedding S → T and T is
well-quasi-ordered, then so is S. Moreover, the cartesian product S × T can be turned into a quasi-orderd
set by using the cartesian product of ≤S and ≤T :

(s, t) ≤ (s′, t′) :⇐⇒ s ≤S s
′ ∧ t ≤T t′, for s, s′ ∈ S, t, t′ ∈ T .
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Using Proposition 2.1 we see that the cartesian product of two well-quasi-ordered sets is again well-quasi-
ordered.

Of course, a total ordering ≤ is well-quasi-ordered if and only if it is well-founded; in this case ≤ is called
a well-ordering. Every well-ordered set is isomorphic to a unique ordinal number, called its order type. The
order type of N = {0, 1, 2, . . .} with its usual ordering is ω.

2.2. A lemma of Higman. Given a set X , we let X∗ denote the set of all finite sequences of elements
of X (including the empty sequence). We may think of the elements of X∗ as non-commutative words

x1 · · ·xm with letters x1, . . . , xm coming from the alphabet X . With the concatenation of such words as
operation, X∗ is the free monoid generated by X . A quasi-ordering ≤ on X yields a quasi-ordering ≤H (the
Higman quasi-ordering) on X∗ as follows:

x1 · · ·xm ≤H y1 · · · yn :⇐⇒






there exists a strictly increasing function
ϕ : {1, . . . ,m} → {1, . . . , n} such that
xi ≤ yϕ(i) for all 1 ≤ i ≤ m.

If ≤ is an ordering on X , then ≤H is an ordering on X∗. The following fact was shown by Higman [6] (with
an ingenious proof due to Nash-Williams [12]):

Lemma 2.2. If ≤ is a well-quasi-ordering on X, then ≤H is a well-quasi-ordering on X∗. �

It follows that if ≤ is a well-quasi-ordering on X , then the quasi-ordering ≤∗ on X∗ defined by

x1 · · ·xm ≤∗ y1 · · · yn :⇐⇒






there exists an injective function
ϕ : {1, . . . ,m} → {1, . . . , n} such
that xi ≤ yϕ(i) for all 1 ≤ i ≤ m

is also a well-quasi-ordering. (Since ≤∗ extends ≤H.)
We also let X� be the set of commutative words in the alphabet X , that is, the free commutative

monoid generated by X (with identity element denoted by 1). We sometimes also refer to the elements of
X� as monomials (in the set of indeterminates X). We have a natural surjective monoid homomorphism
π : X∗ → X� given by simply “making the indeterminates commute” (i.e., interpreting a non-commutative
word from X∗ as a commutative word in X�). Unlike ≤H, the quasi-ordering ≤∗ is compatible with π in
the sense that v ≤∗ w ⇒ v′ ≤∗ w′ for all v, v′, w, w′ ∈ X∗ with π(v) = π(v′) and π(w) = π(w′). Hence
π(v) ≤� π(w) :⇐⇒ v ≤∗ w defines a quasi-ordering ≤� on X� = π(X∗) making π an increasing map. The
quasi-ordering ≤� extends the divisibility relation in the monoid X�:

v|w :⇐⇒ uv = w for some u ∈ X�.

If we take for ≤ the trivial ordering on X , then ≤� corresponds exactly to divisibility in X�, and this
ordering is a well-quasi-ordering if and only if X is finite. In general we have, as an immediate consequence
of Higman’s lemma (since π is a surjection):

Corollary 2.3. If ≤ is a well-quasi-ordering on the set X, then ≤� is a well-quasi-ordering on X�. �

2.3. A theorem of Nash-Williams. Given a totally ordered set S and a quasi-ordered set X , we
denote by Fin(S,X) the set of all functions f : I → X , where I is a proper initial segment of S, whose range
f(I) is finite. We define a quasi-ordering ≤H on Fin(S,X) as follows: for f : I → X and g : J → X from
Fin(S,X) put

f ≤H g :⇐⇒

{
there exists a strictly increasing function ϕ : I → J
such that f(i) ≤ g(ϕ(i)) for all i ∈ I.

We may think of an element of Fin(S,X) as a sequence of elements of X indexed by indices in some proper
intial segment of S. So for S = N with its usual ordering, we can identify elements of Fin(N, X) with words
in X∗, and then ≤H for Fin(N, X) agrees with ≤H on X∗ as defined above. We will have occasion to use a
far-reaching generalization of Lemma 2.2:

Theorem 2.4. If X is well-quasi-ordered and S is well-ordered, then Fin(S,X) is well-quasi-ordered. �

This theorem was proved by Nash-Williams [13]; special cases were shown earlier in [4, 11, 14].
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2.4. Term orderings. A term ordering of X� is a well-ordering ≤ of X� such that

(1) 1 ≤ x for all x ∈ X , and
(2) v ≤ w ⇒ xv ≤ xw for all v, w ∈ X� and x ∈ X .

Every ordering ≤ of X� satisfying (1) and (2) extends the ordering ≤� obtained from the restriction of ≤ to
X . In particular, ≤ extends the divisibility ordering on X�. By the corollary above, a total ordering ≤ of
X� which satisfies (1) and (2) is a term ordering if and only if its restriction to X is a well-ordering.

Example 2.5. Let ≤ be a total ordering of X . We define the induced lexicographic ordering ≤lex of
monomials as follows: given v, w ∈ X� we can write v = xa1

1 · · ·xan
n and w = xb1

1 · · ·xbn
n with x1 < · · · < xn

in X and all ai, bi ∈ N; then

v ≤lex w :⇐⇒ (an, . . . , a1) ≤ (bn, . . . , b1) lexicographically (from the left).

The ordering ≤lex is total and satisfies (1), (2); hence if the ordering ≤ of X is a well-ordering, then ≤lex is
a term ordering of X�.

Remark 2.6. Let ≤ be a total ordering of X . For w ∈ X�, w 6= 1, we let

|w| := max {x ∈ X : x|w} (with respect to ≤).

We also put |1| := −∞ where we set −∞ < x for all x ∈ X . One of the perks of using the lexicographic
ordering as a term ordering on X� is that if v and w are monomials with v ≤lex w, then |v| ≤ |w|. Below,
we often use this observation.

The previous example shows that for every set X there exists a term ordering of X�, since every set can
be well-ordered by the Axiom of Choice. In fact, every set X can be equipped with a well-ordering every
proper initial segment of which has strictly smaller cardinality than X ; in other words, the order type of this
ordering (a certain ordinal number) is a cardinal number. We shall call such an ordering of X a cardinal

well-ordering of X .

Lemma 2.7. Let X be a set equipped with a cardinal well-ordering, and let I be a proper initial segment

of X. Then every injective function I → X can be extended to a permutation of X.

Proof. Since this is clear if X is finite, suppose that X is infinite. Let ϕ : I → X be injective. Since
I has cardinality |I| < |X | and X is infinite, we have |X | = max {|X \ I|, |I|} = |X \ I|. Similarly, since
|ϕ(I)| = |I| < |X |, we also have |X \ ϕ(I)| = |X |. Hence there exists a bijection ψ : X \ I → X \ ϕ(I).
Combining ϕ and ψ yields a permutation of X as desired. �

2.5. A new ordering of monomials. Let G be a permutation group on a set X , that is, a group G
together with a faithful action (σ, x) 7→ σx : G ×X → X of G on X . The action of G on X extends in a
natural way to a faithful action of G on X�: σw = σx1 · · ·σxn for σ ∈ G, w = x1 · · ·xn ∈ X�. Given a term
ordering ≤ of X�, we define a new relation on X� as follows:

Definition 2.8. (The symmetric cancellation ordering corresponding to G and ≤.)

v � w :⇐⇒

{
v ≤ w and there exist σ ∈ G and a monomial
u ∈ X� such that w = uσv and for all v′ ≤ v,
we have uσv′ ≤ w.

Remark 2.9. Every term ordering ≤ is linear : v ≤ w ⇐⇒ uv ≤ uw for all monomials u, v, w. Hence
the condition above may be rewritten as: v ≤ w and there exists σ ∈ G such that σv|w and σv′ ≤ σv for all
v′ ≤ v. (We say that “σ witnesses v � w.”)

Example 2.10. Let X = {x1, x2, . . .} be a countably infinite set of indeterminates, ordered such that
x1 < x2 < · · · , and let ≤ = ≤lex be the corresponding lexicographic ordering of X�. Let also G be the group
of permutations of {1, 2, 3, . . .}, acting on X via σxi = xσ(i). As an example of the relation �, consider the
following chain:

x2
1 � x1x

2
2 � x3

1x2x
2
3.

To verify the first inequality, notice that x1x
2
2 = x1σ(x2

1), in which σ is the transposition (1 2). If v′ =
xa1

1 · · ·xan
n ≤ x2

1 with a1, . . . , an ∈ N, an > 0, then it follows that n = 1 and a1 ≤ 2. In particular,
x1σv

′ = x1x
a1
2 ≤ x1x

2
2. For the second relationship, we have that x3

1x2x
2
3 = x3

1τ(x1x
2
2), in which τ is the

cycle (1 2 3). Additionally, if v′ = xa1
1 · · ·xan

n ≤ x1x
2
2 with a1, . . . , an ∈ N, an > 0, then n ≤ 2, and if n = 2,

then either a2 = 1 or a2 = 2, a1 ≤ 1. In each case we get x3
1τv

′ = x3
1x

a1
2 x

a2
3 ≤ x3

1x2x
2
3.
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Although Definition 2.8 appears technical, we will soon present a nice interpretation of it that involves
leading term cancellation of polynomials. First we verify that it is indeed an ordering.

Lemma 2.11. The relation � is an ordering on monomials.

Proof. First notice that w � w since we may take u = 1 and σ = the identity permutation. Next,
suppose that u � v � w. Then there exist permutations σ, τ in G and monomials u1, u2 in X� such that
v = u1σu, w = u2τv. In particular, w = u2(τu1)(τσu). Additionally, if v′ ≤ u, then u1σv

′ ≤ v, so that
u2τ(u1σv

′) ≤ w. It follows that u2(τu1)(τσv
′) ≤ w. This shows transitivity; anti-symmetry of � follows

from anti-symmetry of ≤. �

We offer a useful interpretation of this ordering (which motivates its name). We fix a commutative ring
A and let R = A[X ] be the ring of polynomials with coefficients from A in the collection of commuting
indeterminates X . Its elements may be written uniquely in the form

f =
∑

w∈X�

aww

where aw ∈ A for all w ∈ X�, and all but finitely many aw are zero. We say that a monomial w occurs in f
if aw 6= 0. Given a non-zero f ∈ R we define lm(f), the leading monomial of f (with respect to our choice
of term ordering ≤) to be the largest monomial w (with respect to ≤) which occurs in f . If w = lm(f), then
aw is the leading coefficient of f , denoted by lc(f), and aww is the leading term of f , denoted by lt(f). By
convention, we set lm(0) = lc(0) = lt(0) = 0. We let R[G] be the group ring of G over R (with multiplication
given by fσ · gτ = fg(στ) for f, g ∈ R, σ, τ ∈ G), and we view R as a left R[G]-module in the natural way.

Lemma 2.12. Let f ∈ R, f 6= 0, and u,w ∈ X�. Suppose that σ ∈ G witnesses lm(f) � w, and let

u ∈ X� with uσ lm(f) = w. Then lm(uσf) = uσ lm(f).

Proof. Put v = lm(f). Every monomial occurring in uσf has the form uσv′, where v′ occurs in f .
Hence v′ ≤ v, and since σ witnesses v � w, this yields uσv′ ≤ w. �

Suppose that A is a field, let v � w be in X� and let f , g be two polynomials in R with leading
monomials v, w, respectively. Then, from the definition and the lemma above, there exists a σ ∈ G and a
term cu (c ∈ A \ {0}, u ∈ X�) such that all monomials occurring in

h = g − cuσf

are strictly smaller (with respect to ≤) than w. For readers familiar with the theory of Gröbner bases,
the polynomial h can be viewed as a kind of symmetric version of the S-polynomial (see, for instance, [5,
Chapter 15]).

Example 2.13. In the situation of Example 2.10 above, let f = x1x
2
2+x2+x2

1 and g = x3
1x2x

2
3+x

2
3+x

4
1x3.

Set σ = (1 2 3), and observe that

g − x3
1σf = x4

1x3 + x2
3 − x3

1x3 − x3
1x

2
2

has a smaller leading monomial than g.

We are mostly interested in the case where our term ordering on X� is ≤lex, and G = SX . Under these
assumptions we have:

Lemma 2.14. Let v, w ∈ X� with v � w. Then for every σ ∈ SX witnessing v � w we have σ(X≤|v|) ⊆
X≤|w|. Moreover, if the order type of (X,≤) is ≤ ω, then we can choose such σ with the additional property

that σ(x) = x for all x > |w|.

Proof. To see the first claim, suppose for a contradiction that σx > |w| for some x ∈ X , x ≤ |v|. We
have σv|w, so if x|v, then σx|w, contradicting σx > |w|. In particular x < |v|, which yields x <lex v and
thus σx ≤lex σv ≤lex w, again contradicting σx > |w|. Now suppose that the order type of X is ≤ ω, and let
σ witness v � w. Then |v| ≤ |w|, and σX≤|v| can be extended to a permutation σ′ of the finite set X≤|w|.
We further extend σ′ to a permutation of X by setting σ′(x) = x for all x > |w|. One checks easily that σ′

still witnesses v � w. �
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2.6. Lovely orderings. We say that a term ordering ≤ of X� is lovely for G if the corresponding
symmetric cancellation ordering � on X� is a well-quasi-ordering. If ≤ is lovely for a subgroup of G, then
≤ is lovely for G.

Example 2.15. The symmetric cancellation ordering corresponding to G = {1} and a given term
ordering ≤ of X� is just

v � w ⇐⇒ v ≤ w ∧ v|w.

Hence a term ordering of X� is lovely for G = {1} if and only if divisibility in X� has no infinite antichains;
that is, exactly if X is finite.

This terminology is inspired by the following definition from [3] (which in turn goes back to an idea in
[2]):

Definition 2.16. Given an ordering ≤ of X , consider the following ordering of X :

x v y :⇐⇒

{
x ≤ y and there exists σ ∈ G such that σx = y
and for all x′ ≤ x, we have σx′ ≤ y.

A well-ordering ≤ of X is called nice (for G) if v is a well-quasi-ordering.

In [2] one finds various examples of nice orderings, and in [3] it is shown that if X admits a nice ordering
with respect to G, then for every field F , the free F -module FX with basis X is Noetherian as a module
over F [G]. It is clear that the restriction to X of a lovely ordering of X� is nice. However, there do exist
permutation groups (G,X) for which X admits a nice ordering, but X� does not admit a lovely ordering;
see Example 3.4 and Proposition 5.2 below.

Example 2.17. Suppose that X is countable. Then every well-ordering of X of order type ω is nice for
SX . To see this, we may assume that X = N with its usual ordering. It is then easy to see that if x ≤ y in
N, then x v y, witnessed by any extension σ of the strictly increasing map n 7→ n + y − x : N≤x → N to a
permutation of N.

The following crucial fact (generalizing the last example) is needed for our proof of Theorem 1.1:

Theorem 2.18. The lexicographic ordering of X� corresponding to a cardinal well-ordering of a set X
is lovely for the full symmetric group SX of X.

For the proof, let as above Fin(X,N) be the set of all sequences in N indexed by elements in some
proper initial segment of X which have finite range, quasi-ordered by ≤H. For a monomial w 6= 1 we define
w∗ : X≤|w| → N by

w∗(x) := max {a ∈ N : xa|w}.

Then clearly w∗ ∈ Fin(X,N), in fact, w∗(x) = 0 for all but finitely many x ∈ X≤|w|. We also let 1∗ := the
empty sequence ∅ → N (the unique smallest element of Fin(X,N)). We now quasi-order X� × Fin(X,N) by
the cartesian product of the ordering ≤lex on X� and the quasi-ordering ≤H on Fin(X,N). By Corollary 2.3,
Theorem 2.4, and the remark following Proposition 2.1, X� ×Fin(X,N) is well-quasi-ordered. Therefore, in
order to finish the proof of Theorem 2.18, it suffices to show:

Lemma 2.19. The map

w 7→ (w,w∗) : X� → X� × Fin(X,N)

is a quasi-embedding with respect to the symmetric cancellation ordering on X� and the quasi-ordering on

X� × Fin(X,N).

Proof. Suppose that v, w are monomials with v ≤lex w and v∗ ≤H w∗; we need to show that v � w.
For this we may assume that v, w 6= 1. So there exists a strictly increasing function ϕ : X≤|v| → X≤|w| such
that

(2.1) v∗(x) ≤ w∗(ϕ(x)) for all x ∈ X with x ≤ |v|.

By Lemma 2.7 there exists σ ∈ SX such that σX≤|v| = ϕX≤|v|. Then clearly σv|w by (2.1). Now let
v′ ≤lex v; we claim that σv′ ≤lex σv. Again we may assume v′ 6= 1. Then |v′| ≤ |v|, hence we may write

v′ = xa1
1 · · ·xan

n , v = xb1
1 · · ·xbn

n
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with x1 < · · · < xn ≤ |v| in X and ai, bj ∈ N. Put y1 := ϕ(x1), . . . , yn := ϕ(xn). Then y1 < · · · < yn and

σv′ = ya1
1 · · · yan

n , σv = yb1
1 · · · ybn

n ,

and therefore σv′ ≤lex σv as required. �

2.7. The case of countable X. In Section 4 we will apply Theorem 2.18 in the case where X is
countable. Then the order type of X is at most ω, and in the proof of the theorem given above we only
need to appeal to a special instance (Higman’s Lemma) of Theorem 2.4. We finish this section by giving a
self-contained proof of this important special case of Theorem 2.18, avoiding Theorem 2.4. Let S(X) denote
the subgroup of SX consisting of all σ ∈ SX with the property that σ(x) = x for all but finitely many
letters x ∈ X .

Theorem 2.20. The lexicographic ordering of X� corresponding to a cardinal well-ordering of a countable

set X is lovely for S(X).

Let X be countable and let ≤ be a cardinal well-ordering of X . Enumerate the elements of X as
x1 < x2 < · · · . We assume that X is infinite; this is not a restriction, since by Lemma 2.14 we have:

Lemma 2.21. If the lexicographic ordering of X� is lovely for S(X), then for any n and Xn := {x1, . . . , xn},
the lexicographic ordering of (Xn)� is lovely for SXn

. �

We begin with some preliminary lemmas. Here, � is the symmetric cancellation ordering corresponding
to S(X) and ≤lex. We identifty S(X) and S∞ := S(N) in the natural way, and for every n we regard Sn, the
group of permutations of {1, 2, . . . , n}, as a subgroup of S∞; then Sn ≤ Sn+1 for each n, and S∞ =

⋃
n Sn.

Lemma 2.22. Suppose that xa1
1 · · ·xan

n � xb1
1 · · ·xbn

n where ai, bj ∈ N, bn > 0. Then for any c ∈ N we

have xa1
1 · · ·xan

n � xc
1x

b1
2 · · ·xbn

n+1.

Proof. Let v := xa1
1 · · ·xan

n , w := xb1
1 · · ·xbn

n . We may assume v 6= 1. Clearly v ≤lex w and bn > 0

yield xa1
1 · · ·xan

n ≤lex x
c
1x

b1
2 · · ·xbn

n+1. Let now σ ∈ S∞ witness v � w. Let τ be the cyclic permutation τ =

(1 2 3 · · · (n+ 1)) and set σ̂ := τσ. Then σv|w yields σ̂v|τw, hence σ̂v|xc
1τw = xc

1x
b1
2 · · ·xbn

n+1. Next, suppose
that v′ ≤lex v; then σv′ ≤lex σv. By Lemma 2.14 and the nature of τ , the map τσ({1, . . . , |v|}) is strictly

increasing, which gives σ̂v′ = τσv′ ≤lex τσv = σ̂v. Hence σ̂ witnesses xa1
1 · · ·xan

n � xc
1x

b1
2 · · ·xbn

n+1. �

Lemma 2.23. If xa1
1 · · ·xan

n � xb1
1 · · ·xbn

n , where ai, bj ∈ N, bn > 0, and a, b ∈ N are such that a ≤ b,

then xa
1x

a1
2 · · ·xan

n+1 � xb
1x

b1
2 · · ·x

bn+1

n+1 .

Proof. As before let v := xa1

1 · · ·xan
n , w := xb1

1 · · ·xbn
n . Once again, we may assume v 6= 1, and it is

clear that xa
1x

a1
2 · · ·xan

n+1 ≤lex x
b
1x

b1
2 · · ·x

bn+1

n+1 . Let σ ∈ S∞ witness v � w. By Lemma 2.14 we may assume

that σ(xi) = xi for all i > n. Let τ be the cyclic permutation τ = (1 2 · · · (n + 1)). Setting σ̂ = τστ−1, we
have σ̂x1 = x1, hence

(2.2) σ̂(xa
1x

a1
2 · · ·xan

n+1) = σ̂(xa
1)σ̂(xa1

2 · · ·xan

n+1) = xa
1τσv.

Since σv|w, this last expression divides xb
1τw = xb

1x
b1
2 · · ·xbn

n+1. Suppose that v′ = xc1
1 · · ·x

cn+1

n+1 ≤lex

xa
1x

a1
2 · · ·xan

n+1, where ci ∈ N. Then, since we are using a lexicographic order, we have

xc2
2 · · ·x

cn+1

n+1 ≤lex x
a1
2 · · ·xan

n+1

and therefore

τ−1(xc2
2 · · ·x

cn+1

n+1 ) = xc2
1 · · ·xcn+1

n ≤lex τ
−1(xa1

2 · · ·xan

n+1) = v.

By assumption, this implies that στ−1(xc2
2 · · ·x

cn+1

n+1 ) ≤lex σv and thus by (2.2)

σ̂(xc2
2 · · ·x

cn+1

n+1 ) ≤lex τσv = σ̂(xa1
2 · · ·xan

n+1).

If this inequality is strict, then since 1 /∈ σ̂
(
{2, . . . , n+ 1}

)
, clearly

σ̂v′ = xc1
1 σ̂(xc2

2 · · ·x
cn+1

n+1 ) <lex x
a
1τσv = σ̂(xa

1x
a1
2 · · ·xan

n+1).

Otherwise xc2
2 · · ·x

cn+1

n+1 = xa1
2 · · ·xan

n+1, hence c1 ≤ a, in which case we still have σ̂v′ ≤lex σ̂(xa
1x

a1
2 · · ·xan

n+1).

Therefore σ̂ witnesses xa
1x

a1
2 · · ·xan

n+1 � xb
1x

b1
2 · · ·x

bn+1

n+1 . This completes the proof. �
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We now have enough to show Theorem 2.20. The proof uses the basic idea from Nash-Williams’ proof
[13] of Higman’s lemma. Assume for the sake of contradiction that there exists a bad sequence

w(1), w(2), . . . , w(n), . . . in X�.

For w ∈ X� \ {1} let j(w) be the index j ≥ 1 with |w| = xj , and put j(1) := 0. We may assume that

the bad sequence is chosen in such a way that for every n, j(w(n)) is minimal among the j(w), where w
ranges over all elements of X� with the property that w(1), w(2), . . . , w(n−1), w can be continued to a bad
sequence in X�. Because 1 ≤lex w for all w ∈ X�, we have j(w(n)) > 0 for all n. For every n > 0, write

w(n) = xa(n)

1 v(n) with a(n) ∈ N and v(n) ∈ X� not divisible by x1. Since N is well-ordered, there is an infinite
sequence 1 ≤ i1 < i2 < · · · of indices such that a(i1) ≤ a(i2) ≤ · · · . Consider the monoid homomorphism
α : X� → X� given by α(xi+1) = xi for all i > 1. Then j(α(w)) = j(w) − 1 if w 6= 1. Hence by minimality
of w(1), w(2), . . . , the sequence

w(1), w(2), . . . , w(i1−1), α(v(i1)), α(v(i2)), . . . , α(v(in)), . . .

is good; that is, there exist j < i1 and k with w(j) � α(v(ik)), or there exist k < l with α(v(ik)) � α(v(il)).
In the first case we have w(j) � w(ik) by Lemma 2.22; and in the second case, w(ik) � w(il) by Lemma 2.23.
This contradicts the badness of our sequence w(1), w(2), . . . , finishing the proof.

Question. Careful inspection of the proof of Theorem 2.18 (in particular Lemma 2.7) shows that in the
statement of the theorem, we can replace SX by its subgroup consisting of all σ with the property that the
set of x ∈ X with σ(x) 6= x has cardinality < |X |. In Theorem 2.18, can one always replace SX by S(X)?

3. Proof of the Finiteness Theorem

We now come to the proof our main result. Throughout this section we let A be a commutative
Noetherian ring, X an arbitrary set, R = A[X ], and we let G be a permutation group on X . An R[G]-
submodule of R will be called a G-invariant ideal of R, or simply an invariant ideal, if G is understood. We
will show:

Theorem 3.1. If X� admits a lovely term ordering for G, then R is Noetherian as an R[G]-module.

For G = {1} and X finite, this theorem reduces to Hilbert’s basis theorem, by Example 2.15. We also
obtain Theorem 1.1:

Corollary 3.2. The R[SX ]-module R is Noetherian.

Proof. Choose a cardinal well-ordering of X . Then the corresponding lexicographic ordering of X� is
lovely for SX , by Theorem 2.18. Apply Theorem 3.1. �

Remark 3.3. It is possible to replace the use of Theorem 2.18 in the proof of the corollary above by the
more elementary Theorem 2.20. This is because if the R[SX ]-module R was not Noetherian, then one could
find a countably generated R[SX ]-submodule of R which is not finitely generated, and hence a countable
subset X ′ of X such that R′ = A[X ′] is not a Noetherian R′[SX′ ]-module.

The following example shows how the conclusion of Theorem 3.1 may fail:

Example 3.4. Suppose that G has a cyclic subgroup H which acts freely and transitively on X . Then
X has a nice ordering (see [2]), but R = Q[X�] is not Noetherian. To see this let σ be a generator for H ,
and let x ∈ X be arbitrary. Then the R[G]-submodule of R = Q[X�] generated by the elements σnxσ−nx
(n ∈ N) is not finitely generated. So by Theorem 3.1, X� does not admit a lovely term ordering for G.

For the proof of Theorem 3.1 we develop a bit of Gröbner basis theory for the R[G]-module R. For the
time being, we fix an arbitrary term ordering ≤ (not necessarily lovely for G) of X�.

3.1. Reduction of polynomials. Let f ∈ R, f 6= 0, and let B be a set of non-zero polynomials in R.
We say that f is reducible by B if there exist pairwise distinct g1, . . . , gm ∈ B, m ≥ 1, such that for each i
we have lm(gi) � lm(f), witnessed by some σi ∈ G, and

lt(f) = a1w1σ1 lt(g1) + · · · + amwmσm lt(gm)
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for non-zero ai ∈ A and monomials wi ∈ X� such that wiσi lm(gi) = lm(f). In this case we write f −→
B

h,

where

h = f −
(
a1w1σ1g1 + · · · + amwmσmgm

)
,

and we say that f reduces to h by B. We say that f is reduced with respect to B if f is not reducible by B.
By convention, the zero polynomial is reduced with respect to B. Trivially, every element of B reduces to 0.

Example 3.5. Suppose that A is a field. Then f is reducible by B if and only if there exists some g ∈ B
such that lm(g) � lm(f).

Example 3.6. Suppose that f is reducible by B as defined (for finite X) in, say, [1, Chapter 4], that is:
there exist g1, . . . , gm ∈ B and a1, . . . , am ∈ A (m ≥ 1) such that lm(gi)| lm(f) for all i and

lc(f) = a1 lc(g1) + · · · + am lc(gm).

Then f is reducible by B in the sense defined above. (Taking σi = 1 for all i.)

Remark 3.7. Suppose that G = SX , the term ordering ≤ of X� is ≤lex, and the order type of (X,≤)
is ≤ ω. Then in the definition of reducibility by B above, we may require that the σi satisfy σi(x) = x for
all 1 ≤ i ≤ m and x > | lm(f)|. (By Lemma 2.14.)

The smallest quasi-ordering on R extending the relation −→
B

is denoted by
∗

−→
B

. If f, h 6= 0 and f −→
B

h,

then lm(h) < lm(f), by Lemma 2.12. In particular, every chain

h0 −→
B

h1 −→
B

h2 −→
B

· · ·

with all hi ∈ R \ {0} is finite. (Since the term ordering ≤ is well-founded.) Hence there exists r ∈ R such

that f
∗

−→
B

r and r is reduced with respect to B; we call such an r a normal form of f with respect to B.

Lemma 3.8. Suppose that f
∗

−→
B

r. Then there exist g1, . . . , gn ∈ B, σ1, . . . , σn ∈ G and h1, . . . , hn ∈ R

such that

f = r +

n∑

i=1

hiσigi and lm(f) ≥ max
1≤i≤n

lm(hiσigi).

(In particular, f − r ∈ 〈B〉R[G].)

Proof. This is clear if f = r. Otherwise we have f −→
B

h
∗

−→
B

r for some h ∈ R. Inductively we may

assume that there exist g1, . . . , gn ∈ B, σ1, . . . , σn ∈ G and h1, . . . , hn ∈ R such that

h = r +

n∑

i=1

hiσigi and lm(h) ≥ max
1≤i≤n

lm(hiσigi).

There are also gn+1, . . . , gn+m ∈ B, σn+1, . . . , σn+m ∈ G, an+1, . . . , an+m ∈ A and wn+1, . . . , wn+m ∈ X�

such that lm(wn+iσn+ign+i) = lm(f) for all i and

lt(f) =

m∑

i=1

an+iwn+iσn+i lt(gn+i), f = h+

m∑

i=1

an+iwn+iσn+ign+i.

Hence putting hn+i := an+iwn+i for i = 1, . . . ,m we have f = r +
∑n+m

j=1 hjσjgj and lm(f) > lm(h) ≥
lm(hjσjgj) if 1 ≤ j ≤ n, lm(f) = lm(hjσjgj) if n < j ≤ n+m. �

Remark 3.9. Suppose that G = SX , ≤ = ≤lex, and X has order type ≤ ω. Then in the previous lemma
we can choose the σi such that in addition σi(x) = x for all i and all x > | lm(f)|. (By Remark 3.7.)
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3.2. Gröbner bases. Let B be a subset of R. We let

lt(B) :=
〈
lc(g)w : 0 6= g ∈ B, lm(g) � w

〉
A

be the A-submodule of R generated by all elements of the form lc(g)w, where g ∈ B is non-zero and w is a
monomial with lm(g) � w. Clearly for non-zero f ∈ R we have: lt(f) ∈ lt(B) if and only if f is reducible
by B. In particular, lt(B) contains

{
lt(g) : g ∈ B

}
, and for an ideal I of R which is G-invariant, we simply

have

lt(I) =
{

lt(f) : f ∈ I
}
.

(Use Lemma 2.12.) We say that a subset B of an invariant ideal I of R is a Gröbner basis for I (with respect
to our choice of term ordering ≤) if lt(I) = lt(B).

Lemma 3.10. Let I be an invariant ideal of R and B be a set of non-zero elements of I. The following

are equivalent:

(1) B is a Gröbner basis for I.
(2) Every non-zero f ∈ I is reducible by B.

(3) Every f ∈ I has normal form 0. (In particular, I = 〈B〉R[G].)
(4) Every f ∈ I has unique normal form 0.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are either obvious or follow from the remarks preceding
the lemma. Suppose that (4) holds. Every f ∈ I \ {0} with lt(f) /∈ lt(B) is reduced with respect to B, hence
has two distinct normal forms (0 and f), a contradiction. Thus lt(I) = lt(B). �

Suppose that B is a Gröbner basis for an ideal I of the polynomial ring R = A[X�], in the usual sense of
the word (as defined, for finite X , in [1, Chapter 4]); if I is invariant, then B is a Gröbner basis for I as defined
above (by Example 3.6). Moreover, for G = {1}, the previous lemma reduces to a familiar characterization
of Gröbner bases in the usual case of polynomial rings. It is probably possible to also introduce a notion
of S-polynomial and to prove a Buchberger-style criterion for Gröbner bases in our setting, leading to a
completion procedure for the construction of Gröbner bases. At this point, we will not pursue these issues
further, and rather show:

Proposition 3.11. Suppose that the term ordering ≤ of X� is lovely for G. Then every invariant ideal

of R has a finite Gröbner basis.

For a subset B of R let lm(B) denote the final segment of X� with respect to � generated by the lm(g),
g ∈ B. If A is a field, then a subset B of an invariant ideal I of R is a Gröbner basis for I if and only if
lm(B) = lm(I). Hence in this case, the proposition follows immediately from the equivalence of (1) and (4)
in Proposition 2.1. For the general case we use the following observation:

Lemma 3.12. Let S be a well-quasi-ordered set and T be a well-founded ordered set, and let ϕ : S → T
be decreasing: s ≤ t⇒ ϕ(s) ≥ ϕ(t), for all s, t ∈ S. Then the quasi-ordering ≤ϕ on S defined by

s ≤ϕ t :⇐⇒ s ≤ t ∧ ϕ(s) = ϕ(t)

is a well-quasi-ordering. �

Proof of Proposition 3.11. Suppose now that our term ordering of X� is lovely for G, and let I be
an invariant ideal of R. For w ∈ X� consider

lc(I, w) :=
{

lc(f) : f ∈ I, and f = 0 or lm(f) = w
}
,

an ideal of A. Note that if v � w, then lc(I, v) ⊆ lc(I, w). We apply the lemma to S = X�, quasi-ordered by
�, T = the collection of all ideals of A, ordered by reverse inclusion, and ϕ given by w 7→ lc(I, w). Thus by
(4) in Proposition 2.1, applied to the final segmentX� of the well-quasi-ordering ≤ϕ, we obtain finitely many
w1, . . . , wm ∈ X� with the following property: for every w ∈ X� there exists some i ∈ {1, . . . ,m} such that
wi � w and lc(I, wi) = lc(I, w). Using Noetherianity of A, for every i we now choose finitely many non-zero
elements gi1, . . . , gini

of I (ni ∈ N), each with leading monomial wi, whose leading coefficients generate the
ideal lc(I, wi) of A. We claim that

B := {gij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}
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is a Gröbner basis for I. To see this, let 0 6= f ∈ I, and put w := lm(f). Then there is some i with wi � w
and lc(I, wi) = lc(I, w). This shows that f is reducible by {gi1, . . . , gi,ni

}, and hence by B. By Lemma 3.10,
B is a Gröbner basis for I. �

From Proposition 3.11 and the implication (1) ⇒ (3) in Lemma 3.10 we obtain Theorem 3.1.

3.3. A partial converse of Theorem 3.1. Consider now the quasi-ordering |G of X� defined by

v|Gw :⇐⇒ ∃σ ∈ G : σv|w,

which extends every symmetric cancellation ordering corresponding to a term ordering of X�. If M is a set
of monomials from X� and F the final segment of (X�, |G) generated by M , then the invariant ideal 〈M〉R[G]

of R is finitely generated as an R[G]-module if and only if F is generated by a finite subset of M . Hence by
the implication (4) ⇒ (1) in Proposition 2.1 we get:

Lemma 3.13. If R is Noetherian as an R[G]-module, then |G is a well-quasi-ordering. �

This will be used in Section 5 below.

3.4. Connection to a concept due to Michler. Let ≤ be a term ordering of X�. For each σ ∈ G
we define a term ordering ≤σ on X� by

v ≤σ w ⇐⇒ σv ≤ σw.

We denote the leading monomial of f ∈ R with respect to ≤σ by lmσ(f). Clearly we have

(3.1) σ lm(f) = lmσ−1(σf) for all σ ∈ G and f ∈ R.

Let I be an invariant ideal of R. Generalizing terminology introduced in [10], let us call a set B of non-zero
elements of I a universal G-Gröbner basis for I (with respect to ≤) if B contains, for every σ ∈ G, a Gröbner
basis (in the usual sense of the word) for the ideal I with respect to the term ordering ≤σ. If the set X
of indeterminates is finite, then every invariant ideal of R has a finite universal G-Gröbner basis. By the
remark following Lemma 3.10, every universal G-Gröbner basis for an invariant ideal I of R is a Gröbner
basis for I. We finish this section by observing:

Lemma 3.14. Suppose that A is field. If B is a Gröbner basis for the invariant ideal I of R, then

GB = {σg : σ ∈ G, g ∈ B}

is a universal G-Gröbner basis for I.

Proof. Let σ ∈ G and f ∈ I, f 6= 0. Then σf ∈ I, hence there exists τ ∈ G and g ∈ B such that
w ≤ lm(g) ⇒ w ≤τ lm(g) for all w ∈ X�, and τ lm(g)| lm(σf). The first condition implies in particular that
τ lm(g) = lm(τg), hence σ−1τ lm(g) = lmσ(σ−1τg) and σ−1 lm(σf) = lmσ(f) by (3.1). Put h := σ−1τg ∈
GB. Then lmσ(h)| lmσ(f) by the second condition. This shows that GB contains a Gröbner basis for I with
respect to ≤σ, as required. �

Example 3.15. Suppose that G = Sn, the group of permutations of {1, 2, . . . , n}, acting on X =
{x1, . . . , xn} via σxi = xσ(i). The invariant ideal I = 〈x1, . . . , xn〉R has Gröbner basis {x1} with respect to
the lexicographic ordering; a corresponding (minimal) universal Sn-Gröbner basis for I is {x1, . . . , xn}.

4. Invariant Chains of Ideals

In this section we describe a relationship between certain chains of increasing ideals in finite-dimensional
polynomials rings and invariant ideals of infinite-dimensional polynomial rings. We begin with an abstract
setting that is suitable for placing the motivating problem (described in the next section) in a proper context.
Throughout this section, m and n range over the set of positive integers. For each n, let Rn be a commutative
ring, and assume that Rn is a subring of Rn+1, for each n. Suppose that the symmetric group on n letters
Sn gives an action (not necessarily faithful) on Rn such that f 7→ σf : Rn → Rn is a ring homomorphism,
for each σ ∈ Sn. Furthermore, suppose that the natural embedding of Sn into Sm for n ≤ m is compatible
with the embedding of rings Rn ⊆ Rm; that is, if σ ∈ Sn and σ̂ is the corresponding element in Sm, then
σ̂Rn = σ. Note that there exists a unique action of S∞ on the ring R :=

⋃
n≥1Rn which extends the action

of each Sn on Rn. An ideal of R is invariant if σf ∈ I for all σ ∈ S∞, f ∈ I.

34



Matthias Aschenbrenner and Christopher J. Hillar

We will need a method for lifting ideals of smaller rings into larger ones, and one such technique is as
follows.

Definition 4.1. For m ≥ n, the m-symmetrization Lm(B) of a set B of elements of Rn is the Sm-
invariant ideal of Rm given by

Lm(B) = 〈g : g ∈ B〉Rm[Sm]

In order for us to apply this definition sensibly, we must make sure that the m-symmetrization of an
ideal can be defined in terms of generators.

Lemma 4.2. If B is a set of generators for the ideal IB = 〈B〉Rn
of Rn, then Lm(IB) = Lm(B).

Proof. Suppose that B generates the ideal IB ⊆ Rn. Clearly, Lm(B) ⊆ Lm(IB). Therefore, it is
enough to show the inclusion Lm(IB) ⊆ Lm(B). Suppose that h ∈ Lm(IB) so that h =

∑s
j=1 fj · σjhj for

elements fj ∈ Rm, hj ∈ IB and σj ∈ Sm. Next express each hj =
∑rj

i=1 pijgij for pij ∈ Rn and gij ∈ B.
Substitution into the expression above for h gives us

h =

s∑

j=1

rj∑

i=1

fj · σjpij · σjgij .

This is easily seen to be an element of Lm(B), completing the proof. �

Example 4.3. Let S = Q[t1, t2], Rn = Q[x1, . . . , xn], and consider the natural action of Sn on Rn. Let
Q be the kernel of the homomorphism induced by the map φ : R3 → S given by φ(x1) = t21, φ(x2) = t22, and
φ(x3) = t1t2. Then, Q = 〈x1x2 − x2

3〉, and L4(Q) ⊆ R4 is generated by the following 12 polynomials:

x1x2 − x2
3, x1x2 − x2

4, x1x3 − x2
2, x1x3 − x2

4,

x1x4 − x2
3, x1x4 − x2

2, x2x3 − x2
1, x2x3 − x2

4,

x2x4 − x2
1, x2x4 − x2

3, x3x4 − x2
1, x3x4 − x2

2.

We would also like a way to project a set of elements in Rm down to a smaller ring Rn (n ≤ m).

Definition 4.4. Let B ⊆ Rm and n ≤ m. The n-projection Pn(B) of B is the Sn-invariant ideal of Rn

given by
Pn(B) = 〈g : g ∈ B〉Rm[Sm] ∩Rn.

We now consider increasing chains I◦ of ideals In ⊆ Rn:

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · ,

simply called chains below. Of course, such chains will usually fail to stabilize since they are ideals in larger
and larger rings. However, it is possible for these ideals to stabilize “up to the action of the symmetric
group,” a concept we make clear below. For the purposes of this work, we will only consider a special
class of chains; namely, a symmetrization invariant chain (resp. projection invariant chain) is one for which
Lm(In) ⊆ Im (resp. Pn(Im) ⊆ In) for all n ≤ m. If I◦ is both a symmetrization and a projection invariant
chain, then it will be simply called an invariant chain. We will encounter some concrete invariant chains in
the next section. The stabilization definition alluded to above is as follows.

Definition 4.5. A symmetrization invariant chain of ideals I◦ as above stabilizes modulo the symmetric

group (or simply stabilizes) if there exists a positive integer N such that

Lm(In) = Im for all m ≥ n > N .

To put it another way, accounting for the natural action of the symmetric group, the ideals In are the
same for large enough n. Let us remark that if for a symmetrization invariant chain I◦, there is some integer
N such that Lm(IN ) = Im for all m > N , then I◦ stabilizes. This follows from the inclusions

Im = Lm(IN ) ⊆ Lm(In) ⊆ Im, n > N.

Any chain I◦ naturally gives rise to an ideal I(I◦) of R =
⋃

n≥1Rn by way of

I(I◦) :=
⋃

n≥1

In.
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Conversely, if I is an ideal of R, then

In = Jn(I) := I ∩Rn

defines the components of a chain J (I) := I◦. Clearly, for any ideal I ⊆ R, we have I ◦ J (I) = I, but, as
is easily seen, it is not true in general that J ◦ I(I◦) = I◦. However, for invariant chains, this relationship
does hold, as the following straightforward lemma describes.

Lemma 4.6. There is a one-to-one, inclusion-preserving correspondence between invariant chains I◦ and

invariant ideals I of R given by the maps I and J . �

For the remainder of this section we consider the case where, for a commutative Noetherian ring A, we
have Rn = A[x1, . . . , xn] for each n, endowed with the natural action of Sn on the indeterminates x1, . . . , xn.
Then R = A[X�] where X = {x1, x2, . . .}. We use the results of the previous section to demonstrate the
following.

Theorem 4.7. Every symmetrization invariant chain stabilizes modulo the symmetric group.

Proof. Given a symmetrization invariant chain, construct the invariant ideal I = I(I◦) of R. One
would now like to apply Theorem 1.1, however, more care is needed to prove stabilization. Let ≤ be a well-
ordering of X of order type ω, and let B be a finite Gröbner basis for I with respect to the corresponding
term ordering ≤lex of X�. (Theorem 2.20 and Proposition 3.11.) Choose a positive integer N such that
B ⊆ IN ; we claim that Im = Lm(IN ) for all m ≥ N . Let f ∈ Im, f 6= 0. By the equivalence of (1) and (3)

in Lemma 3.10 we have f
∗

−→
B

0. Hence by Lemma 3.8 there are g1, . . . , gn ∈ B, h1, . . . , hn ∈ R, as well as

σ1, . . . , σn ∈ S∞, such that

f = h1σ1g1 + · · · + hnσngn and lm(f) = max
i

lm(hiσigi).

By Remark 3.9 we may assume that in fact σi ∈ Sm for each i. Moreover lm(hi) ≤lex lm(f), hence
| lm(hi)| ≤ | lm(f)| ≤ m, for each i. Therefore hi ∈ Rm for each i. This shows that f ∈ Lm(B) ⊆ Lm(IN ) as
desired. �

5. A Chemistry Motivation

We can now discuss the details of the basic problem that is of interest to us. It was brought to our
attention by Bernd Sturmfels, who, in turn, learned about it from Andreas Dress.

Fix a natural number k ≥ 1. Given a set S we denote by 〈S〉k the set of all ordered k-element subsets
of S, that is, 〈S〉k is the set of all k-tuples u = (u1, . . . , uk) ∈ Sk with pairwise distinct u1, . . . , uk. We also
just write 〈n〉k instead of 〈{1, . . . , n}〉k. Let K be a field, and for n ≥ k consider the polynomial ring

Rn = K
[
{xu}u∈〈n〉k

]
.

We let Sn act on 〈n〉k by

σ(u1, . . . , uk) =
(
σ(u1), . . . , σ(uk)

)
.

This induces an action (σ, xu) 7→ σxu = xσu of Sn on the indeterminates xu, which we extend to an action
of Sn on Rn in the natural way. We also put R =

⋃
n≥k Rn. Note that

R = K
[
{xu}u∈〈Ω〉k

]
,

where Ω = {1, 2, 3, . . .} is the set of positive integers, and that the actions of Sn on Rn combine uniquely
to an action of S∞ on R. Let now f(y1, . . . , yk) ∈ K[y1, . . . , yk], let t1, t2, . . . be an infinite sequence of
pairwise distinct indeterminates over K, and for n ≥ k consider the K-algebra homomorphism

φn : Rn → K[t1, . . . , tn], x(u1,...,uk) 7→ f(tu1 , . . . , tuk
).

The ideal
Qn = ker φn

ofRn determined by such a map is the prime ideal of algebraic relations between the quantities f(tu1 , . . . , tuk
).

Such ideals arise in chemistry [9, 15, 16]; of specific interest there is when f is a Vandermonde polynomial∏
i<j(yi − yj). In this case, the ideals Qn correspond to relations among a series of experimental measure-

ments. One would then like to understand the limiting behavior of such relations, and in particular, to see
that they stabilize up to the action of the symmetric group.
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Example 5.1. The permutation σ = (1 2 3) ∈ S3 acts on the elements

(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)

of 〈3〉2 to give

(2, 3), (3, 2), (2, 1), (1, 2), (3, 1), (1, 3),

respectively. Let f(t1, t2) = t21t2. Then the action of σ on the valid relation x2
12x31 − x2

13x21 ∈ Q3 gives us
another relation x2

23x12 − x2
21x32 ∈ Q3.

It is easy to see that by construction, the chain Q◦ of ideals

Qk ⊆ Qk+1 ⊆ · · · ⊆ Qn ⊆ · · ·

(which we call the chain of ideals induced by the polynomial f) is an invariant chain. As in the proof of
Theorem 4.7, we would like to form the ideal Q =

⋃
n≥k Qn of the infinite-dimensional polynomial ring

R =
⋃

n≥k Rn, and then apply a finiteness theorem to conclude that Q◦ stabilizes in the sense mentioned

above (Definition 4.5). For k = 1, Theorem 4.7 indeed does the job. Unfortunately however, this simple-
minded approach fails for k ≥ 2:

Proposition 5.2. For k ≥ 2, the R[S∞]-module R is not Noetherian.

Proof. Let us make the dependence on k explicit and denote R by R(k). Then

x(u1,...,uk,uk+1) 7→ x(u1,...,uk)

defines a surjective K-algebra homomomorphism πk : R(k+1) → R(k) with invariant kernel. Hence if R(k+1)

is Noetherian as an R[S∞]-module, then so is R(k); thus it suffices to prove the proposition in the case
k = 2. Suppose therefore that k = 2. By Lemma 3.13 it is enough to produce an infinite bad sequence for
the quasi-ordering |S∞

of X�, where X = {xi : i ∈ 〈Ω〉2}. For this, consider the sequence of monomials

s3 = x(1,2)x(3,2)x(3,4)

s4 = x(1,2)x(3,2)x(4,3)x(4,5)

s5 = x(1,2)x(3,2)x(4,3)x(5,4)x(6,7)

...

sn = x(1,2)x(3,2)x(4,3) · · ·x(n,n−1)x(n,n+1) (n = 3, 4, . . . )

...

Now for n < m and any σ ∈ S∞, the monomial σsn does not divide sm. To see this, suppose otherwise.
Note that x(1,2), x(3,2) is the only pair of indeterminates which divides sn or sm and has the form x(i,j),
x(l,j) (i, j, l ∈ Ω). Therefore σ(2) = 2, and either σ(1) = 1, σ(3) = 3, or σ(1) = 3, σ(3) = 1. But since 1
does not appear as the second component j of a factor x(i,j) of sm, we have σ(1) = 1, σ(3) = 3. Since x(4,3)

is the only indeterminate dividing sn or sm of the form x(i,3) with i ∈ Ω, we get σ(4) = 4; since x(5,4) is the
only indeterminate dividing sn or sm of the form x(i,4) with i ∈ Ω, we get σ(5) = 5; etc. Ultimately this
yields σ(i) = i for all i = 1, . . . , n. But the only indeterminate dividing sm of the form x(n,j) with j ∈ Ω is
x(n,n−1), hence the factor σx(n,n+1) = x(n,σ(n+1)) of σsn does not divide sm. This shows that s3, s4, . . . is a
bad sequence for the quasi-ordering |S∞

, as claimed. �

Remark 5.3. The construction of the infinite bad sequence s3, s4, . . . in the proof of the previous
proposition was inspired by an example in [7].

5.1. A criterion for stabilization. Our next goal is to give a condition for the chain Q◦ to stabilize.
Given g ∈ R, we define the variable size of g to be the number of distinct indeterminates xu that appear in
g. For example, g = x5

12 + x45x23 + x45 has variable size 3.

Lemma 5.4. A chain of ideals Q◦ induced by a polynomial f ∈ K[y1, . . . , yk] stabilizes modulo the

symmetric group if and only if there exist integers M and N such that for all n > N , there are generators for

Qn with variable sizes at most M . Moreover, in this case a bound for stabilization is given by max(N, kM).
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Proof. Suppose M and N are integers with the stated property. To see that Q◦ stabilizes, since Q◦ is
an invariant chain, we need only verify that N ′ = max(N, kM) is such that Qm ⊆ Lm(Qn) for m ≥ n > N ′.
For this inclusion, it suffices that each generator in a generating set for the ideal Qm of Rm is in Lm(Qn).
Since m > N , there are generators B for Qm with variable sizes at most M . If g ∈ B, then there are at most
kM different integers appearing as subscripts of indeterminates in g. We can form a permutation σ ∈ Sm

such that σg ∈ RN ′ and thus in Rn. But then σg ∈ Pn(Qm) ⊆ Qn so that g = σ−1σg ∈ Lm(Qn) as desired.
Conversely, suppose that Q◦ stabilizes. Then there exists an N such that Qm = Lm(QN ) for all m > N .

Let B be any finite generating set for QN . Then for all m > N , Qm = Lm(B) is generated by elements of
bounded variable size, by Lemma 4.2. �

Although this condition is a very simple one, it will prove useful. Below we will apply it together with
a preliminary reduction to the case that each indeterminate y1, . . . , yk actually occurs in the polynomial
f , which we explain next. For this we let πk : R(k+1) → R(k) be the surjective K-algebra homomorphism
defined in the proof of Proposition 5.2. We write Q(k) for Q, and considering f ∈ K[y1, . . . , yk] as an element
of K[y1, . . . , yk, yk+1], we also let Q(k+1) be the kernel of the K-algebra homomorphsm

R(k+1) → K[t1, t2, . . .], x(u1,...,uk,uk+1) 7→ f(tu1 , . . . , tuk
, tuk+1

)

(= f(tu1 , . . . , tuk
)).

Note that πk(Q(k+1)) = Q(k), and the ideal kerπk of R(k+1) is generated by the elements

x(u1,...,uk,i) − x(u1,...,uk,j) (i, j ∈ Ω),

in particular kerπk ⊆ Q(k+1). It is easy to see that as an R(k+1)[S∞]-module, kerπk is generated by the
single element x(1,...,k,k+1) − x(1,...,k,k+2). These observations now yield:

Lemma 5.5. Suppose that the invariant ideal Q(k) of R(k) is finitely generated as an R(k)[S∞]-module.

Then the invariant ideal Q(k+1) of R(k+1) is finitely generated as an R(k+1)[S∞]-module. �

We let Sk act on 〈Ω〉k by

τ(u1, . . . , uk) = (uτ(1), . . . , uτ(k)) for τ ∈ Sk, (u1, . . . , uk) ∈ 〈Ω〉k.

This action gives rise to an action of Sk on {xu}u∈〈Ω〉k by τxu = xτu, which we extend to an action of Sk

on R in the natural way. We also let Sk act on K[y1, . . . , yk] by τf(y1, . . . , yk) = f(yτ(1), . . . , yτ(k)). Note
that

τQk ⊆ τQk+1 ⊆ · · · ⊆ τQn ⊆ · · ·

is the chain induced by τf . Using the lemma above we obtain:

Corollary 5.6. Let f ∈ K[y1, . . . , yk]. There are i ∈ {0, . . . , k} and τ ∈ Sk such that τf ∈ K[y1, . . . , yi]
and each of the indeterminates y1, . . . , yi occurs in τf . If the chain of ideals induced by the polynomial τf
stabilizes, then so does the chain of ideals induced by f . �

5.2. Chains induced by monomials. If the given polynomial f is a monomial, then the homomor-
phism φn from above produces a (homogeneous) toric kernel Qn. In particular, there is a finite set of
binomials that generate Qn (see [17]). Although a proof for the general toric case eludes us, we do have the
following.

Theorem 5.7. The sequence of kernels induced by a square-free monomial f ∈ K[y1, . . . , yk] stabilizes

modulo the symmetric group. Moreover, a bound for when stabilization occurs is N = 4k.

To prepare for the proof of this result, we discuss in detail the toric encoding associated to our problem
(see [17, Chapter 14] for more details). By Corollary 5.6, we may assume that f = y1 · · · yk. Then g−τg ∈ Q
for all g ∈ R. We say that u = (u1, . . . , uk) ∈ 〈Ω〉k is sorted if u1 < · · · < uk, and unsorted otherwise;
similarly we say that xu is sorted (unsorted) if u is sorted (unsorted, respectively). For example, x135 is a
sorted indeterminate, whereas x315 is not. Consider the set of vectors

An =
{
(i1, . . . , in) ∈ Zn : i1 + · · · + in = k, 0 ≤ i1, . . . , in ≤ 1

}
.

View An as an n-by-
(
n
k

)
matrix entries with 0 and 1, whose with columns are indexed by sorted indeterminates

xu and whose rows are indexed by ti (i = 1, . . . , n). (See Example 5.9 below.) Let sort( · ) denote the operator
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which takes any word in {1, . . . , n}∗ and sorts it in increasing order. By [17, Remark 14.1], the toric ideal
IAn

associated to An is generated (as K-vector space) by the binomials xu1 · · ·xur
−xv1 · · ·xvr

, where r ∈ N

and the ui, vj are sorted elements of 〈n〉k such that sort(u1 · · ·ur) = sort(v1 · · ·vr). In particular, we have
IAn

⊆ Qn. Let B be any set of generators for the ideal IAn
.

Lemma 5.8. A generating set for the ideal Qn of Rn is given by

S = B ∪ {xu − xτu : τ ∈ Sk, u is sorted}.

Proof. Elements of Qn are of the form g = xu1
· · ·xur

−xv1
· · ·xvr

, in which the ui and vj are ordered
k-element subsets of {1, . . . , n} such that sort(u1 · · ·ur) = sort(v1 · · ·vr). We induct on the number t of ui

and vj that are not sorted. If t = 0, then g ∈ IAn
, and we are done. Suppose now that t > 0 and assume

without loss of generality that u1 is not sorted. Let τ ∈ Sk be such that τu1 is sorted, and consider the
element h = xτu1xu2

· · ·xur
− xv1

· · ·xvr
of Qn. This binomial involves t− 1 unsorted indeterminates, and

therefore, inductively, can be expressed in terms of S. But then

g = h− (xτu1 − xu1
)xu2

· · ·xur

can as well, completing the proof. �

Example 5.9. Let k = 2 and n = 4. Then

x12 x13 x14 x23 x24 x34

t1 1 1 1 0 0 0
t2 1 0 0 1 1 0
t3 0 1 0 1 0 1
t4 0 0 1 0 1 1

represents the matrix associated to A4. The ideal IA4 is generated by the two binomials x13x24 − x12x34

and x14x23 − x12x34. Hence Q4 is generated by these two elements along with

{x12 − x21, x13 − x31, x14 − x41, x23 − x32, x24 − x42, x34 − x43}.

We are now in a position to prove Theorem 5.7.

Proof of Theorem 5.7. By Lemma 5.4, we need only show that there exist generators for Qn which
have bounded variable sizes. Using [17, Theorem 14.2], it follows that IAn

has a quadratic (binomial)
Gröbner basis for each n (with respect to some term ordering of Rn). By Lemma 5.8, there is a set of
generators for Qn with variable sizes at most 4. This proves the theorem. �

We close with a conjecture that generalizes Theorem 5.7.

Conjecture 5.10. The sequence of kernels induced by a monomial f stabilizes modulo the symmetric

group.
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[10] R. Michler, Gröbner bases of symmetric quotients and applications, in: C. Christensen et al. (eds.), Algebra, Arithmetic

and Geometry with Applications (West Lafayette, IN, 2000), pp. 627–637, Springer-Verlag, Berlin, 2004.
[11] E. Milner, Well-quasi-ordering of sequences of ordinal numbers, J. London Math. Soc. 43 (1968), 291–296.
[12] C. St. J. A. Nash-Williams, On well-quasi-ordering finite trees, Proc. Cambridge Philos. Soc. 59 (1963), 833–835.
[13] , On well-quasi-ordering transfinite sequences, Proc. Cambridge Philos. Soc. 61 (1965), 33–39.
[14] R. Rado, Partial well-ordering of sets of vectors, Mathematika 1 (1954), 89–95.
[15] E. Ruch, A. Schönhofer, Theorie der Chiralitätsfunktionen, Theor. Chim. Acta 19 (1970), 225–287.
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Abstract. We study the ideal generated by constant-term free B-quasisymmetric polynomials, and prove

that the quotient of the polynomial ring by this ideal has dimension given by 1

2n+1

`

3n

n

´

, the number of

ternary trees, or Fuss-Catalan number of order 3. This leads us to introduce and study multivariate Fuss-
Catalan numbers, whose combinatorial interpretation is given by some statistics on ternary trees and plane
paths.

Résumé. Nous étudions l’idéal engendré par les polynômes B-quasisymétriques (sans terme constant), et

prouvons que le quotient de l’anneau des polynômes par cet idéal est de dimension 1

2n+1

`

3n

n

´

, le nombre

d’arbres ternaires, ou nombre de Fuss-Catalan d’ordre 3. Nous en profitons pour introduire et étudier com-
binatoirement certains nombres de Fuss-Catalan multivariés, ce qui fait apparâıtre une bi-statistique sur les
arbres ternaires et certains chemins du plan.

1. Introduction

To start with, we recall a small part of the story of the study of ideals and quotients related to symmetric
or quasisymmetric polynomials. The root of this work is a result of Artin [1]. Let us consider the set of
variables Xn = x1, x2, . . . , xn. The space of polynomials in the variables Xn with rational coefficients is
denoted by Q[Xn]. The subspace of symmetric polynomials is denoted by Symn. If V is a subset of the
polynomial ring, we denote by 〈V+〉 the ideal generated by elements of a V with no constant term. Artin’s
result is given by:

(1.1) dim Q[Xn]/〈Sym+
n 〉 = n! .

Another, more recent, part of the story deals with quasisymmetric polynomials. The space QSymn ⊂
Q[Xn] of quasisymmetric polynomials was introduced by Gessel [13] as generating functions for Stanley’s
P -partitions [21]. This is the starting point of many recent works in several areas of combinatorics [9, 12,

16, 17, 22].
In [4, 5], Aval et. al. study the problem analogous to Artin’s work in the case of quasisymmetric

polynomials. Their main result is that the dimension of the quotient is given by Catalan numbers:

(1.2) dim Q[Xn]/〈QSym+
n 〉 = Cn =

1

n + 1

(

2n

n

)

.

An interesting axis of research is the extension of these results to 2 sets of variables. Let An denote the
alphabet

An = x1, y1, x2, y2, . . . , xn, yn.

Since symmetric (resp. quasisymmetric) polynomials may be seen as Sn-invariants under the action
that permutes variables (resp. under Hivert’s action [16]), one can define diagonal analogues by letting Sn

2000 Mathematics Subject Classification. Primary 05E15; Secondary 05A15.
Key words and phrases. algebraic combinatorics, quasisymmetric functions, Gröbner bases, enumeration of paths and

trees.
This research has been supported by EC’s IHRP Programme, within the Research Training Network ”Algebraic Combi-

natorics in Europe,” grant HPRN-CT-2001-00272.
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act simulaneously on the x’s and y’s. We then obtain the space DSymn (resp. DQSymn) of diagonally
symmetric (resp. quasisymmetric) functions.

The diagonal coinvariant space Q[An]/〈DSym+
n 〉 has been studied extensively in the last 15 years by

several authors [8, 11, 14]. A great achievment in this area is Haiman’s proof of the following equality (cf.
[14]):

dim Q[An]/〈DSym+
n 〉 = (n + 1)n−1 .

The space DQSymn was introduced in [19], then recently studied in [7], [18], and [6], where the coinvariant
space is investigated, and a conjectural basis is presented.

To end this presentation, we introduce the space QSymn(B) of B-quasisymmetric polynomials, which is
the focus of this article. This space, whose definition appears implicitly in [19], is studied with more details
in [7]. A precise definition will be given in the next section, and we only mention here that QSymn(B) is a
subspace (and in fact a subalgebra, cf. [7]) of DQSymn.

We now state the main result of this work, which appears as a generalization of equation (1.2).

Theorem 1.1.

(1.3) dim Q[An]/〈QSymn(B)+〉 =
1

2n + 1

(

3n

n

)

.

Observe that in Equations (1.2) and (1.3), the dimensions 1
n+1

(

2n
n

)

and 1
2n+1

(

3n
n

)

are respectively the

numbers of binary and ternary trees (cf. [20]). Since we deal with polynomials in two alphabets (and
since the ideal 〈QSymn(B)+〉 is homogeneous), we can study the bigraded version of Equation (1.3). More
precisely, we look at the subspace of Q[An]/〈QSymn(B)+〉 of polynomials of degree k in x1, . . . , xn and
degree l in y1, . . . , yn, and consider its dimension, which we denote by B(n, k, l). It appears that these
numbers present their own interest, which led us to study them.

Let us now give the plan of this article. We have decided to deal first with the combinatorial part,
i.e. the study of the numbers B(n, k, l), which is the subject of the next section, and the algebraic part is
developped in the last section of this paper.

Remark. This paper is the extended abstract of our work. More details and the complete proofs (here are
ony given the sketches of some proofs) can be found in [2, 3].

2. Multivariate Fuss-Catalan numbers

2.1. Catalan triangle, binary trees, and Dyck paths. The Catalan numbers

C(n) =
1

n + 1

(

2n

n

)

are integers that appear in many combinatorial problems. These numbers first arose in the work of Catalan
as the number of triangulations of a polygon by mean of non-intersecting diagonals. Stanley [21, 23]
maintains a dynamic list of exercises related to Catalan numbers, including (at this date) 127 combinatorial
interpretations.

Closely related to Catalan numbers are ballot numbers. To serve our purpose, we shall neither state the
so-called ballot problem, nor give an explicit formula, but we introduce integers B(n, k) for (n, k) ∈ N∗ × N

defined by the following recurrence:

• B(1, 0) = 1

• ∀n > 1 and 0 ≤ k < n, B(n, k) =
∑k

i=0 B(n − 1, i)
• ∀k ≥ n, B(n, k) = 0.

Observe that the recursive formula in the second condition is equivalent to:

(2.1) B(n, k) = B(n − 1, k) + B(n, k − 1).

We shall present the B(n, k)’s by the following triangular representation (zero entries are omitted) where
moving down increases n and moving right increases k.
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1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42

The crucial observation is that computing the horizontal sums of these integers give : 1, 2, 5, 14, 42, 132.
We recognize the first terms of the Catalan series, and this fact will be proven in Proposition 2.1, after
introducing combinatorial objects.

A binary tree is a tree in which every internal node has exactly 2 sons. The number of binary trees with
n internal nodes is given by the n-th Catalan number.

A Dyck path is a path consisting of steps (1, 1) and (1,−1), starting from (0, 0), ending at (2n, 0), and
remaining above the line y = 0. The number of Dyck paths of length 2n is also given by the n-th Catalan
number. More precisely, the depth-first search of the tree gives a bijection between binary trees and Dyck
paths: we associate to each external node (except the left-most one) a (1, 1) step and to each internal node a
(1,−1) step by searching recursively the left son, then the right son, then the current node. As an example,
we show below the Dyck path corresponding to the binary tree given above.

An inportant parameter in our study will be the length of the right-most sequence of (1,−1) of the path.
This parameter equals 2 in our example. Observe that under the correspondence between paths and trees,
this parameter corresponds to the length of the right-most string of right sons in the tree. We shall use the
expressions last down sequence and last right string, for these parts of the path and of the tree.

Now we come to the announced result. It is well-known and simple, but is the starting point of our
work.

Proposition 2.1. We have the following equality:

n−1
∑

k=0

B(n, k) = C(n) =
1

n + 1

(

2n

n

)

.

Proof. Let us denote by Cn,k the set of Dyck paths of length 2n with a last down sequence of length
equal to n − k.

We shall prove that B(n, k) is the cardinality of Cn,k.
The proof is done recursively on n. If n = 0, this is trivial. If n > 0, let us suppose that B(n − 1, k)

is the cardinality of Cn−1,k for 0 ≤ k < n − 1. Let us consider an element of Cn,k. If we erase the last step
(1, 1) and the following step (1,−1), we obtain a Dyck path of length 2(n − 1) and with a last decreasing
sequence of length n − l ≥ n − k. If we keep track of the integer k, we obtain a bijection between Cn,k and
∪l≤kCn−1,l. �

2.2. Fuss-Catalan tetrahedron and ternary trees. This subsection, which is the heart of this part
of the work, is the study of a 3-dimensional analogue of the Catalan triangle presented in the previous
section. We consider exactly the same recurrence, and let the array grow, not in 2, but in 3 dimensions.
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More precisely, we introduce the sequence B3(n, k, l) indexed by integers n, k and l, and defined recursively
by:

• B3(1, 0, 0) = 1
• ∀n > 1, k + l < n, B3(n, k, l) =

∑

0≤i≤k,0≤j≤l B3(n − 1, i, j)

• ∀k + l ≥ n, B3(n, k, l) = 0.

Observe that the recursive formula in the second condition is equivalent to:

(2.2) B3(n, k, l) = B3(n − 1, k, l) + B3(n, k − 1, l) + B3(n, k, l − 1) − B3(n, k − 1, l − 1)

and this expression can be used to make some computations lighter, but the presentation above explains
more about the generalization of the definition of the ballot numbers B(n, k).

Because of the planar structure of the sheet of paper, we are led to present the tetrahedron of B3(n, k, l)’s
by its sections with a given n.

n = 1 −→
[

1
]

n = 2 −→

[

1 1
1

]

n = 3 −→





1 2 2
2 3
2





n = 4 −→









1 3 5 5
3 8 10
5 10
5









n = 5 −→













1 4 9 14 14
4 15 30 35
9 30 45

14 35
14













It is clear that B3(n, k, 0) = B3(n, 0, k) = B(n, k). The reader may easily check that when we compute
∑

k,l B3(n, k, l), we obtain: 1, 3, 12, 55, 273. These integers are the first terms of the following sequence

(cf. [20]):

C3(n) =
1

2n + 1

(

3n

n

)

.

2.3. Combinatorial interpretation. Fuss1-Catalan numbers (cf. [15]) are given by the formula

(2.3) Cp(n) =
1

(p − 1)n + 1

(

pn

n

)

,

and C3(n) appear as order-3 Fuss-Catalan numbers. The integers C3(n) are known [20] to count ternary

trees, i.e. trees in which every internal node has exactly 3 sons.

Ternary trees are in bijection with 2-Dyck paths, which are defined as paths from (0, 0) to (3n, 0) with
steps (1, 1) and (1,−2), and remaining above the line y = 0. The bijection between these objects is the
same as in the case of binary trees, i.e. a depth-first search, with the difference that here an internal node

1Nikolai Fuss (Basel, 1755 – St Petersburg, 1826) helped Euler prepare over 250 articles for publication over a period on
about seven years in which he acted as Euler’s assistant, and was from 1800 to 1826 permanent secretary to the St Petersburg
Academy.
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is translated into a (1,−2) step. To illustrate this bijection, we give the path corresponding to the previous
example of ternary tree:

We shall consider these paths with respect to the position of their down steps. Let Dn,k,l denote the
set of 2-Dyck paths of length 3n, with k down steps at even height and l down steps at odd height. By
convention, the last sequence of down steps is not considered (the number of these steps is by definition
equal to n − k − l). In the previous example, n = 9, k = 5 and l = 2.

Proposition 2.2. We have

∑

k,l

B3(n, k, l) = C3(n) =
1

2n + 1

(

3n

n

)

.

Moreover, B3(n, k, l) is the cardinality of Dn,k,l.

Proof. Let k and l be fixed. Let us consider an element of Dn,k,l. If we cut this path after its (2n−2)-th
up step, and complete with down steps, we obtain a 2-Dyck path of length 3(n − 1) (see figure below). It
is clear that this path is an element of Dn,i,j for some i ≤ k and j ≤ l. We can furthermore reconstruct
the original path from the truncated one, if we know k and l. We only have to delete the last sequence of
down steps (here the dashed line), to draw k − i down steps, one up step, l − j down steps, one up step,
and to complete with down steps. This gives a bijection from Dn,k,l to ∪0≤i≤k,0≤j≤lDn−1,i,j , which implies
Proposition 2.2.

�

Remark 2.1. It is interesting to translate the bi-statistics introduced on 2-Dyck paths to the case of
ternary trees. As previously, we consider the depth-first search of the tree, and shall not consider the last
right string. We define Tn,k,l as the set of ternary trees with n internal nodes, k of them being encountered
in the search after an even number of leaves and l after and odd number of leaves. By the bijection between
trees and paths, and Proposition 2.2, we have that the cardinality of Tn,k,l is B3(n, k, l).

Remark 2.2. It is clear from the definition that:

B3(n, k, l) = B3(n, l, k).

But this fact is not obvious when considering trees or paths, since the statistics defined are not clearly
symmetric. To explain this, we can introduce an involution on the set of ternary trees which sends an
element of Tn,k,l to Tn,l,k. To do this, we can exchange for each node of the last right string its left and its
middle son, as in the following picture. Since the number of leaves of a ternary tree is odd, every “even”
node becomes an “odd” one, and conversely.
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2.4. Explicit formula. Now a natural question is to obtain explicit formulas for the B3(n, k, l). The
answer is given by the following proposition.

Proposition 2.3. The intergers B3(n, k, l) are given by

(2.4) B3(n, k, l) =

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n

Proof. [SKETCH] The proof is a variation of the cycle lemma [10], used to enumerate Dn,k,l. It is also
possible, once we have the formula (2.4), to check the recurrence (2.2). �

3. Ideals of B-quasisymmetric functions

3.1. Definitions, notations and results. For these definitions, we follow [7], with some minor dif-
ferences, for the sake of simplicity of the computations we will have to make.

Let N and N̄ denote two occurrrences of the set of nonnegative integers. We shall write N̄ = {0̄, 1̄, 2̄, . . .}
and make no difference between the elements of N and N̄ in any arithmetical expression. We distinguish N

and N̄ for the ease of reading.
A bivector is a vector v = (v1, v2, . . . , v2k−1, v2k) such that the odd entries {c2i−1, i = 1..k} are in N,

and the even entries {c2i, i = 1..k} are in N̄.
A bicomposition is a bivector in which there is no consecutive zeros, i.e. no pattern 00̄ or 0̄0.
The integer k is called the size of v. The weight of the vector v is by definition the couple (|v|N, |v|N̄),

where |v|N =
∑k

i=1 v2i−1 and |v|N̄ =
∑k

i=1 v2i. We also set |v| = |v|N + |v|N̄.
For example (1, 0̄, 2, 1̄, 0, 2̄, 3, 0̄) is a bicomposition of size 4, and of weight (6, 3).
To make notations lighter, we shall sometimes write bivectors or bicomposition as words, for example

10̄21̄02̄30̄.

The fundamental B-quasisymmetric functions, indexed by bicompositions, are defined as follows

Fc1c2...c2k−1c2k
(An) =

∑

xi1 · · ·xi|c|N
yj1 · · · yj|c|

N̄

∈ Q[An]

where the sum is taken over indices i’s and j’s such that

i1 ≤ · · · ic1
≤ j1 ≤ · · · jc2

< ic1+1 ≤ · · · ic1+c3
≤ jc2+1 ≤ · · · ≤ jc2+c4

< ic1+c3+1 ≤ · · ·

We give some examples:
F12̄ =

∑

i≤j≤k xiyjyk,

F02̄10̄ =
∑

i≤j<k yiyjxk.

It is clear from the definition that the bidegree (i.e. the couple (degree in x, degree in y)) of Fc in Q[An]
is the weight of c. If the size of c is greater than n, we shall set Fc(An) = 0.

The space of B-quasisymmetric functions, denoted by QSymn(B) is the vector subspace of Q[An] gen-
erated by the Fc(An), for all bicompositions c.

Let us denote by I2
n the ideal 〈QSymn(B)+〉 generated by B-quasisymmetric functions with zero constant

term.
With these notations, our goal is to prove

(3.1) dim Q[An]/〈QSymn(B)+〉 =
1

2n + 1

(

3n

n

)

.
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3.2. Paths and G-set. The aim of this subsection is to construct a set G of polynomials, which will be
proved in the next section to be a Gröbner basis of I2

n. This part of the work is greatly inspired from [4, 5].
Let v = (v1, v2, . . . , v2k−1, v2k) be a bivector of size n. We associate to v a path π(v) in the plane N×N,

with steps (0,1) or (2,0). We start from (0,0) and add for each entry vi (read from left to right): vi steps
(2,0), followed by one step (0,1).

As an example, the path associated to (1, 0̄, 1, 2̄, 0, 0̄, 1, 1̄) is

We have two kinds of path, regarding their position to the diagonal x = y. If a path always remains
above this line, we call it a 2-Dyck path, and say that the corresponding vector is 2-Dyck. Conversely,
if the path enters the region x < y, we call both the path and the vector transdiagonal. For example,
v = (0, 0̄, 1, 0̄, 0, 1̄, 1, 0̄) is 2-Dyck, whereas w = (0, 0̄, 1, 1̄, 1, 0̄, 0, 0̄) is transdiagonal.

(w)(v) π  π

A simple but important observation is that a vector v = (v1, v2, . . . , v2k−1, v2k) is transdiagonal if and
only if there exists 1 ≤ l ≤ k such that

(3.2) v1 + v2 + · · · + v2l−1 + v2l ≥ l.

Our next task is to construct a set G of polynomials, mentionned above. From now on, unless otherwise
indicated, vectors are of size n. For w a vector of size k < n, w0∗ denotes the vector (of size n) obtained
by adding the desired number of 00̄ patterns. We shall define the length `(v) of a vector v as the integer k
such that v = v1 v2 . . . v2k−1 v2k 0∗ with v2k−1 v2k 6= 00̄. In the case of bicompositions, the notions of size
and length coincide.

For v a vector (of size n), we denote by Av
n the monomial

Av
n = xv1

1 yv2

1 · · ·xv2n−1

n yv2n

n .

To deal with leading terms of polynomials, we will use the lexicographic order induced by the ordering
of the variables:

x1 > y1 > x2 > y2 > · · · > xn > yn.

The lexicographic order is defined on monomials as follows: Av
n >lex Aw

n if and only if the first non-zero
entry of v − w (componentwise) is positive.

The set

G = {Gv} ⊂ I2
n

is indexed by transdiagonal vectors. Let v be a transdiagonal vector.
For v = c0∗ with c a non-zero bicomposition of length ≥ n (which implies that v is transdiagonal), we

define

Gv = Fc.
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If v cannot be written as c0∗, the polynomial Gv is defined recursively. We look at the rightmost
occurrence of two consecutive zeros (on the left of a non-zero entry: we do not consider the subword 0∗).
Two cases are to be distinguished according to the parity of the position of this pattern:

• if v = w00̄αβc0∗, with w a vector of size k − 1, α ∈ N (by definition non-zero), β ∈ N̄, c a
bicomposition, we define

(3.3) Gw00̄αβc0∗ = Gwαβc0∗ − xk Gw(α−1)βc0∗ ;

• if v = wα0̄0βc0∗, with w a vector of size k − 1, α ∈ N, β ∈ N̄ (by definition non-zero), c a
bicomposition, we define

(3.4) Gwα0̄0βc0∗ = Gwαβc0∗ − yk Gwα(β−1)c0∗ .

We easily check that both terms on the right of (3.3) and (3.4) are indexed by vectors that are transdi-
agonal as soon as v is transdiagonal. We do it for (3.3) : let us denote v′ = wαβc0∗ and v′′ = w(α− 1)βc0∗.
Let l be the smallest integer such that (3.2) holds for v. If l ≥ k − 1 then w is transdiagonal thus so are v′

and v′′, and if not:

v′1 + v′2 + · · · + v′2l−3 + v′2l−2 ≥ l and v′′1 + v′′2 + · · · + v′′2l−3 + v′′2l−2 ≥ l − 1.

Since v′ and v′′ are of length equal to `(v) − 1, this defines any Gv for v transdiagonal by induction on
`(v).

It is interesting to develop an example, where we take n = 3.

G00̄10̄02̄ = G00̄12̄00̄ − y2 G00̄11̄00̄

= (G12̄00̄00̄ − x1 G02̄00̄00̄) − y2 (G11̄00̄00̄ − x1 G01̄00̄00̄)
= (F12̄ − x1 F02̄) − y2(F11̄ − x1 F01̄)
= (x1y

2
1 + x1y1y2 + x1y1y3 + x1y

2
2 + x1y2y3 + x1y

2
3 + x2y

2
2 + x2y2y3

+x2y
2
3 + x3y

2
3 − x1(y

2
1 + y1y2 + y1y3 + y2

2 + y2y3 + y2
3))

−y2(x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y3 − x1(y1 + y2 + y3))
= x2y

2
3 − y2x3y3 + x3y

2
3

The monomials of the result are ordered with respect to the lexicographic order and we observe that the
leading monomial (denoted LM) of G00̄10̄02̄ is A00̄10̄02̄

3 . The following proposition shows that this fact holds
in general for the family G.

Proposition 3.1. Let v be a transdiagonal vector. The leading monomial of Gv is

(3.5) LM(Gv) = Av
n.

Proof. [SKETCH] It is done by induction on the length of v. �

3.3. Proof of the main theorem. The aim of this subsection is to prove Theorem 1.1, by showing
that the set G constructed in the previous section is a Gröbner basis for I2

n. This will be achieved in several
steps.

We introduce the notation Qn = Q[An]/I2
n and define

Bn = {Av
n / π(v) is a 2−Dyck path}.

Lemma 3.1. Any polynomial P ∈ Q[An] is in the span of Bn modulo I2
n. That is

(3.6) P (An) ≡
∑

Av
n
∈Bn

cvA
v
n.

Proof. It clearly suffices to show that (3.6) holds for any monomial Av
n, with v transdiagonal. We

assume that there exists Av
n not reducible of the form (3.6) and we choose Aw

n to be the smallest amongst
them with respect to the lexicographic order. Let us write

Aw
n = LM(Gw)

= (Aw
n − Gw) + Gw

≡ Aw
n − Gw (mod I2

n).

All monomials in (Aw
n −Gw) are lexicographically smaller than Aw

n , thus they are reducible. This contradicts
our assuption and completes the proof. �
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This lemma implies that Bn spans the quotient Qn. We will now prove its linear independence. The
next lemma is a crucial step.

Lemma 3.2. If we denote by L[S] the linear span of a set S, then

(3.7) Q[An] = L[Av
nFc / Av

n ∈ Bn, |c| ≥ 0].

Proof. We have the following reduction for any monomial Aw
n in Q[An]:

(3.8) Aw
n =

∑

Av
n
∈Bn

cvA
v
n +

∑

|c|>0

QcFc, Qc ∈ Q[An].

We then apply the reduction (3.6) to each monomial of the Qc’s. Now we use the algebra structure of
QSym(B) (cf. Proposition 37 of [7]) to reduce products of fundamental B-quasisymmetric functions as
linear combinations of Fc’s. We obtain (3.7) in a finite number of operations since degrees strictly decrease
at each operation, because |c| > 0 implies deg Qc < |w|. �

Now we come to the final step in the proof. Before stating this lemma, we introduce some notation,
and make an observation. For v = (v1, v2, v . . . , v2k−1, v2k) a bivector, let r(v) denote the reverse bivector:
r(v) = (v2k, v2k−1, . . . , v2, v1). In the same way, let R(An) denote the reverse alphabet of An: R(An) =
yn, xn, . . . , y1, x1. Then one has for any bicomposition c:

(3.9) Fc(R(An)) = Fr(c)(An).

Lemma 3.3. The set G is a linear basis of I2
n, i.e.

(3.10) I2
n = L[Gw / w transdiagonal].

Proof. [SKETCH] We use Lemma 3.2, observation (3.9), and the algebra structure of QSymn(B) to
write:

I2
n = 〈Fc, |c| > 0〉Q[An] = L[Av

n Fc Fc′ / R(An)v ∈ Bn, |c| > 0, |c′| ≥ 0]

= L[Av
n Fc′′/ R(An)v ∈ Bn, |c′′| > 0].

Then we prove that we can reduce any term Av
n Fc′′ using the G polynomials, and we illustrate this on

an example, where n = 5:

x1 y2 F10̄01̄ = y2(x1 F10̄01̄)
= y2(G20̄01̄00̄00̄00̄ − G00̄20̄01̄00̄00̄)
= y2 G20̄01̄00̄00̄00̄ − y2 G00̄20̄01̄00̄00̄

= G20̄02̄00̄00̄00̄ − G20̄00̄02̄ − G00̄21̄01̄00̄00̄ + G00̄20̄01̄01̄00̄.

�

Now we are able to complete the proof of Theorem 1.1. We can even state a more precise result.

Theorem 3.4. A basis of the quotient Qn is given by the set

Bn = {Av
n / π(v) is a 2−Dyck path},

which implies

(3.11) dimQn =
1

2n + 1

(

3n

n

)

.

Since I2
n is bihomogeneous, the quotient Qn is bigraded and we can consider Hk,l(Qn) the subspace of Qn

consisting of polynomials of bidegree (k, l), then

(3.12) dimHk,l(Qn) =

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n
.
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Proof. By Lemma 3.1, the set Bn spans Qn. Assume we have a linear dependence:

P =
∑

Av
n
∈Bn

av A
v
n ∈ I2

n.

By Lemma 3.3, the set G spans I2
n, thus

P =
∑

u transdiagonal

bu Gu.

This implies LM(P ) = Au
n, with u transdiagonal, which is absurd. Hence Bn is a basis of the quotient Qn.

The expressions (3.11) and (3.12) are consequences of Section 2’s results.
�

Remark. This work admits direct generalization. We can define quasisymmetric polynomials in p sets
of variables. In this case, the quotient of the polynomial ring by the ideal generated by p-quasisymmetric

polynomials (without constant term) has dimension given by 1
pn+1

(

(p+1)n
n

)

. These numbers are Fuss-Catalan

numbers, which enumerate (p + 1)-ary trees. The combinatorial part corresponds to let the “Catalan recur-
rence” grow in (p + 1) dimensions, and we obtain multivariate Fuss-Catalan numbers of order (p + 1). All
details can be found in [2, 3].

Acknowledgement. The author thanks C. Hohlweg for introducing him to B-quasisymmetric polynomials,
and for valuable comments and explanations.
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FYaJF V NSI _

ij>klj C gH FGHIJKmLE MEI FREV JHI SMNHNJLEI SNLONHO KE M nGLJTJHE U LEIONHO KNHI ME XYNLO KE SMNH
i, j ≥ 0

EO ZNJOI
KE SNI gYEIO U [YK EO \GLK]^IO _ oM Ee JIOE KE f GMJEI ZGLVYMEI pHYV pLNOJcEI S GYL FEI FREV JHI _ q NJI U NMGLI XYE
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FGVaJHNOGJLE _ \GYI KGHHGHI YHE OEMME EeSMJFNOJGH _ ^H IYI KE FEI FREV JHI U HGYI pHYV pLGHI aJf EFOJcEV EHO MEI
OLJNHTYMNOJGHI INHI aGYFME KE MN ISRmLE _ \GI SLEYcEI LESGIEHO IYL KEI aJf EFOJGHI EHOLE KEI FREV JHI EO KEI
OLJNHTYMNOJGHI VYHJEI K nYH NLaLE FGYcLNHO _ rNHI ME V sV E OEVSI U HGYI pHYV pLGHI YHE ZNV JMME JVSGLONHOE
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ª «¬®¯ � ± § ������ � �� �

���� ��   � ��� �� ��� ��� � ���� ������ � ¹	,�� 	�¹� ��� �������� �� ��� ���� �� ��� � ¹	,��¹
�¹/ � ¢���������¡�
��� ���� �� ���������  ¡ �� ����� �������� ���¡ ���� ��� � ¹	,��¹
�¹/ � ��� ���� �� � ���� ��� � �� ���  �
� ��� �� � ������� ��������� � ¨�� �������� � ��� ���� ��� � �� �� ¨����� . ��� � ����  ����� ��� ���� � ��� ���
���� �� ��� � ��� �

ª «¬®¯ � ± § ���� ��� � �� �
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k
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� �� �� ¨����� . �� �� �� � � ���²� ���� �� �� � ��� ��� ��  �¾ ������ � ��� ��������� �� � ��� ��� ������� �� �
����  ¡ ��� � ������ ����������� �� ¨����� µ �

ª «¬®¯ � ± � �¾ ������  ������ �� �� ���� ��� ��������� �� ���� �
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k
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(u2, v2)
 �����

��� ���� � ¨ �����¡� � ,¹� �� �� 	� �� � � �� � ��� � ������������� ����� ���� �
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����������� �� ¨����� � � ��� �������� �� �������� £������� ����� ������� �� ������ ��� ��� �� �� ©�
��� �������� ����� � ��� ����� �� � ��� � © �������� �� � ��� ��� ������ ����������²� � ���� ��� �� �� �����¡
�����  ¡ ����¡��� ��� �¡��� ����� ���� ������� µ �+ �� ¤t4¦� � �� � ���� ��� �� ���� ��� ������ �

57



� ± �¯®��®� «

�®����«� «�� µ �© ± �� ¹
¹ 	
¹

en =
4n

2n + 1

(

3n

n

)�µ �©�

¹/ �¹¼,¹, 0 
¹� ¹
	º �	1�º  � º»�¹
n

¹¼,»¼·  ¼ �� ¹ º¹� ¼, ,»	·  ¼	1	
�� ��� ������ ��� � ������

Φ
�� �������� . ��� ���� �� ��¾ ����²� � ������
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A Proof of the q, t-Square Conjecture

Mahir Can and Nicholas Loehr

Abstract. We prove a combinatorial formula conjectured by Loehr and Warrington for the coefficient of
the sign character in ∇(pn). Here ∇ denotes the Bergeron-Garsia nabla operator, and pn is a power-sum
symmetric function. The combinatorial formula enumerates lattice paths in an n × n square according to
two suitable statistics.

Résumé. Nous démontrons une formule combinatoire conjecturée par Loehr et Warrington concernant le
coefficient du caratère signe dans ∇(pn). Nous dénotons par ∇ l’operateur nabla de Bergeron-Garsia, et par
pn une fonction symmétrique en les puissances n-èmes. La formule combinatoire énumère les chemins, sur
un rèseau carré de dimension n × n, vérifiant deux statistiques.

1. Introduction

We begin with a quick overview of the remarkable q, t-Catalan theorem and the q, t-square conjecture. The
q, t-Catalan theorem is the culmination of a series of papers by Garsia, Haglund, and Haiman [2, 3, 4, 8, 9].
The theorem states that, for every n, the following seemingly unrelated quantities are in fact equal:

1. the weighted sum of all Dyck paths of order n, weighted by area and bounce score;
2. the Hilbert series of the module of diagonal harmonic alternants of order n;
3. the n’th Garsia-Haiman q, t-Catalan number, which is a certain sum of complicated rational func-

tions constructed from partitions;
4. the coefficient of the sign character in ∇(en), where ∇ is the Bergeron-Garsia nabla operator [1, 10],

and en is an elementary symmetric function.

Precise definitions of the terms mentioned here will be given later (§2).
Loehr and Warrington [12] recently found an analogue of this theorem that involves q, t-analogues of

lattice paths inside squares. Their result, which we call the q, t-square conjecture, states that the following
five quantities are equal for every n:

1. the weighted sum of all n × n square paths ending in a north step, weighted by area and bounce

score;
2. the weighted sum of all n × n square paths ending in an east step, weighted by area and bounce

score;
3. a certain sum of rational functions analogous to the Garsia-Haiman q, t-Catalan number;
4. the coefficient of the sign character in (−1)n−1∇(pn), where pn is a power-sum symmetric function.

Again, we defer precise definitions of these quantities to §2. Loehr and Warrington proved that items 1 and
2 were equal, and also proved that items 3 and 4 were equal. Based on extensive computer calculations, they
conjectured that all four items were equal.

The main theorem of our paper is a proof of this q, t-square conjecture. Here is a rough outline of the
proof strategy. In light of previous results, it suffices to prove that item 1 equals item 4 for all n. We will

2000 Mathematics Subject Classification. Primary 05E05; Secondary 05A19.
Key words and phrases. symmetric functions, sign character, Dyck paths, square paths.
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establish a refinement of this equality based on an expansion of pn in terms of certain symmetric functions
En,k that appeared in the proof of the q, t-Catalan theorem. Explicitly, we will prove that

(1.1) (−1)n−1pn =

n
∑

k=1

1 − qn

1 − qk
En,k.

(In contrast, en =
∑n

k=1 En,k.) Applying nabla and taking the coefficient of s1n gives

(1.2) 〈(−1)n−1∇(pn), s1n〉 =

n
∑

k=1

1 − qn

1 − qk
〈∇(En,k), s1n〉.

Garsia and Haglund previously found combinatorial formulas and recursions for 〈∇(En,k), s1n〉. Comparing
these results to recursions involving q, t-analogues of square lattice paths, we will show that each summand
on the right side of (1.2) enumerates a suitable subcollection of the q, t-square paths mentioned in item 1.
The equality of item 1 and item 4 will readily follow.

The rest of this paper is organized as follows. Section 2 reviews the minimal framework of definitions
needed to give precise statements of the q, t-Catalan theorem and the q, t-square conjecture. Section 3
discusses some (previously known) technical results needed in our proof of the q, t-square conjecture. Section 4
uses a plethystic calculation to prove the fundamental expansion (1.1). Section 5 analyzes a combinatorial
recursion that lets us identify the square q, t-lattice paths enumerated by each summand in (1.2). Section 6
concludes by discussing some natural open problems pertaining to the q, t-Catalan theorem and the q, t-
square conjecture.

2. Definitions

This section reviews the definitions of the concepts appearing in the q, t-Catalan theorem and the q, t-
square conjecture. Precise statements of these two results are given at the end of this section. We assume
familiarity with standard background material on partitions, symmetric functions, representation theory,
Macdonald polynomials, and lattice paths [6, 13, 14, 15]. Readers who find this section too terse may wish
to consult the more leisurely treatment contained in the introduction of [12].

2.1. Partition Definitions. We write µ ` n to indicate that µ is a partition of n. The diagram of µ is

dg(µ) = {(i, j) ∈ N × N : 1 ≤ i ≤ µj}.

Let c = (i0, j0) be a cell in dg(µ). The arm of c is a(c) = |{(i, j0) ∈ dg(µ) : i > i0}|. The coarm of c is
a′(c) = |{(i, j0) ∈ dg(µ) : i < i0}|. The leg of c is l(c) = |{(i0, j) ∈ dg(µ) : j > j0}|. The coleg of c is
l′(c) = |{(i0, j) ∈ dg(µ) : j < j0}|. Let n(µ) =

∑

c∈dg(µ) l(c), and let µ′ be the transpose of µ. In the ring

Z[q, t] ⊆ Q(q, t), define M = (1 − q)(1 − t), Bµ =
∑

c∈dg(µ) qa′(c)tl
′(c), Πµ =

∏

(1,1) 6=c∈dg(µ)(1 − qa′(c)tl
′(c)),

Tµ = qn(µ′)tn(µ), and wµ =
∏

c∈dg(µ)[(q
a(c) − tl(c)+1)(tl(c) − qa(c)+1)].

The n’th Garsia-Haiman q, t-Catalan number is defined by the formula

(2.1)
∑

µ`n

T 2
µMBµΠµ

wµ
∈ Q(q, t).

This sum of rational functions evaluates to a polynomial in N[q, t], although this is quite hard to prove. The
analogous expression appearing in the q, t-square conjecture is

(2.2)
∑

µ`n

T 2
µMB(nn)Πµ

wµ
∈ Q(q, t).

The only difference is that Bµ has been replaced by the constant B(nn), where (nn) ` n2 consists of n parts
equal to n. It is easy to see that this expression can also be written

(2.3) (1 − tn)(1 − qn)
∑

µ`n

T 2
µΠµ

wµ
.
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2.2. Symmetric Function Definitions. We write Λ to denote the ring of symmetric functions with
coefficients in the field F = Q(q, t). As usual, en will denote the n’th elementary symmetric function, pn will
denote the n’th power-sum symmetric function, sµ will denote the Schur function indexed by a partition µ,

and H̃µ will denote the modified Macdonald polynomial indexed by µ. The Bergeron-Garsia nabla operator

is the unique linear operator on Λ such that ∇(H̃µ) = TµH̃µ. The Hall scalar product 〈·, ·〉 on Λ is defined
by requiring that the Schur functions be an orthonormal basis. If f ∈ Λ is the Frobenius character of some
Sn-module M , then 〈f, s1n〉 gives the multiplicity of the sign representation in M . Accordingly, for any
f ∈ Λ, we often call 〈f, s1n〉 the “coefficient of the sign character in f .” We remark in passing that the
well-known identities

en =
∑

µ`n

(MBµΠµ/wµ)H̃µ, (−1)n−1pn =
∑

µ`n

(MB(nn)Πµ/wµ)H̃µ,

and 〈H̃µ, s1n〉 = Tµ easily imply that 〈∇(en), s1n〉 and 〈(−1)n−1∇(pn), s1n〉 are given by formulas (2.1) and
(2.2), respectively.

2.3. Path Definitions. A Dyck path of order n is a lattice path in the x, y-plane that starts at the
origin, consists of n unit north steps (N) and n unit east steps (E), and always stays weakly above the line
y = x. We let DPn denote the set of Dyck paths of order n. For P ∈ DPn, define area(P ) to be the number
of complete lattice squares bounded by P and the line y = x. Next, we define Haglund’s bounce path for P ,
which consists of certain quantities vi(P ) for i ≥ 0. We imagine a ball bouncing from (n, n) to (0, 0) and
being deflected by P and the diagonal y = x. At stage i ≥ 0, the ball is on the line y = x and goes vi(P )
units west until it is blocked by the upper end of a north step of P . The ball then “bounces” south vi(P )
units back to the diagonal. This bouncing continues until the ball reaches (0, 0). The bounce score of P is
bounce(P ) =

∑

i≥0 ivi(P ). For example, the path P encoded by NNNENNEENENENEEE lies in DP8 and

has area(P ) = 14, v0(P ) = 3, v1(P ) = 4, v2(P ) = 1, and bounce(P ) = 6.
A square path of order n is a lattice path in the x, y-plane that starts at the origin and consists of n unit

north steps and n unit east steps. We write SQPn, SQPN
n , and SQPE

n to denote (respectively) the set of
all such square paths, the set of all such paths ending with a north step, and the set of all such paths ending
in an east step. To define analogues of bounce and area as in [12], we need some auxiliary concepts. Fix
a square path P . Consider the diagonal lines y = x − c, for c = 0, 1, 2, . . .. The lowest such diagonal that
meets the path P is called the base diagonal. The lowest point on P touching the base diagonal is called the
breakpoint. We now let area(P ) be the number of complete lattice squares in the region bounded on the left
by P , on the right by the base diagonal, on the top by y = n and on the bottom by y = 0. For example, the
path P encoded by NEENEENNENEEENNENENEENNNENNNEE lies in SQPE

15 and has base diagonal
y = x − 3, breakpoint (8, 5), and area 25.

Now we define square bounce paths. Given P , let y = x − c be the base diagonal for P . This time
there are two bouncing balls. The first ball starts at (n, n) and moves vertically c units south to the base
diagonal. Thereafter, the ball bounces west and south as in the Dyck path case, with all southward moves
terminating on the base diagonal, until it reaches the breakpoint. The second ball starts at (0, 0) and moves
horizontally c units east to the base diagonal. This ball proceeds to bounce northeast to the breakpoint as
follows. Starting at the base diagonal, the ball moves north until it is blocked by the end of an east step
of P . It then moves the same distance east to reach the base diagonal. (This is not simply a reflected
version of the bouncing policy followed by the first ball!) Let the vertical moves made by the first ball (in
order) have lengths v′0(P ) = c, v′1(P ), . . . , v′s(P ), and let the vertical moves made by the second ball have
lengths v′′0 (P ), . . . , v′′t (P ). We then define (v0(P ), v1(P ), . . .) = (v′′t (P ), . . . , v′′0 (P ), v′0(P ), . . . , v′s(P )) and set
bounce(P ) =

∑

i≥0 ivi(P ) as before. For the specific example considered above, the first ball moves south
3, west 3, south 3, west 2, south 2, west 2, south 2, while the second ball moves east 3, north 2, east 2,
north 2, east 2, north 1, east 1. Accordingly, (v0(P ), v1(P ), . . .) = (1, 2, 2, 3, 3, 2, 2) and bounce(P ) = 49. See
Figure 1.

2.4. q-Definitions. For n ≥ 1, define [n]q = 1 + q + q2 + · · · + qn−1 = (1 − qn)/(1 − q), (a; q)n =
(1−a)(1−aq)(1−aq2) · · · (1−aqn−1), and [n]!q = (q; q)n/(1−q)n =

∏n
i=1[i]q. We also set [0]q = 1 = (a; q)0.
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breakpoint

base diagonal

Figure 1. Square bouncing.

We define the q-binomial coefficient by setting
[

m + n

m, n

]

q

=
(q; q)m+n

(q; q)m(q; q)n
=

[m + n]!q
[m]!q[n]!q

.

It is well-known that
[

m+n
m,n

]

q
=
∑

µ⊆(mn) q|µ|. Thus the q-binomial coefficient enumerates partitions (or

lattice paths) contained in an m × n rectangle, weighted by area.

2.5. Precise Statements of Theorems. We summarize the preceding definitions by giving precise
versions of the q, t-Catalan theorem and the q, t-square conjecture.

Theorem 2.1 (Garsia-Haglund-Haiman q, t-Catalan Theorem). For all n ≥ 1, we have

∑

P∈DPn

qarea(P )tbounce(P ) = Hilb(DHAn) =
∑

µ`n

T 2
µMBµΠµ

wµ
= 〈∇(en), s1n〉.

In particular, the last two expressions are elements of N[q, t].

Theorem 2.2 (Loehr-Warrington). For all n ≥ 1, we have
∑

P∈SQPN
n

qarea(P )tbounce(P ) =
∑

P∈SQPE
n

qarea(P )tbounce(P )

and
∑

µ`n

T 2
µMB(nn)Πµ

wµ
= 〈(−1)n−1∇(pn), s1n〉.

Conjecture 2.3 (Loehr-Warrington). For all n ≥ 1, all four quantities in the previous theorem are
equal. In particular, the last two expressions are elements of N[q, t].

The rest of this paper is devoted to a proof of this conjecture. More specifically, we will prove a refinement
of the identity

〈(−1)n−1∇(pn), s1n〉 =
∑

P∈SQPN
n

qarea(P )tbounce(P ).

3. Technical Results

This section states without proof some known results of a somewhat technical nature that will be needed
to establish the q, t-square conjecture.
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3.1. Plethysm. We begin with some fundamental facts about plethystic notation. This material is
treated in much greater detail in [6, 11].

Recall that Λ can be viewed as a polynomial ring Λ = F [p1, p2, . . . , pk, . . .]. Like any polynomial ring,
Λ enjoys a universal mapping property (UMP) that says that any function g mapping the set {pk : k ≥ 1}
into an F -algebra S extends uniquely to an F -algebra homomorphism from Λ into S. This homomorphism
is often called the evaluation homomorphism determined by g.

Now, if f ∈ Λ and A is a “plethystic alphabet,” the plethystic substitution f [A] is defined to be the
image of f under the evaluation homomorphism determined by a certain function gA. This function gA is
itself determined by A according to the rules for interpreting plethystic alphabets. We shall only need three
special cases of this definition:

(1) f [X(1− z)/(1− q)] is the image of f under the F -algebra homomorphism from Λ to Λ[z] such that
pk 7→ pk(1 − zk)/(1 − qk).

(2) f [X/(1 − q)] is the image of f under the F -algebra homomorphism from Λ to Λ such that pk 7→
pk/(1 − qk).

(3) f [1−z] is the image of f under the F -algebra homomorphism from Λ to F [z] such that pk 7→ 1−zk.

We also have the trivial substitutions f [X ] = f and f [0] = 0 for f ∈ Λ.
We now state three (standard) facts about plethysm needed in our proof. First, for any alphabets A

and B, we have the dual Cauchy identity

(3.1) en[AB] =
∑

µ`n

sµ[A]sµ′ [B].

Second, for all partitions µ, we have

(3.2) sµ[1 − z] =

{

(−z)a(1 − z) if µ = (n − a, 1a) for some a ∈ {0, 1, 2, . . . , n − 1},
0 otherwise.

Third, en[X(1 − z)/(1 − q)] is an element of the polynomial ring Λ[z] of degree at most n in z.

3.2. Definition of En,k and Fn,k. We can now define the symmetric functions En,k mentioned in the
introduction. Let M be the subset of Λ[z] consisting of polynomials of degree at most n in z. Clearly, M
is a free Λ-module with basis 1, z, z2, . . . , zn. Easy degree considerations show that the set {(z; q)k/(q; q)k :
0 ≤ k ≤ n} is also a basis for M . Combining this observation with the third fact from the last subsection,
we see that there exist unique elements En,k ∈ Λ such that

(3.3) en

[

X(1 − z)

1 − q

]

=

n
∑

k=0

(z; q)k

(q; q)k
En,k.

Setting z = 1, we see that En,0 = 0, while setting z = q shows that en =
∑n

k=1 En,k.1

Define Fn,k = 〈∇(En,k), s1n〉 ∈ Q(q, t). Garsia and Haglund showed [3, 5] that the Fn,k satisfy the
recurrence

(3.4) Fn,k = qk(k−1)/2tn−k
n−k
∑

r=0

[

r + k − 1

r, k − 1

]

q

Fn−k,r

with initial conditions Fn,0 = δn0. On the other hand, let DPn,k be the set of all Dyck paths P of or-
der n that end in exactly k east steps. Equivalently, DPn,k = {P ∈ DPn : v0(P ) = k}. Let F ′

n,k =
∑

P∈DPn,k
qarea(P )tbounce(P ). By “removing the first bounce” in the bounce path for P , one easily sees that

the F ′
n,k satisfy the same recurrence and initial conditions as Fn,k. Therefore, Fn,k = F ′

n,k for all n and k,
i.e.,

(3.5) 〈∇(En,k), s1n〉 =
∑

P∈DPn,k

qarea(P )tbounce(P ) ∈ N[q, t].

This formula provides the fundamental link between the nabla operator and the combinatorics of q, t-Dyck
paths.

1These statements, while true, require a subtle additional justification. See [11] for a detailed discussion.
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4. Expansion of pn via En,k’s

Theorem 4.1. For all n ≥ 1,

(−1)n−1pn =

n
∑

k=1

1 − qn

1 − qk
En,k.

Proof. Using (3.1) and (3.2), we compute

en

[

X(1 − z)

1 − q

]

=
∑

µ`n

sµ[X/(1 − q)]sµ′ [1 − z]

=
∑

µ`n
µ′=(n−a,1a)

sµ[X/(1 − q)](−z)a(1 − z)

=

n
∑

a=1

s(a,1n−a)[X/(1 − q)](−z)a−1(1 − z).

On the other hand, using (3.3) and En,0 = 0, we get

en

[

X(1 − z)

1 − q

]

=

n
∑

k=1

(z; q)k

(q; q)k
En,k =

n
∑

k=1

(1 − z)(zq; q)k−1

(q; q)k
En,k.

Comparing the two expressions for en[X(1− z)/(1− q)] and cancelling 1− z in the integral domain Λ[z], we
obtain

n
∑

a=1

(−z)a−1s(a,1n−a)[X/(1 − q)] =

n
∑

k=1

(zq; q)k−1

(q; q)k
En,k.

Now apply the evaluation homomorphism Λ[z] → Λ sending z to 1:
n
∑

a=1

(−1)a−1(s(a,1n−a)[X/(1 − q)]) =
n
∑

k=1

(q; q)k−1

(q; q)k
En,k =

n
∑

k=1

En,k

1 − qk
.

By the Pieri rule and linearity of plethysm, the left side here is
n
∑

a=1

(−1)a−1(s(a,1n−a)[X/(1 − q)]) =

(

n
∑

a=1

(−1)a−1s(a,1n−a)

)

[X/(1 − q)]

= ((−1)n−1pn)[X/(1 − q)] = (−1)n−1pn/(1 − qn).

Putting this into the previous formula and multiplying through by 1 − qn, we obtain the theorem. �

By linearity of ∇ and the Hall scalar product, we immediately deduce the following corollary.

Corollary 4.2.

〈(−1)n−1∇(pn), s1n〉 =

n
∑

k=1

[n]q
[k]q

Fn,k.

5. Combinatorial Recursion Analysis

In this section, we will identify each summand in the last corollary as the weighted sum of a suitable
subcollection of square lattice paths. Specifically, define

Sn,k =
∑

P∈SQPN
n :v0(P )=k

qarea(P )tbounce(P ).

We will prove that Sn,k =
[n]q
[k]q

Fn,k. The q, t-square conjecture will easily follow from this fact and the

corollary. To obtain these results, we first derive a recursion characterizing Sn,k.

Theorem 5.1. We have Sn,n = qn(n−1)/2 = Fn,n for all n. For all n ≥ 1 and 1 ≤ k < n, we have

(5.1) Sn,k = Fn,k + qk(k−1)/2tn−k
n−k
∑

r=1

qk

[

r − 1 + k

r − 1, k

]

q

Sn−k,r
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breakpoint

final north step

k

R

r

µ

Figure 2. Removing the last negative bounce in case 2.

Proof. Recall the combinatorial description of Fn,k from §3.2:

Fn,k =
∑

P∈DPn:v0(P )=k

qarea(P )tbounce(P ).

The proof of the recurrence for Sn,k is so similar to the proof of an analogous recurrence in [12] that we
only sketch the details. (See Theorem 7 in [12] — the difference between the Rn,k appearing there and the
Sn,k appearing here is that we demand that our paths end in a north step. This extra condition simplifies
the recursion considerably.) Let P be a path counted by Sn,k. Observe that P is not a Dyck path, since it
ends in a north step. Now consider two cases.

Case 1: The break point of P lies on the line y = 0. Then P must begin with k east steps. Moving
these east steps to the end of the path and translating the break point to the origin, we obtain a typical
path P ′ counted by Fn,k. (Note that v0(P

′) = k because P ends in a north step.) The map P 7→ P ′ defines
a bijection between the paths P occurring in case 1 and the paths P ′ counted by Fn,k. Area and bounce are
clearly preserved, so we have explained the first summand in (5.1).

Case 2: The break point of P lies above the line y = 0. We know v0(P ) = k; define r = v1(P ), which is
always the length of the horizontal move preceding the last vertical move made by the second bouncing ball.
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A typical situation is pictured in Figure 2 — but note that the horizontal move of length r may also occur
on the line y = 0. We can map P to a certain triple (r, µ, P ′), where r = v1(P ) ∈ {1, 2, . . . , n − k}, µ is the
partition contained in the rectangle R = ((r − 1)k) shown in the figure, and P ′ is a typical path counted by
Sn−k,r. We obtain P ′ by merely erasing everything in the k rows immediately below the breakpoint, and then
translating the part of P above the breakpoint k units down along the base diagonal. This has the effect of
“removing the last bounce” made by the second bouncing ball. The rest of the bounce paths are unaffected
by this shift, and it readily follows that vi(P

′) = vi+1(P ) and bounce(P ) = bounce(P ′) + n − k. The

breakpoint cannot be located at (n, n), so P ′ still ends in a north step. Since P ′ ∈ SQPN
n−k and v0(P

′) = r,
P ′ is a path counted by Sn−k,r. It is not hard to see that area(P ) = area(P ′)+ k(k− 1)/2+ k+ |µ|; here the
k(k − 1)/2 accounts for area cells to the right of the last vertical move made by the second ball, and the k
accounts for the area cells in the column just left of this bounce, which is not part of µ. Finally, the passage
from P (in case 2) to triples (r, µ, P ′) with r ∈ {1, 2, . . . , n − k}, µ ⊆ (r − 1)k, and P ′ ∈ SQPN

n−k with
v0(P

′) = r is clearly a bijection. Combining all these facts, we obtain the remaining terms in the recurrence
(5.1). �

Theorem 5.2. For all n ≥ 1 and all k ≤ n, Sn,k =
[n]q
[k]q

Fn,k.

Proof. The theorem holds for all n when k = n, since Sn,n = Fn,n in this case. For the remaining
cases, we use induction on n. Using the induction hypothesis to replace Sn−k,r in the recursion (5.1), we
first obtain

Sn,k = Fn,k + qk(k−1)/2tn−k
n−k
∑

r=1

[r + k − 1]!q
[r − 1]!q[k]!q

(

[n − k]q
[r]q

Fn−k,r

)

qk.

Rearranging the q-numbers here, the right side can be written

Fn,k +
qk[n − k]q

[k]q

(

qk(k−1)/2tn−k
n−k
∑

r=1

[

r + k − 1

r, k − 1

]

q

Fn−k,r

)

.

Comparing to (3.4), we see that the term in parentheses is just Fn,k again! So the calculation continues:

Sn,k = Fn,k

(

1 +
qk[n − k]q

[k]q

)

=
[n]q
[k]q

Fn,k.

This completes the induction step and the proof. �

Evidently SQPN
n is the disjoint union of its subsets {P ∈ SQPN

n : v0(P ) = k} as k ranges from 1 to n.
Combining this fact with Theorem 5.2 and Corollary 4.2, we obtain our desired result:

Corollary 5.3.

〈(−1)n−1∇(pn), s1n〉 =
∑

P∈SQPN
n

qarea(P )tbounce(P ).

In particular, 〈(−1)n−1∇(pn), s1n〉 =
∑

µ`n

T 2
µMB(nn)Πµ

wµ
is an element of N[q, t].

6. Conclusion

Comparing the q, t-Catalan theorem to the q, t-square theorem (as we shall now call it), one obvious
difference is apparent: the latter theorem does not identify 〈(−1)n−1∇(pn), s1n〉 as the Hilbert series of
some doubly graded module. Of course, one could define such a module by taking a direct sum of sign
representations indexed by square paths, using the area and bounce statistics to determine the bigrading.
We leave it as an open problem to find a less artificial solution, i.e., “naturally occurring” modules Mn

carrying only the sign representation such that Hilb(Mn) is given by the quantities in the q, t-square theorem.
More generally, one could seek modules whose Frobenius characters are given by (−1)n−1∇(pn), just as the
Frobenius characters of the diagonal harmonics modules DHn are given by ∇(en) [9].

In closing, we recall that combinatorial interpretations have been proposed [7, 12] for the monomial
expansions of the symmetric functions ∇(en), ∇(En,k), and ∇(pn). These conjectures involve labelled
versions of Dyck paths and square lattice paths. At the time of this writing, all these conjectures are still
open.
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Characterization of Eulerian binomial and Sheffer posets

Richard Ehrenborg and Margaret A. Readdy

Abstract. We completely characterize the factorial functions of Eulerian binomial posets. The factorial
function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the
factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer
posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has Sheffer factorial function
D(n) identical to that of the infinite Boolean algebra, the infinite Boolean algebra with two new coatoms
inserted, or the infinite cubical poset. Moreover, we are able to classify the Sheffer factorial functions of
Eulerian Sheffer posets with binomial factorial function B(n) = 2n−1 as the doubling of an upside-down
tree with ranks 1 and 2 modified.

When we impose the further condition that a given Eulerian binomial or Eulerian Sheffer poset is a
lattice, this forces the poset to be the infinite Boolean algebra BX or the infinite cubical lattice C

<∞

X
. We

also include several poset constructions that have the same factorial functions as the infinite cubical poset,
demonstrating that classifying Eulerian Sheffer posets is a difficult problem.

Résumé. Nous caractérisons complétement les fonctions factorielles des ensembles partiellement ordonnés
(posets) binomiaux Eulériens. La fonction factorielle B(n) coincide avec n!, la fonction factorielle de l’algèbre
de Boole infinie, ou avec 2n−1, la fonction factorielle de l’ensemble partiellement ordonné “papillon” infini.
Nous classifions aussi les fonctions factorielles des ensembles partiellement ordonnés (posets) de Sheffer
Eulériens. Un poset de Sheffer Eulérien dont la fonction binomiale factorielle est B(n) = n! a la fonction
factorielle de Sheffer D(n) indentique avec celle de l’algèbre de Boole infinie, ou avec celle de l’algèbre de
Boole infinie avec deux nouveaux coatômes insérés, ou avec celle de l’ensemble partiellement ordonné cubique
infini. De plus, nous pouvons classifier les fonctions factorielles de Sheffer des posets de Sheffer Eulériens
avec la fonction binomiale factorielle B(n) = 2n−1 comme le doublement d’un arbre á l’envers avec les rangs
1 et 2 modifiés.

Quand nous démandons la condition additionnelle qu’un poset binomial Eulérien ou Sheffer Eulérien
soit un treillis, celle-ci force l’ensemble à être l’algèbre de Boole infinie BX ou le treillis cubique infini C

<∞

X
.

Plusieures constructions des posets sont inclus qui possèdent les mêmes fonctions factorielles que le poset
cubique infini, ce qui demontre que la classification des posets de Sheffer Eulériens est une problème trés
difficile.

1. Introduction

Binomial posets were introduced by Doubilet, Rota and Stanley [5] to explain why generating functions
naturally occurring in combinatorics have certain forms. They are highly regular posets since the essential
requirement is that every two intervals of the same length have the same number of maximal chains. As a
result, many poset invariants are determined. For instance, the quintessential Möbius function is described

2000 Mathematics Subject Classification. Primary 05E99; Secondary 06A07.
Key words and phrases. factorial function, poset structure, cubical posets, lattices, triangular posets.
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by the generating function identity

(1.1)
∑

n≥0

µ(n) ·
tn

B(n)
=




∑

n≥0

tn

B(n)




−1

,

where µ(n) is the Möbius function of an n-interval and B(n) is the factorial function, that is, the number of
maximal chains in an n-interval. A binomial poset is required to contain an infinite chain so that there are
intervals of any length in the poset.

A graded poset is Eulerian if its Möbius function is given by µ(x, y) = (−1)ρ(y)−ρ(x) for all x ≤ y in the
poset. Equivalently, every interval of the poset satisfies the Euler-Poincaré relation: the number of elements
of even rank is equal to the number of elements of odd rank in the interval. The major example of Eulerian
posets are face lattices of convex polytopes and more generally, the face posets of regular CW -spheres. Hence
there is a large geometric and topological interest in understanding them.

A natural question arises: which binomial posets are Eulerian? By equation (1.1) it is clear that
the Eulerian property can be determined by knowing the factorial function. In this paper we classify the
factorial functions of Eulerian binomial posets. There are two possibilities, namely, for the factorial function
to correspond to that of the infinite Boolean algebra or the infinite butterfly poset.

Notice that this classification is on the level of the factorial function, not the poset itself. There are more
Eulerian binomial posets than these two essential examples. See Examples 2.9 and 2.10. However, we are
able to classify the intervals of Eulerian binomial posets. They are either isomorphic to the finite Boolean
algebra or the finite butterfly poset.

Sheffer posets were introduced by Reiner [10] and independently by Ehrenborg and Readdy [6]. A
Sheffer poset requires the number of maximal chains of an interval [x, y] of length n to be given by B(n) if

x > 0̂ and D(n) if x = 0̂. The upper intervals [x, y] where x > 0̂ have the property of being binomial. Hence

the interest is to understand the Sheffer intervals [0̂, y]. Just like binomial posets, the Möbius function is
completely determined:

(1.2)
∑

n≥1

µ(n)
tn

D(n)
= −




∑

n≥1

tn

D(n)



 ·




∑

n≥0

tn

B(n)




−1

,

where µ is the Möbius function of a Sheffer interval of length n; see [6, 10].
The classic example of a Sheffer poset is the infinite cubical poset (see Example 3.6). In this case, every

interval [x, y] of length n, where x is not the minimal element 0̂, has n! maximal chains. In fact, every such

interval is isomorphic to a Boolean algebra. Intervals of the form [0̂, y] have 2n−1 · (n − 1)! maximal chains
and are isomorphic to the face lattice of a finite dimensional cube.

In sections 3 and 4 we completely classify the factorial functions of Eulerian Sheffer posets. The factorial
function B(n) follows from the classification of binomial posets. The pair of factorial functions B(n) and
D(n) fall into three cases (see Theorem 4.1) and one infinite class (Theorem 3.10). Furthermore, for the
infinite class we can describe the underlying Sheffer intervals; see Theorem 3.11. For two of the three cases in
Theorem 3.11 we can also classify the Sheffer intervals. However for the third case, we construct a multitude
of examples of Sheffer intervals. It is a very striking coincidence that this case corresponds to the factorial
functions of an infinite cubical lattice. That is, we can find many Sheffer posets having the same factorial
functions as the infinite cubical lattice, but the Sheffer intervals are not isomorphic to the finite cubical
lattice; see Examples 3.9, 4.2, 4.3 and 4.4. However, if we add the extra requirement that each Sheffer
interval is a lattice then we obtain that the Sheffer intervals are isomorphic to cubical lattices.

When we impose the further condition that a given Eulerian binomial or Eulerian Sheffer poset is a
lattice, this forces the poset to be the infinite Boolean algebra BX or the infinite cubical lattice C

<∞
X . See

Examples 2.10 and 4.6.
The classification of the factorial functions hinges on the condition that the posets under consideration

contain an infinite chain. In the concluding remarks, we discuss what could happen if this condition is
removed. We give examples of posets having their factorial functions behave like the face lattice of the
dodecahedron, but themselves are not isomorphic to this lattice.
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2. Eulerian binomial posets

Definition 2.1. A locally finite poset P with 0̂ is called a binomial poset if it satisfies the following
three conditions:

(i) P contains an infinite chain.
(ii) Every interval [x, y] is graded; hence P has rank function ρ. If ρ(x, y) = n, then we call [x, y] an

n-interval.
(iii) For all n ∈ N, any two n-intervals contain the same number B(n) of maximal chains. We call B(n)

the factorial function of P .

If P does not satisfy condition (i) and has a unique maximal element then we say P is a finite binomial
poset.

For standard poset terminology, we refer the reader to [12]. The number of elements of rank k in
an n-interval is given by B(n)/(B(k) · B(n − k)). Especially, an n-interval has A(n) = B(n)/B(n − 1)
atoms (and coatoms). The function A(n) is called the atom function and expresses the factorial function
as B(n) = A(n) · A(n − 1) · · ·A(1). Directly we have B(0) = B(1) = A(1) = 1. Since the atoms of an
(n−1)-interval are contained among the set of atoms of an n-interval, the inequality A(n−1) ≤ A(n) holds.
Observe if a finite binomial poset has rank j, the factorial and atom functions are only defined up to j. For
further background material on binomial posets, see [5, 11, 12].

Example 2.2. Let B be the collection of finite subsets of the positive integers ordered by inclusion. The
poset B is a binomial poset with factorial function B(n) = n! and atom function A(n) = n. An n-interval is
isomorphic to the Boolean algebra Bn. This example is the infinite Boolean algebra.

Example 2.3. Let T be the infinite butterfly poset, that is, T consists of the elements {0̂} ∪ P × {1, 2}

where (n, i) ≺ (n+ 1, j) for all i, j ∈ {1, 2} and 0̂ is the unique minimal element. The poset T is a binomial
poset. It has factorial function B(n) = 2n−1 for n ≥ 1 and atom function A(n) = 2 for n ≥ 2. Let Tn denote
an n-interval in T.

Example 2.4. Given two ranked posets P and Q, define the rank product P ∗Q by

P ∗Q = {(x, z) ∈ P ×Q : ρP (x) = ρQ(z)}.

Define the order relation by (x, y) ≤P∗Q (z, w) if x ≤P z and y ≤Q w. If P and Q are binomial posets
then so is the poset P ∗Q. It has the factorial function BP∗Q(n) = BP (n) · BQ(n). This example is due to
Stanley [12, Example 3.15.3 d]. The rank product is also known as the Segre product; see [4].

Example 2.5. For q ≥ 2 let Pq be the face poset of an q-gon. Observe that this is a finite binomial
poset of rank 3 with the factorial function B(2) = 2 and B(3) = 2q. Let q1, . . . , qr be a list of integers with
each qi ≥ 2. Let Pq1,...,qr

be the poset obtained by identifying all the minimal elements of Pq1
through Pqr

and identifying all the maximal elements. This is also a binomial poset with factorial function B(2) = 2 and
B(3) = 2 · (q1 + · · · + qr). It is straightforward to see that each rank 3 binomial poset with B(2) = 2 is of
this form.

The Euler-Poincaré relation for a finite graded poset states that it has the same number of elements
of even as odd rank. A poset is called Eulerian if every non-singleton interval satisfies the Euler-Poincaré
relation. Equivalently, a poset P is Eulerian if its Möbius function satisfies µ(x, y) = (−1)ρ(y)−ρ(x) for all
x ≤ y in P .

Lemma 2.6. Let P be a graded poset of odd rank such that every proper interval of P is Eulerian. Then P
is an Eulerian poset.

This lemma is implicit in the two papers [3, 7]. We now conclude

Proposition 2.7. To verify that a poset is Eulerian it is enough to verify that every interval of even
rank satisfies the Euler-Poincaré relation.

For an n-interval of an Eulerian binomial poset the Euler-Poincaré relation states

(2.1)

n∑

k=0

(−1)k ·
B(n)

B(k) · B(n− k)
= 0.
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Note from Proposition 2.7 this relation will only give information when n is an even integer. Also observe
that B(2) = A(2) = 2 since every 2-interval is a diamond.

Theorem 2.8. Let P be an Eulerian binomial poset with factorial function B(n). Then either

(i) the factorial function B(n) is given by B(n) = n! and every n-interval is isomorphic to the Boolean
algebra Bn, or

(ii) the factorial function B(n) is given by B(n) = 2n−1 and every n-interval is isomorphic to the
butterfly poset Tn.

It is tempting to state this theorem as, “There are only two Eulerian binomial posets, namely, the
infinite Boolean algebra B and the infinite butterfly poset T.” However, this is false. The next two examples
demonstrate this.

Example 2.9. Let Q be an infinite poset with a minimal element 0̂ containing an infinite chain such
that every interval of the form [0̂, x] is a chain. Observe the poset Q is an infinite tree and, in fact, is a
binomial poset with factorial function B(n) = 1. Thus we know that both B ∗ Q and T ∗ Q are Eulerian
binomial posets.

Example 2.10. For each infinite cardinal κ there is a Boolean algebra consisting of all finite subsets
of a set X of cardinality κ. We denote this poset by BX . Observe that different cardinals give rise to
non-isomorphic Boolean algebras.

We now state a very useful lemma.

Lemma 2.11. Let P and P ′ be two Eulerian binomial posets having atom functions A(n) and A′(n)
which agree for n ≤ 2m, where m ≥ 2. Then the following equality holds:

(2.2)
1

A(2m+ 1)
·

(
1 −

1

A(2m+ 2)

)
=

1

A′(2m+ 1)
·

(
1 −

1

A′(2m+ 2)

)
.

We will use Lemma 2.11 in the following manner.

Corollary 2.12. Let P and P ′ be two Eulerian binomial posets satisfying the conditions in Lemma 2.11.
Assume furthermore there is a lower and an upper bound for A′(2m+ 2) of the form L ≤ A′(2m+ 2) < U .
Let x be the left-hand side of equation (2.2). Then we obtain a lower and an upper bound for A′(2m + 1),
namely

(2.3)
1

x
·

(
1 −

1

L

)
≤ A′(2m+ 1) <

1

x
·

(
1 −

1

U

)
.

We will see these bounds can be improved by using that A′(2m+ 1) is in fact an integer.

Proposition 2.13. Let P ′ be an Eulerian binomial poset with factorial function B′(n) satisfying B′(3) =
6. Then the factorial function is given by B′(n) = n!.

Proof. Let P be the infinite Boolean algebra B with atom function A(n) = n and factorial function
B(n) = n!. We will first prove that the two factorial functions B(n) and B′(n) are identical, equivalently
that the two atom functions A(n) and A′(n) are equal.

Assume that the two atom functions A and A′ agree up to 2m = j. Since A(n) = n the left-hand side of
equation (2.2) is equal to 1/(j+2). We have the following bounds for A′(j+2): j = A′(j) ≤ A′(j+2) <∞.
Applying Corollary 2.12 we obtain the following bounds on A′(j + 1):

j + 1 −
2

j
≤ A′(j + 1) < j + 2.

Since A′(j+1) is an integer and j ≥ 4 we conclude that A′(j+1) = j+1. This implies that A′(j+2) = j+2
and hence we conclude the two atom functions are equal. �

Proposition 2.14. Let P be a finite binomial poset of rank n with factorial function B(k) = k! for
k ≤ n. Then the poset P is isomorphic to the Boolean algebra Bn.
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Proof. Directly the result is true for n ≤ 2. Assume it is true for all posets of rank n−1 and consider a
poset P of rank n. Since P is a binomial poset with factorial function B(k) = k!, we know that the number
of elements of rank k in P is given by

(
n
k

)
. Especially, the cardinality of P is given by 2n. Let c be a coatom

in the poset. Observe that the interval [0̂, c] is isomorphic to Bn−1 by the induction hypothesis and hence

the coatom c is greater than all but one atom a in the poset P . Similarly, the interval [a, 1̂] is also isomorphic

to Bn−1. Since the two intervals [a, 1̂] and [0̂, c] are disjoint and have the same cardinality 2n−1, the poset P
is the disjoint union of these two intervals.

Using the binomial property of P , an element z of rank k in the lower interval [0̂, c] is covered by n− k

elements in the poset P and by n− k − 1 elements in the interval [0̂, c]. Thus there is a unique element in

[a, 1̂] that covers z. Denote this element by ϕ(z). By a similar argument we obtain that ϕ is a bijective

function from [0̂, c] to [a, 1̂]. Let z ≺ w be a cover relation in [0̂, c]. Consider the 2-interval [z, ϕ(w)]. As
every 2-interval is a diamond there is an element v different from w such that z ≺ v ≺ ϕ(w). Since w is

the unique element in [0̂, c] that is covered by ϕ(w), the element v belongs to the upper interval [a, 1̂]. Also,
the element ϕ(z) is the unique element in the upper interval that covers z, we conclude that v = ϕ(z) and
especially ϕ(w) covers ϕ(z). Hence the function ϕ is order-preserving. By the symmetric argument ϕ−1 is

also order-preserving. Therefore the poset P is the Cartesian product of [0̂, c] with the two element poset B1

and we conclude that P is isomorphic to the Boolean algebra Bn. �

Proposition 2.15. Let P ′ be an Eulerian binomial poset with factorial function B′(n) satisfying B′(3) =
4. Then the factorial function is given by B′(n) = 2n−1 for n ≥ 1.

Proof. Let P be the butterfly poset T and A(n) its atom function, where A(1) = 1 and A(n) = 2 for
n ≥ 2. Similar to the proof of Proposition 2.13 we consider how A(n) and A′(n) relate.

Assume that the two atom functions agree up to 2m = j. Now the right-hand side of equation (2.2) is
equal to 1/4. For A′(j + 2) we have the bounds 2 = A′(j) ≤ A′(j + 2) < ∞. Applying Corollary 2.12 we
obtain

2 ≤ A′(j + 1) < 4.

Consider now the possibility that A′(j + 1) = 3. Let [x, y] be a (j + 1)-interval in P ′. For 1 ≤ k ≤ j
there are B′(j + 1)/(B′(k) · B′(j + 1 − k)) = 3 · 2j−1/(2k−1 · 2j−k) = 3 elements of rank k in this interval.
Let c be a coatom. The interval [x, c] has two atoms, say a1 and a2. Moreover, the interval [x, c] has two
elements of rank 2, say b1 and b2. Moreover we know that each bj covers each ai. Let a3 and b3 be the
third atom, respectively the third rank 2 element, in the interval [x, y]. We know that b3 covers two atoms
in [x, y]. One of them must be a1 or a2, say a1. But then a1 is covered by the three elements b1, b2 and b3.
But this contradicts the fact that each atom is covered by exactly two elements. Hence this rules out the
case A′(j + 1) = 3.

The only remaining possibility is A′(j + 1) = 2, implying A′(j + 2) = 2. Hence the atom functions A(n)
and A′(n) are equal. �

Lemma 2.16. Let P be a finite binomial poset with factorial function B(k) = 2k−1 for 1 ≤ k ≤ n. Then
the poset P is isomorphic to the butterfly poset Tn.

Proof of Theorem 2.8: The atom function of an Eulerian binomial poset satisfies 2 = A(2) ≤ A(3).
Hence B(3) = A(3) ·B(2) is an even integer greater than or equal to 4. The Euler-Poincaré relation implies
that

1

B(4)
=

1

B(3)
−

1

8
,

implying that B(3) < 8. Hence there are only two remaining cases, which are considered in Propositions 2.13
and 2.15. The corresponding structure statements are considered in Proposition 2.14 and Lemma 2.16. �

Theorem 2.17. Let L be an Eulerian binomial poset which we furthermore require to be a lattice. Then
L is isomorphic to the Boolean algebra BX where X is the set of atoms of the poset P .

Proof. Since every interval of L is a lattice we can rule out the butterfly factorial function. Hence
B(n) = n! and every interval [0̂, x] is a Boolean lattice. Let ϕ be the map from L to BX defined by
ϕ(x) = {a ∈ X : a ≤ x}. The inverse of ϕ is given by ϕ(Y ) = ∨a∈Y a. It is straightforward to see that both
ϕ and ϕ−1 are order-preserving. Hence the two lattices L and BX are isomorphic and the result follows. �
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We end this section with a result that will be used in Section 4 when we study Eulerian Sheffer posets.

Proposition 2.18. There is no finite binomial poset P ′ of rank j + 1 ≥ 4 with the atom function

A′(n) =

{
n if n ≤ j,

j + 2 if n = j + 1.

Proof. Assume that the poset P ′ exists. Then it has j + 2 atoms and j + 2 coatoms. Each atom x
lies below exactly j coatoms and each coatom c lies above exactly j atoms. Moreover, by the proof of
Proposition 2.13 we know that each of the intervals [0̂, c] and [x, 1̂] is isomorphic to Bj .

Define a multigraph G with the j + 2 atoms as the vertices. For each coatom c let there be an edge xy
between the two unique atoms x and y such that x, y 6≤ c. Since each atom is not below exactly two coatoms,
each vertex of the graph has degree equal to 2. Hence the graph is a disjoint union of cycles.

Pick a coatom c that corresponds to an edge xy. The coatom c is greater than the j atoms z1, . . . , zj .

Using that the interval [0̂, c] is a Boolean algebra, let wi be the unique coatom in the interval [0̂, c] that is

not greater than zi. Let di be the atom in the interval [wi, 1̂] ∼= B2 distinct from c. Observe for i 6= k we

have zi < wk < dk. Hence the j coatoms c, d1, . . . , d̂i, . . . , dj are all the coatoms greater than zi. Moreover,
since j ≥ 3 we conclude that d1, . . . , dj are all distinct.

Consider the j atoms below dk. They are z1, . . . , ẑk, . . . , zj and exactly one of x and y. Thus the edge ek

corresponding to dk intersects the edge xy. This holds for all j edges ek. Hence we obtain the contradiction
4 = deg(x) + deg(y) ≥ 2 + j. Thus there is no such finite binomial poset. �

3. Eulerian Sheffer posets

Sheffer posets, also know as upper binomial posets, were first defined by Reiner [10] and independently
discovered by Ehrenborg and Readdy [6].

Definition 3.1. A locally finite poset P with 0̂ is called a Sheffer poset if it satisfies the following four
conditions:

(i) P contains an infinite chain.
(ii) Every interval [x, y] is graded; hence P has rank function ρ. If ρ(x, y) = n, then we call [x, y] an

n-interval.
(iii) Two n-intervals [0̂, y] and [0̂, v], such that y 6= 0̂, v 6= 0̂, have the same number D(n) of maximal

chains.
(iv) Two n-intervals [x, y] and [u, v], such that x 6= 0̂, u 6= 0̂, have the same number B(n) of maximal

chains.

As in the finite binomial poset case, if P does not satisfy condition (i) and has a unique maximal element
then we say P is a finite Sheffer poset.

An interval of the form [0̂, y] is called a Sheffer interval, whereas an interval [x, y], where x > 0̂, is
called a binomial interval. Similarly, the functions B(n) and D(n) are called the binomial, respectively, the
Sheffer factorial function. The number of elements of rank k ≥ 1 in a Sheffer interval of length n is given
by D(n)/(D(k) · B(n − k)). Especially, a Sheffer interval [0̂, y] has C(n) = D(n)/D(n − 1) coatoms. The
function C(n) is called the coatom function and we have D(n) = C(n) · C(n − 1) · · ·C(1). Observe that
D(1) = C(1) = 1.

We will be using the following two facts to exclude possible factorial functions.

Fact 3.2. (a) The inequality A(n− 1) ≤ C(n) <∞ holds since the set of coatoms in a Sheffer interval

of rank n, say [0̂, y], contains the set of coatoms in an (n − 1)-interval [x, y], and there are a finite number
of them.
(b) The value B(k) divides C(n) · · ·C(n− k + 1) for n > k, since the number of elements of rank n− k in a
Sheffer interval of length n is given by D(n)/(D(n− k) · B(k)) = C(n) · · ·C(n− k + 1)/B(k).

Example 3.3. Every binomial poset is a Sheffer poset. The factorial functions are equal, that is,
D(n) = B(n) for n ≥ 1.

Example 3.4. The rank product P ∗Q of two Sheffer posets P and Q is also a Sheffer poset with the
factorial functions BP∗Q(n) = BP (n) · BQ(n) and DP∗Q(n) = DP (n) ·DQ(n).
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Example 3.5. For a poset P with a unique minimal element 0̂, let the dual suspension Σ∗(P ) be the

poset P with two new elements a1 and a2. Let the order relations be as follows: 0̂ <Σ∗(P ) ai <Σ∗(P ) y for all

y > 0̂ in P and i = 1, 2. That is, the elements a1 and a2 are inserted between 0̂ and the atoms of P . Clearly
if P is Eulerian then so is Σ∗(P ). Moreover, if P is a binomial poset then Σ∗(P ) is a Sheffer poset with the
factorial function DΣ∗(P )(n) = 2 ·B(n− 1) for n ≥ 2.

One may extend the dual suspension Σ∗ by inserting k new atoms instead of 2. Yet again it will take a
binomial poset to a Sheffer poset. However we have no need of this extension since it does not preserve the
Eulerian property.

For a ranked poset P (not necessarily having a unique minimal element) and a set X define the power
poset PX as follows. Let the underlying set be given by

PX =

{
f : X → P :

∑

x∈X

ρ(f(x)) <∞

}

and define the order relation by componentwise comparison, that is, f ≤P X g if f(x) ≤ g(x) for all x in X .

Example 3.6. Let P be the three element poset r r

r

�� AA0 1

∗

and let X be an infinite set. Then the poset
CX = PX∪{0̂}, that is, the poset PX with a new minimal element adjoined, is a Sheffer poset. This example
is precisely the infinite cubical poset with the factorial functions B(n) = n! and D(n) = 2n−1 · (n − 1)!.
Similar to Example 2.10, for different infinite cardinalities of X we obtain non-isomorphic cubical posets.
Note, however, this poset is not a lattice since the two atoms (0, 0, . . .) and (1, 1, . . .) do not have a join.

Example 3.7. Let E2, E3, . . . be an infinite sequence of disjoint nonempty finite sets, where En has
cardinality en. Consider the poset

Ue2,e3,... = {0̂} ∪
⋃

n≥2

∏

i≥n

Ei,

where
∏

stands for Cartesian product. We make this into a ranked poset by letting 0̂ be the minimal
element, and defining the cover relation by

(xn, xn+1, xn+2, . . .) ≺ (xn+1, xn+2, . . .),

where xi ∈ Ei. Thus the elements of
∏

i≥n Ei have rank n− 1. This poset is a Sheffer poset with the atom

function A(n) = 1 and coatom function is given by C(n) = en for n ≥ 2. We may view this poset as an
“upside-down tree” with a minimal element attached.

Naturally, the previous example is not an Eulerian poset. However, we can use it to construct Eulerian
Sheffer posets as the next two examples illustrate.

Example 3.8. Consider the poset T ∗ Ue2,e3,..., where e2 = e4 = e6 = · · · = 1. This poset has the
factorial functions B(n) = 2n−1 and D(n) = 2n−1 ·

∏n
i=2 ei. In Theorem 3.10 we will observe that the

condition that e2j = 1 implies that the poset is Eulerian.

In general the rank product T ∗ P can be viewed as the “doubling” of the poset P . This notion was
introduced by Bayer and Hetyei in [2].

Example 3.9. Let B ∪ {0̂} be the infinite Boolean algebra with a new minimal element adjoined. This
is a Sheffer poset with factorial functions B(n) = n! and D(n) = (n − 1)!. Now consider the rank product

(B ∪ {0̂}) ∗ U2,2,.... It has the factorial functions B(n) = n! and D(n) = 2n−1 · (n− 1)!. This poset has the
same factorial functions as the infinite cubical poset and hence it is an Eulerian poset.

For an Eulerian Sheffer poset of rank n, the Euler-Poincaré relation states

(3.1) 1 +

n∑

k=1

(−1)k ·
D(n)

D(k) ·B(n− k)
= 0.

Again by Proposition 2.7 this relation will only give us information for n even. When n = 2m we can write
this relation as:

(3.2)
2

D(2m)
+

2m−1∑

k=1

(−1)k ·
1

D(k) ·B(2m− k)
= 0.
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Also note that D(2) = C(2) = 2.

Theorem 3.10. Let P be an Eulerian Sheffer poset with the binomial factorial function satisfying B(0) =
1 and B(n) = 2n−1 for n ≥ 1. Then the coatom function C(n) and the poset P satisfy:

(i) C(3) ≥ 2, and a length 3 Sheffer interval is isomorphic to a poset of the form Pq1,...,qr
described in

Example 2.5.
(ii) C(2m) = 2 for m ≥ 2 and the two coatoms in a length 2m Sheffer interval cover exactly the same

elements of rank 2m− 2.
(iii) C(2m+ 1) = h is an even positive integer, for m ≥ 2. Moreover, the set of h coatoms in a Sheffer

interval of length 2m + 1 can be grouped into h/2 pairs, {c1, d1}, {c2, d2}, . . ., {ch/2, dh/2}, such
that ci and di cover the same two elements of rank 2m− 1.

Proof. Part (i) is immediate since A(2) ≤ C(3). Next we prove (ii). Let j = 2m. In this case the
Euler-Poincaré relation for a Sheffer j-interval states:

(3.3)

j∑

k=1

(−1)k ·
1

D(k) · 2j−k−1
= 0.

Use equation (3.3) in the case of a (j − 2)-interval to eliminate the first j − 2 terms in the j-interval case
of (3.3) gives the equality (ii). Since D(j)/(D(j − 2) ·B(2)) = D(j − 1)/(D(j − 2) ·B(1)), the two coatoms
in the Sheffer j-interval cover the same elements of rank j − 2.

Finally, we consider (iii). Assume that C(j + 1) = h, where j = 2m. Let [0̂, y] be a Sheffer interval of
rank j+ 1. The number of elements of rank j and of rank j− 1 are both given by h. Moreover each element
of rank j − 1 is covered by exactly 2 elements of rank j, and by part (ii), each element of rank j covers 2
elements of rank j − 1. Hence the order relations between elements of rank j − 1 and j are those of rank 1
and 2 in the poset Pq1,...,qr

in Example 2.5, where q1 + · · · + qr = h.

Let z1, . . . , zq be q coatoms in the Sheffer (j+1)-interval [0̂, y] such that zi covers wi and wi−1, where we
count modulo q in the indices. That is, z1 through zq correspond to the edges in a q-gon and w1 through wq

to the vertices. Consider an element x of rank j − 2 that is covered by w1. The interval [x, y] is isomorphic
to T3, that is, the interval has exactly 2 atoms and 2 coatoms. In this interval the element x is covered by
one more element of rank j − 1. Call it v. If the element v does not correspond to the elements w2, . . . , wq,
we obtain the contradiction that the interval [x, y] has 4 coatoms. If v belongs to the elements w2, . . . , wq,
say wi, then the interval [x, y] has the coatoms z1, z2, zi, zi+1. When q ≥ 3 the set {z1, z2, zi, zi+1} has at
least 3 members. Hence the only possibility is that q = 2 and v = w2. Also the coatoms z1 and z2 cover the
same elements of rank j − 1.

We conclude that the only possibility is that all qi’s are equal to 2, that is, q1 = · · · = qr = 2. Hence
r = h/2 and h is an even integer. Moreover, we also obtain a pairing of the coatoms such that the two
coatoms in each pair cover the same elements. �

Given a graded poset P of rank n and a subset S ⊆ {1, . . . , n − 1}, the rank selected poset PS is the
graded poset consisting of the elements

PS = {0̂, 1̂} ∪ {x ∈ P : ρ(x) ∈ S}.

Combining the conclusions of Theorem 3.10, we have

Theorem 3.11. Let P be an Eulerian Sheffer poset with the binomial factorial function satisfying B(0) =
1 and B(n) = 2n−1 for n ≥ 1 and coatom function C(n). Set e2 = e4 = e6 = · · · = 1 and e2m+1 =
C(2m + 1)/2 for all m ≥ 1. Let Q be the poset T ∗ Ue2,e3,... from Example 3.8. Suppose n is an integer
greater than or equal to 3 and S = {3, 4, . . . , n− 1}. Then the rank selection S of the rank n Sheffer interval

[0̂, y] in P is isomorphic to the rank selection S of the rank n Sheffer interval [0̂, z] in Q, that is,

[0̂, y]S ∼= [0̂, z]S.

Furthermore, the poset [0̂, y] is obtained by replacing every length 3 Sheffer interval in [0̂, z] by a rank 3
binomial poset with C(3) coatoms.
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Figure 1. A finite Sheffer poset with the same factorial functions as the cubical lattice.

4. Eulerian Sheffer posets with factorial function B(n) = n!

In this section we will classify Eulerian Sheffer posets that have the factorial function B(n) = n!, that

is, every interval [x, y], where x > 0̂, is a Boolean algebra.

Theorem 4.1. Let P be an Eulerian Sheffer poset with binomial factorial function B(n) = n!. Then
the Sheffer factorial function D(n) satisfies one of the following three alternatives:

(i) D(n) = 2 · (n− 1)!. In this case every Sheffer n-interval is of the form Σ∗(Bn−1).
(ii) D(n) = n!. In this case the poset is a binomial poset and hence every Sheffer n-interval is isomor-

phic to the Boolean algebra Bn.
(iii) D(n) = 2n−1 · (n − 1)!. If we furthermore assume that a Sheffer n-interval [0̂, y] is a lattice then

the interval [0̂, y] is isomorphic to the cubical lattice Cn.

The cubical posets of Example 3.6 and Example 3.9 demonstrate there is no classification of the non-
lattice Sheffer intervals in case (iii) of Theorem 4.1. The following examples further illustrates Sheffer posets
(both finite and infinite) having the same factorial functions as the cubical poset.

Example 4.2. Let Cn be the finite cubical lattice, that is, the face lattice of an (n − 1)-dimensional
cube. We are going to deform this lattice as follows. The 1-skeleton of the cube is a bipartite graph. Hence
the set of atoms A has a natural decomposition as A1 ∪A2. Every rank 2 element (edge) covers exactly one
atom in each Ai. Consider the poset

Hn = (Cn −A) ∪A1 × {1, 2}.

That is, we remove all the atoms and add in two copies of each atom from A1. Define the cover relations
for the new elements as follows. If a in A1 is covered by b then let b cover both copies (a, 1) and (a, 2). The
poset Hn is a Sheffer poset with the cubical factorial functions.

The poset in Figure 1 is the atom deformed cubical lattice H3. This poset is also obtained as length 3
Sheffer interval in Example 3.9.

Example 4.3. Let P and Q be two Sheffer posets (finite or infinite) having the cubical factorial functions

B(n) = n! and D(n) = 2n−1 · (n− 1)!. Their diamond product, namely P �Q = (P −{0̂})× (Q−{0̂})∪{0̂},
also has the cubical factorial functions.

Example 4.4. As an extension of the previous example, let P be a Sheffer poset (finite or infinite)

having the cubical factorial functions. Then for a set X the poset (P − {0̂})X ∪ {0̂} is a Sheffer poset with
the cubical factorial functions. The cubical poset (Example 3.6) is an illustration of this.

If we require the extra condition every Sheffer interval is a lattice, we obtain it is in fact the cubical
lattice.

Proposition 4.5. Let P be a finite Sheffer poset of rank n with the cubical factorial functions B(k) = k!
for k ≤ n− 1 and D(k) = 2k−1 · (k − 1)! for 1 ≤ k ≤ n. If P is a lattice then P is isomorphic to the cubical
lattice Cn.

Proof. The proof is by induction on the rank n of P . The induction base n ≤ 2 is straightforward
to verify. Assume true for all posets of rank n − 1 and consider a rank n poset P . Using the cubical
factorial functions, we know that the half open interval (0̂, 1̂] contains 3n−1 elements. Let c be a coatom
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in the poset. The interval [0̂, c] is isomorphic to Cn−1 by the induction hypothesis. Now define a function

ϕ : (0̂, c] −→ (0̂, 1̂] − (0̂, c] as follows. For z in (0̂, c] let ϕ(z) be the unique atom in the interval [z, 1̂] that
does not belong to the interval [z, c]. The existence and uniqueness follows from the fact the atom function
satisfies A(k) −A(k − 1) = 1. Also note that ϕ(z) covers the element z.

We next verify the function ϕ is injective. If we have ϕ(z) = ϕ(w) then z and w have the same rank.

Also observe that ϕ(z) 6≤ c by the definition of the function ϕ. This contradicts that the interval [0̂, 1̂] is a
lattice, since z and w have the two upper bounds ϕ(z) and c.

The function ϕ also preserves the cover relations. If z ≺ w the two-interval [z, ϕ(w)] contains two atoms
which must be w and ϕ(z). Hence ϕ(z) ≺ ϕ(w). Let Φ be the image of the function ϕ. By a similar

argument the inverse function ϕ−1 : Φ −→ (0̂, c] also preserves the cover relations. Thus as posets (0̂, c]

and Φ are isomorphic. Moreover, the disjoint union (0̂, c]∪Φ is an upper order ideal of the poset P and has
cardinality 2 · 3n−2.

The poset P has C(n) = 2n− 2 coatoms. One of them is the coatom c. Since c covers 2n− 4 elements
there are 2n − 4 coatoms in Φ. Hence there is a unique coatom d that does not belong to the upper order
ideal (0̂, c] ∪Φ. Since the interval [0̂, d] is isomorphic to the cubical lattice Cn−1 and has 3n−2 + 1 elements,

we conclude that the complement of the upper order ideal is the lower order ideal [0̂, d]. Thus we have the

partition (0̂, c] ∪ Φ ∪ (0̂, d] of P − {0̂}.

It remains to show that there is a bijective function ψ : (0̂, d] −→ Φ such that ψ(z) covers z and ψ

preserves the cover relation. Define ψ : (0̂, d] −→ (0̂, y] − (0̂, d] = (0̂, c] ∪ Φ by letting ψ(z) be the unique

atom in the interval [z, 1̂] that does not belong to the interval [z, d]. Observe that if ψ(z) ∈ (0̂, c] we obtain

that z < ψ(z) ≤ c, contradicting that (0̂, c] and (0̂, d] are disjoint. Hence the image of ψ is Φ. The remaining
properties of ψ are proven just like those for the function ϕ.

Hence P −{0̂} is isomorphic to the Cartesian product of the three element poset q q

q

��AA with (0̂, c] ∼= Cn−1.
That is, the poset is isomorphic to the cubical lattice Cn. �

Example 4.6. Define C
<∞
X to be a subposet of the cubical poset CX = PX ∪ {0̂} in Example 3.6,

where P is the three element poset r r

r

�� AA0 1

∗

. Define

C
<∞
X = {f ∈ PX : |f−1(1)| <∞} ∪ {0̂}.

That is, for each function f only a finite number of elements of X take on non-zero values. Since the union
of two finite sets is finite it follows that the join of the two elements is defined. It follows that C

<∞
X is a

lattice. Observe the subposet C
<∞
X remains a Sheffer poset with the cubical factorial functions B(n) = n!

and D(n) = 2n−1 · (n− 1)!. Call this poset the infinite cubical lattice.

Theorem 4.7. Let L be an Eulerian Sheffer poset that is also a lattice. Then L is either isomorphic
to BX where X is the set of atoms of L or L is the infinite cubical lattice C

<∞
X where X is the set of rank 2

elements of L which are greater than some fixed atom a in L.

Proof. Using Theorem 2.17 we know that the binomial factorial function is B(n) = n!. Since every
Sheffer interval is a lattice there are only two choices for the Sheffer factorial function. The case D(n) = n!
is indeed the Boolean algebra which is the first alternative of the conclusion of the theorem. Hence let us
consider the second choice D(n) = 2n−1 · (n− 1)!. Thus every interval [0̂, y] is a finite cubical lattice.

Let a be an atom of the lattice L and let X be the set of elements of rank 2 which cover a. Define the
function ϕ : L −→ C

<∞
X as follows. Set ϕ(0̂) = 0̂. For x ∈ L and x > 0̂ let y be the join of a and x. Since the

interval [0̂, y] is a finite cubical lattice, the non-minimal elements of this interval can be encoded by functions
g : Y −→ P , where is P is the three element poset in Example 4.6. Furthermore we may assume that the
set Y is all the elements in the interval [a, y] that cover a. Without loss of generality, we may choose the
encoding so that the atom a is the constant function 0.

Encode the element x as such a function g : Y −→ P . Observe that g does not take the value 0, since
that would contradict that the join of a and x is y. Now define f : X −→ P by

f(z) =

{
g(z) if z ∈ Y,
0 if z ∈ X − Y.

Observe that since Y is a finite set, we know that f belongs to the lattice C
<∞
X . Hence set ϕ(x) to be the

function f .
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The inverse of ϕ is given as follows. For f , a non-zero element of the lattice C
<∞
X let the set Y be defined

as
Y = {z ∈ X : f(z) 6= 0}.

In the lattice L let the element y be the join
∨

z∈Y z. Observe that a ≤ y. Since the interval [0̂, y] is
isomorphic to the finite cubical lattice CY , let x be the unique element corresponding to the function f
restricted to Y . That is, the inverse of ϕ is given by ϕ−1(f) = x. Moreover let ϕ−1(0̂) = 0̂.

Observe that both ϕ and ϕ−1 are order preserving, thus proving that the lattices L and C
<∞
X are

isomorphic. �

Note that it is enough to work with the join operation in this proof, since a locally finite join semi-lattice
with unique minimal element is a lattice [12, Proposition 3.3.1].

5. Concluding remarks

An interesting research project is to classify the factorial functions of finite Eulerian binomial posets and
finite Eulerian Sheffer posets. Two examples of finite Sheffer posets are the face lattices of the dodecahedron
and the four-dimensional regular polytope known as the 120-cell. In Theorems 3.10 and 4.1 many finite
possibilities for the factorial functions were excluded since there was no possibility to extend the factorial
function to higher ranks. A first step in this classification is to consider these cases.

Also note the following lemma, the proof of which follows directly from Proposition 2.7.

Lemma 5.1. Let P be an Eulerian finite binomial (Sheffer) poset of odd rank n. Let Q be the poset obtain
by taking k disjoint copies of P and identifying the minimal, respectively, maximal elements. Then Q is an
Eulerian finite binomial (Sheffer) poset. The only value of the factorial function(s) that changes is the one
that enumerates the maximal chains, namely, BQ(n) = k·BP (n) in the binomial case, and DQ(n) = k·DP (n)
in the Sheffer case.

A larger class of posets to consider are the triangular posets [5]. A poset is triangular if every interval
[x, y], where x has rank n and y has rank m, has B(n,m) maximal chains. Both binomial and Sheffer
posets are triangular. A non-trivial Eulerian example of a finite triangular poset is the face lattice of the
4-dimensional regular polytope known as the 24-cell. Can the factorial function B(n,m) be classified for
Eulerian triangular posets?

Classifying finite Eulerian Sheffer posets only by their factorial functions seems to be hard as seen from
the multitude of examples having the cubical factorial functions. We leave the reader with three examples
of Sheffer posets with the same factorial functions as the face lattice of the dodecahedron, each of which is
not isomorphic to this face lattice.

Example 5.2. An Eulerian finite Sheffer poset with the same factorial functions as the face lattice of
the dodecahedron. For an n-gon define a CW -complex Xn as follows. First take the antiprism of the n-gon.
We then have a CW -complex consisting of two n-gons and 2n triangles. Note that at every vertex three
triangles and one n-gon meet. Now subdivide each of the two n-gons by placing a vertex in each n-gon and
attaching this vertex by n new edges to the n vertices of the n-gon. Let this be the CW -complex Xn.

Observe that Xn consists of 2n+ 2 vertices, 6n edges and 4n triangles. Moreover, at 2n of the vertices
5 triangles meet. At the other two vertices n triangles meet. Label these two vertices a and b. Also note
that X5 is the boundary complex of an icosahedron. Observe for n ≥ 3 that Xn is a simplicial complex.
However, for n = 2 it is necessary to view X2 as a CW -complex.

Construct a CW -complex Y by taking X2 and X3 and identifying the vertices labeled a and identifying
the vertices labeled b. See Figure 2. The dual of the face poset of Y is an Eulerian Sheffer poset with
factorial functions agreeing with the face lattice of a dodecahedron.

Example 5.3. For 1 ≤ i ≤ 3 let Zi be the boundary of a 3-dimensional simplex with vertices zi,1, zi,2,
zi,3 and zi,4. Similarly, for 1 ≤ j ≤ 4 let Wj be the spherical CW -complex consisting of two triangles sharing
the three edges. Call the vertices w1,j , w2,j and w3,j . Now identify vertex zi,j with wi,j . We then have a
CW -complex that has 12 vertices, 3 · 6 + 4 · 3 = 30 edges and 3 · 4 + 4 · 2 = 20 triangles. Observe that the
vertex figure of every vertex is the disjoint union of a 2-gon and a triangle. Thus the dual of the face poset is
Sheffer poset with the same factorial functions as the face lattice of a dodecahedron. In fact, one may obtain
several of these CW -complexes by choosing different identifications between the two classes of vertices.
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Figure 2. The CW -complex obtained by joining the complexes X2 and X3 at the vertices
a and b.

Example 5.4. A third example is formed by taking two X2’s from Example 5.2 and the boundary of
one 3-dimensional simplex, Z, from Example 5.3 and identifying vertices a1, a2, b1 and b2 with the vertices
of the simplex.

A different proof of Proposition 2.14 may be given using the following result of Stanley. A graded finite
poset P is a Boolean algebra if every 3-interval is a Boolean algebra and for every interval [x, y] of rank of
least 4 the open interval (x, y) is connected. See [9, Lemma 8]. Hence it is natural to ask if one can extend
this result to cubical lattices. That is, a graded finite poset P is a cubical lattice if every 3-interval [x, y],

where x > 0̂, is a Boolean algebra, every 3-interval [0̂, y] is the face lattice of a square, and for every interval
[x, y] of rank of least 4 the open interval (x, y) is connected.

One may drop the Eulerian condition and ask to characterize Sheffer posets which are lattices. The
lattice-theoretic techniques of Farley and Schmidt may be useful [8].

Finally, there are long-standing open questions regarding binomial posets. One such question was
whether there exist two binomial posets having the same factorial function but non-isomorphic intervals.
This question was very recently settled by Jörgen Backelin (personal communication). However, it is still
unknown if there is a binomial poset having the atom function A(n) = Fn, the nth Fibonacci number. See
Exercise 78b, Chapter 3 in [12].
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San Diego, California 2006

Bounds on the number of inference functions of a graphical model

Sergi Elizalde and Kevin Woods

Abstract. We give an upper bound on the number of inference functions of any directed graphical model.
This bound is polynomial on the size of the model, for a fixed number of parameters, thus improving the
exponential upper bound given in [Pachter and Sturmfels, Tropical Geometry of Statistical Models, Proc.

Natl. Acad. Sci. 101, n. 46 (2004), 16132–16137]. Our proof reduces the problem to the enumeration of
vertices of a Minkowski sum of polytopes. We also show that our bound is tight up to a constant factor, by
constructing a family of hidden Markov models whose number of inference functions agrees asymptotically
with the upper bound. Finally, we apply this bound to a model for sequence alignment that is used in
computational biology.

Résumé. Nous donnons une limite supérieure sur le nombre de fonctions d’inférence de tout modéle gra-

phique dirigé. Cette limite est polynômielle sur la grosseur du modèle, pour un nombre fixe de paramètres,
améliorant ainsi la limite supérieure exponentielle donnée dans [Pachter and Sturmfels, Tropical Geome-
try of Statistical Models, Proc. Natl. Acad. Sci. 101, n. 46 (2004), 16132–16137]. Notre preuve réduit le
problème à l’énumération de sommets d’une somme de Minkowski de polytopes. Nous montrons aussi que
notre limite est serrée jusqu’à un facteur constant, en construisant une famille de modèles de Markov cachés
dont le nombre de fonctions d’inférence cöıncide asymptotiquement avec la limite supérieure. Finalement,
nous appliquons cette limite à un modèle pour l’alignmement de séquences qui est utilisé dans la biologie
computationnelle.

1. Introduction

Many statistical models seek, given a set of observed data, to find the hidden (unobserved) data which
best explains these observations. In this paper we consider graphical models, also called Bayesian networks, a
broad class that includes many useful models, such as hidden Markov models (HMMs), pair hidden Markov
models, and hidden tree models (background on graphical models will be given in Section 2.1). These
graphical models relate the hidden and observed data probabilistically, and a natural problem is to determine,
given a particular observation, what is the most likely hidden data (which is called the explanation). These
models rely on parameters that are the probabilities relating the hidden and observed data. Any fixed values
of the parameters determine a way to assign an explanation to each possible observation. This gives us a
map, called an inference function, from observations to explanations.

An example of an inference function is the popular “Did you mean” feature from google, which could
be implemented as a hidden Markov model, where the observed data is what we type into the computer,
and the hidden data is what we were meaning to type. Graphical models are frequently used in these sorts
of probabilistic approaches to artificial intelligence (see [5] for an introduction).

Inference functions for graphical models are also important in computational biology [6, Section 1.5].
For example, consider the gene-finding functions, which were discussed in [7, Section 5]. These inference
functions (corresponding to a particular HMM) are used to identify gene structures in DNA sequences. An
observation in such a model is a sequence of nucleotides in the alphabet Σ′ = {A, C, G, T}, and an explanation
is a sequence of 1’s and 0’s which indicate whether the particular nucleotide is in a gene or is not. We seek
to use the information in the observed data (which we can find via DNA sequencing) to decide on the hidden

2000 Mathematics Subject Classification. Primary 62F15,52C45; Secondary 52B20,62P10,52B05.
Key words and phrases. inference functions, graphical models, sequence alignment, Newton polytope, normal fan.
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information of which nucleotides are part of genes (which is hard to figure out directly). Another class of
examples is that of sequence alignment models [6, Section 2.2]. In such models, an inference function is a
map from a pair of DNA sequences to an optimal alignment of those sequences. If we change the parameters
of the model, which alignments are optimal may change, and so the inference functions may change.

A surprising conclusion of this paper is that there cannot be too many different inference functions,
though the parameters may vary continuously over all possible choices. For example, in the homogeneous
binary HMM of length 5 (see Section 2.1 for some definitions; they are not important at the moment), the
observed data is a binary sequence of length 5, and the explanation will also be a binary sequence of length
5. At first glance, there are

3232 = 1 461 501 637 330 902 918 203 684 832 716 283 019 655 932 542 976

possible maps from observed sequences to explanations. In fact, Christophe Weibel has computed that only
5266 of these possible maps are actually inference functions [9].

Different inference functions represent different criteria to decide what is the most likely explanation
for each observation. A bound on the number of inference functions is important because it indicates how
badly a model may respond to changes in the parameter values (which are generally known with very little
certainty and only guessed at). Also, the polynomial bound given in Section 3 suggests that it might be
feasible to precompute all the inference functions of a given graphical model, which would yield an efficient
way to provide an explanation for each given observation.

This paper is structured as follows. In Section 2 we introduce some preliminaries about graphical models
and inference functions, as well as some facts about polytopes. In Section 3 we present our main result.
We call it the Few Inference Functions Theorem, and it states that in any graphical model the number of
inference functions grows polynomially in the size of the model (if the number of parameters is fixed). The
proof involves combinatorial tools, and a key step consists in reducing the enumeration of inference functions
to the problem of counting the number of vertices of a certain polytope that is obtained as a Minkowski
sum of smaller polytopes. In Section 4 we prove that our upper bound on the number of inference functions
of a graphical model is sharp, up to a constant factor, by constructing a family of HMMs whose number
of inference functions asymptotically matches the bound. In Section 5 we show that the bound is also
asymptotically tight on a model for sequence alignment which is actually used in computational biology. In
particular, this bound will be quadratic on the length of the input DNA sequences. We conclude with a few
remarks and possible directions for further research.

2. Preliminaries

2.1. Graphical models. A statistical model is a family of joint probability distributions for a collection
of discrete random variables Z = (Z1, . . . , Zm), where each Zi takes on values in some finite state space Σi.
Here we will focus on directed graphical models. A directed graphical model (or Bayesian network) is a finite
directed acyclic graph G where each vertex vi corresponds to a random variable Zi. Each vertex vi also has
an associated probability map

pi :




∏

j: vj a parent of vi

Σj



 → [0, 1]|Σi|.

Given the states of each Zj such that vj is a parent of vi, the probability that vi has a given state is
independent of the values of all other vertices that are not descendants of vi, and this map pi gives that
probability. In particular, we have the equality

Prob(Z = τ) =
∏

i

Prob (Zi = τi, given that Zj = τj for all parents vj of vi) =
∏

i

[pi (τj1 , . . . , τjk
)]

τi
,

where vji
, . . . , vjk

are the parents of vi. Sources in the digraph (which have no parents) are generally given
the uniform probability distribution on their states, though more general distributions are possible. See [6,
Section 1.5] for general background on graphical models.

Example 2.1. The hidden Markov model (HMM) is a model with random variables X = (X1, . . . , Xn)
and Y = (Y1, . . . , Yn). Edges go from Xi to Xi+1 and from Xi to Yi.
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X X X

Y Y Y

1 2 3

1 2 3

Figure 1. The graph of an HMM for n = 3.

Generally, each Xi has the same state space Σ and each Yi has the same state space Σ′. An HMM is
called homogeneous if the pXi

, for 1 ≤ i ≤ n are identical and the pYi
are also identical. In this case, the pXi

each correspond to the same |Σ| × |Σ| matrix T = (tij) (the transition matrix ) and the pYi
each correspond

to the same |Σ| × |Σ′| matrix S = (sij) (the emission matrix).
In the example, we have partitioned the variables into two sets. In general graphical models, we also have

two kinds of variables: observed variables Y = (Y1, Y2, . . . , Yn) and hidden variables X = (X1, X2, . . . , Xq).
Generally, the observed variables are exactly the sinks of the directed graph, but this does not need to be
the case. To simplify the notation, we make the assumption, which is often the case in practice, that all the
observed variables take their values in the same finite alphabet Σ′, and that all the hidden variables are on
the finite alphabet Σ.

Notice that for given Σ and Σ′ the homogeneous HMMs in this example depend only on a fixed set of
parameters, tij and sij , even as n gets large. These are the sorts of models we are interested in. Let the
number of parameters be a fixed integer d. We will name our parameters θ1, θ2, . . . , θd. By a graphical model
with d parameters, we mean a graphical model such that each probability [pi (τj1 , . . . , τjk

)]
τi

is a monomial
in our parameters, and furthermore the degree of this monomial is bounded by the number of parents of vi.
This is a natural assumption, because this probability is usually a product of one parameter for each edge
incoming to v, as long as the parameters affect the probability of state vi independently. This bound on
degrees encompasses most interesting and useful graphical models. For example, in the homogeneous HMM,
each vi has only one parent, and the coordinates of pi are degree one monomials (one of tij or sij).

In what follows we denote by E the number of edges of the underlying graph of a graphical model,
by n the number of observed random variables, and by q the number of hidden random variables. The
observations, then, are sequences in (Σ′)n and the explanations are sequences in Σq. Let l = |Σ| and
l′ = |Σ′|.

For each observation τ and hidden variables h, Prob (X = h, Y = τ) is a monomial fh,τ of degree at
most E in the parameters θ1, θ2, . . . , θd. Then for each observation τ ∈ (Σ′)n, the observed probability
Prob(Y = τ) is the sum over all hidden data h of Prob (X = h, Y = τ), and so Prob(Y = τ) is the
polynomial fτ =

∑
h

fh,τ in the parameters θ1, θ2, . . . , θd. The degree of fτ is at most E.
Note that we have not assumed that the appropriate probabilities sum to 1. It turns out that the

analysis is much easier if we do not place that restriction on our probabilities. At the end of the analysis,
these restrictions may be added if desired (there are many models in use, however, which never place that
restriction; these can no longer be properly called “probabilistic” models, but in fact belong to a more general
class of “scoring” models which our analysis encompasses).

2.2. Inference functions. For fixed values of the parameters, the basic inference problem is to deter-
mine, for each given observation τ , the value h ∈ Σq of the hidden data that maximizes Prob(X = h

∣∣ Y = τ).

A solution to this optimization problem is denoted ĥ and is called an explanation of the observation τ . Each

choice of parameter values (θ1, θ2, . . . , θd) defines an inference function τ 7→ ĥ from the set of observations
(Σ′)n to the set of explanations Σq.

It is possible that there is more than one value of ĥ attaining the maximum of Prob(X = h
∣∣ Y = τ).

In this case, for simplicity, we will pick only one such explanation, according to some consistent tie-breaking

rule decided ahead of time. For example, we can pick the least such ĥ in some given total order of the set Σq

of hidden states. Another alternative would be to define inference functions as maps from (Σ′)n to subsets
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of Σq. This would not affect the results of this paper, so for the sake of simplicity, we consider only inference
functions as defined above.

It is interesting to observe that the total number of maps (Σ′)n −→ Σq is (lq)(l
′)n

= lq(l
′)n

, which is
doubly-exponential in the length n of the observations. However, most of these maps are not inference
functions for any values of the parameters. Before our results, the best upper bound in the literature was an
exponential bound given in [8, Corollary 10]. In Section 3 we give a polynomial upper bound on the number
of inference functions of a graphical model.

2.3. Polytopes. Here we review some facts about convex polytopes, and we introduce some notation.
Recall that a polytope is a bounded intersection of finitely many closed halfspaces, or equivalently, the convex
hull of a finite set of points. For the basic definitions about polytopes we refer the reader to [10].

Given a polynomial f(θ) =
∑N

i=1 θ
a1,i

1 θ
a2,i

2 · · · θ
ad,i

d , its Newton polytope, denoted by NP(f), is defined as

the convex hull in R
d of the set of points {(a1,i, a2,i, . . . , ad,i) : i = 1, . . . , N}. For example, if f(θ1, θ2) =

2θ3
1 + 3θ2

1θ
2
2 + θ1θ

2
2 + 3θ1 + 5θ4

2, then its Newton polytope NP(f) is given in Figure 2.
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Figure 2. The Newton polytope of f(θ1, θ2) = 2θ3
1 + 3θ2

1θ
2
2 + θ1θ

2
2 + 3θ1 + 5θ4

2.

Given a polytope P ⊂ R
d and a vector w ∈ R

d, the set of all points in P at which the linear functional
x 7→ x · w attains its maximum determines a face of P . It is denoted

facew(P ) =
{

x ∈ P : x · w ≥ y · w for all y ∈ P
}
.

Faces of dimension 0 (consisting of a single point) are called vertices, and faces of dimension 1 are called
edges. If d is the dimension of the polytope, then faces of dimension d − 1 are called facets.

Let P be a polytope and F a face of P . The normal cone of P at F is

NP (F ) =
{
w ∈ R

d : facew(P ) = F
}
.

The collection of all cones NP (F ) as F runs over all faces of P is denoted N (P ) and is called the normal
fan of P . Thus the normal fan N (P ) is a partition of R

d into cones. The cones in N (P ) are in bijection
with the faces of P , and if w ∈ NP (F ) then the linear functional x · w is maximized on F . Figure 3 shows
the normal fan of a polytope.
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Figure 3. The normal fan of a polytope.
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The Minkowski sum of two polytopes P and P ′ is defined as

P + P ′ := {x + x′ : x ∈ P, x′ ∈ P ′}.

The common refinement of two or more normal fans is the collection of cones obtained as the intersection of
a cone from each of the individual fans. For polytopes P1, P2, . . . , Pk, the common refinement of their normal
fans is denoted N (P1)∧ · · · ∧N (Pk). The following lemma states the well-known fact that the normal fan of
a Minkowski sum of polytopes is the common refinement of their individual fans (see [10, Proposition 7.12]
or [2, Lemma 2.1.5]):

Lemma 2.2. N (P1 + · · · + Pk) = N (P1) ∧ · · · ∧ N (Pk).

We finish with a result of Gritzmann and Sturmfels that will be useful later. It gives a bound on the
number of vertices of a Minkowski sum of polytopes.

Theorem 2.3 ([2]). Let P1, P2, . . . , Pk be polytopes in R
d, and let m denote the number of non-parallel

edges of P1, . . . , Pk. Then the number of vertices of P1 + · · · + Pk is at most

2

d−1∑

j=0

(
m − 1

j

)
.

Note that this bound is independent of the number k of polytopes.

3. An upper bound on the number of inference functions

For fixed parameters, the inference problem of finding the explanation ĥ that maximizes Prob(X =
h

∣∣ Y = τ) is equivalent to identifying the monomial fh,τ = θ
a1,h

1 θ
a2,h

2 · · · θ
ad,h

d of fτ with maximum value.
Since the logarithm is a monotonically increasing function, the desired monomial also maximizes the quantity

log(θ
a1,h

1 θ
a2,h

2 · · · θ
ad,h

d ) = a1,h log(θ1) + a2,h log(θ2) + · · · + ad,h log(θd)

= a1,hv1 + a2,hv2 + · · · + ad,hvd,

where we replace log(θi) with vi. This is equivalent to the fact that the corresponding point (a1,h, a2,h, . . . , ad,h)
maximizes the linear expression v1x1 + · · ·+vdxd on the Newton polytope NP(fτ ). Thus, the inference prob-
lem for fixed parameters becomes a linear programming problem.

Each choice of the parameters θ = (θ1, θ2, . . . , θd) determines an inference function. If v = (v1, v2, . . . , vd)
is the vector in R

d with coordinates vi = log(θi), then we denote the corresponding inference function by

Φv : (Σ′)n −→ Σq.

For each observation τ ∈ (Σ′)n, its explanation Φv(τ) is given by the vertex of NP(fτ ) that is maximal
in the direction of the vector v. Note that for certain values of the parameters (if v is perpendicular to a
positive-dimensional face of NP(fτ )) there may be more than one vertex attaining the maximum. It is also
possible that a single point (a1,h, a2,h, . . . , ad,h) in the polytope corresponds to several different values of the
hidden data. In both cases, we pick the explanation according to the tie-breaking rule determined ahead of
time. This simplification does not affect the asymptotic number of inference functions.

Different values of θ yield different directions v, which can result in distinct inference functions. We are
interested in bounding the number of different inference functions that a graphical model can have. The
next theorem gives an upper bound which is polynomial in the size of the graphical model. In fact, very few
of the lq(l

′)n

functions (Σ′)n −→ Σq are inference functions.

Theorem 3.1 (The Few Inference Functions Theorem). Let d be a fixed positive integer. Consider a
graphical model with d parameters, and let E be the number of edges of the underlying graph. Then, the
number of inference functions of the model is at most O(Ed(d−1)).

Before proving this theorem, observe that the number E of edges depends on the number n of observed
random variables. In most graphical models of interest, E is a linear function of n, so the bound becomes
O(nd(d−1)). For example, the hidden Markov model has E = 2n−1 edges. The only property of the number
E that we actually need in the proof is that it is a bound on the degrees of the monomials fh,τ .
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Proof. In the first part of the proof we will reduce the problem of counting inference functions to
the enumeration of the vertices of a certain polytope. We have seen that an inference function is specified
by a choice of the parameters, which is equivalent to choosing a vector v ∈ R

d. The function is denoted
Φv : (Σ′)n −→ Σq, and the explanation Φv(τ) of a given observation τ is determined by the vertex of NP(fτ )
that is maximal in the direction of v. Thus, cones of the normal fan N (NP(fτ )) correspond to sets of vectors
v that give rise to the same explanation for the observation τ . Non-maximal cones (i.e., those contained in
another cone of higher dimension) correspond to directions v for which more than one vertex is maximal.
Since ties are broken using a consistent rule, we disregard this case for simplicity. Thus, in what follows we
consider only maximal cones of the normal fan.
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Figure 4. Two different inference functions, Φv (left column) and Φv′ (right column). In
each row is the Newton polytope corresponding to a different observation. The respective
explanations are given by the marked vertices in each polytope.

Let v′ = (v′1, v
′
2, . . . , v

′
d) be another vector corresponding to a different choice of parameters (see Figure

4). By the above reasoning, Φv(τ) = Φv′(τ) if and only if v and v′ belong to the same cone of N (NP(fτ )).
Thus, Φv and Φv′ are the same inference function if and only if v and v′ belong to the same cone of
N (NP(fτ )) for all observations τ ∈ (Σ′)n. Consider the common refinement of all these normal fans,∧

τ∈(Σ′)n N (NP(fτ )). Then, Φv and Φv′ are the same inference function exactly when v and v′ lie in

the same cone of this common refinement. This implies that the number of inference functions equals the
number of cones in

∧
τ∈(Σ′)n N (NP(fτ )). By Lemma 2.2, this common refinement is the normal fan of

NP(f) =
∑

τ∈(Σ′)n NP(fτ ), the Minkowski sum of the polytopes NP(fτ ) for all observations τ . It follows

that enumerating inference functions is equivalent to counting vertices of NP(f). In the remaining part of
the proof we give an upper bound on the number of vertices of NP(f).

Note that for each τ , the polytope NP(fτ ) is contained in the hypercube [0, E]d, since each parameter
θi can appear as a factor of a monomial of fτ at most E times. Also, the vertices of NP(fτ ) have integral
coordinates, because they are exponent vectors. Polytopes whose vertices have integral coordinates are called
lattice polytopes. It follows that the edges of NP(fτ ) are given by vectors where each coordinate is an integer
between −E and E. There are only (2E + 1)d such vectors, so this is an upper bound on the number of
different directions that the edges of the polytopes NP(fτ ) can have.

This property of the Newton polytopes of the coordinates of the model will allow us to give an upper
bound on the number of vertices of their Minkowski sum NP(f). The last ingredient that we need is
Theorem 2.3. In our case we have a sum of polytopes NP(fτ ), one for each observation τ ∈ (Σ′)n, having
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at most (2E + 1)d non-parallel edges in total. Hence, by Theorem 2.3, the number of vertices of NP(f) is at
most

2

d−1∑

j=0

(
(2E + 1)d − 1

j

)
.

As E goes to infinity, the dominant term of this expression is

2d2−d+1

(d − 1)!
Ed(d−1).

Thus, we get an O(Ed(d−1)) upper bound on the number of inference functions of the graphical model. �

In the next section we show that the bound given in Theorem 3.1 is tight up to a constant factor.

4. A lower bound

As before, we fix d, the number of parameters in our model. The Few Inference Functions Theorem
(Theorem 3.1) tells us that the number of inference functions is bounded from above by some function
cEd(d−1), where c is a constant (depending only on d) and E is the number of edges in the graphical model.
Here we show that this bound is tight up to a constant, by constructing a family of graphical models whose
number of inference functions is at least c̃Ed(d−1), where c̃ is another constant. In fact, we will construct a
family of hidden Markov models with this property. To be precise, we have the following theorem.

Theorem 4.1. Fix d. There is a constant c′ = c′(d) such that, given n ∈ Z+, there exists an HMM of
length n, with d parameters, 2d+2 hidden states, and 2 observed states, such that there are at least c′nd(d−1)

distinct inference functions. (For HMMs, E = 2n− 1, so this also gives us the lower bound in terms of E).

In the proof of this theorem, we will state several lemmas that must be used. We omit the proofs of
some of them here due to lack of space. Given n, we first construct the appropriate HMM, Mn, using the
following lemma.

Lemma 4.2. Given n ∈ Z+, there is an HMM, Mn, of length n, with d parameters, 2d+2 hidden states,
and 2 observed states, such that for any a = (a1, . . . , an) ∈ Z

d
+ with

∑
i ai < n, there is an observed sequence

which has one explanation if
a1 log(θ1) + · · · + ad log(θd) > 0

and another explanation if
a1 log(θ1) + · · · + ad log(θd) < 0.

Proof. Given d and n, define a length n HMM with parameters θ1, ..., θd, as follows. The observed
states will be S and C (for “start of block,” and “continuing block,” respectively). The hidden states will be
si, s′i, ci, and c′i, for 1 ≤ i ≤ d + 1 (think of si and s′i as “start of the ith block” and ci and c′i as “continuing
the ith block”).

Here’s the idea of what we want this HMM to do: if the observed sequence has S’s in position 1, a1 + 1,
a1 + a2 + 1, . . ., and a1 + · · · + ad + 1 and C’s elsewhere, then there will be only two possibilities for the
sequence of hidden states, either

t = s1 c1 · · · c1︸ ︷︷ ︸
a1−1

s2 c2 · · · c2︸ ︷︷ ︸
a2−1

· · · sd cd · · · cd︸ ︷︷ ︸
ad−1

sd+1 cd+1 · · · cd+1︸ ︷︷ ︸
n−a1−···−ad−1

or
t′ = s′1 c′1 · · · c

′
1︸ ︷︷ ︸

a1−1

s′2 c′2 · · · c
′
2︸ ︷︷ ︸

a2−1

· · · s′d c′d · · · c
′
d︸ ︷︷ ︸

ad−1

s′d+1 c′d+1 · · · c
′
d+1︸ ︷︷ ︸

n−a1−···−ad−1

.

We will also make sure that t has a priori probability

θa1
1 · · · θad

d

and t′ has a priori probability 1. Then t is the explanation if a1 log(θ1) + · · · + ad log(θd) > 0 and t′ is the
explanation if a1 log(θ1)+ · · ·+ad log(θd) < 0. Remember that we are not constraining our probability sums
to be 1. A very similar HMM could be constructed that obeys that constraint, if desired. But to simplify
notation it will be more convenient to treat the transition probabilities as parameters that do not necessarily
sum to one at each vertex, even if this forces us to use the term “probability” somewhat loosely.
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Here is how we set up the transitions/emmisions. Let si and s′i, for 1 ≤ i ≤ d + 1, all emit S with
probability 1 and C with probability 0. Let ci and c′i emit C with probability 1 and S with probability 0. Let
si, for 1 ≤ i ≤ d, transition to ci with probability θi and transition to everything else with probability 0. Let
sd+1 transition to cd+1 with probability 1 and to everything else with probability 0. Let s′i, for 1 ≤ i ≤ d+1,
transition to c′i with probability 1 and to everything else with probability 0. Let ci, for 1 ≤ i ≤ d, transition
to ci with probability θi, to si+1 with probability θi, and to everything else with probability 0. Let cd+1

transition to cd+1 with probability 1, and to everything else with probability 0. Let c′i, for 1 ≤ i ≤ d
transition to c′i with probability 1, to si+1 with probability 1, and to everything else with probability 0. Let
c′d+1 transition to c′d+1 with probability 1 and to everything else with probability 0.

Starting with the uniform probability distribution on the first hidden state, this does exactly what
we want it to: given the correct observed sequence, t and t′ are the only explanations, with the correct
probabilities. �

This means that, for the HMM provided by this lemma, the decomposition of (log-)parameter space into
inference cones includes all of the hyperplanes {x : 〈a, x〉 = 0} such that a ∈ Z

d
+ with

∑
i ai < n. Call

the arrangement of these hyperplanes Hn. It suffices to show that the arrangement Hn consists of at least
c′nd(d−1) chambers (full dimensional cones determined by the arrangement). There are c1n

d ways to choose

one of the hyperplanes from Hn, for some constant c1. Therefore there are cd−1
1 nd(d−1) ways to choose d− 1

of the hyperplanes; their intersection is, in general, a 1-dimensional face of Hn (that is, the intersection is a
ray which is an extreme ray for the cones it is contained in). It is quite possible that two different ways of
choosing d−1 hyperplanes give the same extreme ray. The following lemma says that some constant fraction
of these choices of extreme rays are actually distinct.

Lemma 4.3. Fix d. Given n, let Hn be the hyperplane arrangement consisting of the hyperplanes of
the form {x : 〈a, x〉 = 0} with a ∈ Z

d
+ and

∑
i ai < n. Then the number of 1-dimensional faces of Hn is

c2n
d(d−1), for some constant c2.

Each chamber will have a number of these extreme rays on its boundary. The following lemma gives a
constant bound on this number.

Lemma 4.4. Fix d. Given n, define Hn as above. Each chamber of Hn has at most 2d(d−1) extreme
rays.

Conversely, each ray is an extreme ray for at least 1 chamber. Therefore there are at least c2

2d(d−1) n
d(d−1)

chambers, and Theorem 4.1 is proved.

5. Inference functions for sequence alignment

In this section we give an application of Theorem 3.1 to a basic model for sequence alignment. Sequence
alignment is one of the most frequently used techniques in determining the similarity between biological
sequences. In the standard instance of the sequence alignment problem, we are given two sequences (usually
DNA or protein sequences) that have evolved from a common ancestor via a series of mutations, insertions
and deletions. The goal is to find the best alignment between the two sequences. The definition of “best”
here depends on the choice of scoring scheme, and there is often disagreement about the correct choice. In
parametric sequence alignment, this problem is circumvented by instead computing the optimal alignment as
a function of variable scores. Here we consider one such scheme, in which all matches are equally rewarded,
all mismatches are equally penalized and all spaces are equally penalized. Efficient parametric sequence
alignment algorithms are known (see for example [6, Chapter 7]). Here we are concerned with the different
inference functions that car arise when the parameters vary. For a detailed treatment on the subject of
sequence alignment, we refer the reader to [3].

Given two strings σ1 and σ2 of lengths n1 and n2 respectively, an alignment is a pair of equal length
strings (µ1, µ2) obtained from σ1, σ2 by inserting dashes “−” in such a way that there is no position in which
both µ1 and µ2 have a dash. A match is a position where µ1 and µ2 have the same character, a mismatch is
a position where µ1 and µ2 have different characters, and a space is a position in which one of µ1 and µ2 has
a dash. A simple scoring scheme consists of two parameters α and β denoting mismatch and space penalties
respectively. The reward of a match is set to 1. The score of an alignment with z matches, x mismatches,
and y spaces is then z − xα − yβ. Observe that these numbers always satisfy 2z + 2x + y = n1 + n2.
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This model for sequence alignment is a particular case of a so-called pair hidden Markov model. The
problem of determining the highest scoring alignment for given values of α and β is equivalent to the inference
problem in the pair hidden Markov model. In this setting, an observation is a pair of sequences τ = (σ1, σ2),
and the number of observed variables is n = n1 + n2. The values of the hidden variables in an explanation
indicate the positions of the spaces in the optimal alignment. We will refer to this as the 2-parameter model
for sequence alignment.

For each pair of sequences τ , the Newton polytope of the polynomial fτ is the convex hull of the points
(x, y, z) whose coordinates are the number of mismatches, spaces, and matches, respectively, of each possible
alignment of the pair. This polytope is only two dimensional, as it lies on the plane 2z + 2x + y = n1 + n2.
No information is lost by considering its projection onto the xy-plane instead. This projection is just the
convex hull of the points (x, y) giving the number of mismatches and spaces of each alignment. For any
alignment of sequences of lengths n1 and n2, the corresponding point (x, y) lies inside the square [0, n]2,
where n = n1 + n2. Therefore, since we are dealing with lattice polygons inside [0, n]2, it follows from the
proof of the Few Inference Functions Theorem (Theorem 3.1) that the number of inference functions of this
model is O(n2(2−1))) = O(n2). Next we show that this quadratic bound is tight, even in the case of the
binary alphabet.

Proposition 5.1. Consider the 2-parameter model for sequence alignment for two observed sequences
of length n and let Σ′ = {0, 1} be the binary alphabet. Then, the number of inference functions of this model
is Θ(n2).

Proof. The above argument shows that O(n2) is an upper bound on the number of inference functions
of the model. To prove the proposition, we will argue that there are at least Ω(n2) such functions.

Since the two sequences have the same length, the number of spaces in any alignment is even. For
convenience, we define y′ = y/2 and β′ = 2β, and we will work with the coordinates (x, y′, z) and the
parameters α and β′. The value y′ is called the number of insertions (half the number of spaces), and β′ is
the insertion penalty. For fixed values of α and β′, the explanation of an observation τ = (σ1, σ2) is given
by the vertex of NP(fτ ) that is maximal in the direction of the vector (−α,−β′, 1). In this model, NP(fτ )
is the convex hull of the points (x, y′, z) whose coordinates are the number of mismatches, insertions and
matches of the alignments of σ1 and σ2.

The argument in the proof of Theorem 3.1 shows that the number of inference functions of this model
is the number of cones in the common refinement of the normal fans of NP(fτ ), where τ runs over all pairs
of sequences of length n in the alphabet Σ′. Since the polytopes NP(fτ ) lie on the plane x + y′ + z = n, it is
equivalent to consider the normal fans of their projections onto the y′z-plane. These projections are lattice
polygons contained in the square [0, n]2. We denote by Pτ the projection of NP(fτ ) onto the y′z-plane.

We will construct, for any relatively prime positive integers u and v with u < v and 6v − 2u ≤ n, a pair
τ = (σ1, σ2) of binary sequences of length n such that Pτ has an edge of slope u/v. Such an edge gives rise
to the line u · α + v · β′ = 0 separating regions in the normal fan N (Pτ ) and hence in

∧
τ N (Pτ ), where τ

ranges over all pairs of binary sequences of length n. The number of such choices u, v is Ω(n2) (this relies on
the fact, see [1, Chapter 3], that a positive fraction of choices of (u, v) ∈ Z

2 have u and v relatively prime).
This implies that the number of different inference functions is Ω(n2).

Thus, it only remains to construct such a τ , given positive integers u and v as above. Let a := 2v,
b := v − u. Assume first that n = 6v − 2u = 2a + 2b. Consider the sequences σ1 = 0a1b0b1a, σ2 = 1a0b1b0a,
where 0a indicates that the symbol 0 is repeated a times. Let τ = (σ1, σ2). Then, it is not hard to see that
the polygon Pτ for this pair of sequences has four vertices: v0 = (0, 0), v1 = (b, 3b), v2 = (a + b, a + b) and
v3 = (n, 0). The slope of the edge between v1 and v2 is a−2b

a
= u

v
.

If n > 6v−2u = 2a+2b, we just append 0n−2a−2b to both sequences σ1 and σ2. In this case, the vertices
of Pτ are (0, n − 2a− 2b), (b, n − 2a + b), (a + b, n − a − b), (n, 0) and (n − 2a − 2b, 0).

Note that if v − u is even, the construction can be done with sequences of length n = 3v − u by taking
a := v, b := v−u

2 . Figure 5 shows the alignment graph and the polygon Pτ for a = 7, b = 2. �

In most cases, one is interested only in those inference functions that are biologically meaningful. This
corresponds to parameter values with α, β ≥ 0, which means that mismatches and spaces are penalized
instead of rewarded. Sometimes one also requires that α ≤ β, which means that a mismatch should be
penalized less than two spaces. It is interesting to observe that our construction in the proof of Proposition 5.1
not only shows that the total number of inference functions is Ω(n2), but also that the number of biologically
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Figure 5. A pair of binary sequences of length 18 giving the slope 3/7 in their alignment
polytope. The four paths in the alignment graph on the left correspond to the four vertices;
a right step in the graph corresponds to a space in σ1, a down step to a space in σ2, and
a diagonal step to a match or mismatch. See [6, Section 2.2] for a full definition of the
alignment graph.

meaningful ones is still Ω(n2). This is because the different rays created in our construction have a biologically
meaningful direction in the parameter space.

6. Final remarks

An interpretation of Theorem 3.1 is that the ability to change the values of the parameters of a graphical
model does not give as much freedom as it may appear. There is a very large number of possible ways to
assign an explanation to each observation. However, only a tiny proportion of these come from a consistent
method for choosing the most probable explanation for a certain choice of parameters. Even though the
parameters can vary continuously, the number of different inference functions that can be obtained is at
most polynomial in the number of edges of the model, assuming that the number of parameters is fixed.

In the case of sequence alignment, the number of possible functions that associate an alignment to each
pair of sequences of length n is doubly-exponential in n. However, the number of functions that pick the
alignment with highest score in the 2-parameter model, for some choice of the parameters α and β, is only
Θ(n2). Thus, most ways of assigning alignments to pairs of sequences do not correspond to any consistent
choice of parameters. If we use a model with more parameters, say d, the number of inference functions may
be larger, but still polynomial in n, namely O(nd(d−1)).

Having shown that the number of inference functions of a graphical model is polynomial in the size of the
model, an interesting next step would be to find an efficient way to precompute all the inference functions
for given models. This would allow us to give the answer (the explanation) to a query (an observation) very
quickly. Theorem 3.1 suggests that it might be computationally feasible to precompute the polytope NP(f),
whose vertices correspond to the inference functions. However, the difficulty arises when we try to describe
a particular inference function efficiently. The problem is that the characterization of an inference function
involves an exponential number of observations.
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From Orbital Varieties to Alternating Sign Matrices
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Abstract. We study a one-parameter family of vector-valued polynomials associated to each simple Lie
algebra. When this parameter q equals −1 one recovers Joseph polynomials, whereas at q cubic root of
unity one obtains ground state eigenvectors of some integrable models with boundary conditions depending
on the Lie algebra; in particular, we find that the sum of its entries is related to numbers of Alternating
Sign Matrices and/or Plane Partitions in various symmetry classes.

Résumé. Nous étudions une famille à un paramètre de polynômes à valeurs vectorielles qui est associée à
chaque algèbre de Lie simple. Quand ce paramètre q vaut −1 on retrouve les polynômes de Joseph, tandis
que quand q est racine cubique de l’unité on obtient les états fondamentaux de certain modèles intégrables
avec des conditions aux bords dépendant de l’algèbre de Lie ; en particulier, nous trouvons que la somme

de ses composantes est reliée aux nombres de Matrices de Signe Alterné et/ou de Partitions Planes dans
diverses classes de symétrie.

1. Introduction

Recently, a remarkable connection between integrable models and combinatorics has emerged. It first
appeared in a series of papers concerning the XXZ spin chain and the Temperley–Lieb (TL) loop model
[1, 2] and which culminated with the so-called Razumov–Stroganov (RS) conjecture [3]. One of the main
observations of [1], a weak corollary of the RS conjecture, is that the sum of entries of the properly nor-
malized ground state vector of the TL(1) loop model is (unexpectedly!) equal to the number of Alternating
Sign Matrices. This result was eventually proved in [4] by using the integrability of the TL loop model in
the following way: the model is generalized by introducing N complex numbers (spectral parameters, or
inhomogeneities) in the problem, where N is the size of the system. The ground state entries become poly-
nomials in these variables, and integrability provides many new tools for analyzing them, leading eventually
to the exact computation of their sum, identified as the so-called Izergin–Korepin (IK) determinant, known
to specialize to the number of Alternating Sign Matrices in the homogeneous limit [5]. Note that in this
work, the meaning of the spectral parameters is not very transparent; in particular, it is unclear how to
generalize the full RS conjecture in their presence.

Next, it was observed in [6] that the polynomials obtained above really belong to a one-parameter family
of solutions of a certain set of linear equations, in which the parameter q has been set equal to a cubic root
of unity. This observation is not obvious because the equations for generic q are not a simple eigenvector
equation; in fact, as explained in [7], they are precisely the quantum Knizhnik–Zamolodchikov (qKZ) equa-

tions at level 1 for the algebra Uq(ŝl(2)). Furthermore, in the “rational” limit q → −1, these polynomials
have a remarkable geometric interpretation: they are equivariant Hilbert polynomials (or “multidegrees”) of
AN−1 orbital varieties M2 = 0 ([7], see also [8]), which are extensions of the Joseph polynomials [11]. Note
that here, the spectral parameters quite naturally appear as the basis of weights of gl(N). In [7], these ideas

were generalized to higher algebras Uq(ŝl(k)), which correspond to the orbital varieties Mk = 0.

Key words and phrases. algebraic combinatorics, alternating sign matrices, integrable models.
The authors acknowledge the support of the European networks “ENIGMA” MRT-CT-2004-5652, “ENRAGE” MRTN-

CT-2004-005616, and of the Geocomp project (ACI Masse de Données).
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Here, we pursue a different type of generalization: we investigate orbital varieties corresponding to the

other infinite series of simple Lie algebras: Br, Cr, Dr; but we stick to the Uq(ŝl(2)) case by choosing
the orbital varieties M2 = 0, M a complex matrix in the fundamental representation. Indeed, we show
below that such orbital varieties are related to the same loop model, but with different boundary conditions

(corresponding to variants of the Temperley–Lieb algebra). Furthermore, one can now q-deform the resulting
polynomials to produce solutions of qKZ equations of type B, C, D and set q to be a cubic root of unity.
Taking the homogeneous limit, the entries become integer numbers, which we conjecture to be related to
symmetry classes of Alternating Sign Matrices and/or Plane Partitions; in particular we identify the sums
of entries.

In what follows we state most results without proofs; some will appear in a joint paper with A. Knutson
[15] on a closely related subject.

2. General setup

2.1. Orbital varieties. Let g be a simple complex Lie algebra of rank r, b a Borel subalgebra. b = t⊕n

where t is the corresponding Cartan subalgebra and n is the space of nilpotent elements of b. B and T are
Borel and Cartan subgroups. Let W denote the Weyl group of g, and sα its standard generators, where α
runs over the set of simple roots of g.

Fixing an orbit G·x, with x ∈ n and G acting by conjugation, one can consider the irreducible components
of b ∩ (G · x), which are called orbital varieties.

Even though much of what follows can be done for any orbital varieties, we focus below on the following
special case: we fix an irreducible representation ρ (of dimension N) and consider the scheme E = {x ∈ b |

ρ(x)2 = 0}. The underlying set is precisely a b ∩ (G · x), where x is any element of E such that ρ(x) is of
maximal rank. In some sense, its components are the “simplest possible” orbital varieties.

2.2. Hotta construction. It is known that there exists a representation of the Weyl group W on the
vector space V of formal linear combinations of orbital varieties (Springer/Joseph representation); for each
G-orbit, it is an irreducible representation. We use the following explicit form of the representation: note
that orbital varieties are invariant under T ×C×, where T acts by conjugation and C× acts by overall scaling.
We can therefore consider equivariant cohomology H∗

T×C×(·) and in particular via the inclusion map from

each orbital variety π to the space n, the unit of H∗
T×C×(π) is pushed forward to some cohomology class Ψπ

in H∗
T×C×(n) = C[t, A], that is a polynomial in r + 1 variables α1, . . ., αr, A (the r simple roots plus the C×

weight), sometimes called multidegree of π. Suppressing the C× action, that is setting A = 0, one recovers
the Joseph polynomials [11].

The way that W acts on these polynomials can be described explicitly, by extending slightly the results
of Hotta [12] to include the additional C× action. One starts by associating to each simple root α a certain
geometric construction, which we briefly recall. For x ∈ b write x =

∑
α xαeα where α runs over positive

roots, eα ∈ g being a vector of weight α. Define bα = {x ∈ b | xα = 0}, and Lα to be Lévy subgroup whose
Lie algebra is b ⊕ Ce−α. Starting from an orbital variety π, we distinguish two cases:

• π ⊂ bα. Then set sαπ = π.
• π 6⊂ bα. Then let Lα acts by conjugation: the top-dimensional components of Lα ·(π∩bα) are again

orbital varieties; set sαπ = −π −
∑

π′ µα
π′

π π′ where µα
π′

π is the multiplicity of π′ in Lα · (π ∩ bα).

These elementary operations have a counterpart when acting on multidegrees, and a simple calculation shows
that both cases are covered by a single formula:

(2.1) sαΨπ = (−τα + A∂α)Ψπ

where τα is the reflection orthogonal to the root α in C[α1, . . . , αr, A], and ∂α = 1
α (τα − 1) is the associated

divided difference operator, whereas on the left hand side sα implements right action on the Ψπ, namely
sαΨπ := −Ψπ −

∑
π′ µα

π′

π Ψπ′ . One can check that sα 7→ −τα +A∂α is a representation of the Weyl group W
on polynomials. Note that at A = 0, we recover the natural action of W (up to a sign, with our conventions).

2.3. Yang–Baxter equation and integrable models. Let us define the operator

(2.2) Rα(u) :=
A − usα

A + u
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which acts in the space V ⊗ C[α1, . . . , αr, A], u being a formal parameter. Rewriting slightly the relation
(2.1) above we find that τα acts as Rα(α). Using the fact that τα, just like the sα, satisfy the Weyl group
relations, we find that the operators ταRα(α) also satisfy those. In the case of non-exceptional Lie algebras,
there are only 2 types of edges in the Dynkin diagram, and therefore we have Coxeter relations of the form
(sαsβ)mαβ = 1, where mαβ = 1, 2, 3, 4 depending on whether α = β, there is no edge, a single or a double
edge between α and β. Writing these relations for ταRα and eliminating the τα, we find that relations with
mαβ = 1, 3, 4 correspond respectively to the unitarity equation:

(2.3) Rα(α)Rα(−α) = 1 ,

the Yang–Baxter equation:

(2.4) Rα(α)Rβ(α + β)Rα(β) = Rβ(β)Rα(α + β)Rβ(α) α β

and the boundary Yang–Baxter (or reflection) equation:

(2.5) Rα(α)Rβ(β + α)Rα(α + 2β)Rβ(β) = Rβ(β)Rα(α + 2β)Rβ(β + α)Rα(α) α β

whereas the case mαβ = 2 expresses a simple commutation relation for distant vertices. Indeed one recognizes
in Rα(u) a standard form of the rational solution of the Yang–Baxter equation, the parameter u playing
the role of difference of spectral parameters. Thus the multidegrees Ψα are closely connected to integrable
models with rational dependence on spectral parameters, as will be discussed now.

Before doing so, let us remark that in the special case investigated here of orbital varieties associated to
M2 = 0, the sα obey more than just the Coxeter relations. In the Ar case they actually generate a quotient
of the symmetric group algebra Sr+1 known as the Temperley–Lieb algebra TLr+1(2) (here 2 is the value
of the parameter in the definition of the algebra, as will be explained below). The same type of phenomena
will be described for other simple Lie algebras, and will lead to variants of the Temperley–Lieb algebra; in
particular, the “bulk” (i.e. everything but a finite number of edges at the boundary) of the Dynkin diagrams
being sequences of simple edges, these variants will only differ at the level of “boundary conditions” of the
model.

2.4. Affinization and rational qKZ equation. Let us now discuss the meaning of the equation

(2.6) Rα(α)Ψ = ταΨ

where τα is the reflection associated to the root α acting on the “spectral parameters” α1, . . ., αr, Rα(α)
is a certain linear operator defined above acting in the space V ⊗ C[α1, . . . , αr, A] and Ψ =

∑
π π ⊗ Ψπ is a

vector in that space.
When Rα(u) is the R-matrix (or boundary R-matrix) of some integrable model, such equations are

satisfied by eigenvectors of the corresponding integrable transfer matrix. More generally, these equations
appear in the context of the quantum Knizhnik–Zamolodchikov (qKZ) equation, in connection with the
representation theory of affine quantum groups [13]. In either case, it is known that we need an additional
equation to fix the Ψπ entirely.

Define Ŵ to be the semi-direct product of W and of the weight lattice of g. It contains as a finite index
subgroup the usual affine Weyl group defined as the Coxeter group of the affinized Dynkin diagram. Just
like the affine Weyl group, it has a natural action on t and therefore on C[α1, . . . , αr, A] which extends the
action of W generated by the reflections τi; by definition, in this representation, an element of the weight
lattice acts as translation in t of the weight multiplied by 3A (3 = l + ȟ where l = 1 is the level of the qKZ
equation and ȟ = 2 is the dual Coxeter number of sl(2)).

Then we claim that one can extend the representation of W on V ⊗ C[α1, . . . , αr, A] (the operators

ταRα(α)) into a representation of Ŵ , in such a way that each element of Ŵ is the product of its natural
action on C[α1, . . . , αr, A] and of a C[α1, . . . , αr, A]-linear operator. Describing here the geometric procedure
that leads to this action is beyond the scope of this paper. The action will however be described explicitly
in each of the cases below. An important property is that if one sets A = 0 the representation of Ŵ factors

through the projection Ŵ → W . So the C× action actually produces the affinization.
Imposing that Ψ be invariant under the action of the whole group Ŵ leads to a full set of equations,

which are precisely equivalent to the so-called rational qKZ equation (or more precisely, a generalization of
it for arbitrary Dynkin diagram, the original qKZ equation corresponding to the case Ar) at level 1; and it
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turns out that they have a unique polynomial solution of the prescribed degree (up to multiplication by a
scalar).

2.5. q-deformation and Razumov–Stroganov point. The integrability suggests how to q-deform
the above construction. Indeed, we have considered thus far R-matrices that form so-called rational solutions
of the Yang–Baxter Equation, and Ψ’s that are solutions of the rational qKZ equation. It is known however
that the trigonometric R-matrices are a special degeneration of a one-parameter family of trigonometric

solutions of the Yang–Baxter Equation, depending on a parameter q. Setting q = −e−~A/2, one customarily
uses exponentiated “multiplicative” spectral parameters of the form e−~αi . We then look for polynomial
solutions Ψ of these parameters, to the corresponding trigonometric qKZ equations. The rational solutions
are then recovered from the trigonometric ones via the limit ~ → 0, at the first non-trivial order in ~. The
details of the bulk and boundary R-matrices will be given below for the cases Ar, Br, Cr and Dr. We thus
obtain, for any q, a representation of the group Ŵ , the W relations satisfied by the ταRα(α) and more

generally the Ŵ relations being undeformed.
In terms of the new variables e−~αi living in T , the natural action of an element of the weight lattice

ω (as the abelian subgroup of Ŵ ) is the multiplication by q6ω. Since for all simple Lie algebras, ω has
half-integer coordinates, we reach the important conclusion that when q3 = 1, this action becomes trivial.
Therefore, all operators associated to the weight lattice by the procedure outlined in the previous section
become C[α1, . . . , αr, A]-linear (i.e. correspond to finite-dimensional operators on V after evaluation of the
parameters α1, . . ., αr, A). In this case they are simply the scattering matrices of [19], and they commute
with the usual (inhomogeneous) integrable transfer matrix of the model. This implies that Ψ is an eigenvector
of the latter; in fact, we can call it “ground state eigenvector” because in the physical situation where the
transfer matrix elements are positive, the Perron–Frobenius theorem applies and the eigenvalue 1 of Ψ is the
largest eigenvalue in modulus.

The value q = e2iπ/3 (also called “Razumov–Stroganov point”) is henceforth quite special and deserves
a particular study. In particular, in the homogeneous limit where the spectral parameters αi are specialized
to zero, Ψ can be normalized so that its entries are all non-negative integers, and we are interested in their
combinatorial significance, in relation to the counting of Alternating Sign Matrices and/or Plane Partitions.
We do not claim to have a full understanding of the general correspondence principle between simple Lie
algebras and these combinatorial problems, but we will perform a case-by-case study for Ar, Br, Cr and Dr.

A last remark is in order. As we shall see, it is simple to see that the solutions Ψ to the A, B, C, D
qKZ equations obey recursion relations, that allow to obtain the rank r case from rank r + 1, hence we will
content ourselves with the detailed description for r with a given parity, namely A2n−1, B2n, C2n+1, D2n+1.

3. Ar case

We review the Ar case, already explored in [7]. We set αi = zi − zi+1, i = 1, . . . , r. The fact that there
are r + 1 ≡ N of these new variables zi, the spectral parameters, as opposed to the r simple roots, is a
reflection of the usual embedding sl(N) ⊂ gl(N). b (resp. n) is simply the space of upper triangular (resp.
strictly upper triangular) matrices of size N , and the orbital varieties under consideration are the irreducible
components of the scheme {M ∈ n | M2 = 0}. We also restrict ourselves to the case of N = 2n even, which
is technically simpler.

3.1. Orbital varieties and Temperley–Lieb algebra. In general, sl(N) nilpotent orbits are classi-
fied by their Jordan decomposition type, which can be expressed as a Young diagram; the orbital varieties
are then indexed by Standard Young Tableaux (SYT). The condition M2 = 0 ensures that only Young
diagrams with at most 2 rows can appear (blocks in the Jordan decomposition are of size at most 2), and
it is easy to check that all orbits are in the closure of the largest orbit, whose Young diagram is of the form
(n, n). It is convenient to describe the corresponding SYT by “link patterns”, that is N points on a line
connected in the upper-half plane via n non-intersecting arches, see fig. 1. The numbers in the first (resp.

second) row of the SYT are the labels of the openings (resp. closings) of the arches. There are (2n)!
n!(n+1)! such

configurations.
In this language, one has a rather convenient description of orbital varieties [25, 26], which we mention

for the sake of completeness. Indeed, to each orbital variety π we associate the upper triangular matrix π<

with π<
ij = 1 if points labelled i and j are connected by an arch, i < j, 0 otherwise. Then π = B · π<,
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4 6

1 2 5

3
→

1 2 3 4 5 6

Figure 1. A Standard Young Tableau and the corresponding link pattern.

e4
1 2 3 4 5 6

=

1 2 3 4 5 6

=
1 2 3 4 5 6

e2
1 2 3 4 5 6

=

1 2 3 4 5 6

= β
1 2 3 4 5 6

Figure 2. Action of the Temperley–Lieb algebra TL(β) on link patterns.

B acting by conjugation. Equivalently, π is given by the following set of equations: (i) M2 = 0 and (ii)
rij(M) ≤ rij(π

<), i, j = 1, . . . , N , where rij is the rank of the i × j lower-left rectangle.
It is equally simple to describe the action of the Weyl group, namely the symmetric group SN . Rather

than the generators corresponding to the simple roots: si ≡ sαi
, i = 1, . . . , r used so far, it proves simpler

to consider the action of the projectors ei = 1− si in the symmetric group algebra. The operator ei acts on
link patterns π by connecting the arches ending at i and i + 1 and creates a new little arch between these 2
points; this action is described on Fig. 2. When a closed loop is formed, it is erased but contributes a weight
β = 2. The q-deformed version of this is obtained by attaching a weight β = −(q + q−1) to each erased loop,
thus leading to the following (pictorially clear) relations:

(3.1) e2
i = βei ei = eiei±1ei [ei, ej ] = 0 |i − j| > 1

all indices taking values in 1, . . . , r. These are the defining relations of the Temperley–Lieb algebra TLr+1(β).
When q = −1, i.e. β = 2, it is simply a quotient of the symmetric group algebra. Alternatively, the deformed
generators si = −q−1 − ei satisfy the usual relations of the Hecke algebra (of which the Temperley–Lieb
algebra is a quotient).

In what follows, one special element of TLN(β) will be needed: it is the cyclic rotation S. Its effect is
to rotate the endpoints of the link patterns: 1 → 2 → · · · → N → 1 without changing their connectivity. It
can also be expressed as: S = qn−2s1 · · · sN−1.

3.2. qKZ equation. For each simple root αi, we have the trigonometric R-matrix:

(3.2) Ri(w) ≡ Rαi
(w) =

(qw − q−1) + (w − 1)ei

q − q−1w
,

where the ei = −q−1 − si generate TLN(β) and act in the space of link patterns as explained above. We
first write the system of equations:

(3.3) Ri(wi+1/wi)Ψ = τiΨ i = 1, . . . , N − 1

where τi ≡ ταi
acts by interchanging multiplicative spectral parameters wi := e−~zi and wi+1 in the poly-

nomial Ψ of the w’s, homogeneous of degree n(n − 1).
These equations are supplemented by the “affinized” equation satisfied by Ψ. Since the affine Dynkin

diagram A
(1)
r is a circular chain, this equation quite naturally involves the cyclic rotation S. Define the

operator ρ on C[w1, . . . , wN ] which shifts the variables wi according to the rule: wi → wi+1, i = 1, . . . , N −1
and wN → q6w1. Then the additional equation is

(3.4) q3(n−1)S−1Ψ = ρΨ

Together with this equation, the above system forms the so-called level one qKZ equation.
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We claim that the Ri := τiRi(wi+1/wi) and S := q3(1−n)ρS generate together Ŵ . In order to see that,
it is sufficient to build the N generators Ti of the abelian subgroup (the lattice of weights). They are given
by Ti = Ri−1Ri−2 · · ·R1SRN−1 · · ·Ri+1Ri, i = 1, . . . , N . The original definition of the qKZ equation is in
fact the eigenvector equation for these “scattering” matrices; with reasonable assumptions it is equivalent
to the above system. Also, note that if one defines RN := S−1R1S, then the Ri, i = 1, . . . , N generate the
usual affine Weyl group (a subgroup of order N of Ŵ ).

The minimal degree polynomial solution of the level one qKZ equation was obtained in [6, 7], and is
characterized by its “base” entry Ψπ0

corresponding to the link pattern π0 that connects points i ↔ 2n+1−i,
with the value

(3.5) Ψπ0
=

∏

1≤i<j≤n

(qwi − q−1wj)
∏

n+1≤i<j≤2n

(qwi − q−1wj)

in which all factors are a direct consequence of the τiΨ = RiΨ equations. It is then easy to prove that all
the other entries of Ψ may be obtained from Ψπ0

in a triangular way.
Example: at N = 6, there are 5 link patterns. The minimal degree polynomial solution of the level one

qKZ equation reads:

Ψ
1 2 3 4 5 6

= (qw1 − q−1w2)(qw2 − q−1w3)(qw1 − q−1w3)(qw4 − q−1w5)(qw5 − q−1w6)(qw4 − q−1w6)

Ψ
1 2 3 4 5 6

= (qw1 − q−1w2)(qw3 − q−1w4)(qw5 − q−1w6)

×
(
(w1 + w2)(q

2w3w4 − q−2w5w6) − (w3 + w4)(q
4w1w2 − q−4w5w6) + (w5 + w6)(q

2w1w2 − q−2w3w4)
)

Ψ
654321

= (qw2 − q−1w3)(qw2 − q−1w4)(qw3 − q−1w4)(qw5 − q−1w6)(q
−2w6 − q2w1)(q

−2w5 − q2w1)

Ψ
1 2 3 4 5 6

= (qw1 − q−1w2)(qw3 − q−1w4)(qw4 − q−1w5)(qw3 − q−1w5)(q
−2w6 − q2w1)(q

−2w6 − q2w2)

Ψ
654321

= (qw2 − q−1w3)(qw4 − q−1w5)(q
−2w6 − q2w1)

×
(
(q3w1 + q−3w6)(q

2w2w3 − q−2w4w5) − (w2 + w3)(qw1w6 − q−1w4w5) − (w4 + w5)(qw2w3 − q−1w1w6)
)

Performing the rational limit ~ → 0, zi = e−~wi , q = −e−~A/2 yields the following multidegrees:

Ψ
1 2 3 4 5 6

= (A + z1 − z2)(A + z2 − z3)(A + z1 − z3)(A + z4 − z5)(A + z5 − z6)(A + z4 − z6)

Ψ
1 2 3 4 5 6

= (A + z1 − z2)(A + z3 − z4)(A + z5 − z6)
(
4A3 + 3A2(z1 + z2 − z5 − z6) +

+A(2(z1z2 − 2z3z4 − z1z5 − z2z5 − z1z6 − z2z6 + z5z6) + (z3 + z4)(z1 + z2 + z5 + z6))

+(z1 + z2)(z5z6 − z3z4) + (z3 + z4)(z1z2 − z5z6) + (z5 + z6)(z3z4 − z1z2)
)

Ψ
654321

= (A + z2 − z3)(A + z2 − z4)(A + z3 − z4)(A + z5 − z6)(2A + z1 − z6)(2A + z1 − z5)

Ψ
1 2 3 4 5 6

= (A + z1 − z2)(A + z3 − z4)(A + z4 − z5)(A + z3 − z5)(2A + z1 − z6)(2A + z2 − z6)

Ψ
654321

= (A + z2 − z3)(A + z4 − z5)(2A + z1 − z6)
(
5A3 + 3A2(z1 + z2 + z3 − z4 − z5 − z6) +

+A(2z1(z2 + z3 − z6) + z2z3 + z4z5 − (z2 + z3)z6 + (z4 + z5)(2z6 − z1 − z2 − z3))

+(z1 + z6)(z2z3 − z4z5) + (z2 + z3)(z4z5 − z1z6) + (z4 + z5)(z1z6 − z2z3)
)

and in particular the degrees 1, 4, 4, 4, 10 respectively, upon taking zi = 0 and A = 1.

3.3. Razumov–Stroganov point and ASM. At q = e2iπ/3, Ψ becomes the ground state eigenvector
of the integrable transfer matrix with periodic boundary conditions and inhomogeneities w1, . . ., wN , or
equivalently of the scattering matrices Ti = Ri−1(wi−1/wi) · · ·R1(w1/wi)SRN−1(wN−1/wi) · · ·Ri(wi+1/wi).
Consider now the particular case w1 = · · · = wN = 1, when Ψ is the Perron–Frobenius eigenvector of the
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Hamiltonian H = e1 + · · ·+ eN where eN = S−1e1S. Note that the periodic boundary conditions mean that
H is cyclic-invariant: SH = HS. Normalizing Ψ so that its smallest entry Ψπ0

is 1, we have the following

Theorem. [4] The sum of entries
∑

π Ψπ is equal to the number of Alternating Sign Matrices, A(n).

The result of [4] is actually much more general, as the sum
∑

π Ψπ was evaluated in the presence of
all the spectral parameters wi, and identified with proper normalization to the so-called Izergin–Korepin
determinant [20, 21], also equal to a particular Schur function [22]. Still unproven, however, is the

Conjecture. [1] The largest entry of Ψ, with arches connecting consecutive points, is A(n − 1).

For instance, plugging wi = 1 and q = e2iπ/3 into the above example, we get for N = 6, Ψ = (1, 2, 1, 1, 2)
and

∑
π Ψπ = 7 = A(3), the total number of 3 × 3 ASMs.

4. Br case

We now develop the Br case, which allows us to recover and interpret geometrically the results of [16].
We concentrate on the even case r = 2n. We parametrize as usual the roots αi = zi−zi+1 for i = 1, 2, . . . , r−1
and αr = zr.

We consider matrices that square to zero in the fundamental representation of dimension N = 2r + 1: a
possible choice is to select upper triangular matrices satisfying MT J + JM = 0, J antidiagonal matrix with
1’s on the second diagonal. It turns out that the orbital varieties are indexed by the same link patterns as
before, of size r; and that the Weyl group representation is actually a representation of the same quotient, the
Temperley–Lieb algebra TLr(β), the additional reflection sr being represented by a multiple of the identity.

4.1. B-type qKZ equation. According to the dicusssion above, the B qKZ system reads:

Ri(wi+1/wi)Ψ = τiΨ, i = 1, 2, ..., r − 1(4.1)

w−mr

r

q−1wr − q

q−1 − qwr
Ψ = τrΨ(4.2)

where τr stands for the inversion of the last spectral parameter, namely τrΨ(w1, ...wr−1, wr) = Ψ(w1, ..., wr−1, 1/wr)
and mr is the degree of Ψ in wr .

Finally, these equations are to be supplemented by the affinization relation. The latter is expressed by
considering the reflection with respect to the extra root z1. One finds that

(4.3) (q3w1)
−m1

q−2 − q2w1

qw1 − q−1
Ψ(w1, w2, ..., wr) = Ψ

( 1

q6w1
, w2, ..., wr

)

where m1 is the degree of Ψ in z1.
Introducing the boundary operators K1 and Kr so that Eqs. (4.2–4.3) reduce to K1Ψ = K2Ψ = Ψ, as

well as the usual Ri = τiRi(wi+1/wi), the generators of the weight lattice (as abelian subgroup of Ŵ ) are:
(i) Ti = RiRi+1 · · ·Rr−1KrRr−1 · · · R1K1R1 · · ·Ri−1 that implements wi → q6wi and (ii) one additional
generator implementing wi → q3wi simultaneously for all i. The latter is a combination of R and K matrices
as well as an additional operator implementing the reflection wi ↔ q−3/wr+1−i for all i.

The minimal polynomial solution to the system (4.1–4.3) has degree m1 = mr = r − 1 = 2n− 1 in each
spectral parameter and total degree n(3n − 1). As before it has a simple factorized base entry

(4.4) Ψπ0
= C

∏

1≤i<j≤n

(qwi − q−1wj)(q
−2 − q2wiwj)

∏

n+1≤i<j≤2n

(qwi − q−1wj)(qwiwj − q−1)

where C = 2n
∏r

i=1(qwi − q−1) is a common (symmetric) factor to all entries of Ψ. All other entries may be
obtained from this one in a triangular manner.

Example: For B4, there are 2 link patterns as for the case A3. The minimal degree polynomial solution
of the level one B4 qKZ equation reads:

Ψ
1 2 3 4

= C(qw1 − q−1w2)(q
−2 − q2w1w2)(qw3 − q−1w4)(qw3w4 − q−1)

Ψ
1 2 3 4

= C(qw2 − q−1w3)(q
−1w1 − qw1w2w3 − q−5w4 − qw2

1w4 + (q−1 − q)w1(w2 + w3)w4

+q−1w2w3w4 + q5w2
1w2w3w4 + q−1w1w

2
4 − qw1w2w3w

2
4)
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As before, we get the corresponding multidegrees upon taking the rational limit, with the result:

Ψ
1 2 3 4

= C′(A + z1 − z2)(2A + z1 + z2)(A + z3 − z4)(A + z3 + z4)

Ψ
1 2 3 4

= C′(A + z2 − z3)
(
5A3 + 3A2(2z1 + z2 + z3) + A(2z2

1 + 3z1(z2 + z3) + z2z3 − z2
4)

+(z2 + z3)(z
2
1 − z2

4)
)

with C′ = 4(A + z1)(A + z2)(A + z3)(A + z4); hence the degrees 4 × 2, 4 × 5 for A = 1 and zi = 0.

4.2. RS point, VSASM and CSTCPP. As explained in Sect. 2, the case q = e2iπ/3 is special in
that the problem admits a transfer matrix, and its solution Ψ in the homogeneous limit where all wi = 1 is
the groundstate of a Hamiltonian

(4.5) HB = e1 + e2 + ... + eN−1

which is the open boundary version of the Ar Hamiltonian H .
As shown in [17], at the RS point q = e2iπ/3, and in the homogeneous limit where wi = 1 for all i, and

in which Ψ is normalized so that its smallest entry is Ψπ0
= 1, we have the following

Theorem. [16] The sum of entries
∑

π Ψπ is equal to the number of Vertically Symmetric Alternating
Sign Matrices (VSASM), AV (2n + 1).

This was actually proved in the same spirit as for the Ar case, by identifying the sum of compo-
nents including all spectral parameters wi as yet another determinant, which takes the form of a particular
symplectic Schur function. A similar result holds for the case of odd r = 2n − 1, namely once properly
normalized, the sum of entries

∑
π Ψπ is equal to an integer we call AV (2n) by analogy. It turns out

that AV (2n) = N8(2n) is the number of Cyclically Symmetric Transpose Complement Plane Partitions
(CSTCPP) in an hexagon of size 2n × 2n × 2n [24]. The numbers AV (i) both have determinant formulae,

namely AV (2n) = det
(

i+j
2i−j

)
0≤i,j≤n−1

, and AV (2n + 1) = det
(
i+j+1
2i−j

)
0≤i,j≤n−1

.

As in the A case, we have the

Conjecture. [1] The largest entry of Ψ, with arches connecting consecutive points, is AV (r).

Example: for r = 2n = 4, taking wi → 1 and q = e2iπ/3 in the above expressions, we get the components
Ψ = (1, 2), which sum to 3 = AV (5), the number of 5×5 VSASMs, and the maximal entry of Ψ is 2 = N8(4).

5. Cr case

The simple roots of Cr are αi = zi − zi+1, i = 1, 2, . . . , r − 1 and αr = 2zr. We concentrate on the
odd case r = 2n + 1, and consider the fundamental representation of dimension N = 2r. One choice is to
select upper triangular matrices satisfying MT J + JM = 0, J antidiagonal matrix with 1’s (resp. −1’s) in
the upper (resp. lower) triangle.

5.1. Orbital varieties and C-type Temperley–Lieb algebra. There are
(

r
b r+1

2
c

)
orbital varieties,

which are now indexed by open link patterns, that is configurations of r points on a line connected in the
upper-half plane either in pairs via (closed) arches or to infinity via half-lines (open arches).

The representation of the Weyl group on these open link patterns takes the form of a modified Temperley–
Lieb algebra. We describe now its q-deformed version, CTL(β) (see also [23] for other variants of Temperley–
Lieb algebra). The generators e1, e2, . . . , er−1 obey the standard TL(β) relations (3.1) and the additional
“boundary” generator er satisfies: e2

r = βer, er−1erer−1 = 2er−1.
These generators act on open link patterns as follows. Open link patterns are represented with their

open arches connected to a vertical line on the right. The ei, i = 1, 2, ..., r − 1 act as usual, and er like the
left half of an e, connecting the point 2n+1 to the vertical line (first line of Fig. 3). The rule is that any loop
may be erased and replaced by a factor β. Moreover, whenever a connection between points on the vertical
line (consecutive open arches) is created, they may also be erased and replaced by a factor β (resp. 2) if
this is created by the action of some e2i−1 (resp. e2i). As r is odd, the loop created by e2

r yields a weight β,
while that created by er−1erer−1 yields a weight 2, hence the result 2en−1 (second line of Fig. 3).
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β

i+1i

=

=

β

2 
x

i odd

i even

β

2n+1

=

= 2 

Figure 3. The rule for erasing arches at infinity when acting with ei: they are replaced
by a factor 2 (resp. β) according to whether the index i is even (resp. odd). We have also
represented the case i = 2n + 1 (first line), and the resulting boundary relations e2

r = βer

and er−1erer−1 = 2er−1 (second line).

We shall also need an additional operator e′1 satisfying the relations: (e′1)
2 = βe′1 and e1e

′
1 = e′1e1 =

e′1e2e
′
1 − e′1 = e2e

′
1e2 − e2 = 0. It is defined as e′1 = se1s, where s is the involution acting on link patterns

as follows: (i) sπ = π if the arch connected to point 1 is open, and (ii) sπ = −π + π′ otherwise, where π′ is
the link pattern in which the closed arch connected to 1 is cut into two open arches.

5.2. C-type qKZ equation. To each simple root we attach respectively the standard trigonometric
R-matrices Ri(wi+1/wi), i = 1, 2, . . . , r − 1 of Eq. (3.2), and the boundary R-matrix Rr(1/w2

r) ≡ Rαr
, with

the same expression.
The level one C qKZ equation consists of the following system

Ri(wi+1/wi)Ψ = τiΨ(5.1)

w−mr

r Rr(1/w2
r)Ψ = τrΨ(5.2)

where as usual τi acts by interchanging the spectral parameters wi and wi+1, i = 1, 2, ..., r − 1 and τr acts
on Ψ by letting wr → 1/wr, and mr is the degree of Ψ in wr .

These are finally supplemented by the affinization relation, obtained by considering an extra root, say
α′

1 = −z1 − z2, and the associated boundary operator R′
1(q

6w1w2):

(5.3) R′
1(q

6w1w2)Ψ = τ ′
1Ψ

where τ ′
1 interchanges w2 and 1/(q6w1), and R′

1 is of the form of Eq. (3.2) with e′1 in place of ei. Using
R′

1(w) = sR1(w)s, the relation can also be recast into

(5.4) (q3z1)
−m1sΨ(w1, . . . , wr) = Ψ

( 1

q6w1
, w2, . . . , wr)

The generators of the weight lattice (as abelian subgroup of Ŵ ) are very similar to the generators (i)
of the case Br: the only change concerns the boundary operators K1 and Kr now implementing Eqs. (5.2)
and (5.4).

The polynomial solution Ψ to the level one Cr qKZ system has degree m1 = mr = 2n in each variable,
total degree n(2n + 1) and base entry

(5.5) Ψπ0
=

∏

1≤i<j≤2n+1

(qzi − q−1zj)

and all the other entries of Ψ may be obtained in a triangular way from this one.
Example: for r = 3, we have the following minimal polynomial solution to the level one C3 qKZ system:

Ψ
1 2 3

= (qw1 − q−1w2)(qw1 − q−1w3)(qw2 − q−1w3)

Ψ
1 2 3

= (qw1 − q−1w2)(q
2w1w2 − q−2)(q−1 − qw2

3)

Ψ
1 2 3

= (q3w2
1 − q−3)(qw2 − q−1w3)(qw2w3 − q−1)
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which, upon taking the rational limit yields the multidegrees:

Ψ
1 2 3

= (A + z1 − z2)(A + z1 − z3)(A + z2 − z3)

Ψ
1 2 3

= (A + z1 − z2)(2A + z1 + z2)(A + 2z3)

Ψ
1 2 3

= (3A + 2z1)(A + z2 − z3)(A + z2 + z3)

and the degrees Ψ = (1, 2, 3) for A = 1 and zi = 0.

5.3. RS point and CSSCPP. At the point q = e2iπ/3, Ψ may be viewed as the ground state eigen-
vector of a transfer matrix, corresponding in the homogeneous limit to the Hamiltonian

(5.6) HC =
e1 + e′1

2
+

r−1∑

i=2

ei + er

Normalizing Ψ so that its smallest entry Ψπ0
= 1, we have been able to compute the sum of entries to

be A(n)A(n + 1). In the case of even r = 2n, the above may be repeated almost identically: in the presence
of spectral parameters, the even case may be recovered from the odd one by taking w2n+1 → −q−1, and
dividing out the result by

∏
1≤i≤2n(1 + q3wi). Indeed, this specialization leaves us with only non-vanishing

components whith an open arch at the rightmost point, in bijection with open link patterns with that point
erased, hence the projection onto the case of size one less. This leads us to the

Conjecture.

(5.7)
∑

π

Ψπ = A(br/2c)A(dr/2e)

Note that the sum in the even case, A(n)2, also counts the Cyclically Symmetric Self-Complementary
Plane Partitions (CSSCPP) in an hexagon of size 2n × 2n × 2n [24]. Also note the determinant formulae

A(n)2 = det
((

i+j
2i−j−1

)
+

(
i+j+1
2i−j

))
0≤i,j≤n−1

and A(n)A(n + 1) = det
((

i+j+1
2i−j

)
+

(
i+j+2
2i−j

))
0≤i,j≤n−1

.

Furthermore, consider the left eigenvector v of HC with the same eigenvalue (r for r odd, r + 1/2 for r
even). Normalize v so that its entries are coprime positive integers. We have found empirically the following

Conjecture.

(5.8)
∑

π

vπΨπ = A(r) .

Finally, we formulate the

Conjecture. The largest entry of Ψ for Cr is the sum of entries for Cr−1.

Example: at r = 5, Ψ = (1, 2, 3, 3, 0, 1, 4, 0, 0, 0), v = (48, 36, 28, 34, 24, 23, 25, 18, 17, 14),
∑

π Ψπ = 14 =
2 × 7 = A(2)A(3),

∑
π vπΨπ = 429 = A(5), and the maximal entry of Ψ is 4 = A(2)2.

6. Dr case

The simple roots of Dr are αi = zi − zi+1 for i = 1, 2, . . . , n− 1 and αr = zr−1 + zr. We concentrate on
the odd case r = 2n + 1, and consider again the fundamental representation of dimension N = 2r. Just like
in the Br case, one choice is to select upper triangular matrices satisfying MT J + JM = 0, J antidiagonal
matrix with 1’s on the second diagonal.

6.1. Orbital varieties and D-type Temperley–Lieb algebra. Just as in the case C, there are(
r

b r+1

2
c

)
orbital varieties, indexed by open link patterns.

We now deal with D-type Temperley–Lieb algebras, denoted DTL(β), with generators ei, i = 1, 2, ..., r−1
obeying the TL(β) relations (3.1) and an extra generator e′r−1, satisfying the relations:

(6.1) (e′r−1)
2 = βer−1, er−1e

′
r−1 = e′r−1er−1 = er−2e

′
r−1er−2 − er−2 = e′r−1er−2e

′
r−1 − e′r−1 = 0

These operators act on open link patterns as follows. The ei, i = 1, 2, . . . , r − 1 act in the usual way,
by creating a little arch between points i and i + 1 and by gluing the two former points. To describe the
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1 2 543

6 7 8 9 10

Figure 4. The ten open link patterns for D5. In the second line, we have transformed
the open link patterns by connecting the two rightmost open arches into a (dashed) arch.
The involution s simply switches the color of the rightmost arch (if it is closed) in this
representation, namley exchanges 1 ↔ 2, 3 ↔ 6, 4 ↔ 8, 5 ↔ 9, and leaves 7 and 10
invariant (as their rightmost arch is open).

action of e′r−1, let us first connect the open arches of the open link patterns by pairs of consecutive open
arches from the left to the right, and represent the newly formed arches in a different color (dashed lines,
cf Fig. 4 for the D5 example). We then define an involution s on open link patterns that simply switches
the color (solid ↔ dashed) of the rightmost arch if it is closed, and leaves it invariant if it is open. Then
e′r−1 = ser−1s.

Finally, we introduce an extra boundary operator e0, which is the right half of an e (like a reflected er

of Cr), with its open end connected to the vertical line, and acts as such, with the same rules as for Cr, but
upon reflection of indices i ↔ r − i. It satisfies the relations: e2

0 = βe0 and e1e0e1 = 2e1.

6.2. D-type qKZ equation. We associate to the roots the R-matrices Ri(wi+1/wi) of Eq. (3.2), and
Rr(1/(wrwr−1)) defined by the same equation in which ei is replaced with e′r−1, so that Rr(w) = sRr−1(w)s.

The level one D qKZ equation consists of the following system

Ri(wi+1/wi)Ψ = τiΨ, i = 1, 2, ..., r − 1

Rr(1/(wrwr−1))Ψ = τ ′
r−1Ψ

where as usual τi acts by interchanging the spectral parameters wi and wi+1, i = 1, 2, ..., r − 1 and τ ′
r acts

on Ψ by interchanging wr−1 and 1/wr. Upon using the above relation e′r−1 = ser−1s, the latter equation
may be equivalently replaced by

(6.2) z−mr

r sΨ(z1, . . . , zr) = Ψ
(
z1, . . . , zr−1,

1

zr

)

These are finally supplemented by the affinization relation, obtained by considering the extra root
α0 = −2z1, and the associated boundary operator R0(q

6w2
1) involving the extra operator e0:

(6.3) w−m1

1 R0(q
6w2

1)Ψ = τ0Ψ

where τ0f(w1) = f(1/(q6w1)) and m1 the degree of Ψ in w1.

The construction of the abelian subgroup of Ŵ is similar to the cases B and C, and is skipped for the
sake of brevity.

The minimal degree polynomial solution to the level one Dr qKZ system has total degree r(r− 1)/2 and
partial degree m1 = mr = r − 1 in all variables. Its base entry, corresponding to the open link pattern π0

with only open arches reads

(6.4) Ψπ0
=

∏

1≤i<j≤2n+1

(qzi − q−1zj)

and all the other entries of Ψ may be obtained in a triangular way from this one.
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Example: for r = 3, we have the following minimal polynomial solution to the level one D3 qKZ system:

Ψ
1 2 3

= (qw1 − q−1w2)(qw1 − q−1w3)(qw2 − q−1w3)

Ψ
1 2 3

= (qw1 − q−1w2)(qw1w3 − q−1)(qw2w3 − q−1)

Ψ
1 2 3

= (q−2 − q2w2
1)(qw2 − q−1w3)(qw2w3 − q−1)

which, upon taking the rational limit gives the multidegrees:

Ψ
1 2 3

= (A + z1 − z2)(A + z1 − z3)(A + z2 − z3)

Ψ
1 2 3

= (A + z1 − z2)(A + z1 + z3)(A + z2 + z3)

Ψ
1 2 3

= 2(A + z1)(A + z2 − z3)(A + z2 + z3)

and the degrees Ψ = (1, 1, 2) for A = 1 and zi = 0.

6.3. RS point and HTASM. At the point q = e2iπ/3, Ψ may be viewed as the Perron–Frobenius
eigenvector of a transfer matrix, corresponding in the homogeneous limit to the Hamiltonian

(6.5) HD = e0 +

r−2∑

i=1

ei +
er−1 + e′r−1

2

Note that upon the reflection ei → er−i, this Hamiltonian is mapped onto HC : we are dealing with the same
algebra, but in different representations.

Going to the RS point q = e2iπ/3 and taking the homogeneous limit wi = 1 for all i, and normalizing Ψ
so that its smallest entry is Ψπ0

= 1, we have found the

Conjecture. The sum of entries
∑

π Ψπ is the number of Half-Turn Symmetric Alternating Sign
Matrices of size r, AHT (r).

This conjecture also works in the even case r = 2n, which may be obtained from the odd one by taking
z1 = −q−2, shifting all remaining spectral parameters wi → wi−1, i = 2, 3, ..., 2n + 1, and dividing out

by
∏

1≤i≤2n(1 + zi). Note the formulae AHT (2n) = det
((

i+j
2i−j

)
+

(
i+j+1
2i−j

))
0≤i,j≤n−1

and AHT (2n + 1) =

det
((

i+j+1
2i−j

)
+

(
i+j+2
2i−j+1

))
0≤i,j≤n−1

.

Introduce as before the left Perron–Frobenius eigenvector v of HD with coprime positive integer entries.

Conjecture.

(6.6)
∑

π

vπΨπ = A(r) .

Finally, we also find the

Conjecture. The largest entry of Ψ for Dr is the sum of entries for Cr−1.

Example: at r = 5, Ψ = (1, 1, 3, 4, 2, 3, 1, 4, 2, 4), v = (10, 10, 17, 14, 18, 17, 23, 14, 18, 25),
∑

π Ψπ = 25 =
AHT (5),

∑
π vπΨπ = 429 = A(5), and the maximal entry of Ψ is 4 = A(2)2, the sum of the components of

the C4 solution.
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Central Delannoy numbers, Legendre polynomials, and a balanced join

operation preserving the Cohen-Macaulay property

Gábor Hetyei

Abstract. We introduce a new join operation on colored simplicial complexes that preserves the Cohen-
Macaulay property. An example of this operation puts the connection between the central Delannoy numbers
and Legendre polynomials in a wider context.

Résumé. Nous introduisons une nouvelle opération qui joint des complexes simpliciaux équilibrés d’une
telle manière que la propriété de Cohen-Macaulay est preservée. Une exemple de cette opération remette la
rélation entre les nombres Delannoy centraux et les polynomiaux de Legendre dans un contexte plus large.

Introduction

The Delannoy numbers, introduced by Henri Delannoy [7] more than a hundred years ago, became
recently subject of renewed interest, mostly in connection with lattice path enumeration problems. It was
also noted for more than half a century, that a somewhat mysterious connection exists between the central
Delannoy numbers and Legendre polynomials. This relation was mostly dismissed as a “coincidence” since
the Legendre polynomials do not seem to appear otherwise in connection with lattice path enumeration
questions.

In our work we attempt to lift a corner of the shroud covering this mystery. First we observe that a
variant of table A049600 in the On-Line Encyclopedia of Integer Sequences [13] embeds the central Delannoy
numbers into another, asymmetric table, and the entries of this table may be expressed by a generalization of
the Legendre polynomial substitution formula: the non-diagonal entries are connected to Jacobi polynomials.
Then we show that the lattice path enumeration problem associated to these asymmetric Delannoy numbers
is naturally identifiable with a 2-colored lattice path enumeration problem (Section 2). This variant helps
represent each asymmetric Delannoy number as the number of facets in the balanced join of a simplex and
the order complex of a fairly transparent poset which we call a Jacobi poset. The balanced join operation
takes two balanced simplicial complexes colored with the same set of colors as its input and yields a balanced
simplicial complex colored with the same set of colors as its output. It is introduced in Section 3, which also
describes the Jacobi posets.

The balanced join operation we were lead to introduce turns out to be fairly interesting by its own
merit. According to a famous result of Stanley [14], the h-vector of a balanced Cohen-Macaulay is the
f -vector of another colored complex. (The converse, and the generalization to flag numbers was shown by
Björner, Frankl, and Stanley [2].) Since the proof is algebraic, it is usually hard to construct the colored
complex explicitly. Using the balanced join operation, we may construct balanced simplicial complexes as
the balanced join of a balanced complex and a simplex such that the h-vector of the join is the f -vector
of the original colored complex. This applies even if the balanced join does not have the Cohen-Macaulay
property. Our main result is Theorem 4.3, stating that the balanced join of two balanced Cohen-Macaulay
simplicial complexes is Cohen-Macaulay.

2000 Mathematics Subject Classification. Primary 13F55; Secondary 05A15, 16E65, 33C45.
Key words and phrases. balanced simplicial complex, Delannoy numbers, Cohen-Macaulay property.
On leave from the Rényi Mathematical Institute of the Hungarian Academy of Sciences.
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In Section 5 we return to the Jacobi posets introduced in Section 3 and prove that their order complex
is Cohen-Macaulay, thus our main result is applicable to the example that inspired it. The proof consists
of providing an EL-labeling from which the the Cohen-Macaulay property follows by the results of Björner
and Wachs [3] and [4]. By the results of Björner, Frankl, and Stanley [2] the flag h-vector of a Jacobi poset
is the flag f -vector of a colored complex. We find this colored complex as the order complex of a strict direct
product of two chains. We define the strict direct product of two posets by requiring a strict inequality in
both coordinates.

Since removing the top and bottom elements from a Jacobi poset yields a “half-strict” direct product of
two chains, there is another potentially interesting bivariate operation looming on the horizon. In Section 6
we introduce a right-strict direct product on posets that allows to assign to a pair (P, Q) of an arbitrary
poset P and a graded poset Q a graded poset of the same rank as Q. There is reason to suspect that this
product too, preserves the Cohen-Macaulay property, as we can show that the flag h-vector of a right-strict
product is positive if the order complex of P has a positive h-vector, and Q has a positive flag h-vector.

In the concluding Section 7 we point out the impossibility of two seemingly plausible generalizations,
and highlight the question in commutative algebra that arises when we try to generalize our main result,
Theorem 4.3.

The journey taken will hopefully convince more mathematicians that Delannoy numbers are interesting,
since they lead to some interesting results and questions in commutative algebra and algebraic combinatorics.
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1. Preliminaries

1.1. Delannoy numbers. The Delannoy array (di,j : i, j ∈ Z) was introduced by Henri Delannoy [7]
in the nineteenth century. This array may be defined by the recursion formula

(1.1) di,j = di−1,j + di,j−1 + di−1,j−1

with the conditions d0,0 = 1 and di,j = 0 if i < 0 or j < 0. For i, j ≥ 0 the number di,j represents the number
of lattice walks from (0, 0) to (i, j) with steps (1, 0), (0, 1), and (1, 1) The significance of these numbers is
explained within a historic context in the paper “Why Delannoy numbers?”[1] by Banderier and Schwer. The
diagonal elements (dn,n : n ≥ 0) in this array are the (central) Delannoy numbers (A001850 of Sloane [13]).
These numbers are known through the books of Comtet [6] and Stanley [16], but it is Sulanke’s paper [17]
that gives the most complete list of all known uses of Delannoy numbers (a total of 29 configurations). For
more information and a detailed bibliography we refer the reader to the above mentioned sources.

1.2. Balanced simplicial complexes and the Cohen Macaulay property. A simplicial complex
4 on the vertex set V is a family of subsets of V , such that {v} ∈ 4 for all v ∈ V and every subset of a
σ ∈ 4 belongs to 4. An element σ ∈ 4 is a face and |σ| − 1 is its dimension. The dimension of 4 is the
maximum of the dimensions of its faces. A maximal face is a facet and 4 is pure if all its facets have the
same dimension. The number of i-dimensional faces is denoted by fi. An equivalent encoding of the f -vector
(f−1, . . . , fn−1) of an (n − 1)-dimensional simplicial complex is its h-vector h-vector (h0, . . . , hn) given by

hi =
∑i

j=0(−1)i−j
(
n−j
i−j

)
fj−1. An (n− 1)-dimensional simplicial complex 4 is balanced if its vertices may be

colored using n colors such that every face has all its vertices colored differently. (See [15, 4.1 Definition].1)
It is always assumed that a fixed coloring is part of the structure of a balanced complex. For such a complex
we may refine the notions of f -vector and h-vector, as follows. Assume we use the set of colors {1, 2, . . . , n}.
For any S ⊆ {1, 2, . . . , n} let fS be the number of faces whose vertices are colored exactly with the colors
from S. The vector (fS : S ⊆ {1, 2, . . . , n}) is called the flag f -vector of the colored complex. The flag
h-vector is then the vector (hS : S ⊆ {1, 2, . . . , n}) whose entries are given by

hS =
∑

T⊆S

(−1)|S\T |fT .

1In the original definition of a balanced complex (occurring in [14]) it was also assumed that the complex is pure, but as
it was observed by Stanley in [15, §III.4], “there is no real reason for this restriction”.
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A fundamental theorem on balanced simplicial complexes is Stanley’s result [14, Corollary 4.5].

Theorem 1.1 (Stanley). The h-vector of a balanced Cohen-Macaulay simplicial complex is the f -vector
of some other simplicial complex.

The definition of the Cohen-Macaulay property is fairly involved, we refer the reader to Stanley [15].
To prove our main result, we use Reisner’s criterion [15, Chapter II, Corollary 4.1] which characterizes
Cohen-Macaulay simplicial complexes in terms of the homology groups of each link. The link lk4(τ) of a
face τ ∈ 4 is defined by

lk4(τ) := {σ ∈ 4 : σ ∩ τ = ∅, σ ∪ τ ∈ 4}.

The homology used is simplicial homology [15, Chapter 0, Section 4]. An oriented j-simplex in 4 is a j-face
σ = {v0, . . . , vj} ∈ 4, enriched with an equivalence class of orderings, two orderings being equivalent if
they differ by an even permutation of vertices. We write [v0, v1, . . . , vj ] for the oriented simplex associated
to the equivalence class of the linear order v0 < . . . < vj . The k-module Cj(4) (for j = −1, . . . , dim(4),
where k is a field) is then the free k-module generated by all oriented j-simplices modulo the relations
[σ1] + [σ2] = 0 whenever [σ1] and [σ2] are different oriented simplices corresponding to the j-simplex. These
modules, together with the boundary maps ∂j : Cj(4) → Cj−1(4), given by

∂j [v0, . . . , vj ] =

j∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vj ]

form the oriented chain complex of 4. (As usual, v̂i indicates omitting vi.) Reisner’s criterion is then the
following.

Theorem 1.2 (Reisner). The simplicial complex 4 is Cohen-Macaulay over k if and only if for all

σ ∈ 4 and i < dim lk4(σ) we have H̃i(lk4(σ), k) = 0. Here H̃i denotes the i-th reduced homology group of
the appropriate oriented chain complex.

Rephrasing results of his work with Björner and Frankl [2], Stanley refined Theorem 1.1 to flag numbers
as follows [15, Chapter III, Theorem 4.6].

Theorem 1.3 (Björner-Frankl-Stanley). A vector (βS : S ⊆ {1, 2, . . . , n}) is the flag h-vector of some
(n−1)-dimensional balanced Cohen-Macaulay simplicial complex if and only if it is the flag f -vector of some
other colored simplicial complex.

Remark 1.4. Although Stanley uses the term “balanced” twice in his statement [15, Chapter III, Theo-
rem 4.6], it is clear from his proof that the second complex only needs to be colored with the same color set as
the first. The number of colors thus used may exceed the size of the largest face in the second complex. For
example, an (n − 1)-simplex is balanced and Cohen-Macaulay, all entries in its flag f -vector are 1’s. The
flag h-entries are all zero except for h∅ = 1. Thus the second complex must have only one face, the empty
set. This complex may be trivially colored using n colors (without actually using any of them).

An important example of a balanced simplicial complex is the order complex 4(P \ {0̂, 1̂}) of a graded
partially ordered set P . The order complex 4(Q) of any poset Q is the simplicial complex on the vertex set

Q whose faces are the chains of Q. A poset is graded if it has a unique minimum 0̂, a unique maximum 1̂,
and a rank function ρ. Since all saturated chains of P have the same cardinality, 4(P \ {0̂, 1̂}) is pure, and

coloring every element with its rank makes 4(P \ {0̂, 1̂}) balanced.

2. Central Delannoy numbers and Legendre polynomials

The following connection between the central Delannoy numbers and Legendre polynomials has been
known for at least half a century [8], [10], [11]:

(2.1) dn,n = Pn(3),

where Pn(x) is the n-th Legendre polynomial. To date there seems to be a consensus that this link is not
very relevant. Banderier and Schwer [1] note that there is no “natural” correspondence between Legendre
polynomials and the original lattice path enumeration problem associated to the Delannoy array, while
Sulanke [17] states that “the definition of Legendre polynomials does not appear to foster any combinatorial
interpretation leading to enumeration”.
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Without disagreeing with these statements concerning the original lattice path-enumeration problem, in
this section we point out the existence of a modified lattice path enumeration problem whose solution yields

a modified Delannoy array d̃m,n satisfying d̃n,n = dn,n and

(2.2) d̃m,n = P (0,m−n)
n (3) for m ≥ n.

Here P
(α,β)
n (x) is the n-th Jacobi polynomial of type (α, β) defined by

P (α,β)
n (x) = (−2)−n(n!)−1(1 − x)−α(1 + x)−β dn

dxn

(
(1 − x)n+α(1 + x)n+β

)
.

Since the polynomials P
(0,0)
n (x) are the Legendre polynomials [5, Chapter V, (2.2)], substituting m = n = 0

into (2.2) yields (2.1). In section 3 we present a face-enumeration problem associated to Jacobi polynomials
that is related our modified lattice path enumeration problem.

The lattice path enumeration problem in question is essentially identical to the one of A049600 in the
On-Line Encyclopedia of Integer Sequences [13].

Definition 2.1. For any (m, n) ∈ N × N let us denote by d̃m,n the number of lattice paths from (0, 0)
to (m, n + 1) having steps (x, y) ∈ N× P. (Here P denotes the set of positive integers.) We call the numbers

d̃m,n (m, n ≥ 0) the asymmetric Delannoy numbers.

d̃m,n :=

H
H

H
H

H
m

n
0 1 2 3 4

0 1 2 4 8 16
1 1 3 8 20 48
2 1 4 13 38 104
3 1 5 19 63 192
4 1 6 26 96 321

Table 1. The asymmetric Delannoy numbers d̃m,n for 0 ≤ m, n ≤ 4.

It is immediate from our definition that d̃m,n = T (n + 1, m) for the array T given in A049600. As a

consequence we get d̃n,n = T (n + 1, n) which is the central Delannoy number dn,n, as noted in A049600.
Compared to A049600, we shifted the rows up by 1 to move the central Delannoy numbers to the main
diagonal, and then we reflected the resulting table to its main diagonal, since this will allow picturing the
partially ordered sets in section 3 the “usual” way, i.e., with the larger elements being above the smaller
ones. As an immediate consequence of the definition we obtain the following:

Lemma 2.2. The asymmetric Delannoy numbers satisfy

d̃m,n =
n∑

j=0

(
n

j

)(
m + j

j

)
.

It is worth noting that substituting n = m into Lemma 2.2 yields a well-known representation of the
central Delannoy number dn,n. (See, Sulanke [17, Example 1].) We may also easily verify (2.2), as follows.

A Jacobi polynomial P
(α,β)
n (x) with nonnegative integer parameters α, β may be also given in the form

(2.3) P (α,β)
n (x) =

∑

j

(
n + α + β + j

j

)(
n + α

j + α

)(
x − 1

2

)j

See, e.g., Wilf [Chapter 4, Exercise 15 (b)][18]. Substituting α = 0 we obtain

(2.4) P (0,β)
n (x) =

∑

j

(
n + β + j

j

)(
n

j

)(
x − 1

2

)j

,

from which (2.2) follows by setting β = m − n and x = 3.

Corollary 2.3. The asymmetric Delannoy numbers satisfy (2.2).
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Remark 2.4. It is usually required that α, β > −1 in the definition of the Jacobi polynomials “for
integrability purposes”, cf. Chihara [5, Chapter V., section 2.]. That said, using (2.4) we may extend the

definition of P
(0,β)
n (x) to any integer β ≥ −n. Using this extended definition, we may state (2.2) for any

m, n ≥ 0.

A combinatorial interpretation of (2.2) will be facilitated by the following reinterpretation of our lattice
path enumeration problem.

Proposition 2.1. For any (m, n) ∈ N × N the number d̃m,n also enumerates all 2-colored lattice paths
from (0, 0) to (m, n) satisfying the following:

(i) Each step is either a blue (0, 1) or a red (x, y) ∈ N × N \ {(0, 0)}.
(ii) At least one of any two consecutive steps is a blue (0, 1).

Proof. It is easy to verify directly that the number of all 2-colored lattice paths from (0, 0) to (m, n)

with the above properties is
∑n

j=0

(
n
j

)(
m+j

j

)
, and so we get d̃m,n by Lemma 2.2. (j is the number of blue

steps). But only a little more effort is necessary to find a fairly plausible bijection between the corresponding
sets of lattice paths. Consider first a lattice path from (0, 0) to (m, n + 1) satisfying Definition 2.1. Replace

(2, 5)

(2, 6)

(0, 0) (0, 0)(0, 0)

(2, 6)

Figure 1. Transforming a lattice path into a 2-colored lattice path.

each step (x, y) ∈ N×P with one or two colored steps as follows. If (x, y) 6= (0, 1) then replace it with a blue
(0, 1) followed by a red (x, y − 1). If (x, y) = (0, 1) then replace it with a blue (0, 1). The resulting 2-colored
lattice path from (0, 0) to (m, n + 1) satisfies conditions (i) and (ii), moreover it starts always with a blue
(0, 1). Remove this first blue step and shift the colored lattice path down by 1 unit. We obtain a 2-colored
lattice path from (0, 0) to (m, n) satisfying the conditions of our proposition. Fig. 1 shows the two stages of
such a transformation. (In the picture, m = 2 and n = 5. Red edges are marked with dashed lines.)

Finding the inverse of this transformation is easy. Given a valid 2-colored lattice path from (0, 0) to
(m, n), let us first shift the path up by 1 and prepend a blue (0, 1) step from (0, 0) to (0, 1). Thus we obtain a
2-colored lattice path from (0, 0) to (m, n) satisfying (i), while condition (ii) may be strengthened to stating
that every red step is preceded by a blue (0, 1) step. Replace each red step (x, y) and the blue step preceding
it with a single colorless step (x, y + 1). After this, remove the blue color of the remaining (0, 1)-steps.

We leave it to the reader to verify the fact that the two operations described above are inverses of each
other. �

Using the equivalent definition of Proposition 2.1 it is easy to verify the following additional property of
the asymmetric Delannoy numbers.

Lemma 2.5. The asymmetric Delannoy numbers satisfy the recursion formula

d̃m,n = d̃0,0 +

m∑

i=0

n−1∑

j=0

d̃i,j for all m, n ≥ 0.

Here the second sum is empty if n = 0.
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As a consequence any entry in Table 1 may be obtained by adding 1 to the sum of the entries in the
preceding columns, up to the row of the selected entry.

Corollary 2.6. The asymmetric Delannoy numbers satisfy the recursion formula

d̃m,n = 2 · d̃m,n−1 + d̃m−1,n − d̃m−1,n−1.

3. Jacobi posets and balanced joins

The blue steps of a valid 2-colored path introduced in Proposition 2.1 form increasing chains in a partially
ordered set. In this section we investigate this partial order.

Definition 3.1. Given any integer β and n ≥ max(0,−β), we call the Jacobi poset P β
n of type β and

rank n + 1 the following graded poset.

(i) For each q ∈ {1, . . . , n}, P β
n has n + β + 1 elements of rank q, they are labeled (0, q), (1, q), . . . ,

(n + β, q).

(ii) Given (p, q) and (p′, q′) in P β
n \ {0̂, 1̂} we set (p, q) < (p′, q′) iff. p ≤ p′ and q < q′.

(We also require 0̂ to be the minimum element and 1̂ to be the maximum element.)

We may think of the elements of P β
n \ {0̂, 1̂} as the endpoints of all possible blue (0, 1) steps when we

enumerate all valid 2-colored lattice paths from (0, 0) to (n + β, n). We have (p, q) < (p′, q′) if and only of
if there is a valid 2-colored lattice path containing both (p, q − 1) − (p, q) and (p′, q′ − 1) − (p′, q′) as blue
steps, such that the first blue step precedes the second in the path. Fig. 2 represents the Jacobi poset P−3

5 ,
which may be associated to enumerating the valid 2-colored lattice paths from (0, 0) to (2, 5). In the picture
of the poset we marked the elements corresponding to the blue edges with empty circles. Given any valid

0̂

1̂

(2, 5)(2, 5)

(0, 0)

(0, 1)

Figure 2. The Jacobi poset P−3
5 and the partial chain encoding the lattice path in Fig.1

2-colored path from (0, 0) to (n + β, n), the set of its blue edges correspond to a partial chain in P β
n \ {0̂, 1̂}

and, conversely, any partial chain of P β
n \ {0̂, 1̂} encodes a set of blue edges that may be uniquely completed

to a valid 2-colored path by adding the appropriate red edges.
Obviously, the face numbers of the order complex of P β

n \ {0̂, 1̂} satisfy

(3.1) fj−1

(
4
(
P β

n \ {0̂, 1̂}
))

=

(
n

j

)(
n + β + j

j

)
.

As a consequence of this equality and (2.4) we obtain that

(3.2)

n∑

j=0

fj−1

(
4
(
P β

n \ {0̂, 1̂}
))

·

(
x − 1

2

)j

= P (0,β)(x) for β ≥ 0.

Note that, for negative values of β, (3.2) still holds in the extended sense of Remark 2.4. As another

consequence of (3.2), the asymmetric Delannoy number d̃m,n equals the number of all partial chains (including

the empty chain) in the Jacobi poset Pm−n
n \ {0̂, 1̂}. This fact is also “visually obvious” in terms of the

enumeration problem presented in Proposition 2.1, since any valid 2-colored lattice path may be uniquely
reconstructed from its blue steps. This visualization inspires the following definition.
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Definition 3.2. Let 41 and 42 be pure balanced simplicial complexes of the same dimension. Let us
fix a pair of colorings λ = (λ1, λ2) such that λi colors the vertices of 4i (i = 1, 2) in a balanced way, and
the set of colors is the same in both colorings. We call the simplicial complex

41 ∗λ 42 := {σ ∪ τ : σ ∈ 41, τ ∈ 42, λ1(σ) ∩ λ2(τ) = ∅}

the balanced join of 41 and 42 with respect to λ.

Example 3.3. Let 41 and 42 be both (n−1)-dimensional simplices. These have essentially one balanced
coloring and, independently of the choice of λ = (λ1, λ2), the free join 41∗λ42 is isomorphic to the boundary
complex of an n-dimensional cross-polytope.

Using the notion of the balanced join we may express the relation between the asymmetric Delannoy
numbers and Jacobi posets as follows.

Theorem 3.4. Given m, n ≥ 0, let λ1 be the coloring of the order complex of Pm−n
n \ {0̂, 1̂} induced by

the rank function, and let λ2 be any balanced coloring of an (n−1)-dimensional simplex 4n−1 with the color

set {1, 2, . . . , n}, Then, for λ = (λ1, λ2), the asymmetric Delannoy number d̃m,n is the number of facets in

the balanced join 4
(
Pm−n

n \ {0̂, 1̂}
)
∗λ 4n−1.

In fact, Theorem 3.4 may be generalized to any graded poset P of rank n + 1 as follows.

Theorem 3.5. Given any graded poset P of rank n + 1, let λ1 be the coloring of the order complex
of P \ {0̂, 1̂} induced by the rank function, and let λ2 be any balanced coloring of an (n − 1)-dimensional
simplex 4n−1 with the color set {1, 2, . . . , n}, Then, for λ = (λ1, λ2), the number of facets in the balanced

join 4
(
P \ {0̂, 1̂}

)
∗λ 4n−1 equals the total number of partial chains in P \ {0̂, 1̂}.

Theorem 3.5 is an immediate consequence of the fact that 4n−1 must have precisely one vertex of each

color, thus any partial chain from P \ {0̂, 1̂} may be uniquely complemented to a facet of 4
(
P \ {0̂, 1̂}

)
∗λ

4n−1 by inserting exactly those vertices of the simplex which are colored by the ranks missed by the partial
chain. Theorem 3.4 is then a consequence of Theorem 3.5, Lemma 2.2 and equation (3.1).

4. Properties of the balanced join operation

In this section we take a closer look at the balanced join operation introduced at the end of the previous
section. Let us point out first that the operation does depend on the colorings chosen.

Example 4.1. Consider the “star graph” 4 shown in Fig. 3. This is a 1-dimensional simplicial complex

v2

u

v3

v1

Figure 3. A “star graph” that may be colored in essentially one way

which has essentially one balanced coloring with 2 colors: v1, v2, and v3 must have the same color, and u

must have the other color. Yet, when we fix the set {1, 2} to be the set of our colors, we have 2 options to
chose the color of u (the rest of the coloring is then uniquely determined). Thus in a balanced join 4 ∗λ 4
we may choose λ = (λ1, λ2) in such a way that λ1 6= λ2, or we may use the same coloring twice. If λ1 = λ2

then the complex 4 ∗λ 4 has 1 · 3 + 3 · 1 = 6 edges, while in the case λ1 6= λ2 the complex 4 ∗λ 4 has
1 · 1 + 3 · 3 = 10 edges.

However, the observation made in Example 3.3 may be generalized as follows. Given any balanced
simplicial complex 4 of dimension (n − 1), and a balanced coloring λ1 of it, the balanced join 4 ∗λ 4n−1

with an (n− 1)-simplex 4n−1 obviously does not depend on the choice of the its coloring λ2. Moreover, we
have the following fact:
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Theorem 4.2. The flag h-vector of the balanced join 4 ∗λ 4n−1 of a balanced (n − 1)-dimensional
simplicial complex with an (n − 1)-simplex 4n−1 satisfies

hS

(
4 ∗λ 4n−1

)
= fS (4)

for any subset S of the colors used.

Proof. We may assume that the set of colors is {1, 2, . . . , n}. Any face of 4 ∗λ 4n−1 of color S is a
disjoint union σ ∪ τ with σ ∈ 4, τ ∈ 4n−1. The set T := λ1(σ) must be a subset of S, and λ2(τ) must be
equal to S \ T . There is precisely one τ ∈ 4n−1 with this property, hence we obtain

fS

(
4 ∗λ 4n−1

)
=
∑

T⊆S

fT (4) .

The statement now follows by the sieve formula. �

The proof of Theorem 4.2 is almost trivial, but the statement provides an interesting “constructive
reason” for a situation that occurs in Theorem 1.3. The proof of Theorem 1.3 is algebraic, and it is usually
hard to find a balanced simplicial complex combinatorially whose flag f -vector is the flag h-vector of the
given Cohen-Macaulay balanced simplicial complex. An example of a combinatorial explanation in the
special case of order complexes of certain distributive lattices is given by Skandera [12, Theorem 3.2]. The
above construction is fairly “rigid”, but it yields also examples of balanced simplicial complexes without the
Cohen-Macaulay property. On the other hand, the balanced join preserves the Cohen-Macaulay property if
we apply it to Cohen-Macaulay complexes.

Theorem 4.3. Assume that 41 and 42 are balanced Cohen-Macaulay complexes of dimension (n− 1),
and that their colorings λ1 and λ2 use the same set of colors {1, 2, . . . , n}. Then the balanced join 41 ∗λ 42

is also a Cohen-Macaulay simplicial complex.

Proof. We prove the Cohen-Macaulay property by induction on the size of 41 ∪ 42, using Reisner’s
Theorem (Theorem 1.2 in the Preliminaries). For that purpose, consider the link of any face τ1 ∪ τ2 where
τ1 ∈ 41, τ2 ∈ 42 and λ1(τ1) ∩ λ2(τ2) = ∅. The faces of lk41∗λ42

(τ1 ∪ τ2) are precisely the faces of the form
σ1 ∪σ2 where σi ∈ lk4i

(τi) for i = 1, 2, and the sets of colors λ1(σ1), λ2(σ2), λ1(τ1), and λ2(τ2) are pairwise
disjoint. Using this description it is easy to deduce

lk41∗λ42
(τ1 ∪ τ2) = lk41

(τ1){1,...,n}\λ2(τ2) ∗λ lk42
(τ2){1,...,n}\λ1(τ1).

Here the simplicial complexes lk41
(τ1){1,...,n}\λ2(τ2) and lk42

(τ2){1,...,n}\λ1(τ1) are both balanced and the
appropriate restrictions of λ1 resp. λ2 color both with the same color set {1, . . . , n} \ (λ1(τ1) ∪ λ2(τ2)). By
Reisner’s theorem, the link of every face in a Cohen-Macaulay complex is Cohen-Macaulay. According to
Stanley’s theorem [15, Chapter III, Theorem 4.5], every rank-selected subcomplex of a balanced Cohen-
Macaulay complex is Cohen-Macaulay. Thus, whenever at least one of τ1 and τ2 is not the empty set, we
may apply our induction hypothesis to the balanced join of lk41

(τ1){1,...,n}\λ2(τ2) and lk42
(τ2){1,...,n}\λ1(τ1).

We are left to prove Reisner’s criterion for the reduced homology groups of the oriented chain complex
associated to 41∗λ42. Assume by way of contradiction that there exist an i < n−1 and a linear combination
c =

∑
j,k αj,k · [σj ∪ τk] ∈ Ci(41 ∗λ 42) that belongs to Ker(∂i) but not to Im(∂i+1). Here we may assume

that each σj belongs to 41, each τk belongs to 42, and that no two of these sets are the same. Furthermore,
we agree that in the oriented simplices we always list the elements of the face from 41 before the elements of
the face from 42, hence “putting square brackets around a union of such faces” will not cause any confusion.
Finally, for each fixed j at least one scalar αj,k is not zero (otherwise σj is superfluous) and for each fixed
k at least one αj,k is not zero (otherwise τk is superfluous). Assume that our counterexample is smallest in
the sense that the maximum of |τk| is as small as possible.

W.l.o.g. we may assume that τ1 is of maximum size and thus it not contained in any other τk. Applying
∂i to c yields a linear combination of oriented simplices, whose underlying simplices are of the form σj∪τ1\{u}
where u ∈ σj ∪ τ1. Consider among these oriented simplices the ones whose underlying simplex contains τ1.
Because of the maximality of τ1, none of these may arise by removing some element from a σj ∪ τk with
k 6= 1. Hence the projection of ∂i(c) onto the vector space generated by the oriented simplices containing

τ1 may be obtained from ∂i−|τ1|

(∑
j αj,1 · [σj ]

)
∈ Ci−|τ1|−1(41) by sending each [σ′] ∈ Ci−|τ1|−1(41) into

[σ′ ∪ τ1] ∈ Ci−1(41 ∗λ 42). Since ∂i(c) = 0, we obtain that
∑

j αj,1 · [σj ] ∈ Ker(∂i−|τ1|) in the oriented
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chain complex associated to 41. Here i − |τ1| ≤ i < n − 1, hence applying Reisner’s criterion to 41 yields∑
j αj,1 · [σj ] ∈ Im(∂i+1−|τ1|). Assume

∑

j

αj,1 · [σj ] = ∂i+1−|τ1|

(
∑

t

βt · [σ
′
t]

)

holds in C(41), and consider

c′ =
∑

t

βt · [σ
′
t ∪ τ1] ∈ Ci+1 (41 ∗λ 42) .

Subtracting ∂i+1(c
′) from c removes all terms of the form αj,1 · [σj ∪ τ1] and introduces only new terms

of the form α · [σ′ ∪ τ ′], where σ′ ∈ 41, τ ′ ∈ 42, and τ ′ is a proper subset of τ1. Hence we reduced the
number of τk’s of maximum size in our counterexample. Repeating the same argument finitely many times
we arrive at a counterexample in which the maximum size of all τk’s is smaller than in the original one.
We obtain a contradiction unless there is only one τk in c, namely τ1 = ∅. However, for elements of the
form

∑
j,1 αj,1[σj ∪ ∅] where σj ∈ 41, the effect of the boundary map is described with the same formulas

in the oriented chain complex associated to 41 and in the oriented chain complex associated to 41 ∗λ 42.
Applying Reisner’s theorem to 41 yields a contradiction. �

5. Jacobi posets and balanced Cohen-Macaulay complexes

Theorem 4.3 is applicable to 4
(
Pm−n

n \ {0̂, 1̂}
)
∗λ 4n−1 because of the following statement.

Proposition 5.1. The order complex 4(P β
n \ {0̂, 1̂}) associated to the Jacobi poset P β

n is Cohen-
Macaulay.

Proof. Let us label each cover relation (p, q) ≺ (p′, q + 1) with n + β − p′ and each cover relation

0̂ ≺ (p, 1) with n + β − p. Finally, let us label each cover relation (p, n) ≺ 1̂ with 0.
The resulting labeling is an EL-labeling, as defined by Björner and Wachs [4, Definition 2.1] (these

labelings were first introduced in [3]). (We omit the proof that we get an EL-labeling, for brevity’s sake.)
If a graded poset has an EL-labeling then its order complex is shellable by the result of Björner and

Wachs [4, Proposition 2.3]. Shellable simplicial complexes are Cohen-Macaulay, see Stanley [15, Chapter
III, Theorem 2.5]. �

Since 4(P β
n \ {0̂, 1̂}) is Cohen-Macaulay and balanced, we may apply Theorem 1.3 to observe that

its flag h-vector is the flag f -vector of some balanced simplicial complex. For a reader familiar with EL-
labelings it is not difficult to construct such a simplicial complex, by inspecting the “descent sets” arising
in the proof of Proposition 5.1. To ease the burden of the reader who is not familiar with EL-labelings,
we provide an explicit description of such a balanced simplicial complex, and we verify the equality of the
appropriate invariants by explicitly computing them. The simplicial complex to be constructed arises as the
order complex of a partially ordered set.

Definition 5.1. Given two partially ordered sets P and Q, we define their strict direct product P ./ Q

as the set P × Q ordered by the relation (p, q) < (p′, q′) if p < p′ and q < q′.

./ =

1

2

3

4

5

1 2

(1, 1)

(1, 5) (2, 5)

(2, 1)

Figure 4. The strict direct product C1 ./ C4
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Fig. 4 represents the strict direct product of a chain C1 of length 1 with a chain C4 of length 4. We
obtain a partially ordered set that is not graded. However, the following statement is obviously true in
general.

Lemma 5.2. Given any pair of posets (P, Q), every admissible coloring of 4(P ) may be extended to an
admissible coloring to 4(P ./ Q) by coloring each (p, q) ∈ P × Q with the color of its first coordinate. The
analogous statement is true for the second coordinates.

Here we call a coloring admissible if the vertices of any face are colored with all different colors. For
example, the order complex of the poset shown in Fig. 4 may be colored with 2 colors, by extending the
coloring of the chain C1, or with 5 colors, by extending the coloring of the chain C5. Using the notion of
the direct product, the flag h-vector of the order complex associated to a Jacobi poset may be described as
follows.

Proposition 5.2. The flag h-vector of 4(P β
n \ {0̂, 1̂}), colored by the rank function, equals the flag

f -vector of 4(Cn+β−1 ./ Cn−1), with respect to the coloring induced by the rank function of the second
coordinate.

Proof. For any S ⊆ {1, . . . , n}, choosing a facet of 4(P β
n \ {0̂, 1̂})S is equivalent to choosing an |S|-

element multiset on {0, 1, . . . , n + β}. Hence we have

(5.1) fS

(
4(P β

n \ {0̂, 1̂})
)

=

(
n + β + |S|

|S|

)
.

Using the identity (
n + β + s

s

)
=

s∑

t=0

(
s

t

)
·

(
n + β

t

)

it is easy to deduce that the flag h-vector of 4(P β
n \ {0̂, 1̂}) must satisfy

(5.2) hS

(
4(P β

n \ {0̂, 1̂})
)

=

(
n + β

|S|

)
.

Introducing ρ for the rank function ρ : Cn−1 → {1, . . . n} (note that the least element has rank one!), consider
4(Cn+β−1 ./ Cn−1) with the coloring λ(p, q) = ρ(q). For any S ⊆ {1, 2, . . . , n}, choosing a saturated chain
in 4(Cn+β−1 ./ Cn−1)S involves fixing the second coordinates, and choosing an |S|-element subset of a set
with n + β elements. Hence we have

(5.3) fS (Cn+β−1 ./ Cn−1) =

(
n + β

|S|

)

as stated. �

It should be noted that the strict direct product associated by Proposition 5.2 to P−3
5 (shown in Fig. 2)

is C1 ./ C4 (shown in Fig. 4). To summarize our findings: we obtained that the asymmetric Delannoy

number d̃m,n counts the facets of the balanced Cohen-Macaulay complex 4
(
Pm−n

n \ {0̂, 1̂}
)
∗λ 4n−1. The

flag h-vector of this complex is the flag f -vector of the order complex 4(P β
n \ {0̂, 1̂}). This complex is

still balanced and Cohen-Macaulay, and its flag h-vector equals the flag f -vector of the colored complex
described in Proposition 5.2. No further similar reduction is possible, since the order complex of the strict
direct product of two chains is usually not Cohen-Macaulay. For example, the order complex of C1 ./ C4,
shown in Fig. 4, is not even connected. The number of colors used also exceeds the size of the largest face.
Thus, it appears, this is how far we may get using Theorem 1.3 in reducing the question of enumerating flags
in the simplicial complex associated to the asymmetric Delannoy numbers.

6. The right-strict direct product of posets

The connection between the Jacobi posets and the strict direct product of two chains exposed in Propo-
sition 5.2 suggests considering the following definition.

Definition 6.1. Given two partially ordered sets (P, Q) we define their right-strict direct product P oQ

to be the set P × Q partially ordered by the relation (p, q) < (p′, q′) if p ≤ p′ and q < q′.
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The definition of the right-strict direct product is “halfway between” the usual definition of the direct
product of posets and the strict direct product. Our interest is motivated by the following observation.

Proposition 6.1. The partially ordered set P β
n \ {0̂, 1̂} is isomorphic to Cn+β o Cn−1.

The statement is an immediate consequence of the definitions. The fact that we obtain a graded poset
(with the 0̂ and the 1̂ removed) may be generalized as follows.

Proposition 6.2. Assume P is an arbitrary poset and Q is a graded poset of rank n + 1. Then
P o (Q \ {0̂, 1̂}) may be turned into a graded poset of rank n+1 by adding a unique minimum element 0̂ and

a unique maximum element 1̂. The rank function may be taken to be the rank function of Q applied to the
second coordinate.

The question naturally arises: how far can Proposition 5.1 be generalized, under what circumstances
can we guarantee that a right-strict direct product of posets has a Cohen-Macaulay order complex?

Conjecture 6.2. If P is a poset with a Cohen-Macaulay order complex and Q is a graded Cohen-
Macaulay poset then P o (Q \ {0̂, 1̂}) ∪ {0̂, 1̂} is a graded Cohen-Macaulay poset.

This Conjecture, inspired by Proposition 5.1, is also supported by the following.

Theorem 6.3. Assume that P is any poset whose order complex has a non-negative h-vector and that
Q is a graded posets with a non-negative flag h-vector. Then the flag h-vector of the graded poset P o (Q \
{0̂, 1̂}) ∪ {0̂, 1̂} is non-negative.

Proof. Assume that the rank of Q is n + 1 and that the dimension of 4(P ) is (d − 1). Then, by

Proposition 6.2, the rank of Q̃ := P o (Q\{0̂, 1̂})∪{0̂, 1̂} is also n+1. For any S ⊆ {1, . . . , n}, the saturated

chains in Q̃S are all sets of the form {(p1, q1), . . . , (p|S|, q|S|)}, where q1 < · · · < q|S| is a saturated chain in
QS and p1 ≤ · · · ≤ p|S| is any multichain in P . Thus we obtain

fS(Q̃) = fS(Q)

min(d,|S|)∑

j=1

fj−1(P )

(
j + |S| − j − 1

|S| − j

)
= fS(Q)

min(d,|S|)∑

j=1

fj−1(P )

(
|S| − 1

|S| − j

)
for S 6= ∅.

Here, by abuse of notation, we write fj−1(P ) as a shorthand for fj−1(4(P )). After some straightforward
manipulation, which we omit for brevity’s sake, we may rewrite these equations as

(6.1) hS(Q̃) =
∑

T⊆S

hT (Q)

min(d,|R|)∑

i=0

hi(P )

(
d + |T | − i − 1

|S| − i

)

expressing the hS(Q̃)’s as non-negative combinations of products of the (flag) h-entries of the original posets.
�

7. Concluding remarks

There are two seemingly plausible generalizations that will not work.

Remark 7.1. It is not possible to generalize the definition of Jacobi posets in such a way that the
polynomial on the left hand side of (3.2) became P (α,β)(x) for some nonzero α. For any graded poset P of
rank n + 1, substituting x = 1 into

n∑

j=0

fj−1

(
4
(
P \ {0̂, 1̂}

))
·

(
x − 1

2

)j

yields 1, while P (α,β)(1) =
(
n+α

α

)
(see Chihara [5, Chapter V, (2.9)]) is 1 if and only if α = 0.

Remark 7.2. Sequences of symmetric orthogonal polynomials represented in the form

φP (x) :=

n∑

j=0

fj−1

(
4
(
P \ {0̂, 1̂}

))
·

(
x − 1

2

)j

associated to certain Eulerian graded posets P appear in the paper [9] of the present author. A polynomial p(x)
of degree n is symmetric if it satisfies Pn(x) = (−1)nPn(−x). A graded partially ordered set P is Eulerian
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if it satisfies
∑

x≤z≤y(−1)ρ(x,z) = 0 for all [x, y] ⊆ P of rank at least 1. If a graded poset P is Eulerian then

φP (x) is symmetric. A symmetric Jacobi polynomial P
(α,β)
n (x) satisfies α = β. In fact, by P

(α,β)
n (−x) =

(−1)n · P
(β,α)
n (−x) (see Chihara [5, Chapter V, (2.8)]), it must satisfy P

(α,β)
n (x) = P

(β,α)
n (x), so α = β

follows from P (α,β)(1) =
(
n+α

α

)
cited in Remark 7.1. By Remark 7.1 we may represent a Jacobi polynomial

P
(α,β)
n (x) as φP (x) associated to some poset P only if α = 0. Therefore the only Jacobi polynomials that

could be represented as φP (x) for some Eulerian graded poset P are the Legendre polynomials. It is not

difficult to construct such posets for P
(0,0)
n (x) for n ≤ 2. However, for higher values of n we would need

graded Eulerian poset of rank n + 1 with fn−1 =
(
2n
n

)
saturated chains, which is not an integer multiple of

2bn/2c for n ≥ 3. This makes constructing Eulerian “Legendre posets” of rank higher than 3 impossible, since
the number of saturated chains of an Eulerian poset of rank n + 1 is

f{1,...,n} = 2bn/2c · f2·Z∩{1,...,n}.

This follows from the fact that, in an Eulerian poset, every interval of rank 2 has 4 elements.

The two areas, where the most interesting generalizations seem to be found, are the following. The
right-strict direct product, introduced in Section 6, deserves further study. If Conjecture 6.2 turns out to be
too hard or false, the proof of Proposition 5.1 may be a hint that preservation of EL-shellability (or a similar
property) could be or should be shown instead. The other challenge is to find an algebraic generalization
of Theorem 4.3. When 4 is balanced and colored with n-colors, its face ring is Z

n-graded. The balanced
join operation takes the tensor product of two Z

n-graded rings and factors it by all terms of the form u⊗ v,
where u and v are homogeneous terms of the same multi-degree. It is natural to ask whether such a factor
of the tensor product of two Z

n-graded Cohen-Macaulay modules would always have the Cohen Macaulay
property.
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San Diego, California 2006

Representation theories of some towers of algebras related to the symmetric

groups and their Hecke algebras

Florent Hivert and Nicolas M. Thiéry

Abstract. We study the representation theory of three towers of algebras which are related to the symmet-
ric groups and their Hecke algebras. The first one is constructed as the algebras generated simultaneously
by the elementary transpositions and the elementary sorting operators acting on permutations. The two
others are the monoid algebras of nondecreasing functions and nondecreasing parking functions. For these

three towers, we describe the structure of simple and indecomposable projective modules, together with the
Cartan map. The Grothendieck algebras and coalgebras given respectively by the induction product and
the restriction coproduct are also given explicitly. This yields some new interpretations of the classical bases
of quasi-symmetric and noncommutative symmetric functions as well as some new bases.

Résumé. Nous étudions la théorie des représentations de trois tours d’algèbres liées aux groupes symétriques
et à leurs algèbres de Hecke. La première est formée des algèbres engendrées par les transpositions élémen-
taires ainsi que les opérateurs de tris élémentaires agissant sur les permutations. Les deux autres sont formées
des algèbres des monöıdes des fonctions croissantes et des fonctions de parking croissantes. Pour ces trois
tours, nous donnons la structure des modules simples et projectifs indécomposables ainsi que l’application
de Cartan. Nous calculons également explicitement les algèbres et cogèbres de Grothendieck pour le produit
d’induction et le coproduit de restriction. Il en découle de nouvelles interprétations de bases connues des
fonctions quasi-symétriques et symétriques noncommutatives ainsi que des nouvelles bases.
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1. Introduction

Given an inductive tower of algebras, that is a sequence of algebras

(1) A0 ↪→ A1 ↪→ · · · ↪→ An ↪→ · · · ,

with embeddings Am ⊗An ↪→ Am+n satisfying an appropriate associativity condition, one can introduce two
Grothendieck rings

(2) G(A) :=
⊕

n≥0

G0(An) and K(A) :=
⊕

n≥0

K0(An) ,

1991 Mathematics Subject Classification. Primary 16G99; Secondary 05E05.
Key words and phrases. Representation theory, towers of algebras, Grothendieck groups, symmetric groups, Hecke algebras,

Quasi-symmetric and Noncommutative symmetric functions.
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where G0(A) and K0(A) are the (complexified) Grothendieck groups of the categories of finite-dimensional
A-modules and projective A-modules respectively, with the multiplication of the classes of an Am-module
M and an An-module N defined by the induction product

(3) [M ] · [N ] = [M⊗̂N ] = [M ⊗ N ↑
Am+n

Am⊗An
] .

If Am+n is a projective Am ⊗ An modules, one can define a coproduct on these rings by means of
restriction of representations, turning these into coalgebras. Under favorable circumstances the product and
the coproduct are compatible turning these into mutually dual Hopf algebras.

The basic example of this situation is the character ring of the symmetric groups (over C), due to
Frobenius. Here the An := C[Sn] are semi-simple algebras, so that

(4) G0(An) = K0(An) = R(An) ,

where R(An) denotes the vector space spanned by isomorphism classes of indecomposable modules which,
in this case, are all simple and projective. The irreducible representations [λ] of An are parametrized by
partitions λ of n, and the Grothendieck ring is isomorphic to the algebra Sym of symmetric functions under
the correspondence [λ] ↔ sλ, where sλ denotes the Schur function associated with λ. Other known examples
with towers of group algebras over the complex numbers An := C[Gn] include the cases of wreath products
Gn := Γ oSn (Specht), finite linear groups Gn := GL(n, Fq) (Green), etc., all related to symmetric functions
(see [11, 16]).

Examples involving non-semisimple specializations of Hecke algebras have also been worked out. Finite
Hecke algebras of type A at roots of unity (An = Hn(ζ), ζr = 1) yield quotients and subalgebras of Sym [10].
The Ariki-Koike algebras at roots of unity give rise to level r Fock spaces of affine Lie algebras of type A [2].
The 0-Hecke algebras An = Hn(0) correspond to the pair Quasi-symmetric functions / Noncommutative

symmetric functions, G = QSym, K = NCSF [9]. Affine Hecke algebras at roots of unity lead to U(ŝlr)

and U(ŝlr)
∗ [1], and the case of affine Hecke generic algebras can be reduced to a subcategory admitting as

Grothendieck rings U(ĝl∞) and U(ĝl∞)∗ [1]. Further interesting examples are the tower of 0-Hecke-Clifford
algebras [13, 3] giving rise to the peak algebras [15], and a degenerated version of the Ariki-Koike algebras [7]
giving rise to a colored version of QSym and NCSF.

The goal of this article is to study the representation theories of several towers of algebras which are
related to the symmetric groups and their Hecke algebras Hn(q). We describe their representation theory
and the Grothendieck algebras and coalgebras arising from them. Here is the structure of the paper together
with the main results.

In Section 3, we introduce the main object of this paper, namely a new tower of algebras denoted HSn.
Each HSn is constructed as the algebra generated by both elementary transpositions and elementary sorting
operators acting on permutations of {1, . . . , n}. We show that this algebra is better understood as the algebra
of antisymmetry preserving operators; this allows us to compute its dimension and give an explicit basis.
Then, we construct the projective and simple modules and compute their restrictions and inductions. This
gives rise to a new interpretation of some bases of quasi-symmetric and noncommutative symmetric functions
in representation theory. The Cartan matrix suggests a link between HSn and the incidence algebra of the
boolean lattice. We actually show that these algebra are Morita equivalent. We conclude this section by
discussing some links with a certain central specialization of the affine Hecke algebra.

In Sections 4 and 5 we turn to the study of two other towers, namely the towers of the monoids algebras
of nondecreasing functions and of nondecreasing parking functions. In both cases, we give the structure
of projective and simple modules, the cartan matrices, and the induction and restrictions rules. We also
show that the algebra of nondecreasing parking functions is isomorphic to the incidence algebra of some
lattice. Finally, we prove that those two algebras are the respective quotients of HSn and Hn(0), through
their representations on exterior powers. The following diagram summarizes the relations between all the
mentioned towers of algebras:

(5)

Hn(−1)

����

# � ,,
Hn(0)

����

#
�

,,
Hn(1) = C[Sn]

����

# �

--Hn(q)

����

� � // HSn

����

Temperley-Liebn � { 22C[NDPFn] � { 11C[Sn] ↪→
∧·

Cn
� | 11Hn(q) ↪→

∧·
Cn � � // C[NDFn]
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This paper mostly reports on a computation driven research using the package MuPAD-Combinat by the
authors of the present paper [8]. This package is designed for the computer algebra system MuPAD and is freely
available from http://mupad-combinat.sf.net/. Among other things, it allows to automatically compute
the dimensions of simple and indecomposable projective modules together with the Cartan invariants matrix
of a finite dimensional algebra, knowing its multiplication table.

2. Background

2.1. Compositions and sets. Let n be a fixed integer. Recall that each subset S of {1, . . . , n − 1}
can be uniquely identified with a p-tuple K := (k1, . . . , kp) of positive integers of sum n:

(6) S = {i1 < i2 < · · · < ip} 7−→ C(S) := (i1, i2 − i1, i3 − i2, . . . , n − ip) .

We say that K is a composition of n and we write it by K � n. The converse bijection, sending a composition
to its descent set, is given by:

(7) K = (k1, . . . , kp) 7−→ Des(K) = {k1 + · · · + kj , j = 1, . . . , p − 1} .

The number p is called the length of K and is denoted by `(K).
The notions of complementary of a set Sc and of inclusion of sets can be transfered to compositions,

leading to the complementary of a composition Kc and to the refinement order on compositions: we say that
I is finer than J , and write I�J , if and only if Des(I) ⊇ Des(J).

2.2. Symmetric groups and Hecke algebras. Take n ∈ N and let Sn be the n-th symmetric group.
It is well known that it is generated by the n − 1 elementary transpositions σi which exchange i and i + 1,
with the relations

σ2
i = 1 (1 ≤ i ≤ n − 1) ,

σiσj = σjσi (|i − j| ≥ 2) ,(8)

σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n − 2) .

The last two relations are called the braids relations. A reduced word for a permutation µ is a decomposition
µ = σi1 · · ·σik

of minimal length. When denoting permutations we also use the word notation, where µ is
denoted by the word µ1µ2 · · ·µn := µ(1)µ(2) · · ·µ(n). For a permutation µ, the set {i, µi > µi+1} of its
descents is denoted Des(µ). The descents of the inverse of µ are called the recoils of µ and their set is denoted
Rec(µ). For a composition I, we denote by SI := Si1 ×· · ·×Sip

the standard Young subgroup of Sn, which
is generated by the elementary transpositions σi where i /∈ Des(I).

Recall that the (Iwahori-) Hecke algebra Hn(q) of type An−1 is the C-algebra generated by elements Ti

for i < n with the braids relations together with the quadratic relations:

(9) T 2
i = (q − 1)Ti + q ,

where q is a complex number.
The 0-Hecke algebra is obtained by setting q = 0 in these relations. Then, the first relation becomes

T 2
i = −Ti [12, 9]. In this paper, we prefer to use another set of generators (πi)i=1...n−1 defined by πi := Ti+1.

They also satisfy the braids relations together with the quadratic relations π2
i = πi.

Let σ =: σi1 · · ·σip
be a reduced word for a permutation σ ∈ Sn. The defining relations of Hn(q) ensures

that the element Tσ := Ti1 · · ·Tip
(resp.: πσ := πi1 · · ·πip

) is independent of the chosen reduced word for
σ. Moreover, the well-defined family (Tσ)σ∈Sn

(resp.: (πσ)σ∈Sn
) is a basis of the Hecke algebra, which is

consequently of dimension n!.

2.3. Representation theory. In this paper, we mostly consider right modules over algebras. Conse-
quently the composition of two endomorphisms f and g is denoted by fg = g ◦f and their action on a vector
v is written v · f . Thus g ◦ f(v) = g(f(v)) is denoted v · fg = (v · f) · g.

It is known that Hn(0) has 2n−1 simple modules, all one-dimensional, and naturally labelled by com-
positions I of n [12]: following the notation of [9], let ηI be the generator of the simple Hn(0)-module SI

associated with I in the left regular representation. It satisfies

(10) ηI · Ti :=

{
−ηI if i ∈ Des(I),

0 otherwise,
or equivalently ηI · πi :=

{
0 if i ∈ Des(I),

ηI otherwise.
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The bases of the indecomposable projective modules PI associated to the simple module SI of Hn(0) are
indexed by the permutations σ whose descents composition is I.

The Grothendieck rings of Hn(0) are naturally isomorphic to the dual pair of Hopf algebras of quasi-
symmetric functions QSym of Gessel [6] and of noncommutative symmetric functions NCSF [5] (see [9]).
The reader who is not familiar with those should refer to these papers, as we will only recall the required
notations here.

The Hopf algebra QSym of quasi-symmetric functions has two remarkable bases, namely the monomial
basis (MI)I and the fundamental basis (also called quasi-ribbon) (FI)I . They are related by

(11) FI =
∑

I�J

MJ or equivalently MI =
∑

I�J

(−1)`(I)−`(J)FJ .

The characteristic map SI 7→ FI which sends the simple Hn(0) module SI to its corresponding fundamental
function FI also sends the induction product to the product of QSym and the restriction coproduct to the
coproduct of QSym.

The Hopf algebra NCSF of noncommutative symmetric functions [5] is a noncommutative analogue of
the algebra of symmetric functions [11]. It has for multiplicative bases the analogues (ΛI)I of the elementary
symmetric functions (eλ)λ and as well as the analogues (SI)I of the complete symmetric functions (hλ)λ.
The relevant basis in the representation theory of Hn(0) is the basis of so called ribbon Schur functions (RI)I

which is an analogue of skew Schur functions of ribbon shape. It is related to (ΛI)I and (SI)I by

(12) SI =
∑

I�J

RJ and ΛI =
∑

I�J

RJc .

Their interpretation in representation theory goes as follows. The complete function Sn is the characteristic
of the trivial module Sn ≈ Pn, the elementary function Λn being the characteristic of the sign module
S1n ≈ P1n . An arbitrary indecomposable projective module PI has RI for characteristic. Once again the
map PI 7→ RI is an isomorphism of Hopf algebras.

Recall that SJ is the semi-simple module associated to PI , giving rise to the duality between G and K :

(13) SI = PJ/rad(PJ ) and 〈PI , SJ〉 = δI,J

This translates into QSym and NCSF by setting that (FI)I and (RI)I are dual bases, or equivalently that
(MI)I and (SI)I are dual bases.

3. The algebra HSn

The algebra of the symmetric group C[Sn] and the 0-Hecke algebra Hn(0) can be realized simultaneously
as operator algebras by identifying the underlying vector spaces of their right regular representations.

Namely, consider the plain vector space CSn (distinguished from the group algebra which is denoted by
C[Sn]). On the first hand, the algebra C[Sn] acts naturally on CSn by multiplication on the right (action
on positions). That is, a transposition σi acts on a permutation µ := (µ1, . . . , µn) by permuting µi and µi+1:
µ · σi = µσi.

On the other hand, the 0-Hecke algebra Hn(0) acts on the right on CSn by decreasing sort. That is, πi

acts on the right on µ by:

(14) µ · πi =

{
µ if µi > µi+1,

µσi otherwise.

Definition 1. For each n, the algebra HSn is the subalgebra of End(CSn) generated by both sets of
operators σ1, . . . , σn−1, π1, . . . , πn−1.

By construction, the algebra HSn contains both C[Sn] and Hn(0). In fact, it contains simultaneously
all the Hecke algebras Hn(q) for all values of q; each one can be realized by taking the subalgebra generated
by the operators:

(15) Ti := (q − 1)(1 − πi) + qσi, for i = 1, . . . , n − 1 .

The natural embedding of CSn ⊗ CSm in CSn+m makes (HSn)n∈N into a tower of algebras, which
contains the similar towers of algebras (C[Sn])n∈N and (Hn(q))n∈N.

123



REPRESENTATION THEORIES OF SOME TOWERS OF ALGEBRAS

3.1. Basic properties of HSn. Let πi be the increasing sort operator on CSn. Namely: πi acts on
the right on µ by:

(16) µ · πi =

{
µ if µi < µi+1,

µσi otherwise.

Since πi + πi is a symmetrizing operator, we have the identity:

(17) πi + πi = 1 + σi .

It follows that the operator πi also belongs to HSn.
The following identities are also easily checked:

(18)

σiπi = πi , σiπi = πi ,

πiπi = πi , πiπi = πi ,

πiσi = πi , πiσi = πi .

A computer exploration suggests that the dimension of HSn is given by the following sequence (sequence
A000275 of the encyclopedia of integer sequences [14]):

1, 1, 3, 19, 211, 3651, 90921, 3081513, 136407699, 7642177651, 528579161353, 44237263696473, . . .

These are the numbers hn of pairs (σ, τ) of permutations such that Des(σ) ∩ Des(τ) = ∅. Together with
Equation (18), this leads to state the following

Theorem 3.1. A vector space basis of HSn is given by the family of operators

(19) Bn :=
{
σπτ | Des(σ) ∩ Des(τ−1) = ∅

}
.

One approach to prove this theorem would be to find a presentation of the algebra. The following
relations are easily proved to hold in HSn:

(20)

πi+1σi = πi+1πi + σiσi+1πiπi+1 − πiπi+1πi ,

πiσi+1 = πiπi+1 + σi+1σiπi+1πi − πiπi+1πi ,

σ1π2σ1 = σ2π1σ2 ,

and we conjecture that they generate all relations.

Conjecture 1. A presentation of HSn is given by the defining relations of C[Sn] and Hn(0) together
with the relations σiπi = πi and of Equations (20).

Using those relations as rewriting rules yields a straightening algorithm which rewrites any expression
in the σi’s and πi’s into a linear combination of the σπτ . This algorithm seems, in practice and with an
appropriate strategy, to always terminate. However we have no proof of this fact; moreover this algorithm
is not efficient, due to the explosion of the number and length of words in intermediate results.

This is a standard phenomenon with such algebras. Their properties often become clearer when consid-
ering their concrete representations (typically as operator algebras) rather than their abstract presentation.
Here, theorem 3.1 as well as the representation theory of HSn follow from its upcoming structural charac-
terization as the algebra of operators preserving certain anti-symmetries.

3.2. HSn as algebra of antisymmetry-preserving operators. Let σi be the right operator in
End(CSn) describing the action of si by multiplication on the left (action on values), namely σi is defined
by

(21) σ · σi := σiσ .

A vector v in CSn is left i-symmetric (resp. antisymmetric) if v · σi = v (resp. v · σi = −v). The subspace
of left i-symmetric (resp. antisymmetric) vectors can be alternatively described as the image (resp. kernel)
of the idempotent operator 1

2 (1 + σi), or as the kernel (resp. image) of the idempotent operator 1
2 (1 − σi).

Theorem 3.2. HSn is the subspace of End(CSn) defined by the n− 1 idempotent sandwich equations:

(22)
1

2
(1 − σi)f

1

2
(1 + σi) = 0, for i = 1, . . . , n − 1 .

In other words, HSn is the subalgebra of those operators in End(CSn) which preserve left anti-symmetries.
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Note that, σi being self-adjoint, the adjoint algebra of HSn satisfies the equations:

(23)
1

2
(1 + σi)f

1

2
(1 − σi) = 0;

thus, it is the subalgebra of those operators in End(CSn) which preserve left symmetries. The symmetric
group algebra has a similar description as the subalgebra of those operators in End(CSn) which preserve
both left symmetries and antisymmetries.

Proof. The proof of theorem 3.2 proceeds as follow. We first exhibit a triangularity property of the
operators in Bn; this proves that they are linearly independent, so that dimHSn ≥ hn. Let < be any linear
extension of the right permutahedron order. Given an endomorphism f of CSn, we order the rows and
columns of its matrix M := [fµν ] accordingly to <, and denote by init(f) := min{µ, ∃ν, fµν 6= 0} the index
of the first non zero row of M .

Lemma 3.1. (a) Let f := σπτ in Bn. Then, init(f) = τ , and

(24) fτν =

{
1 if ν ∈ SDes(τ−1)σ

−1

0 otherwise

(b) The family Bn is free.

Then, we note that HSn preserves all antisymmetries, because its generators σi and πi do. It follows
that HSn satisfies the sandwich equations. We conclude by giving an explicit description of the sandwich
equations. Given an endomorphism f of CSn, denote by (fµ,ν)µ,ν the coefficients of its matrix in the natural
permutation basis. Given two permutations µ, ν, and an integer i in {1, . . . , n − 1}, let Rµ,ν,i be the linear
form:

(25) Rµ,ν,i :

{
End(CSn) 7→ C

f 7→ fµ,ν + fsiµ,ν − fµ,siν + fsiµ,siν

Given a pair of permutations µ, ν having at least one descent in common, set Rµ,ν = Rµ,ν,i, where i is the
smallest common descent of µ and ν (the choice of the common descent i is, in fact, irrelevant). Finally, let
Rn := {Rµ,ν , Des(µ) ∩ Des(ν) 6= ∅}.

Lemma 3.2. (a) If an operator f in EndCSn preserves i-antisymmetries, then Rµ,ν,i(f) = 0 for any
permutations µ and ν.

(b) The n!2 − hn linear relations in Rn are linearly independent.

Theorems 3.1 and 3.2 follow. �

3.3. The representation theory of HSn.

3.3.1. Projective modules of HSn. Recall that HSn is the algebra of operators preserving left antisym-
metries. Thus, given S ⊂ {1, . . . , n − 1}, it is natural to introduce the HSn-submodule

⋂
i∈S ker(1 + σi) of

the vectors in CSn which are i-antisymmetric for all i ∈ S. For the ease of notations, it turns out to be
better to index this module by the composition associated to the complementary set ; thus we define

(26) PI :=
⋂

i/∈Des(I)

ker(1 + σi) .

The goal of this section is to prove that the family of modules (PI)I�n forms a complete set of representatives
of the indecomposable projective modules of HSn.

The simplest element of PI is:

(27) vI :=
∑

ν∈SI

(−1)l(ν)ν,

One easily shows that

Lemma 3.3. vI generates PI as an HSn-module.

Given a permutation σ, let vσ := vRec(σ)σ (recall that Rec(σ) = Des(σ−1)). Note that σ is the permuta-
tion of minimal length appearing in vσ. By triangularity, it follows that the family (vσ)σ∈Sn

forms a vector
space basis of CSn. The usefulness of this basis comes from the fact that
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Proposition 1. For any composition I := (i1, . . . , ik) of sum n, the families

(28) {vI · σ | σ ∈ Sn, Rec(σ) ∩ Des(I) = ∅} and {vσ | σ ∈ Sn, Rec(σ) ∩ Des(I) = ∅}

are both vector space bases of PI ; in particular, PI is of dimension n!
i1!i2!...ik! .

Since Sn and Hn(0) are both sub-algebras of HSn, the space PI is naturally a module over them. The
following proposition elucidates its structure.

Proposition 2. Let (−1) denote the sign representation of the symmetric group as well as the corre-
sponding representation of the Hecke algebra Hn(0) (sending Ti to −1, or equivalently πi to 0).

(a) As a Sn module, PI ≈ (−1) ↑Sn

SI
; its character is the symmetric function eI := ei1 · · · eik

.

(b) As a Hn(0) module, PI ≈ (−1) ↑
Hn(0)
HI(0) ; it is a projective module whose character is the noncommu-

tative symmetric function ΛI := Λi1 · · ·Λik
.

(c) In particular the PI ’s are non isomorphic as Hn(0)-modules and thus as HSn-modules.

We are now in position to state the main theorem of this section.

Theorem 3.3. For σ ∈ Sn, let pσ ∈ End(CSn) denote the projector on Cvσ parallel to ⊕τ 6=σCvτ . Then,

(a) The ideal pσHSn is isomorphic to PRec(σ) = PDes(σ−1) as an HSn module;
(b) The idempotents pσ all belong to HSn; they give a maximal decomposition of the identity into

orthogonal idempotents in HSn;
(c) The family of modules (PI)I�n forms a complete set of representatives of the indecomposable pro-

jective modules of HSn.

Proof. Item (a) is an easy consequence of Proposition 1. To prove (b) one needs to check that pσ

belongs to HSn. This is done by showing that it preserves left antisymmetries. Then, since the pσ’s give
a maximal decomposition of the identity in End(CSn), they are as well a maximal decomposition of the
identity in HSn. Finally, Item (c) follows from (a) and (b) and Item (c) of Proposition 2. �

3.3.2. Simple modules. The simple modules are obtained as quotients of the projective modules by their
radical:

Theorem 3.4. The modules SI := PI/
∑

J(I PJ form a complete set of representatives of the simple

modules of HSn. Moreover, the projection of the family {vσ, Rec(σ) = I} in SI forms a vector space basis
of SI .

The modules SI are closely related to the projective modules of the 0-Hecke algebra:

Proposition 3. The restriction of the simple module SI to Hn(0) is an indecomposable projective module
whose characteristic is the noncommutative symmetric function RIc .

3.3.3. Cartan’s invariants matrix and the boolean lattice. We now turn to the description of the Cartan
matrix. Let pI := pα where α is the shortest permutation such that Rec(α) = I (this choice is in fact
irrelevant).

Proposition 4. Let I and J be two subsets of {1, . . . , n}. Then,

(29) dimHom(PI , PJ) = dim pIHSnpJ =

{
1 if I ⊂ J ,

0 otherwise.

In other words, the Cartan matrix of HSn is the incidence matrix of the boolean lattice. This suggests
that there is a close relation between HSn and the incidence algebra of the boolean lattice. Recall that the
incidence algebra C[P ] of a partially ordered set (P,≤P ) is the algebra whose basis elements are indexed by
the couples (u, v) ∈ P 2 such that u ≤P v with the multiplication rule

(30) (u, v) · (u′, v′) =

{
(u, v′) if v = u′,

0 otherwise.

An algebra is called elementary (or sometimes reduced) if its simple modules are all one dimensional. Starting
from an algebra A, it is possible to get a canonical elementary algebra by the following process. Start with
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a maximal decomposition of the identity 1 =
∑

i ei into orthogonal idempotents. Two idempotents ei and
ej are conjugate if ei can be written as aejb where a and b belongs to A, or equivalently, if the projective
modules eiA and ejA are isomorphic. Select an idempotent ec in each conjugacy classes c and put e :=

∑
ec.

Then, it is well known [4] that the algebra eAe is elementary and that the functor M 7→ Me which sends a
right A module to a eAe module is an equivalence of category. Recall finally that two algebra A and B such
that the category of A-modules and B-modules are equivalent are said Morita equivalent. Thus A and eAe
are Morita-equivalent.

Applying this to HSn, one gets

Theorem 3.5. Let e be the idempotent defined by e :=
∑

I�n pI . Then the algebra eHSne is isomorphic
to the incidence algebra C[Bn−1] of the boolean lattice Bn−1 of subsets of {1, . . . , n− 1}. Consequently, HSn

and C[Bn−1] are Morita equivalent.

3.3.4. Induction, restriction, and Grothendieck rings. Let G := G ((HSn)n) and K := K ((HSn)n) be
respectively the Grothendieck rings of the characters of the simple and projective modules of the tower of
algebras (HSn)n. Let furthermore C be the cartan map from K to G. It is the algebra and coalgebra
morphism which gives the projection of a module onto the direct sum of its composition factors. It is given
by

(31) C(PI) =
∑

I�J

SJ .

Since the indecomposable projective modules are indexed by compositions, it comes out as no surprise that
the structure of algebras and coalgebras of G and K are each isomorphic to QSym and NCSF. However, we
do not get Hopf algebras, because the structures of algebras and coalgebras are not compatible.

Proposition 5. The following diagram gives a complete description of the structures of algebras and of
coalgebras on G and K.

(32)

(QSym, .) (G, .)_?

χ(SI) 7→MIc
oooo (K, .)_?

Coooo � � χ(PI ) 7→FIc
// // (QSym, .)

(NCSF, ∆) (G, ∆)_?χ(SI) 7→RIc

oooo (K, ∆)_?C
oooo � �

χ(PI ) 7→ΛI

// // (NCSF, ∆)

Proof. The bottom line is already known from Proposition 2 and the fact that, for all m and n, the
following diagram commutes

(33)

Hm(0) ⊗ Hn(0)
� _

��

� � // Hm+n(0)
� _

��

HSm ⊗ HSn
� � // HSm+n

Thus the map which sends a module to the characteristic of its restriction to Hn(0) is a coalgebra morphism.
The isomorphism from (K, .) to QSym is then obtained by Frobenius duality between induction of projective
modules and restriction of simple modules. And the last case is obtained by applying the Cartan map C. �

It is important to note that the algebra (G, .) is not the dual of the coalgebra (K, ∆) because the dual
of the restriction of projective modules is the so called co-induction of simple modules which is, in general,
not the same as the induction for non self-injective algebras.

Finally the same process applied to the adjoint algebra which preserve symmetries would have given the
following diagram

(34)

(QSym, .) (G, .)_?

χ(SI ) 7→XIc
oooo (K, .)_?

Coooo � � χ(PI ) 7→FI
// // (QSym, .)

(NCSF, ∆) (G, ∆)_?χ(SI ) 7→RI

oooo (K, ∆)_?C
oooo � �

χ(PI ) 7→SI

// // (NCSF, ∆)

where (XI)I is the dual basis of the elementary basis (ΛI)I of NCSF. Thus we have a representation
theoretical interpretation of many bases of NCSF and QSym.
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3.4. Links with the affine Hecke algebra. Recall that, for any complex number q, the extended
affine Hecke algebra Ĥn(q) of type An−1 is the C-algebra generated by (Ti)i=1···n−1 together with an extra
generator Ω verifying the defining relations of the Hecke algebra and the relation:

(35) ΩTi = Ti−1Ω for 1 ≤ i ≤ n.

The center of the affine Hecke algebra is isomorphic to the ring of symmetric polynomials in some variables
ξ1, . . . , ξn and it can thus be specialized. Let us denote Hn(q) the specialization of the center Ĥn(q) to the
alphabet 1, q, . . . qn−1. That is

(36) Hn(q) := Ĥn(q)/〈ei(ξ1, . . . , ξn) − ei(1, q, . . . qn−1) | i = 1 . . . n〉 .

It is well known that the simple modules SI of Hn(q) are indexed by compositions I and that their bases
are indexed by descent classes of permutations. Thus one expects a strong link between HSn and Hn(q). It
comes out as follows. Let q be a generic complex number (i.e.: not 0 nor a root of the unity). Sending Ω to
σ1σ2 · · ·σn−1 and Ti to itself yields a surjective morphism from Hn(q) to HSn. Thus, the simple modules
of Hn(q) are the simple modules of HSn lifted back through this morphism. This also explains the link
between the projective modules of Hn(0) and the simple modules of Hn(q), thanks to Proposition 2.

4. The algebra of non-decreasing functions

Definition 2. Let NDFn be the set of non-decreasing functions from {1, . . . , n} to itself. The com-

position and the neutral element idn make NDFn into a monoid. Its cardinal is
(
2n−1
n−1

)
, and we denote by

C[NDFn] its monoid algebra.

The monoid NDFn ×NDFm can be identified as the submonoid of NDFn+m whose elements stabilize
both {1, . . . , n} and {n + 1, . . . , n + m}. This makes (C[NDFn])n into a tower of algebras.

One can take as generators for NDFn and An the functions πi et πi, such that πi(i + 1) = i, πi(j) = j
for j 6= i + 1, πi(i) = i + 1, and πi(j) = j for j 6= i. The functions πi are idempotents, and satisfy the braid
relations, together with a new relation:

(37) π2
i = πi and πi+1πiπi+1 = πiπi+1πi = πi+1πi .

This readily defines a morphism φ : πHn(0) 7→ πC[NDFn] of Hn(0) into C[NDFn]. Its image is the monoid
algebra of non-decreasing parking functions which will be discussed in Section 5. The same properties hold
for the operators πi’s. Although this is not a priori obvious, it will turn out that the two morphisms
φ : πHn(0) 7→ πC[NDFn] and φ : πHn(0) 7→ πC[NDFn] are compatible, making C[NDFn] into a quotient of HSn.

4.1. Representation on exterior powers. We now want to construct a suitable representation of
C[NDFn] where the existence of the epimorphism from HSn onto C[NDFn], and the representation theory
of C[NDFn] become clear.

The natural representation of C[NDFn] is obtained by taking the vector space Cn with canonical basis
e1, . . . , en, and letting a function f act on it by ei.f = ef(i). For n > 2, this representation is a faithful

representation of the monoid NDFn but not of the algebra, as dim C[NDFn] =
(
2n−1
n−1

)
� n2. However, since

NDFn is a monoid, the diagonal action on exterior powers

(38) (x1 ∧ · · · ∧ xk) · f := (x1 · f) ∧ · · · ∧ (xk · f)

still define an action. Taking the exterior powers
∧k

C
n of the natural representation gives a new represen-

tation, whose basis {eS := es1
∧ · · · ∧ esk

} is indexed by subsets S := {s1, . . . , sk} of {1, . . . , n}. The action
of a function f in NDFn is simply given by (note the absence of sign!):

(39) eS .f :=

{
ef(S) if |f(S)| = |S|,

0 otherwise.

We call representation of C[NDFn] on exterior powers the representation of C[NDFn] on
⊕n

k=1

∧k
Cn, which

is of dimension 2n − 1 (it turns out that we do not need to include the component
∧0

Cn for our purposes).

Lemma 4.1. The representation of C[NDFn] on
⊕n

k=1

∧k
Cn

∧
Cn is faithful.
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We now want to realize the representation of C[NDFn] on the k-th exterior power as a representation of
HSn. To this end, we use a variation on the standard construction of the Specht module Vk,1,...,1 of Sn to
make it a HSn-module. The trick is to use an appropriate quotient of CSn to simulate the symmetries that
we usually get by working with polynomials, while preserving the HSn-module structure. Namely, consider
the following HSn-module:

(40) P k
n := Pk,1,...,1/

⋃
Pk,1,...,1,2,1,...,1.

An element in P k
n is left-antisymmetric on the values 1, . . . , k−1 and symmetric on the values k+1, . . . , n−1,

the effect of the quotient being to identify two permutations which differ by a permutation of the values
{k + 1, . . . , n}. A basis of P k

n indexed by subsets of size k of {1, . . . , n} is obtained by taking for each such
subset S the image in the quotient P k

n of

(41) eS :=
∑

σ,σ(S)={1,...,k},σ(i)<σ(j) for i < j 6∈ S

(−1)signσσ .

It is straightforward to check that the actions of πi and πi of HSn on eS of Pk coincide with the actions

of πi and πi of C[NDFn] on eS of
∧k

Cn (justifying a posteriori the identical notations). In the sequel, we

identify the modules P k
n and

∧k
C

n of HSn and C[NDFn], and we call representation on exterior powers of

HSn its representation on
⊕n

k=1

∧k
Cn. Using Lemma 4.1 we are in position to state the following

Proposition 6. C[NDFn] is the quotient of HSn obtained by considering its representation on exterior
powers. The restriction of this representation of HSn to C[Sn], Hn(0), and Hn(−1) yield respectively the
usual representation of Sn on exterior powers, the algebra of non-decreasing parking functions (see Section 5),
and the Temperley-Lieb algebra.

4.2. Representation theory.

4.2.1. Projective modules, simple modules, and Cartan’s invariant matrix. Let δ be the usual homology
border map:

(42) δ :

{
P k

n → P k−1
n

S := {s1, . . . , sk} 7→
∑

i∈{1,...,k}(−1)k−iS\{si}
.

This map is naturally a morphism of C[NDFn]-module. For each k in 1, . . . , n, let Sk := Pk/ ker δ. It turns
out that together with the identity, δ is essentially the only C[NDFn]-morphism. We are now in position to
describe the projective and simple modules, as well as the Cartan matrix of C[NDFn].

Proposition 7. The modules (P k
n )k=1,...,n form a complete set of representatives of the indecomposable

projective modules of C[NDFn].
The modules (Sk

n)k=1,...,n form a complete set of representatives of the simple modules of C[NDFn].
Let k and l be two integers in {1, . . . , n}. Then,

(43) dimHom(P k
n , P l

n) =

{
1 if l ∈ {k, k − 1},

0 otherwise.

The proof relies essentially on the following lemma:

Lemma 4.2. There exists a minimal decomposition of the identity of C[NDFn] into 2n − 1 orthogonal
idempotents. In particular, the representation on exterior powers is the smallest faithful representation of
C[NDFn].

4.2.2. Induction, restriction, and Grothendieck groups.

Proposition 8. The restriction and induction of indecomposable projective modules and simple modules
are described by:

(44) P k
n1+n2

↓
C[NDFn1+n2

]

C[NDFn1
]⊗C[NDFn2

]≈
⊕

n1+n2=n
k1+k2=k

1≤ki≤ni or ki=ni=0

P k1

n1
⊗ P k2

n2

(45) P k1

n1
⊗ P k2

n2
↑

C[NDFn1+n2
]

C[NDFn1
]⊗C[NDFn2

]≈ P k1+k2

n1+n2
⊕ P k1+k2−1

n1+n2
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(46) Sk
n1+n2

↓
C[NDFn1+n2

]

C[NDFn1
]⊗C[NDFn2

]=
⊕

n1+n2=n
k1+k2∈{k,k+1}

1≤ki≤ni or ki=ni=0

Sk1

n1
⊗ Sk2

n2

(47) Sk1

n1
⊗ Sk2

n2
↑

C[NDFn1+n2
]

C[NDFn1
]⊗C[NDFn2

]≈ Sk1+k2

n1+n2

Those rules yield structures of commutative algebras and cocommutative coalgebras on G and K which
can be realized as quotients or sub(co)algebras of Sym, QSym, and NCSF. However, we do not get
Hopf algebras, because the structures of algebras and coalgebras are not compatible (compute for exam-
ple ∆(χ(P 1

1 )χ(P 1
1 )) in the two ways, and check that the coefficients of χ(P 1

1 ) ⊗ χ(P 1
1 ) differ).

5. The algebra of non-decreasing parking functions

Definition 3. A nondecreasing parking function of size n is a nondecreasing function f from {1, 2, . . . n}
to {1, 2, . . . n} such that f(i) ≤ i, for all i ≤ n.

The composition of maps and the neutral element idn make the set of nondecreasing parking function
of size n into a monoid denoted NDPFn.

It is well known that the nondecreasing parking functions are counted by the Catalan numbers Cn =
1

n+1

(
2n
n

)
. It is also clear that NDPFn is the sub-monoid of NDFn generated by the πi’s.

5.1. Simple modules. The goal of the sequel is to study the representation theory of NDPFn, or
equivalently of its algebra C[NDPFn]. The following remark allows us to deduce the representations of
C[NDPFn] from the representations of Hn(0).

Proposition 9. The kernel of the algebra epi-morphism φ : Hn(0) → C[NDPFn] defined by φ(πi) = πi

is a sub-ideal of the radical of Hn(0).

Proof. It is well known (see [12]) that the quotient of Hn(0) by its radical is a commutative algebra.
Consequently, πiπi+1πi − πiπi+1 = [πiπi+1, πi] belongs to the radical of Hn(0). �

As a consequence, taking the quotient by their respective radical shows that the projection φ is an
isomorphism from C[NDPFn]/rad(C[NDPFn]) to Hn(0)/rad(Hn(0)). Moreover C[NDPFn]/rad(C[NDPFn])
is isomorphic to the commutative algebra generated by the πi such that π2

i = πi. As a consequence, Hn(0)
and HSn share, roughly speaking, the same simple modules:

Corollary 1. There are 2n−1 simple C[NDPFn]-modules SI , and they are all one dimensional. The
structure of the module SI , generated by ηI , is given by

(48)

{
ηI · πi = 0 if i ∈ Des(I),
ηI · πi = ηI otherwise.

5.2. Projective modules. The projective modules of NDPFn can be deduced from the ones of NDFn.

Theorem 5.1. Let I be a composition of n, and S := Des(I) = {s1, . . . , sk} be its associated set. Then,
the principal sub-module

(49) PI := (e1 ∧ es1+1 ∧ · · · ∧ es1+1) · C[NDPFn] ⊂
k+1∧

C
n

is an indecomposable projective module. Moreover, the set (PI)I�n is a complete set of representatives of
indecomposable projective modules of C[NDPFn].

This suggests an alternative description of the algebra C[NDPFn]. Let Gn,k be the lattice of subsets
of {1, . . . , n} of size k for the product order defined as follows. Let S := {s1 < s2 < · · · < sk} and
T := {t1 < t2 < · · · < tk} be two subsets. Then,

(50) S ≤G T if and only if si ≤ ti, for i = 1, . . . , k.

One easily sees that S ≤G T if and only if there exists a nondecreasing parking function f such that eS = eT ·f .
This lattice appears as the Bruhat order associated to the Grassman manifold Gn

k of k-dimensional subspaces
in Cn.
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Theorem 5.2. There is a natural algebra isomorphism

(51) C[NDPFn] ≈
n−1⊕

k=0

C[Gn−1,k] .

In particular the Cartan map C : K → G is given by the lattice ≤G:

(52) C(PI) =
∑

J, Des(J)≤GDes(I)

SJ

On the other hand, due to the commutative diagram

(53)

Hm(0) ⊗ Hn(0)

����

� � // Hm+n(0)

����

NDPFm ⊗NDPFn
� � // NDPFm+n

it is clear that the restriction of simple modules and the induction of indecomposable projective modules
follow the same rule as for Hn(0). The induction of simple modules can be deduced via the Cartan map,
giving rise to a new basis GI of NCSF. It remains finally to compute the restrictions of indecomposable
projective modules. It can be obtained by a not yet completely explicit algorithm. All of this is summarized
by the following diagram:

(54)

(NCSF, .) (G, .)_?

χ(SI) 7→GI
oooo (K, .)_?

Coooo � � χ(PI ) 7→RI
// // (NCSF, .)

(QSym, ∆) (G, ∆)_?χ(SI ) 7→FI

oooo (K, ∆)_?C
oooo � �

χ(PI ) 7→???
// // ???
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On the Number of Factorizations of a Full Cycle

John Irving

Abstract. We give a new expression for the number of factorizations of a full cycle into an ordered product
of permutations of specified cycle types. This is done through purely algebraic means, extending recent work
of Biane [Nombre de factorisations d’un grand cycle, Sém. Lothar. de Combinatoire 51 (2004)]. We deduce
from our result a remarkable formula of Poulalhon and Schaeffer [Factorizations of large cycles in the

symmetric group, Discrete Math. 254 (2002), 433–458] that was previously derived through an intricate
combinatorial argument.

Résumé. Nous proposons une nouvelle formule pour le nombre de factorisations d’un grand cycle en un pro-
duit ordonné de permutations de types cycliques donnés. Nous utilisons des arguments purement algébriques,
étendant un travail récent de Biane [Nombre de factorisations d’un grand cycle., Sém. Lothar. de Combi-

natoire 51 (2004)]. Nous déduisons de notre résultat une formule remarquable de Poulalhon et Schaef-
fer [Factorizations of large cycles in the symmetric group, Discrete Math. 254 (2002), 433–458] obtenue
précédemment à l’aide d’arguments combinatoires complexes.

1. Notation

Our notation is generally consistent with Macdonald [5]. We write λ ` n (or |λ| = n) and `(λ) = k
to indicate that λ is a partition of n into k parts; that is, λ = (λ1, . . . , λk) with λ1 ≥ · · · ≥ λk ≥ 1 and
λ1 + . . .+λk = n. If λ has exactly mi parts equal to i then we write λ = [1m12m2 · · · ], suppressing terms with
mi = 0. We also define zλ =

∏

i imimi! and Aut(λ) =
∏

i mi!. A hook is a partition of the form [1b, a + 1]

with a, b ≥ 0. We use Frobenius notation for hooks, writing (a|b) in place of [1b, a + 1].
The conjugacy class of the symmetric group Sn consisting of all n!/zλ permutations of cycle type λ ` n

will be denoted by Cλ. The irreducible characters χλ of Sn are naturally indexed by partitions λ of n, and
we use the usual notation χλ

µ for the common value of χλ at any element of Cµ. We write fλ for the degree

χλ
[1n] of χλ.

For vectors j = (j1, . . . , jm) and x = (x1, . . . , xm) we use the abbreviations j! = j1! · · · jm! and xj =

xj1
1 · · ·xjm

m . Finally, if α ∈ Q and f ∈ Q[[x]] is a formal power series, then we write [αxj] f(x) for the
coefficient of the monomial αxj in f(x).

2. Factorizations of Full Cycles

Given λ, α1, . . . , αm ` n, let cλ
α1,...,αm

be the number of factorizations in Sn of a given permutation

π ∈ Cλ as an ordered product π = σ1 . . . σm, with σi ∈ Cαi
for all i. The problem of evaluating cλ

α1,...,αm

for various λ and αi has attracted a good deal of attention and is linked to various questions in algebra,
geometry, and physics. For details on the history of this problem and its connections to other areas of

2000 Mathematics Subject Classification. Primary 05A05; Secondary 20B30.
Key words and phrases. permutations, factorizations, symmetric group, enumeration, combinatorics.
Thanks go to David Jackson for financial support during the preparation of this manuscript, and Ian Goulden for helpful

discussions along the way.
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mathematics, we direct the reader to [4] and the references therein. Here we focus on the particularly well-
studied case λ = (n), which corresponds to counting factorizations of the full cycle (1 2 · · · n) ∈ Sn into
factors of specified cycle types.

While it is straightforward to express c
(n)
α1,...,αm

as a character sum (see (3.1) below), the appearance
of alternating signs in this sum — and resulting cancellations — preclude asymptotic analysis. Goupil
and Schaeffer [4, FPSAC’98] overcame this difficulty in the case m = 2 by interpreting certain characters
combinatorially (viz. the Murnaghan-Nakayama rule) and employing a sequence of bijections in which a sign-
reversing involution accounts for cancellations. This leads to an expression for c

(n)
α,β as a sum of positive terms,

which in turn permits nontrivial asymptotics. Poulalhon and Schaeffer [6] later extended this argument to
arrive at a similar formula for c

(n)
α1,...,αm

.
Biane [1] has recently given a remarkably succinct algebraic derivation of Goupil and Schaeffer’s formula

for c
(n)
α,β . Our purpose here is to extend his method to give a new expression for c

(n)
α1,...,αm

as a sum of positive
contributions. In particular, if for γ = (γ1, γ2, . . .) ` n we define the polynomial Rγ(x, y) and the nonnegative

constants rγ
j,k by

(2.1) Rγ(x, y) :=
1

2y

∏

i≥1

((x + y)γi − (x − y)γi) =
∑

j+k=n−1

rγ
j,kxjyk,

then our main result is the following:

Theorem 2.1. Let α1, . . . , αm ` n and, for λ = [1m12m23m3 · · · ], let 2λ − 1 = [1m13m25m3 · · · ]. Set

x = (x1, . . . , xm) and let eλ(x) denote the elementary symmetric function in x1, . . . , xm indexed by λ. Then

c(n)
α1,...,αm

=
nm−1

2(n−1)(m−1)
∏

i zαi

∑

j+k=n−1

[xj]
∑

`(λ)=n−1

e2λ−1(x)

Aut(λ)
·

m
∏

i=1

ji! ki! r
αi

ji,ki
,

where the outer sum extends over all vectors j = (j1, . . . , jm) and k = (k1, . . . , km) of nonnegative integers

such that ji + ki = n − 1 for all i, and the inner sum over all partitions λ with n − 1 parts.

A proof of Theorem 2.1 is given in the next section. In §4, we use this result to deduce Poulalhon and
Schaeffer’s formula for c

(n)
α1,...,αm

(listed here as Theorem 4.1), thereby giving a purely algebraic derivation
that avoids the detailed combinatorial constructions in [6].

3. Proof of the Main Result

It is well known that the class sums Kλ =
∑

σ∈Cλ
σ (for λ ` n) form a basis of the centre of the group

algebra CSn. Indeed, the linearization relations Kα1
· · ·Kαm

=
∑

λ`n cλ
α1,...,αm

Kλ identify the constants

cλ
α1,...,αm

as the connection coefficients of CSn. By using character theory to express Kλ in terms of central
idempotents of CSn (see [7], Problem 7.67b) one finds that

cλ
α1,...,αm

=
n!m−1

zα1
· · · zαm

∑

β`n

χβ
α1

· · ·χβ
αm

(fβ)m−1
χβ

λ.

This sum is generally intractable but simplifies considerably in the case λ = (n), since there χβ
λ vanishes

when β is not a hook; in particular, the Murnaghan-Nakayama rule [7] implies χβ
(n) = (−1)b if β = (a|b),

while χβ
(n) = 0 otherwise. Moreover, the hook-length formula gives f (a|b) =

(

a+b
b

)

, so

c(n)
α1,...,αm

=
nm−1

zα1
· · · zαm

∑

a+b=n−1

(a! b!)m−1χ(a|b)
α1

· · ·χ(a|b)
αm

(−1)b.(3.1)

Let µ be the measure on C defined by the density dµ(z) = 1
π e−|z|2dz, where dz is the standard Lebesgue

density (i.e. dz = ds dt for z = s + t
√
−1). Following Biane [1], we shall make use of the formula

(3.2)

∫

C

zj z̄kdµ(z) = j! δjk,

which is easily verified by changing to polar form.
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Proof of Theorem 2.1: For γ ` n, let Fγ(u, v) =
∑

χ
(a|b)
γ uavb be the generating series for hook characters,

where the sum extends over all pairs (a, b) of nonnegative integers with a + b = n − 1. Then

1

(n − 1)!
(u1 · · ·um − v1 · · · vm)n−1

m
∏

i=1

Fαi
(ūi, v̄i)

=
∑

a+b=n−1

ua
1 · · ·ua

m · vb
1 · · · vb

m

a! b!
(−1)b

m
∏

i=1

∑

ai+bi=n−1

χ(ai|bi)
αi

ūai

i v̄bi

i .

Consider the effect of integrating the RHS with respect to dµ(u,v) :=
∏m

i=1 dµ(ui)dµ(vi). Using (3.2), note

that all monomials (−1)b

a!b!

∏

i χ
(ai|bi)
ai

ua
i ūai

i vb
i v̄

bi

i vanish except those with ai = a and bi = b for all i, and each

monomial of this special form is replaced by (−1)b(a! b!)m−1
∏

i χ
(a|b)
αi

. Thus we obtain

∫

C2m

(u1 · · ·um − v1 · · ·vm)n−1
m
∏

i=1

Fαi
(ūi, v̄i) dµ(u,v)

= (n − 1)!
∑

a+b=n−1

(a! b!)m−1χ(a|b)
α1

· · ·χ(a|b)
αm

(−1)b.

Let I be the integral on the LHS, and change variables by letting ui = (yi + xi)/
√

2, vi = (yi − xi)/
√

2. As
an immediate consequence of the Murnaghan-Nakayama rule we have

Fγ(u, v) =
1

u + v

∏

i≥1

(uγi − (−v)γi)

for a partition γ = (γ1, γ2, . . .). Thus (2.1) gives Fγ(y + x, y − x) = Rγ(x, y), and since Fαi
is homogeneous

of degree n − 1 the change of variables yields Fαi
(ūi, v̄i) = 2−(n−1)/2Rαi

(x̄i, ȳi) for all i. Furthermore, it is
easy to check that dµ(u,v) = dµ(x,y) and

u1 · · ·um − v1 · · · vm =
1√
2m

( m
∏

i=1

(yi + xi) −
m
∏

i=1

(yi − xi)

)

=
2y1 · · · ym√

2m

∑

s≥1

e2s−1(x/y),

where x/y = (x1

y1

, . . . , xm

ym

). Thus, with the aid of (3.2), we get

I =
1

2(n−1)(m−1)

∫

C2m

(

y1 · · · ym

∑

s≥1

e2s−1(x/y)

)n−1 m
∏

i=1

Rαi
(x̄i, ȳi) dµ(x,y)

=
1

2(n−1)(m−1)

∑

j,k

j!k! [xjyk]

(

y1 · · · ym

∑

s≥1

e2s−1(x/y)

)n−1

· [x̄jȳk]

m
∏

i=1

Rαi
(x̄i, ȳi)

=
1

2(n−1)(m−1)

∑

j+k=n−1

j!k! [xj]

(

∑

s≥1

e2s−1(x)

)n−1 m
∏

i=1

rαi

ji,ki

=
(n − 1)!

2(n−1)(m−1)

∑

j+k=n−1

j!k! [xj]
∑

`(λ)=n−1

e2λ−1(x)

Aut(λ)

m
∏

i=1

rαi

ji,ki
.

The result now follows from (3.1). �

4. Recovery of Poulalhon & Schaeffer’s Formula

We require some extra notation to state the Poulalhon-Schaeffer formula for c
(n)
α1,...,αm

. First, we define
symmetric polynomials Sp(x1, . . . , xl) by setting S0(x1, . . . , xl) = 1 and

Sp(x1, . . . , xl) =
∑

p1+···+pl=p

l
∏

i=1

1

xi

(

xi

2pi + 1

)
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for p > 0. Note that these have the simple generating series

(4.1)
∑

p≥0

Sp(x1, . . . , xl)t
2p =

l
∏

i=1

(1 + t)xi − (1 − t)xi

2xit
,

which is obviously closely related to our series Rγ(x, y) (see (2.1)). We also introduce an operator D on

Q[[x1, . . . , xm]] defined as follows: For each i and all j ≥ 0 set D(xj
i ) = xi(xi − 1) · · · (xi − j +1), and extend

the action of D multiplicatively to monomials xj1
1 · · ·xjm

m and then linearly to all of Q[[x1, . . . , xm]]. Finally,
we define polynomials P b

a(x1, . . . , xm) by setting P b
0 (x1, . . . , xm) = 1 for all b ≥ 1 and letting

(4.2) P b
a(x1, . . . , xm) =

∑

λ`a
`(λ)≤b

D

(e2λ+1(x)

Aut(λ)

)

for a, b ≥ 1, where 2λ+1 = [3m15m2 · · · ] when λ = [1m12m2 · · · ]. Then the main result of [6] is the following

intriguing formula for c
(n)
α1,...,αm

.

Theorem 4.1 (Poulalhon-Schaeffer). Let α1, . . . , αm ` n and set ri = n − `(αi) for all i. Let g =
1
2 (

∑

i ri − n + 1). If g is a nonnegative integer, then

c(n)
α1,...,αm

=
nm−1

22g
∏

i Aut(αi)

∑

Pn−1
q (r − 2p)

m
∏

i=1

(`(αi) + 2pi − 1)! Spi
(αi),

where r − 2p = (r1 − 2p1, . . . , rm − 2pm) and the sum extends over all tuples (q, p1, . . . , pm) of nonnegative

integers with q + p1 + · · · + pm = g.

Before proceeding to deduce this result from Theorem 2.1, we pause for a few remarks. First, the integer
g identified in Theorem 4.1 is called the genus of the associated factorizations of (1 2 · · · n), and it has well-
understood geometric meaning; see [2], for example. The primary benefit of the Poulalhon-Schaeffer formula
(over Theorem 2.1) is that the dependence on genus is explicit. For instance, when g = 0 it is immediately
clear that Theorem 4.1 reduces to the very simple

c(n)
α1,...,αm

= nm−1
m
∏

i=1

(`(αi) − 1)!

Aut(αi)
.

The c
(n)
α1,...,αm

in this case are known as top connection coefficients, and the above formula was originally
given by Goulden and Jackson [3].

Secondly, we note that Poulalhon and Schaeffer actually define Pa(x) =
∑

λ`a D(e2λ+1(x)/ Aut(λ)), and
ignore the condition `(λ) ≤ b in our definition of P b

a . However, replacing Pn−1
q with Pq in Theorem 4.1

has nil effect, since for D(e2λ+1(x))|x=r−2p to be nonzero some monomial in e2λ+1(x) must be of the form

xj1
1 · · ·xjm

m with ji ≤ ri − 2pi for all i. This implies |2λ + 1| =
∑

i ji ≤
∑

i(ri − 2pi) = 2g + n − 1 − ∑

i 2pi,
while the conditions λ ` q and q +

∑

i pi = g give |2λ+1| = 2q + `(λ) = 2g−∑

i 2pi + `(λ). Thus we require
`(λ) ≤ n − 1 for nonzero contributions to Pq(r − 2p).

Lemma 4.2. Let s, t1, . . . , tm be nonnegative integers. Set x = (x1, . . . , xm) and t = (t1, . . . , tm), and let

f(x) be a homogeneous polynomial of total degree t1 + · · · + tm − s. Then
[

xt

t!

]

(x1 + · · · + xm)sf(x) = s! D
(

f(x)
)
∣

∣

x1=t1,...,xm=tm

.

Proof. Consider the case where f(x) = xj1
1 · · ·xjm

m with
∑

i ji =
∑

i ti − s. Here

[xt](x1 + · · · + xm)sf(x) = [xt]
∑

i1+···+im=s

s!

i1! · · · im!
xi1+j1

1 · · ·xim+jm

m

=











s!

t!

m
∏

i=1

ti!

(ti − ji)!
if ji ≤ ti for all i,

0 otherwise

=
s!

t!
D(f(x))|x=t.
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The general result now follows by linearity. �

Proof of Theorem 4.1: Comparing (2.1) and (4.1) we find that, for γ = (γ1, . . . , γl) ` n,

Rγ(x, y) = 2l−1
l

∏

i=1

γi ·
∑

p≥0

Sp(γ)xn−l−2py2p+l−1.

Thus

rγ
j,k =







2`(γ)−1zγ

Aut(γ)
Sp(γ) if (j, k) = (n − `(γ) − 2p, `(γ) + 2p− 1),

0 otherwise.

From this and Theorem 2.1 we immediately have

c(n)
α1,...,αm

=
nm−1

22g
∏

i Aut(αi)

∑

p

[

xr−2p

(r − 2p)!

]

∑

`(λ)=n−1

e2λ−1(x)

Aut(λ)

m
∏

i=1

(`(αi) + 2pi − 1)! Spi
(αi),

where the outer sum extends over all tuples p = (p1, . . . , pm) of nonnegative integers. Now
[

xr−2p

(r − 2p)!

]

∑

`(λ)=n−1

e2λ−1(x)

Aut(λ)
=

n−1
∑

s=0

∑

λ`q
`(λ)=n−1−s

[

xr−2p

(r − 2p)!

]

e1(x)s

s!

e2λ+1(x)

Aut(λ)
,(4.3)

where q is chosen to make e1(x)se2λ+1(x) of total degree
∑

i(ri − 2pi). In particular, if λ ` q and `(λ) =
n − 1 − s, then e1(x)se2λ+1(x) is of degree |2λ + 1| + s = 2|λ| + `(λ) + s = 2q + n − 1, so we require

2q + n − 1 =
∑

i(ri − 2pi) = (2g + n − 1) − ∑

i 2pi,

or simply q + p1 + · · · + pm = g. Finally, applying the lemma to the RHS of (4.3) results in

n−1
∑

s=0

∑

λ`q
`(λ)=n−1−s

D

(

e2λ+1(x)

Aut(λ)

)∣

∣

∣

∣

x=r−2p

= Pn−1
q (r − 2p)

and this completes the proof. �
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Shellable complexes and topology of diagonal arrangements

Sangwook Kim

Abstract. We prove that if a simplicial complex ∆ is shellable, then the intersection lattice L∆ for the
corresponding diagonal arrangement A∆ is homotopy equivalent to a wedge of spheres. Furthermore, we
describe precisely the spheres in the wedge, based on the data of shelling.

Résumé. Nous prouvons que si un complexe simplicial ∆ est shellable, alors le treillis d’intersection L∆ pour
le correspondre l’arrangement diagonal A∆ est l’équivalent de homotopy à un bouquet de sphères. De plus,
nous décrivons précisément les sphères dans le bouquet, basé sur les données d’écaler.

1. Introduction

Consider Rn with coordinates u1, . . . , un. A diagonal subspace Ui1···ir
is a linear subspace of the form

ui1 = · · · = uir
with r ≥ 2. A diagonal arrangement (or a hypergraph arrangement) A is a finite set of

diagonal subspaces of Rn.
For a simplicial complex ∆ on [n] = {1, . . . , n} such that dim ∆ ≤ n − 3, one can associate a diagonal

arrangement A∆ as follows. For a facet F of ∆, let UF be the diagonal subspace ui1 = · · · = uir
where

F = [n] − F = {i1, . . . , ir}. Define
A∆ = {UF |F is a facet of ∆}.

For each diagonal arrangement A, one can find a simplicial complex ∆ such that A = A∆.
Two important spaces associated with an arrangement A of linear subspaces in Rn are

MA = Rn −
⋃

H∈A

H and V◦
A = Sn−1 ∩

⋃

H∈A

H,

called the complement and the singularity link of A.
We are interested in the topology of MA and V◦

A for a diagonal arrangement A. We mention here some
applications. In computer science, Björner, Lovász and Yao [3] find lower bounds on complexity of k-equal
problems using the topology of diagonal arrangements (see also [2]). In group cohomology, it is well-known
that MBn

for the braid arrangement Bn in Cn is a K(π, 1) space with the fundamental group isomorphic to
the pure braid group ([6]). Khovanov [9] shows that MAn,3

for the 3-equal arrangement An,3 in Rn is also
a K(π, 1) space.

Note that MA and V◦
A are related by Alexander duality as follows:

Hi(MA; F) = Hn−2−i(V
◦
A; F) (F is any field)(1.1)

In the mid 1980’s Goresky and MacPherson [7] found a formula for the Betti numbers of MA, while the
homotopy type of V◦

A was computed by Ziegler and Živaljević [14] (see Section 4). The answers are phrased
in terms of the lower intervals in the intersection lattice LA of the subspace arrangement A, that is the
collection of all nonempty intersections of subspaces of A ordered by reverse inclusion. For general subspace
arrangements, these lower intervals in LA can have arbitrary homotopy type (see [14, Corollary 3.1]).

2000 Mathematics Subject Classification. Primary 06A07; Secondary 05E99.
Key words and phrases. shellable, hypergraph complex, diagonal subspace arrangement, Golod ring.
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Our goal is to find a general sufficient condition for the intersection lattice LA of a diagonal arrangement
A to be well-behaved. Björner and Welker [4] show that LAn,k

is shellable, and hence has the homotopy
type of a wedge of spheres, where An,k is the k-equal arrangement consisting of all Ui1···ik

for all 1 ≤ i1 <

· · · < ik ≤ n (see Section 2). Kozlov [11] shows that LA is shellable if A satisfies some conditions (see
Section 2). Suggested by a homological calculation (Theorem 4.4 below), we will prove the following main
result, capturing the homotopy type assertion from [11] (see Section 3).

Theorem 1.1. Let ∆ be a shellable simplicial complex. Then the intersection lattice L∆ for the diagonal
arrangement A∆ is homotopy equivalent to a wedge of spheres.

Furthermore, one can describe precisely the spheres in the wedge, based on the shelling data. Let ∆
have vertex set [n] with a shelling order F1, . . . , Fq on its facets. Let σ be the intersection of all facets, and
σ̄ its complement. For each i, let Gi be the face of Fi obtained by intersecting the walls of Fi that lie in the
subcomplex generated by F1, . . . , Fi−1, where a wall of Fi is a codimension 1 face of Fi. An (unordered)
shelling-trapped decomposition (of σ̄ over ∆) is defined to be a family {(σ̄1, Fi1 ), . . . , (σ̄p, Fip

)} such that
{σ̄1, . . . , σ̄p} is a decomposition of σ̄ as a disjoint union

σ̄ =

p⊔

j=1

σ̄j

and Fi1 < · · · < Fip
are facets of ∆ such that Gij

⊆ σj ⊆ Fij
for all j. Then the wedge of spheres in

Theorem 1.1 consists of (p − 1)! copies of spheres of dimension

p(2 − n) +

p∑

j=1

|Fij
| + |σ̄| − 3

for each shelling-trapped decomposition D = {(σ̄1, Fi1), . . . , (σ̄p, Fip
)} of σ̄. Moreover, for each shelling-

trapped decomposition D of σ̄ and a permutation ω of [p − 1], there exists a saturated chain CD,ω (see

Section 3) such that removing the simplices corresponding to these chains in L∆ leaves a contractible sim-
plicial complex.

The following example shows that the intersection lattice in Theorem 1.1 is not shellable in general, even
though it has the homotopy type of a wedge of spheres.

Example 1.2. Let ∆ be a simplicial complex on {1, 2, 3, 4, 5, 6, 7, 8} with the shelling 123456, 127, 237,

137, 458, 568, 468. Then ∆(U78, 1̂) is a disjoint union of two circles, hence is not shellable. Therefore, the
intersection lattice L∆ for the diagonal arrangement A∆ is also not shellable. The intersection lattice L∆ is
shown in Figure 1 (thick lines represent the open interval (U78, 1̂)).

The next example shows that there is a nonshellable simplicial complex whose intersection lattice is
shellable.

Example 1.3. Let ∆ be a simplicial complex on {1, 2, 3, 4} whose facets are 12 and 34. Then ∆ is not
shellable. But the order complex of L∆ consists of two vertices, hence is shellable.

2. Some known special cases

In this section, we give Kozlov’s theorem and show how its consequence for homotopy type follows from
Theorem 1.1. Also, we give Björner and Welker’s theorem about the intersection lattice of the k-equal
arrangements which can be recovered using Theorem 1.1.

Kozlov [11] shows that A∆ has shellable intersection lattice if ∆ satisfies some conditions. This class
includes k-equal arrangements and all other diagonal arrangements for which the intersection lattice was
proved shellable up to now.

Theorem 2.1. ([11, Corollary 3.2]) Consider a partition of

[n] = E1 ∪ · · · ∪ Er

such that maxEi < min Ei+1 for i = 1, . . . , r − 1. Let

f : {1, 2, . . . , r} → {2, 3, . . .}

be a nondecreasing map. Let ∆ be a simplicial complex on [n] such that F is a facet of ∆ if and only if
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123571234712367

134568 145678345678124568234568 245678 123678 123478 123578 123467 123567 123457

34568 24568 7814568

12345671234568 23456781345678 12345781234678 12356781245678

12345678

R

Figure 1. The intersection lattice for A∆

min F F w min F F w min F F w

1 23456 17 2 1356 247 3 1256 347
23457 16 1357 246 1257 346
23467 15 1367 245 1267 345
23567 14
24567 13
34567 12

Table 1. Table for Example 2.2

(1) |Ei − F | ≤ 1 for i = 1, . . . , r;
(2) if min F ∈ Ei then |F | = n − f(i).

Then the intersection lattice for A∆ is shellable.

In particular, this intersection lattice has the homotopy type of a wedge of spheres.

Proposition 2.1. ∆ in Theorem 2.1 is shellable.

Proof Sketch. One checks that a shelling order is F1, F2, . . . , Fq such that the words w1, w2, . . . , wq

are in lexicographic order, where wi is the increasing array of elements in F i. �

Example 2.2. Consider the partition of

[7] = {1} ∪ {2, 3} ∪ {4} ∪ {5, 6, 7}

and the function f given by f(1) = 2, f(2) = 3, f(3) = 4, and f(4) = 5. Then the facets of the simplicial
complex that satisfy the conditions of Theorem 2.1 and the corresponding words can be found in Table 1.
Thus the ordering 34567, 24567, 23567, 23467, 23457, 23456, 1367, 1357, 1356, 1267, 1257 and 1256 is a
shelling for this simplicial complex.

One can also use Theorem 1.1 to recover the following theorem of Björner and Welker [4].
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Theorem 2.3. The order complex of the intersection lattice LAn,k
has the homotopy type of a wedge of

spheres consisting of

(p − 1)!
∑

0=i0≤i1≤···≤ip=n−pk

p−1∏

j=0

(
n − jk − ij − 1

k − 1

)
(j + 1)ij+1−ij

copies of (n − 3 − p(k − 2))-dimensional spheres for 1 ≤ p ≤ bn
k
c.

3. Proof of main theorem

Theorem 1.1 will be deduced from a more general statement about homotopy types of lower intervals
∆(0̂, H) in LA, Theorem 3.1 below.

Theorem 3.1. Let ∆ be a shellable simplicial complex on [n] with a shelling F1, . . . , Fq and dim ∆ ≤ n−3.

Let Uσ̄ be a subspace in L∆ for some subset σ̄ of [n]. Then ∆(0̂, Uσ̄) is homotopy equivalent to a wedge of
spheres, consisting of (p − 1)! copies of spheres of dimension

δ(D) := p(2 − n) +

p∑

j=1

|Fij
| + |σ̄| − 3

for each shelling-trapped decomposition D = {(σ̄1, Fi1), . . . , (σ̄p, Fip
)} of σ̄.

Moreover, for each such shelling-trapped decomposition D and each permutation ω of [p − 1], one can
construct a saturated chain CD,ω (see Section 3.1 below), such that if one removes the corresponding δ(D)-

dimensional simplices for all pairs (D, ω), the remaining simplicial complex ∆̂(0̂, Uσ̄) is contractible.

To prove this result, we begin with some preparatory lemmas.
First of all, one can characterize exactly which subspaces lie in L∆ when ∆ is shellable. Recall that for

σ̄ = {i1, . . . , ir} ⊆ [n], we denote by Uσ̄ the linear subspace of the form ui1 = · · · = uir
.

Lemma 3.2. Let ∆ be a simplicial complex on [n] with dim∆ ≤ n − 3.

(1) Every subspace H in L∆ has the form

H = Uσ̄1
∩ · · · ∩ Uσ̄p

for pairwise disjoint subsets σ̄1, . . . , σ̄p of [n] such that σi can be expressed as an intersection of
facets of ∆ for i = 1, 2, . . . , p.

(2) Conversely, when ∆ is shellable, every subspace H of Rn that has the above form lies in L∆.

The next example shows that Lemma 3.2(2) can fail when ∆ is not assumed to be shellable.

Example 3.3. Let ∆ be a simplicial complex with two facets 123 and 345. Then ∆ is not shellable.
Since L∆ has only three subspaces U12, U45 and U12 ∩U45, it does not have the subspace U1245, even though
1245 = 3 is an intersection of facets 123 and 345 of ∆. Thus Lemma 3.2(2) fails for ∆.

In fact, Lemma 3.2(2) is true for a more general class of simplicial complexes. A simplicial complex is
called locally gallery-connected if any pair F, F ′ of facets are connected by a path

F = F0, F1, . . . , Fr−1, Fr = F ′

of facets in which Fi ∩ Fi−1 share a (min{dimFi, dim Fi−1} − 1)-dimensional face for each i. It is not hard
to show that sequentially Cohen-Macaulay simplicial complexes (and hence shellable simplicial complexes)
are locally gallery-connected. One can show that Lemma 3.2(2) is true when ∆ is locally gallery-connected.
Although Lemma 3.2(2) is true for locally gallery-connected simplicial complexes, Theorem 3.1 can fail when
∆ is locally gallery-connected. E.g., any triangulation of RP2 gives a counterexample.

The following lemma shows that every lower interval [0̂, H ] can be written as a product of lower intervals

of the form [0̂, Uσ̄].

Lemma 3.4. Let ∆ be a simplicial complex on [n] with dim∆ ≤ n − 3 and let H ∈ L∆ be a subspace of
the form

H = Uσ̄1
∩ · · · ∩ Uσ̄p
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12345/67

4567

24567

567 267

124567 123/4567 12367/45234567

12672367267/45 245/6712/56723/5672567

23/4567

123567

45/67 25/67 12/67 23/67

23/45/67 12/45/67 125/67235/67 123/67

12/4567 23567 12567 123/567 2367/45 1267/45 2345/67 1245/67 123/45/67 12367 1235/67

Figure 2. The upper interval (U67, 1̂) in L∆

for pairwise disjoint subsets σ̄1, . . . , σ̄p of [n]. Then

[0̂, H ] = [0̂, Uσ̄1
] × · · · × [0̂, Uσ̄p

].

In particular,

∆(0̂, H) = ∆(0̂, Uσ̄1
) ∗ · · · ∗ ∆(0̂, Uσ̄p

) ∗ Sp−2,

where ∗ denotes the join of topological spaces.

Proof. The first assertion is straightforward, and the second then follows from [13, Theorem 4.3]. �

The next lemma, whose proof is completely straightforward and omitted, shows that the lower interval
[0̂, Uσ̄] is isomorphic to the intersection lattice for the diagonal arrangement corresponding to link∆σ.

Lemma 3.5. Let ∆ be a simplicial complex on [n] with dim ∆ ≤ n − 3 and let Uσ̄ be a subspace in L∆

for some face σ of ∆. Then the lower interval [0̂, Uσ̄] is isomorphic to the intersection lattice of the diagonal
arrangement Alink∆(σ) corresponding to link∆(σ) on the vertex set σ̄.

The following lemma shows that upper intervals in L∆ are at least still homotopy equivalent to the
intersection lattice of a diagonal arrangement.

Lemma 3.6. Let ∆ be a simplicial complex on [n] with dim∆ ≤ n − 3 and let Uσ̄ be a subspace in

L∆ for some face σ = {v1, . . . , vt} of ∆. Then the upper interval [Uσ̄, 1̂] is homotopy equivalent to the
intersection lattice of the diagonal arrangement A∆σ

corresponding to the simplicial complex ∆σ on the
vertex set {v1, . . . , vt, v} whose facets are obtained in the following way:

(A) If F ∩ σ is maximal among

{F ∩ σ | F is a facet of ∆ such that σ * F and F ∪ σ 6= [n]},

then F̃ = F ∩ σ is a facet of ∆σ.

(B) If a facet F of ∆ satisfies F ∪ σ = [n], then F̃ = (F ∩ σ) ∪ {v} is a facet of ∆σ.

Example 3.7. Let ∆ be a simplicial complex on {1, 2, 3, 4, 5, 6, 7} with facets 12367, 12346, 13467, 34567,

13457, 14567, 12345 and let σ = {1, 2, 3, 4, 5}. The open interval (U67, 1̂) is shown in Figure 2. Then ∆F is a
simplicial complex on {1, 2, 3, 4, 5, v} and its facets are 123v, 1234, 134v, 345v, 1345, 145v. The proper part
of the intersection lattice L∆F

is shown in Figure 3 and it is easy to see that its order complex is homotopy

equivalent to (U67, 1̂).
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23545v

245v

5v 2v

1245v 123/45v 123v/45 123452345v

1235123v123/451245234512v/4523v/45123/5v125v235v

12312512v23v12/4523/452v/45 24512/5v23/5v25v

23/45v 12/45v

2345 25 12

1235v

Figure 3. The interval (0̂, 1̂) in L∆F

In general, the simplicial complex ∆σ of Lemma 3.6 is not shellable, even though ∆ is shellable (see
Example 1.2). However, the next lemma shows that ∆F is shellable if F is the last facet in the shelling
order.

Lemma 3.8. Let ∆ be a shellable simplicial complex on [n] such that dim∆ ≤ n− 3 and let F be the last
facet in a shelling order of ∆. Then ∆F is shellable.

Proof. Using the notation of Lemma 3.6, a shelling order for ∆F is the ordering of facets of type (A)
in any order, followed by the facets of type (B) according to the order of the corresponding facets of ∆. �

Example 3.9. The simplicial complex ∆ in Example 3.7 is shellable with a shelling 12367, 12346, 13467,

34567, 13457, 14567, 12345. Since 1234, 1345 are facets of ∆F of type (A) and 123v, 134v, 345v, 145v are facets
of ∆F of type (B), 1234, 1345, 123v, 134v, 345v, 145v is a shelling of ∆F .

We next construct the saturated chains appearing in the statement of Theorem 3.1.

3.1. Constructing the chains CD,ω. Let ∆ be a shellable simplicial complex on [n] with dim∆ ≤ n−3
and let Uσ̄ is a subspace in L∆. Let D = {(σ̄1, Fi1 ), . . . , (σ̄p, Fip

)} be a shelling-trapped decomposition of σ̄

and let ω be a permutation on [p − 1]. We define a chain CD,ω in [0̂, Uσ̄] as follows:

(1) By Lemma 3.2, the interval [0̂, Uσ̄] contains Uσ̄1
∩ · · · ∩Uσ̄p

and the interval [Uσ̄1
∩ · · · ∩Uσ̄p

, Uσ̄] is

isomorphic to the set partition lattice Πp. It is well known that the order complex of Πp = Πp−{0̂, 1̂}
is homotopy equivalent to a wedge of (p − 1)! spheres of dimension p − 3 and there is a saturated

chain Cω in Πp for each permutation ω of [p− 1] such that removing {Cω = Cω −{0̂, 1̂}|ω ∈ Sp−1}
from the order complex of Πp gives a contractible subcomplex (see [1, Example 2.9]). Identify

Uσ̄1
, · · · , Uσ̄p

with 1, . . . , p in this order and take the saturated chain C̃ω in [Uσ̄1
∩ · · · ∩ Uσ̄p

, Uσ̄]
which corresponds to the chain Cω in Πp.

(2) By Lemma 3.4,

[0̂, Uσ̄1
∩ · · · ∩ Uσ̄p

] ∼= [0̂, Uσ̄1
] × · · · × [0̂, Uσ̄p

].

Since ∆ is shellable and Gij
⊆ σj ⊆ Fij

for all j, one can see that [0̂, Uσ̄j
] has a subinterval

[UF ij
, Uσ̄j

] which is isomorphic to the boolean algebra of the set of order |σ̄j | − |F ij
|. Thus

[UF i1
∩ · · · ∩ UF ip

, Uσ̄1
∩ · · · ∩ Uσ̄p

]
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is isomorphic to
[UF i1

, Uσ̄1
] × · · · × [UF ip

, Uσ̄p
]

and hence is isomorphic to the boolean algebra of the set of order
∑p

j=1

(
|σ̄j | − |F ij

|
)
. Take any

saturated chain C̃ in
[UF i1

∩ · · · ∩ UF ip
, Uσ̄1

∩ · · · ∩ Uσ̄p
].

(3) Define a saturated chain CD,ω by

0̂ ≺ UF ip
≺ UF ip

∩ UF ip−1

≺ · · · ≺ UF ip
∩ · · · ∩ UF i1

followed by the chains C̃ and C̃ω (where ≺ means the covering relation in L∆).

Let
CD,ω = CD,ω − {0̂, Uσ̄}.

Then CD,ω ∈ ∆(0̂, Uσ̄).

Note that the length of this chain CD,ω is

l(CD,ω) = p +

p∑

j=1

(
|σ̄j | − |F ij

|
)

+ (p − 1) − 2

= p(2 − n) +

p∑

j=1

|Fij
| + |σ̄| − 3.

Example 3.10. Let ∆ be the shellable simplicial complex in Example 3.7. Then one can see that

D = {(45, F1 = 12367), (123, F6 = 14567), (67, F7 = 12345)}

is a shelling-trapped decomposition of {1, 2, 3, 4, 5, 6, 7}. Let ω be a permutation in S2 with ω(1) = 2 and
ω(2) = 1. Then the maximal chain Cω in Π3 corresponding to ω is (1 | 2 | 3)−(1 | 23)−(123). By identifying
U45, U123, U67 with 1, 2, 3 in this order, one can get

C̃ω = U45 ∩ U123 ∩ U67 ≺ U45 ∩ U12367 ≺ U1234567.

Since [U45 ∩U23 ∩U67, U45 ∩U123 ∩U67] is isomorphic to a boolean algebra of the set of order 1, one can take

C̃ = U45 ∩ U23 ∩ U67 ≺ U45 ∩ U123 ∩ U67.

Thus CD,ω is the chain

0̂ ≺ U67 ≺ U23 ∩ U67 ≺ U45 ∩ U23 ∩ U67

≺ U45 ∩ U123 ∩ U67 ≺ U45 ∩ U12367 ≺ U1234567.

The chain CD,ω is represented by thick lines in Figure 2.

The following lemma gives the relationship between the shelling-trapped decompositions of [n] containing
F and the shelling-trapped decompositions of F ∪ {v}.

Lemma 3.11. Let ∆ be a shellable simplicial complex on [n] such that dim∆ ≤ n − 3 and let F be the
last facet in the shelling order of ∆.

Then there is a one-to-one correspondence between the set of all pairs (D, ω) of shelling-trapped decom-

positions D of [n] over ∆ containing F and ω ∈ S|D|−1, and the set of all pairs (D̃, ω̃) of shelling-trapped

decompositions D̃ of F ∪ {v} over ∆F and ω̃ ∈ S| eD|−1. Moreover, one can choose CD,ω and C eD,ω̃
so that

CD,ω − UF corresponds to C eD,ω̃
under the homotopy equivalence in Theorem 3.6.

Example 3.12. Let ∆ be the shellable simplicial complex in Example 3.7. In Example 3.10, we had

CD,ω =0̂ ≺ U67 ≺ U23 ∩ U67 ≺ U45 ∩ U23 ∩ U67

≺ U45 ∩ U123 ∩ U67 ≺ U45 ∩ U12367 ≺ U1234567

for a shelling-trapped decomposition

D = {(45, F1 = 12367), (123, F6 = 14567), (67, F7 = 12345)}

of {1, 2, 3, 4, 5, 6, 7} and a permutation ω in S2 with ω(1) = 2 and ω(2) = 1.
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Decomposition Facets

1234 G3 = ∅ ⊆ 1234 = ∅ ⊆ F3 = 23
1234 G5 = ∅ ⊆ 1234 = ∅ ⊆ F5 = 34

24 ∪ 13 G2 = 1 ⊆ 24 = 13 ⊆ F2 = 13,
G4 = 2 ⊆ 13 = 24 ⊆ F4 = 24

34 ∪ 12 G1 = 12 ⊆ 34 = 12 ⊆ F1 = 12,
G5 = ∅ ⊆ 12 = 34 ⊆ F5 = 34

Table 2. Shelling-trapped decompositions of σ̄ = 1234

123

1234

123 13/2412/34 234134124

12 13 14 24 34

R 4

134 13

14

34

234 24

13/24
12/34 12

124

Figure 4. The intersection lattice for ∆ and the order complex for its proper part

Since 67 = F 7, the corresponding shelling-trapped decomposition D̃ of {1, 2, 3, 4, 5, v} is

D̃ = {(45, F̃1 = 123v), (123v, F̃6 = 145v)}

and the corresponding permutation ω̃ ∈ S1 is the identity.
The corresponding chain C eD,ω̃

is

0̂ ≺ U23 ≺ U45 ∩ U23 ≺ U45 ∩ U123 ≺ U45 ∩ U123v.

Proof Sketch of Theorem 3.1. One can consider the following decomposition of ∆̂(L):

∆̂(L) = ∆̂(L − {H}) ∪ ∆̂(L≥H),

where ∆̂(L − {H}) is obtained by removing all chains CD,ω not containing H from L − {H} and ∆̂(L≥H)

is obtained by removing CD,ω and CD,ω − H from L≥H for all CD,ω containing H . Then one can show

that all three spaces ∆̂(L − {H}), ∆̂(L≥H) and their intersection are contractible, and hence ∆̂(L) is also
contractible. �

Example 3.13. Let ∆ be a simplicial complex with a shelling

F1 = 12, F2 = 13, F3 = 23, F4 = 24, F5 = 34.

Then

G1 = 12, G2 = 1, G3 = ∅, G4 = 2, G5 = ∅.

Let σ̄ = 1234. Then there are four possible shelling-trapped decompositions of σ̄ (see Table 2). Thus

∆(0̂, U1234) is homotopy equivalent to a wedge of four circles. The intersection lattice and the order complex
for its proper part are shown in Figure 4. Note that the chains and the simplices corresponding to each
shelling-trapped decomposition are represented by thick lines.

4. The homology of the singularity link of A∆

In this section, we give the corollary about the homotopy type of the singularity link of A∆ when ∆ is
shellable. Also we give the homology version of the corollary.

Ziegler and Živaljević [14] show the following theorem about the homotopy type of V◦
A.
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Theorem 4.1. For every subspace arrangement A in Rn,

V◦
A '

∨

x∈LA−{0̂}

(∆(0̂, x) ∗ Sdim(x)−1).

From this and our results in Section 3, one can deduce the following.

Corollary 4.2. Let ∆ be a shellable simplicial complex on [n] with dim∆ ≤ n − 3. The singularity
link of A∆ has the homotopy type of a wedge of spheres, consisting of p! spheres of dimension

n + p(2 − n) +

p∑

j=1

|Fij
| − 2

for each shelling-trapped decomposition {(σ̄1, Fi1), . . . , (σ̄p, Fip
)}.

Remark 4.3. The following theorem is a homology version of this corollary.

Theorem 4.4. Let ∆ be a shellable simplicial complex on [n] with dim∆ ≤ n− 3 and F1, . . . , Fq be the
shelling order on facets of ∆. Then dimF Hi(V◦

A∆
; F) is the number of ordered shelling-trapped decompositions

((σ̄1, Fi1 ), . . . , (σ̄p, Fip
)) with i = n + p(2 − n) +

∑p

j=1 |Fij
| − 2.

This last result can be proven without Theorem 3.1 by combining

(1) a result of Peeva, Reiner and Welker [12, Theorem 1.3],
(2) results of Herzog, Reiner and Welker [8, Theorem 4, Theorem 9],
(3) the theory of Golod rings.

It is what motivated Corollary 4.2 and eventually Theorem 1.1.

5. K(π, 1) examples from matroids

Davis, Januszkiewicz and Scott [5] show the following theorem.

Theorem 5.1. Let H be a simplicial real hyperplane arrangement in Rn. Let A be any arrangement of
codimension-2 intersection subspaces in H which intersects every chamber in a codimension-2 subcomplex.
Then MA is K(π, 1).

Remark 5.2. In order to apply this to diagonal arrangements, we need to consider hyperplane arrange-
ments H which are subarrangements of the braid arrangement Bn and also simplicial. It turns out (and we
omit the straightforward proof) that all such arrangements H are direct sums of smaller braid arrangements.
So we only consider H = Bn itself here.

Corollary 5.3. Let A be diagonal arrangement of codimension 2 subspaces inside H = Bn, so that

A = {Uijk | {i, j, k} ∈ TA},

for some collection TA of 3-element subsets of [n]. Then A satisfies the hypothesis of Theorem 5.1 (and
hence MA is K(π, 1)) if and only if every permutation w in Sn has at least one triple in TA consecutive.

Proof. It is easy to see that there is a bijection with chambers of Bn and permutations w = w1 · · ·wn

in Sn. Moreover, each chamber has the form xw1
> · · · > xwn

with bounding hyperplanes xw1
=

xw2
, . . . , xwn−1

= xwn
and intersects the 3-equal subspaces of the form xwi

= xwi+1
= xwi+2

for i =
1, 2, . . . , n − 2. �

A rich source of shellable complexes are the matroid complexes I(M), that is the independent sets of a
matroid M . If ∆ = I(M) for some matroid M , then facets of ∆ are bases of M . Therefore

A∆ = {Uijk | {i, j, k} = [n] − B for some B ∈ B(M)}

= {Uijk | {i, j, k} ∈ B(M⊥)},

where M⊥ is the dual matroid of M .

Definition 5.4. Say a rank 3 matroid M on [n] is DJS if its bases B(M) satisfies the condition of
Corollary 5.3.
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Note that a matroid M which is DJS gives rise to a diagonal arrangement A∆ for ∆ = I(M⊥) which
has MA∆

K(π, 1) and with the homotopy type of L∆,V◦
A∆

all predicted by Theorem 3.1. Unfortunately,
the following example shows that matroids are not always DJS in general.

Example 5.5. Let ∆ be the boundary of an octahedron. Then it is a simplicial complex on {1, 2, 3, 4, 5, 6}
whose facets are 123, 134, 145, 125, 236, 346, 456 and 256. It is easy to see that it is vertex-decomposable,
hence is shellable. Also note that ∆ is the independent set complex I(M) of a matroid M of rank 3 which
has three distinct parallel classes {1, 6}, {2, 4} and {3, 5}. But,

TA∆
= {123, 134, 145, 125, 236, 346, 456, 256}

and w = 124356 is a permutation that does not satisfy the condition of Corollary 5.3.

Thus we look for some subclasses of matroids which are DJS. The following two propositions give some
rank 3 matroids which are DJS.

Proposition 5.1. Let M be a rank 3 matroid on the ground set [n] with no circuits of size 3. Let
P1, . . . , Pk be distinct parallel classes which have more than one element and let N be the set of all elements

which are not parallel with anything else. Then, M is DJS if and only if b |P1|
2 c+ · · ·+ b |Pk|

2 c − k < |N | − 2.

A simplicial complex ∆ on [n] is shifted if, for any face of ∆, replacing any vertex i by a vertex j(< i)
gives another face in ∆. The Gale ordering on all k element subsets of [n] is given by {x1 < · · · < xk} is less
than {y1 < · · · < yk} if

xi ≤ yi for all i and {x1, . . . , xk} 6= {y1, . . . , yk}.

Then it is known that shifted complexes are exactly the order ideals of Gale ordering. Klivans [10] shows
the following theorem.

Theorem 5.6. Let M be a rank 3 loop-coloop free matroid on the ground set [n] such that I(M) is also
shifted. Then its bases are the principal order ideal generated by {a, b, n} in the Gale ordering such that
1 < a < b < n. Moreover, M has the following form:

(1) elements b + 1, b + 2, . . . , n form the unique non-trivial parallel class.
(2) elements a + 1, a + 2, . . . , n form a rank 2 flat, and this is the only rank 2 flat which can contain

more than two parallelism classes.

From this, one can see the following.

Proposition 5.2. Let M be the rank 3 matroid on the ground set [n] corresponding to the principal
order ideal generated by {a, b, n}. Then, M is DJS if and only if bn−b

2 c < a.

Problem: Characterize the rank 3 matroids which are DJS.

References

[1] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), pp. 159-183.
[2] A. Björner and L. Lovász, Linear decision trees, subspace arrangements and Möbius functions, J. Amer. Math. Soc. 7
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Braided differential calculus and quantum Schubert calculus

Anatol N. Kirillov and Toshiaki Maeno

Abstract. We provide a new realization of the quantum cohomology ring of a flag variety as a certain
commutative subalgebra in the cross product of the Nichols-Woronowicz algebras associated to a certain
Yetter-Drinfeld module over the Weyl group. We also give a generalization of some recent results by Y.Bazlov
to the case of the Grothendieck ring of a flag variety of classical type.

Résumé. Nous fournissons une nouvelle réalisation de l’anneau de la cohomologie quantique d’une variété de
drapeaux comme sous-algèbre commutative dans le produit croise des algèbres de Nichols-Woronowicz as-
sociées à un certain module de Yetter-Drinfeld sur le groupe de Weyl. Nous donnons aussi une généralisation
de résultats récents par Y. Bazlov au cas de l’anneau de Grothendieck d’une variété de drapeaux de type
classique.

1. Introduction

The main purpose of this work is
• to construct a model of the quantum cohomology ring of the flag variety G/B corresponding to a

semisimple finite-dimensional Lie group G as a quantization of Bazlov’s model of the coinvariant algebra of
finite Coxeter groups,
• to construct a model for the Grothendieck ring of the flag varieties of classical type, in terms of a

braided (and discrete) analogue of the differential calculus.
Such a construction of a model for the classical cohomology ring of a flag variety, and more generally

for the coinvariant algebra of a finite Coxeter group, as a subalgebra in a braided Hopf algebra called the
Nichols-Woronowicz algebra has been invented recently by Y. Bazlov [2]. In the present paper we provide
a new realization of the quantum cohomology ring of a flag variety as a certain commutative subalgebra in
the braided cross product of the corresponding Nichols-Woronowicz algebra and its dual. We also give a
generalization of some results from [2] to the case of the Grothendieck ring of the flag variety of classical
type.

TheK-theoretic counterpart of the theory of the quantum cohomology ring has been invented by Givental
and Lee. In their paper [8], they study the quantum K-theory for the flag variety in a connection with the
difference Toda system. The author hopes to report on the Nichols-Woronowicz model of the quantum
Grothendieck ring of the flag variety elsewhere in the near future. A description of the quantum K-ring of
the flag variety of type A in terms of generators and relations will be given in our forthcoming paper [13].

2. Braided differential calculus

In order to formulate our construction, we will remind of the basic notion on the braided differential
calculus and the Nichols-Woronowicz algebra in this section.

Definition 2.1. The category C equipped with a functor ⊗ : C ×C → C, a collection of isomorphisms

(ΦU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W ))U,V,W∈Ob(C),

Key words and phrases. braided Hopf algebras, quantum cohomology rings, flag varieties.
The authors thank Yuri Bazlov for explaining his result. This work is supported by Grant-in-Aid for Scientific Research.
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an object 1 ∈ Ob(C) and isomorphisms of functors

ιleft : • ⊗ 1−̃→id, ιright : 1⊗ •−̃→id

is called a monoidal category if the following diagrams commute:
(1) (pentagon condition)

(U ⊗ V )⊗ (W ⊗X)
↗ ↘

((U × V )⊗W )⊗X U ⊗ (V ⊗ (W ⊗X))
↓ ↑

(U ⊗ (V ⊗W ))⊗X −→ U ⊗ ((V ⊗W )⊗X),

where all the arrows are induced by Φ,
(2) (triangle condition)

(U ⊗ 1)⊗ V
Φ
−→ U ⊗ (1⊗ V )

ι⊗ id↘ ↙ id⊗ ι
U ⊗ V.

Definition 2.2. A monoidal category C = (C,⊗,Φ,1, ι) is called a braided category if a collection of
functorial isomorphisms

(ΨU,V : U ⊗ V → V ⊗ U)U,V ∈Ob(C)

is given so that the following hexagon conditions are satisfied:

(Ψ⊗ id) ◦ Φ−1 ◦ (id⊗Ψ) = Φ−1 ◦Ψ ◦ Φ−1 : U ⊗ (V ⊗W ) −→ (W ⊗ U)⊗ V,

(id⊗ Φ) ◦ Φ ◦ (Ψ⊗ id) = Φ ◦Ψ ◦ Φ : (U ⊗ V )⊗W −→ V ⊗ (W ⊗ U).

Let us take a braided category C consisting of vector spaces over a fixed field k and a braided vector
space V ∈ Ob(C). Then, the braiding ψV : V ⊗V → V ⊗V is naturally associated to V, and the pair (V, ψV )
is used to designate V together with the braiding ψV . Note that the morphism ψV is not necessarily an
involution. Denote by ψi the endomorphism on the tensor product V ⊗n obtained by applying ψV on the
i-th and (i+ 1)-st components of V ⊗n. Then the braid relation

ψiψi+1ψi = ψi+1ψiψi+1

is a consequence of the hexagon condition.
The Nichols-Woronowicz algebra provides a natural framework to discuss the braided differential calculus.

When a finite-dimensional braided vector space (V, ψ) is given, we can attach naturally a braided Hopf algebra
structure to the tensor algebra T (V ) =

⊕∞
n=0 V

⊗n.

Definition 2.3. A k-algebra A in the braided category C is called a braided algebra if its multiplication
m : A×A→ A commutes with the braiding ψ = ψA, i.e.

(m⊗ id) ◦ (ψ ⊗ id) ◦ (id⊗ ψ) = ψ ◦ (id⊗m) : A⊗A⊗A→ A⊗A.

The tensor algebra T (V ) is naturally braided by the braiding ψT (V ) which is uniquely characterized by
the conditions:
(1) T (V ) is a braided algebra,
(2) ψT (V )|T 1(V )⊗T 1(V ) = ψV .

Now we can discuss the braided Hopf algebra structure on the tensor algebra T (V ). Define the linear
maps 4 : V → V ⊗ V, S : V → V and ε : V → k by

4(v) := v ⊗ 1 + 1⊗ v, S(v) := −v, ε(v) := 0.

Then, one can extend the maps 4, S and ε to endomorphisms on T (V ) so that they respectively define the
coproduct, the antipode and the counit of the braided Hopf algebra. In particular, 4 is made to satisfy the
condition

(m⊗m) ◦ (id⊗ ψ ⊗ id) ◦ (4⊗4) = 4 ◦m, on T (V )⊗ T (V ).

We call T (V ) the free braided Hopf algebra or the free braided group.
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Definition 2.4. Let H and K be braided Hopf algebras provided with a k-linear pairing 〈 , 〉 : H×K →
k. We say that H and K are dually paired if the following conditions are satisfied:

〈γ, κκ′〉 = 〈γ(1), κ
′〉〈γ(2), κ〉, 〈γγ

′, κ〉 = 〈γ′, κ(1)〉〈γ, κ(2)〉,

〈γ, 1〉 = εH(γ), 〈1, κ〉 = εK(κ), 〈SH(γ), κ〉 = 〈γ, SK(κ)〉,

where we use Sweedler’s notation 4(a) = a(1) ⊗ a(2). If the conditions above are satisfied, the pairing 〈 , 〉
is called a duality pairing.

Let V ∗ be the dual vector space of V. Then it has the natural braiding ψ∗ dual to ψ. It is nontrivial
problem to extend the natural pairing 〈 , 〉 : V ∗ × V → k to the duality pairing between the braided Hopf
algebras T (V ∗) and T (V ). The construction due to Woronowicz [22] guarantees the possibility of such an
extension of the pairing 〈 , 〉. Note that from the braid relation one can define the endomorphism Ψw on
V ⊗n associated to an element w in the symmetric group Sn with a reduced decomposition w = si1 · · · sil

,
si = (i, i + 1), as Ψw := ψi1 · · ·ψil

. The Woronowicz symmetrizer is defined as σn(ψ) :=
∑

w∈Sn
Ψw. Then

the pairing 〈 , 〉 : V ∗ × V → k can be extended to the one between (V ∗)⊗n and V ⊗n for each n ≥ 2 by the
formula

〈α1 ⊗ · · · ⊗ αn, v1 ⊗ · · · ⊗ vn〉 := (αn ⊗ · · · ⊗ α1)(σn(ψ)(v1 ⊗ · · · ⊗ vn)), αi ∈ V
∗, vj ∈ V.

Proposition 2.1. The free braided Hopf algebras T (V ∗) and T (V ) are dually paired with respect to the

pairing 〈 , 〉 : T (V ∗)× T (V )→ k.

The dually paired braided Hopf algebras T (V ∗) and T (V ) are not appropriate objects to perform the
braided differential calculus on them, since the kernel of the duality pairing is big in general. The Nichols-

Woronowicz algebra is a braided Hopf algebra which is obtained as a quotient of the free braided Hopf algebra
by the kernel of the duality pairing. Such a construction is due to Majid [17]. Note that the kernels

I(V ∗) := {ξ ∈ T (V ∗) | 〈ξ, x〉 = 0, ∀x ∈ T (V )},

I(V ) := {x ∈ T (V ) | 〈ξ, x〉 = 0, ∀ξ ∈ T (V ∗)}

are Hopf ideals.

Definition 2.5. The Nichols-Woronowicz algebras B(V ∗) and B(V ) are the dually paired braided Hopf
algebras defined to be the quotients of the free braided Hopf algebras by I(V ∗) and I(V ) respectively:

B(V ∗) := T (V ∗)/I(V ∗), B(V ) := T (V )/I(V ).

The following equivalent definition is due to Andruskiewitsch and Schneider [1]:

Definition 2.6. The Nichols-Woronowicz algebra B(V ) is the graded braided Hopf algebra characterized
by the conditions:
(1) B0(V ) = k,
(2) V = B1(V ) = {x ∈ B(V ) | 4(x) = x⊗ 1 + 1⊗ x},
(3) B(V ) is generated by B1(V ) as an algebra.

Each element v ∈ B1(V ) acts on B(V ∗) as a twisted derivation
←−
Dv from the right:

←−
Dv : B(V ∗)

4
−→ B(V ∗)⊗B(V ∗)

id⊗〈 ,v〉
−→ B(V ∗)⊗ k = B(V ∗).

The twisted derivation
←−
Dv satisfies the twisted Leibniz rule

(fg)
←−
Dv = f(g

←−
Dv) + f / ψ−1(g ⊗

←−
Dv),

where f /ψ−1(g⊗
←−
Dv) =

∑
i(f
←−
Dvi

)gi if ψ−1(g⊗v) =
∑

i vi⊗gi. This action extends to the left action of the
opposite algebra B(V )op on B(V ). The braided cross product B(V )op ./ B(V ∗) with respect to the action
by the twisted derivations can be identified with the algebra of the braided differential operators acting on
B(V ∗). In other words, the algebra structure of B(V )op ./ B(V ∗) is given by the multiplication rule

(u ⊗ x) · (v ⊗ y) = u(ψ−1(x⊗ v(1)) / v(2))y

on B(V )op ⊗B(V ∗), see [18] for details.

At the end of this section, we introduce an important example of the braided categories, which is called
the category of the Yetter-Drinfeld modules. Let Γ be a finite group.

150



A. N. Kirillov and T. Maeno

Definition 2.7. A k-vector space V is called a Yetter-Drinfeld module over Γ, if
(1) V is a Γ-module,
(2) V is Γ-graded, i.e. V =

⊕
g∈Γ Vg, where Vg is a linear subspace of V,

(3) for h ∈ Γ and v ∈ Vg, h(v) ∈ Vhgh−1 .

One of the importance of the category Γ
ΓY D of the Yetter-Drinfeld modules over a fixed group Γ is that

it is naturally braided. The tensor product of V and W in Γ
ΓY D is again a Yetter-Drinfeld module with

the Γ-action g(v ⊗ w) = g(v)⊗ g(w) and the Γ-grading (V ⊗W )g =
⊕

h,h′∈Γ, hh′=g Vh ⊗Wh′ . The braiding

between V and W is defined by ψV,W (v ⊗ w) = g(w)⊗ v, for v ∈ Vg and w ∈W.

3. Nichols-Woronowicz model of quantum Schubert calculus

Let G be a connected, simply-connected and semi-simple complex Lie group. Fix a Borel subgroup
B of G. Denote by ∆ the set of roots, which is decomposed into the disjoint union ∆ = ∆+ t (−∆+) by
choosing the set of positive roots ∆+ corresponding to B. Our main interest is a combinatorial structure of
the (quantum) cohomology ring of the flag variety G/B. It is well-known that the cohomology ring of the
flag variety is isomorphic to the quotient ring of the ring of polynomial functions on the Cartan subalgebra
h by the ideal generated by the fundamental invariants f1, . . . , fr, r = rkh, of the Weyl group W, i.e.

H∗(G/B,Q) ∼= SymQh∗/(f1, . . . , fr).

On the other hand, the Schubert classes Ωw, w ∈ W, corresponding to the dual of the cycles Bw0wB/B
form a linear basis of H∗(G/B,Q). Then the fundamental problems of the Schubert calculus are stated as
follows:

Problem 3.1. (1) Find the natural polynomial representative for the Schubert class Ωw in the coinvariant
algebra SymQh∗/(f1, . . . , fr).
(2) Determine the structure constants cwuv in the multiplication rule

ΩuΩv =
∑

w∈W

cwuvΩw.

The answer to the first problem (1) is given for example by the polynomials due to Bernstein, Gelfand
and Gelfand [3] for general root system, and Schubert polynomials defined by Lascoux and Schützenberger
[14] for the root system of type A. The latter have nice combinatorial properties. As for the second problem
(2), the structure constants cwuv are complicated in general. However, for special choices of the element
u, v, w ∈ W, some combinatorial descriptions of the constants cwuv, such as Pieri’s formula, are known.

The origin of the model of the cohomology ring of the flag variety in terms of a certain noncommutative
algebra defined by the data of the root system is the work by Fomin and Kirillov [5]. They have introduced
an associative Q-algebra En, for the root system of type An−1, generated by the symbols

[i, j] = −[j, i], 1 ≤ i, j ≤ n, i 6= j,

subject to the quadratic relations:
(1) [i, j]2 = 0,
(2) [i, j][k, l] = [k, l][i, j], if {i, j} ∩ {k, l} = ∅,
(3) [i, j][j, k] + [j, k][k, i] + [k, i][i, j] = 0.

Define the Dunkl element θ1, . . . , θn in En by

θi :=
∑

j 6=i

[i, j].

Then one can check the commutativity θiθi − θjθi = 0, ∀i, j, from the quadratic relations above.

Theorem 3.1. (Fomin and Kirillov [5]) The subalgebra generated by the Dunkl elements is isomorphic

to the cohomology ring of the flag variety Fln of type An−1. The isomorphism is given by

En ⊃ Q[θ1, . . . , θn] → H∗(Fln),
θ1 + · · ·+ θi 7→ Ωsi

.

The key tool which connects the algebra En to the Schubert calculus is the following Bruhat representa-

tion.
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Definition 3.2. The Bruhat representation of En is defined to be the representation on the vector space⊕
w∈W Q · w by

[i, j]w =

{
wsij , if l(wsij) = l(w) + 1,

0, otherwise,

where i < j and sij is the transposition of i and j.

The algebra En admits a natural quantum deformation which corresponds to the quantum cohomology
ring of the flag variety. The quantum cohomology ring QH∗(G/B) of the flag variety G/B also has a
structure of a quotient ring of the polynomial ring SymQh∗⊗Q[q1, . . . , qr], where q1, . . . , qr are deformation

parameters corresponding to the simple roots. The generators f̃1, . . . , f̃r of the defining ideal of QH∗(G/B)
are explicitly determined by Givental and Kim [7] for the root system of type A, and by Kim [9] for general
root systems. Roughly speaking, they are the conserved quantities of the Toda system. Denote by R the
polynomial ring Q[q1, . . . , qn−1].

Definition 3.3. The quantum deformed quadratic algebra Ẽn is an R-algebra defined by the same
symbols and relations as those for the algebra En except that the relation (1) for En is replaced by
(1)’

[i, j]2 =

{
qi, if i = j − 1,
0, if i < j − 1.

The quantized version of the Bruhat representation of Ẽn is also defined on
⊕

w∈W R · w. The action of
the generator [i, j], i < j, is given by

[i, j]w =





wsij , if l(wsij) = l(w) + 1,
qiqi+1 · · · qj−1wsij , if l(wsij) = l(w)− 2(j − i) + 1,

0, otherwise,

The Dunkl elements θi in the quantized algebra Ẽn is defined as before. The following theorem was first
conjectured in [5] and later proved by Postnikov [21].

Theorem 3.4. The subalgebra generated by the Dunkl elements is isomorphic to the quantum cohomology

ring of the flag variety Fln of type An−1.

Their description of the (quantum) cohomology ring Fln in terms of the algebra En (or Ẽn) is of use to
consider Problem 2.1 combinatorially. See [5] and [21] for the detail on this point. A generalization to other
root systems is treated in [10].

The algebra En is defined by generators and relations, so it is a problem to understand its meaning
conceptually. The importance of the (braided) Hopf algebra structure of En has been pointed out by [6],
[20] and other works. Now it is conjectured that the algebra En is a kind of the Nichols-Woronowicz
algebra. Bazlov [2] has constructed a model of the cohomology ring of the flag variety G/B by using a
Nichols-Woronowicz algebra BW defined below instead of En. When we work on the algebra En, all the
considerations are based on the defining relations and the Bruhat representation. On the other hand, the
results on the Nichols-Woronowicz algebra should come from the method of the braided differential calculus.
Hence, the argument for the algebra BW is completely different from that for En.

Let us define a Yetter-Drinfeld module V = VW over the Weyl group W. We consider a vector space V
generated by the symbols [α] = −[−α], α ∈ ∆ :

V =
⊕

α∈∆

Q · [α]/([α] + [−α]).

The action of w ∈ W on V is given by w[α] = [w(α)]. If we set the W -degree of the symbol [α] to be the
reflection sα, then V becomes a Yetter-Drinfeld module over W. The braiding ψ : V ⊗ V → V ⊗ V is given
by ψ([α]⊗ [β]) = sα([β]) ⊗ [α]. The braided vector space V is identified with its dual V ∗ via a W -invariant
inner product on V. We denote by BW the Nichols-Woronowicz algebra associated to the Yetter-Drinfeld
module V.

Remark 3.5. It is conjectured that the Nichols-Woronowicz algebra BW for An−1 should be isomorphic
to the Fomin-Kirillov quadratic algebra En. This conjecture is now confirmed up to n = 6.
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Consider a W -homomorphism µ0 : h∗ → V. The homomorphism µ0 can be written as

µ0(x) =
∑

α∈∆+

cα(α, x)[α],

by using a set of W -invariant constants (cα)α∈∆. Then the following result corresponds to the commutativity
of the Dunkl elements.

Proposition 3.1. The image of µ0 generates a commutative subalgebra in BW .

Then µ0 can be extended to an algebra homomorphism µ : SymQh∗ → BW .

Theorem 3.6. (Bazlov [2]) If µ0 is injective, the image of µ is isomorphic to the cohomology ring

H∗(G/B,Q).

Remark 3.7. Bazlov proved the theorem above for arbitrary finite Coxeter groups and for their coin-
variant algebras (over R).

The braided differential operator
←−
Dα =

←−
D [α] plays an important role for the proof of Theorem 2.3.

Indeed, the following properties

(1) µ(f)
←−
Dα = cαµ(∂αf),

(2) ∩α∈∆+
Ker(
←−
Dα) = B0

W (= Q)
imply the result. Here, we denote by ∂α the divided difference operator on SymQh∗ :

∂α(f) :=
f − sα(f)

α
.

We introduce a quantum deformed version of Bazlov’s construction. Let R = Q[qα∨

|α ∈ ∆+], where the
parameters qa satisfy the condition qa+b = qaqb. We denote by BW,R the scalar extension R ⊗ BW . Since

the twisted derivations
←−
Dα satisfy the Coxeter relations, one can define the operators

←−
Dw for any elements

w ∈W by
←−
Dw =

←−
Dα1

· · ·
←−
Dαl

for a reduced decomposition w = sα1
· · · sαl

.

Definition 3.8. Let (cα)α∈∆ be a set of nonzero constants with the condition cα = cwα, w ∈ W. For

each root α ∈ ∆+, we define an element [̃α] in the algebra of braided differential operators B
op
W,R ./ BW,R by

[̃α] :=

{
cα[α] + dαq

α∨←−
Dsα

, if l(sα) = 2ht(α∨)− 1,
cα[α], otherwise.

,

where dα = (cα1
· · · cαl

)−1.

Let µ̃0 be a W -homomorphism hR → B
op
W,R ⊗ (R ⊕ VR) given by

µ̃0(x) =
∑

α∈∆+

(α, x)[̃α].

The image of µ̃0 again generates a commutative subalgebra in B
op
W,R ./ BW,R, so it can be extended to an

algebra homomorphism µ̃ : SymRh∗R → B
op
W,R ./ BW,R. Now we can state our main result:

Theorem 3.9. ([11]) The image of µ̃ is isomorphic to the quantum cohomology ring of the flag variety

G/B.

The key fact to prove this theorem is that the action of the operator µ̃0(x) on Im(µ) coincides with
the quantization operator by Fomin, Gelfand and Postnikov [4] for An−1 and by Maré [19] for other root
systems.

4. Model of the Grothendieck ring

The Nichols-Woronowicz model of the Grothendieck ring K(G/B) of the holomorphic vector bundles on
the flag variety G/B has also been constructed for the classical root systems and G2 in [12]. In this section,
we briefly show the construction of the model of K(G/B) for the root system of type Bn.

Let e1, . . . , en be an orthonormal basis of h∗, and {±ei ± ej,±ei | 1 ≤ i, j ≤ n, i 6= j} be a standard

realization of the root system ∆ = ∆(Bn). For simplicity, we use the symbols [i, j], [i, j] and [i] to denote

[ei − ej], [ei + ej ] and [ei] in BW respectively. Then the elements hij := 1 + [i, j], gij := 1 + [i, j] and
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hi := 1 + [i] are solutions of the Yang-Baxter equations:
(1) hijhkl = hklhij , gijgkl = gklgij , for {i, j} ∩ {k, l} = ∅,

hihj = hjhi, hijgij = gijhij ,

(2) hijhikhjk = hjkhikhij , hijgikgjk = gjkgikhij ,

(3) hijhigijhj = hjgijhihij .

The equations (1), (2) and (3) are respectively corresponding to the subsystems of types A1 × A1, A2 and
B2.

Definition 4.1. We define the multiplicative Dunkl elements or the Ruijsenaars-Schneider-Macdonald
elements ΘB

1 , . . . ,Θ
B
n of type Bn by the formula

ΘB
i := h−1

i−1 ih
−1
i−2 i · · ·h

−1
1 i · hi · g1 ig2 i · · · gn i · hi · hi nhi n−1 · · ·hi i+1.

The multiplicative Dunkl elements ΘD
i (resp. ΘA

i ) of type Dn (resp. An−1) are obtained by the specialzation
hi 7→ 1 (resp. gij 7→ 1 and hi 7→ 1).

Remark 4.2. The multiplicative Dunkl elements have been also introduced by Lenart and Yong [15],
[16] for the root system of type A.

The commutativity ΘB
i ΘB

j = ΘB
j ΘB

i follows from the Yang-Baxter relations.

Theorem 4.3. ([12]) The subalgebra in the Nichols-Woronowicz algera BBn
generated by the multiplica-

tive Dunkl elements ΘB
1 , . . . ,Θ

B
n is isomorphic to the Grothendieck ring K(G/B) of the flag variety G/B of

type Bn.

Corollary 4.1. The following identity in the algebra BBn
holds:

n∑

j=1

(ΘB
j + (ΘB

j )−1)k = n · 2k

for all k ∈ Z≥0.

Remark 4.4. The results for Dn and An−1 are obtained by the specializations hi 7→ 1, ∀i, and hi 7→ 1,
gij 7→ 1, ∀i, j, respectively.

The (small) quantum K-ring QK(Fln) of the flag variety Fln has the following expression by generators
and relations:

QK(Fln) ∼= Z[q1, . . . , qn−1][X1, . . . , Xn]/(ϕq
k(X), k = 1, . . . , n),

where

ϕq
k(X) =

∑

I⊂{1,...n},|I|=k

∏

i∈I

Xi

∏

i6∈I,i+1∈I

(1 − qi)−

(
n

k

)
.

Let us introduce the quantized multiplicative Dunkl elements by substituting [̃ij] defined in Definition 3.8
for [ij] in the definition of ΘA

i . Here, we put cα = 1. More precisely, we define the quantized multiplicative

Dunkl elements Θ̃A
i , i = 1, . . . , n, of type An−1 by the formula

Θ̃A
i = (1− qi−1)h̃

−1
i−1 ih̃

−1
i−2 i · · · h̃

−1
1 i · h̃i nh̃i n−1 · · · h̃i i+1,

where h̃ij := 1 + [̃ij] = 1 + [ij] + qi · · · qj−1
←−
Dsij

, i < j.

Theorem 4.5. ([13]) The equalities

ϕq
k(Θ̃A

1 , . . . , Θ̃
A
n ) = 0, k = 1, . . . n,

hold in the algebra B
op
An−1,R ./ BAn−1,R.
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Kempf collapsing and quiver loci

Allen Knutson and Mark Shimozono

Abstract. Let Q be a Dynkin quiver, that is, a directed graph whose underlying undirected graph has
connected components given by Dynkin diagrams of root systems of types A, D, or E. Assign a fixed vector
space to each vertex. Consider the set Rep of representations of the quiver Q with these fixed vector spaces.
A product G of general linear groups acts on Rep by change of basis at each vertex. A quiver locus Ω is
the closure of a G-orbit in Rep. The equivariant cohomology class (resp. K-class) of Ω is known as a quiver
polynomial (resp. K-quiver polynomial).

Reineke proved that Ω is the image of a Kempf collapsing, which is a G-equivariant map from a vector
bundle over a partial flag manifold. From this we deduce a formula for the quiver polynomial of Ω.

We extend Kempf’s construction. On the numerical side, we give a formula for the equivariant coho-
mology class of the image of a Kempf collapsing. On the geometric side, we give sufficient conditions under
which we can compute the equivariant K-class of the image. We observe that these conditions hold for
Reineke’s Kempf collapsings in types A and D, yielding a formula for the K-quiver polynomials for these
loci.

The formulae are BGG/Demazure divided difference operators applied to a product of linear forms.

Résumé. Soit Q un carquois de Dynkin, c’est-à-dire un graphe orienté dont le graphe non-orienté sous-
jacent est formé de composantes connexes de diagrammes de Dynkin de type A,D et E. Fixons un espace
vectoriel à chaque sommet du graphe. Considérons l’ensemble Rep des représentations du carquois Q avec
ces espaces vectoriels. Un produit G de groupes générals linéaires agit sur Rep en effectuant un changement
de base à chacun des sommets. Le locus du carquois Ω est la fermeture d’une G-orbite dans Rep. La classe
équivariante de la cohomologie (resp. K-classe) de Ω est un polynôme carquois (resp. K-polynôme carquois).
Reineke a prouvé que Ω est l’image d’une application de Kempf, qui est une application G-équivariante d’un
fibré vectoriel sur une variété de drapeau partielle. De ceci, nous pouvons en déduire une formule pour
le polynôme carquois de Ω. Nous étendons la construction de Kempf. Du côté numérique, nous donnons
une formule pour la classe équivariante de cohomologie de l’image d’une application de Kempf. Du côté
géométrique, nous donnons des conditions suffisantes avec lesquelles nous pouvons calculer la classe K-
invariante de l’image. Nous observons que ces conditions sont les mêmes pour l’application de Kempf pour
les types A et D, générant une formule pour le K-polynôme carquois pour ces loci. Les formules sont des
opérateurs BGG/Demazure de différence divisée appliqués à un produit de formes linéaires.

1. Introduction

Given a quiver representation one may define a torus-stable affine variety called a quiver locus. The
universal torus-equivariant cohomology class of a quiver locus is called a quiver polynomial. The poly-
nomials associated with the type A quiver admit many beautiful combinatorial formulae involving tableaux
[8], rc-graphs [3] [17], lacing diagrams [23], factor sequences [4], etc. These quiver polynomials have been
studied extensively due to their connection with Thom’s theory of degeneracy loci [29], intersection theory,
and Schubert calculus. We list some cases of quiver polynomials in order of increasing generality.

(1) Double Schur polynomials via the Giambelli-Thom-Porteous formula [26].
(2) Double Schubert polynomials [18].

2000 Mathematics Subject Classification. Primary 14N15; Secondary 05E05.
Key words and phrases. quiver polynomials, divided differences.
A. K. was partially supported by the NSF.
M. S. was partially supported by NSF grant DMS-0401012.
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(3) Universal Schubert polynomials [19]. These specialize to quantum Schubert polynomials [16]
among others.

(4) Quiver polynomials for the equioriented type A quiver [4] [5] [23].
(5) Quiver polynomials for the type A quiver with arbitrary orientation [10].

We present a divided difference formula for the quiver polynomial of any quiver locus belonging to a
Dynkin quiver. We also give a divided difference formula for the more refined information given by the
K-quiver polynomial, which is a Laurent polynomial associated with a quiver locus. The literature on the
K-theoretic classes of degeneracy loci include [11] for Grassmannians, [22] for matrix Schubert varieties,
[9] for the K-analogue of universal Schubert polynomials, [7] [12] [13] [23] [24] for the equioriented type A
quiver, and [10] for a conjecture for type A with arbitrary orientation.

Our divided difference formulae are obtained through Kempf collapsings. A Kempf collapsing is a
suitable map from a fiber bundle over a partial flag variety, to a vector space. This extends a construction of
Kempf [21], who used it to derive geometric properties of the image of the collapsing map. The instance of
this construction as applied to quiver loci has already been given by Reineke [28]; we found it independently.

We expect that our method applies to a suitable nontrivial family of quiver loci for quivers that are not
necessarily of type ADE.

Since quiver loci are equivariant classes of subvarieties it follows that their multidegrees (the quiver
polynomials) satisfy a certain kind of positivity: it is always possible to equivariantly and flatly degenerate
a quiver locus Ω to a union Ω(0) of coordinate subspaces with multiplicities. This leaves the multidegree
invariant. The multidegree is additive on maximum degree components, so the quiver polynomial is the
positive sum of products of linear forms. Moreover the forms correspond to vectors that lie in an open half
space (assuming the torus action was positive, as it is for quiver loci of Dynkin quivers), so positivity is
well-defined. A similar formulation of positivity holds for the K-quiver polynomials.

Our divided difference formulae for the quiver and K-quiver polynomials are not obviously positive in
the above sense. It would be desirable to obtain manifestly positive combinatorial formulae.

We give some recent examples of positive formulae for quiver polynomials. In the paper [23] (which
circulated as a preprint in 2003) four positive formulae (pipe, tableau/Schur, component/Schubert, and
ratio) were given for the quiver polynomials for the equioriented type A quiver. The pipe formula is positive
in the above sense. The Schur formula was previously conjectured to be positive in [4]. The component
formula was proved independently in [5] after its authors were shown the formula in the form of a conjecture.
In [10] the component formula was generalized to the type A quiver with arbitrary orientation; this formula
can also be obtained via Gröbner degeneration as in [23]. Previously in [8] a Schur-type formula was proved
for Fulton’s universal Schubert polynomials. In [13] [24] positive formulae were given for the K-quiver
polynomials for the type A equioriented quiver.

2. Vague statement of “numerical” results

Theorem 2.1. (1) Let Q be a quiver whose underlying undirected graph is a Dynkin diagram of
type ADE, d any dimension vector and Ω ⊂ Rep = Rep(Q, d) a quiver locus. Then the quiver
polynomial HRep(Ω) is obtained by applying a divided difference operator to an explicit product of
linear forms.

(2) For quivers of types A and D, the K-quiver polynomial KRep(Ω) is obtained by applying a divided
difference operator to an explicit product of linear forms.

Conjecturally the formula for KRep(Ω) also holds for quivers of type E. This kind of formula for quiver
polynomials, is reminiscent of those for double Schubert and Grothendieck polynomials. However it is
different in that for each quiver locus, one starts with a different product of linear forms, whereas all the
Schubert and Grothendieck polynomials indexed by a permutation in a given symmetric group, are obtained
by applying divided difference operators to a single product of linear forms. These formulae are new even
in the equioriented type A case, where the quiver and K-quiver polynomials are known to be certain double
Schubert and Grothendieck polynomials respectively, with the y variables set equal to the reverse of the x
variables [23]. The most important ingredient is the product of linear forms, which depends in a subtle way
on cohomological data that is calculated from the quiver locus.

Example 2.2. Let Q consist of two vertices connected by a single arrow, d = (3, 4) and Ω ⊂ Rep = M3×4

the determinantal variety of 3×4 matrices of rank at most two. It is well-known that (in suitable coordinates)
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HRep(Ω) is the double Schubert polynomial S1,2,5,3,4(x; y), which coincides with the double Schur polynomial
s2[x− y] where x = (x1, x2, x3) and y = (y1, y2, y3, y4). Let ∂x

i f = (f − sif)/(xi − xi+1) where si exchanges
xi and xi+1, and define ∂y

i for the similar operator in the y variables. Then our formula reads

HRep(Ω) = ∂y
2∂y

1∂y
3∂y

2∂x
1 ∂x

2 ∂x
1 ◦

(x1 − y1)(x1 − y2)(x1 − y3)(x1 − y4)(x2 − y2)(x2 − y3)(x2 − y4)(x3 − y3)(x3 − y4)

3. Hilbert numerators and multidegrees

Quiver polynomials and K-quiver polynomials are instances of the constructions of the multidegree and
Hilbert numerator. We recall these notions, following [25].

Let T = (C∗)r be an algebraic torus and X(T ) ∼= Zr be the group of algebraic group homomorphisms
T → C∗. We write the group operation on X(T ) additively. Let x1, . . . , xr be the standard basis of X(T ).

Let M be a T -module, that is, a vector space over C endowed with a rational T -action. For λ ∈ X(T )
a vector of weight λ is a nonzero vector v ∈ M such that t · v = λ(t)v for all t ∈ T . Let Mλ ⊂ M be the
subspace of vectors of weight λ. Then M

⊕

λ∈X(T ) Mλ. If dimMλ < ∞ for all λ then one may define

chT M =
∑

λ∈X(T )

dimMλ eλ,

which is a formal Laurent series in the variables exi .
Let Y be a finite-dimensional T -module. Suppose Y is positive, that is, all the weights of Y (λ ∈ X(T )

such that Yλ 6= 0) lie on one side of a hyperplane in Rr through the origin. Consider the coordinate ring
C[Y ] of Y ; it is a polynomial ring in a set B of coordinate functions on Y , which can be taken to be weight
vectors. A basis of weight vectors in C[Y ] is given by the set of monomials with variables in B. Therefore
the weight spaces of C[Y ] are finite-dimensional, and using geometric series one obtains

(3.1) chT C[Y ] =
∏

v∈B

(1 − ewt(v))−1

where wt(v) ∈ X(T ) is the weight of v.
Let Z ⊂ Y be a T -stable closed subscheme, with defining ideal I(Z) ⊂ C[Y ]. Its coordinate ring is

C[Z] ∼= C[Y ]/I(Z). Since C[Z] is a quotient of C[Y ] by a T -stable ideal, it has a basis of weight vectors given
by a subset of that of C[Y ]. Thus C[Z] has finite-dimensional weight spaces and chT C[Z] is a well-defined
formal Laurent series. The T -equivariant Hilbert numerator of Z in the positive T -module Y is the
formal Laurent series in the variables exi defined by

(3.2) KY (Z) =
chT C[Z]

chT C[Y ]
.

Using a T -equivariant version of the Hilbert Syzygy Theorem it follows that KY (Z) is in fact a Laurent
polynomial: the formal series chT C[Z] can always be expressed as a Laurent polynomial (namely, KY (Z))
divided by the denominator of chT C[Y ].

There are natural isomorphisms K∗
T (Y ) ∼= K∗

T (pt) ∼= R(T ) = Z[X(T )] = Z[e±x1 , . . . , e±xr ] where R(T )
is the ring of rational representations of T . The Hilbert numerator KY (Z) may be regarded as an element
in the T -equivariant K-theory K∗

T (Y ) of Y ; it is the equivariant K-class of the structure sheaf OZ of Z.
There is a surjective ring homomorphism Z[e±x1 , . . . , e±xr ] → Z[x1, . . . , xr] that sends a Laurent polyno-

mial to its lowest degree nonvanishing homogeneous term, where eλ is formally expressed as eλ =
∑

i≥0 λi/i!.

The multidegree of Z is the polynomial HY (Z) given by the image of the Hilbert numerator KY (Z) under
this map. It can be shown that HY (Z) is a polynomial with integer coefficients: HY (Z) ∈ Z[x1, . . . , xr].
More canonically, there are isomorphisms H∗

T (Y ) ∼= H∗
T (pt) ∼= SymZ(X(T )) ∼= Z[x1, . . . , xr] where SymZ is

the symmetric algebra with integer coefficients. Then HY (Z) is identified with the element of the equivariant
cohomology ring H∗

T (Y ) given by the T -equivariant fundamental class of the T -stable subvariety Z of Y ,
and the above ring homomorphism is the T -equivariant Chern map K∗

T (Y ) → H∗
T (Y ).

Suppose Z is a coordinate subspace, that is, it is defined by the vanishing of some subset B′ ⊂ B of the
set of coordinates B of Y . Then directly from the definitions one may easily compute the Hilbert numerator
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and multidegree:

KY (Z) =
∏

v∈B′

(1 − ewt(v)) HY (Z) =
∏

v∈B′

(−wt(v)).(3.3)

The Hilbert numerator KY (Z) is a more subtle geometric invariant than the multidegree HY (Z) since
the latter is only the leading term of the former.

4. Quiver polynomials

To each quiver representation we define its quiver polynomial and K-quiver polynomial as the multidegree
and Hilbert numerator of its associated quiver locus.

A quiver is a finite directed graph Q = (Q0, Q1) where Q0 is the set of vertices and Q1 is the set of
directed edges. Each directed edge a ∈ Q1 has a head ha ∈ Q0 and a tail ta ∈ Q0. A dimension vector

is a function d : Q0 → Z≥0: it assigns to each vertex i ∈ Q0 a nonnegative integer d(i). A representation

V of the quiver Q of dimension d, is a collection of linear maps Va, one for each arrow a ∈ Q1, with
Va : Cd(ta) → Cd(ha). Equivalently, V is a list of matrices where Va ∈ Md(ta)×d(ha); here matrices act on row
vectors. Let Rep = Rep(Q, d) =

∏

a∈Q1
Md(ta)×d(ha) be the set of representations of Q of dimension d. Say

that V, W ∈ Rep are equivalent if V is taken to W by a change of basis in the vector spaces at the vertices,
that is, there is an element g = (gi)i∈Q0

∈ G = G(Q, d) =
∏

i∈Q0
GL(d(i)) such that Wa = gtaVag−1

ha for all

a ∈ Q1. Thus an equivalence class of quiver representations of Q of dimension d is a G-orbit in Rep(Q, d).
A quiver locus in Rep is a subvariety of the form Ω = G · V for some V ∈ Rep. Let T ⊂ G be the

maximal torus consisting of tuples of diagonal matrices. Since Ω is G-stable and closed it is also T -stable
and therefore defines T -equivariant classes KRep(Ω) ∈ K∗

T (Rep) and HRep(Ω) ∈ H∗
T (Rep). These are by

definition the K-quiver polynomial and quiver polynomial of the quiver locus Ω.
More specifically, let T i ⊂ GL(d(i)) be the subgroup of diagonal matrices in the i-th component of

G for i ∈ Q0 and let T =
∏

i∈Q0
T i ⊂ G. Let X i = {xi

1, x
i
2, . . . , x

i
d(i)} be a basis of X(T i). Then

KT (Rep) ∼= Z[e±xi
j ]. Since Ω is G-stable it defines a G-equivariant class in K∗

G(Rep). But there are

natural isomorphisms K∗
G(Rep) ∼= K∗

T (Rep)W ∼= Z[e±xi
j ]W where W =

∏

i∈Q0
Sd(i) is the Weyl group of

G, the product of symmetric groups where Sd(i) permutes the i-th set of variables X i. So KRep(Ω) is a

W -symmetric Laurent polynomial. Similarly H∗
G(Rep) ∼= H∗

T (Rep)W ∼= Z[xi
j ]

W , and the quiver polynomial

HRep(Ω) is W -symmetric.

Remark 4.1. The above action of T on Rep(Q, d) is not positive if and only if there is some directed
cycle C in Q such that for every vertex i on C, d(i) > 0. In this situation the Hilbert numerator of some
quiver loci in Rep(Q, d) are not well-defined. However we may consider the action of a bigger group G × T ′

on Rep where T ′ = (C∗)|Q1| is a torus with a copy of C∗ for each arrow a ∈ Q1, where the a-th copy of
C∗ acts on the a-th component of Rep(Q, d) by scaling. The torus T + = T × T ′ in G+ acts positively on
Rep. In particular if Ω ⊂ Rep is a quiver locus that is also stable under G+ then its quiver and K-quiver
polynomial with respect to the T +-module Rep, are well-defined. If Q has no directed cycles then the T +

polynomials specialize to the usual quiver polynomials by setting to zero the basis elements of X(T ′).
More generally one may consider the Hilbert numerators and multidegrees of G+-orbit closures or other

G+-stable subvarieties of Rep with respect to the T +-module Rep.

Example 4.2. Let Q consist of a single vertex and a single loop and fix the dimension n. Then Rep = Mn

is the n × n matrices and G = GL(n) acts by conjugation. The indecomposables of CQ are Jordan blocks.
With the notation of the previous Remark, the G+ = G×C∗-stable quiver loci are the closures of conjugacy
classes of nilpotent matrices.

More generally if Q is a directed cycle then the quiver loci given by G-orbits of nilpotent elements of
Rep, are also G+-stable.

5. Representations of Q

We recall some of the representation theory of Dynkin quivers. This provides an indexing set for the
quiver loci and other key ingredients for our divided difference formula for the quiver polynomials. See [14]
[15] for excellent survey information.
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5.1. Path Algebra. The path algebra CQ is the associative algebra over C with generating set
Q0 ∪ Q1 and relations (for all i, j ∈ Q0 and a ∈ Q1)

i · j = δi,ji

i · a = δi,taa

a · j = δha,ja.

(5.1)

Using these relations it follows that for a, b ∈ Q1, the product ab is zero unless ha = tb. Hence CQ has a basis
given by paths, where a path of length zero is an element of Q0, and a path of length m > 0 is a sequence
a1a2 · · · am with ai ∈ Q1 where hak = tak+1 for 1 ≤ k ≤ m − 1. Since a path has a unique starting vertex
and unique ending vertex, it follows that the elements i ∈ Q0 are a complete set of orthogonal idempotents
in CQ. Let CQ-Mod be the category of finite-dimensional right CQ-modules. Let V ∈ CQ-Mod. We have
V =

⊕

i∈Q0
Vi where Vi = V · i. One easily checks that the linear map Va given by the action of a on V , is

zero on Vj for j 6= ta and its image lies in Vha. So without loss we may consider Va as a linear map from
Vta → Vha. Thus we see that a CQ-module is just a quiver representation and vice versa. Let g : V → W
be a CQ-module isomorphism. Firstly g is a linear isomorphism. Since g intertwines the action of i ∈ Q0, g
restricts to an isomorphism gi : Vi → Wi for all i. In particular V and W have the same dimension vector
d. So we may regard V and W as being elements of Rep(Q, d). Since g intertwines the action of a ∈ Q1, it
must satisfy gtaVa = Wagha or equivalently gtaVag−1

ha = Wa. Therefore V and W are isomorphic if and only
if the corresponding elements of Rep are in the same G-orbit.

So the problem of classifying G-orbits on Rep is the same as that of classifying finite-dimensional CQ-
modules up to isomorphism.

5.2. An index set for quiver loci. An indecomposable module is one that is not the direct sum of
two nonzero submodules. By definition every module is the direct sum of indecomposables. So the isomor-
phism class of a CQ-module is determined by the multiplicities of its indecomposable summands. Let IndQ

be the set of isomorphism classes of indecomposable CQ-modules. One special kind of indecomposable mod-
ule is a simple module, one that has no proper submodule. For each vertex i ∈ Q0 there is a corresponding
simple CQ-module Si: it has C1 at vertex i and zero vector spaces at the other vertices, and all maps are
zero.

Gabriel’s Theorem characterizes the quivers Q with finitely many indecomposables.

Theorem 5.1. [20] The following are equivalent for a quiver Q.

(1) G(Q, d) has finitely many orbits on Rep(Q, d) for all d.
(2) IndQ is finite.
(3) The undirected graph X underlying Q is the Dynkin diagram of a simply-laced root system Φ (that

is, its connected components are Dynkin diagrams of type ADE).

Suppose this holds. Then there is a bijection IndQ → Φ+ of the indecomposables with the positive roots Φ+

of Φ. This bijection sends the simple CQ-module Si to the simple root αi and in general sends I ∈ IndQ to
its dimension vector, where a function d : Q0 → Z is identified with the element

∑

i∈Q0
d(i)αi of the root

lattice of Φ.

For β ∈ Φ+ let Iβ be the indecomposable with dimension vector β. The modules in IndQ may be
constructed explicitly using reflection functors [6] but we don’t require this construction.

Example 5.2. The equioriented type A quiver (An+1) is depicted below; we use the vertex set Q0 =
{0, 1, 2, . . . , n} and directed edges going from a − 1 to a for 1 ≤ a ≤ n.

����

0 1 2 n
· · ·

For 0 ≤ i ≤ j ≤ n, let Iij be the indecomposable corresponding to the root αij = αi + αi+1 + · · · + αj . It
can be realized by placing C1 at vertices i through j with identity maps connecting them and zero maps
elsewhere.

Remark 5.3. Let β ∈ Q+. Say that a map m : Φ+ → Z≥0 is a Kostant partition of β if
β =

∑

α∈Φ+ m(α)α. By Gabriel’s Theorem, the isomorphism classes of CQ-modules of dimension d,
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are parametrized by the Kostant partitions of d. Write Ωm = G · φ for any φ ∈ Rep such that φ ∼=
⊕

α∈Φ+ I
⊕m(α)
α .

5.3. Hom, Ext, and the Euler form. For M, N ∈ CQ-Mod let HomQ(M, N) be the vector space of

CQ-module homomorphisms from M to N . Let Exti
Q(−, N) be the i-th cohomology group of the functor

HomQ(−, N) applied to a projective resolution of M . The homological form on CQ-Mod is defined by

〈M , N〉 =
∑

i≥0

(−1)i dim ExtiQ(M, N).

It is not symmetric. The category CQ-Mod is hereditary. In particular Exti
Q(M, N) = 0 for all i ≥ 2, so

that

(5.2) 〈M , N〉 = dimHomQ(M, N) − dimExt1Q(M, N).

Ringel [27] observed that the homological form 〈M , N〉 depends only on the dimension vectors dM and dN

of M and N . Define the Euler form on functions Q0 → Z by

〈d , e〉 =
∑

i∈Q0

d(i)e(i) −
∑

a∈Q1

d(ta)e(ha).

Then the homological form on M and N is the Euler form on their dimension vectors:

〈M , N〉 = 〈dM , dN 〉.

Remark 5.4. Dynkin quivers are precisely those with positive definite Euler form. For Q a Dynkin
quiver, a vector d : Q0 → Z≥0 is a positive root if and only if 〈d , d〉 = 1.

5.4. Auslander-Reiten quiver. This material comes from [1]. Say that a CQ-module homomorphism
f is irreducible if it is nonzero, and for every factorization f = h ◦ g as a composition of CQ-module
homomorphisms, either g is split injective or h is split surjective. The Auslander-Reiten quiver ΓQ of
Q is the directed graph with vertex set given by IndQ and with a directed edge from M to N if there is an
irreducible map M → N .

Proposition 5.1. Let Q be a Dynkin quiver. Then for β, γ ∈ Φ+, then there is an arrow from Iβ to Iγ

in ΓQ if and only if β 6= γ and 〈β , γ〉 > 0.

Remark 5.5. For Dynkin quivers Q the Auslander-Reiten quiver Q has no cycles. Therefore there is a
partial order 4Q on IndQ or Φ+ given by β 4Q γ if there is a directed path from Iβ to Iγ in ΓQ.

Proposition 5.2. For Q Dynkin and α, β ∈ Φ+:

(1) HomQ(Iα, Iβ) = 0 if α > β.

(2) Ext1Q(Iα, Iβ) = 0 if α ≤ β.
(3) 〈α , β〉 = dimHomQ(α, β) for α ≤ β.

(4) 〈α , β〉 = − dimExt1Q(α, β) for α > β.

Proposition 5.2 says that the matrix 〈α , β〉 for α, β ∈ Φ+, written with respect to any linear extension of
4Q, agrees with dimHomQ(Iα, Iβ) on or above the diagonal and with − dimExt1Q(Iα, Iβ) below the diagonal.
Thus one can read off all the important homological information about CQ-Mod just from the Euler form
under an appropriate ordering of positive roots.

5.5. Reduced expressions. We recall from [2] [31] a combinatorial way to construct the Auslander-
Reiten quiver ΓQ when Q is Dynkin. Suppose X is an undirected graph that is the Dynkin diagram of a
simply-laced root system Φ, with Weyl group W and distinguished set {si ∈ W | i ∈ Q0} of simple reflections.
An orientation of X is a directed graph Q that yields X if the directions on edges are forgotten. The Weyl
group acts on the set Or(X) of orientations of X : for Q ∈ Or(X) and i ∈ Q0, siQ ∈ Or(X) is obtained from
Q by reversing all the directed edges that touch the vertex i.

Let w0 ∈ W be the longest element. Let Red be the set of reduced words for w0, that is, the set of
sequences i• = (iN , . . . , i2, i1) such that w0 = siN

· · · si2si1 with N minimal. Say that i• ∈ Red is adapted to
Q ∈ Or(X) and write i• ∈ RedQ, if for every j the vertex ij is a sink in the directed graph sij−1

· · · si2si1Q.
For every orientation Q of X , RedQ 6= ∅. Moreover RedQ is a commutation class (two reduced words
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are in the same commutation class, if they are reachable from each other by commuting Coxeter relations
sisj = sjsi where i and j are nonadjacent vertices in X). However

⋃

Q∈Or(X) RedQ ( Red.

Fix i• ∈ RedQ. It defines a total ordering ≤i• on the set of positive roots Φ+ by the sequence γ1 < γ2 <
. . . where γj = sij

· · · si2αi1 . Then it is a theorem of [2] that the total orders ≤i• for i• ∈ RedQ, are the set
of linear extensions of the partial order 4Q.

The Auslander-Reiten quiver ΓQ of Q ∈ Or(X) is traditionally drawn with arrows going from right to
left and smaller elements pointing towards bigger ones. It turns out that there is a nice planar embedding
of ΓQ such that the poset element γj is placed in the ij-th row for all j. Even better, this graph is the
1-skeleton of a topological complex [31].

Example 5.6. Let Q be the A3 quiver with both arrows pointing to the middle:

0 1 2

We use i• = (2, 0, 1, 2, 0, 1) ∈ RedQ. The induced total ordering ≤i• on IndQ is given below, with labeling of
Φ+ as in Example 5.2.

(5.3) α11 < α01 < α12 < α02 < α22 < α00.

The Auslander-Reiten quiver ΓQ is depicted below.

I11

I01

I12

I02

I22

I002

1

0

The matrix for the Euler form on pairs of elements of Φ+ with respect to the total order (5.3) is given by

(〈α , β〉)α,β∈Φ+ =

















1 1 1 1 0 0
0 1 0 1 0 1
0 0 1 1 1 0
−1 0 0 1 1 1
−1 −1 0 0 1 0
−1 0 −1 0 0 1

















.

Example 5.7. Let Q be the D4 quiver with the following orientation:

1

2 34

We use w0 = s1s2s4s3s1s2s4s3s1s2s4s3. We label the indecomposables by their dimension vectors. For
example, 1211 means (1, 2, 1, 1) or α1 + 2α2 + α3 + α4. The total ordering for the above reduced word is
given by the list

(5.4) 0010, 0001, 0111, 1111, 0101, 0110, 1211, 0100, 1110, 1101, 1100, 1000

and the AR quiver is given by

0001

0010

0111

1111

0101

0110

1211

1101

1110

0100

1100

1000

4

3

2

1

162



Allen Knutson and Mark Shimozono

5.6. Orbit representatives. Let Q be a Dynkin quiver, d : Q0 → Z≥0 a dimension vector and m a
Kostant partition of d. For our divided difference formula for quiver polynomials we define a representative

element φm ∈ Rep(Q, d) in the G = G(Q, d)-orbit indexed by m, that is, φm
∼=

⊕

α∈Φ+ I
⊕m(α)
α .

Pick any particular matrix representation for each indecomposable Iα and by abuse of notation denote
it by Iα. Consider an ordered direct sum I• = I1 ⊕ I2⊕· · ·⊕ IM that has m(α) summands Iα for all α ∈ Φ+,
with the property that

(5.5) Ext1Q(Ij , Ii) = 0 if i < j.

This condition holds if we list the indecomposables in the reverse of the total order on IndQ given by ≤i•

for any i• ∈ RedQ.
We view I• as a point in Rep(Q, d). As such I• is “block diagonal”: for each a ∈ Q1 the a-th component

of I• is “block diagonal” with “diagonal” blocks given by the a-th components of I1, I2, . . . , IM in that order.

Example 5.8. Take Q to be the equioriented A2 quiver, d(0) = e and d(1) = f . Take the quiver locus
Xr given by the determinantal variety of e × f matrices of rank at most r. Then the G = GL(e) × GL(f)-
orbit associated to Xr has Kostant partition m with m(α0) = e − r, m(α0 + α1) = r, and m(α1) = f − r.
So if e = 3, f = 4, and r = 2 then an appropriate ordering of the indecomposables in I• is given by
I• = Iα0

⊕ Iα0+α1
⊕ Iα0+α1

⊕ Iα1
⊕ Iα1

. The element I• ∈ M3×4 is the matrix

I• =





0 0 0 0
1 0 0 0
0 1 0 0





where each Iα0
is a 1 × 0 matrix, each Iα0+α1

is a 1 × 1 identity matrix, and each Iα1
is a 0 × 1 matrix.

Fix I• as above. Define the Levi subgroup L(I•) ⊂ G(Q, d) by

L(I•) =

M
∏

k=1

G(Q, d(Ik)).

We regard L(I•) as a block diagonal subgroup of G = G(Q, d): for each i ∈ Q0, the i-th component of
L(I•) are the block diagonal matrices in the i-th component of G(Q, d) with block sizes coming from the
i-th components of G(Q, d(Ik)). It acts on the direct product

(5.6) Rep(I•) =

M
∏

k=1

Rep(Q, d(Ik)).

We regard Rep(I•) ⊂ Rep similarly as the “block diagonal” elements of Rep.
If I is an indecomposable CQ-module with dimension vector dI , then it is easy to show for our situation

that G(Q, dI) · I = Rep(Q, dI). It follows that

(5.7) Rep(I•) = L(I•) · I•.

Let P (I•) ⊂ G be the parabolic subgroup given by the lower block triangular subgroup of G with Levi factor
L(I•). For i ∈ Q0 its i-th component is lower block triangular with diagonal blocks given by those of the
i-th component of L(I•).

Finally, let Z(I•) ⊂ Rep be the “lower block triangular” coordinate subspace of Rep, such that for
a ∈ Q1 the a-th component of Z(I•) consists of the matrices with zeroes in the entries strictly above the
“block diagonal” given by the a-th component of Rep(I•) and arbitrary entries allowed elsewhere.

Lemma 5.9.

(5.8) Z(I•) = P (I•) · I•.

The proof of this fact, which is equivalent to the condition (5.5), follows easily from the definition of
Ext. This is precisely the point where the careful ordering of the indecomposables in I• is used.

Example 5.10. For I• as in Example 5.8,

L(I•) = T3 × T4 ⊂ GL(3) × GL(4)

P (I•) = B− × B− ⊂ GL(3) × GL(4).
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So L(I•) is the maximal torus and P (I•) is the product of lower triangular Borels. (This always holds in
type A: each positive root αij contains at most one copy of each simple root). Rep(I•) and Z(I•) are the
coordinate subspaces of Rep given by

(5.9) Rep(I•) =





0 0 0 0
∗ 0 0 0
0 ∗ 0 0



 Z(I•) =





0 0 0 0
∗ 0 0 0
∗ ∗ 0 0



 .

6. Kempf collapsings

The geometric construction of a Kempf collapsing κ leads to divided difference formulae for the equivari-
ant cohomology class and K-theory class of the image of κ. We recall Reineke’s construction, which realizes
a Dynkin quiver locus as the image of a Kempf collapsing. This yields divided difference formula for quiver
and K-quiver polynomials.

Let G be a reductive algebraic group over C and P a parabolic subgroup. Let Y be a finite-dimensional
G-module and Z ⊂ Y a P -stable closed subscheme. In our application G is the product of general linear
groups of the form G(Q, d) and Z is a linear subspace of Rep(Q, d). Consider the G-equivariant fiber bundle
G ×P Z over the partial flag variety G/P with fiber Z over the identity:

G ×P Z = (G × Z)/P.

Here P acts diagonally on the right by (g, z)p = (gp, p−1 · z). Consider the map

κ : G ×P Z → Y

(g, z)P 7→ gz.

We call κ a Kempf collapsing. The map κ is proper so its image is closed.

Theorem 6.1. [21] Suppose that

• Z has rational singularities.
• OY → κ∗OG×P Z is surjective.
• Rjκ∗OG×P Z = 0 for j > 0.

Then Im κ is normal and Cohen-Macaulay. If in addition κ is birational to its image, then Im κ has rational
singularities.

Kempf suggests a condition to guarantee these criteria: that Z is a linear subspace and a completely
reducible P -module. In our application the latter condition doesn’t hold so we don’t assume it. Here is our
extension of Kempf’s result.

Theorem 6.2. Suppose Z has rational singularities and Rjκ∗OG×P Z = 0 for j > 0. Let Ĩm κ be the
normalization of the image of κ.

• If the general fiber of κ is connected, then Ĩm κ has rational singularities.
• If the general fiber of κ is connected and Im κ is normal (hence has rational singularities), then

κ∗OG×P Z = OIm κ.
• Conversely, if κ∗OG×P Z = OIm κ, then all fibers of κ are connected, and Im κ is normal (hence

has rational singularities).

Even without the last two conditions, the Kempf collapsing still determines the multidegree of Im κ.

Theorem 6.3. Suppose Z has rational singularities. Let m0 = HZ(Y ). Construct a sequence of poly-
nomials m1, m2, . . . where each polynomial is obtained from the previous one by a divided difference operator
∂α = 1

α
(1−sα), where α varies over the set of simple roots of G (taken in the Borel opposite to one contained

in P ), and the action of sα on SymZ(X(T )) is induced from the reflection action on X(T ). Don’t apply a
divided difference operator if the result is 0, and only stop when all ∂α give the result 0. This process always
terminates after the same number of steps, and the last polynomial in this sequence is c times HY (Im κ),
where c is the number of components in a general fiber of κ.

When we have both connected fibers and the vanishing of higher direct images of κ, then we can compute

the Hilbert numerator KY (Ĩm κ).
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Theorem 6.4. Suppose Z has at worst rational singularities, the general fiber of κ is connected, and
Rjκ∗OG×P Z = 0 for j > 0.

Let m0 = KY (Z), and construct a sequence of Laurent polynomials m1, m2, . . . by applying Demazure
operators πα := (1 − exp(−α))−1(1 − exp(α)sα) to m0, where α varies over the set of simple roots of G.
Stop when the application of any πα leaves the result unchanged. This process terminates after finitely many
steps. The last Laurent polynomial in this sequence is KY (X) where X is the pushforward of O

Ĩm κ
under

the normalization map Ĩm κ → Im κ → Y .
Explicitly,

KY (X) =
∑

w∈W

w ·
KY (Z)

∏

β∈Φ+(1 − exp(−β))

where Φ+ is the set of positive roots relative to the opposite of some Borel subgroup between T and P .

Remark 6.5. In Theorems 6.3 and 6.4, let w0 be the longest element in the Weyl group W . One may
take a reduced word for w0 and apply the sequence of divided differences indicated by the reduced word. In
cohomology one should skip an operator if its result is zero.

The general machine of Kempf collapsings and divided differences may be applied to quiver loci via
Reineke’s construction [28].

Theorem 6.6. Suppose Q is a Dynkin quiver and d is any dimension vector. Then each orbit closure
Ω ⊆ Rep(Q, d) is the image of a linear Kempf collapsing, i.e. there exists a parabolic subgroup P ⊂ G and a
P -invariant linear subspace Z ⊂ Rep such that Ω = G · Z.

By Lemma 5.9 a suitable choice for P and Z is given by P (I•) and Z(I•) where I• is chosen as in section
5.6. Then one may use the product formulae (3.3) for the starting element of the divided difference formulae
and apply divided differences to get the desired quiver or K-quiver polynomial.

Example 6.7. Continuing Examples 5.8 and 5.10, let x1, x2, x3, y1, y2, y3, y4 be the standard basis of
X(T ) where T ⊂ GL(3) × GL(4) is the maximal torus. [Z(I•)]T is the product of linear forms (xi − yj)
where (i, j) runs over the positions in M3×4 where Z(I•) contains a zero entry. We recover Example 2.2:

[Z(I•)]T = (x1 − y1)(x1 − y2)(x1 − y3)(x1 − y4)(x2 − y2)(x2 − y3)(x2 − y4)

× (x3 − y3)(x3 − y4)

[X2]G = ∂y
2∂y

1∂y
3∂y

2∂x
1 ∂x

2 ∂x
1 [Z(I•)]T

= s2[x − y]

where x = (x1, x2, x3) and y = (y1, y2, y3, y4). Note that two divided difference operators must be omitted
from a reduced decomposition of the longest element of W (G(Q, d)) = S3 × S4.

Example 6.8. Let Q be the type D4 quiver in Example 5.7, d = (2, 3, 2, 2), T the maximal torus in
G(Q, d), and let X(T ) have basis a1, a2, b1, b2, b3, c1, c2, d1, d2. Consider

I• = I(1,1,0,1)

⊕

I(1,1,1,0)

⊕

I(0,1,1,1),

ordering terms as in the reverse of the total order (5.4) on IndQ. Then P (I•) = B consists of the product
∏

i∈Q0
Bi of lower triangular subgroups Bi ⊂ GL(d(i)). Let z1 ∈ M2×3, z2 ∈ M3×2, and z3 ∈ M3×2 be the

matrices corresponding to the arrows (1, 2), (2, 3), and (2, 4) in Q1 respectively. Then the point I• and the
subspace Z = Z(I•) are given by

I1
• =

(

1 0 0
0 1 0

)

I2
• =





0 0
1 0
0 1



 I3
• =





1 0
0 0
0 1





z1 =

(

∗ 0 0
∗ ∗ 0

)

z2 =





0 0
∗ 0
∗ ∗



 z3 =





∗ 0
∗ 0
∗ ∗





Z(I•) has the equations z1
12 = z1

13 = z1
23 = 0, z2

11 = z2
12 = z2

22 = 0, and z3
12 = z3

22 = 0. To compute
the multidegree of the corresponding quiver locus Ω, we start with the multidegree HRep(Z) = (a1 −
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b2)(a1 − b3)(a2 − b3)(b1 − c1)(b1 − c2)(b2 − c2)(b1 − d2)(b2 − d2). Applying ∂a
1 , ∂c

1, and ∂d
1 we obtain

(a1 − b3)(a2 − b3)(b1 − c1)(b1 − c2)(b1 + b2 − d1 − d2). Applying ∂b
1∂

b
2∂

b
1 we obtain the answer

HRep(Ω) = s11[a − b] + s1[a − b]s1[b − c] + s1[a − b]s1[b − d] + s1[b − c]s1[b − d]

where sλ[X − Y ] is the double Schur polynomial. Note how the answer can be expressed as a positive sum
of products of double Schur polynomials in differences of sets of variables, where the differences correspond
to arrows in Q1. This seems to be an instance of a Schur or component formula (a la [23]) in type D.

7. Future directions

We believe that the method of Kempf collapsing yields divided difference formulae for a nontrivial family
of quiver loci for any quiver Q. In Remark 4.1 it was explained how one may define multidegrees and Hilbert
numerators for an arbitrary Q but with a condition on the quiver locus. Under those conditions, consider
Example 4.2 consisting of Mn×n under the adjoint action of G = GL(n) and in particular the closure X of
a nilpotent conjugacy class. Then X has a Kempf collapsing [30], but the best choice of the space Z is not
the direct sum of the indecomposables as in the Dynkin case. One may choose Z to be the set of matrices
that are strictly lower block triangular with diagonal block of sizes given by the transpose of the partition
coming from the nilpotent Jordan blocks, and P to be the lower block triangular parabolic for the same set
of diagonal blocks.

As indicated in the introduction, it would also be nice to obtain “positive” formulae for the (K-)quiver
polynomials.
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Schur positivity and Cell Transfer

Thomas Lam, Alexander Postnikov, and Pavlo Pylyavskyy

Abstract. We give combinatorial proofs that certain families of differences of products of Schur functions
are monomial-positive. We show in addition that such monomial-positivity is to be expected of a large class
of generating functions with combinatorial definitions similar to Schur functions. These generating functions
are defined on posets with labelled Hasse diagrams and include for example generating functions of Stanley’s
(P, ω)-partitions. Then we prove Okounkov’s conjecture, a conjecture of Fomin-Fulton-Li-Poon, and a special
case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements
using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give
an intriguing log-concavity property of Schur functions. This text contains the material from [LP, LPP].

Résumé. Nous prouvons combinatoirement que certaines familles de différences de produits de fonctions de

Schur sont monomiales-positives. Nous montrons de plus que l’on peut attendre une telle propriété pour une
importante classe de fonctions génératrices définies combinatoirement d’une façon similaire aux fonctions
de Schur. Ces fonctions génératrices sont définies en termes d’ensembles partiellement ordonnés dont le
diagramme de Hasse est étiqueté et comprennent par exemple la fonction génératrice des (P, ω)-partitions
de Stanley. Nous prouvons aussi la conjecture d’Okounkov, une conjecture de Fomin-Fulton-Li-Poon, et
un cas particulier de la conjecture de Lascoux-Leclerc-Thibon sur la positivité de Schur, et nous donnons
plusieurs énoncés plus généraux en utilisant un résultat récent de Rhoades et Skandera. Nous donnons aussi
une nouvelle preuve de ce résultat et une propriété surprenante de log-concavité des fonctions de Schur.

1. Schur positivity conjectures

The Schur functions sλ form an orthonormal basis of the ring of symmetric functions Λ. They have a
remarkable number of combinatorial and algebraic properties, and are simultaneously the irreducible char-
acters of GL(N) and representatives of Schubert classes in the cohomology H∗(Grkn) of the Grassmannian;
see [Mac, Sta]. In recent years, a lot of work has gone into studying whether certain expressions of the form

(1.1) sλsµ − sνsρ

The first aim of this article is to provide a large class of expressions of the form (1.1) which are monomial-

positive, that is, expressible as a non-negative linear combination of monomials. In particular, we show that
(1.1) is monomial-positive when λ = ν ∨ ρ and µ = ν ∧ ρ are the union and intersections of the Young
diagrams of ν and ρ. However, we show in addition that such monomial-positivity is to be expected of
many families of generating functions with combinatorial definitions similar to Schur functions, which are
generating functions for semistandard Young tableaux.

We define a new combinatorial object called a T-labelled poset and given a T-labelled poset (P,O) we
define another combinatorial object which we call (P,O)-tableaux. These (P,O)-tableaux include as special
cases standard Young tableaux, semistandard Young tableaux, cylindric tableaux, plane partitions, and
Stanley’s (P, ω)-partitions. Our main theorem is the cell transfer theorem. It says that for a fixed T-labelled
poset (P,O), one obtains many expressions of the form (1.1) which are monomial-positive, where the Schur
functions in (1.1) are replaced by generating functions for (P,O)-tableaux.

Key words and phrases. Schur functions, Schur positivity, Schur log-concavity, immanants, Kazhdan-Lusztig polynomials,
Temperley-Lieb algebra, minors.
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A symmetric function is called Schur nonnegative if it is a linear combination with nonnegative coefficients
of the Schur functions, or, equivalently, if it is the character of a certain representation of GLn. In particular,
skew Schur functions sλ/µ are Schur nonnegative. We prove that our cell-transfer results for Schur functions
hold not just for monomial-positivity but also for Schur-positivity. In particular, we prove the following
theorem.

For two partitions λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ), let us define partitions

λ ∨ µ := (max(λ1, µ1),max(λ2, µ2), . . . )

and
λ ∧ µ := (min(λ1, µ1),min(λ2, µ2), . . . ).

The Young diagram of λ ∨ µ is the set-theoretical union of the Young diagrams of λ and µ. Similarly, the
Young diagram of λ ∧ µ is the set-theoretical intersection of the Young diagrams of λ and µ. For two skew
shapes, define (λ/µ) ∨ (ν/ρ) := λ ∨ ν/µ ∨ ρ and (λ/µ) ∧ (ν/ρ) := λ ∧ ν/µ ∧ ρ.

Theorem 1.1. Let λ/µ and ν/ρ be any two skew shapes. Then we have

s(λ/µ)∨(ν/ρ) s(λ/µ)∧(ν/ρ) ≥s sλ/µ sν/ρ.

Using this theorem, we prove the following several Schur positivity conjectures due to Okounkov, Fomin-
Fulton-Li-Poon, and Lascoux-Leclerc-Thibon.

Okounkov [Oko] studied branching rules for classical Lie groups and proved that the multiplicities were
“monomial log-concave” in some sense. An essential combinatorial ingredient in his construction was the
theorem about monomial nonnegativity of some symmetric functions. He conjectured that these functions
are Schur nonnegative, as well. For a partition λ with all even parts, let λ

2 denote the partition (λ1

2 ,
λ2

2 , . . .).
For two symmetric functions f and g, the notation f ≥s g means that f − g is Schur nonnegative.

Conjecture 1.2. Okounkov [Oko] For two skew shapes λ/µ and ν/ρ such that λ + ν and µ+ ρ both

have all even parts, we have (s (λ+ν)
2 / (µ+ρ)

2

)2 ≥s sλ/µ sν/ρ.

Fomin, Fulton, Li, and Poon [FFLP] studied the eigenvalues and singular values of sums of Hermitian
and of complex matrices. Their study led to two combinatorial conjectures concerning differences of products
of Schur functions. Let us formulate one of these conjectures, which was also studied recently by Bergeron
and McNamara [BM]. For two partitions λ and µ, let λ ∪ µ = (ν1, ν2, ν3, . . . ) be the partition obtained
by rearranging all parts of λ and µ in the weakly decreasing order. Let sort1(λ, µ) := (ν1, ν3, ν5, . . . ) and
sort2(λ, µ) := (ν2, ν4, ν6, . . . ).

Conjecture 1.3. Fomin-Fulton-Li-Poon [FFLP, Conjecture 2.7] For two partitions λ and µ, we have

ssort1(λ,µ)ssort2(λ,µ) ≥s sλsµ.

Lascoux, Leclerc, and Thibon [LLT] studied a family of symmetric functions G
(n)
λ (q, x) arising combi-

natorially from ribbon tableaux and algebraically from the Fock space representations of the quantum affine

algebra Uq(ŝln). They conjectured that G
(n)
nλ (q, x) ≥s G

(m)
mλ (q, x) for m ≤ n. For the case q = 1, their conjec-

ture can be reformulated, as follows. For a partition λ and 1 ≤ i ≤ n, let λ[i,n] := (λi, λi+n, λi+2n, . . . ). In
particular, sorti(λ, µ) = (λ ∪ µ)[i,2], for i = 1, 2.

Conjecture 1.4. Lascoux-Leclerc-Thibon [LLT, Conjecture 6.4] For integers 1 ≤ m ≤ n and a

partition λ, we have
∏n

i=1 sλ[i,n] ≥s

∏m
i=1 sλ[i,m] .

Theorem 1.5. Conjectures 1.2, 1.3 and 1.4 are true.

In Section 6, we present and prove more general versions of these conjectures.

2. Posets and Tableaux

Let (P,≤) be a possibly infinite poset. Let s, t ∈ P . We say that s covers t and write s m t if for any
r ∈ P such that s ≥ r ≥ t we have r = s or r = t. The Hasse diagram of a poset P is the graph with vertex
set equal to the elements of P and edge set equal to the set of covering relations in P . If Q ⊂ P is a subset
of the elements of P then Q has a natural induced subposet structure. If s, t ∈ Q then s ≤ t in Q if and only
if s ≤ t in P . Call a subset Q ⊂ P connected if the elements in Q induce a connected subgraph in the Hasse
diagram of P .
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r

O(r, s)(x) = x + 2

s

q

p

O(q, s)(x) =∞

O(p, r)(x) = [ x+3
2 ]

O(p, q)(x) = x− 1

3

1

2

2

Figure 1. An example of a T-labelled poset (P,O) and a (P,O)-tableaux.

An order ideal I of P is an induced subposet of P such that if s ∈ I and s ≥ t ∈ P then t ∈ I. A subposet
Q ⊂ P is called convex if for any s, t ∈ Q and r ∈ P satisfying s ≤ r ≤ t we have r ∈ Q. Alternatively, a
convex subposet is one which is closed under taking intervals. A convex subset Q is determined by specifying
two order ideals J and I so that J ⊂ I and Q = {s ∈ I | s /∈ J}. We write Q = I/J . If s /∈ Q then we write
s < Q if s < t for some t ∈ Q and similarly for s > Q. If s ∈ Q or s is incomparable with all elements in Q
we write s ∼ Q. Thus for any s ∈ P , exactly one of s < Q, s > Q and s ∼ Q is true.

Let P denote the set of positive integers and Z denote the set of integers. Let T denote the set of all
weakly increasing functions f : P→ Z ∪ {∞}.

Definition 2.1. A T-labelling O of a poset P is a map O : {(s, t) ∈ P 2 | sm t} → T labelling each edge
(s, t) of the Hasse diagram by a weakly increasing function O(s, t) : P → Z ∪ {∞}. A T-labelled poset is an
an ordered pair (P,O) where P is a poset, and O is a T-labelling of P .

We shall refer to a T-labelled poset (P,O) as P when no ambiguity arises. If Q ⊂ P is a convex subposet
of P then the covering relations of Q are also covering relations in P . Thus a T-labelling O of P naturally
induces a T-labelling O|Q of Q. We denote the resulting T-labelled poset by (Q,O) := (Q,O|Q).

Definition 2.2. A (P,O)-tableau is a map σ : P → P such that for each covering relation s l t in P
we have

σ(s) ≤ O(s, t)(σ(t)).

If σ : P → P is any map, then we say that σ respects O if σ is a (P,O)-tableau.

Figure 1 contains an example of a T-labelled poset (P,O) and a corresponding (P,O)-tableau.
Denote by A(P,O) the set of all (P,O)-tableaux. If P is finite then one can define the formal power

series KP,O(x1, x2, . . .) ∈ Q[[x1, x2, . . .]] by

KP,O(x1, x2, . . .) =
∑

σ∈A(P,O)

x
#σ−1(1)
1 x

#σ−1(2)
2 · · · .

The composition wt(σ) = (#σ−1(1),#σ−1(2), . . .) is called the weight of σ.

Example 2.3. Any Young diagram P = λ can be considered as a T-labelled poset. Indeed, consider
its cells to be elements of the poset, and let O be the labelling of the horizontal edges with the function
fweak(x) = x and label the vertical edges with the function f strict(x) = x − 1. A (λ,O)-tableau is just a
semistandard Young tableaux and Kλ,O(x1, x2, · · · ) is the Schur function sλ(x1, x2, · · · ).

Example 2.4. Another interesting example are cylindric tableaux and cylindric Schur functions. Let
1 ≤ k < n be two positive integers. Let Ck,n be the quotient of Z2 given by

Ck,n = Z2/(k − n, k)/Z.

In other words, the integer points (a, b) and (a + k − n, b + k) are identified in Ck,n. We can give Ck,n the
structure of a poset by the generating relations (i, j)l(i+1, j) and (i, j)l(i, j+1). We give Ck,n a T-labelling
O by labelling the edges (i, j) l (i + 1, j) with the function fweak(x) = x and the edges (i, j) l (i, j + 1)
with the function f strict(x) = x− 1. A finite convex subposet P of Ck,n is known as a cylindric skew shape;
see [GK, Pos, McN]. The (P,O)-tableau are known as semistandard cylindric tableaux of shape P and the
generating function KP,O(x1, x2, · · · ) is the cylindric Schur function defined in [BS, Pos].
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Example 2.5. Let N be the number of elements in a poset P , and let ω : P −→ [N ] be a bijective
labelling of elements of P with numbers from 1 to N . Recall that a (P, ω)-partition (see [Sta]) is a map
σ : P −→ P such that s ≤ t in P implies σ(s) ≤ σ(t), while if in addition ω(s) > ω(t) then σ(s) < σ(t). Label
now each edge (s, t) of the Hasse diagram of P with fweak or fstrict, depending on whether ω(s) ≤ ω(t) or
ω(s) > ω(t) correspondingly. It is not hard to see that for this labelling O the (P,O)-tableaux are exactly
the (P, ω)-partitions. Similarly, if we allow any labelling of the edges of P with fweak and fstrict, we get the
oriented posets of McNamara; see [McN].

3. The Cell Transfer Theorem

A generating function f ∈ Q[[x1, x2, . . .]] is monomial-positive if all coefficients in its expansion into
monomials are non-negative. If f is actually a symmetric function then this is equivalent to f being a
non-negative linear combination of monomial symmetric functions.

Let (P,O) be a T-labelled poset. Let Q and R be two finite convex subposets of P . The subset Q ∩R
is also a convex subposet. Define two convex subposets Q ∧R and Q ∨R by

(3.1) Q ∧R = {s ∈ R | s < Q} ∪ {s ∈ Q | s ∼ R or s < R}

and

(3.2) Q ∨R = {s ∈ Q | s > R} ∪ {s ∈ R | s ∼ Q or s > Q}

Recall that if A and B are sets then A\B = {a ∈ A | a /∈ B} denotes the set difference.

Lemma 3.1. The subposets Q∧R and Q∨R are both convex subposets of P . We have (Q∧R)∪(Q∨R) =
Q ∪R and (Q ∧R) ∩ (Q ∨R) = Q ∩R.

Proof. Suppose s < t lie in Q ∧R and s < r < t for some r ∈ P but r /∈ Q ∧R. Then either s ∈ R\Q
and t ∈ Q\R or s ∈ Q\R and t ∈ R\Q. In the first case, since t > s we must have t > R which is impossible
by definition. In the second case, we have t > Q which is again impossible. The proof for Q∨R is analogous.
The second statement of the lemma is straightforward. �

Note that the operations ∧ and ∨ are stable so that (Q∧R)∧(Q∨R) = Q∧R and (Q∧R)∨(Q∨R) = Q∨R.

Theorem 3.2 (Cell Transfer Theorem). The difference

KQ∧R,OKQ∨R,O −KQ,OKR,O

is monomial-positive.

Proof. We prove Theorem 3.2 by exhibiting an injection

η : A(Q,O) ×A(R,O) −→ A(Q ∧R,O)×A(Q ∨R,O)

which is weight preserving. We call this the cell transfer procedure. The name comes from our main examples
where elements of a poset are cells of a Young diagram. For convenience, in this paper we call elements of
any poset cells.

Let ω be a (Q,O)-tableau and σ be a (R,O)-tableau. We now describe how to construct a (Q ∧R,O)-
tableau ω ∧ σ and a (Q ∨R,O)-tableau ω ∨ σ. Define a subset of Q ∩R, depending on ω and σ, by

(Q ∩R)+ = {x ∈ Q ∩R | ω(x) < σ(x)}.

We give (Q ∩R)+ the structure of a graph by inducing from the Hasse diagram of Q ∩R.
Let bd(R) = {x ∈ Q ∩ R | x m y for some y ∈ R\Q} be the “lower boundary” of Q ∩ R which touches

elements in R. Let bd(R)+ ⊂ (Q∩R)+ be the union of the connected components of (Q∩R)+ which contain
an element of bd(R). Similarly, let bd(Q) = {x ∈ Q∩R | xly for some y ∈ Q\R} be the “upper boundary”
of Q ∩R which touches elements in Q. Let bd(Q)+ ⊂ (Q ∩R)+ be the union of the connected components
of (Q ∩ R)+ which contain an element of bd(Q). The elements in bd(Q)+ ∪ bd(R)+ are amongst the cells
that we might “transfer”.

Let S ⊂ Q ∩R. Define (ω ∧ σ)S : Q ∧R→ P by

(ω ∧ σ)S(x) =

{
σ(x) if x ∈ R\Q or x ∈ S,

ω(x) otherwise.
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And define (ω ∨ σ)S : Q ∨R→ P by

(ω ∨ σ)S(x) =

{
ω(x) if x ∈ Q\R or x ∈ S,

σ(x) otherwise.

One checks directly that wt(σ) + wt(ω) = wt((ω ∧ σ)S) + wt((ω ∨ σ)S). We claim that when S = S∗ :=
bd(Q)+ ∪ bd(R)+, both (ω ∧ σ)∗S and (ω ∨ σ)S∗ respect O. We check this for (ω ∧ σ)S∗ and the claim for
(ω ∨ σ)S∗ follows from symmetry.

Let sl t be a covering relation in Q ∧R. Since σ and ω are assumed to respect O, we need only check
the conditions when (ω ∧ σ)S∗(s) = ω(s)(6= σ(s)) and (ω ∧ σ)S∗(t) = σ(t)(6= ω(t)); or when (ω ∧ σ)S∗(s) =
σ(s)(6= ω(s)) and (ω ∧ σ)S∗(t) = ω(t)(6= σ(t)).

In the first case, we must have s ∈ Q and t ∈ R. If t ∈ R but t /∈ Q then by the definition of Q ∧ R
we must have t < Q and so t < t′ for some t′ ∈ Q. This is impossible since Q is convex. Thus t ∈ Q ∩ R
and so t ∈ S∗. We compute that ω(s) ≤ O(s, t)(ω(t)) ≤ O(s, t)(σ(t)) since ω(t) < σ(t) and O(s, t) is weakly
increasing.

In the second case, we must have s ∈ R and t ∈ Q. By the definition of Q ∧ R we must have t ∈ R as
well. So t ∈ Q ∩R but t /∈ S∗ which means that ω(t) > σ(t). Thus σ(s) ≤ O(s, t)(σ(t)) ≤ O(s, t)(ω(t)) and
ω ∧ σ respects O here.

For each (ω, σ), say a subset S ⊆ S∗ is transferrable if both (ω ∧ σ)S and (ω ∨ σ)S respect O. If S′ and
S′′ are both transferrable then it is easy to check that so is S′ ∩ S′′. Thus there exists a unique smallest
transferrable subset S� ⊆ S∗. Now define η : A(Q,O) ×A(R,O)→ A(Q ∧R,O)×A(Q ∨R,O) by

(ω, σ) 7−→ ((ω ∧ σ)S� , (ω ∨ σ)S�).

Note that S� depends on ω and σ, though we have suppressed the dependence from the notation.
We now show that this η is injective. Given (α, β) ∈ η(A(Q,O) ×A(R,O)), we show how to recover ω

and σ. As before, for a subset S ⊂ Q ∩R, define ωS = ω(α, β)S : Q→ P by

ωS(x) =

{
β(x) if x ∈ (Q\R) ∩ (Q ∨R) or x ∈ S,

α(x) otherwise.

And define σS = σ(α, β)S : R→ P by

σS(x) =

{
α(x) if x ∈ (R\Q) ∩ (Q ∧R) or x ∈ S,

β(x) otherwise.

Note that if (α, β) = ((ω∧σ)S� , (ω∨σ)S�)) then ω = ωS� and σ = σS� . Let S� ⊂ Q∩R be the unique smallest
subset such that ωS� and σS� both respect O. Since we have assumed that (α, β) ∈ η(A(Q,O)×A(R,O)),

such a S� must exist. (As before the intersection of two transferrable subsets with respect to (α, β) is
transferrable.)

We now show that if (α, β) = ((ω ∧ σ)S� , (ω ∨ σ)S�)) then S� = S�. By definition, S� ⊂ S�. Let
C ⊂ S�\S� be a connected component of S�\S�, viewed as an induced subgraph of the Hasse diagram of
P . We claim that S�\C is a transferrable set for (ω, σ); this means that changing α|C to ω|C and β|C to
σ|C gives a pair in A(Q ∧ R,O) × A(Q ∨ R,O). Suppose first that c ∈ C and s ∈ S� is so that c l s. By
the definition of S�, we must have α(c) ≤ O(c, s)(β(s)) and β(c) ≤ O(c, s)(α(s)). Now suppose that c ∈ C
and s ∈ Q\R such that c l s. Then we must have O(c, s)(ω(s)) = O(c, s)(β(s)) ≥ α(c) = σ(c). Similar
conclusions hold for cm s. Thus we have checked that S�\C is a transferrable set for (ω, σ).

This shows that the map (ω, σ) 7→ ((ω ∧ σ)S� , (ω ∨ σ)S�)) is injective, completing the proof. �

On Figure 2 we can see how shapes P ∨Q and P ∧Q are formed in the case of SSYT. On Figure 3 an
example of cell transfer for those shapes is given. Note that S� does not contain one cell which is is in S∗.

Note that (ω, σ) 7→ ((ω∧σ)S∗ , (ω∨σ)S∗) also defines a weight-preserving map η∗ : A(Q,O)×A(R,O)→
A(Q ∧R,O)×A(Q ∨R,O). Unfortunately, η∗ is not always injective.

Suppose P is a locally-finite poset with a minimal element. Let J(P ) be the lattice of finite order ideals
of P ; see [Sta]. If I, J ∈ J(P ) then the sets I ∧ J and I ∨ J defined in (3.1) and (3.2) are finite order ideals
and agree with the the meet ∧J(P ) and join ∨J(P ) of I and J respectively within J(P ). In fact, by defining
(Q ∧ R)′ = {s ∈ R | s < Q} ∪ {s ∈ Q | s ∈ R or s < R} and (Q ∨ R)′ = {s ∈ Q | s ∼ R} ∪ {s ∈ R | s ∼
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Q

R

Q ∩ R

Q ∧ R

Q ∨ R

Q ∧ R ∩ Q ∨ R

Figure 2. An example of P ∧Q and P ∨Q for semistandard Young tableaux.

Figure 3. An example of cell transfer for semistandard Young tableaux, cells in S� are marked.

Q or s > Q}, the order ideals (I ∧ J)′ = I ∧J(P ) J and (I ∨ J)′ = I ∨J(P ) J agree with the meet and join in
J(P ) even when P does not contain a minimal element.

Corollary 3.3. Let P be a locally-finite poset and I, J ∈ J(P ). Then the generating function

KI∧J(P)J,OKI∨J(P)J,O −KI,OKJ,O

is monomial-positive.

Proof. The elements altered going from (Q∧R) to (Q∧R)′ do not involve the intersection Q∩R, and
in fact are incomparable to the elements of Q ∩ R. The cells being transferred in the proof of Theorem 3.2
are not affected by changing (Q ∧ R) to (Q ∧ R)′ and changing (Q ∨ R) to (Q ∨ R)′. Thus the same proof
works here. �

4. Background for Schur positivity proof

In this section we give an overview of some results of Haiman [Hai] and Rhoades-Skandera [RS2, RS1].
We include an alternative proof Rhoades-Skandera’s result.

4.1. Haiman’s Schur positivity result. Let Hn(q) be the Hecke algebra associated with the sym-
metric group Sn. The Hecke algebra has the standard basis {Tw | w ∈ Sn} and the Kazhdan-Lusztig basis

{C′w(q) | w ∈ Sn} related by

ql(v)/2C′v(q) =
∑

w≤v

Pw,v(q)Tw and Tw =
∑

v≤w

(−1)l(vw)Qv,w(q) ql(v)/2C′v(q),

where Pw,v(q) are the Kazhdan-Lusztig polynomials and Qv,w(q) = Pw◦w,w◦v(q), for the longest permutation
w◦ ∈ Sn, see [Hum] for more details.
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For w ∈ Sn and a n× n matrix X = (xij), the Kazhdan-Lusztig immanant was defined in [RS2] as

Immw(X) :=
∑

v∈Sn

(−1)l(vw)Qw,v(1)x1,v(1) · · ·xn,v(n),

Let hk =
∑

i1≤···≤ik
xi1 · · ·xik

be the k-th homogeneous symmetric function, where h0 = 1 and hk = 0

for k < 0. A generalized Jacobi-Trudi matrix is a n × n matrix of the form
(
hµi−νj

)n

i,j=1
, for partitions

µ = (µ1 ≥ µ2 · · · ≥ µn ≥ 0) and ν = (ν1 ≥ ν2 · · · ≥ νn ≥ 0). Haiman’s result can be reformulated as follows,
see [RS2].

Theorem 4.1. Haiman [Hai, Theorem 1.5] The immanants Immw of a generalized Jacobi-Trudi matrix

are Schur non-negative.

Haiman’s proof of this result is based on the Kazhdan-Lusztig conjecture proven by Beilinson-Bernstein
and Brylinski-Kashiwara. This conjecture expresses the characters of Verma modules as sums of the char-
acters of some irreducible highest weight representations of sln with multiplicities equal to Pw,v(1). One
can derive from this conjecture that the coefficients of Schur functions in Immw are certain tensor product
multiplicities of irreducible representations.

4.2. Temperley-Lieb algebra. The Temperley-Lieb algebra TLn(ξ) is the C[ξ]-algebra generated by
t1, . . . , tn−1 subject to the relations t2i = ξ ti, titjti = ti if |i − j| = 1, titj = tjti if |i − j| ≥ 2. The

dimension of TLn(ξ) equals the n-th Catalan number Cn = 1
n+1

(
2n
n

)
. A 321-avoiding permutation is a

permutation w ∈ Sn that has no reduced decomposition of the form w = · · · sisjsi · · · with |i − j| = 1.
(These permutations are also called fully-commutative.) A natural basis of the Temperley-Lieb algebra
is {tw | w is a 321-avoiding permutation in Sn}, where tw := ti1 · · · til

, for a reduced decomposition w =
si1 · · · sil

.
The map θ : Tsi

7→ ti − 1 determines a homomorphism θ : Hn(1) = C[Sn] → TLn(2). Indeed, the
elements ti − 1 in TLn(2) satisfy the Coxeter relations.

Theorem 4.2. Fan-Green [FG] The homomorphism θ acts on the Kazhdan-Lusztig basis {C′w(1)} of

Hn(1) as follows:

θ(C′w(1)) =

{
tw if w is 321-avoiding,

0 otherwise.

For any permutation v ∈ Sn and a 321-avoiding permutation w ∈ Sn, let fw(v) be the coefficient of the
basis element tw ∈ TLn(2) in the basis expansion of θ(Tv) = (ti1 − 1) · · · (til

− 1) ∈ TLn(2), for a reduced

decomposition v = si1 · · · sil
. Rhoades and Skandera [RS1] defined the Temperley-Lieb immanant ImmTL

w (x)
of an n× n matrix X = (xij) by

ImmTL
w (X) :=

∑

v∈Sn

fw(v)x1,v(1) · · ·xn,v(n).

Theorem 4.3. Rhoades-Skandera [RS1] For a 321-avoiding permutation w ∈ Sn, we have ImmTL
w (X) =

Immw(X).

Proof. Applying the map θ to Tv =
∑

w≤v(−1)l(vw)Qw,v(1)C′w(1) and using Theorem 4.2 we ob-

tain θ(Tv) =
∑

(−1)l(vw)Qw,v(1) tw, where the sum is over 321-avoiding permutations w. Thus fw(v) =

(−1)l(vw)Qw,v(1) and ImmTL
w = Immw. �

A product of generators (decomposition) ti1 · · · til
in the Temperley-Lieb algebra TLn can be graphically

presented by a Temperley-Lieb diagram with n non-crossing strands connecting the vertices 1, . . . , 2n and,
possibly, with some internal loops. This diagram is obtained from the wiring diagram of the decomposition
w = si1 · · · sil

∈ Sn by replacing each crossing “ ” with a vertical uncrossing “ ”. For example,
the following figure shows the wiring diagram for s1s2s2s3s2 ∈ S4 and the Temperley-Lieb diagram for
t1t2t2t3t2 ∈ TL4.

s1

4

3

2

1

5

6

7

8

t2t3t2t2t1

1

2

3

4

8

7

6

5

s2s3s2s2
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Pairs of vertices connected by strands of a wiring diagram are (2n+ 1− i, w(i)), for i = 1, . . . , n. Pairs
of vertices connected by strands in a Temperley-Lieb diagram form a non-crossing matching, i.e., a graph on
the vertices 1, . . . , 2n with n disjoint edges that contains no pair of edges (a, c) and (b, d) with a < b < c < d.
If two Temperley-Lieb diagrams give the same matching and have the same number of internal loops, then
the corresponding products of generators of TLn are equal to each other. If the diagram of a is obtained
from the diagram of b by removing k internal loops, then b = ξka in TLn.

The map that sends tw to the non-crossing matching given by its Temperley-Lieb diagram is a bijection
between basis elements tw of TLn, where w is 321-avoiding, and non-crossing matchings on the vertex set
[2n]. For example, the basis element t1t3t2 of TL4 corresponds to the non-crosssing matching with the edges
(1, 2), (3, 4), (5, 8), (6, 7).

4.3. An identity for products of minors. For a subset S ⊂ [2n], let us say that a Temperley-Lieb
diagram (or the associated element in TLn) is S-compatible if each strand of the diagram has one end-point
in S and the other end-point in its complement [2n] \ S. Coloring vertices in S black and the remaining
vertices white, a basis element tw is S-compatible if and only if each edge in the associated matching has
two vertices of different colors. Let Θ(S) denote the set of all 321-avoiding permutation w ∈ Sn such that
tw is S-compatible.

For two subsets I, J ⊂ [n] of the same cardinality let ∆I,J(X) denote the minor of an n× n matrix X
in the row set I and the column set J . Let Ī := [n] \ I and let I∧ := {2n+ 1− i | i ∈ I}.

Theorem 4.4. Rhoades-Skandera [RS1, Proposition 4.3], cf. Skandera [Ska] For two subsets I, J ⊂ [n]
of the same cardinality and S = J ∪ (Ī)∧, we have

∆I,J(X) ·∆Ī,J̄(X) =
∑

w∈Θ(S)

ImmTL
w (X).

The proof given in [RS1] employs planar networks. We give a more direct proof that uses the involution
principle.

Proof. Let us fix a permutation v ∈ Sn with a reduced decomposition v = si1 · · · sil
. The coefficient

of the monomial x1,v(1) · · ·xn,v(n) in the expansion of the product of two minors ∆I,J(X) ·∆Ī,J̄(X) equals
{

(−1)inv(I)+inv(Ī) if v(I) = J,
0 if v(I) 6= J,

where inv(I) is the number of inversions i < j, v(i) > v(j) such that i, j ∈ I.
On the other hand, by the definition of ImmTL

w , the coefficient of x1,v(1) · · ·xn,v(n) in the right-hand
side of the identity equals the sum

∑
(−1)r 2s over all diagrams obtained from the wiring diagram of the

reduced decomposition si1 · · · sil
by replacing each crossing “ ” with either a vertical uncrossing “ ”

or a horizontal uncrossing “ ” so that the resulting diagram is S-compatible, where r is the number of
horizontal uncrossings “ ” and s is the number of internal loops in the resulting diagram. Indeed, the
choice of “ ” corresponds to the choice of “tik

” and the choice of “ ” corresponds to the choice of “−1”
in the k-th term of the product (ti1 − 1) · · · (til

− 1) ∈ TLn(2), for k = 1, . . . , l.
Let us pick directions of all strands and loops in such diagrams so that the initial vertex in each strand

belongs to S (and, thus, the end-point is not in S). There are 2s ways to pick directions of s internal loops.
Thus the above sum can be written as the sum

∑
(−1)r over such directed Temperley-Lieb diagrams.

Here is an example of a directed diagram for v = s3s2s1s3s2s3 and S = {1, 4, 5, 7} corresponding to the
term t3t2(−1)t3(−1)t3 in the expansion of the product (t3 − 1)(t2 − 1)(t1 − 1)(t3 − 1)(t2 − 1)(t3 − 1). This
diagram comes with the sign (−1)2.

−1 t3

5

6

7

8

t2 −1 t3

1

2

3

4

t3

Let us construct a sign reversing partial involution ι on the set of such directed Temperley-Lieb diagrams.
If a diagram has a misaligned uncrossing, i.e., an uncrossing of the form “ ”, “ ”, “ ”, or “ ”, then
ι switches the leftmost such uncrossing according to the rules ι : ↔ and ι : ↔ . Otherwise,
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when the diagram involves only aligned uncrossings “ ”, “ ”, “ ”, “ ”, the involution ι is not
defined.

For example, in the above diagram, the involution ι switches the second uncrossing, which has the form
“ ”, to “ ”. The resulting diagram corresponds to the term t3(−1)(−1)t3(−1)t3.

Since the involution ι reverses signs, this shows that the total contribution of all diagrams with at least
one misaligned uncrossing is zero. Let us show that there is at most one S-compatible directed Temperley-
Lieb diagram with all aligned uncrossings. If we have a such diagram, then we can direct the strands of
the wiring diagram for v = si1 . . . sil

so that each segment of the wiring diagram has the same direction
as in the Temperley-Lieb diagram. In particular, the end-points of strands in the wiring diagram should
have different colors. Thus each strand starting at an element of J should finish at an element of I∧, or,
equivalently, v(I) = J . The directed Temperley-Lieb diagram can be uniquely recovered from this directed
wiring diagram by replacing the crossings with uncrossings, as follows: → , → , → ,
→ . Thus the coefficient of x1,v(1) · · ·xn,v(n) in the right-hand side of the needed identity is zero, if

v(I) 6= J , and is (−1)r, if v(I) = J , where r is the number of crossings of the form “ ” or “ ” in the
wiring diagram. In other words, r equals the number of crossings such that the right end-points of the pair
of crossing strands have the same color. This is exactly the same as the expression for the coefficient in the
left-hand side of the needed identity. �

5. Proof of Theorem 1.1

For two subsets I, J ⊆ [n] of the same cardinality, let ∆I,J(H) denote the minor of the Jacobi-Trudi
matrix H = (hj−i)1≤i,j≤n with row set I and column set J , where hi is the i-th homogeneous symmetric
function, as before. According to the Jacobi-Trudi formula, see [Mac], the minors ∆I,J(H) are precisely the
skew Schur functions

∆I,J(H) = sλ/µ,

where λ = (λ1 ≥ · · · ≥ λk ≥ 0), µ = (µ1 ≥ · · · ≥ µk ≥ 0) and the associated subsets are I = {µk + 1 <
µk−1 + 2 < · · · < µ1 + k}, J = {λk + 1 < λk−1 + 2 < · · · < λ1 + k}.

For two sets I = {i1 < · · · < ik} and J = {j1 < · · · < jk}, let us define I ∨ J := {max(i1, j1) < · · · <
max(ik, jk)} and I ∧ J := {min(i1, j1) < · · · < min(ik, jk)}.

Theorem 1.1 can be reformulated in terms of minors, as follows. Without loss of generality we can
assume that all partitions λ, µ, ν, ρ in Theorem 1.1 have the same number k of parts, some of which might
be zero. Note that generalized Jacobi-Trudi matrices are obtained from H by skipping or duplicating rows
and columns.

Theorem 5.1. Let I, J, I ′, J ′ be k element subsets in [n]. Then we have

∆I∨I′, J∨J′(X) ·∆I∧I′, J∧J′(X) ≥s ∆I,J(X) ·∆I′,J′(X),

for a generalized Jacobi-Trudi matrix X.

Proof. Let us denote Ī := [n] \ I and Š := [2n] \ S. By skipping or duplicating rows and columns of
the matrix X , we may assume that I ′ = Ī and J ′ = J̄ . Then I ∨ I ′ = I ∧ I ′ and J ∨ J ′ = J ∧ J ′. Let
S := J ∪ (Ī)∧ and T := (J ∨ J ′) ∪ (I ∨ I ′)∧. Then we have T = S ∨ Š and Ť = S ∧ Š.

Let us show that Θ(S) ⊆ Θ(T ), i.e., every S-compatible non-crossing matching on [2n] is also T -
compatible. Let S = {s1 < · · · < sn} and Š = {š1 < · · · < šn}. Then T = {max(s1, š1), . . . ,max(sn, šn)}
and Ť = {min(s1, š1), . . . ,min(sn, šn)}. Let M be an S-compatible non-crossing matching on [2n] and let
(a < b) be an edge of M . Without loss of generality we may assume that a = si ∈ S and b = šj ∈ Š.

We must show that either (a ∈ T and b ∈ Ť ) or (a ∈ Ť and b ∈ T ). Since no edge of M can cross (a, b),
the elements of S in the interval [a + 1, b − 1] are matched with the elements of Š in this interval. Let
k = #(S ∩ [a+ 1, b− 1]) = #(Š ∩ [a+ 1, b− 1]). Suppose that a, b ∈ T , or, equivalently, ši < si and sj < šj .

Since there are at least k elements of Š in the interval [ši + 1, šj − 1], we have i+ k + 1 ≤ j. On the other
hand, since there are at most k− 1 elements of S in the interval [si +1, sj− 1], we have i+ k ≥ j. We obtain

a contradiction. The case a, b ∈ Ť is analogous.
Now Theorem 4.4 implies that the difference ∆I∨I′, J∨J′ · ∆I∧I′, J∧J′ − ∆I,J · ∆I′,J′ is a nonnegative

combination of Temperley-Lieb immanants. Theorems 4.1 and 4.3 imply its Schur nonnegativity. �
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6. Proof of conjectures and generalizations

In this section we prove generalized versions of Conjectures 1.2-1.4, which were conjectured by Kir-
illov [Kir, Section 6.8]. Corollary 6.2 was also conjectured by Bergeron-McNamara [BM, Conjecture 5.2]
who showed that it implies Theorem 6.3.

Let bxc be the maximal integer ≤ x and dxe be the minimal integer ≥ x. For vectors v and w and
a positive integer n, we assume that the operations v + w, v

n , bvc, dve are performed coordinate-wise. In

particular, we have well-defined operations bλ+ν
2 c and dλ+ν

2 e on pairs of partitions.
The next claim extends Okounkov’s conjecture (Conjecture 1.2).

Theorem 6.1. Let λ/µ and ν/ρ be any two skew shapes. Then we have

sbλ+ν
2 c/b

µ+ρ
2 c

sdλ+ν
2 e/d

µ+ρ
2 e
≥s sλ/µ sν/ρ.

Proof. We will assume that all partitions have the same fixed number k of parts, some of which might
be zero. For a skew shape λ/µ = (λ1, . . . , λk)/(µ1, . . . , µk), define

−−→
λ/µ := (λ1 + 1, . . . , λk + 1)/(µ1 + 1, . . . , µk + 1),

that is,
−−→
λ/µ is the skew shape obtained by shifting the shape λ/µ one step to the right. Similarly, define the

left shift of λ/µ by
←−−
λ/µ := (λ1 − 1, . . . , λk − 1)/(µ1 − 1, . . . , µk − 1),

assuming that the result is a legitimate skew shape. Note that sλ/µ = s←−−
λ/µ

= s−−→
λ/µ

.

Let θ be the operation on pairs of skew shapes given by

θ : (λ/µ, ν/ρ) 7−→ ((λ/µ) ∨ (ν/ρ), (λ/µ) ∧ (ν/ρ)).

According to Theorem 1.1, the product of the two skew Schur functions corresponding to the shapes in
θ(λ/µ, ν/ρ) is ≥s sλ/µ sν/ρ. Let us show that we can repeatedly apply the operation θ together with the left
and right shifts of shapes and the flips (λ/µ, ν/ρ) 7→ (ν/ρ, λ/µ) in order to obtain the pair of skew shapes
(bλ+ν

2 c/b
µ+ρ

2 c, d
λ+ν

2 e/d
µ+ρ

2 e) from (λ/µ, ν/ρ).
Let us define two operations φ and ψ on ordered pairs of skew shapes by conjugating θ with the right

and left shifts and the flips, as follows:

φ : (λ/µ, ν/ρ) 7−→ ((λ/µ) ∧ (
−−→
ν/ρ),

←−−−−−−−−−
(λ/µ) ∨ (

−−→
ν/ρ)),

ψ : (λ/µ, ν/ρ) 7−→ (
←−−−−−−−−−
(
−−→
λ/µ) ∨ (ν/ρ), (

−−→
λ/µ) ∧ (ν/ρ)).

In this definition the application of the left shift “←−” always makes sense. Indeed, in both cases, before the
application of “←−”, we apply “−→” and then “∨”. As we noted above, both products of skew Schur functions
for shapes in φ(λ/µ, ν/ρ) and in ψ(λ/µ, ν/ρ) are ≥s sλ/µ sν/ρ.

It is convenient to write the operations φ and ψ in the coordinates λi, µi, νi, ρi, for i = 1, . . . , k. These
operations independently act on the pairs (λi, νi) by

φ : (λi, νi) 7→ (min(λi, νi + 1),max(λi, νi + 1)− 1),
ψ : (λi, νi) 7→ (max(λi + 1, νi)− 1,min(λi + 1, νi)),

and independently act on the pairs (µi, ρi) by exactly the same formulas. Note that both operations φ and
ψ preserve the sums λi + νi and µi + ρi.

The operations φ and ψ transform the differences λi−νi and µi−ρi according to the following piecewise-
linear maps:

φ̄(x) =

{
x if x ≤ 1,

2− x if x ≥ 1,
and ψ̄(x) =

{
x if x ≥ −1,

−2− x if x ≤ −1.

Whenever we apply the composition φ ◦ ψ of these operations, all absolute values |λi − νi| and |µi − ρi|
strictly decrease, if these absolute values are ≥ 2. It follows that, for a sufficiently large integer N , we have
(φ◦ψ)N (λ/µ, ν/ρ) = (λ̃/µ̃, ν̃/ρ̃) with λ̃i + ν̃i = λi +νi, µ̃i + ρ̃i = µi +ρi, and |λ̃i− ν̃i| ≤ 1, |µ̃i− ρ̃i| ≤ 1, for all

i. Finally, applying the operation θ, we obtain θ(λ̃/µ̃, ν̃/ρ̃) = (dλ+ν
2 e/d

µ+ρ
2 e, b

λ+ν
2 c/b

µ+ρ
2 c), as needed. �

The following conjugate version of Theorem 6.1 extends Fomin-Fulton-Li-Poon’s conjecture (Conjec-
ture 1.3) to skew shapes.
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Corollary 6.2. Let λ/µ and ν/ρ be two skew shapes. Then we have

ssort1(λ,ν)/sort1(µ,ρ) ssort2(λ,ν)/sort2(µ,ρ) ≥s sλ/µ sν/ρ.

Proof. This statement is obtained from Theorem 6.1 by conjugating the shapes. Indeed, dλ+µ
2 e
′ =

sort1(λ
′, µ′) and bλ+µ

2 c
′ = sort2(λ

′, µ′). Here λ′ denote the partition conjugate to λ. �

Theorem 6.3. Let λ(1)/µ(1), . . . , λ(n)/µ(n) be n skew shapes, let λ =
⋃
λ(i) be the partition obtained

by the decreasing rearrangement of the parts in all λ(i), and, similarly, let µ =
⋃
µ(i). Then we have∏n

i=1 sλ[i,n]/µ[i,n] ≥s

∏n
i=1 sλ(i)/µ(i) .

This theorem extends Corollary 6.2 and Conjecture 1.3. Also note that Lascoux-Leclerc-Thibon’s conjec-
ture (Conjecture 1.4) is a special case of Theorem 6.3 for the n-tuple of partitions (λ[1,m], . . . , λ[m,m], ∅, . . . , ∅).

Proof. Let us derive the statement by applying Corollary 6.2 repeatedly. For a sequence v = (v1, v2, . . . , vl)
of integers, the anti-inversion number is ainv(v) := #{(i, j) | i < j, vi < vj}. Let L = (λ(1)/µ(1), . . . , λ(n)/µ(n))
be a sequence of skew shapes. Define its anti-inversion number as

ainv(L) = ainv(λ
(1)
1 , λ

(2)
1 , . . . , λ

(n)
1 , λ

(1)
2 , . . . , λ

(n)
2 , λ

(1)
3 , . . . , λ

(n)
3 , . . . )

+ ainv(µ
(1)
1 , µ

(2)
1 , . . . , µ

(n)
1 , µ

(1)
2 , . . . , µ

(n)
2 , µ

(1)
3 , . . . , µ

(n)
3 , . . . ).

If ainv(L) 6= 0 then there is a pair k < l such that ainv(λ(k)/µ(k), λ(l)/µ(l)) 6= 0. Let L̃ be the sequence of
skew shapes obtained from L by replacing the two terms λ(k)/µ(k) and λ(l)/µ(l) with the terms

sort1(λ
(k), λ(l))/sort1(µ

(k), µ(l)) and sort2(λ
(k), λ(l))/sort2(µ

(k), µ(l)),

correspondingly. Then ainv(L̃) < ainv(L). Indeed, if we rearrange a subsequence in a sequence in the
decreasing order, the total number of anti-inversions decreases. According to Corollary 6.2, we have sL̃ ≥s sL,

where sL :=
∏n

i=1 sλ(i)/µ(i) . Note that the operation L 7→ L̃ does not change the unions of partitions
⋃
λ(i)

and
⋃
µ(i). Let us apply the operations L 7→ L̃ for various pairs (k, l) until we obtain a sequence of skew

shapes L̂ = (λ̂(1)/µ̂(1), . . . , λ̂(n)/µ̂(n)) with ainv(L̂) = 0, i.e., the parts of all partitions must be sorted as

λ̂
(1)
1 ≥ · · · ≥ λ̂

(n)
1 ≥ λ̂

(1)
2 ≥ · · · ≥ λ̂

(n)
2 ≥ λ̂

(1)
3 ≥ · · · ≥ λ̂

(n)
3 ≥ · · · , and the same inequalities hold for the µ̂

(i)
j .

This means that λ̂(i)/µ̂(i) = λ[i,n]/µ[i,n], for i = 1, . . . , n. Thus sL̂ =
∏
sλ[i,n]/µ[i,n] ≥s sL, as needed. �

Let us define λ{i,n} := ((λ′)[i,n])′, for i = 1, . . . , n. Here λ′ again denotes the partition conjugate to
λ. The partitions λ{i,n} are uniquely defined by the conditions dλ

ne ⊇ λ{1,n} ⊇ · · · ⊇ λ{n,n} ⊇ bλ
nc and∑n

i=1 λ
{i,n} = λ. In particular, λ{1,2} = dλ

2 e and λ{2,2} = bλ
2 c. If λ

n is a partition, i.e., all parts of λ are

divisible by n, then λ{i,n} = λ
n for each 1 ≤ i ≤ n.

Corollary 6.4. Let λ(1)/µ(1), . . . , λ(n)/µ(n) be n skew shapes, let λ = λ(1) + · · · + λ(n) and µ =
µ(1) + · · ·+ µ(n). Then we have

∏n
i=1 sλ{i,n}/µ{i,n} ≥s

∏n
i=1 sλ(i)/µ(i) .

Proof. This claim is obtained from Theorem 6.3 by conjugating the shapes. Indeed,
(⋃

λ(i)
)′

=∑
(λ(i))′. �

For a skew shape λ/µ and a positive integer n, define s
〈n〉
λ
n

/ µ
n

:=
∏n

i=1 sλ{i,n}/µ{i,n} . In particular, if λ
n

and µ
n are partitions, then s

〈n〉
λ
n

/ µ
n

=
(
s λ

n
/ µ

n

)n

.

Corollary 6.5. Let c and d be positive integers and n = c + d. Let λ/µ and ν/ρ be two skew shapes.

Then s
〈n〉
cλ+dν

n
/ cµ+dρ

n

≥s s
c
λ/µ s

d
ν/ρ.

Theorem 6.1 is a special case of Corollary 6.5 for c = d = 1.

Proof. This claim follows from Corollary 6.4 for the sequence of skew shapes that consists of λ/µ
repeated c times and ν/ρ repeated d times. �

Corollary 6.5 implies that the map S : λ 7→ sλ from the set of partitions to symmetric functions satisfies
the following “Schur log-concavity” property.
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Corollary 6.6. For positive integers c, d and partitions λ, µ such that cλ+dµ
c+d is a partition, we have

(
S

(
cλ+dµ

c+d

))c+d

≥s S(λ)cS(µ)d.

This notion of Schur log-concavity is inspired by Okounkov’s notion of log-concavity; see [Oko].

Acknowledgements: We thank Richard Stanley for useful conversations. We are grateful to Sergey Fomin
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Cristian Lenart

Abstract. In this paper, we continue the development of a new combinatorial model for the irreducible
characters of a complex semisimple Lie group. The main results of this paper are: (1) a combinatorial
description of the crystal graphs corresponding to the irreducible representations (this result includes a
transparent proof, based on the Yang-Baxter equation, of the fact that the mentioned description does not
depend on the choice involved in our model); (2) a combinatorial realization (which is the first direct gen-
eralization of Schützenberger’s involution on tableaux) of a certain fundamental involution on the canonical
basis exhibiting the crystals as self-dual posets; (3) an analog for arbitrary root systems, based on the
Yang-Baxter equation, of Schützenberger’s sliding algorithm, which is also known as jeu de taquin (this
algorithm has many applications to the representation theory of the Lie algebra of type A). Our approach
is type-independent.

Résumé.

Dans cet article, nous continuons le développement d’un nouveau modèle combinatoire pour les ca-
ractères irréductibles d’un groupe de Lie complexe semisimple. Les résultats principaux de cet article sont :
(1) une description combinatoire des graphes cristallins correspondant aux représentations irréductibles (ce
résultat inclut une preuve transparente, basée sur l’équation de Yang-Baxter, du fait que la description
mentionnée ne dépend pas du choix impliqué dans notre modèle) ; (2) une réalisation combinatoire (qui
est la première généralisation directe de l’involution de Schützenberger sur les tableaux) d’une involution
fondamentale sur la base canonique pour laquelle les cristaux sont des ensembles partiellement ordonnés
auto-dual ; (3) un analogue de l’algorithme coulissant de Schützenberger, qui est également connu sous le
nom ”jeu de taquin”, pour les systèmes de racine. Cet analogue est basé sur l’équation de Yang-Baxter.
Notre approche est indépendante du choix du type du système de racine.

1. Introduction

We have recently given a simple combinatorial model for the irreducible characters of a complex semisim-
ple Lie group G and, more generally, for the Demazure characters [12]. For reasons explained below, we call
our model the alcove path model. This was extended to complex symmetrizable Kac-Moody algebras in [13]
(that is, to infinite root systems).

The alcove path model leads to an extensive generalization of the combinatorics of irreducible characters
from Lie type A (where the combinatorics is based on Young tableaux, for instance) to arbitrary type; our
approach is type-independent. The present paper continues the study of the combinatorics of the new model,
which was started in [12, 13].

The main results of this paper are:

(1) a combinatorial description of the crystal graphs corresponding to the irreducible representations
(Corollary 4.4); this result includes a transparent proof, based on the Yang-Baxter equation, of the
fact that the mentioned description does not depend on the choice involved in our model (Corollary
4.3);

2000 Mathematics Subject Classification. Primary 05E15; Secondary 17B10, 20G42, 22E46.
Key words and phrases. Bruhat order, crystals, root operators, Schützenberger’s involution, λ-chains, Yang-Baxter moves.
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(2) a combinatorial realization of a certain fundamental involution on the canonical basis (Theorem 5.4,
see also Example 5.6); this involution [18] exhibits the crystals as self-dual posets, and corresponds
to the action of the longest Weyl group element on an irreducible representation; our combinatorial
realization is the first direct generalization of Schützenberger’s involution on tableaux (see e.g. [6]);

(3) an analog for arbitrary root systems, based on the Yang-Baxter equation, of Schützenberger’s sliding
algorithm, which is also known as jeu de taquin (Section 4); this algorithm has many applications
to the representation theory of the Lie algebra of type A (see e.g. [6]).

Our model is based on the choice of an alcove path, which is a sequence of adjacent alcoves for the affine
Weyl group Waff of the Langland’s dual group G∨. An alcove path is best represented as a λ-chain, that
is, as a sequence of positive roots corresponding to the common walls of successive alcoves in the mentioned
sequence of alcoves. These chains extend the notion of a reflection ordering [5]. Given a fixed λ-chain,
the objects that generalize semistandard Young tableaux are all the subsequences of roots that give rise to
saturated increasing chains in Bruhat order (on the Weyl group W ) upon multiplying on the right by the
corresponding reflections. We call these subsequences admissible subsets. In [13] we defined root operators
on admissible subsets, which are certain partial operators associated with the simple roots; in type A, they
correspond to the coplactic operations on tableaux [17]. The root operators produce a directed colored graph
structure and a poset structure on admissible subsets. We showed in [13] that this graph is isomorphic to
the crystal graph of the corresponding irreducible representation if the chosen λ-chain is a special one. All
this background information on the alcove path model is explained in more detail in Section 3, following
some general background material discussed in Section 2.

In Section 4, we study certain discrete moves which allow us to deform any λ-chain into any other λ-chain
(for a fixed dominant weight λ), and to biject the corresponding admissible subsets. We call these moves
Yang-Baxter moves since they express the fact that certain operators satisfy the Yang-Baxter equation. We
will explain below the reason for which the Yang-Baxter moves can be considered an analog of jeu de taquin
for arbitrary root systems. We show that the Yang-Baxter moves commute with the root operators; this
means that the directed colored graph defined by the root operators is invariant under Yang-Baxter moves,
and it is thus independent from the choice of a λ-chain. Based on the special case in [13] discussed above,
this immediately implies that the mentioned graph is isomorphic to the corresponding crystal graph for any
choice of a λ-chain.

In Section 5, we present a combinatorial description of a certain fundamental involution ηλ on the
canonical basis. Such a description was given by Schützenberger in type A in terms of tableaux, and the
corresponding procedure is known as evacuation. The importance of this involution stems from the fact that it
exhibits the crystals as self-dual posets, and it corresponds to the action of the longest Weyl group element on
an irreducible representation; it also appears in other contexts, such as the recent realization of the category
of crystals as a coboundary category [8]. Our description of the mentioned involution is very similar to that
of the evacuation map. The main ingredient in defining the latter map, namely Schützenberger’s sliding
algorithm (also known as jeu de taquin), is replaced by Yang-Baxter moves. There is another ingredient,
which has to do with “reversing” a λ-chain and an associated admissible subset, by analogy with reversing
the word of a tableau in the definition of the evacuation map. Our construction also leads to a purely
combinatorial proof of the fact that the crystals (as defined by our root operators) are self-dual posets.

The relationship between the alcove path model and other models for the irreducible characters of
semisimple Lie algebras, such as the Littelmann path model, LS paths [14, 15, 16], and LS-galleries [7],
was discussed in [12, 13].

As far as analogs of jeu de taquin are concerned, let us mention that the only such analog known in the
Littelmann path model is the one due to van Leeuwen [11]. The goal of the mentioned paper was to use
this analog in order to express in a bijective manner the symmetry of the Littlewood-Richardson rule in the
Littelmann path model.

Let us also mention that an explicit description of the involution ηλ discussed above is given in [19] in a
different model for characters, which is based on Lusztig’s parametrization and the string parametrization of
the dual canonical basis [2]. Unlike the combinatorial approach in Schützenberger’s evacuation procedure,
the involution is now expressed as an affine map whose coefficients are entries of the corresponding Cartan
matrix. No intrinsic explanation for the fact that this map is an involution is available.

We believe that the properties of our model that were investigated in [12, 13] as well as in this paper
represent just a small fraction of a rich combinatorial structure yet to be explored, which would generalize

181



ON THE COMBINATORICS OF CRYSTAL GRAPHS, I

most of the combinatorics of Young tableaux. A future publication will be concerned with the combinatorics
of the product of crystals.

2. Preliminaries

We recall some background information on finite root systems, affine Weyl groups, and crystal graphs.

2.1. Root systems. Let G be a connected, simply connected, simple complex Lie group. Fix a Borel
subgroup B and a maximal torus T such that G ⊃ B ⊃ T . As usual, we denote by B− be the opposite
Borel subgroup, while N and N− are the unipotent radicals of B and B−, respectively. Let g, h, n, and n−

be the complex Lie algebras of G, T , N , and N−, respectively. Let r be the rank of the Cartan subalgebra
h. Let Φ ⊂ h∗ be the corresponding irreducible root system, and let h∗

R
⊂ h∗ be the real span of the roots.

Let Φ+ ⊂ Φ be the set of positive roots corresponding to our choice of B. Then Φ is the disjoint union of
Φ+ and Φ− := −Φ+. We write α > 0 (respectively, α < 0) for α ∈ Φ+ (respectively, α ∈ Φ−), and we define
sgn(α) to be 1 (respectively −1). We also use the notation |α| := sgn(α)α. Let α1, . . . , αr ∈ Φ+ be the
corresponding simple roots, which form a basis of h∗

R
. Let 〈 · , · 〉 denote the nondegenerate scalar product on

h∗
R

induced by the Killing form. Given a root α, the corresponding coroot is α∨ := 2α/〈α, α〉. The collection
of coroots Φ∨ := {α∨ | α ∈ Φ} forms the dual root system.

The Weyl group W ⊂ Aut(h∗
R
) of the Lie group G is generated by the reflections sα : h∗

R
→ h∗

R
, for

α ∈ Φ, given by sα : λ 7→ λ − 〈λ, α∨〉α. In fact, the Weyl group W is generated by the simple reflections
s1, . . . , sr corresponding to the simple roots si := sαi

, subject to the Coxeter relations. An expression of a
Weyl group element w as a product of generators w = si1 · · · sil

which has minimal length is called a reduced
decomposition for w; its length `(w) = l is called the length of w. The Weyl group contains a unique longest
element w◦ with maximal length `(w◦) = #Φ+. For u,w ∈ W , we say that u covers w, and write um w, if
w = usβ , for some β ∈ Φ+, and `(u) = `(w) + 1. The transitive closure “>” of the relation “m” is called the
Bruhat order on W .

The weight lattice Λ is given by

(2.1) Λ := {λ ∈ h∗
R
| 〈λ, α∨〉 ∈ Z for any α ∈ Φ}.

The set Λ+ of dominant weights is given by

Λ+ := {λ ∈ Λ | 〈λ, α∨〉 ≥ 0 for any α ∈ Φ+}.

Let ρ := 1
2

∑
β∈Φ+ β. The height of a coroot α∨ ∈ Φ∨ is 〈ρ, α∨〉 = c1 + · · ·+ cr if α∨ = c1α

∨
1 + · · ·+ crα

∨
r .

Since we assumed that Φ is irreducible, there is a unique highest coroot θ∨ ∈ Φ∨ that has maximal height.
(In other words, θ∨ is the highest root of the dual root system Φ∨. It should not be confused with the coroot
of the highest root of Φ.) We will also use the Coxeter number, that can be defined as h := 〈ρ, θ∨〉 + 1.

2.2. Affine Weyl groups. In this subsection, we remind a few basic facts about affine Weyl groups
and alcoves, cf. Humphreys [9, Chaper 4] for more details.

Let Waff be the affine Weyl group for the Langland’s dual group G∨. The affine Weyl group Waff is
generated by the affine reflections sα,k : h∗

R
→ h∗

R
, for α ∈ Φ and k ∈ Z, that reflect the space h∗

R
with respect

to the affine hyperplanes Hα,k := {λ ∈ h∗
R
| 〈λ, α∨〉 = k}. The hyperplanes Hα,k divide the real vector space

h∗
R

into open regions, called alcoves.
The fundamental alcove A◦ is given by

A◦ := {λ ∈ h∗
R
| 0 < 〈λ, α∨〉 < 1 for all α ∈ Φ+}.

An important property of the affine Weyl group is that it acts simply transitively on the collection of all
alcoves. This fact implies that, for any alcove A, there exists a unique element vA of the affine Weyl group
Waff such that vA(A◦) = A. Hence the map A 7→ vA is a one-to-one correspondence between alcoves and
elements of the affine Weyl group.

Recall that θ∨ ∈ Φ∨ is the highest coroot. Let θ ∈ Φ+ be the corresponding root, and let α0 := −θ. The
affine Weyl group is a Coxeter group generated by the set of reflections s0, s1, . . . , sr, where s0 := sα0,−1 and
s1, . . . , sr ∈ W are the simple reflections si = sαi,0.

We say that two alcoves A and B are adjacent if B is obtained by an affine reflection of A with respect
to one of its walls. In other words, two alcoves are adjacent if they are distinct and have a common wall.
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For a pair of adjacent alcoves, let us write A
β

−→ B if the common wall of A and B is of the form Hβ,k and
the root β ∈ Φ points in the direction from A to B.

2.3. Crystal graphs and Schützenberger’s involution. Let U(g) be the universal enveloping al-
gebra of the Lie algebra g, which is generated by Ei, Fi, Hi, for i = 1, . . . , r, subject to the Serre relations
and some additional relations. Let B be the canonical basis of U(n−), and let Bλ := B ∩ Vλ be the canonical
basis of the irreducible representation Vλ with highest weight λ. Let vλ and vlow

λ be the highest and lowest

weight vectors in Bλ, respectively. Let Ẽi, F̃i, for i = 1, . . . , r, be Kashiwara’s operators [10, 18]; these are
also known as raising and lowering operators, respectively. The crystal graph of Vλ is the directed colored

graph on Bλ defined by arrows x → y colored i for each F̃i(x) = cy + lower terms, or, equivalently, for

each Ẽi(y) = cx + lower terms, with c a constant. (In fact, Kashiwara defined the crystal graph of the
q-deformation of U(g), also known as a quantum group; using the quantum deformation, one can associate

a crystal graph to a g-representation.) One can also define partial orders �i on Bλ by x �i y if x = F̃ k
i (y)

for some k ≥ 0. We let � denote the partial order generated by all partial orders �i, for i = 1, . . . , r. The
poset (Bλ,�) has maximum vλ and minimum vlow

λ .
In order to proceed, we need the following general setup. Let V be a module over an associative algebra

U and σ an automorphism of U . The twisted U -module V σ is the same vector space V but with the new
action u ∗ v := σ(u)v for u ∈ U and v ∈ V . Clearly, V στ = (V σ)τ for every two automorphisms σ and τ of
U . Furthermore, if V is a simple U -module, then so is V σ. In particular, if U = U(g) and V = Vλ, then
(Vλ)σ is isomorphic to Vσ(λ) for some dominant weight σ(λ). Thus there is an isomorphism of vector spaces
σλ : Vλ → Vσ(λ) such that

σλ(uv) = σ(u)σλ(v) , u ∈ U(g) , v ∈ Vλ .

By Schur’s lemma, σλ is unique up to a scalar multiple.
The longest Weyl group element w◦ defines an involution on the simple roots by αi 7→ αi∗ := −w◦(αi).

Consider the automorphisms of U(g) defined by

φ(Ei) = Fi , φ(Fi) = Ei , φ(Hi) = −Hi ,(2.2)

ψ(Ei) = Ei∗ , ψ(Fi) = Fi∗ , ψ(Hi) = Hi∗ ,(2.3)

and η := φψ. Clearly, these three automorphisms together with the identity automorphism form a group
isomorphic to Z/2Z × Z/2Z. It also easily follows from (2.2)-(2.3) that

φ(λ) = ψ(λ) = −w◦(λ) , η(λ) = λ .

We can normalize each of the maps φλ, ψλ, and ηλ by the requirement that

(2.4) φλ(vλ) = vlow
−w◦(λ) , ψλ(vλ) = v−w◦(λ) , ηλ(vλ) = vlow

λ .

(Of course, we also set Idλ to be the identity map on Vλ.) By [18, Proposition 21.1.2], cf. also [1, Proposition
7.1], we have the following result.

Proposition 2.1. [1, 18] (1) Each of the maps φλ and ψλ sends Bλ to B−w◦(λ), while ηλ sends Bλ to
itself.

(2) For every two (not necessarily distinct) elements σ, τ of the group {Id, φ, ψ, η}, we have (στ)λ =
στ(λ)τλ. In particular, the map ηλ is an involution.

(3) For every i = 1, . . . , r, we have

(2.5) φλF̃i = Ẽiφλ , ψλF̃i = F̃i∗ψλ , ηλF̃i = Ẽi∗ηλ .

In particular, the poset (Bλ,�) is self-dual, and ηλ is the corresponding antiautomorphism.

Berenstein and Zelevinsky [1] showed that, in type An−1 (that is, in the case of the Lie algebra sln), the
operator ηλ is given by Schützenberger’s evacuation procedure for semistandard Young tableaux (see e.g.
[6]).
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3. The Alcove Path Model

In this section, we recall the model for the irreducible characters of semisimple Lie algebras that we
introduced in [12, 13]. We refer to these papers for more details, including the proofs of the results mentioned
below. Although some of these results hold for infinite root systems (cf. [13]), the setup in this paper is
that of a finite irreducible root system, as discussed in Section 2.

Our model is conveniently phrased in terms of several sequences, so let us mention some related notation.
Given a totally ordered index set I = {i1 < i2 < . . . < in}, a sequence (ai1 , ai2 , . . . , ain

) is sometimes
abbreviated to {aj}j∈I . We also let [n] := {1, 2, . . . , n}.

3.1. λ-chains. The affine translations by weights preserve the set of affine hyperplanes Hα,k. It follows
that these affine translations map alcoves to alcoves. Let Aλ = A◦ + λ be the alcove obtained by the affine
translation of the fundamental alcove A◦ by a weight λ ∈ Λ. Let vλ be the corresponding element of Waff ,
i.e,. vλ is defined by vλ(A◦) = Aλ. Note that the element vλ may not be an affine translation itself.

Let us now fix a dominant weight λ. Let v 7→ v̄ be the homomorphism Waff → W defined by ignoring
the affine translation. In other words, s̄α,k = sα ∈W .

Definition 3.1. A λ-chain of roots is a sequence of positive roots (β1, . . . , βn) which is determined as
indicated below by a reduced decomposition v−λ = si1 · · · sin

of v−λ as a product of generators of Waff :

β1 = αi1 , β2 = s̄i1(αi2), β3 = s̄i1 s̄i2(αi3), . . . , βn = s̄i1 · · · s̄in−1
(αin

) .

When the context allows, we will abbreviate “λ-chain of roots” to “λ-chain”. The λ-chain of reflections
associated with the above λ-chain of roots is the sequence (r̂1, . . . , r̂n) of affine reflections in Waff given by

r̂1 = si1 , r̂2 = si1si2si1 , r̂3 = si1si2si3si2si1 , . . . , r̂n = si1 · · · sin
· · · si1 .

We will present two equivalent definitions of a λ-chain of roots.

Definition 3.2. An alcove path is a sequence of alcoves (A0, A1, . . . , An) such that Ai−1 and Ai are
adjacent, for i = 1, . . . , n. We say that an alcove path is reduced if it has minimal length among all alcove
paths from A0 to An.

Given a finite sequence of roots Γ = (β1, . . . , βn), we define the sequence of integers (l∅1 , . . . , l
∅
n) by

l∅i := #{j < i | βj = βi}, for i = 1, . . . , n. We also need the following two conditions on Γ.

(R1) The number of occurrences of any positive root α in Γ is 〈λ, α∨〉.
(R2) For each triple of positive roots (α, β, γ) with γ∨ = α∨ + β∨, the subsequence of Γ consisting of

α, β, γ is a concatenation of pairs (α, γ) and (β, γ) (in any order).

Theorem 3.3. [12] The following statements are equivalent.

(a) The sequence of roots Γ = (β1, . . . , βn) is a λ-chain, and (r̂1, . . . , r̂n) is the associated λ-chain of
reflections.

(b) We have a reduced alcove path A0
−β1
−→ · · ·

−βn
−→ An from A0 = A◦ to An = A−λ, and r̂i is the affine

reflection in the common wall of Ai−1 and Ai, for i = 1, . . . , n.
(c) The sequence Γ satisfies conditions (R1) and (R2) above, and r̂i = sβi,−l∅

i
, for i = 1, . . . , n.

A particular choice of a λ-chain was described in [13].

3.2. Admissible subsets. For the remainder of this section, we fix a λ-chain Γ = (β1, . . . , βn). Let
ri := sβi

. We now define the centerpiece of our combinatorial model for characters, which is our generalization
of semistandard Young tableaux in type A.

Definition 3.4. An admissible subset is a subset of [n] (possibly empty), that is, J = {j1 < j2 < . . . <
js}, such that we have the following saturated chain in the Bruhat order on W :

1 l rj1 l rj1rj2 l . . .l rj1rj2 . . . rjs
.

We denote by A(Γ) the collection of all admissible subsets corresponding to our fixed λ-chain Γ. Given an
admissible subset J , we use the notation

µ(J) := −r̂j1 . . . r̂js
(−λ) , w(J) := rj1 . . . rjs

.
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We call µ(J) the weight of the admissible subset J .

Theorem 3.5. [12, 13] We have the following character formula:

ch(Vλ) =
∑

J∈A(Γ)

eµ(J) .

A more general Demazure character formula is also given in [12]. In addition to these character formulas,
a Littlewood-Richardson rule for decomposing tensor products of irreducible representations is presented in
terms of our model in [13].

Example 3.6. Consider the Lie algebra sl3 of type A2. The corresponding root system Φ can be realized
inside the vector space V := R3/R(1, 1, 1) as Φ = {αij := εi − εj | i 6= j, 1 ≤ i, j ≤ 3}, where ε1, ε2, ε3 ∈ V
are the images of the coordinate vectors in R3. The reflection sαij

is denoted by sij . The simple roots are α12

and α23, while α13 = α12 + α23 is the other positive root. Let λ = ω1 = ε1 be the first fundamental weight.
In this case, there is only one λ-chain (β1, β2) = (α12, α13). There are 3 admissible subsets: ∅, {1}, {1, 2}.
The subset {2} is not admissible because the reflection s13 does not cover the identity element. We have

(l∅1 , l
∅
2) = (0, 0). Theorem 3.5 gives the following expression for the character of Vω1

:

ch(Vω1
) = eω1 + es12(ω1) + es12s13(ω1).

3.3. Root operators. We now define partial operators known as root operators on the collection A(Γ)
of admissible subsets corresponding to our fixed λ-chain Γ = (β1, . . . , βn). They are associated with a
fixed simple root αp, and are traditionally denoted by Fp (also called a lowering operator) and Ep (also
called a raising operator). The notation is the one introduced above. Recall the sequence of integers

(l∅1 , . . . , l
∅
n) associated to Γ, and the corresponding affine reflections r̂i = sβi,−l∅

i
for i = 1, . . . , n. Let

J = {j1 < j2 < . . . < js} be a fixed admissible subset. We associate with J the sequence of roots (γ1, . . . , γn)
and the sequence of integers L(J) = (l1, . . . , ln), as follows: given i ∈ [n], we let k := max {a | ja < i} and
r̂j1 . . . r̂jk

(Hβi,−l∅
i
) = Hγi,−li for some positive root γi and some integer li. We also define lp∞ := 〈µ(J), α∨

p 〉.

Finally, we let

(3.1) I(J, p) := {i ∈ [n] | γi = αp} , L(J, p) := ({li}i∈I(J,p), l
p
∞) , M(J, p) := max L(J, p) .

It turns out that M(J, p) ≥ 0.
We can define the root operator Fp on the admissible subset J whenever M(J, p) > 0. Let m = mF (J, p)

be defined by

mF (J, p) :=

{
min {i ∈ I(J, p) | li = M(J, p)} if this set is nonempty

∞ otherwise .

Let k = kF (J, p) be the predecessor of m in I(J, p) ∪ {∞}, which always exists. It turns out that m ∈ J if
m 6= ∞, but k 6∈ J Finally, we set

(3.2) Fp(J) := (J \ {m}) ∪ {k} .

We showed in [13] that we have µ(Fp(J)) = µ(J) − αp.
Let us now define a partial inverse Ep to Fp. The operator Ep is defined on the admissible subset J

whenever M(J, p) > 〈µ(J), α∨
p 〉. Let k = kE(J, p) be defined by

kE(J, p) := max {i ∈ I(J, p) | li = M(J, p)} ;

the above set turns out to be always nonempty. Let m = mE(J, p) be the successor of k in I(J, p)∪ {∞}. It
turns out that k ∈ J but m 6∈ J . Finally, we set

(3.3) Ep(J) := (J \ {k}) ∪ ({m} \ {∞}) .

Similarly to Kashiwara’s operators (see Subsection 2.3), the root operators above define a directed colored
graph structure and a poset structure on the set A(Γ) of admissible subsets corresponding to a fixed λ-chain
Γ. According to [13, Proposition 6.9]), the admissible subset Jmax = ∅ is the maximum of the poset A(Γ).
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4. Yang-Baxter Moves

In this section, we define the analog of Schützenberger’s sliding algorithm in our model, which we call a
Yang-Baxter move, for reasons explained below. We start with some results on dihedral subgroups of Weyl
groups.

4.1. Dihedral reflection subgroups. Let W be a dihedral Weyl group of order 2q, that is, a Weyl
group of type A1 × A1, A2, B2, or G2 (with q = 2, 3, 4, 6, respectively). Let Φ be the corresponding root
system with simple roots α, β. The sequence

(4.1) β1 := α, β2 := sα(β), β3 := sαsβ(α), . . . , βq−1 := sβ(α), βq := β

is a reflection ordering on the positive roots of Φ (cf. [5]). We present the Bruhat order on the Weyl group
of type G2 in Figure 1. Here, as well as throughout this paper, we label a cover v l vsγ in Bruhat order by
the corresponding root γ.
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Figure 1. The Bruhat order on the Weyl group of type G2.

With every pair of Weyl group elements u < w in Bruhat order, we will associate a subset J(u,w) of [q]
as follows. Let a := `(u) and b := `(w). Given δ ∈ {α, β}, we will use the notation

W δ := {v ∈ W | `(vsδ) > `(v)} , W
δ

:= W \W δ = {v ∈W | `(vsδ) < `(v)} .

Case 0: u = w. We let J(u, u) := ∅.
Case 1: b− a = 1. We have the following disjoint subcases.

Case 1.1: u ∈ Wα, w ∈W
α
, so 0 ≤ a ≤ q − 1. We let J(u,w) := {1}.

Case 1.2: u ∈ W
β
, w ∈Wα, so 0 < a < q − 1. We let J(u,w) := {q − a}.

Case 1.3: u ∈ W β , w ∈W
β
, so 0 ≤ a ≤ q − 1. We let J(u,w) := {q}.

Case 1.4: u ∈ W
α
, w ∈W β , so 0 < a < q − 1. We let J(u,w) := {a+ 1}.

Case 2: 1 < b− a < q. We have the following disjoint subcases.
Case 2.1: u ∈ Wα, w ∈W β , so 0 ≤ a < a+ 2 ≤ b < q.

We let J(u,w) := {1, a+ 2, a+ 3, . . . , b}.

Case 2.2: u ∈ W
β
, w ∈W

β
, so 0 < a < a+ 2 ≤ b ≤ q.

We let J(u,w) := {1, a+ 2, a+ 3, . . . , b− 1, q}.
Case 2.3: u ∈ W β , w ∈Wα, so 0 ≤ a < a+ 2 ≤ b < q.

We let J(u,w) := {a+ 1, a+ 2, . . . , b− 1, q}.
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Case 2.4: u ∈ W
α
, w ∈W

α
, so 0 < a < a+ 2 ≤ b ≤ q.

We let J(u,w) := {a+ 1, a+ 2, . . . , b}.
Case 3: a = 0 and b = q, that is, u is the identity and w is the longest Weyl group element w◦. In this

case, we let J := [q].

In Case 2.2, if b = a+ 2 then the sequence a+ 2, a+ 3, . . . , b− 1 is considered empty.
Let J(u,w) := {j1 < j2 < . . . < jb−a}. We use the notation ri := sβi

, as above. It is easy to check that,
in all cases above, we have a unique saturated increasing chain in Bruhat order from u to w whose labels
form a subsequence of (4.1); this chain is

ul urj1 l urj1rj2 l . . .l urj1 . . . rjb−a
= w .

More generally, we have the result below for an arbitrary Weyl group W with a dihedral reflection subgroup
W and corresponding root systems Φ ⊇ Φ. The notation is the same as above. It is known that any element
w of W can be written uniquely as w = bwcw, where bwc is the minimal representative of the left coset
wW , and w ∈ W . The following result can be easily deduced from the corresponding one for W = W via a
standard fact about cosets modulo dihedral reflection subgroups, namely [3, Lemma 5.1].

Proposition 4.1. For each pair of elements u < w in the same (left) coset of W modulo W , we have
a unique saturated increasing chain in Bruhat order from u to w whose labels form a subsequence of (4.1);
this chain is

ul urj1 l urj1rj2 l . . .l urj1 . . . rjb−a
= w ,

where J(u,w) := {j1 < j2 < . . . < jb−a}.

We obtain another reflection ordering by reversing the sequence (4.1). Let us denote the corresponding
subset of [q] by J ′(u,w). We are interested in passing from the chain between u and w compatible with the
ordering (4.1) to the chain compatible with the reverse ordering. If we fix a := `(u) and b := `(w), we can
realize the passage from J(u,w) to J ′(u,w) via the involution Yq,a,b described below in each of the cases
mentioned above.

Case 0: ∅ ↔ ∅ if a = b .

Case 1.1: {1} ↔ {q} if 0 ≤ a = b− 1 ≤ q − 1 .

Case 1.2: {q − a} ↔ {a+ 1} if 0 < a = b− 1 < q − 1 .

Case 2.1: {1, a+ 2, a+ 3, . . . , b} ↔ {a+ 1, a+ 2, . . . , b− 1, q} if 0 ≤ a < a+ 2 ≤ b < q .

Case 2.2: {1, a+ 2, a+ 3, . . . , b− 1, q} ↔ {a+ 1, a+ 2, . . . , b} if 0 < a < a+ 2 ≤ b ≤ q .

Case 3: [q] ↔ [q] if a = 0 and b = q .

4.2. Yang-Baxter moves and their properties. Let us now consider an index set

(4.2) I := {1 < . . . < t < 1 < . . . < q < t+ 1 < . . . < n} ,

and let I := {1, . . . , n}. Let Γ = {βi}i∈I be a λ-chain, denote ri := sβi
as before, and let Γ′ = {β′

i}i∈I be
the sequence of roots defined by

(4.3) β′
i =

{
βq+1−i if i ∈ I \ I

βi otherwise .

In other words, the sequence Γ′ is obtained from the λ-chain Γ by reversing a certain segment. Now assume
that {β1, . . . , βq} are the positive roots of a rank two root system Φ (without repetition). Let W be the
corresponding dihedral reflection subgroup of the Weyl group W . The following result is easily proved using
the correspondence between λ-chains and reduced words for the affine Weyl group element v−λ mentioned in
Definition 3.1; most importantly, we need to recall from the proof of [12, Lemma 9.3] that the moves Γ → Γ′

correspond to Coxeter moves (on the mentioned reduced words) in this context.

Proposition 4.2. (1) The sequence Γ′ is also a λ-chain, and the sequence β1, . . . , βq is a reflection
ordering.

(2) We can obtain any λ-chain for a fixed dominant weight λ from any other λ-chain by moves of the
form Γ → Γ′.
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Let us now map the admissible subsets in A(Γ) to those in A(Γ′). Given J ∈ A(Γ), let

(4.4) J := J ∩ I , u := w(J ∩ {1, . . . , t}) , and w := w(J ∩ ({1, . . . , t} ∪ [q])) .

Also let

(4.5) u = bucu , w = bwcw , a := `(u) , and b := `(w) ,

as above. It is clear that we have a bijection Y : A(Γ) → A(Γ′) given by

(4.6) Y (J) := J ∪ Yq,a,b(J \ J) .

We call the moves J 7→ Y (J) Yang-Baxter moves (cf. the discussion following Theorem 4.1). Clearly,
a Yang-Baxter move preserves the Weyl group element w( · ) associated to an admissible subset, that is,
w(Y (J)) = w(J). In addition, Theorem 4.1 below holds.

Theorem 4.1. The map Y preserves the weight of an admissible subset. In other words, µ(Y (J)) = µ(J)
for all admissible subsets J .

We now explain the way in which the Yang-Baxter moves are related to the Yang-Baxter equation, which
justifies the terminology. In order to do this, we need to recall some information from [12]. Consider the
ring K := Z[Λ/h] ⊗ Z[W ], where Z[W ] is the group algebra of the Weyl group W , and Z[Λ/h] is the group
algebra of Λ/h := {λ/h | λ ∈ Λ} (i.e., of the weight lattice shrunk h times, h being the Coxeter number
defined in Subsection 2.1). We define Z[Λ/h]-linear operators Bα and Xλ on K, where α is a positive root
and λ is a weight:

Bα : w 7−→

{
wsα if `(wsα) = `(w) + 1

0 otherwise,
Xλ : w 7→ ew(λ/h)w.

Let us now consider the operators Rα := Xρ(Xα +Bα)X−ρ for α ∈ Φ+; if α ∈ Φ−, we define Rα by setting
Bα := −B−α. It was proved in [12, Theorem 10.1] that the operators {Rα | α ∈ Φ} satisfy the Yang-Baxter
equation in the sense of Cherednik [4]. The main application of the operators Rα was to show that, given a
λ-chain Γ = (β1, . . . , βn), we have

(4.7) Rβn
. . . Rβ1

(1) =
∑

J∈A(Γ)

eµ(J)w(J) .

Due to the Yang-Baxter property, the right-hand side of the above formula does not change when we replace
the λ-chain Γ by Γ′, as defined above. The Yang-Baxter moves described above implement the passage from
Γ to Γ′ at the level of the individual terms in (4.7).

We now present the main result related to Yang-Baxter moves.

Theorem 4.2. The root operators commute with the Yang-Baxter moves, that is, a root operator Fp is
defined on an admissible subset J if and only if it is defined on Y (J) and we have

Y (Fp(J)) = Fp(Y (J)) .

Theorem 4.2 asserts that the map Y above is an isomorphism between A(Γ) and A(Γ′) as directed
colored graphs. Given two arbitrary λ-chains Γ and Γ′, we know from Proposition 4.2 (2) that they can
be related by a sequence of λ-chains Γ = Γ0, Γ1, . . . , Γm = Γ′ to which correspond Yang-Baxter moves
Y1, . . . , Ym. Hence the composition Ym . . . Y1 is an isomorphism between A(Γ) and A(Γ′) as directed colored
graphs. Since every directed graph A(Γ) has a unique source (cf. [13, Proposition 6.9]), its automorphism
group as a directed colored graph consists only of the identity. Thus, we have the following corollary of
Theorem 4.2.

Corollary 4.3. Given two arbitrary λ-chains Γ and Γ′, the directed colored graph structures on A(Γ)
and A(Γ′) are isomorphic. This isomorphism is unique and, therefore, is given by the composition of Yang-
Baxter moves corresponding to any sequence of λ-chains relating Γ and Γ′.

We have thus given a combinatorial explanation for the independence of the directed colored graph
defined by our root operators from the chosen λ-chain.
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Corollary 4.4. Given any λ-chain Γ, the directed colored graph on the set A(Γ) defined by the root
operators is isomorphic to the crystal graph of the irreducible representation Vλ with highest weight λ. Under
this isomorphism, the weight of an admissible subset gives the weight space in which the corresponding element
of the canonical basis lies.

The above result follows, based on Corollary 4.3, from its special case corresponding to the particular
choice of a λ-chain Γ that was described in [13] and was mentioned in Subsection 3.1. Based on Corollary
4.4, we will now identify the elements of the canonical basis with the corresponding admissible subsets.

5. Schützenberger’s Involution

In this section, we present an explicit description of the involution ηλ in Subsection 2.3 in the spirit of
Schützenberger’s evacuation. We will show that the role of jeu de taquin in the definition of the evacuation
map is played by the Yang-Baxter moves.

Throughout the remainder of this paper, we fix an index set I := {1 < . . . < q < 1 < . . . < n}
and a λ-chain Γ = {βi}i∈I such that l∅i = 0 if and only if i ∈ I := {1 < . . . < q}. In other words, the
second occurence of a root can never be before the first occurence of another root. We will also write
Γ := (β1, . . . , βq, β1, . . . , βn). Let us recall the notation ri := sβi

for i ∈ I. It is easy to see that the set

Jmin := I is the minimum of the poset A(Γ).
Given a Weyl group element w, we denote by bwc and dwe the minimal and the maximal representatives

of the coset wWλ, respectively (where Wλ is the stabilizer of the weight λ). Let wλ
◦ be the longest element

of Wλ.

Definition 5.1. Let J be an admissible subset. Let J∩I = {j1 < . . . < ja} and J \I = {j1 < . . . < js}.
The initial key κ0(J) and the final key κ1(J) of J are the Weyl group elements defined by

κ0(J) := rj1
. . . rja

, κ1(J) := w(J) = κ0(J)rj1 . . . rjs
.

Remark 5.2. The keys κ0(J) and κ1(J) are the analogs of the left and right keys of a semistandard
Young tableau, as well as of the final and the initial directions of an LS path, respectively.

We associate with our fixed λ-chain Γ another sequence Γrev := {β′
i}i∈I by

β′
i :=

{
βi if i ∈ I

wλ
◦ (βn+1−i) otherwise .

In other words, we have

(5.1) Γrev = (β1, . . . , βq, w
λ
◦ (βn), wλ

◦ (βn−1), . . . , w
λ
◦ (β1)) .

Let r′i := sβ′
i

for i ∈ I. Fix an admissible subset

(5.2) J = {j1 < . . . < ja < j1 < . . . < js}

in A(Γ), where {j1 < . . . < ja} ⊆ I and {j1 < . . . < js} ⊆ I \ I. Let u := κ0(J) and w := κ1(J). We have
the increasing saturated chain

(5.3) 1 l rj1
l rj1

rj2
l . . .l rj1

. . . rja
= ul urj1 l urj1rj2 l . . .l urj1 . . . rjs

= w .

According to [5], there is a unique saturated increasing chain in Bruhat order of the form

1 l r′
k1

l r′
k1
r′
k2

l . . .l r′
k1
. . . r′

kb
= bw◦wc = w◦ww

λ
◦ ,

where {k1 < k2 < . . . < kb} ⊆ I. Define

(5.4) J rev := {k1 < . . . < kb < k1 < . . . < ks} ,

where ki := n+ 1 − js+1−i for i = 1, . . . , s. Note that β′
ki

= wλ
◦ (βjs+1−i

) for i = 1, . . . , s.

Proposition 5.1. Γrev is a λ-chain, and J rev is an admissible subset in A(Γrev). We have

(5.5) κ0(J
rev) = bw◦κ1(J)c , κ1(J

rev) = bw◦κ0(J)c , µ(J rev) = w◦(µ(J)) ,

as well as (J rev)rev = J .
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We will now present the main result related to the map J 7→ J rev, which involves its commutation with
the root operators.

Theorem 5.3. A root operator Fp is defined on the admissible subset J if and only if Ep∗ is defined on
J rev, and we have

(Fp(J))rev = Ep∗(J rev) .

We can summarize the construction so far as follows: given the λ-chain Γ (for a fixed dominant weight
λ), we defined the λ-chain Γrev, and given J ∈ A(Γ), we defined J rev ∈ A(Γrev). Hence we can map J rev to
an admissible subset J∗ ∈ A(Γ) using Yang-Baxter moves, as it is described in Section 4 and it is recalled
below. To be more precise, let R : A(Γ) → A(Γrev) denote the bijection J 7→ J rev. On the other hand,
we know from Proposition 4.2 (2) that the λ-chains Γrev and Γ can be related by a sequence of λ-chains
Γrev = Γ0, Γ1, . . . , Γm = Γ to which correspond Yang-Baxter moves Y1, . . . , Ym. By Corollary 4.3, the
composition Y := Ym . . . Y1 does not depend on the sequence of intermediate λ-chains, and it defines a
bijection from A(Γrev) to A(Γ). We let J∗ := Y R(J) and conclude that it is a bijection on A(Γ). The main
result of this section, namely Theorem 5.4 below, now follows directly from Theorems 4.2 and 5.3.

Theorem 5.4. The bijection J 7→ J∗ constructed above coincides with the fundamental involution ηλ on
the canonical basis. In other words, a root operator Fp is defined on the admissible subset J if and only if
Ep∗ is defined on J∗, and we have

(5.6) (Jmin)∗ = Jmax , (Jmax)
∗ = Jmin , and (Fp(J))∗ = Ep∗(J∗) , for p = 1, . . . , r .

In particular, the map J 7→ J∗ expresses combinatorially the self-duality of the poset A(Γ).

Remark 5.5. The above construction is analogous to the definition of Schützenberger’s evacuation map
(see, for instance, [6]). Below, we recall the three-step procedure defining this map and we discuss the
analogy with our construction in the case of each step.

(1) REVERSE: We rotate a given semistandard Young tableau by 180◦. This corresponds to reversing
its word, which is similar to the procedure used to construct Γrev from Γ.

(2) COMPLEMENT: We complement each entry via the map i 7→ w◦(i), where w◦ is the longest
element in the corresponding symmetric group. This corresponds to using w◦ for the arbitrary
Weyl group in the definition (5.4) of J rev.

(3) SLIDE: We apply jeu de taquin on the obtained skew tableau. This corresponds to the Yang-Baxter
moves Y1, . . . , Ym discussed above.

Example 5.6. Consider the Lie algebra sl3 of type A2, cf. Example 3.6. Consider the dominant weight
λ = 4ε1 + 2ε2 and the following λ-chain:

1 2 3 1 2 3 4 5
Γ = (α12, α13, α23, α13, α12, α13, α23, α13) .

Here we indicated the index corresponding to each root, using the notation above; more precisely, we have
I = {1 < 2 < 3 < 1 < 2 < 3 < 4 < 5} and I = {1 < 2 < 3}. By the defining relation (5.1), we have

1 2 3 1 2 3 4 5
Γrev = (α12, α13, α23, α13, α23, α13, α12, α13) .

Consider the admissible subset J = {2, 4}. This is indicated above by the underlined roots in Γ. In
order to define J rev, cf. (5.4), we need to compute

κ0(J
rev) = w◦w(J) = (s12s23s12)(s12s23) = s12 .

Hence we have J rev = {1, 2, 4}. This is indicated above by the underlined positions in Γrev.
In order to transform the λ-chain Γrev into Γ, we need to perform a single Yang-Baxter move; this

consists of reversing the order of the bracketed roots below:

1 2 3 1 2 3 4 5
Γrev = ( α12, α13, α23, α13, (α23, α13, α12), α13) −→

1 2 3 1 2 3 4 5
Γ = ( α12, α13, α23, α13, (α12, α13, α23), α13) .
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The underlined roots indicate the way in which the Yang-Baxter move J rev 7→ Y (J rev) = J∗ works. All we
need to know is that there are two saturated chains in Bruhat order between the permutations u and w, cf.
the notation in (4.4):

u = s12 l s12s23 l s12s23s12 = w , u = s12 l s12s13 l s12s13s23 = w .

The first chain is retrieved as a subchain of Γrev and corresponds to J rev, while the second one is retrieved
as a subchain of Γ and corresponds to J∗. Hence we have J∗ = {1, 3, 4}.

We can give an intrinsic explanation for the fact that the map J 7→ J∗ is an involution on A(Γ); this
explanation is only based on the results in Sections 4 and 5, so it does not rely on Proposition 2.1 (2). Let
us first recall the bijections R : A(Γ) → A(Γrev) and Y : A(Γrev) → A(Γ) defined above. We claim that
Y R = R−1Y −1, which would prove that the composition Y R is an involution. In the same way as we proved
Theorem 5.4 (that is, as a direct consequence of Theorems 4.2 and 5.3), we can verify that the composition
R−1Y −1 satisfies the conditions in (5.6). Since these conditions uniquely determine the corresponding map
from A(Γ) to itself, our claim follows.

Remark 5.7. According to the above discussion, we have a second way of realizing the fundamental
involution ηλ on the canonical basis, namely as R−1Y −1. In some sense, this is the analog of the construction
of the evacuation map based on the promotion operation (see, for instance, [6, p. 184]).

We have the following corollary of Proposition 5.1.

Corollary 5.8. For any J ∈ A(Γ), we have

(5.7) µ(J∗) = w◦(µ(J)) , κ0(J
∗) = bw◦κ1(J)c , κ1(J

∗) = bw◦κ0(J)c .
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Ehrhart polynomials of lattice-face polytopes

Fu Liu

Abstract. There is a simple formula for the Ehrhart polynomial of a cyclic polytope. The purpose of this
paper is to show that the same formula holds for a more general class of polytopes, lattice-face polytopes.
We develop a way of decomposing any d dimensional simplex in general position into d! signed sets, each of
which corresponds to a permutation in the symmetric group Sd, and reduce the problem of counting lattice
points in a polytope in general position to counting lattice points in these special signed sets. Applying this
decomposition to a lattice-face simplex, we obtain signed sets with special properties that allow us to count
the number of lattice points inside them. We are thus able to conclude the desired formula for the Ehrhart
polynomials of lattice-face polytopes.

Résumé. Il y a une formule simple pour le polynôme d’Ehrhart d’un polytope cyclique. Le but de cet

article est de prouver que la même formule est vraie pour une classe plus générale de polytope, les polytopes
”treillis-faces”. Nous donnons une manière de décomposer n’importe quel simplexe de dimension d en position
générale en d! ensembles signés. Chacun de ces ensembles correspond à une permutation dans le groupe
symétrique Sd, et ramène le problème de compter des points de treillis dans un polytope en position générale
à compter des points de treillis dans ces ensembles signés particuliers. Appliquant cette décomposition à
un simplexe de treillis-faces, nous obtenons des ensembles signés dont les propriétés nous permettent de
compter le nombre de points de treillis qu’ils contiennent. Nous obtenons ainsi la formule désirée pour les
polynômes d’Ehrhart des polytopes de treillis-faces.

1. Introduction

A d-dimensional lattice Z
d = {x = (x1, . . . , xd) | ∀xi ∈ Z} is the collection of all points with integer

coordinates in R
d. Any point in a lattice is called a lattice point.

A convex polytope is a convex hull of a finite set of points. We often omit convex and just say polytope.
For any polytope P and some positive integer m ∈ N, we use i(m, P ) to denote the number of lattice points
in mP, where mP = {mx|x ∈ P} is the mth dilated polytope of P.

An integral or lattice polytope is a convex polytope whose vertices are all lattice points. Eugène Ehrhart
[4] showed that for any d-dimensional integral polytope, i(P, m) is a polynomial in m of degree d. Thus, we
call i(P, m) the Ehrhart polynomial of P when P is an integral polytope. Please see [2, 3] for more reference
to the literature of lattice point counting. Although Ehrhart’s theory was developed in 1960’s, we still do
not know much about the coefficients of Ehrhart polynomials for general polytopes except that the leading,
second and last coefficients of i(P, m) are the normalized volume of P , one half of the normalized volume of
the boundary of P and 1, respectively.

In [6], the author showed that for any d-dimensional cyclic polytope P , we have that

(1.1) i(P, m) = Vol(mP ) + i(π(P ), m) =

d∑

k=0

Volk(π(d−k)(P ))mk,

where π(k) is the map which ignores the last k coordinates of a point, and asked whether there are other
integral polytopes that have the the same form of Ehrhart polynomials.

2000 Mathematics Subject Classification. Primary 05A19; Secondary 52B20.
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In this paper, we define a new family of integral polytopes, lattice-face polytopes, and show (Theorem
3.4) that their Ehrhart polynomials are in the form of (1.1).

The main method of [6] is a decomposition of an arbitrary d dimensional simplex cyclic polytope into d!
signed sets, each of which corresponds to a permutation in the symmetric group Sd and has the same sign
as the corresponding permutation. However, for general polytopes, such a decomposition does not work.

In this paper, we develop a way of decomposing any d dimensional simplex in general position into d!
signed sets, where the sign of each set is not necessarily the same as the corresponding permutation. Applying
the new decomposition to a lattice-face simplex, we are able to show (Theorem 3.5) that the number of lattice
points in terms of a formula (6.1) involving Bernoulli polynomials, signs of permutations, and determinants,
and then to analyze this formula further to derive the theorem. Theorem 3.5, together with some simple
observation in section 2 and 3, imply Theorem 3.4.

2. Preliminaries

We first give some definitions and notations, most of which follows [6].
All polytopes we will consider are full-dimensional, so for any convex polytope P, we use d to denote

both the dimension of the ambient space R
d and the dimension of P. We call a d-dimensional polytope a

d-polytope. Also, We use ∂P and I(P ) to denote the boundary and the interior of P, respectively.
For any set S, we use conv(S) to denote the convex hull of all of points in S.
Recall that the projection π : R

d → R
d−1 is the map that forgets the last coordinate. For any set S ⊂ R

d

and any point y ∈ R
d−1, let ρ(y, S) = π−1(y) ∩ S be the intersection of S with the inverse image of y under

π. Let p(y, S) and n(y, S) be the point in ρ(y, S) with the largest and smallest last coordinate, respectively.
If ρ(y, S) is the empty set, i.e., y 6∈ π(S), then let p(y, S) and n(y, S) be empty sets as well. Clearly, if S is
a d-polytope, p(y, S) and n(y, S) are on the boundary of S. Also, we let ρ+(y, S) = ρ(y, S) \ n(y, S), and for
any T ⊂ R

d−1, ρ+(T, S) = ∪y∈T ρ+(y, S).

Definition 2.1. Define PB(P ) =
⋃

y∈π(P ) p(y, P ) to be the positive boundary of P ; NB(P ) = ∪y∈π(P )n(y, P )

to be the negative boundary of P and Ω(P ) = P \ NB(P ) = ρ+(π(P ), P ) = ∪y∈π(P )ρ
+(y, P ) to be the non-

negative part of P.

Definition 2.2. For any facet F of P, if F has an interior point in the positive boundary of P, then
we call F a positive facet of P and define the sign of F as +1 : sign(F ) = +1. Similarly, we can define the
negative facets of P with associated sign −1. For the facets that are neither positive nor negative, we call
them neutral facets and define the sign as 0.

It’s easy to see that F ⊂ PB(P ) if F is a positive facet and F ⊂ NB(P ) if F is a negative facet.
Because the usual set union and set minus operation do not count the number of occurrences of an

elements, which is important in our paper, from now on we will consider any polytopes or sets as multisets
which allow negative multiplicities. In other words, we consider any element of a multiset as a pair (x, m),
where m is the multiplicity of element x. Then for any multisets M1, M2 and any integers m, n and i, we
define the following operators:

a) Scalar product: iM1 = i · M1 = {(x, im) | (x, m) ∈ M1}.
b) Addition: M1 ⊕ M2 = {(x, m + n) | (x, m) ∈ M1, (x, n) ∈ M2}.
c) Subtraction: M1 	 M2 = M1 ⊕ ((−1) · M2).

It’s clear the following holds:

Lemma 2.3. For any polytope P ⊂ R
d, ∀R1, . . . , Rk ⊂ R

d−1, ∀i1, . . . , ik ∈ Z :

ρ+




k⊕

j=1

ijRj , P



 =

k⊕

j=1

ijρ
+(Rj , P ).

Definition 2.4. We say a set S has weight w, if each of its elements has multiplicity either 0 or w. And
S is a signed set if it has weight 1 or −1.

Let P be a convex polytope. For any y an interior point of π(P ), since π is a continuous open map,
the inverse image of y contains an interior point of P. Thus π−1(y) intersects the boundary of P exactly
twice. For any y a boundary point of π(P ), again because π is an open map, we have that ρ(y, P ) ⊂ ∂P, so
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ρ(y, P ) = π−1(y) ∩ ∂P is either one point or a line segment. The polytopes P we will be interested in are
those satisfying ρ(y, P ) has has only one point.

Lemma 2.5. If a polytope P satisfies:

(2.1) |ρ(y, P )| = 1, ∀y ∈ ∂π(P ),

then P has the following properties:

(i) For any y ∈ I(π(P )), π−1(y) ∩ ∂P = {p(y, P ), n(y, P )}.
(ii) For any y ∈ ∂π(P ), π−1(y) ∩ ∂P = ρ(y, P ) = p(y, P ) = n(y, P ), so ρ+(y, P ) = ∅.

(iii) If P =
⊔k

i=1 Pi, where the Pi’s all satisfy (2.1), then Ω(P ) =
⊕k

i=1 Ω(Pi). (P =
⊔k

i=1 Pi means

that Pi’s give a decomposition of P, i.e., P =
⋃k

i=1 Pi, and for any i 6= j, Pi ∩ Pj is contained in
their boundaries.)

(iv) The set of facets of P are partitioned into the set of positive facets and the set of negative facets,
i.e., there is no neutral facets.

The proof of this lemma is straightforward, so we won’t include it here.
The main purpose of this paper is to discuss the number of lattice points in a polytope. Therefore, for

simplicity, for any set S ∈ R
d, we denote by L(S) = S ∩Z

d the set of lattice points in S. It’s not hard to see
that L commutes with some of the operations we defined earlier, e.g. ρ, ρ+, Ω.

3. Lattice-face polytopes

A d-simplex is a polytope given as the convex hull of d + 1 affinely independent points in R
d.

Definition 3.1. We define lattice-face polytopes recursively. We call a one dimensional polytope a
lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any d-subset
U ⊂ V,

a) π(conv(U)) is a lattice-face polytope, and
b) π(L(HU )) = Z

d−1, where HU is the affine space spanned by U. In other words, after dropping the
last coordinate of the lattice of HU , we get the (d − 1)-dimensional lattice.

To understand the definition, let’s look at examples of 2-polytopes.

Example 3.2. Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1). Clearly, for
any 2-subset U, condition a) is always satisfied. When U = {v1, v2}, HU is {(x, 0) | x ∈ R}. So π(L(HU )) = Z,
i.e., b) holds. When U = {v1, v3}, HU is {(x, y) | x = 2y}. Then L(HU ) = {(2z, z) | z ∈ Z} ⇒ π(L(HU )) =
2Z 6= Z. When U = {v2, v3}, HU is {(2, y) |y ∈ R }. Then π(L(HU )) = {2} 6= Z. Therefore, P1 is not a
lattice-face polytope.

Let P2 be the polytope with vertices (0, 0), (1, 1) and (2, 0). One can check that P2 is a lattice-face
polytope.

Lemma 3.3. Let P be a lattice-face d-polytope with vertex set V, then we have:

(i) π(P ) is a lattice-face (d − 1)-polytope.
(ii) mP is a lattice-face d-polytope, for any positive integer m.
(iii) π induces a bijection between L(NB(P )) and L(π(P )).
(iv) Any d-subset U of V forms a (d − 1)-simplex. Thus π(conv(U)) is a (d − 1)-simplex.
(v) Let H be the hyperplane determined by some d-subset of V. Then for any lattice point y ∈ Z

d−1, we
have that ρ(y, H) is a lattice point.

(vi) P is an integral polytope.

Proof. (i), (ii), (iii), (iv) and (v) are easy to prove. We prove (vi) by induction on d.
Any 1-dimensional lattice-face polytope is integral by definition.
For d ≥ 2, suppose any (d − 1) dimensional lattice-face polytope is an integral polytope. Let P be a

d dimensional lattice-face polytope with vertex set V. For any vertex v0 ∈ V, let U be a subset of V that
contains v0. Let U = {v0, v1, . . . , vd−1}. We know that P ′ = π(conv(U)) is a lattice-face (d−1)-simplex with
vertices {π(v0), . . . , π(vd−1)}. Thus, by the induction hypothesis, P ′ is an integral polytope. In particular,
π(v0) is a lattice point. Therefore, v0 = ρ(π(v0), H) is a lattice point. �
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The main theorem of this paper is to describe all of the coefficients of the Ehrhart polynomial of a
lattice-face polytope.

Theorem 3.4. Let P be a lattice-face d-polytope, then

(3.1) i(P, m) = Vol(mP ) + i(π(P ), m) =

d∑

k=0

Volk(π(d−k)(P ))mk.

However, by Lemma 3.3/(ii),(iii), we have that

i(P, m) = |L(Ω(mP ))| + i(π(P ), m).

Therefore, to prove Theorem 3.4 it is sufficient to prove the following theorem:

Theorem 3.5. For any P a lattice-face polytope,

|L(Ω(P ))| = Vol(P ).

Remark 3.6. We have an alternative definition of lattice-face polytopes, which is equivalent to Definition
3.1. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all k with 0 ≤ k ≤ d−1,

(3.2) for any (k + 1)-subset U ⊂ V, πd−k(L(HU )) ∼= Z
k,

where HU is the affine space determined by U. In other words, after dropping the last d − k coordinates of
the lattice of HU , we get the k-dimensional lattice.

4. A signed decomposition of the nonnegative part of a simplex in general position

The volume of a polytope is not very hard to characterize. So our main problem is to find the a way to
describe the number of lattice points in the nonnegative part of a lattice-face polytope. We are going to do
this via a signed decomposition.

4.1. Polytopes in general position. For the decomposition, we will work with a more general type
of polytope (which contains the family of lattice-face polytopes).

Definition 4.1. We say that a d-polytope P with vertex set V is in general position if for any k : 0 ≤
k ≤ d − 1, and any (k + 1)-subset U ⊂ V, πd−k(conv(U)) is a k-simplex, where conv(U) is the convex hull
of all of points in U.

It’s easy to see that a lattice-face polytope is a polytope in general position. Therefore, the following
discussion can be applied to lattice-face polytopes.

The following lemma states some properties of a polytope in general position. The proof is omitted.

Lemma 4.2. Given a d-polytope P in general position with vertex set V, then

(i) P satisfies (2.1).
(ii) For any nonempty subset U of V, let Q = conv(U). If U has dimension k(0 ≤ k ≤ d), then πd−k(Q)

is a k-polytope in general position. In particular, for any facet F of P, π(F ) is a (d − 1)-polytope
in general position.

(iii) For any triangulation of P =
⊔k

i=1 Pi without introducing new vertices, Ω(P ) =
⊕k

i=1 Ω(Pi). Thus,

L(Ω(P )) =
⊕k

i=1 L(Ω(Pi)).
(iv) For any hyperplane H determined by one facet of P and any y ∈ R

d−1, ρ(y, H) is one point.

Remark 4.3. By (iii), and because Vol(
⊔k

i=1 Pi) =
∑k

i=1 Vol(Pi), to prove Theorem 3.5 it is sufficient
to prove the case when P is a lattice-face simplex.

Therefore, we will only construct our decomposition in the case of simplices in general position. However,
before the construction, we need one more proposition about the nonnegative part of a polytope in general
position.

Proposition 4.4. Let P be a d-polytope in general position with facets F1, F2 . . . Fk. Let H be the
hyperplane determined by Fk. For i : 1 ≤ i ≤ k, let F ′

i = π−1(π(Fi)) ∩ H and Qi = conv(Fi ∪ F ′
i ).

Then

(4.1) Ω(P ) = − sign(Fk)

k−1⊕

i=1

sign(Fi)ρ
+(Ω(π(Fi)), Qi).
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The proof of Proposition 4.4 is similar to the proof of Proposition 2.6 in [6], so we do not include it here.
Now, we can use this proposition to inductively construct a decomposition of the nonnegative part Ω(P )

of a d-simplex P in general position into d! signed sets.

Decomposition of Ω(P ):

• If d = 1, we do nothing: Ω(P ) = Ω(P ).
• If d ≥ 2, then by applying Proposition 4.4 to P and letting k = d + 1, we have

Ω(P ) = − sign(Fd+1)

d⊕

i=1

sign(Fi)ρ
+(Ω(π(Fi)), Qi).

However, by Lemma 4.2/(ii), each π(Fi) is a (d − 1)-simplex in general position. By the

induction hypothesis, Ω(π(Fi)) =
⊕(d−1)!

j=1 Si,j , where Si,j ’s are signed sets.

ρ+(Ω(π(Fi)), Qi) = ρ+(

(d−1)!⊕

j=1

Si,j , Qi) =

(d−1)!⊕

j=1

ρ+(Si,j , Qi).

Since each ρ+(Si,j , Qi) is a signed set, we have decomposed Ω(P ) into d! signed sets.

Now we know that we can decompose Ω(P ) into d! signed sets. But we still need to figure out what
these sets are and which signs they have. In the next subsection, we are going to discuss the sign of a facet
of a d-simplex, which is going to help us determine the signs in our decomposition.

4.2. The sign of a facet of a d-simplex. From now on, we will always use the following setup for a
d-simplex unless otherwise stated:

Suppose P is a d-simplex in general position with vertex set V = {v1, v2, . . . , vd+1}, where the coordinates
of vi are xi = (xi,1, xi,2, . . . , xi,d).

For any i, we denote by Fi the facet determined by vertices in V \{vi} and Hi the hyperplane determined
by Fi.

For any σ ∈ Sd and k : 1 ≤ k ≤ d, we define matrices X(σ, k) and Y (σ, k) to be the matrices

X(σ, k) =





1 xσ(1),1 xσ(1),2 · · · xσ(1),k

1 xσ(2),1 xσ(2),2 · · · xσ(2),k

...
...

...
. . .

...
1 xσ(k),1 xσ(k),2 · · · xσ(k),k

1 xd+1,1 xd+1,2 · · · xd+1,k





(k+1)×(k+1)

,

Y (σ, k) =





1 xσ(1),1 xσ(1),2 · · · xσ(1),k−1

1 xσ(2),1 xσ(2),2 · · · xσ(2),k−1

...
...

...
. . .

...
1 xσ(k),1 xσ(k),2 · · · xσ(k),k−1





k×k

.

We also define z(σ, k) to be

z(σ, k) = det(X(σ, k))/ det(Y (σ, k)),

where det(M) is the determinant of a matrix M.
Now we can determine the sign of a facet Fi of P by looking at the determinants of these matrices,

denoting by sign(x) the usual definition of sign of a real number x.

Lemma 4.5. (i) ∀i : 1 ≤ i ≤ d and ∀σ ∈ Sd with σ(d) = i,

(4.2) sign(Fi) = sign(det(X(σ, d))/ det(X(σ, d − 1))).

(ii) When i = d + 1 and for ∀σ ∈ Sd,

(4.3) sign(Fd+1) = − sign(det(X(σ, d))/ det(Y (σ, d))) = − sign(z(σ, d)).
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Proof. For any i : 1 ≤ i ≤ d + 1, let v′i = ρ(π(vi), Hi), i.e. v′i is the unique point of the hyperplane
spanned by Fi which has the same coordinates as vi except for the last one. Suppose the coordinates of v′i
are (xi,1, . . . , xi,d−1, x

′
i,d). Then

sign(Fi) = − sign(xi,d − x′
i,d).

∀i : 1 ≤ i ≤ d and ∀σ ∈ Sd with σ(d) = i, because v′i is in the hyperplane determined by Fi, we have
that

det









1 xσ(1),1 · · · xσ(1),d−1 xσ(1),d

...
...

. . .
...

...
1 xσ(d−1),1 · · · xσ(d−1),d−1 xσ(d−1),d

1 xσ(d),1 · · · xσ(d),d−1 x′
σ(d),d

1 xd+1,1 · · · xd+1,d−1 xd+1,d








= 0.

Therefore,

det(X(σ, d)) = (−1)2d+1(xi,d − x′
i,d) det(X(σ, d − 1)).

Thus,

sign(det(X(σ, d))/ det(X(σ, d − 1))) = − sign(xi,d − x′
i,d) = sign(Fi).

We can similarly prove the formula for i = d + 1. �

4.3. Decomposition formulas. The following theorem describes the signed sets in our decomposition.

Theorem 4.6. Let P be a d-simplex with vertex set V = {v1, v2, . . . , vd+1}, where the coordinates of
vi are xi = (xi,1, xi,2, . . . , xi,d). For any σ ∈ Sd, and k : 0 ≤ k ≤ d − 1, let vσ,k be the point with first
k coordinates the same as vd+1 and affinely dependent with vσ(1), vσ(2), . . . , vσ(k), vσ(k+1). (Because P is in
general position, one sees that there exists one and only one such point.) We also let vσ,d = vd+1. Then

Ω(P ) =
⊕

σ∈Sd

sign(σ, P )Sσ,

where

(4.4) sign(σ, P ) = sign(det(X(σ, d)))

d∏

i=1

sign(z(σ, i)),

and

(4.5) Sσ = {s ∈ R
d | πd−k(s) ∈ Ω(πd−k(conv({vσ,0, . . . , vσ,k})))∀1 ≤ k ≤ d}

is a set of weight 1, i.e. a regular set.
Hence,

L(Ω(P )) =
⊕

σ∈Sd

sign(σ, P )L(Sσ).

Proof. Proof by induction. �

Corollary 4.7. If P is a d-simplex in general position, then

(4.6) |L(Ω(P ))| =
∑

σ∈Sd

sign(σ, P )|L(Sσ)|.

Therefore, if we can calculate the number of lattice points in Sσ’s, then we can calculate the number of
lattice points in the nonnegative part of a d-simplex in general position. However, it’s not so easy to find
|L(Sσ)|’s for an arbitrary polytope. But we can do it for any lattice-face d-polytope.

5. Lattice enumeration in Sσ and Bernoulli polynomials

In this section, we will count the number of lattice points in Sσ’s when P is a lattice-face d-simplex.
This calculation involves Bernoulli polynomials.
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5.1. Counting lattice points in Sσ. We say a map from R
d → R

d is lattice preserving if it is invertible
and it maps lattice points to lattice points. Clearly, given a lattice preserving map f, for any set S ∈ R

d we
have that |L(S)| = |L(f(S))|.

Let P be a lattice face d-simplex with vertex set V = {v1, . . . , vd+1}, where we use the same setup as
before for d-simplices.

Given any σ ∈ Sd, recall that Sσ is defined as in (4.5). To count the number of lattice points in Sσ, we
want to find a lattice preserving affine transformation which simplifies the form of Sσ.

Before trying to find such a transformation, we will define more notations.
For any σ ∈ Sd, k : 1 ≤ k ≤ d and x = (x1, x2, . . . , xd) ∈ R

d, we define matrix X̃(σ, k; x) as

X̃(σ, k; x) =





1 xσ(1),1 xσ(1),2 · · · xσ(1),k

1 xσ(2),1 xσ(2),2 · · · xσ(2),k

...
...

...
. . .

...
1 xσ(k),1 xσ(k),2 · · · xσ(k),k

1 x1 x2 · · · xk





(k+1)×(k+1)

,

and for j : 0 ≤ j ≤ k, let M(σ, k; j) be the minor of the matrix X̃(σ, k; x) obtained by omitting the last
row and the (j + 1)th column. Then

(5.1) det(X̃(σ, k; x)) = (−1)k(M(σ, k; 0) +

k∑

j=1

(−1)jM(σ, k; j)xj).

Note that M(σ, k; k) = det(Y (σ, k)). Therefore,

(5.2)
det(X̃(σ, k; x))

det(Y (σ, k))
= (−1)k M(σ, k; 0)

det(Y (σ, k))
+

k−1∑

j=1

(−1)k+j M(σ, k; j)

det(Y (σ, k))
xj + xk.

Lemma 5.1. Suppose P is a lattice-face d-simplex. ∀σ ∈ Sd, ∀k : 1 ≤ k ≤ d, and ∀j : 0 ≤ j ≤ k − 1, we
have that

M(σ, k; j)

det(Y (σ, k))
∈ Z.

This lemma, as well as Lemma 5.6, can be directly derived from the definition of the lattice-face polytopes.
We omit the proofs here.

Given this lemma, we have the following proposition.

Proposition 5.2. There exist a lattice-preserving affine transformation Tσ which maps x = (x1, x2, . . . , xd) ∈
R

d to

(
det(X̃(σ, 1; x))

det(Y (σ, 1))
,
det(X̃(σ, 2; x))

det(Y (σ, 2))
, . . . ,

det(X̃(σ, d; x))

det(Y (σ, d))
).

Proof. Let ασ = (− M(σ,1;0)
det(Y (σ,1)) ,

M(σ,2;0)
det(Y (σ,2)) , . . . , (−1)d M(σ,d;0)

det(Y (σ,d))) and Mσ = (mσ,j,k)d×d, where

mσ,j,k =






1, if j = k

0, if j > k

(−1)k+j M(σ,k;j)
det(Y (σ,k)) if j < k

.

We define Tσ : R
d → R

d by mapping x to ασ + xMσ. By (5.2),

ασ + xMσ = (
det(X̃(σ, 1; x))

det(Y (σ, 1))
,
det(X̃(σ, 2; x))

det(Y (σ, 2))
, . . . ,

det(X̃(σ, d; x))

det(Y (σ, d))
).

Also, because all of the entries in Mσ and ασ are integers and the determinant of Mσ is 1, Tσ is lattice
preserving. �

Corollary 5.3. Given P a lattice-face polytope with vertex set V = {v1, v2, . . . , vd+1}, we have that

(i) ∀i : 1 ≤ i ≤ d, the last d + 1 − i coordinates of Tσ(vσ(i)) are all zero.
(ii) Tσ(vd+1) = (z(σ, 1), z(σ, 2), . . . , z(σ, d)).
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(iii) Recall that for k : 0 ≤ k ≤ d − 1, vσ,k is the point with first k coordinates the same as vd+1 and
affinely dependent with vσ(1), vσ(2), . . . , vσ(k), vσ(k+1). Then the first k coordinates of Tσ(vσ,k) are
the same as Tσ(vd+1) and the rest of the coordinates are zero.

Proof. (i) This follows from that fact that det(X̃(σ, k; xσ(i))) = 0 if i ≤ k ≤ d.

(ii) This follows from the fact that X̃(σ, k; xd+1) = X(σ, k) and z(σ, k) = det(X(σ, k))/ det(Y (σ, k)).
(iii) Because for any x ∈ R

d, the kth coordinate of Tσ only depends on the first k coordinates of x,
Tσ(vσ,k) has the same first k coordinates as Tσ(vd+1). Tσ is an affine transformation. So Tσ(vσ,k)
is affinely dependent with Tσ(vσ(1)), Tσ(vσ(2)), . . . , Tσ(vσ(k)), Tσ(vσ(k+1)), the last d−k coordinates
of which are all zero. Therefore the last d − k coordinates of Tσ(vσ,k) are all zero as well.

�

Recalling that vσ,d = vd+1, we are able to describe Tσ(Sσ) now.

Proposition 5.4. Let Ŝσ = Tσ(Sσ). Then

(5.3) s = (s1, s2, . . . , sd) ∈ Ŝσ ⇔ ∀1 ≤ k ≤ d, sk ∈ Ω(conv(0,
z(σ, k)

z(σ, k − 1)
sk−1)),

where by convention we let z(σ, 0) = 1 and s0 = 1.

Proof. This can be deduced from the fact that

Ŝσ = {s ∈ R
d | πd−k(s) ∈ Ω(πd−k(conv({v̂σ,0, . . . , v̂σ,k})))∀1 ≤ k ≤ d},

where v̂σ,i = (z(σ, 1), . . . , z(σ, i), 0, . . . , 0), for 0 ≤ i ≤ d.
�

Because Tσ is a lattice preserving map, |L(Sσ)| = |L(Ŝσ)|. Hence, our problem becomes to find the

number of lattice points in Ŝσ. However, Ŝσ is much nicer than Sσ. Actually, we can give a formula to

calculate all of the sets having the same shape as Ŝσ.

Lemma 5.5. Given real nonzero numbers b0 = 1, b1, b2, . . . , bd, let a′
k = bk/bk−1 and ak = bk/|bk−1|, ∀k :

1 ≤ k ≤ d. Let S be the set defined by the following:

s = (s1, s2, . . . , sd) ∈ S ⇔ ∀1 ≤ k ≤ d, sk ∈ Ω(conv(0, a′
ksk−1)),

where s0 is set to 1. Then

|L(S)| =
∑

s1∈L(Ω(conv(0,a′

1
)))

∑

s2∈L(Ω(conv(0,a′

2
s1)))

· · ·
∑

sd∈L(Ω(conv(0,a′

d
sd−1)))

1.

In particular, if bd > 0, then

|L(S)| =

ba1c∑

s1=1

ba2s1c∑

s2=1

· · ·

badsd−1c∑

sd=1

1,

where for any real number x, bxc is the largest integer no greater than x and x is defined as

x =

{
x, if x ≥ 0

−x − 1, if x < 0
.

Proof. The first formula is straightforward. The second formula follows from the facts that for any
real numbers x,

L(Ω(conv(0, x))) =

{
{z ∈ Z | 1 ≤ z ≤ bxc} if x ≥ 0

{z ∈ Z | − bxc ≤ z ≤ 0} if x < 0
,

the sign of si is the same as the sign of bi, and because bd > 0, all the si’s are non-zero. �

However, for lattice-polytopes, we have another good property of the z(σ, k)’s.

Lemma 5.6. If P is a lattice-polytope d-simplex, then

z(σ, k)/z(σ, k − 1) ∈ Z.
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For any lattice-face d-simplex P, we can always find a way to order its vertices into V = {v1, v2, . . . , vd+1},
so that the corresponding det(X(1, d)) and det(Y (1, d)) are positive, where 1 stands for the identity permu-
tation in Sd. Note z(σ, d) is independent of σ. So it is positive. Therefore, by Lemma 5.5 and Lemma 5.6,
we have the following result.

Proposition 5.7. Let P be a lattice-face d-simplex with vertex set V, where the order of vertices makes
both det(X(1, d)) and det(Y (1, d)) positive. Define

a(σ, k) =
z(σ, k)

|z(σ, k − 1)|
, ∀k : 1 ≤ k ≤ d.

Then

(5.4) |L(Sσ)| =

a(σ,1)∑

s1=1

a(σ,2)s1∑

s2=1

· · ·

a(σ,d)sd−1∑

sd=1

1.

Because of (5.4), it’s natural for us to define

(5.5) fd(a1, a2, . . . , ad) =

a1∑

s1=1

a2s1∑

s2=1

· · ·

adsd−1∑

sd=1

1,

for any positive integers a1, a2, . . . , ad. However, since fd is just a polynomial in the ai’s, we can extend
the domain of fd from Z

d
>0 to Z

d or even R
d. And for convenience, we still use the form of (5.5) to write

fd(a1, . . . , an) even when ai’s are not all positive integers.
Also, fixing b0 = 1, we define

gd(b1, b2, . . . , bd) = fd(b1/b0, b2/b1, . . . , bd/bd−1),

for any (b1, b2, . . . , bd) ∈ (R \ {0})d.
fd and gd are closely related to formula (5.4). In next subsection, we will discuss Bernoulli polynomials

and power sums, which are connected to fd and gd, and then rewrite (5.4) in terms of gd. Please refer to [3,
Section 2.4] for other examples about Bernoulli polynomials and their relation to lattice polytopes.

5.2. Power sums and Bernoulli polynomials. The kth Bernoulli polynomials, Bk(x), is defined as
[1, p. 804]

tetx

et − 1
=

∞∑

k=0

Bk(x)
tk

k!
,

The Bernoulli polynomials satisfy [5]

(5.6) Bk(1 − x) = (−1)kBk(x), ∀k ≥ 0,

as well as the relation [8, p. 127]

(5.7) Bk(x + 1) − Bk(x) = kxk−1, ∀k ≥ 1.

We call Bk = Bk(0) a Bernoulli number. It satisfies [7] that

(5.8) Bk(0) = 0, for any odd number k ≥ 3.

For k ≥ 0, let

Sk(x) =
Bk+1(x + 1) − Bk+1

k + 1
.

Given any n a nonnegative integer, by (5.7), we have that

Sk(n) =

n∑

i=0

ik =

{∑n

i=1 ik if k ≥ 1

n + 1 if k = 0
.

Therefore, we call Sk(x) the kth power sum polynomial.

Lemma 5.8. For any k ≥ 1, the constant term of Sk(x) is 0, i.e., x is a factor of Sk(x), and

(5.9) Sk(x) = (−1)k+1Sk(−x − 1).

Proof. The constant term of Sk(x) is Sk(0) = 0. The formula follows from (5.6) and (5.8). �
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Lemma 5.9. fd(a1, . . . , ad) is a polynomial in a1 of degree d. And
∏d

i=1 ai is a factor of it. In particular,
fd can be written as

(5.10) fd(a1, . . . , ad) =

d∑

k=1

fd,k(a2, . . . , ad)a
k
1 ,

where fd,k(a2, . . . , ad) is a polynomial in a2, . . . , ad with a factor
∏d

i=2 ai.

Proof. This can be proved by induction on d, using the fact that Sk(x) has a factor x. �

Proposition 5.10. Given s0 = 1, a = (a1, a2, . . . , ad) ∈ R
d, for any j : 1 ≤ j ≤ d − 1,

fd(a1, a2, . . . , ad) = −
a1s0∑

s1=1

· · ·

aj−1sj−2∑

sj−1=1

−ajsj−1−1∑

sj=1

−aj+1sj∑

sj+1=1

aj+2sj+1∑

sj+2=1

. . .

adsd−1∑

sd=1

1.

Given b = (b1, b2, . . . , bd) ∈ (R \ {0})d with bd > 0, let ak = bk/|bk−1|, then

(5.11) gd(b1, b2, . . . , bd) = sign

(
d∏

i=1

bi

)
a1∑

s1=1

a2s1∑

s2=1

· · ·

adsd−1∑

sd=1

1.

Proof. This follows from (5.9), (5.10) and an inductive argument. �

Proposition 5.11. Let P be a lattice-face d-simplex with vertex set V, where the order of vertices makes
both det(X(1, d)) and det(Y (1, d)) positive. Then

(5.12) |L(Sσ)| = sign

(
d∏

i=1

z(σ, i)

)
gd(z(σ, 1), z(σ, 2), . . . , z(σ, d)).

Therefore,

(5.13) |L(Ω(P ))| =
∑

σ∈Sd

sign(σ)gd(z(σ, 1), z(σ, 2), . . . , z(σ, d)).

Proof. We can get (5.12) by comparing (5.4) and (5.11). And (5.13) follows from (4.6), (4.4), (5.12)
and the fact that det(X(σ, d)) = sign(σ) det(X(1, d)). �

6. Proof of the Main Theorems

We now have all the ingredients but one to prove Theorem 3.5. The missing one is stated as the following
proposition.

Proposition 6.1. Let V = {v1, v2, . . . , vd+1} be the vertex set of a d-simplex in general position, where
the coordinates of vi are xi = (xi,1, xi,2, . . . , xi,d). Then

(6.1)
∑

σ∈Sd

sign(σ)gd(z(σ, 1), z(σ, 2), . . . , z(σ, d)) =
1

d!
det(X(1, d)).

Given this proposition, we can prove Theorem 3.5.

Proof of Theorem 3.5. As we mentioned in Remark 4.3, to prove Theorem 3.5, it is sufficient to
prove the case when P is a lattice-face simplex.

When P is a lattice-face d-simplex, we still assume that the order of the vertices of P makes both
det(X(1, d)) and det(Y (1, d)) positive. Thus, (5.13), (6.1) and the fact that the volume of P is 1

d! | det(X(1, d))|
imply that

|L(Ω(P ))| = Vol(P ).

�

As we mentioned earlier, Theorem 3.4 follows from Theorem 3.5.
The proof of Proposition 6.1 is lengthy and self-contained, so we do not include it here.
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7. Examples and Further discussion

7.1. Examples of lattice-face polytopes. In this subsection, we use a fixed family of lattice-face
polytopes to illustrate our results. Let d = 3, and for any positive integer k, let Pk be the polytope with
the vertex set V = {v1 = (0, 0, 0), v2 = (4, 0, 0), v3 = (3, 6, 0), v4 = (2, 2, 10k)}. One can check that Pk is a
lattice-face polytope.

Example 7.1 (Example of Theorem 3.4). The volume of Pk is 40k, and

i(Pk, m) = 40km3 + 12m2 + 4m + 1.

π(Pk) = conv{(0, 0), (4, 0), (3, 6)}, where

i(π(Pk), m) = 12m2 + 4m + 1.

So
i(Pk, m) = 40km3 + i(π(Pk), m),

which agrees with Theorem 3.4.

Example 7.2 (Example of Formula (4.1)). F4 = conv(v1, v2, v3) is a negative facet. The hyperplane
determined by F4 is H = {(x1, x2, x3) | x3 = 0}. Thus, v′4 = π−1(π(v4)) ∩ H = (2, 2, 0).

F3 = conv(v1, v2, v4) is a positive facet. π(F3) = conv((0, 0), (4, 0), (2, 2)). Ω(π(F3)) = π(F3)\conv((0, 0), (4, 0)).
F ′

3 = π−1(π(F3)) ∩ H = conv(v1, v2, v
′
4). So

Q3 = conv(F3 ∪ F ′
3) = conv(v1, v2, v4, v

′
4),

ρ+(Ω(π(F3)), Q3) = Q3 \ F ′
3.

F2 = conv(v1, v3, v4) is a positive facet. π(F2) = conv((0, 0), (3, 6), (2, 2)). Ω(π(F2)) = π(F2)\(conv((0, 0), (2, 2))∪
conv((2, 2), (3, 6))). F ′

2 = π−1(π(F2)) ∩ H = conv(v1, v3, v
′
4). So

Q2 = conv(F2 ∪ F ′
2) = conv(v1, v3, v4, v

′
4),

ρ+(Ω(π(F2)), Q2) = Q2 \ (F ′
2 ∪ conv(v1, v4, v

′
4) ∪ conv(v3, v4, v

′
4)).

F1 = conv(v2, v3, v4) is a positive facet. π(F1) = conv((4, 0), (3, 6), (2, 2)). Ω(π(F1)) = π(F1)\conv((4, 0), (2, 2)).
F ′

1 = π−1(π(F1)) ∩ H = conv(v2, v3, v
′
4). So

Q1 = conv(F1 ∪ F ′
1) = conv(v2, v3, v4, v

′
4),

ρ+(Ω(π(F1)), Q1) = Q1 \ (F ′
1 ∪ conv(v2, v4, v

′
4)).

Therefore,

Ω(Pk) = Pk \ F4 = − sign(F4)

3⊕

i=1

sign(Fi)ρ
+(Ω(π(Fi)), Qi),

which agrees with Proposition 4.4.

Example 7.3 (Example of Decomposition). In this example, we decompose Pk into 3! sets, where 5 of
them have positive signs and one has negative sign, which is different from the cases for cyclic polytopes,
where half of the sets have positive signs and the other half have negative signs.

Recall that vσ,3 = v4 = (2, 2, 10k), for any σ ∈ S3.
When σ = 123 ∈ S3, v123,2 = v′4 = (2, 2, 0), v123,1 = (2, 0, 0) and v123,0 = v1 = (0, 0, 0). Then

S123 = conv({v123,i}0≤i≤3) \ conv({v123,i}0≤i≤2),

with sign(123, Pk) = +1.
When σ = 213 ∈ S3, v213,2 = v′4 = (2, 2, 0), v213,1 = (2, 0, 0) and v213,0 = v2 = (4, 0, 0). Then

S213 = conv({v213,i}0≤i≤3) \ (conv({v213,i}0≤i≤2) ∪ conv({v213,i}1≤i≤3)),

with sign(213, Pk) = +1.
One can check that

S123 ⊕ S213 = ρ+(Ω(π(F3)), Q3).

When σ = 231 ∈ S3, v231,2 = v′4 = (2, 2, 0), v231,1 = (2, 12, 0) and v231,0 = v2 = (4, 0, 0). Then

S231 = conv({v231,i}0≤i≤3) \ (conv({v231,i}0≤i≤2) ∪ conv({v231,i}i=0,2,3 ∪ conv({v231,i}1≤i≤3)),

with sign(231, Pk) = +1.
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When σ = 321 ∈ S3, v321,2 = v′4 = (2, 2, 0), v321,1 = (2, 12, 0) and v321,0 = v3 = (3, 6, 0). Then

S321 = conv({v321,i}0≤i≤3) \ (conv({v321,i}0≤i≤2) ∪ conv({v321,i}i=0,2,3 ∪ conv({v321,i}1≤i≤3)),

with sign(321, Pk) = −1.
One can check that

S231 	 S321 = ρ+(Ω(π(F1)), Q1).

Similarly, we have that
S132 ⊕ S312 = ρ+(Ω(π(F2)), Q2).

Therefore, Ω(Pk) =
⊕

σ∈S3
sign(σ, Pk)Sσ, which coincides with Theorem 4.6.

7.2. Further discussion. Recall that Remark 3.6 gives an alternative definition for lattice-face poly-
topes. Note in this definition, when k = 0, satisfying (3.2) is equivalent to say that P is an integral polytope,
which implies that the last coefficient of the Ehrhart polynomial of P is 1. Therefore, one may ask

Question 7.4. If P is a polytope that satisfies (3.2) for all k ∈ K, where K is a fixed subset of
{0, 1, . . . , d − 1}, can we say something about the Ehrhart polynomials of P?

A special set K can be chosen as the set of consecutive integers from 0 to d′, where d′ is an integer no
greater than d − 1. Based on some examples in this case, the Ehrhart polynomials seems to follow a certain
pattern, so we conjecture the following:

Conjecture 7.5. Given d′ ≤ d − 1, if P is a d-polytope with vertex set V such that ∀k : 0 ≤ k ≤ d′,
(3.2) is satisfied, then for 0 ≤ k ≤ d′, the coefficient of mk in i(P, m) is the same as in i(πd−d′

(P ), m). In
other words,

i(P, m) = i(πd−d′

(P ), m) +

d∑

i=d′+1

cim
i.

When d′ = 0, the condition on P is simply that it is integral. And when d′ = d − 1, we are in the case
that P is a lattice-face polytope. Therefore, for these two cases, this conjecture is true.
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On the chromatic symmetric function of a tree

Jeremy L. Martin and Jennifer D. Wagner

Abstract. Stanley defined the chromatic symmetric function X(G) of a graph G as a sum of monomial
symmetric functions corresponding to proper colorings of G, and asked whether a tree is determined up to
isomorphism by its chromatic symmetric function. We approach Stanley’s question by asking what invariants
of a tree T can be recovered from its chromatic symmetric function X(T ). We prove that the degree sequence

(δ1, . . . ), where δj is the number of vertices of T of degree j, and the path sequence (π1, . . . ), where πk is
the number of k-edge paths in T , are given by explicit linear combinations of the coefficients of X(T ). These
results are consistent with an affirmative answer to Stanley’s question. We briefly present some applications
of these results to classifying certain special classes of trees by their chromatic symmetric functions.

Résumé. Stanley a défini la fonction symétrique chromatique X(G) d’un graphe G par une somme de
fonctions symétriques monomials qui correspondent aux colorations propres de G, et il a demandé si un
arbre est déterminé jusqu’à l’isomorphisme par sa fonction symétrique chromatique. Nous approchons la
question de Stanley en demandant quels invariants d’un arbre T peut être récupéré de sa fonction symétrique
chromatique X(T ). Nous prouvons que le suite des degrés (δ1, . . . ), où δj est le nombre des sommets de T

de degré j, et le suite des chemins (π1, . . . ), où πk est le nombre de chemins de longueur k, sont données
par des combinaisons lineaires explicites des coefficients X(T ). Ces résultats sont conformés à une réponse
affirmative à la question de Stanley. Nous présentons brièvement quelques applications de ces résultats à
classifier certaines classes spéciales des arbres par ses fonctions symétriques chromatiques.

Introduction

Let G be a simple graph with vertices V (G) and edges E(G), and let n = #V (G) (the order of G). We
assume familiarity with standard facts about graphs and trees, as set forth in, e.g., [11, Chapters 1–2]. In
particular, a coloring of G is a function κ : V (G) → {1, 2, . . .} such that κ(v) 6= κ(w) whenever the vertices
v, w are adjacent. Stanley [7] defined the chromatic symmetric function of G as

X(G) = X(G;x1, x2, . . . ) =
∑

κ

∏

v∈V (G)

xκ(v),

the sum over all proper colorings κ, where x1, x2, . . . are countably infinitely many commuting indetermi-
nates. Note that X(G) is homogeneous of degree n, and is invariant under permuting the xi, so that X(G)
is a symmetric function. Moreover, the usual chromatic function χ(G; k), the number of colorings of G using
at most k colors [11, Chapter 5], may be obtained from X(G) by setting

xi =

{

1 for i ≤ k,

0 for i > k.

Our work is an attempt to resolve the following question.

Question (Stanley [7]): Is X(G) a complete isomorphism invariant for trees? That is, must two
nonisomorphic trees have different chromatic symmetric functions?

2000 Mathematics Subject Classification. Primary 05C05,05C60; Secondary 05E05.
Key words and phrases. tree, chromatic symmetric function, degree sequence, path sequence.
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The answer to the question is “no” for arbitrary graphs; Stanley [7] exhibited two nonisomorphic graphs
G,G′ on 5 vertices such that X(G) = X(G′). For trees, however, the problem remains open. We note that
Gebhard and Sagan [2] studied a chromatic symmetric function in noncommuting variables x1, x2, . . . ; this
is easily seen to be a complete invariant of G. On the other hand, it is well-known (and elementary) that
the chromatic function χ(G; k) is the same, namely k(k−1)n−1, for all trees G on n vertices. Thus Stanley’s
question asks where X(G) falls between these two extremes. Li-Yang Tan [10] has verified computationally1

that X(T ) determines T up to isomorphism for all trees T of order ≤ 23.
Stanley showed that when X(G) is expanded in the basis of power-sum symmetric functions pλ (indexed

by partitions λ), the coefficients cλ enumerate the edge-selected subgraphs of G by the sizes of their compo-
nents (see equations (1), (2) (3) below). With the additional assumption that G is a tree, this expansion is
a powerful tool with which to recover the structure of G from X(G). The first steps in this direction are due
to Matthew Morin, who studied the chromatic symmetric functions of caterpillars (trees in which deleting
all the leaves yields a path) in [4, 5].

We now summarize our results.
The degree degT (v) of a vertex v in a graph T is the number of edges having v as an endpoint, and the

degree sequence of G is (δ1, δ2, . . . ), where δj is the number of vertices having degree k. Our first main result
is that the numbers δj are given by explicit linear combinations of the power-sum coefficients cλ(T ).

Theorem 1. For every tree T , we have δ1(T ) = cn−1(T ), and for all j ≥ 2,

δj(T ) =
∑

λ`n



`(λ̃)
∑

k≥j

(−1)j+k−1

(

k

j

)(

`(λ) − 1

k + `− n

)



 cλ(T ).

It is easier to compute directly the number sk of subgraphs of T that are k-edge stars, or trees with
one central vertex and k leaves. It is easily seen that the sequences (s1, s2, . . . ) and (δ1, δ2, . . . ) are linearly
equivalent.

The distance between two vertices of T is the number of edges in the unique path connecting them. The
path sequence of G is (π1, π2, . . . ), where πk is the number of vertex pairs at distance k, or equivalently the
number of k-edge paths occurring as subgraphs of G. Our second main result, Theorem 2, asserts that the
numbers πk are again given by certain linear combinations of the coefficients cλ(T ), as follows.

Theorem 2. For every tree T , we have π1(T ) = c2(T ) and π2(T ) = c3(T ), and for all k ≥ 3,

πk(T ) =
∑

λ`n

(

(−1)n+k+1−`(λ)

(

`(λ) − 1

k − n+ `(λ)

)

m(λ)

)

cλ(T ),

where

m(λ) =

(

n− `(λ)

2

)

−
s
∑

i=1

(

λi − 1

2

)

.

To prove each of these theorems, we interpret the desired linear combination of the coefficients of X(T )
as generating functions for certain subgraphs of G, using Stanley’s characterization of those coefficients. We
then show that these labeled subgraphs admit a sign-reversing involution. The ensuing cancellation permits
us to recognize the surviving terms as enumerating either stars or paths in G, as appropriate.

This extended abstract is organized as follows. Section 1 contains the elements of the theory of chromatic
symmetric functions, as developed by Stanley in [7]. Sections 2 and 3 contain sketches of the proofs of the
degree and path sequence theorems, respectively.

The final section contains some brief remarks about other isomorphism invariants that can be extracted
from X(T ), and about some special classes of trees that can be distinguished up to isomorphism by their
path and/or degree sequences (hence by their chromatic symmetric functions).

More details and applications will be found in a future paper written jointly by the present authors and
Matthew Morin.

1In an earlier version of this extended abstract, it was mentioned that the present authors have checked this for trees of
order ≤ 14, using the database of trees available online at http://www.zis.agh.edu.pl/trees/, generated by Piec, Malarz, and
Kulakowski as described in [6]. Evidently Tan’s result is a substantial improvement!
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1. Basic properties of X(G)

We begin by reviewing some of the theory of chromatic symmetric functions developed by Stanley in
[7]. A partition is a sequence of positive integers λ = (λ1, . . . , λs) with λ1 ≥ · · · ≥ λs > 0; the number
s = `(λ) is the length of λ. The corresponding power-sum symmetric function pλ = pλ(x1, x2, . . . ) is defined
by pλ = pλ1

pλ2
· · · pλs

, where pk = xk
1 + xk

2 + · · · .
One can obtain a family of useful invariants ofG by expandingX(G) in terms of the power sum symmetric

functions pλ. For each S ⊆ E, let λ(S) be the partition of n whose parts are the orders of the components
of the edge-induced subgraph G|S = (V, S). Stanley [7, Theorem 2.5] proved that

(1) X(G) =
∑

S⊂E

(−1)#Spλ(S).

In particular, the number of components of G|S is `(λ(S)). When G = T is a tree, every subgraph S is a
forest, so `(λ(S)) = n− #S. Therefore, we may rewrite (1) as

(2) X(T ) =
∑

λ`n

(−1)n−`(λ)cλpλ,

where

(3) cλ = cλ(T ) = #{S ⊂ E : λ(S) = λ}.

The coefficients cλ(T ) are concrete combinatorial invariants of T that can be extracted from the chromatic
symmetric function X(T ). Note that the cλ are themselves not independent. For instance, it is immediate
from (3) that

(4)
∑

λ: `(λ)=k

cλ =

(

n− 1

k

)

,

and there are several invariants of T that can be expressed in more than one distinct way in terms of the cλ.
For notational simplicity, we shall often omit the parentheses and singleton parts when giving the index

of one of these coefficients; for example, we abbreviate c(h,1,1,...,1) by ch. (This raises the question of how we
are going to denote the partition λ = (1, 1, . . . , 1) = 1n. In fact, we won’t need to do so, because 1n is the
only partition of length n, so (4) implies that c1n(G) = 1 for all G.)

For future reference, we list some properties of graphs and trees that can easily be read off its chromatic
symmetric function. Several of these facts have already been noted by Morin [4, 5], and all of them are easy
to deduce from (1) or (for trees) (2) and (3).

Proposition 3. Let G = (V,E) be a graph of order n = #V .

(i) The number of vertices of G is the degree of X(G).
(ii) The number of edges of G is c2.
(iii) The number of components of G is min{`(λ) | cλ(G) 6= 0}.
(iv) If T is a tree, then the number of subtrees of T with k vertices is ck(T ).
(v) If T is a tree, then the number of leaves (vertices of degree 1) in G is cn−1(T ).

Recall that a graph G is a tree if and only if it is connected and #E(G) = #V (G)−1. Therefore, by (i),
(ii) and (iii) of Proposition 3, the trees can be distinguished from other graphs by their chromatic symmetric
functions. Moreover, part (v) implies that paths (trees with exactly two leaves) and stars (trees with exactly
one nonleaf) are determined up to isomorphism by their chromatic symmetric functions.

2. The degree sequence

Let T be a tree with n vertices (and hence n − 1 edges). Recall that the degree degT (v) of a vertex
v ∈ V (T ) is defined as the number of edges having v as an endpoint; a vertex of degree one is called a leaf
of T .

Definition 4. The degree sequence of T is (δ1, δ2, . . . , δn−1), where

δj = δj(T ) = #{v ∈ V (T ) : degT (v) = j}.
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Notice that δj = 0 whenever j < 1 or j ≥ n. Moreover, it is a standard fact that
∑

δj = 2n− 2.
For k ≥ 1, let Sk be the tree with vertices {0, 1, . . . , k} in which 0 is adjacent to every other vertex. Any

graph that is isomorphic to Sk is called a k-star. If k ≥ 2, then every k-star has a unique non-leaf vertex,
called its center.

Definition 5. The star sequence of T is defined to be (s1, s2, . . . , sn−1), where

sk = sk(T ) = #{U ⊂ T : U ≡ Sk}.

Notice that s1 = n− 1 (the number of edges of T ), and that sk = 0 whenever k < 1 or k ≥ n.
Knowing the degree sequence of T is equivalent to knowing the number of substars of T of each possible

order; it is straightforward to show that

(5a) sk =
∑

j≥k

(

j

k

)

δj

and that

(5b) δj =
∑

k≥j

(

k

j

)

(−1)j+ksk.

It is more straightforward to recover the star sequence from the power-sum coefficients cλ than it is to recover
the degree sequence directly. For λ ` n, define `(λ) to be the number of parts of λ, and let λ̃ be the partition
obtained by deleting all the singleton parts of λ.

Theorem 6. Let T be a tree with n vertices, and let 2 ≤ k < n. Then

sk(T ) = −
∑

λ`n

`(λ̃)

(

`(λ) − 1

k + `(λ) − n

)

cλ(T ).

We sketch the proof, omitting many of the calculations and technical details. First, we obtain by
straightforward calculation the identity

(6)
∑

λ`n

`(λ̃)

(

`(λ) − 1

k + `(λ) − n

)

cλ(T ) =
∑

F⊂T :
#F=k

∑

G⊆F

∑

nontrivial
components

C of G

(−1)#G.

For each subforest F ⊂ T , denote by Σ(F ) the summand indexed by F on the right-hand side of (6).
The second step in the proof is to analyze Σ(F ). When F is a star, it is not hard to see that this summand
reduces to





∑

G⊆F

(−1)#G



− (−1)#∅ = −1.

Now, suppose that F is not a star; we wish to show that Σ(F ) = 0. The expression Σ(F ) may be
regarded as counting ordered pairs (G,C), where G ⊂ F is a subforest and C is a nontrivial component of
G, assigning to each such pair the weight (−1)#G. We construct an involution ψ on the set of such pairs
(G,C). Whenever (G,C) and (G′, C′) are paired by ψ, we have #G′ = #G±1; in particular, the summands
in Σ(F ) corresponding to (G,C) and (G′, C′) cancel. We conclude that Σ(F ) = 0 as desired.

Theorem 6 now follows immediately from (6) together with the calculation of Σ(F ). The degree sequence
formula, Theorem 1, follows in turn from Theorem 6 together with (5b).

3. The path sequence

Let T = (V,E) be a tree with #V = n. For any two vertices v, w ∈ V , their distance d(v, w) = dT (v, w)
is defined as the number of edges in the unique path joining v and w. Define

πk(T ) := # {{v, w} ⊆ V : d(v, w) = k} .

Equivalently, πk(T ) is the number of paths with exactly k edges that occur as subgraphs of T . It is easy to
see that πk(T ) = 0 if k ≤ 0 or k ≥ n, and that

∑

k πk(T ) =
(

n
2

)

. Moreover, we have π1(T ) = #E = n − 1
and π2(T ) = s2(T ) (because a two-edge path is identical to a two-edge star). As we already know, these
quantities can be recovered from X(T ).
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Suppose that k ≥ 3. We now recall Theorem 2, which describes the path numbers πk(T ) as linear
combinations of the coefficients of X(T ). For a partition λ = (λ1, . . . , λ`) ` n, define

(7) m(λ) =

(

n− `(λ)

2

)

−
s
∑

i=1

(

λi − 1

2

)

.

Theorem 2. For every tree T , we have π1(T ) = c2(T ) and π2(T ) = c3(T ), and for all k ≥ 3,

πk(T ) =
∑

λ`n

(−1)n+k+1−`(λ)

(

`(λ) − 1

k − n+ `(λ)

)

m(λ)cλ(T ).

Again, we give just a sketch of the proof. Using Stanley’s interpretation for cλ(T ), we can rewrite the
right-hand side of the desired equality as

∑

A⊆E

(−1)k+1+#A

(

n− #A− 1

k − #A

)

m(λ(A)).

We interpret the binomial coefficient
(

n−a−1
k−a

)

as counting the subsets of E − A of cardinality k − a, and

interpret m(λ(A)) as the number of pairs of distinct edges e, f ∈ A that belong to different components of
the induced subgraph (V,A); call such a pair of edges A-okay. Thus the last expression becomes

(−1)k+1
∑

A⊆E

∑

B⊆E−A
#B=k−#A

∑

A-okay pairs e,f

(−1)#A.

For e, f ∈ E, let P = P (e, f) be the unique shortest path between an endpoint of e and an endpoint
of f . Then e, f is an A-okay pair if and only if e, f ∈ A and A 6⊇ P . In particular, e, f have no common
endpoint (we abbreviate this condition as e ∩ f = ∅), and P 6= ∅. Changing the order of summation and
letting A′ = A− e− f and C = A′ ∪B, we can rewrite the last expression as

(8) (−1)k+1
∑

e∩f=∅

∑

C⊆E−e−f
#C=k−2









∑

A′⊆C

A′ 6⊇P (e,f)

(−1)#A′









.

If we remove the condition A′ 6⊇ P (e, f) from the last summation, then the parenthesized expression
becomes zero (since #C = k − 2 > 0). Therefore (8) can be rewritten as

(9) (−1)k
∑

e∩f=∅

∑

C⊆E−e−f
#C=k−2

∑

A′:
P (e,f)⊆A⊆C

(−1)#A′

.

The last sum is zero unless C = P (e, f). So (9) collapses to

(−1)k
∑

e∩f=∅

χ
[

#P (e, f) = k − 2
]

(−1)k =
∑

e∩f=∅

χ
[

#(e ∪ f ∪ P (e, f)) = k
]

= πk(T ),

(where χ is the “Garsia chi”: χ[S] = 1 if the sentence S is true, or 0 if S is false). This completes the proof
of Theorem 2.

4. Further remarks

4.1. Other invariants recoverable from X(T ). Theorems 1 and 2 imply that any isomorphism
invariant of a tree T that can be derived from its path and degree sequences can be recovered from X(T ).
Examples of such invariants include the diameter (the number of edges in a longest path) and the Wiener
index (the quantity σ(T ) =

∑

v,w d(v, w), where v, w range over all pairs of vertices of T . The Wiener index

can be obtained from the chromatic symmetric function in other ways. For example, when X(T ) is expanded
as a sum of elementary symmetric functions, Stanley has interpreted the coefficients as counting sinks in
acyclic orientations; this observation gives rise to a different expression for σ(T ). Note that the Wiener index
is far from distinguishing trees up to isomorphism; see [1, §13].

One might ask whether the methods of Theorems 1 and 2 can be used to count other kinds of subtrees
of a tree T (that is, other than stars and paths) by appropriate linear combinations of the coefficients of
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X(T ). Such a class may be quite subtle; our empirical computations seem to rule out, for instance, spiders
and double-stars (i.e., caterpillars with two branch vertices).

4.2. Spiders. Let T be a tree. A vertex v ∈ V (T ) is called a branch vertex if degT (v) ≥ 3. A spider
(or starlike tree) is a tree with exactly one branch vertex (to avoid trivialities, we do not consider paths
to be spiders). Since the definition of a spider relies only on the degree sequence, Theorem 1 implies that
membership in the class of spiders can be deduced from X(T ). In fact, much more is true: one can show
that every spider is determined up to isomorphism by its chromatic symmetric function.

We sketch the proof briefly. A spider may be regarded as a collection of edge-disjoint paths (the legs)
joined at a common endpoint t (the torso). The torso is the unique branch vertex, and the lengths of the legs
determine the spider up to isomorphism. That is, the isomorphism classes of spiders with n edges correspond
to the partitions µ ` n with `(µ) ≥ 3. The partition µ can then be recovered from the coefficients cλ(T ),
where λ ` n has exactly two parts. For example, when no single leg of the spider contains as many as half
the edges, the sequence

(c1,n−1, c2,n−2, . . . ) ;

is a partition whose conjugate is precisely µ. (The case of a spider with one “giant leg” is only slightly more
complicated.)

4.3. Caterpillars. A caterpillar is a tree such that deleting all the leaves yields a path (called the spine
of the caterpillar). It is not hard to see that this is equivalent to the condition that the diameter of T is one
more than the number of nonleaf vertices; therefore, whether or not T is a caterpillar can be deduced from
X(T ). When T is a symmetric caterpillar (i.e., it has an automorphism reversing the spine), it is determined
up to isomorphism by X(T ). This fact was proved by Morin[4], and can also be recovered from Theorem 2.
However, the corresponding statement for arbitrary caterpillars remains unknown. Gordon and McDonnell
[3] showed that there exist arbitrarily large families of nonisomorphic caterpillars with the same path and
degree sequences; however, we suspect that the additional information furnished by the chromatic symmetric
function of a caterpillar T will be enough to reconstruct it up to isomorphism.
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An analogue of the Robinson-Schensted-Knuth Algorithm and its application

to standard bases

Sarah Mason

Abstract. The Schur functions, sλ(x), form a basis for the vector space of symmetric functions. Recently
Haglund, Haiman and Loehr derived a combinatorial formula for nonsymmetric Macdonald polynomials,
which gives a new decomposition of the Macdonald polynomial into nonsymmetric components. Letting
q = t = 0 in this identity implies sλ(x) =

P

µ NSµ(x), where the sum is over all rearrangements µ of the

partition λ. We exhibit a bijection involving an analogue of Robinson-Schensted-Knuth Insertion between
semi-standard Young tableaux and semi-standard skyline fillings to give a combinatorial proof of the for-
mula. The insertion procedure led us to determine an analogue of the RSK Algorithm for semi-standard
skyline fillings. This analogue is used to prove that the non-symmetric Schur functions equal the standard
bases of Lascoux and Schützenberger.
Résumé. La fontion Schur forme une base pour l’espace de vecteur des fonctions symétriques. Récemment

Haglund, Haiman et Loehr ont dérivé une formule combinatoire pour des polynômes nonsymmetric de
Macdonald, qui donne une nouvelle décomposition du polynôme de Macdonald dans les composants non-
symmetric. Laisser q = t = 0 dans cette identité implique la fonction de Schur sλ est la somme des fonctions
nonsymmetric de Schur au-dessus de toutes les remises en ordre de la cloison λ. Nous exhibons un bijection
impliquant un analogue d’insertion de Robinson-Schensted-Knuth entre de Young tableaux de semi-standard
et remplissages d’horizon de semi-standard pour fournir des preuves combinatoires de la formule. Le procédé
d’insertion nous a menés à déterminer un analogue de l’algorithme de RSK pour des remplissages d’horizon
de semi-finale-standard. Cet analogue est employé pour montrer que les fonctions dissymétriques de Schur
égalent les bases standard de Lascoux et de Schützenberger.

1. Introduction

A symmetric function of degree n over a commutative ring R (with identity) is a formal power series
f(x) =

∑

α cαxα, where α ranges over all weak compositions of n (of infinite length), cα ∈ R, xα stands for
the the monomial xα1

1 xα2

2 ..., and f(xω(1), xω(2), ...) = f(x1, x2, ...) for every permutation ω of the positive
integers, P. Many different bases for the vector space of symmetric functions are known. One important
basis is the Schur functions.

The Schur function sλ = sλ(x) of shape λ in variables x = (x1, x2, ...) is the formal power series
sλ =

∑

T xT , summed over all semi-standard Young tableaux of shape λ. A semi-standard Young tableau is

formed by first placing the parts of λ into rows of squares, where the ith row has λi squares, called cells. This
diagram, called the Young (or Ferrers) diagram, is drawn in the first quadrant, French style, as in [3]. Then
each of these cells is assigned a positive integer in such a way that the row entries are weakly increasing and
the column entries are strictly increasing. Thus, the values assigned to the cells of λ collectively form the
multiset {1a1, 2a2 , ..., nan}, for some n, where ai is the number of times i appears in T. Here, xT =

∏n
i=1 xai

i .
See [10] for a more detailed discussion of symmetric functions and the Schur functions in particular.

The Macdonald polynomials H̃µ(x; q, t) are a special class of symmetric functions which contain a vast
array of information. Macdonald [8] introduced them and conjectured that their expansion in terms of Schur

2000 Mathematics Subject Classification. Primary 05E05; Secondary 05E10.
Key words and phrases. algebraic combinatorics, symmetric functions, Macdonald polynomials, compositions.
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polynomials should have positive coefficients. A combinatorial formula for the Macdonald polynomials was
recently proved by Haglund, Haiman, and Loehr [5].

Building on this work, Haglund, Haiman, and Loehr [4] derive a combinatorial formula for nonsymmetric
Macdonald polynomials, which gives a new decomposition of the Macdonald polynomial into nonsymmetric
components. The statistics involved in this formula can be used to define nonsymmetric Schur polynomials,
NSλ. Letting q = t = 0 in the identity implies sµ(x) =

∑

λ NSλ(x), where the sum is over all rearrangements
λ of the partition µ. (A composition µ of n is called a rearrangement of a partition λ if it consists of n
parts such that when the parts are arranged in descending order, the ith part equals λi, for all i.) We give
a bijective proof of this decomposition.

Theorem 1.1.
∑

λ′ NSλ′(x1, ..., xn) = sλ(x1, ..., xn), where the sum is over all rearrangements λ′ of λ.

We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-standard
skyline fillings to prove Theorem 1.1. The bijection involves an insertion procedure similar to Schensted
insertion. This procedure is the fundamental operation in an analogue of the Robinson-Schensted-Knuth
algorithm.

Theorem 1.2. There exists a bijection between N − matrices with finite support and pairs (F, G) of
semi-standard skyline fillings of compositions which rearrange the same partition.

The Schur functions are alternatively defined as the irreducible characters of the linear group on C. De-
mazure’s “Formule des caractère” [1] [2] provides an interpolation between a dominant weight corresponding
to a partition I and the Schur function of index I. For each permutation µ, he obtains a“partial” character
whose interpretation involves the Schubert variety of index µ, best understood through the study of the
“standard bases” of these spaces. Considering Young tableaux as words in the free algebra, Lascoux and
Schützenberger [6] describe the standard bases U(µ, I) using symmetrizing operators on the free algebra
which lift the operators used by Demazure. This description provides a recursive algorithm to determine the
basis U(µ, I) given the basis U(λ, I), where µ = σiλ for some i. The nonsymmetric Schur functions provide
a non-recursive combinatorial description of U(µ, I) for arbitrary µ, I.

Theorem 1.3. U(µ, I) = NSµ(I), where µ(I) denotes the action of µ on the parts of I.

This theorem provides a mapping between the combinatorics of symmetrizing (or string) operators and
nonsymmetric Schur functions.

2. Combinatorial description of the nonsymmetric Schur functions

2.1. Semi-standard skyline fillings. Let γ = (γ1, γ2, ..., γn) be a composition of n into n parts,
allowing zero as a part. (We will consider compositions of n into arbitrarily many parts in section 2.3.) The
composition Ferrers diagram of γ is a figure consisting of n cells arranged in n columns. The ith column
contains γi cells, and the number of cells in a column is called the height of that column. This is an analogue
of the Ferrers diagram of a partition λ, which consists of rows of cells such that the ith row contains λi cells.

Example 2.1. The composition Ferrers diagram for λ = (0, 2, 0, 3, 1, 2, 0, 0, 1)

1 2 3 4 5 6 7 8 9

A filling, σ, of a composition Ferrers diagram, λ, is a function σ : λ → Z+, which we picture as an
assignment of positive integer entries to the cells of λ. We consider the 0th row to consist of cells numbered
from 1 to n in strictly increasing order. Let σ(i) denote the entry in the ith square of the composition Young
diagram encountered if we read across rows from left to right, beginning at the highest row and working
downwards.

To define the nonsymmetric Schur functions, we need the statistics Des(σ) and Inv(σ). As in [3], a
descent of σ is a pair of entries σ(a) > σ(b), where the cell a is directly above b. In other words, b = (i, j)
and a = (i + 1, j), where the ith coordinate denotes the height of cell b and the jth coordinate denotes the
column containing j. Define Des(σ) = {a ∈ λ : σ(a) > σ(b) is a descent}.
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Three cells a, b, c ∈ λ form a triple of type A if they are situated as follows,

b

a c.. .

where a and c are in the same row, possibly the first row, possibly with cells between them, and the column
containing a and b has height greater than or equal to the height of the column containing c.

Define for x, y ∈ Z+

I(x, y) =

{

1 if x > y
0 if x ≤ y

Let σ be a composition filling and let α, β, δ be the entries of σ in the cells of a type A triple (a, b, c):

β

α δ.. .

Then the triple (a, b, c) is called an inversion triple of type A if and only if I(α, δ) + I(δ, β)− I(α, δ) =1.
The reading order of a filling is an ordering of its cells beginning with the top row and listing the cells

from left to right, travelling down, row by row, to the bottom row. Define a filling σ to be standard if it
is a bijection σ : µ ∼={1,...,n}. The standardization of a composition filling is the unique standard filling ξ
such that σ ◦ ξ−1 is weakly increasing, and for each α in the image of σ, the restriction of ξ to σ−1({α}) is
increasing with respect to the reading order. Therefore the triple (a, b, c) is an inversion triple of type A if
and only if after standardization, the ordering from smallest to largest of the entries in cells a, b, c induces a
counter-clockwise orientation.

Similarly, three cells a, b, c ∈ λ form a triple of type B if they are situated as shown below,

a

b

c.. .

Here a and c are in the same row (possibly row 0) and the column containing b and c has greater height
than the column containing a.

Let σ be a composition filling and let α, β, δ be the entries of σ in the cells of a type B triple (a, b, c).

α

β

δ.. .

Then the triple (a, b, c) is called an inversion triple of type B if and only if I(β, α) + I(α, δ) − I(β, δ) = 1.
In other words, the triple (a, b, c) is an inversion triple of type B if and only if after standardization, the
ordering from smallest to largest of the entries in cells a, b, c induces a clockwise orientation.

Denote by semi-standard skyline filling any composition filling F such that Des(F ) = ∅ and every triple
is an inversion triple. These conditions arise by setting q = t = 0 in the combinatorial formula for the
nonsymmetric Macdonald polynomials [4].

Definition 2.2. Let λ be a composition of n into n parts, where some of the parts could be equal to
zero. The nonsymmetric Schur function NSλ = NSλ(x) in the variables x = (x1, x2, ..., xn) is the formal
power series NSλ(x) =

∑

F xF summed over all semi-standard skyline fillings F of composition λ. Here,
xF =

∏n
i=1 xσi

i is the weight of σ. (See Figure 2.1.)

The combinatorial formula for nonsymmetric Macdonald polynomials [4] contains an additional “non-
attacking” condition. This condition states that for each pair of cells a and b with a to the left of b in the
row directly below b, σ(a) 6= σ(b). (If σ(a) = σ(b), a and b are called attacking cells.)

Lemma 2.3. The descent and inversion conditions used to describe the semi-standard skyline fillings
guarantee that no two cells of a semi-standard skyline filling are attacking.

Proof. Assume there exist two attacking cells a and b with σ(a) = σ(b) = α to get a contradiction. If
the column containing a is taller than or equal to the column containing b, then a lies directly below a cell c
which must have σ(c) ≤ α. When the values in these three cells are standardized, c, b, a form a non-inversion
triple of type A. If the column containing b is taller than the column containing a, b is directly on top of a
cell c which must have σ(c) ≥ α. The cells a, b, c form a type B non-inversion triple. �

212



S. Mason

1 3

2

5

4

1 2 3 4 5

1 3

3

5

2

1 2 3 4 5

1 3

2

5

5

1 2 3 4 5

1 3

3

5

4

1 2 3 4 5

1 3

3

5

5

1 2 3 4 5

Figure 2.1. NS(1,0,2,0,2) = x1x2x
2
3x5 + x1x

2
3x4x5 + x1x

2
3x

2
5 + x1x2x3x4x5 + x1x2x3x

2
5.

Lemma 2.4. If a, b, c is a type B triple with a and c on the same row and b directly above c, then
σ(a) < σ(c).

Proof. Let a, b, c be a type B triple situated as pictured below.

a

b

c. ..

To get a contradiction, first assume σ(a) > σ(c). In the basement row, the column containing a has a value
less than the value of the column containing c. So at some intermediate row we have

e

f

g

d

. ..

with σ(d) > σ(f) and σ(e) ≤ σ(g). We must have σ(d) ≤ σ(e). Therefore, σ(f) < σ(d) ≤ σ(e) ≤ σ(g). But
then σ(f) < σ(e) ≤ σ(g) and this type B triple f, e, g is not an inversion triple.

Next assume σ(a) = σ(c). If so, by standardization we may assume that σ(a) < σ(c). To have an
inversion triple, σ(b) must be between σ(a) and σ(c). But then σ(b) must equal σ(a) and σ(c), which implies
that a and b are attacking. So σ(a) cannot equal σ(c).

�

Lemmas 2.3 and 2.4 provide us with several conditions on the cells in our diagram. They will be useful
in proving facts about the insertion process.

2.2. A basis for homogeneous polynomials of degree n in n variables. Several other bases for
symmetric functions have nonsymmetric analogues. For instance, the nonsmmyetric monomial corresponding
to a given composition γ of n into n parts is given by NMγ = xγ1

1 xγ2

2 ...xγn

n . It is clear that the sum
over all rearrangements of a given partition µ of the nonsymmetric monomials is equal to the monomial
symmetric function mµ. Every polynomial of degree n in n variables can be written as a sum of nonsymmetric
monomials, so the nonsymmetric monomials form a basis for the algebra of homogeneous polynomials of
degree n in n variables.

Definition 2.5. The reverse dominance order on compositions is defined as follows:
µ ≤ γ ⇐⇒

∑n
i=k µi ≤

∑n
i=k γi for 1 ≤ i ≤ n.

A semi-standard skyline filling is said to have type µ if it contains µi copies of the number i for each i.
If γ and µ are compositions of n into n parts, let NKγ,µ denote the number of semi-standard skyline fillings
of shape γ and type µ. NKγ,µ is called a nonsymmetric Kostka number. The ordinary Kostka numbers
are obtained as a sum of nonsymmetric Kostka numbers: Kλ,µ =

∑

NKγ,µ, where the sum is over all
rearrangements γ of λ.

Theorem 2.6. Suppose that γ and µ are both compositions of n into n parts and NKγ,µ 6= 0. Then
γ ≥ µ in the dominance order. Moreover, NKγ,γ = 1.
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Proof. Assume that NKγ,µ 6= 0. By definition, there exists a semi-standard skyline filling of shape
γ and type µ. Assume that an entry k appears in one of the first k − 1 columns. Then this column
would contain a descent, since there is an entry less than k in the column at a lower position than k,
namely the basement entry. Therefore, the parts k, k + 1, ..., n all appear in the last n− k + 1 columns. So
µk + µk+1 + ... + µn ≤ γk + γk+1 + ... + γn for each k, as desired. Moreover, if µ = γ, then the ith column
must contain only entries with value i, so NKγ,γ = 1. �

Corollary 2.7. The nonsymmetric Schur functions form a basis for the algebra of homogeneous poly-
nomials of degree n in n variables.

Proof. Theorem 2 is equivalent to the assertion that the transition matrix from the nonsymmetric
Schur functions to the nonsymmetric monomials (with respect to the reverse dominance order) is upper
triangular with 1’s on the main diagonal. Since this matrix is invertible, the nonsymmetric Schur functions
of degree n are a basis for homogeneous polynomials of degree n in n variables. �

2.3. Nonsymmetric Schur functions in infinitely many variables. We may relax the restriction
on the number of parts to obtain nonsymmetric Schur functions in infinitely many variables.

Definition 2.8. A weak composition of n is an infinite sequence of non-negative integers which sum
to n.

Let γ be a weak composition of n. Its composition Ferrers diagram consists of infinitely many columns
such that the ith column contains γi cells. As above, fill this diagram with positive integers in such a way
that there are no descents and every triple is an inversion triple to get a semi-standard skyline filling. Then
NSγ(x) =

∑

F xF , where F ranges over all semi-standard skyline fillings of the composition Ferrers diagram
of γ.

We may also define the nonsymmetric monomials in infinitely many variables. The nonsmmyetric mono-
mial corresponding to a weak composition γ of n is given by NMγ =

∏

i xγi

i . It is clear that the sum over all
rearrangements of a given partition µ of the nonsymmetric monomials is equal to the monomial symmetric
function mµ. Every polynomial can be written as a sum of nonsymmetric monomials, so the nonsymmetric
monomials form a basis for all polynomials.

Definition 2.9. Let µ and γ be weak compositions of n. The reverse dominance order on weak
compositions is defined as follows.

µ ≤ γ ⇐⇒
∞
∑

i=k

µi ≤
∞
∑

i=k

γi ∀k, k ≥ 1

.

If γ and µ are weak compositions of n, NKγ,µ denote the number of semi-standard skyline fillings of
shape γ and type µ as above. Again, the ordinary Kostka numbers are obtained as a sum of nonsymmetric
Kostka numbers. Kλ,µ =

∑

NKγ,µ, where the sum is over all rearrangements γ of λ.

Theorem 2.10. Suppose that γ and µ are both weak compositions of n and NKγ,µ 6= 0. Then µ ≤ γ in
the dominance order. Moreover, NKγ,γ = 1.

Proof. Assume that NKγ,µ 6= 0. By definition, there exists a semi-standard skyline filling of shape γ
and type µ. Assume that an entry k appears in one of the first k − 1 columns. Then this column would
contain a descent, since there is an entry less than k in the column at a lower position than k, namely the
basement entry. Therefore, the entries greater than or equal to k all appear after the (k − 1)th column. So
∑

∞

i=k µi ≤
∑

∞

i=k γi for each k, as desired. Moreover, if µ = γ, then the ith column must contain only entries
with value i, so NKγ,γ = 1. �

Corollary 2.11. The nonsymmetric Schur functions form a basis for all polynomials.

Proof. Theorem 2.10 is equivalent to the assertion that the transition matrix from the nonsymmetric
Schur functions to the nonsymmetric monomials (with respect to the reverse dominance order) is upper
triangular with 1’s on the main diagonal. Since this matrix is invertible, the nonsymmetric Schur functions
are a basis for all polynomials. �
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3. Proof of Theorem 1.1

We will in fact prove a slightly more general statement

(3.1)
∑

λ′

NSλ′ = sλ,

where the sum is over all weak compositions λ′ which rearrange λ.

3.1. An analogue of Schensted insertion. Let F be a semi-standard skyline filling of a weak com-
position γ of n. Then F = (Fj), where Fj is the jth cell when the cells are in reading order, including the
cells in the basement. We define the operation F ← k.

Let r be the smallest integer such that σ(Fr) ≥ k and there is no cell c with σ(c) = k in the row directly
above the row containing Fr. If there is no cell directly on top of Fr, then place k on top of Fr are the
resulting figure is F ← k. Otherwise let a be the cell directly on top of Fr. If σ(a) < k then k “bumps”
σ(a). In other words, k replaces σ(a) and we now find the least r′ such that r′ > r and σ(Fr′ ) ≥ a and
repeat. If σ(a) > k then continue to the next r′ such that r′ > r and σ(Fr′) ≥ k and repeat. This procedure
terminates, since there are infinitely many basement entries greater than k.

Lemma 3.1. When restricted to n-compositions, this procedure terminates.

Proof. Assume that the procedure does not terminate to get a contradiction. This could only occur if
some letter α reaches the last cell in the basement without finding an r such that σ(Fr) ≥ α and such that
the cell b on top of Fr has σ(b) ≤ α. The value α is an entry in the basement, say σ(Fj). The letter α which
is unplaced could not have been bumped from a cell to the right of Fj in the row above Fj , for otherwise
the cell containing α and Fj would be attacking. Since α was not inserted on top of Fj , the entry b on top
of Fj must have σ(b) ≥ α. But since F has no descents, σ(b) = α. So the leftover α must have come from
a higher row. Continuing this line of reasoning, we see a column containing the value α at each row until a
certain height h at which this column contains an entry strictly smaller than α. If α was bumped from row
h, α must have been bumped from a cell to the right of the αth column. However, then α and the α in row
h− 1 of column α would be entries in attacking cells in F . By Lemma 2.3, there are no attacking cells in F .
Therefore we have a contradiction. �

The resulting diagram is F ← k.

Proposition 3.1. If F is a semi-standard skyline filling, then F ← k is a semi-standard skyline filling.

Proof. It is clear by construction that F ← k has no descents. We must prove that every triple is
an inversion triple. We argue by contradiction. To get a contradiction, assume F ← k contains a type A
non-inversion triple, a, b, c situated as shown.

c

a b

Then we must have σ(a) ≤ σ(b) ≤ σ(c). In F , we must have had different (possibly empty) entries in these
cells. Because the insertion path moves along the reading word and its entries are decreasing, at most one of
σ(a), σ(b), and σ(c) is different from its value in F . Examine each cell individually to get a contradiction.
For example, assume the cell a in F ← k contained a different value, β 6= σ(a), in F . Since β, σ(b), σ(c) was
an inversion triple in F , σ(b) < β ≤ σ(c). But since σ(b) bumped β, σ(a) > β, so σ(a) > σ(b) contradicts
σ(a) ≤ σ(b).

Next assume that F ← k contains a type B non-inversion triple, a, b, c situated as depicted.

a c

b
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We must have σ(b) < σ(a) ≤ σ(c). Again, only one of the entries is different from its value in F . Examine
each cell individually to derive a contradiction.

�

3.2. The bijection Ψ between SSYT and SSSF. Let T be a semi-standard young tableau. We
may associate to T the word col(T ) which consists of the entries of each column of T , read top to bottom
from columns left to right.

Example 3.2. For T as below, col (T ) = 10 9 8 4 2 1 · 11 10 7 5 2 · 10 8 5 3 · 5 · 10.

1

2

4

8

9

10

2

5

7

10

11

3

5

8

10

5 10

Begin with an arbitrary SSYT T and the empty SSSF φ with the basement row containing all letters of
Z+. Let k be the rightmost letter in col(T ). Insert k into φ to get the SSSF F = φ← k. Then let k′ be the
next letter in col(T ) reading right to left. Obtain the SSSF F ← k′. Continue in this manner until you have
inserted all the letters of col(T ). The resulting diagram is the SSSF Ψ(T ).

Lemma 3.3. Let Ci be a column of col(T ). The placement of each letter of Ci terminates at a different
column, with the smallest letter of Ci terminating at the top of the highest column, the second smallest letter
terminating at the top of the second highest column, and so forth. (If there are two columns of the same
height, the one farther left is the termination point of the smaller letter.)

Proof. The first letter of Ci is smaller than or equal to all letters which came before it, so it is placed
onto the top of the tallest column. To argue inductively, assume that Lemma 3.3 is true after the first j
letters of Ci have been placed. The next letter α is greater than each of the other letters, therefore its
inertion path lies below that of the other letters, so the first place it can terminate is on top of the tallest
column which has not yet been a termination point for a letter of Ci. The highest entry in this column is
greater than or equal to the letter β which has been most recently bumped, so β is placed on top of this
column and the proof is complete. �

Proposition 3.2. The shape of Ψ(T ) is a rearrangement of the shape of T .

Proof. Argue by induction on the number of columns of T . First assume that T contains only one
column. The shape of T is 1n. Then col(T ) is a strictly decreasing word. Therefore each letter maps to the
bottom row of the semi-standard skyline filling. The resulting shape is an arrangement of zeros and ones, a
rearrangement of 1n.

Next, assume that if T contains j columns then the shape of Ψ(T ) is a rearrangement of the shape of
T . Let T be an SSYT of shape λ which contains j + 1 columns. After mapping the first j columns of T ,
the shape of the resulting figure is a rearrangement of (λ1 − 1, λ2− 1, ...). By Lemma 3.3, mapping the next
column into the shape adds one cell to each existing column, plus possibly several new cells if the (j + 1)th

column is taller than the jth column. Therefore the resulting shape is a rearrangement of (λ1, λ2, ...) = λ. �

Proposition 3.3. The map Ψ is invertible.

Proof. Consider the set S of cells which are in the top row of some column. Of these, begin with the
cell c which is farthest right in the reading order. This was the last cell to be bumped into place. Scan
backwards through the reading order to find the next cell, d, such that σ(d) > σ(c) and d lies directly below
an entry less than or equal to c. This entry σ(d) bumped σ(c). Repeat with σ(d). Continue this scanning
procedure until there are no cells farther back in the reading order which could have bumped the selected
entry, e. This entry is the first letter in col(T ).

Choose the next element of S to appear in the backwards reading order. (If there are no other cells in
S, create a new set S′ consisting of all the cells which are in the top row of some column.) Move backwards
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from this element through the reading word to determine the initial element whose placement terminated
with this particular element. Continue this procedure until the entire word col(T ) has been determined.
This procedure inverts the map Ψ. �

The map Ψ : SSYT→ SSSF is a weight-preserving invertible map between semi-standard Young tableaux
and semi-standard skyline fillings. In particular, this means that the number of SSYT of shape λ with weight
∏

xai

i is equal to the number of SSSF with weight
∏

xai

i whose shape rearranges λ. Thus the coefficient of
∏

xai

i in
∑

λ′ NSλ′ is equal to the coefficient of
∏

xai

i in sλ. This completes the proof of Equation 3.1.

4. An analogue of the Robinson-Schensted-Knuth Algorithm

The insertion process utilized in the above bijection is reminiscent of Schensted insertion, the fundamental
operation of the Robinson-Schensted-Knuth Algorithm.

Theorem 4.1. (Robinson-Schensted-Knuth [9]) There exists a bijection between N-matrices of finite
support and pairs of semi-standard Young tableaux of the same shape.

We apply the same procedure to arrive at an analogue of the RSK Algorithm for semi-standard skyline
fillings. Recall that Theorem 1.2 states that there exists a bijection between N-matrices of finite support
and pairs of semi-standard skyline fillings whose shapes are rearrangements of the same partition.

4.1. ρ : N-matrices −→ SSSF × SSSF. Let A = (ai,j) be an N-matrix with finite support. There
exists a unique two-line array corresponding to A which is defined by the non-zero entries in A. Beginning
at the upper lefthand corner and reading left to right, top to bottom, find the first non-zero entry ai,j . Place
an i in the top line and a j in the bottom line ai,j times. When this has been done for each non-zero entry,
we have the resulting array

wA =

(

i1 i2 ...
j1 j2 ...

)

Begin with an empty semi-standard skyline filling F . Read the bottom row from right to left, inserting
the entries into F according to the map Ψ described above as they are read. Each time an entry from the
bottom line is placed, send the entry directly above it into an SSSF G which records the place where a cell
is added. If the cell jk is added to the bottom row of F , the corresponding entry ik is placed on the bottom
row in the ithk column of G. If there is ambiguity about which column of G an entry is placed on, it is always
placed on the leftmost possible column of the same height as the column in F on which its counterpart
was placed. In this way the shape of G becomes a rearrangement of the shape of F . When the process is
complete, the result is a pair (F, G) of SSSF whose shapes are rearrangements of the same partition.

4.2. The inverse of the map ρ. Given (F, G), a pair of semi-standard skyline fillings whose shapes
are rearrangements of the same partition µ, let Grs be the highest occurrence of the smallest entry of G.
Here Grs is the element of G in row r and column s. Since equal elements of G are inserted bottom to top,
it follows that Grs = i1 and Frs′ was the last element of F to be bumped into place after inserting j1. (If s
is the ith column of height r in G, then s′ is the ith column of height r in F .)

Delete Frs′ from F and Grs from G. Scan right to left, bottom to top (backwards through the reading
word) starting with the cell directly to the left of Frs′ to determine which (if any) cell bumped Frs′ . If
there exists a cell k before Frs′ in the reading word such that σ(k) > σ(Frs′ ) and the cell directly on top
of k has value less than or equal to σ(Frs′ ), this k bumped Frs′ . Replace σ(k) by σ(Frs′ ) and repeat the
procedure with σ(k). Continue working backward through the reading word until there are no more letters.
The remaining entry is the letter i1.

Next find the highest occurrence of the smallest entry j2 of G. Repeat the procedure to find i2. Continue
until there are no more entries in F and G. Then all of the i and j values of the array wA have been
determined, and the process is inverted.

5. The standard bases of Lascoux and Schützenberger

The Schubert polynomials were introduced by Lascoux and Schützenberger [7] as a combinatorial tool
for attacking problems in algebraic geometry. The Schubert polynomials can be described as a sum of
standard bases, U(µ, I), where µ is a permutation and I is a partition. Lascoux and Schützenberger [6]
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define an action of the symmetric group on the free algebra and this action is used to build the standard
bases inductively.

5.1. Constructing the standard bases. Each permutation in the symmetric group can be decom-
posed into a series of elementary transpositions, so it is enough to define the action for a simple transposition,
σi, which permutes i and i + 1. The operator πi = πσi

is

f −→ (fσi − f)/(1− xi/xi+1) = fπi,

where fσi denotes the transposition action of σi on the indices of the variables in f .
The operators πi satisfy the Coxeter relations πiπi+1πi = πi+1πiπi+1 and πiπj = πjπi for ‖j − i‖ > 1.

We can lift the operator πi into an operator θi on the free algebra by the following process. Given i and a
word w in the alphabet X , let m be the number of times the letter xi+1 occurs in w and let m + k be the
number of times the letter xi occurs in w. Then if k ≥ 0, w and wσi differ by the exchange of a subword xk

i

into xk
i+1. If k < 0, then w and wσi differ by the exchange of x−k

i+1 into x−k
i .

When k ≥ 0, define wθi to be the sum of all words in which the subword xk
i has been changed respectively

into xk−1
i xi+1, x

k−2
i x2

i+1, ..., x
k
i+1. When k < 0, define wθi to be −(wσi )θi. (This second case will not be

needed in this paper.)
Every partition I = (I1, I2, ...) has a corresponding dominant monomial xI = (xI1 ...x2x1)(xI2 ...x2x1)...,

which equals the weight of the super tableau, which is the SSYT with is in the ith row. We take the following
theorem to be the definition of the standard basis U(µ, I) associated to the pair µ, I (where µ is a permutation
and I is a partition).

Theorem 5.1. (Lascoux-Schützenberger [6]) Let xI be a dominant monomial and σiσj ...σk be any
reduced decomposition of a permutation µ. Then U(µ, I) = xIθiθj ...θk.

Theorem 5.1 provides an inductive method for constructing the standard basis U(µ, I). Begin with
U(id, I) and apply θi to determine U(σi, I). Then apply θj to U(σi, I) to get U(σiσj , I). Continue this process
until the desired standard basis is obtained. Figure 5.1 depicts all the standard bases for the partition (2, 1).

5.2. A non-inductive construction of the standard bases. The standard bases with partition λ
can be considered as a decomposition of the Schur function sλ. For any partition λ of n, we have

∑

σ∈Sn

U(σ, λ) = sλ.

Since the nonsymmetric Schur functions are also a decomposition of the Schur functions, it is natural to
determine their relationship to the standard bases. Theorem 1.3 states that U(µ, I) = NSµ(I), where µ(I)
denotes the action of µ on the parts of I. To prove Theorem 1.3, we need a few lemmas.

Lemma 5.2. Let col(T ) be the column reading word of T . Label the occurrences of the entry α in col(T )
in increasing order starting from the right. Then i < j ⇒ the ith occurrence of α (denoted αi) in Ψ(T ) is in
a lower row than the jth occurrence of α, denoted αj.

Proof. Consider the step during which αj is being placed. At this step, the αi is already placed in
some row of the partial semi-standard skyline filling. If αj reaches a cell a with σ(a) = α without being
placed, the cell b on top of α must have σ(b) < α. Therefore, αj will bump σ(b) and be placed on top of a.
Therefore, αj will always remain in a higher row than αi. �

Lemma 5.3. Given an arbitrary semi-standard skyline filling F with row entries R1, R2, ...Rk, where
k = max i{γi}, F is the only SSSF with these row entries.

Proof. Given the row entries R1, R2, ..., Rk, map them into a semi-standard skyline filling as follows.
Let α1 be the largest entry in R1. Place α1 as far left as possible in the first row of an empty SSSF. Next
place the second largest entry of R1 as far left as possible in the first row of the SSSF. Continue placing
the elements of R1 in this manner. Next, choose the largest entry of R2. Place it as far left as possible in
the second row of the partially constructed SSSF. Continue this procedure until the smallest entry of R2

has been placed. Do this for each of the k rows. Once Rk has been placed, the resulting figure is indeed a
semi-standard skyline filling, and the only SSSF with row entries R1, R2, ..., Rk. �
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Figure 5.1. The standard bases for the partition (2, 1) and all permutations in S3.

Let θ̃i be the action of θi on an individual semi-standard Young tableau. This action is described by a
matching procedure. Let col(T ) be the column word of T and let (i + 1)1 be the leftmost occurrence of i + 1
in col(T ). Match (i + 1)1 with the leftmost occurrence of i which lies to the right of (i + 1)1 in col(T ). If
there is no such i, the matching procedure is complete. Otherwise, continue with the next i + 1 until there
are no more occurrences of i + 1.

When the matching procedure is complete, send the rightmost occurrence of i to i + 1. The resulting
word is θ̃i(T ) = T ′. If T ∈ U(µ, I) then either θ̃i(T ) ∈ U(µ, I) or θ̃i(T ) ∈ U(σiµ, I).

Lemma 5.4. There exists a map Θi :SSSF−→SSSF such that for F ∈ NSµ, either Θi(F ) ∈ NSµ or
Θi(F ) ∈ NSσiµ and the following diagram commutes.

F
?

T

-

-

F ′

T ′

?
ΨΨ

θ̃i

Θi

Proof. Let F be an arbitrary semi-standard skyline filling and let leftread(F ) be the reading word
obtained by reading F right to left, top to bottom, keeping track of the rows. Find the first entry a of this
word such that σ(a) = i+1. Match this entry i+1 to the first σ(b) which lies to the right of a in leftread(F )
such that σ(b) = i. If there is no such b, σ(a) is unmatched and the matching process is complete. Continue
this matching until an unmatched i + 1 is reached.

Pick the rightmost unmatched i. Change it to i + 1. (If there is none, then Θi(F ) = F .) The result is a
collection of rows which differ from leftread(F ) in precisely one entry. Lemma 5.3 provides a procedure for

mapping this collection of rows to a unique SSSF. This SSSF is Θi(F ) = F ′, and Θi(Ψ(T )) = Ψ(θ̃i(T )). So
the diagram commutes.
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Assume F ∈ NSµ. When Θi(F ) = F , Θi(F ) ∈ NSµ. We must show that in the case where an
unmatched i is mapped to i+1, the resulting semi-standard skyline filling is either in NSµ or in NSσiµ. But
the map Θi shifts the highest unmatched i in F . If there are no occurrences of the letter i in the row directly
below the shifted i, this i + 1 is mapped to the same position, as are all the cells above it. So the shape of
the diagram remains the same. Otherwise, there is a column consisting only of is and a column consisting
only of (i + 1)s below the first unmatched i. Sending this i to i + 1 moves it into the (i + 1)th column and
therefore permutes the ith and (i + 1)th column, resulting in the shape σiµ. So our proof is complete.

�

5.3. Proof of Theorem 1.3. We fix a partition I and argue by induction on the length of the per-
mutation µ in U(µ, I). Let µ be the identity. Then U(µ, I) is the dominant monomial. Consider I as a
composition of n into n parts by adding zeros to the right if necessary. Each entry a in I1 must have
σ(a) = 1, for otherwise there would be a descent. If the second column contained an entry b such that
σ(b) = 1, this cell and the cell in the row directly below of the first column would be attacking. Continuing
in this manner, we see that the ith column must have σ(c) = i for each cell c. Therefore, the NSI = U(µ, I).

Next assume that U(µ, I) = NSµ(I), where µ(I) is the permutation µ applied to the columns of I
when I is considered as a composition of n into n parts. The monomials in U(σiµ, I) are the monomials of

U(µ, I) whose image under (possibly multiple applications of) θ̃i is not a monomial of U(µ, I). Pick some

such monomial, represented by the SSYT T . By Lemma 5.4 Ψ(θ̃i(T )) = Θi(Ψ(T )). Since Ψ(T ) ∈ NSµ,

Θi(Ψ(T )) ∈ NSµ or Θi(Ψ(T )) ∈ NSσiµ. If Θi(Ψ(T )) ∈ NSµ, then θ̃i(T ) ∈ U(µ, I) by assumption. But this
is a contradiction, so Θi(Ψ(T )) ∈ NSσiµ. Therefore, U(σiµ, I) ⊆ NSσiµ. If F is a monomial in NSσiµ, one
can determine an element of NSµ which, after possibly multiple applications of Θi maps to F . Therefore
NSσiµ ⊆ U(µ, I). So NSσiµ = U(µ, I).

6. Applications of Theorems 1.2 and 1.3

The analogue of the Robinson-Schensted-Knuth algorithm (Theorem 1.2) can be used to extend results
about plane partitions and permutation enumeration. The non-inductive description of standard bases
provided in Theorem 1.3 facilitates our understanding of the representation theory of Schubert polynomials
and nonsymmetric Schur functions.
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Matrix compositions

Emanuele Munarini, Maddalena Poneti, and Simone Rinaldi

Abstract. In this paper we study the class of m-row matrix compositions (briefly, m-compositions), i.e.
matrices with nonnegative integer entries, having m rows, and whose columns are different from the zero
vector. We provide enumeration results, combinatorial identities, and various combinatorial interpreta-
tions. In particular we extend to the m-dimensional case most of the combinatorial properties of ordinary
compositions.

Résumé. Dans cet article nous étudions la classe des compositions de matrices de m-lignes (appelées sim-
plement m-compositions), dont les éléments sont des entiers positifs ou nuls, et sans vecteur colonne nul.
Nous présentons, outre des interprétations combinatoires, leur énumération ainsi que des identités combi-
natoires. En particulier nous étendons au cas m-dimensionnel la plupart des propriétés combinatoires des
compositions usuelles d’entiers.

1. Introduction

A composition (sometimes called ordered partition) of a natural number n is any k-tuple γ =
(x1, . . . , xk) of positive integers such that x1 + · · · + xk = n . The elements xi , k and n are the
parts, the length and the order of γ , respectively. It is well known that there are

(
n−1
k−1

)
compositions

of length k of n and 2n−1 compositions of n , when n ≥ 1 . Compositions are very well known
combinatorial objects [1, 9, 13] and several of their properties have been studied in some recent papers, as
in [7, 10, 14, 15, 17, 18, 23].

In [12] the authors extended the definition of ordinary compositions introducing 2-compositions in order
to have a bijection between this class and the class of L-convex polyominoes. Such an extension to the
bidimensional case can be immediately generalized to the m-dimensional case. Indeed, for any positive
integer m , an m-row matrix composition, or m-composition for short, is an m×k matrix with nonnegative
integer entries

M =




x11 . . . x1k

...
...

xm1 . . . xmk




whose columns are different from the zero vector. We say that the number k of columns is the length of
the composition. Moreover we say that M is an m-composition of a nonnegative integer n if the sum of
all its elements is exactly n . We will write σ(M) for the sum of all the elements of the matrix M . For
instance, there are seven 2-compositions of 2 :

[
0
2

]
,

[
1
1

]
,

[
2
0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]
.

The aim of this paper is to study the class of m-compositions by several points of view, and to extend
to the m-dimensional case most of the combinatorial properties of ordinary compositions.

2000 Mathematics Subject Classification. Primary 05A17; Secondary 05A15.
Key words and phrases. compositions, integer partitions, enumeration.
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We also remark that our matrix compositions are very similar to the vector compositions [1, p.57]
defined by P. A. MacMahon [20, 21, 22] and studied for instance in [2, 3, 4]. Another extension of ordinary
compositions is described in [19].

2. Combinatorial identities

As a first step we present several identities about m-compositions, obtained using elementary combina-
torial arguments. Since some of the proofs in this section are rather simple, sometimes they will only be
sketched.

Let us start by recalling some basic definitions and properties of multisets. A multiset on a set X is a
function µ : X → N . The multiplicity of an element x ∈ X is µ(x) . The order of µ is the sum ord(µ)
of the multiplicities of the elements of X , i.e. ord(µ) =

∑
x∈X µ(x) . The number of all multisets of order

k on a set of size n is the multiset coefficient

((n

k

))
=

nk

k!
=

n(n + 1) . . . (n + k − 1)

k!
.

Let C(m)
n,k be the set of all m-compositions of n of length k and let c

(m)
n,k = |C(m)

n,k | . Similarly let C(m)
n

be the set of all m-compositions of n and let c
(m)
n = |C(m)

n | . Let us observe that any M ∈ C(m)
n+m,k+1 can

be decomposed into two parts: the first column, equivalent to a multiset of [m] = {1, . . . , m} of nonzero
order i and the rest of the matrix, that is any m-composition of n + m − i of length k . Hence it follows
the recurrence:

(2.1) c
(m)
n+m,k+1 =

n+m−k∑

i=1

((m

i

))
c
(m)
n+m−i,k .

The same argument yields the identity

(2.2) c
(m)
n+m =

n+m∑

i=1

((m

i

))
c
(m)
n+m−i .

Now we will use some arguments based on the Principle of Inclusion-Exclusion. Let Ai be the set
of all m-compositions M of n + m with a positive entry in position i1 . Then, since the first column

of M is different from the zero vector, it follows that C(m)
n+m = A1 ∪ . . . ∪ Am and from the Principle of

Inclusion-Exclusion

c
(m)
n+m = |A1 ∪ . . . ∪ Am| =

∑

S⊆[m]
S 6=∅

(−1)|S|−1

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

The set
⋂

i∈S Ai is formed of all the m-compositions M = [xi,j ] of n + m having positive entries in the
first column in the positions indexed by S . If we replace each element xi,1 , i ∈ S , with xi,1 − 1 , we
have two cases: the first column of M is the zero vector or it is not. In the first case removing the first
column we have an m-compositions of n+m− |S| , while in the second case we just have an m-composition
of n + m − |S| . Hence ∣∣∣∣∣

⋂

i∈S

Ai

∣∣∣∣∣ = 2c
(m)
n+m−|S| .

Since this result depends only on the size of S it follows that

(2.3) c
(m)
n+m = 2

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i .

For instance for m = 2, 3, 4 we have the recurrences

c
(2)
n+2 = 4c

(2)
n+1 − 2c(2)

n , c
(3)
n+3 = 6c

(3)
n+2 − 6c

(3)
n+1 + 2c(3)

n , c
(4)
n+4 = 8c

(4)
n+3 − 12c

(4)
n+2 + 8c

(4)
n+1 − 2c(4)

n .

We remark that the recurrence c
(2)
n+2 was first obtained in [12]. Exactly with the same argument we can

obtain the following recurrence

(2.4) c
(m)
n+m,k+1 =

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i,k +

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i,k+1 .
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m/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 4 8 16 32 64 128 256 512 1024
2 1 2 7 24 82 280 956 3264 11144 38048 129904 443520
3 1 3 15 73 354 1716 8318 40320 195444 947380 4592256 22260144
4 1 4 26 164 1031 6480 40728 255984 1608914 10112368 63558392 399478064
5 1 5 40 310 2395 18501 142920 1104060 8528890 65885880 508970002 3931805460
6 1 6 57 524 4803 44022 403495 3698352 33898338 310705224 2847860436 26102905368

Figure 1. Table of the numbers c
(m)
n , with m = 0, . . . , 6.

Let Ai be the set of all matrices M ∈ Mm,k(N) with the i-th column is equal to the zero vector such

that σ(M) = n . Then C(m)
n,k = A′

1 ∩ . . . ∩ A′
k and from the Principle of Inclusion-Exclusion

c
(m)
n,k = |A′

1 ∩ . . . ∩ A′
k| =

∑

S⊆[k]

(−1)|S|
∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

The set
⋂

i∈S Ai is formed of all matrices M ∈ Mm,k(N) with the zero vector in each column indexed by
the elements of S . It corresponds to the set of all multisets of order n on a set of size mk −m|S| and so

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ =

((
m(k − |S|)

n

))
.

Since this result depends only on the size of S it follows that

(2.5) c
(m)
n,k =

k∑

i=0

(
k

i

)((
m(k − i)

n

))
(−1)i .

Moreover

(2.6) c(m)
n =

n∑

k=0

c
(m)
n,k =

n∑

k=0

k∑

i=0

(
k

i

)((
m(k − i)

n

))
(−1)i .

This argument can be easily generalized as follows. Consider the set C(m)
k (r1, . . . , rm) of all m-

compositions of length k where the i-th row has sum equal to ri , for each i = 1, . . . , m , and let

c
(m)
k (r1, . . . , rm) be its cardinality. Now let Ai denote the set of all matrices M ∈ Mm,k(N) having the

i-th column equal to the zero vector, and row-sums r1 , . . . , rm . Then C(m)
k (r1, . . . , rm) = A′

1 ∩ . . . ∩ A′
k ,

and from the Principle of Inclusion-Exclusion

c
(m)
k (r1, . . . , rm) = |A′

1 ∩ . . . ∩ A′
k| =

∑

S⊆[k]

(−1)|S|
∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

The set
⋂

i∈S Ai is formed of all matrices M ∈ Mm,k(N) with the zero vector in each column indexed by
the elements of S . The i-th row of such a matrix M corresponds to a multiset of order ri on a set of size
k − |S| . Hence it follows that

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ =
((

k − |S|
r1

))
· · ·
((

k − |S|
rm

))
.

Since the result depends again only on the size of S it follows that

(2.7) c
(m)
k (r1, . . . , rm) =

k∑

i=0

(
k

i

)((
k − i

r1

))
· · ·
((

k − i

rm

))
(−1)i .

The Table in Fig. 1 reports the first terms of the sequences c
(m)
n , with m = 0, 1, . . . , 6. We remark that

for m ≥ 3 the sequence c
(m)
n is not present in [27].
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3. Enumeration of m-compositions trough formal languages

A large amount of combinatorial properties of m-compositions can simply be derived by encoding them
as words on an infinite alphabet. In fact, an m-composition can be viewed as the concatenation of its
columns. This implies that the set C(m) of all m-composition is equivalent to the free language A∗ on the

infinite alphabet A(m) = {aµ : µ ∈ M(m)
6=0 } , where M(m)

6=0 is the set of all multisets µ : [m] → N with

positive order and the letter aµ corresponds to the column
[
µ(1) . . . µ(m)

]T
. Substituting each letter

aµ with an indeterminate xµ , it follows immediately that the generating series of C(m) is

(3.1) c(X) =
1

1 −
∑

µ∈M(m)
6=0

xµ

where X = {xµ : µ ∈ M(m)
6=0 } . In particular, for xµ = xord(µ) we get the generating series

c(m)(x) =
∑

n≥0

c(m)
n xn =

1

1 − h(x)
where h(x) =

∑

k≥1

((m

k

))
xk =

1

(1 − x)m
− 1 .

Hence

(3.2) c(m)(x) =
(1 − x)m

2(1 − x)m − 1
,

from which we can derive the recurrence (2.3) already obtained in the previous section. Similarly, for
xµ = xord(µ)y we get the generating series

(3.3) c(x, y)(m) =
∑

n,k≥0

c
(m)
n,k xnyk =

1

1 − h(x)y
.

By the series (3.2), and making some easy computations, we obtain the following results:

(1) a recurrence relation for the numbers c
(m)
n+1,

c
(m)
n+1 = −δn,0 + 2c(m)

n +

n∑

k=0

(
m + k − 1

k + 1

)
c
(m)
n−k

which generalizes the following identity satisfied by the number c
(2)
n of 2-compositions [12]:

c
(2)
n+2 = 3c

(2)
n+1 + c

(2)
n + . . . + c

(2)
0 .

(2) the following Binet-like formula:

c(m)
n =

1

2

[
δn,0 +

1

m
m
√

2

m−1∑

k=0

ωk
m

(xk)n+1

]

where xk = 1 − 1
m
√

2
ωk

m , k = 0, 1, . . . , m − 1 , and ωm = e2πi/m is a primitive root of the unity.

From this expression we obtain an asymptotic expansion for the coefficients c
(m)
n ,

c(m)
n ∼ − A0

2xn+1
0

=
1

2m( m
√

2 − 1)

(
m
√

2
m
√

2 − 1

)n

as n → ∞ .

In particular we have

c
(m)
n+1 ∼

m
√

2
m
√

2 − 1
c(m)
n as n → ∞ .

A regular language for m-compositions. Extending the encoding used in [7] for the ordinary com-
positions, we are able to prove that m-compositions can be encoded as words on the alphabet Am =
{a1, · · · , am, b1, . . . , bm} . Let us define a map ` : C(m) → A∗

m setting

(3.4)

1
0
...
0

`7−→ a1 , . . .

0
...
0
1

`7−→ am , +

1
0
...
0

`7−→ b1 , . . . +

0
...
0
1

`7−→ bm
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and proceeding as follows. First of all write an m-composition M as the formal sum (i.e. juxtaposition) of its
columns (as in the previous case). Then write each column as juxtaposition of simple columns where a simple
column is a column in which all the entries except one are zero. We stipulate to order the simple columns
according to the position of the nonzero entry. At this point write each simple column as juxtaposition of
elementary columns, where an elementary column is a column in which all the entries are zero except one
equal to 1 . Hence, if the nonzero entry of a simple column is k then it will be written as the juxtaposition of
k elementary columns. Finally substitute each elementary column with the corresponding letter according
to the encoding in (3.4). An example will explain better the correspondence. Consider the 3-composition

M =



2 0 1 2
0 1 0 1
1 0 1 2


 .

Following the described procedure we have

M =
2
0
1

+
0
1
0

+
1
0
1

+
2
1
2

=
1 1 0
0 0 0
0 0 1

+
0
1
0

+
1 0
0 0
0 1

+
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

and hence `(M) = a1a1a3b2b1a3b1a1a2a3a3 .
Let Lm = `(C(m)) be the language on the alphabet Am corresponding to the m-compositions. The

words of Lm are characterized by the following conditions: i) each word begins with one letter a1 , . . . , am ;
ii) each letter ai or bi can be followed by any bj , while it can be followed by a letter aj only when
i ≤ j . This implies that these words have a unique factorization of the form xy where:

(1) x is a non-empty word of the form ai1
1 . . . aim

m , with i1, . . . , im ≥ 0 ;
(2) y is a (possibly empty) word y = y1 . . . yk , with yr = bj a

qj

j . . . aqm
m , with qj , . . . , qm ≥ 0 .

According to such a characterization Lm is a regular language defined by the unambiguous regular expres-
sion:

ε +
(
a+
1 a∗

2 . . . a∗
m + a+

2 a∗
3 . . . a∗

m + . . . + a+
m

)
( b1a

∗
1a

∗
2 . . . a∗

m + b2a
∗
2 . . . a∗

m + . . . + bma∗
m )∗

where, as usual, ε denotes the empty word.

4. Combinatorial interpretations

In this section we present three combinatorial interpretations for m-compositions. Here, for brevity’s
sake, we will give only the basic definitions, even though the relations between the structural properties of
the different classes deserve a further investigation.

4.1. Colored linear partitions. m-compositions can be interpreted in terms of linear species [5, 16]
as follows. Let C = {c1, . . . , cm} be a set of colors totally ordered in the natural way c1 < · · · < cm . We
say that the linearly ordered set [n] = {1, 2, . . . , n} is m-colored when each element is colored with one color
in C respecting the following condition: if ci and cj are the respective colors of two elements x and y ,
with x ≤ y , then i ≤ j . In other words, an m-coloring of [n] is an order preserving map γ : [n] → C .
We define an m-colored linear partition of [n] as a linear partition in which each block is m-colored.

The m-compositions of length k of n are equivalent to the m-colored linear partitions of [n] with

k blocks. Indeed any M ∈ C(m)
n,k corresponds to the m-colored linear partition π of [n] obtained

transforming the i-th column (h1, . . . , hm) of M into the i-th block of π of size h1 + · · · + hm with the
first h1 elements colored with c1 , . . . , the last hm elements colored with cm , for every 1 ≤ i ≤ k . For
instance, the 3-composition

M =




2 0 1 2
0 1 0 1
1 0 1 2




corresponds to the following 3-colored partition of the set {1, . . . , 11} :

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
s s s s s s s s s s s

c1 c1 c3 c2 c1 c3 c1 c1 c2 c3 c3
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Let Compm be linear species of the m-compositions, i.e. the linear species of m-colored linear
partitions. To give a structure of this species on a linearly ordered set L is equivalent to assign a linear
partition π on L and then an m-coloring, that is an order preserving map in C , on each block of π . Then,

if G denotes the uniform linear species and Map
(m)
6=∅ denotes the linear species of the order preserving

maps from a nonempty linear order to the set of colors C , we have that

Compm = G ◦ Map
(m)
6=∅ .

An order preserving map f : [k] → [m] is equivalent to a multiset of order k on the set [m] . Hence it
follows that

Card(Map
(m)
6=∅ ; x) =

∑

k≥1

((m

k

))
xk =

1

(1 − x)m
− 1

and consequently Card(Compm; x) = Card(G; x) ◦ Card(Map
(m)
6=∅ ; x) = c(m)(x) .

Using this interpretation we can obtain some useful identities. Let π ∈ Compm[L] , where L =
{x1, . . . , xi+1, . . . , xi+j+1} has size i + j + 1 . The element xi+1 belongs to a block of the form
{xi−h+1, . . . , xi, xi+1, xi+2, . . . , xi+k+2} where h, k ∈ N . Removing such a block, π splits into two
m-colored linear partitions of a linear order of size i−h and a linear order of size j−k , respectively. Then
it follows that

(4.1) c
(m)
i+j+1 =

∑

h,k≥0

((
m

h + k + 1

))
c
(m)
i−hc

(m)
j−k .

Recall that
((

m
i+j+1

))
gives the number of all the order maps f : [i + j + 1] → [m] . Suppose that

f(i + 1) = k , with k ∈ [m] . Since f is order preserving, it follows that f(x) ∈ [k] for every x ∈ [i] and
f(x) ∈ {k, . . . , m} for every x ∈ {i + 2, . . . , i + j + 1} . Then

(4.2)

((
m

i + j + 1

))
=

m∑

k=1

((
k

i

))((
m − k + 1

j

))
=

m−1∑

k=0

(
i + k

i

)((
m − k

j

))
.

4.2. Surjective families. Let P1 , . . . , Pm and Q be linearly ordered sets. Consider a family
{fi : Pi → Q}m

i=1 of order preserving maps with the following property: for every element q ∈ Q there
exists at least one index i and one element p ∈ Pi such that q = fi(p) . The single maps are not
necessarily surjective but every element of the codomain admits at least one preimage along one of the maps
of the family. Hence we call surjective family any family with such a property.

Now we can ask how many surjective families are there, when |P1| = r1 , . . . , |Pm| = rm and |Q| = k .

The answer is: c
(m)
k (r1, . . . , rm) . Indeed given a surjective family {fi : Pi → Q}m

i=1 we can build up an
m-composition M of length k as follows. The i-row of M is generated by the map fi : Pi → Q

taking as entries the numbers of the preimages of the elements of Q along fi , that is defining it as
[ |f•

i (1)| . . . |f•
i (k)| ] , where f•

i (y) denotes the set of all preimages of y along fi . Clearly the sum of
this row is |Pi| = ri . Moreover any column of M is different from the zero vector for the characterizing
property of the surjective families. So, finally, we have that M is an m-composition of length k with
row-sum vector (r1, . . . , rk) .

4.3. Labelled bargraphs. A bargraph is a column-convex polyomino, such that the lower edge lies on
the horizontal axis. It is uniquely defined by the heights of its columns, see Figure 2 (a). The enumeration
of bargraphs according to perimeter, area, and site-perimeter has been treated in [25, 26], related to the
study of percolation models, and more recently, by an analytical point of view, in [8]. For basic definitions
on polyominoes we refer to [6].

Here we deal with labelled bargraphs, i.e. bargraphs whose cells are all labelled with positive integer
numbers, and such that, for each column, the label of a cell is less then or equal to the label of the cell
immediately above (if any), see Figure 2 (b). The degree is the maximal label of the bargraph. For any
given m ≥ 1 , every m-composition of an integer n can be represented as a labelled bargraph of degree
j ≤ m having n cells, as follows. Let M be an m-composition of n ≥ 0 , having length k, and let
cT

i = (a1j , . . . , amj) be the j-th column of M . We build a bargraph made of k columns, of degree m at
most, where the j-th column has exactly a1j + . . . + amj cells, and aij is the number of cells with label
i in the j-th column, which are placed, according to the definition of labelled bargraph, just above the cells
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1
1

(b)

2
2
3
4

4
4
3

21 1

3 2

1
3

4
4
2 4

1
32 2

4
3

3

2

2
4

4
1

3

(a)

Figure 2. (a) a bargraph; (b) a labelled bargraph of degree 4.

with label i − 1 (if any). For instance, the bargraph in Fig. 2 (b) is associated with the 4-composition of
33 : 



2 0 1 0 0 1 0 1 0 0 2 0
0 1 0 3 1 0 0 3 1 0 0 0
0 0 0 1 1 0 4 0 0 0 0 2
0 0 0 1 2 1 0 0 2 2 0 1


 .

Of course, ordinary compositions (i.e. 1-compositions) are represented as bargraphs of degree 1 , i.e. the
usual bargraphs, as already pointed out in [23].

Some subclasses of m-compositions. The simple correspondence between m-compositions and la-
belled bargraphs can be applied to determine bijections between particular subclasses. So, for instance we
can consider:

(1) the set of bargraphs having all the m labels in each column (Fig. 3 (a)); it corresponds to the set

of m-compositions containing no 0s. The generating function of such objects is 1 +
xm

(1−x)m

1− xm

(1−x)m
=

1

1−( x
1−x )m .

(a) (b) (c)

1
2
3

1
2
3 3
3
3

2
2
3

2
11

3
21
1
1

1
1
2
3

1
2

2
2
2

1
1
1

1
2
2
2
2
3

2

3

1
2
2

3
3

3
3 2 3 1

3
3

3 1
2

2
13

1
3

1

Figure 3. Labelled bargraphs of degree 3: (a) having all the labels in each of its columns;
(b) a 3-partition; (c) a labelled stack of degree 3.

(2) the set of labelled Ferrers diagrams, i.e. those labelled bargraphs for which each column has height
greater than or equal to the height of the column on its right, see Fig. 3 (b). A labelled Ferrers
diagram of degree m corresponds to an m-composition such that the sum of the entries of each
column is greater than or equal to the sum of the entries of column on its right. We call these objects
m-partitions. This definition is motivated by the fact that the ordinary partitions correspond to
Ferrers diagrams, i.e. labelled Ferrers diagrams of degree 1. For instance, the bargraph in Fig. 3
(b) corresponds to the 3-partition of 20 :




1 3 0 1 0 0
4 0 1 2 0 1
1 2 2 0 2 0



 .

(3) the set of labelled stacks, i.e. of those labelled bargraphs for which each row is connected; these
objects have indeed the shape of stack polyominoes, see Fig. 3 (c). A labelled stack of degree m

corresponds to an m-composition such that the sequence c1 , . . . , ck is unimodal, being ci the
sum of the entries of the i-th column.

The problem of enumerating labelled Ferrers diagrams and labelled stacks has been solved in [24] in a more
general context.
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5. Combinatorial properties of m-compositions

5.1. Cassini-like identities. In [12] it has been proved that the numbers c
(2)
n of all 2-compositions

of n satisfy the Cassini-like identity: c
(2)
n c

(2)
n+2 − (c

(2)
n+1)

2 = −2n−1 , for every n ≥ 1 . Here we prove that

such an identity can be generalized to the numbers c
(m)
n . Specifically we prove that

(5.1)

∣∣∣∣∣∣∣∣∣∣

c
(m)
n c

(m)
n+1 . . . c

(m)
n+m−1

c
(m)
n+1 c

(m)
n+2 . . . c

(m)
n+m

...
...

...

c
(m)
n+m−1 c

(m)
n+m . . . c

(m)
n+2m−2

∣∣∣∣∣∣∣∣∣∣

= (−1)bm/2c 2n−1

for every m, n ≥ 1 . Let C
(m)
n = [ c

(m)
n+i+j ]m−1

i,j=0 . Its i-th row is ri = [ c
(m)
n+i+j ]m−1

j=0 . In particular, by

recurrence (2.3), the last row is

rm = 2

m∑

k=1

(
m

k

)
(−1)k−1rm−k = 2

m−1∑

k=1

(
m

k

)
(−1)k−1rm−k + (−1)m−12 r0

where r0 = [ c
(m)
n−1+j ]m−1

j=0 . Then subtracting to the last row the following linear combination of the previous
rows

2

m−1∑

k=1

(
m

k

)
(−1)k−1rm−k

the last row of detC
(m)
n becomes (−1)m−12 r0 . Extracting (−1)m−12 from the last line and then shifting

cyclically all rows downward we obtain that

detC(m)
n = 2 detC

(m)
n−1 .

Then, for every n ≥ 1 , it follows that: detC
(m)
n = 2n−1 detC

(m)
1 . So we have to compute only the

determinant of the matrix C
(m)
1 = [ c

(m)
i+j+1 ]m−1

i,j=0 . By identity (4.1) we have the decomposition C
(m)
1 =

LmMmLT
m where Lm = [ c

(m)
i−j ]m−1

i,j=0 , Mm =
[ ((

m
i+j+1

)) ]m−1

i,j=0
and LT

m is the transpose of Lm .

Since Lm is a triangular matrix with unitary diagonal elements, it follows that detC
(m)
1 = detMm . Now

identity (4.2) implies that Mm = BmB̃m where Bm =
[ (

i+j
i

) ]m−1

i,j=0
and B̃m =

[ ((
m−i

j

)) ]m−1

i,j=0
. Being

B̃m = JmBm where Jm = [δi+j,m−1]
m−1
i,j=0 , it is Mm = BmJmBm and detMm = detJm(det Bm)2 . Since,

as very well known, detJm = (−1)bm/2c and detBm = 1 , it follows that detMm = (−1)bm/2c and

consequently detC
(m)
1 = (−1)bm/2c . Finally we have: detC

(m)
n = (−1)bm/2c2n−1 , for every n ≥ 1 .

5.2. m-compositions without zero rows. In this section we will study the m-compositions in which

every row is different from the zero vector. We begin by determining an expression for the number f
(m)
n of

all such m-compositions of n . Let Ai be the set of all m-compositions M ∈ C(m)
n where the i-th row is

zero. Then

f (m)
n = |A′

1 ∩ · · · ∩ A′
m| =

∑

S⊆[m]

(−1)|S|
∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

Since
⋂

i∈S Ai is clearly in a bijective correspondence with the set of all (m − |S|)-compositions of n , it
follows that

(5.2) f (m)
n =

m∑

k=0

(
m

k

)
(−1)kc(m−k)

n =

m∑

k=0

(
m

k

)
(−1)n−kc(k)

n .

On the other hand, the set C(m)
n can be partitioned according to the number of zero rows and this yields

the following identity:

(5.3) c(m)
n =

m∑

k=0

(
m

k

)
f (k)

n .
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Clearly this formula can be also obtained formally by inverting (5.2). From (5.2) also follows that the

generating series for the numbers f
(m)
n is

f (m)(x) =

m∑

k=0

(
m

k

)
(−1)m−kc(k)(x) =

m∑

k=0

(
m

k

)
(−1)m−k (1 − x)k

2(1 − x)k − 1
.

Then this series has the form

(5.4) f (m)(x) =
xmpm(x)

(1 − 2x)(1 − 4x + 2x2) · · · (2(1 − x)m − 1)

where pm(x) is a polynomial with degree (less than or) equal to
(
m
2

)
. This implies that, for n ≥ 1 , the

numbers f
(m)
n satisfy a homogeneous linear recurrence with constant coefficients of order

(
m+1

2

)
, which

can be deduced from the denominator of the series (5.4).

Now we will establish an explicit formula for the numbers f
(m)
n . Since f

(m)
n counts all m-compositions

in which every row-sum is nonzero, it immediately follows that

f (m)
n =

∑

k≥0

∑

(r1,...,rm)∈Z+
m

r1+···+rm=n

c
(m)
k (r1, . . . , rm) =

∑

k≥0

∑

ρ∈Z+
m

|ρ|=n

c
(m)
k (ρ)

where ρ = (r1, . . . , rm) and |ρ| = r1 + · · · + rm . Then, using (2.7), we have the formula

(5.5) f (m)
n =

∑

ρ∈Z+
m

|ρ|=n

∑

k≥0

k∑

i=0

(
k

i

)((
k − i

r1

))
· · ·
((

k − i

rm

))
(−1)i .

Clearly f
(m)
n = 0 whenever n < m . Consider now the case m = n . In this case we have only the vector

ρ = (1, . . . , 1) and the identity (5.5) becomes

f (n)
n =

∑

k≥0

[
k∑

i=0

(
k

i

)
(k − i)n(−1)i

]
.

The sum in the brackets is very well known and gives the number of surjective functions from a set of size
n to a set of size k . Moreover it can be expressed it terms of the Stirling numbers of the second kind, and
precisely it is equal to

{
n
k

}
k! . Then

f (n)
n =

n∑

k=0

{
n

k

}
k! .

But also this sum is very well known, and gives the number tn of all preferential arrangements on a set of

size n (sequence A000670 in [27]). So, in conclusion, we have that f
(n)
n = tn .

This result can be generalized. Indeed in the formula for f
(n)
n+1 we have only the n vectors ρ =

(1, . . . , 1, 2, 1, . . . , 1) . Hence (5.5) becomes

f
(n)
n+1 =

n

2

∑

k≥0

k∑

i=0

(
k

i

)
(k − i)n(k − i + 1)(−1)i =

n

2



∑

k≥0

{
n + 1

k

}
k! −

∑

k≥0

{
n

k

}
k!




that is
f

(n)
n+1 =

n

2
(tn+1 + tn) .

Similarly, when we consider f
(n)
n+2 , we have only the n vectors ρ = (1, . . . , 1, 3, 1, . . . , 1) and the

(
n
2

)

vectors ρ = (1, . . . , 1, 2, 1, . . . , 1, 2, 1, . . . , 1) . Hence (5.5), after simplification, becomes

f
(n)
n+2 =

n

24
[(3n + 1)tn+2 + 6(n + 1)tn+1 + (3n + 5)tn] .

All these results suggest that there exist polynomials p
(k)
i (x) such that

f
(n)
n+k =

k∑

i=0

p
(k)
i (n) tn+i .

The nature of such polynomials needs some further investigations.
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m/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 2 4 4 8 8 16 16 32 32
2 1 2 5 8 18 28 62 96 212 328 724 1120
3 1 3 9 19 48 96 236 468 1146 2270 5556 11004
4 1 4 14 36 101 240 648 1520 4082 9560 25660 60088
5 1 5 20 60 185 501 1470 3910 11390 30230 88002 233530
6 1 6 27 92 309 930 2939 8640 27048 79280 247968 726672

Figure 4. Table of the numbers p
(m)
n .

5.3. m-compositions with palindromic rows. An ordinary composition is palindromic when its
elements are the same in the given or in the reverse order. In the literature palindromic compositions have
been studied by various authors [10, 11, 23]. Here we generalize this definition to the m-compositions
saying that an m-composition is palindromic when all its rows are palindromic. For instance the following
is a palindromic 4-composition of length 5 of 24 :




1 2 1 2 1
2 0 3 0 2
0 0 1 0 0
3 1 1 1 3


 .

Clearly every m-compositions with palindromic rows has the form [M |Ms] when its length is even and
the form [M |v|Ms] when its length is odd, where M is an arbitrary m-composition, Ms is the specular
m-composition obtained from M by reversing every row and v is an arbitrary column vector. Hence the
generating series for the m-compositions with palindromic rows is given by

p(m)(x) =
∑

n≥0

p(m)
n xn = c(m)(x2) +

(
1

(1 − x)m
− 1

)
c(m)(x2) =

1

(1 − x)m
c(m)(x2) =

(1 + x)m

2(1 − x2)m − 1
.

From this identity it immediately follows that

p(m)
n =

bn/2c∑

k=0

((
m

n − 2k

))
c
(m)
k .

The first terms of p
(m)
n are reported in Fig. 4. Let now q

(m)
n be the number of all m-compositions of n

with palindromic non zero rows. With arguments completely similar to the ones used in the case of ordinary
m-compositions we have that

p(m)
n =

m∑

k=0

(
m

k

)
q(k)
n , q(m)

n =

m∑

k=0

(
m

k

)
(−1)m−kp(k)

n .

Notice that when n = m there is just one n-composition with palindromic rows, given by the column vector

with all entries equal to 1 . Hence q
(n)
n = 1 .

5.4. m-compositions of Carlitz type. We say that an m-composition is of Carlitz type when no two
adjacent columns are equal. When m = 1 we obtain the ordinary Carlitz compositions [9]. As in Section 2,
also m-compositions of Carlitz type can be viewed as words on the infinite alphabet A(m) = {aµ : µ ∈
M(m)

6=0 } . Let Z be the set of all words corresponding to the m-composition of Carlitz type and let Zµ be

the subset of Z formed exactly by the words ending with aµ , for every µ ∈ M(m)
6=0 . It immediately follows

that

Z = 1 +
∑

µ∈M(m)
6=0

Zµ and Zµ = (Z − Zµ)aµ ∀ µ ∈ M(m)
6=0 .
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m/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 3 4 7 14 23 39 71 124 214
2 1 2 5 18 53 162 505 1548 4756 14650 45065 138622
3 1 3 12 58 255 1137 5095 22749 101625 454116 2028939 9065145
4 1 4 22 136 793 4660 27434 161308 948641 5579224 32811986 192971168
5 1 5 35 265 1925 14056 102720 750255 5480235 40031030 292408771 2135917405
6 1 6 51 458 3984 34788 303902 2654064 23179743 202445610 1768099107 15442052496

Figure 5. Table of the numbers z
(m)
n .

In order to obtain the generating series associated with the languages Z and Zµ it is sufficient to replace
the letter aµ with the indeterminate xµ , thus obtaining the linear system

z(X) = 1 +
∑

µ∈M(m)
6=0

zµ(X) and zµ(X) = (z(X) − zµ(X))xµ ∀ µ ∈ M(m)
6=0

from which

zµ(X) =
xµ

1 + xµ
z(X) and then z(X) =

1

1 −
∑

µ∈M(m)
6=0

xµ

1 + xµ

.

Setting xµ = xord(µ) , we obtain the generating series for the coefficients z
(m)
n giving the number of all

m-compositions of Carlitz type of n . Specifically we have

(5.6) z(m)(x) =
∑

n≥0

z(m)
n xn =

1

1 −
∑

k≥1

((m

k

)) xk

1 + xk

.

For m = 1 we reobtain the generating series for the ordinary Carlitz compositions. The sequence z
(1)
n

appears in [27] as the sequence #A003242, while for m ≥ 2 the corresponding sequences are absent. The

first terms of z
(m)
n are reported in Fig. 5.

From series (5.6) it is possible to obtain the following explicit formula for the numbers z
(m)
n . Indeed

z(m)(x) =
∑

k≥0




∑

n≥1

((m

n

)) xn

1 + xn




k

=
∑

k≥0

∑

a1≥1

((
m

a1

))
xa1

1 + xa1
· · ·
∑

ak≥1

((
m

ak

))
xak

1 + xak

=
∑

k≥0

∑

a1,...,ak≥1

((
m

a1

))
. . .

((
m

ak

))
xa1

1 + xa1
· · · xak

1 + xak

=
∑

k≥0

∑

a1,...,ak≥1

b1,...,bk≥1

((
m

a1

))
. . .

((
m

ak

))
(−1)b1+···+bk−kxa1b1+···+akbk .

Then

z(m)(x) =
∑

n≥0



∑

k≥0

∑

α,β∈Nk
0

α·β=n

((m

α

))
(−1)|β|−k


xn

where if α = (a1, . . . , ak) and β = (b1, . . . , bk) then α · β = a1b1 + · · · + akbk , |β| = b1 + · · · + bk and((
m
α

))
=
((

m
a1

))
. . .
((

m
ak

))
. Finally, we have the following expression

z(m)
n =

∑

k≥0

∑

α,β∈Nk
0

α·β=n

((m

α

))
(−1)|β|−k .
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With the same argument used in [9] by Carlitz it is possible to obtain the following expression for the
series z(m)(x) :

(5.7) z(m)(x) =
1

1 +
∑

k≥1

(−1)k 1 − (1 − xk)m

(1 − xk)m

.

Let now g
(m)
n be the number of all m-compositions of Carlitz type of n without zero rows. With

arguments completely similar to the ones used in the case of ordinary m-compositions we have that

z(m)
n =

m∑

k=0

(
m

k

)
g(k)

n , g(m)
n =

m∑

k=0

(
m

k

)
(−1)m−kz(k)

n .
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Combinatorial aspects of elliptic curves

Gregg Musiker

Abstract. Given an elliptic curve C, we study here the number Nk = #C(Fqk ) of points of C over the finite

field Fqk . We obtain two combinatorial formulas for Nk. In particular we prove that Nk = −Wk(q, t)|t=−N1

where Wk(q, t) is a (q, t)-analogue for the number of spanning trees of the wheel graph.

Résumé. Étant donnée une courbe elliptique C on étudie le nombre Nk = #C(Fqk ) de points de C dans

le corps fini Fqk . On obtient deux formules combinatoires pour Nk. En particulier on démontre que Nk =

−Wk(q, t)|t=−N1
oú Wk(q, t) est une (q, t)-extension du nombre des arbres recouvrants du graphe roue.

1. Introduction

An interesting problem at the cross-roads between combinatorics, number theory, and algebraic geometry,
is that of counting the number of points on an algebraic curve over a finite field. Over a finite field, the locus
of solutions of an algebraic equation is a discrete subset, but since they satisfy a certain type of algebraic
equation this imposes a lot of extra structure below the surface. One of the ways to detect this additional
structure is by looking at field extensions: the infinite sequence of cardinalities is only dependent on a
finite set of data. Specifically the number of points over Fq, Fq2 , . . . , and Fqg will be sufficient data to
determine the number of points on a genus g algebraic curve over any other algebraic field extension. This
observation begs the question of how the points over higher field extensions correspond to points over the
first g extensions. To see this more clearly, we specialize to the case of elliptic curves, where g = 1. Letting
Nk equal the number of points on C over Fqk , we find a polynomial formula for Nk in terms of q and N1.
Moreover, the coefficients in our formula have a combinatorial interpretation related to spanning trees of the
wheel graph.

2. The Zeta Function of a Curve

The zeta function of a curve C is defined to be the exponential generating function

Z(C, T ) = exp

(

∑

k≥1

Nk

T k

k

)

.

A result due to Weil [7] is that the zeta function of an elliptic curve, in fact for any curve, Z(C, T ) is
rational, and moreover can be expressed as

Z(C, T ) =
(1 − α1T )(1− α2T )

(1− T )(1− qT )
=

1− (α1 + α2)T + α1α2T
2

(1− T )(1− qT )
.

The inverse roots α1 and α2 satisfy a functional equation which reduces to

α1α2 = q

in the elliptic curve case.

2000 Mathematics Subject Classification. Primary 11G07; Secondary 05C05.
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Among other things, rationality and the functional equation implies that Nk = 1 + qk − αk
1 − αk

2 , which
can be written in plethystic notation as pk[1 + q − α1 − α2]. As a special case,

α1 + α2 = 1 + q −N1.

Hence we can rewrite the Zeta function Z(C, T ) totally in terms of q and N1, hence all the Nk’s are actually
dependent on these two quantities. The first few formulas are given below.

N2 = (2 + 2q)N1 −N2
1

N3 = (3 + 3q + 3q2)N1 − (3 + 3q)N2
1 + N3

1

N4 = (4 + 4q + 4q2 + 4q3)N1 − (6 + 8q + 6q2)N2
1 + (4 + 4q)N3

1 −N4
1

N5 = (5 + 5q + 5q2 + 5q3 + 5q4)N1 − (10 + 15q + 15q2 + 10q3)N2
1

+ (10 + 15q + 10q2)N3
1 − (5 + 5q)N4

1 + N5
1

This data gives rise to our first observation.

Theorem 2.1.

Nk =

k
∑

i=1

(−1)i+1Pi,k(q)N i
1

where the Pi,k’s are polynomials with positive integer coefficients.

We will prove this in the course of the deriviations in Section 3. Also see [3] for a direct proof. This
result motivates the combinatorial question: what are the objects that the family of polynomials, {Pi,k}
enumerate?

3. The Lucas Numbers and a (q, t)-analogue

Definition 3.1. We define the (q, t)−Lucas numbers to be a sequence of polynomials in variables q

and t such that Ln(q, t) is defined as

Ln(q, t) =
∑

S⊆{1,2,...,n} : S∩S
(n)
1 =φ

q# even elements in S tb
n
2 c−#S .(3.1)

Here S
(n)
1 is the circular shift of set S modulo n, i.e. element x ∈ S1 if and only if x− 1 ( mod n ) ∈ S. In

other words, the sum is over subsets S with no two numbers circularly consecutive.

These polynomials are a generalization of the sequence of Lucas numbers Ln which have the initial
conditions L1 = 1, L2 = 3 (or L0 = 2 and L1 = 1) and satisfy the Fibonacci recurrence Ln = Ln−1 + Ln−2.
The first few Lucas numbers are

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .

As described in numerous sources, e.g. [1], Ln is equal to the number of ways to color an n−beaded
necklace black and white so that no two black beads are consecutive. You can also think of this as choosing
a subset of {1, 2, . . . , n} with no consecutive elements, nor the pair 1, n. (We call this circularly consecutive.)
Thus letting q and t both equal one, we get by definition that Ln(1, 1, ) = Ln.

We will prove the following theorem, which relates our newly defined (q, t)−Lucas numbers to the
polynomials of interest, namely the Nk’s.

Theorem 3.2.

1 + qk −Nk = L2k(q, t)

∣

∣

∣

∣

t=−N1

(3.2)

for all k ≥ 1.

To prove this result it suffices to prove that both sides are equal for k ∈ {1, 2}, and that both sides
satisfy the same three-term recurrence relation. Since

L2(q, t) = 1 + q + t and

L4(q, t) = 1 + q2 + (2q + 2)t + t2
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we have proven that the initial conditions agree. Note that the sets of (3.1) yielding the terms of these sums
are respectively

{1}, {2}, { } and {1, 3}, {2, 4}, {1}, {2}, {3}, {4}, { }.

It remains to prove that both sides of (3.2) satisfy the recursion

Gk+1 = (1 + q −N1)Gk − qGk−1

for k ≥ 1.

Proposition 3.1. For the (q, t)−Lucas Numbers Lk(q, t) defined as above,

L2k+2(q, t) = (1 + q + t)L2k(q, t)− qL2k−2(q, t).(3.3)

Proof. To prove this we actually define an auxiliary set of polynomials, {L̃2k}, such that

L2k(q, t) = tkL̃2k(q, t−1).

Thus recurrence (3.3) for the L2k’s translates into

L̃2k+2(q, t) = (1 + t + qt)L̃2k(q, t)− qt2L̃2k−2(q, t)(3.4)

for the L̃2k’s. The L̃2k’s happen to have a nice combinatorial interpretation also, namely

L̃2k(q, t) =
∑

S⊆{1,2,...,2k} : S∩S
(2k)
1 =φ

q# even elements in S t#S .

Recall our slightly different description which considers these as the generating function of 2-colored, labeled
necklaces. We will find this terminology slightly easier to work with. We can think of the beads labeled 1
through 2k + 2 to be constructed from a pair of necklaces; one of length 2k with beads labeled 1 through
2k, and one of length 2 with beads labeled 2k + 1 and 2k + 2.

Almost all possible necklaces of length 2k + 2 can be decomposed in such a way since the coloring
requirements of the 2k+2 necklace are more stringent than those of the pairs. However not all necklaces can
be decomposed this way, nor can all pairs be pulled apart and reformed as a (2k +2)-necklace. For example,
if k = 2:

Decomposable

1 2

3

45

6

=

6

5 4

3

21
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Not Decomposable

1 2

3

45

6

6=

6

5 4

3

21

It is clear enough that the number of pairs is L̃2(q, t)L̃2k(q, t) = (1 + t + qt)L̃2k(q, t). To get the third

term of the recurrence, i.e. qt2L̃2k−2, we must define linear analogues, F̃n(q, t)’s, of the previous generating

function. Just as the L̃n(1, 1)’s were Lucas numbers, the F̃n(1, 1)’s will be Fibonacci numbers.

Definition 3.3. The (twisted) (q, t)−Fibonacci polynomials, denoted as F̃n(q, t), will be defined as

F̃k(q, t) =
∑

S⊆{1,2,...,k−1} : S∩(S
(k−1)
1 −{1})=φ

q# even elements in S t#S.

The summands here are subsets of {1, 2, . . . , k− 1} such that no two elements are linearly consecutive,
i.e. we now allow a subset with both the first and last elements. An alternate description of the objects
involved are as (linear) chains of k− 1 beads which are black or white with no two consecutive black beads.
With these new polynomials at our disposal, we can calculate the third term of the recurrence, which is the
difference between the number of pairs that cannot be recombined and the number of necklaces that cannot
be decomposed.

Lemma 3.4. The number of pairs that cannot be recombined into a longer necklace is 2qt2F̃2k−2(q, t).

Proof. We have two cases: either both 1 and 2k + 2 are black, or both 2k and 2k + 1 are black. These
contribute a factor of qt2, and imply that beads 2, 2k, and 2k +1 are white, or that 1, 2k− 1, and 2k +2 are
white, respectively. In either case, we are left counting chains of length 2k − 3, which have no consecutive
black beads. In one case we start at an odd-labeled bead and go to an evenly labeled one, and the other
case is the reverse, thus summing over all possibilities yields the same generating function in both cases. �

Lemma 3.5. The number of (2k + 2)-necklaces that cannot be decomposed into a 2-necklace and a 2k-

necklace is qt2F̃2k−3(q, t).

Proof. The only ones the cannot be decomposed are those which have beads 1 and 2k both black.
Since such a necklace would have no consecutive black beads, this implies that beads 2, 2k − 1, 2k + 1, and
2k + 2 are all white. Thus we are reduced to looking at chains of length 2k− 4, starting at an odd, 3, which
have no consecutive black beads. �

Lemma 3.6. The difference of the quantity referred to in Lemma 3.5 from the quantity in Lemma 3.4 is

exactly qt2L̃2k−2(q, t).

Proof. It suffices to prove the relation

qt2L̃2k−2(q, t) = 2qt2F̃2k−2(q, t)− qt2F̃2k−3(q, t)

which is equivalent to

qt2L̃2k−2(q, t) = qt2F̃2k−2(q, t) + q2t3F̃2k−4(q, t)(3.5)

since
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F̃2k−2(q, t) = qtF̃2k−4(q, t) + F̃2k−3(q, t).(3.6)

Note that identity (3.6) simply comes from the fact that the (2k− 2)nd bead can be black or white. Finally
we prove (3.5) by dividing by qt2, and then breaking it into the cases where bead 1 is white or black. If
bead 1 is white, we remove that bead and cut the necklace accordingly. If bead 1 is black, then beads 2 and
2k + 2 must be white, and we remove all three of the beads.

�

With this Lemma proven, the recursion for the L̃2k’s, hence the L2k’s follows immediately. �

Proposition 3.2. For an elliptic curve C with Nk points over Fqk we have that

1 + qk+1 −Nk+1 = (1 + q −N1)(1 + qk −Nk)− q(1 + qk−1 −Nk−1).

Proof. Recalling that for an elliptic curve C we have the identity Nk = 1+qk−αk
1−αk

2 , we can rewrite
the statement of this Proposition as

αk+1
1 + αk+1

2 = (α1 + α2)(α
k
1 + αk

2)− q(αk−1
1 + αk−1

2 ).(3.7)

Noting that q = α1α2 we obtain this Proposition after expanding out algebraically the right-hand-side of
(3.7). �

With the proof of Proposition 3.1 and 3.2, we have proven Theorem 3.2.

4. (q, t)−Wheel Numbers

Given that we found the Lucas numbers are related to the polynomial formulas Nk(q, N1), a natural
question concerns how alternative interpretations of the Lucas numbers can help us better understand Nk.
As noted in [1], [4], and [5, Seq. A004146], the sequence {L2n − 2} counts the number of spanning trees in
the wheel graph Wn; a graph which consists of n + 1 vertices, n of which lie on a circle and one vertex in
the center, a hub, which is connected to all the other vertices. This combinatorial interpretation motivates
the following definition.

Definition 4.1.

Wn(q, t) =
∑

T a spanning tree of Wn

qsum of arc tail distance in T t# spokes of T .

Here the exponent of t counts the number of edges emanating from the central vertex, and the exponent
of q requires further explanation. We note that a spanning tree T of Wn consists of spokes and a collection
of disconnected arcs on the rim. Further, since there are no cycles, each spoke will intersect exactly one arc.
(An isolated vertex is considered to be an arc of length 1.) We imagine the circle being oriented clockwise,
and imagine the tail of each arc being the vertex which is the sink for that arc. In the case of an isolated
vertex, the lone vertex is the tail of that arc. Since the spoke intersects each arc exactly once, if an arc has
length k, meaning that it contains k vertices, there will be k choices of where the spoke and the arc meet.
We define the q−weight of an arc to be q number of edges between the spoke and the tail. We define the q−weight
of the tree to be the product of the q−weights for all arcs on the rim of the tree.
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q2t3

dist = 1

dist = 1

dist = 0

q3t3

dist = 0

dist = 1

dist = 2

This definition actually provides exactly the generating function that we desired, namely we have

Theorem 4.2 (Main Theorem).

Nk = −Wk(q, t)
∣

∣

t=−N1

for all k ≥ 1.

Notice that this yields an exact interpretation of the Pi,k polynomials as follows:

Pi,k(q) =
∑

T a spanning tree of Wn with exactly i spokes

qsum of arc tail distance in T .

We will prove this Theorem in two different ways. The first method will utilize Theorem 3.2 and an
analogue of the bijection given in [1] which relates perfect and imperfect matchings of the circle of length 2k

and spanning trees of Wk. Our second proof will use the observation that we can categorize the spanning
trees bases on the sizes of the various connected arcs on the rims. Since this categorization will correspond
to partitions, this method will exploit formulas for decomposing pk into a linear combination of hλ’s, as
described in Section 6.

5. First Proof: Bijective

There is a simple bijection between subsets of [2n] with no two elements circularly consecutive and
spanning trees of the wheel graph Wn. We will use this bijection to give our first proof of Theorem 4.2. The
bijection is as follows:

Given a subset S of the set {1, 2, . . . , 2n− 1, 2n} with no circularly consecutive elements, we define the
corresponding spanning tree TS of Wn (with the correct q and t weight) in the following way:

1) We will use the convention that the vertices of the graph Wn are labeled so that the vertices on the
rim are w1 through wn, and the central vertex is w0.

2) We will exclude the two subsets which consist of all the odds or all the evens from this bijection. Thus
we will only be looking at subsets which contain n− 1 or fewer elements.

3) For 1 ≤ i ≤ n, an edge exists from w0 to wi if and only if neither 2i − 2 nor 2i − 1 (element 0 is
identified with element 2n) is contained in S.

4) For 1 ≤ i ≤ n, an edge exists from wi to wi+1 (wn+1 is identified with w1) if and only if element 2i−1
or element 2i is contained in S.
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 Or 
Elt  6

Elt  5

Elt  4
 Or 

Elt  3

Elt  2

Elt  1
 Or 

Not   5

Not   4

Not   3

Not   2

And 
Not   6

Not   1

And 

And 

{ }

←→

{

3

}

←→

{

2, 5

}

←→

Proposition 5.1. Given this construction, TS is in fact a spanning tree of Wn and further, tree TS has

the same q− and t−weights as set S.

Proof. Suppose that set S contains k elements. From our above restriction, we have that 0 ≤ k ≤
n − 1. Since S is a k-subset of a 2n element set with no circularly consecutive elements, there will be
n−k pairs {2i−2, 2i−1} with neither element in set S, and k pairs {2i−1, 2i} with one element in set S.
Consequently, subgraph TS will consist of exactly (n−k)+k = n edges. Since n = (# vertices of Wn)−1, to
prove TS is a spanning tree, it suffices to show that each vertex of Wn is included. For every oddly-labeled
element of {1, 2, . . . , 2n}, i.e. 2i− 1 for 1 ≤ i ≤ n, we have the following rubric:

1) If (2i− 1) ∈ S then the subgraph TS contains the edge from wi to wi+1.
2) If (2i− 1) 6∈ S and additionally (2i− 2) 6∈ S, then TS contains the spoke from w0 to wi.
3) If (2i− 1) 6∈ S and additionally (2i− 2) ∈ S, then TS contains the edge from wi−1 to wi.

Since one of these three cases will happen for all 1 ≤ i ≤ n, vertex wi is incident to an edge in TS. Also, the
central vertex, w0, has to be included since by our restriction, 0 ≤ k ≤ n − 1 and thus there are n− k ≥ 1
pairs {2i− 2, 2i− 1} which contain no elements of S.

The number of spokes in TS is n− k which agrees with the t−weight of a set S with k elements. Finally,
we prove that the q-weight is preserved by induction on the number of elements in the set S. If set S has no
elements, the q−weight should be q0, and spanning tree TS will consist of n spokes which also has q−weight
q0.

Now given a k element subset S (0 ≤ k ≤ n− 2), it is only possible to adjoin an odd number if there is
a sequence of three consecutive numbers starting with an even, i.e. {2i− 2, 2i− 1, 2i}, which is disjoint from
S. Such a sequence of S corresponds to a segment of TS where a spoke and tail of an arc intersect. (Note
this includes the case of vertex wi being an isolated vertex.)

In this case, subset S′ = S ∪ {odd} corresponds to TS′ , which is equivalent to spanning tree TS except
that one of the spokes w0 to wi has been deleted and replaced with an edge from wi to wi+1. The arc
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corresponding to the spoke from wi will now be connected to the next arc, clockwise. Thus the distance
between the spoke and the tail of this arc will not have changed, hence the q−weight of TS′ will be the same
as the q−weight of TS .

Alternatively, it is only possible to adjoin an even number to S if there is a sequence {2i− 1, 2i, 2i + 1}
which is disjoint from S. Such a sequence of S corresponds to a segment of TS where a spoke meets the end

of an arc. (Note this includes the case of vertex wi being an isolated vertex.)
Here, subset S′′ = S∪{even} corresponds to TS′′ , which is equivalent to spanning tree TS except that one

of the spokes w0 to wi+1 has been deleted and replaced with an edge from wi to wi+1. The arc corresponding
to the spoke from wi+1 will now be connected to the previous arc, clockwise. Thus the cumulative change
to the total distance between spokes and the tails of arcs will be an increase of one, hence the q−weight of
TS′′ will be q1 times the q−weight of TS.

Since any subset S can be built up this way from the empty set, our proof is complete via this induction.
�

Since the two sets we excluded, of size k had (q, t)−weights q0t0 and qkt0 respectively, we have proven
Theorem 4.2.

6. Brick Tabloids and Symmetric Function Expansions

Recall that we wrote Nk plethystically as pk[1 + q − α1 − α2]. One advantage of plethystic notation is
that we can exploit the following symmetric function identity [6, pg. 21]:

∞
∑

n=0

hnT n =
∏

k∈I

1

1− tkT
= exp

(

∑

n=1

pn

T n

n

)

(6.1)

where hn and pn are symmetric functions in the variables in I. We note that Z(C, T ) resembles the right-
hand-side of this identity, and consequently, if we had written Z(C, T ) as an ordinary power series

Z(C, T ) =
∑

k≥0

HkT k

we obtain that Hk = hk[1 + q − α1 − α2], where hk denotes the kth homogeneous symmetric function.

Remark 6.1. In fact Hk has an algebraic geometric interpretation also, just as the Nk’s did. Hk equals
the number of positive divisors of degree k on curve C.

For a general curve we can thus, by plethysm, write cardinalities Nk in terms of H1 through Hk, using
the same coefficients as those that appear in the expansion of pk in terms of h1 through hk:

Nk =
∑

λ`k

cλHλ1Hλ2 · · ·Hλ|λ|
(6.2)

where the cλ can be written down concisely as

cλ = (−1)l(λ)−1 k

l(λ)

(

l(λ)

d1, d2, . . . , dk

)

(6.3)

where l(λ) denotes the length of λ, which is a partition of k with type 1d12d2 · · · kdk .
We give one proof of this using Egecioglu and Remmel’s interpretation involving weighted brick tabloids

[2]. We will give another proof of this, involving a possibly new combinatorial interpretation for these
coefficients, further on, in Section 7.

A brick tabloid [2] of type λ = 1d12d2 · · · kdk and shape µ is a filling of the Ferrers’ Diagram µ with
bricks of various sizes, d1 which are 1× 1, d2 which are 2× 1, d3 which are 3× 1, etc. The weight of a brick
tabloid is the product of the lengths of all bricks at the end of the rows of the Ferrers’ Diagram. We let
w(Bλ,µ) denote the weighted-number of brick tabloids of type λ and shape µ, where each tabloid is counted
with multiplicity according to its weight.

Proposition 6.1 (Egecioglu-Remmel 1991, [2]).

pµ =
∑

λ

(−1)l(λ)−l(µ)w(Bλ,µ)
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and in particular

pk =
∑

λ

(−1)l(λ)−1w(Bλ,(k)).

Brick tabloids of type λ and shape (k) are simply fillings of the k × 1 board with bricks as specified by
λ. Thus if divide these tabloids into classes based on the size of the last brick, we obtain, by counting the
number of rearrangements, that there are

(

l(λ)− 1

d1, . . . , di − 1, . . . , dk

)

brick tabloids of type (k) and shape λ = 1d12d2 · · · kdk which have a last brick of length i.
Since each of these tabloids has weight i, summing up over all possible i, we get that (by abusing

multinomial notation slightly)

w(Bλ,(k)) =

k
∑

i=0

i ·

(

l(λ)− 1

d1, . . . , di − 1, . . . , dk

)

=

( k
∑

i=0

idi

)

·

(

l(λ)− 1

d1, . . . , di, . . . , dk

)

= k ·

(

l(λ)− 1

d1, d2, . . . , dk

)

=
k

l(λ)
·

(

l(λ)

d1, d2, . . . , dk

)

Thus after comparing signs, we obtain that cλ equals exactly the desired expression.
We now specialize to the case of g = 1. Here we can write Hk in terms of N1 and q. We expand the

series

Z(C, T ) =
1− (1 + q −N1)T + qT 2

(1− T )(1− qT )

with respect to T , and obtain H0 = 1 and Hk = N1(1 + q + q2 + · · ·+ qk−1) for k ≥ 1. Plugging these into
formula (6.2), and using (6.3), we get polynomial formulas for Nk in terms of q and N1, which in fact are an
alternative expression for the formulas found in section 2.

Nk =
∑

λ`k

(−1)l(λ)−1 k

l(λ)

(

l(λ)

d1, d2, . . . dk

)( l(λ)
∏

i=1

(1 + q + q2 + · · ·+ qλi−1)

)

N
l(λ)
1 .

Thus using these alternative expressions for Nk, we have that Theorem 4.2 is equivalent to the statement

Wk =
∑

λ`k

k

l(λ)

(

l(λ)

d1, d2, . . . dk

)( l(λ)
∏

i=1

(1 + q + q2 + · · ·+ qλi−1)

)

tl(λ).

7. Second Proof: Via Symmetric Functions

For our second proof of Theorem 4.2, we start with the observation that the sequence of lengths of all
disjoint arcs on the rim of Wn corresponds to a partition of n. We will construct a spanning tree of Wn from
the following choices:

First we choose a partition λ = 1d12d2 · · ·kdk of n. We let this dictate how many arcs of each length
occur, i.e. we have d1 isolated vertices, d2 arcs of length 2, etc. Note that this choice also dictates the
number of spokes, which is equal to the number of arcs, i.e. the length of the partition.

Second, we pick an arrangement of l(λ) arcs on the circle. After picking one to start with, without loss
of generality since we are on a circle, we have

1

l(λ)

(

l(λ)

d1, d2, . . . dk

)

choices for such an arrangement.
Third, we pick which vertex wi of the rim to start with. There are n such choices.
Fourth, we pick where the l(λ) spokes actually intersect the arcs. There will be |arc| choices for each

arc, and the q−weight of this sum will be (1 + q + q2 + · · ·+ q|arc|) for each arc.

241



G. Musiker

Summing up all the possibilities yields

Wn =
∑

λ`n

n

l(λ)

(

l(λ)

d1, d2, . . . dk

)( l(λ)
∏

i=1

(1 + q + q2 + · · ·+ qλi−1)

)

tl(λ).

As noted in Section 6, these coefficients are exactly the correct expansion coefficients by identities (6.1),
(6.3), and plethysm. Thus we have given a second proof of Theorem 4.2.

Remark 7.1. We note that in the course of this second proof we have obtained a combinatorial inter-
pretation for the cλ’s that is distinct from the one given in Egecioglu and Remmel’s paper [2]. In particular
this interpretation does not require weighted counting, only signed counting. Instead of defining cλ as
(−1)l(λ)−1w(Bλ,(k)), we could define it as

(−1)l(λ)−1|CBλ,(k)|

where we define a new combinatorial class of circular brick tabloids which we denote as CBλ,µ. We define
this for the case of µ = (k) just as we defined the usual brick tabloids, except we are not filling a k × 1
rectangle, but are filling an annulus of circumference k and width 1 with curved bricks of sizes designated
by λ. In this way we mimic our construction of the spanning trees.

Additionally, by using the fact that the power symmetric functions are multiplicative, i.e. pλ =
pλ1pλ2 · · · pλr

, we are able to generalize our definition of circular brick tabloids to allow µ to be any partition.
We simply let λ designate what collection of bricks we have to use, and µ determines the filling: we are
trying to fill l(µ) concentric circles where each circle has µi spaces. To summarize,

pµ =
∑

λ

(−1)l(λ)−l(µ)|CBλ,µ|hλ.

Consequently, all identities of [2] now involve cardinalities of Bλ,µ, OBλ,µ (Ordered Brick Tabloids), or
CBλ,µ and signs depending on l(λ) and l(µ), with no additional weightings needed.

8. Conclusion

The new combinatorial formula for Nk presented in this write-up appears fruitful. It leads one to ask
how spanning trees of the wheel graph are related to points on elliptic curves. For instance, is there an
involution on (weighted) spanning trees whose fixed points enumerate points on C(Fqk)? The fact that the
Lucas numbers also enter the picture is also exciting since the Fibonacci numbers and Lucas numbers have so
many different combinatorial interpretations, and there is such an extensive literature about them. Perhaps
these combinatorial interpretations will lend insight into why Nk depends only on the finite data of N1 and
q for an elliptic curve, and how we can associate points over higher extension fields to points on C(Fq).
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Polynomial realizations of some trialgebras

Jean-Christophe Novelli and Jean-Yves Thibon

Abstract. We realize several combinatorial Hopf algebras based on set compositions, plane trees and
segmented compositions in terms of noncommutative polynomials in infinitely many variables. For each of
them, we describe a trialgebra structure, an internal product, and several bases.

Résumé. Nous réalisons plusieurs algèbres de Hopf combinatoires dont les bases sont indexées par les par-
titions d’ensembles ordonnées, les arbres plans et les compositions segmentées en termes de polynômes
non-commutatifs en une infinité de variables. Pour chacune d’elles, nous décrivons sa structure de trigèbre,
un produit intérieur et plusieurs bases.

1. Introduction

The aim of this note is to construct and analyze several combinatorial Hopf algebras arising in the theory
of operads from the point of view of the theory of noncommutative symmetric functions. Our starting point
will be the algebra of noncommutative polynomial invariants

WQSym(A) = K〈A〉S(A)QS

of Hivert’s quasi-symmetrizing action [8]. It is known that, when the alphabet A is infinite, WQSym(A)
acquires the structure of a graded Hopf algebra whose bases are parametrized by ordered set partitions
(also called set compositions) [8, 20, 2]. Set compositions are in one-to-one correspondence with faces of
permutohedra, and actually, WQSym turns out to be isomorphic to one of the Hopf algebras introduced
by Chapoton in [4]. From this algebra, Chapoton obtained graded Hopf algebras based on the faces of
the associahedra (corresponding to plane trees counted by the little Schröder numbers) and on faces of
the hypercubes (counted by powers of 3). Since then, Loday and Ronco have introduced the operads
of dendriform trialgebras and of tricubical algebras [15], in which the free algebras on one generator are
respectively based on faces of associahedras and hypercubes, and are isomorphic (as Hopf algebras) to the
corresponding algebras of Chapoton. More recently, we have introduced a Hopf algebra PQSym, based on
parking functions [17, 18, 19], and derived from it a series of Hopf subalgebras or quotients, some of which
being isomorphic to the above mentioned ones as associative algebras, but not as Hopf algebras.

In the following, we will show that applying the same techniques, starting from WQSym instead of
PQSym, allows one to recover all of these algebras, together with their original Hopf structure, in a very
natural way. This provides in particular for each of them an explicit realization in terms of noncommutative
polynomials. The Hopf structures can be analyzed very efficiently by means of Foissy’s theory of bidendriform
bialgebras [6]. A natural embedding of WQSym in PQSym∗ implies that WQSym is bidendriform, hence,
free and self-dual. These properties are inherited by TD, the free dendriform trialgebra on one generator,
and some of them by TC, the free cubical trialgebra on one generator. A lattice structure on the set of
faces of the permutohedron (introduced in [12] under the name “pseudo-permutohedron” and rediscovered
in [21]) leads to the construction of various bases of these algebras. Finally, the natural identification of the
homogeneous components of the dual WQSym∗

n (endowed with the internal product induced by PQSym)

2000 Mathematics Subject Classification. Primary 05E99, Secondary 16W30, 18D50.
Key words and phrases. Algebraic combinatorics, symmetric functions, dendriform structures, lattice theory.
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with the Solomon-Tits algebras (that is, the face algebras of the braid arrangements of hyperplanes) implies
that all three algebras admit an internal product.

Notations – We assume that the reader is familiar with the standard notations of the theory of noncommutative symmetric

functions [7, 5] and with the Hopf algebra of parking functions [17, 18, 19]. We shall need an infinite totally ordered alphabet

A = {a1 < a2 < · · · < an < · · · }, generally assumed to be the set of positive integers. We denote by K a field of characteristic

0, and by K〈A〉 the free associative algebra over A when A is finite, and the projective limit proj limBK〈B〉, where B runs over

finite subsets of A, when A is infinite. The evaluation of a word w is the sequence whose i-th term is the number of times the

letter ai occurs in w. The standardized word Std(w) of a word w ∈ A∗ is the permutation obtained by iteratively scanning w

from left to right, and labelling 1, 2, . . . the occurrences of its smallest letter, then numbering the occurrences of the next one,

and so on. For example, Std(bbacab) = 341624. For a word w on the alphabet {1, 2, . . .}, we denote by w[k] the word obtained

by replacing each letter i by the integer i+k. If u and v are two words, with u of length k, one defines the shifted concatenation

u • v = u · (v[k]) and the shifted shuffle u d v = u (v[k]), where is the usual shuffle product.

2. The Hopf algebra WQSym

2.1. Noncommutative quasi-symmetric invariants. The packed word u = pack(w) associated with
a word w ∈ A∗ is obtained by the following process. If b1 < b2 < . . . < br are the letters occuring in w, u is
the image of w by the homomorphism bi 7→ ai. A word u is said to be packed if pack(u) = u. We denote by
PW the set of packed words. With such a word, we associate the polynomial

(1) Mu :=
∑

pack(w)=u

w .

For example, restricting A to the first five integers,

(2) M13132 = 13132 + 14142 + 14143 + 24243 + 15152 + 15153 + 25253 + 15154 + 25254 + 35354.

Under the abelianization χ : K〈A〉 → K[X ], the Mu are mapped to the monomial quasi-symmetric functions
MI (I = (|u|a)a∈A being the evaluation vector of u).

These polynomials span a subalgebra of K〈A〉, called WQSym for Word Quasi-Symmetric functions [8]
(and called NCQSym in [2]), consisting in the invariants of the noncommutative version of Hivert’s quasi-
symmetrizing action [9], which is defined by σ · w = w′ where w′ is such that Std(w′) = Std(w) and
χ(w′) = σ · χ(w). Hence, two words are in the same S(A)-orbit iff they have the same packed word.

WQSym can be embedded in MQSym [8, 5], by Mu 7→ MSM , where M is the packed (0, 1)-matrix
whose jth column contains exactly one 1 at row i whenever the jth letter of u is ai. Since the duality in
MQSym consists in tranposing the matrices, one can also embed WQSym∗ in MQSym. The multiplication
formula for the basis Mu follows from that of MSM in MQSym:

Proposition 2.1. The product on WQSym is given by

(3) Mu′Mu′′ =
∑

u∈u′∗W u′′

Mu ,

where the convolution u′∗W u′′ of two packed words is defined as

(4) u′∗W u′′ =
∑

v,w;u=v·w∈PW,pack(v)=u′,pack(w)=u′′

u .

For example,

(5) M11M21 = M1121 + M1132 + M2221 + M2231 + M3321.

Similarly, the embedding in MQSym implies immediately that WQSym is a Hopf subalgebra of MQSym.
However, the coproduct can also be defined directly by the usual trick of noncommutative symmetric func-
tions, considering the alphabet A as an ordered sum of two mutually commuting alphabets A′+̂A′′. First,
by direct inspection, one finds that

(6) Mu(A′+̂A′′) =
∑

0≤k≤max(u)

M(u|[1,k])(A
′)Mpack(u|[k+1,max(u))(A

′′),
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where u|B denote the subword obtained by restricting u to the subset B of the alphabet, and now, the
coproduct ∆ defined by

(7) ∆Mu(A) =
∑

0≤k≤max(u)

M(u|[1,k]) ⊗ Mpack(u|[k+1,max(u)),

is then clearly a morphism for the concatenation product, hence defines a bialgebra structure.
Given two packed words u and v, define the packed shifted shuffle u dW v as the shuffle product of u

and v[max(u)]. One then easily sees that

(8) ∆Mw(A) =
∑

u,v;w∈udW v

Mu ⊗ Mv.

For example,

(9) ∆M32121 = 1 ⊗ M32121 + M11 ⊗ M211 + M2121 ⊗ M1 + M32121 ⊗ 1.

Packed words can be naturally identified with ordered set partitions, the letter ai at the jth position
meaning that j belongs to block i. For example,

(10) u = 313144132 ↔ Π = ({2, 4, 7}, {9}, {1, 3, 8}, {5, 6}) .

To improve the readability of the formulas, we write instead of Π a segmented permutation, that is, the
permutation obtained by reading the blocks of Π in increasing order and inserting bars | between blocks.

For example,

(11) Π = ({2, 4, 7}, {9}, {1, 3, 8}, {5, 6}) ↔ 247|9|138|56.

On this representation, the coproduct amounts to deconcatenate the blocks, and then standardize the factors.
For example, in terms of segmented permutations, Equation (9) reads

(12) ∆M35|24|1 = 1 ⊗ M35|24|1 + M12 ⊗ M23|1 + M24|13 ⊗ M1 + M35|24|1 ⊗ 1.

The dimensions of the homogeneous components of WQSym are the ordered Bell numbers 1, 1, 3, 13,
75, 541, . . . (sequence A000670, [22]) so that

(13) dimWQSymn =
n

∑

k=1

S(n, k)k! = An(2) ,

where An(q) are the Eulerian polynomials.

2.2. The trialgebra structure of WQSym. A dendriform trialgebra [15] is an associative algebra
whose multiplication � splits into three pieces

(14) x � y = x≺y + x ◦ y + x�y ,

where ◦ is associative, and

(15) (x≺y)≺z = x≺(y � z) , (x�y)≺z = x�(y≺z) , (x � y)�z = x�(y�z) ,

(16) (x�y) ◦ z = x�(y ◦ z) , (x≺y) ◦ z = x ◦ (y�z) , (x ◦ y)≺z = x ◦ (y≺z) .

It has been shown in [19] that the augmentation ideal K〈An〉+ has a natural structure of dendriform
trialgebra: for two non empty words u, v ∈ A∗, we set

u≺v =

{

uv if max(u) > max(v)

0 otherwise,
(17)

u ◦ v =

{

uv if max(u) = max(v)

0 otherwise,
(18)

u�v =

{

uv if max(u) < max(v)

0 otherwise.
(19)
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Theorem 2.2. WQSym+ is a sub-dendriform trialgebra of K〈A〉+, the partial products being given by

(20) Mw′ ≺Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)<max(u)

Mw,

(21) Mw′ ◦ Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)=max(u)

Mw,

(22) Mw′ �Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)>max(u)

Mw,

It is known [15] that the free dendriform trialgebra on one generator, denoted here by TD, is a free
associative algebra with Hilbert series

(23)
∑

n≥0

sntn =
1 + t −

√
1 − 6t + t2

4t
= 1 + t + 3t2 + 11t3 + 45t4 + 197t5 + · · · ,

the generating function of the super-Catalan, or little Schröder numbers, counting plane trees. The previous
considerations allow us to give a simple polynomial realization of TD. Consider the polynomial

(24) M1 =
∑

i≥1

ai ∈ WQSym ,

Theorem 2.3 ([19]). The sub-trialgebra TD of WQSym+ generated by M1 is free as a dendriform
trialgebra.

Based on numerical evidence, we conjecture the following result:

Conjecture 2.4. WQSym is a free dendriform trialgebra.

The number g′n of generators in degree n of WQSym as a free dendriform trialgebra would then be

(25)
∑

n≥0

g′ntn =
OB(t) − 1

2OB(t)2 − OB(t)
= t + 2 t3 + 18 t4 + 170 t5 + 1 794 t6 + 21 082 t7 + O(t8).

where OB(t) is the generating series of the ordered Bell numbers.

2.3. Bidendriform structure of WQSym. A dendriform dialgebra, as defined by Loday [13], is an
associative algebra D whose multiplication � splits into two binary operations

(26) x � y = x � y + x � y ,

called left and right, satisfying the following three compatibility relations for all a, b, and c different from 1
in D:

(27) (a � b) � c = a � (b � c), (a � b) � c = a � (b � c), (a � b) � c = a � (b � c).

A codendriform coalgebra is a coalgebra C whose coproduct ∆ splits as ∆(c) = ∆(c) + c⊗ 1 + 1⊗ c and
∆ = ∆� + ∆�, such that, for all c in C:

(28) (∆� ⊗ Id) ◦ ∆�(c) = (Id ⊗ ∆) ◦ ∆�(c),

(29) (∆� ⊗ Id) ◦ ∆�(c) = (Id ⊗ ∆�) ◦ ∆�(c),

(30) (∆ ⊗ Id) ◦ ∆�(c) = (Id ⊗ ∆�) ◦ ∆�(c).

The Loday-Ronco algebra of planar binary trees introduced in [14] arises as the free dendriform dialgebra
on one generator. This is moreover a Hopf algebra, which turns out to be self-dual, so that it is also
codendriform. There is some compatibility between the dendriform and the codendriform structures, leading
to what has been called by Foissy [6] a bidendriform bialgebra, defined as a bialgebra which is both a
dendriform dialgebra and a codendriform coalgebra, satisfying the following four compatibility relations

(31) ∆�(a � b) = a′b′�⊗a′′�b′′� + a′⊗a′′�b + b′�⊗a�b′′� + ab′�⊗b′′� + a⊗b ,

(32) ∆�(a � b) = a′b′�⊗a′′�b′′� + a′⊗a′′�b + b′�⊗a�b′′� ,
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(33) ∆�(a � b) = a′b′�⊗ a′′�b′′� + ab′� ⊗ b′′� + b′� ⊗ a � b′′� ,

(34) ∆�(a � b) = a′b′�⊗a′′�b′′� + a′b⊗a′′ + b′�⊗a�b′′� + b⊗a ,

where the pairs (x′, x′′) (resp. (x′
�, x′′

�) and (x′
�, x′′

�)) correspond to all possible elements occuring in ∆x

(resp. ∆�x and ∆�x), summation signs being understood (Sweedler’s notation).
Foissy has shown [6] that a connected bidendriform bialgebra B is always free as an associative algebra

and self-dual as a Hopf algebra. Moreover, its primitive Lie algebra is free, and as a dendriform dialgebra, B
is also free over the space of totally primitive elements (those annihilated by ∆� and ∆�). It is also proved
in [6] that FQSym is bidendriform, so that it satisfies all these properties. In [19], we have proved that
PQSym, the Hopf algebra of parking functions, as also bidendriform.

The realization of PQSym∗ given in [18, 19] implies that

(35) Mu =
∑

pack(a)=u

Ga .

Hence, WQSym is a subalgebra of PQSym∗. Since in both cases the coproduct correponds to A → A′+̂A′′,
it is actually a Hopf subalgebra. It also stable by the tridendriform operations, and by the codendriform
half-coproducts. Hence,

Theorem 2.5. WQSym is a sub-bidendriform bialgebra of PQSym∗. More precisely, the product rules
are

(36) Mw′ � Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)<max(u)

Mw,

(37) Mw′ � Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)≥max(u)

Mw,

(38) ∆�Mw =
∑

w∈udW v;last(w)≤|u|

Mu ⊗ Mv,

(39) ∆�Mw =
∑

w∈udW v;last(w)>|u|

Mu ⊗ Mv.

where |u| ≥ 1 and |v| ≥ 1, and last(w) means the last letter of w. As a consequence, WQSym is free, cofree,
self-dual, and its primitive Lie algebra is free.

2.4. Duality: embedding WQSym∗ into PQSym. Recall from [17] that PQSym is the algebra
with basis (Fa), the product being given by the shifted shuffle of parking functions, and that (Ga) is the
dual basis in PQSym∗.

For a packed word u over the integers, let us define its maximal unpacking mup(u) as the greatest parking
function b for the lexicographic order such that pack(b) = u. For example, mup(321412451) = 641714791.

Since the basis (Mu) of WQSym can be expressed as the sum of Ga with a given packed word, the dual
basis of (Mu) in WQSym∗ can be identified with equivalence classes of (Fa) under the relation Fa = Fa′

iff pack(a) = pack(a′). Since the shifted shuffle of two maximally unpacked parking functions contains only
maximally unpacked parking functions, the dual algebra WQSym∗ is in fact a subalgebra of PQSym.
Finally, since, if a is maximally unpacked then only maximally unpacked parking functions appear in the
coproduct ∆Fa, one has

Theorem 2.6. WQSym∗ is a Hopf subalgebra of PQSym. Its basis element M∗
u can be identified with

Fb where b = mup(u).

So we have

(40) Fb′Fb′ :=
∑

b∈b′db′′

Fb , ∆Fb =
∑

u·v=b

FPark(u) ⊗ FPark(v) ,

where Park is the parkization algorithm defined in [19]. For example,

(41) F113F11 = F11344 + F11434 + F11443 + F14134 + F14143 + F14413 + F41134 + F41143 + F41413 + F44113.
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(42) ∆F531613 = 1⊗F531613+F1⊗F31513+F21⊗F1413+F321⊗F312+F3214⊗F12+F43151⊗F1F531613⊗1.

2.5. The Solomon-Tits algebra. The above realization of WQSym∗ in PQSym is stable under the
internal product of PQSym defined in [18]. Indeed, by definition of the internal product, if b′ and b′′ are
maximally unpacked, and Fb = Fb′ ∗ Fb′′ , then b is also maximally unpacked.

Moreover, if one writes b′ = {s′1, . . . , s′k} and b′′ = {s′′1 , . . . , s′′l } as ordered set partitions, then the
parkized word b = Park(b′,b′′) corresponds to the ordered set partition obtained from

(43) {s′1 ∩ s′′1 , s′1 ∩ s′′2 , . . . , s′1 ∩ s′′l , s′2 ∩ s′′1 , . . . , s′k ∩ s′′l }.
This formula was rediscovered in [2] and Bergeron and Zabrocki recognized the Solomon-Tits algebra, in the
version given by Bidigare [3], in terms of the face semigroup of the braid arrangement of hyperplanes. So,

Theorem 2.7. (WQSym∗, ∗) is isomorphic to the Solomon-Tits algebra.

In particular, the product of the Solomon-Tits algebra is dual to the coproduct δG(A) = G(A′A′′).

2.6. The pseudo-permutohedron. We shall now make use of the lattice of pseudo-permutations,
a combinatorial structure defined in [12] and rediscovered in [21]. Pseudo-permutations are nothing but
ordered set partitions. However, regarding them as generalized permutations helps uncovering their lattice
structure. Indeed, let us say that if i is in a block strictly to the right of j with i < j then we have a full
inversion (i, j), and that if i is in the same block as j, then we have a half inversion 1

2 (i, j). The total number
of inversions is the sum of these numbers. For example, the table of inversions of 45|13|267|8 is

(44)

{

1

2
(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5),

1

2
(2, 6),

1

2
(2, 7), (3, 4), (3, 5),

1

2
(4, 5),

1

2
(6, 7)

}

,

and it has 9.5 inversions.
One can now define a partial order � on pseudo-permutations by setting p1 � p2 if the value of the

inversion (i, j) in the table of inversions of p1 is smaller than or equal to its value in the table of inversions
of p2, for all (i, j). This partial order is a lattice [12]. In terms of packed words, the covering relation reads
as follows. The successors of a packed word u are the packed words v such that

• if all the i − 1 are to the left of all the i in u then u has as successor the element where all letters
j greater than or equal to i are replaced by j − 1.

• if there are k letters i in u, then one can choose an integer j in the interval [1, k − 1] and change
the j righmost letters i into i + 1 and the letters l greater than i into l + 1.

For example, w = 44253313 has five successors,

(45) 33242212, 44243313, 55264313, 55264413, 54263313.

123

��
��
��
��
�

33
33

33
33

3

112

��
��
��
��
�

))
))

))
))

))
))

))
))

))
)

122

��
��
��
��
��
��
��
��
��
�

33
33

33
33

3

213 132

212 111

��
��
��
��
��
��
��
��
��
�

))
))

))
))

))
))

))
))

))
)

121

312

33
33

33
33

3
231

��
��
��
��
�

211

33
33

33
33

3
221

��
��
��
��
�

321

Figure 1. The pseudo-permutohedron of degree 3.

Theorem 2.8 ([21]). Let u and v be two packed words. Then MuMv is an interval of the pseudo-
permutohedron lattice. The minimum of the interval is given by u·v[max(u)] and its maximum by u[max(v)]·v.

For example,

(46) M13214M212 =
∑

u∈[13214656,35436212]

Mu.
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2.7. Other bases of WQSym and WQSym∗. Since there is a lattice structure on packed words and
since we know that the product MuMv is an interval of this lattice, we can define several interesting bases,
depending on the way we use the lattice.

As in the case of the permutohedron, one can take sums of Mu, over all the elements upper or lower than
u in the lattice, or restricted to elements belonging to the same “class” as u (see [5, 1] for examples of such
bases). In the case of the permutohedron, the classes are the descent classes of permutations. In our case,
the classes are the intervals of the pseudo-permutohedron composed of words with the same standardization.

Summing over all elements upper (or lower) than a word u naturally yields multiplicative bases on
WQSym. Summing over all elements upper (or lower) than u inside its standardization class leads to
analogs of the usual bases of QSym.

2.7.1. Multiplicative bases. Let

(47) Su :=
∑

v�u

Mv and Eu :=
∑

u�v

Mv.

For example,

(48) S212 = M212 + M213 + M112 + M123.

(49) E212 = M212 + M312 + M211 + M321.

(50) S1122 = M1122 + M1123 + M1233 + M1234.

Since both S and E are triangular over the basis Mu of WQSym, we know that these are bases of
WQSym.

Theorem 2.9. The sets (Su) and (Eu) where u runs over packed words are bases of WQSym. Moreover,
their product is given by

(51) Su′Su′′ = Su′[max(u′′)]·u′′ .

(52) Eu′Eu′′ = Eu′·u′′[max(u′)].

For example,

(53) S1122S132 = S4455132.

(54) E1122E132 = E1122354.

2.7.2. Quasi-ribbon basis of WQSym. Let us first mention that a basis of WQSym has been defined
in [2] by summing over intervals restricted to standardization classes of packed words.

We will now consider similar sums but taken the other way round, in order to build the analogs of
WQSym of Gessel’s fundamental basis FI of QSym. Indeed, as already mentioned, the Mu are mapped to
the MI of QSym under the abelianization K〈A〉 → K[X ] of WQSym. Since the pair of dual bases (FI , RI)
of (QSym ,Sym) is of fundamental importance, it is natural to ask whether one can find an analogous pair
for (WQSym,WQSym∗). To avoid confusion in the notations, we will denote the analog of FI by Φu

instead of Fu since this notation is already used in the dual algebra WQSym∗ ⊂ PQSym, with a different
meaning. The analog of R basis in WQSym∗ will still be denoted by R. The representation of packed words
by segmented permutations is more suited for the next statements since one easily checks that two words u

and v having the same standardized word satisfy v � u iff v is obtained as a segmented permutation from
the segmented permutation of u by inserting any number of bars. Let

(55) Φσ :=
∑

σ′

Mσ′

where σ′ runs ver the set of segmented permutations obtained from σ by inserting any number of bars. For
example,

(56) Φ14|6|23|5 = M14|6|23|5 + M14|6|2|3|5 + M1|4|6|23|5 + M1|4|6|2|3|5.

Since (Φu) is triangular over (Mu), it is a basis of WQSym. By construction, it satisfies a product
formula similar to that of Gessel’s basis FI of QSym (whence the choice of notation). To state it, we
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need an analogue of the shifted shuffle, defined on the special class of segmented permutations encoding set
compositions.

The shifted shuffle α d β of two such segmented permutations is obtained from the usual shifted shuffle
σ d τ of the underlying permutations σ and τ by inserting bars

• between each pairs of letters coming from the same word if they were separated by a bar in this
word,

• after each element of β followed by an element of α.

For example,

(57) 2|1 d 12 = 2|134 + 23|14 + 234|1 + 3|2|14 + 3|24|1 + 34|2|1.

Theorem 2.10. The product and coproduct in the basis Φ are given by

(58) Φσ′Φσ′′ =
∑

σ∈σ′dσ′′

Φσ.

(59) ∆Φσ =
∑

σ′|σ′′=σ or σ′·σ′′=σ

ΦStd(σ′) ⊗ ΦStd(σ′′).

For example, we have

(60) Φ1Φ13|2 = Φ124|3 + Φ2|14|3 + Φ24|13 + Φ24|3|1.

(61) ∆Φ35|14|2 = 1 ⊗ Φ35|14|2 + Φ1 ⊗ Φ4|13|2 + Φ12 ⊗ Φ13|2 + Φ23|1 ⊗ Φ2|1 + Φ24|13 ⊗ Φ1 + Φ35|14|2 ⊗ 1.

Note that under abelianization, χ(Φu) = FI where I is the evaluation of u.

2.7.3. Ribbon basis of WQSym∗. Let us now consider the dual basis of Φ. We have seen that it should
be regarded as an analog of the ribbon basis of Sym. By duality, one can state:

Theorem 2.11. Let Rσ be the dual basis of Φσ. Then the product and coproduct in this basis are given
by

(62) Rσ′Rσ′′ =
∑

σ=τ |ν or σ=τν;Std(τ)=σ′,Std(ν)=σ′′

Rσ.

(63) ∆Rσ =
∑

σ′.σ′′=σ

RStd(σ′) ⊗ RStd(σ′′).

Note that there are more elements coming from τ |ν than from τν since the permutation σ has to be
increasing between two bars.

For example,

(64) R21R1 = R212 + R221 + R213 + R231 + R321.

3. Hopf algebras based on Schröder sets

In Section 2.2, we recalled that the little Schröder numbers build up the Hilbert series of the free
dendriform trialgebra on one generator TD. We will see that our relization of TD endows it with a natural
structure of bidendriform bialgebra. In particular, this will prove that there is a natural self-dual Hopf
structure on TD. But there are other ways to arrive at the little Schröder numbers from the other Hopf
algebras WQSym and PQSym. Indeed, the number of classes of packed words of size n under the sylvester
congruence is sn, and the number of classes of parking functions of size n under the hypoplactic congruence
is also sn. The hypoplactic quotient of PQSym∗ has been studied in [19]. It is not isomorphic to TD nor to
the sylvester quotient of WQSym since it is a non self-dual Hopf algebra whereas the last two are self-dual,
and furthemore isomorphic as bidendriform bialgebras and as dendriform trialgebras.

3.1. The free dendriform trialgebra again. Recall that we realized the free dendriform trialgebra
in Section 2.2 as the subtrialgebra of WQSym generated by M1, the sum of all letters. It is immediate that
TD is stable by the codendriform half-coproducts of WQSym∗. Hence,

Theorem 3.1. TD is a sub-bidendriform bialgebra, and hence a Hopf subalgebra of WQSym∗. In
particular, TD is free, self-dual and its primitive Lie algebra is free.
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3.2. Lattice structure on plane trees. Given a plane tree T , define its canonical word as the maximal
packed word w in the pseudo-permutohedron such that T (w) = T .

For example, the canonical words up to n = 3 are

{1}, {11, 12, 21}, {111, 112, 211, 122, 212, 221, 123, 213, 231, 312, 321}(65)
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Figure 2. The lattice of plane trees represented by their canonical words for n = 3.

Define the second canonical word of each tree T as the minimal packed word w in the pseudo-permutohedron
such that T (w) = T .

A packed word u = u1 · · ·un is said to avoid the pattern w = w1 · · ·wk if there is no sequence 1 ≤ i1 <

· · · < ik ≤ n such that u′ = ui1 · · ·uik
has same inversions and same half-inversions as w.

For example, 41352312 avoids the patterns 111 and 1122, but not 2311 since 3522 has the same (half)-
inversions.

Theorem 3.2. The canonical words of trees are the packed words avoiding the patterns 121 and 132.
The second canonical words of trees are the packed words avoiding the patterns 121 and 231.

Set u ∼T v iff T (u) = T (v). We now define two orders ∼T -classes of packed words

1. A class S is smaller than a class S′ if the canonical word of S is smaller than the canonical word
of S′ in the pseudo-permutohedron.

2. A class S is smaller than a class S′ if there is a pair (w, w′) in S × S′ such that w is smaller than
w′ in the pseudo-permutohedron.

Theorem 3.3. These two orders coincide and are also identical with the one defined in [21]. Moreover,
the restriction of the pseudo-permutohedron to the canonical words of trees is a lattice.

3.3. Some bases of TD.

3.3.1. The basis MT . Let us start with the already defined basis MT . First note that MT expressed
as a sum of Mu in WQSym is an interval of the pseudo-permutohedron. From the above description of the
lattice, we obtain easily:

Theorem 3.4 ([21]). The product MT ′MT ′′ is an interval of the lattice of plane trees. On trees, the
minimum T ′ ∧ T ′′ is obtained by gluing the root of T ′′ at the end of the leftmost branch of T ′, whereas the
maximum T ′ ∨ T ′′ is obtained by gluing the root of T ′ at the end of the rightmost branch of T ′′.

On the canonical words w′ and w′′, the minimum is the canonical word associated with w′ ·w′′[max(w′)]
and the maximum is w′[max(w′′)] · w′′.

3.3.2. Complete and elementary bases of TD. We can also build two multiplicative bases as in WQSym.

Theorem 3.5. The set (Sw) (resp. (Ew)) where w runs over canonical (resp. second canonical) words
are multiplicative bases of TD.

3.4. Internal product on TD. If one defines TD as the Hopf subalgebra of WQSym defined by

(66) MT =
∑

T (u)=T

Mu ,

then TD
∗ is the quotient of WQSym∗ by the relation Fu ≡ Fv iff T (u) = T (v). We denote by ST the dual

basis of MT .
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Theorem 3.6. The internal product of WQSym∗
n induces an internal product on the homogeneous

components TD
∗
n of the dual algebra. More precisely, one has

(67) ST ′ ∗ ST ′′ = ST ,

where T is the tree obtained by applying T to the biword of the canonical words of the trees T ′ and T ′′.

For example, representing trees as their canonical words, one has

(68) S221 ∗ S122 = S231; S221 ∗ S321 = S321;

(69) S453223515 ∗ S433442214 = S674223518.

3.5. Sylvester quotient of WQSym. One can check by direct calculation that the sylvester quo-
tient [10] of WQSym is also stable by the tridendriform operations, and by the codendriform half-coproducts
since the elements of a sylvester class have the same last letter. Hence,

Theorem 3.7. The sylvester quotient of WQSym is a dendriform trialgebra, a bidendriform bialgebra,
and hence a Hopf algebra. It is isomorphic to TD as a dendriform trialgebra, as a bidendriform bialgebra
and as a Hopf algebra.

4. A Hopf algebra of segmented compositions

In [19], we have built a Hopf subalgebra SCQSym∗ of the hypoplactic quotient SQSym∗ of PQSym∗,
whose Hilbert series is given by

(70) 1 +
∑

n≥1

3n−1tn.

This Hopf algebra is not self-dual, but admits lifts of Gessel’s fundamental basis FI of QSym and its dual
basis. Since the elements of SCQSym∗ are obtained by summing up hypoplactic classes having the same
packed word, thanks to the following diagram, it is obvious that SCQSym∗ is also the quotient of WQSym

by the hypoplactic congruence.

(71)

PQSym∗ hypo−−−−→ SQSym∗

(pack)

x





x





(pack)

WQSym
hypo−−−−→ SCQSym∗

4.1. Segmented compositions. Define a segmented composition as a finite sequence of integers, sep-
arated by vertical bars or commas, e.g., (2, 1 | 2 | 1, 2).

The number of segmented compositions having the same underlying composition is obviously 2l−1 where
l is the length of the composition, so that the total number of segmented compositions of sum n is 3n−1.
There is a natural bijection between segmented compositions of n and sequences of length n − 1 over three
symbols <, =, >: start with a segmented composition I. If the i-th position is not a descent of the underlying
ribbon diagram, write < ; otherwise, if i is followed by a comma, write = ; if i is followed by a bar, write >.

Now, with each word w of length n, associate a segmented composition S(w) = s1 · · · sn−1 where si is
the correct comparison sign between wi and wi+1. For example, given w = 1615116244543, one gets the
sequence (and the segmented composition):

(72) <><>=<><=<>>⇐⇒ (2|2|1, 2|2, 2|1|1).

4.2. A subalgebra of TD. Given a segmented composition I, define

(73) MI =
∑

S(T )=I

MT =
∑

S(u)=I

Mu .

For example,

(74) M12|1 = M2231 M1|3 = M2123 + M2134 + M3123 + M3124 + M4123.
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Theorem 4.1. The MI generate a subalgebra TC of TD. Their product is given by

(75) MI′MI′′ = MI′.I′′ + MI′,I′′ + MI′|I′′ .

where I′ . I′′ is obtained by gluing the last part of I′ and the first part of I′′, so that TC is the free cubical
trialgebra on one generator [15].

For example,

(76) M1|21M31 = M1|241 + M1|2131 + M1|21|31.

4.3. A lattice structure on segmented compositions. Given a segmented composition I, define
its canonical word as the maximal packed word w in the pseudo-permutohedron such that S(w) = I.

For example, the canonical words up to n = 3 are

{1}, {11, 12, 21}, {111, 112, 211, 122, 221, 123, 231, 312, 321}(77)
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Figure 3. The lattice of segmented compositions represented by their canonical words at
n = 3.

Define the second canonical word of a segmented composition I as the minimal packed word w in the
pseudo-permutohedron such that S(w) = I.

Theorem 4.2. The canonical words of segmented compositions are the packed words avoiding the patterns
121, 132, 212, and 213. The second canonical words of segmented compositions are the packed words avoiding
the patterns 121, 231, 212, and 312.

Let u ∼S v iff S(u) = S(v). We define two orders on ∼S-equivalence classes of words.

1. A class S is smaller than a class S′ if the canonical word of S is smaller than the canonical word
of S′ in the pseudo-permutohedron.

2. A class S is smaller than a class S′ if there exists two elements (w, w′) in S × S′ such that w is
smaller than w′ in the pseudo-permutohedron.

Proposition 4.3. The two orders coincide. Moreover, the restriction of the pseudo-permutohedron to
the canonical segmented words is a lattice.

4.4. Multiplicative bases. We can build two multiplicative bases, as in WQSym. They are partic-
ularly simple:

Theorem 4.4. The set (Sw) where w runs into the set of canonical segmented words is a basis of TC.
The set (Ew) where w runs into the set of second canonical segmented words is a basis of TC.

4.5. Internal product on TC. If one defines TC as the Hopf subalgebra of WQSym as in Equa-
tion (73), then TC

∗ is the quotient of WQSym∗ by the relation Fu ≡ Fv iff S(u) = S(v). We denote by SI

the dual basis of MI.

Theorem 4.5. The internal product of WQSym∗ induces an internal product on the homogeneous
components TC

∗
n of TC

∗. More precisely, one has

(78) SI′ ∗ SI′′ = SI,

where I is the segmented composition obtained by applying S to the biword of the canonical words of the
segmented compositions I′ and I′′.
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The combinatorics of frieze patterns and Markoff numbers

James Propp

ABSTRACT. This article, based on joint work with Gabriel Carroll, Andy Itsara, Ian Le, Gregg Musiker, Gregory Price,
Dylan Thurston, and Rui Viana, presents a combinatorial model based on perfect matchings that explains the symmetries of
the numerical arrays that Conway and Coxeter dubbed frieze patterns. This matchings model is a combinatorial interpretation
of Fomin and Zelevinsky’s cluster algebras of typeA. One can derive from the matchings model an enumerative meaning for
the Markoff numbers, and prove that the associated Laurent polynomials have positive coefficients as was conjectured (much
more generally) by Fomin and Zelevinsky. Most of this research was conducted under the auspices of REACH (Research
Experiences in Algebraic Combinatorics at Harvard).

RÉSUMÉ. Cet article, basé sur un travail conjoint avec Gabriel Carroll, Andy Itsara, Ian Le, Gregg Musiker, Gregory Price,
Dylan Thurston, et Rui Viana presente un modèle combinatoire expliquant les symétries dans les tableaux numérique appelés
motifs frieze par Conway et Coxeter. Ce modèle, basé sur les couplages parfaits, donne une interprétation combinatoire des
algèbre de cluster de type A de Fomin et Zelevinksy. Ce modèle permet de fournir une interprétation énumérative desnombres
Markoff, et on peut démontrer que les polynômes de Laurentassociés ont des coefficients positifs, ce qui avait été conjecturé
(dans un cadre plus général) par Fomin et Zelevinsky. Cette recherche s’est déroulée dans le cadre du programme REACH
(Research Experiences in Algebraic Combinatorics at Harvard).

1. Introduction

A Laurent polynomialin the variablesx,y, . . . is a polynomial in the variablesx,x−1,y,y−1, . . . . Thus the function
f (x) = (x2 +1)/x = x+x−1 is a Laurent polynomial, but the compositionf ( f (x)) = (x4 +3x2 +1)/x(x2 +1) is not.
This shows that the set of Laurent polynomials in a single variable is not closed under composition. This failure of
closure also holds in the multivariate setting; for instance, if f (x,y), g(x,y) andh(x,y) are Laurent polynomials inx
andy, then we would not expect to find thatf (g(x,y),h(x,y)) is a Laurent polynomial as well. Nonetheless, it has
been discovered that, in broad class of instances (embracedas yet by no general rule), “fortuitous” cancellations occur
that cause Laurentness to be preserved. This is the “Laurentphenomenon” discussed by Fomin and Zelevinsky [13].

Furthermore, in many situations where the Laurent phenomenon holds, there is a certain positivity phenomenon
at work as well, and all the coefficients of the Laurent polynomials turn out to be positive. In these cases, the func-
tions being composed are Laurent polynomials with positivecoefficients; that is, they are expressions involving only
addition, multiplication, and division. It should be notedthat subtraction-free expressions do not have all the closure
properties one might hope for, as the example(x3+y3)/(x+y) illustrates: although the expression is subtraction-free,
its reduced formx2−xy+y2 is not.

Fomin and Zelevinsky have shown that a large part of the Laurentness phenomenon fits in with their general
theory of cluster algebras. In this article I will discuss one important special case of the Laurentness-plus-positivity
phenomenon, namely the case associated with cluster algebras of typeA, discussed in detail in [14]. The purely
combinatorial approach taken in sections 2 and 3 of my article obscures the links with deeper issues (notably the
representation-theoretic questions that motivated the invention of cluster algebras), but it provides the quickest and
most self-contained way to prove the Laurentness-plus-positivity assertion in this case (Theorem 3.1). The frieze
patterns of Conway and Coxeter, and their link with triangulations of polygons, will play a fundamental role, as will
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perfect matchings of graphs derived from these triangulations. (For a different, more algebraic way of thinking about
frieze patterns, see [3].)

In sections 4 and 5 of this article, two variations on the theme of frieze patterns are considered. One is the tropical
analogue, which has bearing on graph-metrics in trees. The other variant is based on a recurrence that looks very
similar to the frieze relation; the variant recurrence appears to give rise to tables of positive integers possessing the
same glide-reflection symmetry as frieze patterns, but positivity, integrality, and symmetry are currently still unproved.

In section 6, the constructions of sections 2 and 3 are specialized to a case in which the triangulated polygons
come from pairs of mutually visible points in a dissection ofthe plane into equilateral triangles. In this case, counting
the matchings of the derived graphs gives us an enumerative interpretation of Markoff numbers (numbers satisfying
the ternary cubicx2 +y2 +z2 = 3xyz). This yields a combinatorial proof of a Laurentness assertion proved by Fomin
and Zelevinsky in [13] (namely a special case of their Theorem 1.10) that falls outside of the framework of cluster
algebras in the strict sense. Fomin and Zelevinsky proved Theorem 1.10 by use of their versatile “Caterpillar Lemma”,
but this proof did not settle the issue of positivity. The combinatorial approach adopted here shows that all of the Lau-
rent polynomials that occur in the three-variable rational-function analogue of the Markoff numbers — the “Markoff
polynomials” — are in fact positive (Theorem 6.2).

Section 7 concludes with some problems suggested by the mainresult of section 6. One can try to generalize the
combinatorial picture by taking other dissections of the plane into triangles, or one can try to generalize by considering
other Diophantine equations. There may be a general link here, but its nature is still obscure.

2. Triangulations and frieze patterns

A frieze pattern [7] is an infinite array such as

... 1 1 1 1 1 1 ...

... 1 5 2
3 3 5

3 2 ...

... 1 4 7
3 1 4 7

3 ...

... 3 5
3 2 1 5 2

3 ...

... 1 1 1 1 1 1 ...

consisting ofn−1 rows, each periodic with periodn, such that all entries in the top and bottom rows are equal to 1
and all entries in the intervening rows satisfy the relation

A

B C

D

: D = (BC−1)/A .

The rationale for the term “frieze pattern” is that such an array automatically possesses glide-reflection symmetry (as
found in some decorative friezes): for 1≤ m≤ n−1, then−mth row is the same as themth row, shifted. Hence the
relationD = (BC−1)/A will be referred to below as the “frieze relation” even though its relation to friezes and their
symmetries is not apparent from the algebraic definition.

Frieze patterns arose from Coxeter’s study of metric properties of polytopes, and served as useful scaffolding for
various sorts of metric data; see e.g. [9] (page 160), [10], and [11]. Typically some of the entries in a frieze pattern are
irrational. Conway and Coxeter completely classify the frieze patterns whose entries are positive integers, and show
that these frieze patterns constitute a manifestation of the Catalan numbers. Specifically, there is a natural association
between positive integer frieze patterns and triangulations of regular polygons with labelled vertices. (In addition
to [7], see the shorter discussion on pp. 74–76 and 96–97 of [8].) Note that for each fixedn, any convexn-gon would
serve here just as well as the regularn-gon, since we are only viewing triangulations combinatorially.

From every triangulationT of a regularn-gon with vertices cyclically labelled 1 throughn, Conway and Coxeter
build an(n− 1)-rowed frieze pattern determined by the numbersa1,a2, . . . ,an, whereak is the number of triangles
in T incident with vertexk. Specifically: (1) the top row of the array is. . . ,1,1,1, . . . ; (2) the second row (offset
from the first) is. . . ,a1,a2, . . . ,an,a1, . . . (with periodn); and (3) each succeeding row (offset from the one before) is
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determined by the frieze relation. E.g., the triangulation

6 5

4

32

1

of the 6-gon determines the data(a1, . . . ,a6) = (1,3,2,1,3,2) and 5-row frieze pattern

... 1 1 1 1 1 1 1 ...

... 1 3 2 1 3 2 ...

... 1 2 5 1 2 5 1 ...

... 1 3 2 1 3 2 ...

... 1 1 1 1 1 1 1 ...

Conway and Coxeter show that the frieze relation, applied tothe initial rows. . . ,1,1,1, . . . and. . . ,a1,a2, . . . ,an, . . . ,
yields a frieze pattern. Note that implicit in this assertion is the assertion that every entry in rows 1 throughn−3 is
non-zero (so that the recurrenceD = (BC−1)/A never involves division by 0). It is not a priori obvious thateach of
the entries in the array is positive (since the recurrence involves subtraction) or that each of the entries is an integer
(since the recurrence involves division). Nor is it immediately clear why for 1≤ m≤ n−1, then−mth row of the
table given by repeated application of the recurrence should be the same as themth row, shifted, so that in particular
then−1st row, like the first row, consists entirely of 1’s.

These and many other properties of frieze patterns are explained by a combinatorial model of frieze patterns dis-
covered by Carroll and Price [5] (based on earlier work of Itsara, Le, Musiker, Price, and Viana). Given a triangulation
T as above, define a bipartite graphG = G(T) whosen black verticesv correspond to the vertices ofT, whosen−2
white verticesw correspond to the triangular faces ofT, and whose edges correspond to all incidences between ver-
tices and faces inT (that is,v andw are joined by an edge precisely ifv is one of the three vertices of the triangle in
T associated withw). For i 6= j in the range 1, ...,n, let Gi, j be the graph obtained fromG by removing black vertices
i and j and all edges incident with them, and letmi, j be the number of perfect matchings ofGi, j (that is, the number
of ways to pair alln−2 of the black vertices with then−2 white vertices, so that every vertex is paired to a vertex of
the opposite color adjacent to it). For instance, for the triangulationT of the 6-gon defined in the preceding figure, the
graphG1,4 is
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and we putm1,4 = 5 since this graph has 5 perfect matchings.

THEOREM 2.1 (Gabriel Carroll and Gregory Price [5]). The Conway-Coxeter frieze pattern of a triangulation T
is just the array

. . . m1,2 m2,3 m3,4 m4,5 . . .

. . . m1,3 m2,4 m3,5 . . .

. . . mn,3 m1,4 m2,5 m3,6 . . .

. . . mn,4 m1,5 m2,6 . . .

...
...

...
...

where here as hereafter we interpret all subscripts mod n.

Note that this claim makes the glide-reflection symmetry of frieze patterns a trivial consequence of the fact that
Gi, j = G j ,i .

PROOF. Here is a sketch of the main steps of the proof:
(1) mi,i+1 = 1: This holds because there is a tree structure on the set of triangles inT that induces a tree structure

on the set of white vertices ofG. If we examine the white vertices ofG, proceeding from outermost to innermost, we
find that we have no freedom in how to match them with black vertices, when we keep in mind that every black vertex
must be matched with a white vertex. (In fact, the same reasoning shows thatmi, j = 1 whenever the triangulationT
contains a diagonal connecting verticesi and j.)

(2) mi−1,i+1 = ai : The argument is similar, except now we have some freedom in how the ith black vertex is
matched: it can be matched with any of theai adjacent white vertices.

(3) mi, j mi−1, j+1 = mi−1, j mi, j+1−1: If we move the 1 to the left-hand side, we can use (1) to writethe equation
in the form

mi, j mi−1, j+1+mi−1,i mj , j+1 = mi−1, j mi, j+1.

This relation is a direct consequence of a lemma due to Eric Kuo (Theorem 2.5 in [17]), which I state here for the
reader’s convenience:

Condensation lemma:If a bipartite planar graphG has 2 more black vertices than white vertices, and the black
verticesa,b,c,d lie in cyclic order on some face ofG, then

m(a,c)m(b,d) = m(a,b)m(c,d)+m(a,d)m(b,c),

wherem(x,y) denotes the number of perfect matchings of the graph obtained fromG by deleting verticesx andy and
all incident edges.

(1) and (2) tell us that Carroll and Price’s theorem applies to the first two rows of the frieze pattern, and (3) tells
us (by induction) that the theorem applies to all subsequentrows. �
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It should be mentioned that Conway and Coxeter give an alternative way of describing the entries in frieze patterns,
as determinants of tridiagonal matrices. Note thatmi−1,i+1 = ai which equals the determinant of the 1-by-1 matrix
whose sole entry isai , while mi−1,i+2 = aiai+1−1 which equals the determinant of the 2-by-2 matrix

(

ai 1
1 ai+1

)

.

One can show by induction using Dodgson’s determinant identity (for a statement and a pretty proof of this identity
see [21]) thatmi−1,i+k equals the determinant of thek-by-k matrix withai, . . . ,ai+k−1 down the diagonal, 1’s in the two
flanking diagonals, and 0’s everywhere else. This is true forany arrays satisfying the frieze relation whose initial row
consists of 1’s, whether or not it is a frieze pattern. Thus, any numerical array constructed via the frieze relation from
initial data consisting of a first row of 1’s and a second row ofpositive integers will be an array of positive integers;
entries in subsequent rows will be positive since they are defined by subtraction-free expressions, and they will be
integers since they are equal to determinants of integer matrices. (One caveat is in order here: although the table of
tridiagonal determinants always satisfies the frieze relation, it may not be possible to compute the table using just the
frieze relation, since some of the expressions that arise might be indeterminate fractions of the form 0/0.) However,
for most choices of positive integersa1, . . . ,an, the resulting table of positive integers will not be an(n− 1)-rowed
frieze pattern. Indeed, Conway and Coxeter show that every(n−1)-rowed frieze pattern whose entries are positive
integers arises from a triangulatedn-gon in the fashion described above.

3. The sideways construction and its periodicity

Recall that any(n−1)-rowed array of real numbers that begins and ends with rows of1’s and satisfies the frieze
relation in between qualifies as a frieze pattern.

Note that if the vertices 1, . . . ,n of ann-gon lie on a circle and we letdi, j be the distance between pointsi and
j, Ptolemy’s theorem on the lengths of the sides and diagonalsof an inscriptible quadrilateral gives us the three-term
quadratic relation

di, j di−1, j+1+di−1,i d j−1, j = di−1, j di, j+1

(with all subscripts interpreted modn). Hence the numbersdi, j with i 6= j, arranged just as the numbersmi, j were,
form an (n− 1)-rowed array that almost qualifies as a frieze pattern (the array satisfies the frieze relation and has
glide-reflection symmetry becausemi, j = mj ,i for all i, j, but the top and bottom rows do not in general consist of 1’s).
The nicest case occurs when then-gon is a regularn-gon of side-length 1; then we get a genuine frieze pattern and
each row of the frieze pattern is constant.

Another source of frieze patterns is an old result from spherical geometry: thepentagramma mirificumof Napier
and Gauss embodies the assertion that the arc-lengths of thesides in a right-angled spherical pentagram can be arranged
to form the middle two rows of a four-rowed frieze pattern.

Conway and Coxeter show that frieze patterns are easy to construct if one proceeds not from top to bottom (since
one is unlikely to choose numbersa1, . . . ,an in the second row that will yield all 1’s in the(n− 1)st row) but from
left to right, starting with a zig-zag of entries connectingthe top and bottom rows (where the zig-zag path need not
alternate between leftward steps and rightward steps but may consist of any pattern of leftward steps and rightward
steps), using the sideways frieze relation

A

B C

D

: C = (AD+1)/B

E.g., consider the partial frieze pattern

... 1 1 1 1 1 ...

x x′

y y′

z z′

... 1 1 1 1 1 ...
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Given non-zero values ofx, y, andz, one can successively computey′ = (xz+1)/y, x′ = (y+1)/x, andz′ = (y+1)/z,
obtaining a new zig-zag of entriesx′,y′,z′ connecting the top and bottom rows. For generic choices of non-zerox,y,z,
one hasx′,y′,z′ non-zero as well, so the procedure can be repeated, yieldingfurther zig-zags of entries. Happily (and
perhaps surprisingly), after six iterations of the procedure one will recover the original numbersx,y,zsix places to the
right of their original position (unless one has unluckily chosenx,y,zso as to cause one to encounter an indeterminate
expression of the form 0/0 from the recurrence).

To dodge the issue of indeterminate expressions, we embraceindeterminacy by regardingx,y,z as formal quanti-
ties, not specific numbers, so thatx′,y′,z′, etc. become rational functions ofx, y, andz. Then our recurrence ceases to be
problematic. Indeed, one finds that the rational functions that arise are of a special kind, namely, Laurent polynomials
with positive coefficients.

We can see why this is so by incorporating weighted edges intoour matchings model. Returning to the triangulated
hexagon from section 2, associate the valuesx, y, andz with the diagonals joining vertices 2 and 6, vertices 2 and 5,
and vertices 3 and 5, respectively. Call these the formal weights of the diagonals. Also assign weight 1 to each of
the 6 sides of the hexagon. Now construct the graphG as before, only this time assigning weights to all the edges.
Specifically, ifv is a black vertex ofG that corresponds to a vertex of then-gon andw is a white vertex ofG that
corresponds to a triangle in the triangulationT that hasv as one of its three vertices (and hasv′ andv′′ as the other two
vertices), then the edge inG that joinsv andw should be assigned the weight of the side or diagonal inT that joins
v′ andv′′. We now defineWi, j as the sum of the weights of all the perfect matchings of the graphGi, j obtained by
deleting verticesi and j (and all their incident edges) fromG, where the weight of a perfect matching is the product of
the weights of its constituent edges, and we defineMi, j asWi, j divided by the product of the weights of all the diagonals
(this product isxyz in our running example). TheseMi, j ’s, which are rational functions ofx, y, andz, generalize the
numbers denoted bymi, j earlier, since we recover themi, j ’s from theMi, j ’s by settingx = y = z= 1. It is clear that
eachWi, j is a polynomial with positive coefficients, so eachMi, j is a Laurent polynomial with positive coefficients.
And, because of the normalization (division byxyz), we have gotten eachMi,i+1 to equal 1. So the table of rational
functionsMi, j is exactly what we get by running our recurrence from left to right. When we pass fromx,y,z to x′,y′,z′,
we are effectively rotating our triangulation by one-sixthof a full turn; six iterations bring us back to where we started.

We have proved:

THEOREM 3.1. Given any assignment of formal weights to n−3 entries in an(n−1)-rowed table that form a
zig-zag joining the top row (consisting of all 1’s) to the bottom row (consisting of all 1’s), there is a unique assignment
of rational functions to all the entries in the table so that the frieze relation is satisfied. These rational functions of
the original n− 3 variables have glide-reflection symmetry that gives each row period n. Furthermore, each of the
rational functions in the table is a Laurent polynomial withpositive coefficients.

Note that a zig-zag joining the top row to the bottom row corresponds to a triangulationT whose dual tree is
just a path. Not every triangulation is of this kind. In general, the entries in a frieze pattern that correspond to the
diagonals of a triangulationT do not form a zig-zag path, so it is not clear from the frieze pattern how to extend the
known entries to the unknown entries. In such a case, it is best to refer directly to the triangulation itself, and to use a
generalization of the frieze relation, namely the (formal)Ptolemy relation [5]

Mi, j Mk,l +M j ,k Mi,l = Mi,k M j ,l

wherei, j,k, l are four vertices of then-gon listed in cyclic order. Since every triangulation of a convexn-gon can be
obtained from every other by means of flips that replace one diagonal of a quadrilateral by the other diagonal, we can
iterate the Ptolemy relation so as to solve for all of theMi, j ’s in terms of the ones whose values were given.

Up until now we have allowed the diagonals, but not the sides,of our n-gon to have indeterminate weights; that
is, the sides have all had weight 1. We can remedy this seeminglack of generality by noting that if we multiply the
weights of the three sides of any triangle in the triangulation T by some constantc, the effect is to multiply byc the
weights of three edges of the graphG, namely, the three edges incident with the white vertexw associated withT.
This has the effect of multiplying the weight of every perfect matching of every graphGi, j by c, and such a scaling has
no effect on the Laurentness phenomenon.

Our combinatorial construction of Laurent polynomials associated with the diagonals of ann-gon is essentially
nothing more than the typeA case (more precisely, theAn−3 case) of the cluster algebra construction of Fomin and
Zelevinsky [14]. The result that our matchings model yields, stated in a self-contained way, is as follows:

THEOREM 3.2. Given any assignment of formal weights xi, j to the 2n− 3 edges of a triangulated convex n-
gon, there is a unique assignment of rational functions to all n(n−3)/2 diagonals of the n-gon such that the rational
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functions assigned to the four sides and two diagonals of anyquadrilateral determined by four of the n vertices satisfies
the Ptolemy relation. These rational functions of the original 2n−3 variables are Laurent polynomials with positive
coefficients.

The formal weights are precisely the cluster variables in the cluster algebra of typeAn−3, and the triangulations are
the clusters. The periodicity phenomenon is a special case of a more general periodicity conjectured by Zamolodchikov
and proved in the typeA case independently by Frenkel and Szenes and by Gliozzi and Tateo; see [14] for details.

4. The tropical analogue

Since the sideways frieze relation involves only subtraction-free expressions in the cluster variables, our whole
picture admits a tropical analogue (for background on tropical mathematics, see [19]) in which multiplication is re-
placed by addition, division by subtraction, addition by max, and 1 by 0. (One could use min instead of max, but max
will be more useful for us.) In this new picture, the Ptolemy relation

di, j dk,l +d j ,kdi,l = di,k d j ,l

becomes the ultrametric relation
max(di, j +dk,l ,d j ,k +di,l) = di,k +d j ,l .

Metrics satisfying this relation arise from finite collections of non-intersecting arcs that join points on the sides ofthe
n-gon (not vertices) in pairs (which we will call finite laminations). For any pair of verticesi, j, we definedi, j as the
smallest possible number of intersections between a path inthen-gon fromi to j and the arcs in the finite lamination
(we choose the path so as to avoid crossing any arc in the finitelamination more than once). Then these quantitiesdi, j

satisfy the ultrametric relation. As in the non-tropical case, we can find all the quantitiesdi, j once we know the values
associated with the sides of then-gon and the diagonals belonging to some triangulation.

For an alternative picture, one can divide the laminatedn-gon into a finite number of sub-regions, each of which
is bounded by pieces of the boundary of then-gon and/or arcs of the finite lamination; the vertices of then-gon
correspond ton special sub-regions (some of which may coincide with one another, if there is no arc in the finite
lamination separating the associated vertices of then-gon). Then the dual of this dissection of then-gon is a tree
with n specified leaf vertices (some of which may coincide), anddi, j is the graph-theoretic distance between leafi and
leaf j (which could be zero). We see that if we know 2n− 3 of these leaf-to-leaf distances, and the 2n− 3 pairs of
leaves correspond to the sides and diagonals of a triangulatedn-gon, then all of the other leaf-to-leaf distances can
be expressed as piecewise-linear functions of the 2n−3 specified distances. (For more on the graph metric on trees,
see [2].)

5. A variant

Before leaving the topic of frieze patterns, I mention an open problem concerning a variant of Conway and
Coxeter’s definition, in which the frieze relation is replaced by the relation

A

B C D

E

: E = (BD−C)/A

and its sideways version
A

B C D

E

: D = (AE+C)/B .

Here, too, it appears that we can construct arrays that have the same sort of symmetries as frieze patterns by starting
with a suitable zig-zag of entries (where successive downwards steps can go left, right, or straight) and proceeding
from left to right. E.g., consider the partial table

... 1 1 1 1 1 ...
A D x

B E y
C F z

... 1 1 1 1 1 ...
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whereA, ...,F are pre-specified, and where we computey= (AC+E)/B, x= (y+D)/A, z= (y+F)/C, etc. Then one
can check that after exactly fourteen iterations of the procedure, one gets back the original numbers (in their original
order). Moreover, along the way one sees Laurent polynomials with positive coefficients.

Define a “double zig-zag” to be a subset of the entries of an(n−2)-rowed table consisting of a pair of adjacent
entries in each of the middlen−4 rows, such that the pair in each row is displaced with respect to the pair in the
preceding and succeeding rows by at most one position.

CONJECTURE: Given any assignment of formal weights to the 2(n−4) entries in a double zig-zag in an(n−2)-
rowed table, there is a unique assignment of rational functions to all the entries in the table so that the variant frieze
relation is satisfied. These rational functions of the original 2(n− 4) variables have glide-reflection symmetry that
gives each row period 2n. Furthermore, each of the rational functions in the table isa Laurent polynomial with
positive coefficients.

There ought to be a way to prove this by constructing the numerators of these Laurent polynomials as sums
of weights of perfect matchings of some suitable graph (or perhaps sums of weights of combinatorial objects more
general than perfect matchings), and the numerators undoubtedly contain abundant clues as to how this can be done.

For n = 5,6,7,8, it appears that the number of positive integer arrays satisfying the variant frieze relation is
respectively 1, 5, 51, 868. This variant of the Catalan sequence does not appear to have been studied before. However,
it should be said that these numbers were not computed in a rigorous fashion. Indeed, it is not clear that there really is
a variant of the Catalan sequence operating here; that is to say, it is conceivable that beyond some point, the sequence
becomes infinite (i.e., for somen there could be infinitely many(n−2)-rowed positive integer arrays satisfying the
variant frieze relation).

6. Markoff numbers

A Markoff triple is a triple(x,y,z) of positive integers satisfyingx2 +y2 +z2 = 3xyz; e.g., the triple (2,5,29). A
Markoff number is a positive integer that occurs in at least one such triple.

Writing the Markoff equation asz2− (3xy)z+(x2 +y2) = 0, a quadratic equation inz, we see that if(x,y,z) is a
Markoff triple, then so is(x,y,z′), wherez′ = 3xy−z= (x2 +y2)/z, the other root of the quadratic inz. (z′ is positive
becausez′ = (x2 +y2)/z, and is an integer becausez′ = 3xy−z.) Likewise forx andy.

The following claim is well-known (for an elegant proof, see[1]): Every Markoff triple(x,y,z) can be obtained
from the Markoff triple(1,1,1) by a sequence of such exchange operations, in fact, by a sequence of exchange
operations that leaves two numbers alone and increases the third. E.g.,(1,1,1) → (2,1,1) → (2,5,1) → (2,5,29).

Create a graph whose vertices are the Markoff triples and whose edges correspond to the exchange operations

(x,y,z) → (x′,y,z), (x,y,z) → (x,y′,z), (x,y,z) → (x,y,z′) wherex′ = y2+z2

x , y′ = x2+z2

y , z′ = x2+y2

z . This 3-regular
graph is connected (see the claim in the preceding paragraph), and it is not hard to show that it is acyclic. Hence the
graph is the 3-regular infinite tree.

This tree can be understood as the dual of the triangulation of the upper half plane by images of the modular do-
main under the action of the modular group. Concretely, we can describe this picture by using Conway’s terminology
of “lax vectors”, “lax bases”, and “lax superbases” ([6]).

A primitive vectoru in a latticeL is one that cannot be written askv for some vectorv in L, with k > 1. A lax
vector is a primitive vector defined only up to sign; ifu is a primitive vector, the associated lax vector is written±u.
A lax base for L is a set of two lax vectors{±u,±v} such thatu andv form a basis forL. A lax superbase for L is
a set of three lax vectors{±u,±v,±w} such that±u± v±w = 0 (with appropriate choice of signs) and any two of
u,v,w form a basis forL.

Each superbase{±u,±v,±w} contains the three bases{±u,±v}, {±u,±w}, {±v,±w} and no others. In the
other direction, each base{±u,±v} is in the two superbases{±u,±v,±(u+v)}, {±u,±v,±(u−v)} and no others.

Thetopograph is the graph whose vertices are lax superbases and whose edges are lax bases, where each super-
base is incident with the three bases in it. This gives a 3-valent tree whose vertices correspond to the lax superbases of
L, whose edges correspond to the lax bases ofL, and whose “faces” correspond to the lax vectors inL.

The latticeL that we will want to use is the triangular latticeL = {(x,y,z) ∈ Z
3 : x+y+z= 0} (or Z

3/Zv where
v = (1,1,1), if you prefer).

Using this terminology, I can now state the main idea of this section: Unordered Markoff triples are associated
with lax superbases of the triangular lattice, and Markoff numbers with lax vectors of the triangular lattice. For
example, the unordered Markoff triple 2,5,29 will correspond to the lax superbase{±u,±v,±w} whereu = ~OA,
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v = ~OB, andw = ~OC, with O, A, B, andC forming a fundamental parallelogram for the triangular lattice, as shown
below.

O

A B

C

The Markoff numbers 1, 2, 5, and 29 will correspond to the primitive vectors~AB, ~OA, ~OB, and ~OC.
To find the Markoff number associated with a primitive vector~OX, take the unionR of all the triangles that

segmentOX passes through. The underlying lattice provides a triangulation ofR. E.g., for the vectoru = ~OC from the
previous figure, the triangulation is

O

A B

C

Turn this into a planar bipartite graph as in Part I, letG(u) be the graph that results from deleting verticesO andC,
and letM(u) be the number of perfect matchings ofG(u). (If u is a shortest vector in the lattice, putM(u) = 1.)

THEOREM 6.1 (Gabriel Carroll, Andy Itsara, Ian Le, Gregg Musiker, Gregory Price, and Rui Viana).If {u,v,w}
is a lax superbase of the triangular lattice, then(M(u),M(v),M(w)) is a Markoff triple. Every Markoff triple arises
in this fashion. In particular, ifu is a primitive vector, then M(u) is a Markoff number, and every Markoff number
arises in this fashion.

(The association of Markoff numbers with the topograph is not new; what is new is the combinatorial interpretation
of the association, by way of perfect matchings.)

PROOF. The base case, with

(M(e1),M(e2),M(e3)) = (1,1,1),

is clear. The only non-trivial part of the proof is the verification that

M(u+ v) = (M(u)2 +M(v)2)/M(u−v).

E.g., in the picture below, we need to verify that

M( ~OC)M( ~AB) = M( ~OA)2 +M( ~OB)2.
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O

A B

C

But if we rewrite the desired equation as

M( ~OC)M( ~AB) = M( ~OA)M( ~BC)+M( ~OB)M( ~AC)

we see that this is just Kuo’s lemma. �

Remark 1: Some of the work done by the REACH students used a square lattice picture; this way of interpreting
the Markoff numbers combinatorially was actually discovered first, in 2001–2002 (see [4]).

Remark 2: the original combinatorial model for the Conway-Coxeter numbers (found by Price) involved paths,
not perfect matchings. Carroll turned this into a perfect matchings model, which made it possible to arrive at the
matchings model of Itsara, Le, Musiker, and Viana via a different route.

More generally, one can putM(e1) = x, M(e2) = y, andM(e3) = z (with x,y,z> 0) and recursively define

M(u+ v) = (M(u)2 +M(v)2)/M(u−v).

Then for all primitive vectorsu, M(u) is a Laurent polynomial inx,y,z; that is, it can be written in the formP(x,y,z)/
xaybzc, whereP(x,y,z) is an ordinary polynomial inx,y,z (with non-zero constant term). The numeratorP(x,y,z) of
each Markoff polynomial is the sum of the weights of all the perfect matchings of the graphG(u), where edges have
weightx, y, or zaccording to orientation. The triplesX = M(u), Y = M(v), Z = M(w) of rational functions associated
with lax superbases are solutions of the equation

X2+Y2 +Z2 =
x2 +y2+z2

xyz
XYZ.

We have seen that these numeratorsP(x,y,z) are polynomials with positive coefficients. This proves thefollowing
theorem:

THEOREM6.2. Consider the initial triple(x,y,z), along with any triple of rational functions in x, y, and z that can
be obtained from the initial triple by a sequence of operations of the form(X,Y,Z) 7→ (X′,Y,Z), (X,Y,Z) 7→ (X,Y′,Z),
or (X,Y,Z) 7→ (X,Y,Z′), where X′ = (Y2 +Z2)/X, Y′ = (X2 +Z2)/Y, and Z′ = (X2 +Y2)/Z, Every rational function
of x, y, and z that occurs in such a triple is a Laurent polynomial with positive coefficients.

Fomin and Zelevinsky proved in [13] (Theorem 1.10) that the rational functionsX(x,y,z),Y(x,y,z),Z(x,y,z) are
Laurent polynomials, but their methods did not prove positivity. An alternative proof of positivity, based on topological
ideas, was given by Dylan Thurston [20].

It can be shown that ifu inside the cone generated by+e1 and−e3, thena < b > c and(c+1)e1− (a+1)e3 = u.
(Likewise for the other sectors ofL.) This implies that all the “Markoff polynomials”M(u) are distinct (aside from the
fact thatM(u) = M(−u)), and thusM(u)(x,y,z) 6= M(v)(x,y,z) for all primitive vectorsu 6=±v as long as(x,y,z) lies
in a denseGδ set of real triples. This fact can be used to show [20] that, for a generic choice of hyperbolic structure
on the once-punctured torus, no two simple geodesics have the same length.

7. Other directions for exploration

7.1. Other ternary cubics. Neil Herriot (another member of REACH) showed [15] that if we replace the tri-
angular lattice used above by the tiling of the plane by isosceles right triangles (generated from one such triangle
by repeated reflection in the sides), superbases of the square lattice correspond to triples(x,y,z) of positive integers
satisfying either

x2 +y2+2z2 = 4xyz

or
x2 +2y2+2z2 = 4xyz.
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(Note that these two Diophantine equations are essentiallyequivalent, as the map(x,y,z) 7→ (2z,y,x) gives a bijection
between solutions to the former and solutions to the latter.) This result, considered in conjunction with the result on
Markoff numbers, raises the question of whether there mightbe some more general combinatorial approach to ternary
cubic equations of similar shape.

Rosenberger [18] showed that there are exactly three ternary cubic equations of the shapeax2 + by2 + cz2 =
(a+b+c)xyzfor which all the positive integer solutions can be derived from the solution(x,y,z) = (1,1,1) by means
of the exchange operations(x,y,z) → (x′,y,z), (x,y,z) → (x,y′,z), and(x,y,z) → (x,y,z′), with x′ = (by2 + cz2)/ax,
y′ = (ax2 +cz2)/by, andz′ = (ax2 +by2)/cz. These three ternary cubic equations are

x2 +y2 +z2 = 3xyz,

x2 +y2+2z2 = 4xyz,

and
x2 +2y2+3z2 = 6xyz.

Note that the triples of coefficients that occur here — (1,1,1), (1,1,2), and (1,2,3) — are precisely the triples that
occur in the classification of finite reflection groups in the plane. Specifically, the ratios 1:1:1, 1:1:2, and 1:2:3 describe
the angles of the three triangles — the 60-60-60 triangle, the 45-45-90 triangle, and the 30-60-90 triangle — that arise
as the fundamental domains of the three irreducible two-dimensional reflection groups.

Since the solutions to the ternary cubicx2+y2+z2 = 3xyzdescribe properties of the tiling of the plane by 60-60-60
triangles, and solutions to the ternary cubicx2+y2+2z2 = 4xyzdescribe properties of the tiling of the plane by 45-45-
90 triangles, the solutions to the ternary cubicx2+2y2+3z2 = 6xyz“ought” to be associated with some combinatorial
model involving the reflection-tiling of the plane by 30-60-90 triangles. Unfortunately, the most obvious approach
(based on analogy with the 60-60-60 and 45-45-90 cases) doesnot work. So we are left with two problems that may
or may not be related: first, to find a combinatorial interpretation for the integers (or, more generally, the Laurent
polynomials) that arise from solving the ternary cubicx2+2y2+3z2 = 6xyz; and second, to find algebraic recurrences
that govern the integers (or, more generally, the Laurent polynomials) that arise from counting (or summing the weights
of) perfect matchings of graphs derived from the reflection-tiling of the plane by 30-60-90 triangles.

If there is a way to make the analogy work, one might seek to extend the analysis to other ternary cubics. It is
clear how this might generalize on the algebraic side. On thegeometric side, one might drop the requirement that the
triangle tile the plane by reflection, and insist only that each angle be a rational multiple of 360 degrees. There is a
relatively well-developed theory of “billiards flow” in such a triangle (see e.g. [16]) where a particle inside the triangle
bounces off the sides following the law of reflection (angle of incidence equals angle of reflection) and travels along
a straight line in between bounces. The path of such a particle can be unfolded by repeatedly reflecting the triangular
domain in the side that the particle is bouncing off of, so that the unfolded path of the particle is just a straight line in
the plane. Of special interest in the theory of billiards aretrajectories joining a corner to a corner (possibly the same
corner or possibly a different one); these are called saddleconnections. The reflected images of the triangular domain
form a triangulated polygon, and the saddle connection itself is a combinatorial diagonal of this polygon. It is unclear
whether the combinatorics of such triangulations might contain dynamical information about the billiards flow, but if
this prospect were to be explored, enumeration of matchingson the derived bipartite graphs would be one thing to try.

7.2. More variables. Another natural variant of the Markoff equation isw2 +x2 +y2 +z2 = 4wxyz(one special
representative of a broader class called Markoff-Hurwitz equations; see [1]). The Laurent phenomenon applies here
too: The four natural exchange operations convert an initial formal solution(w,x,y,z) into a quadruple of Laurent
polynomials. (This is a special case of Theorem 1.10 in [13].)

Furthermore, the coefficients of these Laurent polynomialsappear to be positive, although this has not been
proved.

The numerators of these Laurent polynomials ought to be weight-enumerators for some combinatorial model, but
I have no idea what this model looks like.
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The Horn recursion for Schur P - and Q- functions

Extended Abstract

Kevin Purbhoo and Frank Sottile

Abstract. A consequence of work of Klyachko and of Knutson-Tao is the Horn recursion to determine when
a Littlewood-Richardson coefficient is non-zero. Briefly, a Littlewood-Richardson coefficient is non-zero if
and only if it satisfies a collection of Horn inequalities which are indexed by smaller non-zero Littlewood-

Richardson coefficients. There are similar Littlewood-Richardson numbers for Schur P - and Q- functions.
Using a mixture of combinatorics of root systems, combinatorial linear algebra in Lie algebras, and the
geometry of certain cominuscule flag varieties, we give Horn recursions to determine when these other
Littlewood-Richardson numbers are non-zero. Our inequalities come from the usual Littlewood-Richardson
numbers, and while we give two very different Horn recursions, they have the same sets of solutions. Another
combinatorial by-product of this work is a new Horn-type recursion for the usual Littlewood-Richardson
coefficients.

Résumé. Une des conséquences du travail de Klyachko et de Knutson-Tao est un système de récurrences de
Horn pour déterminer quand un coefficient de Littlewood-Richardson est non nul. En bref, un tel coefficient
est non nul si et seulement si il satisfait une collection d’inégalités de type Horn, dont les indices sont des
coefficients de Littlewood-Richardson plus petits et non nuls. Il existe des nombres de Littlewood-Richardson
comparables pour les P - et Q- fonctions de Schur. En utilisant des outils provenant combinatoire des systèmes
de racines, d’algèbre linéaire dans le contexte des algébre de Lie, et de la géométrie des variétés de drapeaux
cominiscules, nous obtenons un système de récurrences de type Horn pour déterminer quand cette famille de
nombres de Littlewood-Richardson sont non nuls. Ces inégalités sont basées sur les nombres de Littlewood-
Richardson habituels, et même si les deux systèmes sont très différents, ils ont la même solution. Une
autre conséquence de ce travail est une nouvelle récurrence de type Horn pour les coefficients Littlewood-
Richardson habituels.

Introduction

The Littlewood-Richardson numbers aλ
µ,ν for partitions λ, µ, ν are important in many areas of mathe-

matics. For example, they are the structure constants of several related rings with distinguished bases: the
ring of symmetric functions with its basis of Schur functions, the representation ring of sln with its basis
of irreducible highest weight modules, the external representation ring of the tower of symmetric groups
with its basis of irreducible modules, and the cohomology ring of the Grassmannian with its basis of Schu-
bert classes [Ful97, Mac95, Sta99]. The combinatorics of Littlewood-Richardson numbers are extremely
interesting and now we have many formulas for them, including the original Littlewood-Richardson for-
mula [LR34]. Despite this deep and prolonged interest in Littlewood-Richardson numbers, one of the most
fundamental questions about them was not asked until about a decade ago:

When is aλ
µ,ν non-zero?

This question came from (of all places) a problem in linear algebra concerning the possible eigenvalues of
a sum of hermitian matrices. The answer to this problem is given by the Horn inequalities: the eigenvalues

2000 Mathematics Subject Classification. Primary 05E15; Secondary 14M15.
Key words and phrases. Littlewood-Richardson numbers, Schur functions, flag manifolds.
Work of Sottile supported by the Clay Mathematical Institute and NSF CAREER grant DMS-0134860.
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which can and do occur are the solutions to a set of linear inequalities, and the inequalities themselves come
from non-negative integral eigenvalues solving this problem for smaller matrices.

The same inequalities answer our question about Littlewood-Richardson numbers. A Littlewood-Richard-
son number aλ

µ,ν is non-zero if and only if the triple of partitions (λ, µ, ν) satisfy certain linear inequalities,
and the inequalities themselves come from triples indexing smaller non-zero Littlewood-Richardson coeffi-
cients. This description is a consequence of work of Klyachko [Kly98] which linked eigenvalues of sums of
hermitian matrices, highest weight modules of sln, and the Schubert calculus for Grassmannians, and then
Knutson and Tao’s proof [KT99] of Zelevinsky’s Saturation Conjecture [Zel99]. This work implies Horn’s
Conjecture [Hor62] about the eigenvalues of sums of Hermitian matrices. These results have wide implica-
tions in mathematics (see the surveys [Ful98, Ful00]) and have raised many new and evocative questions.
For example, the Horn inequalities give the answer to questions in several different realms of mathematics
(representation theory, combinatorics, Schubert calculus, eigenvalues), but it was initially mysterious why
any one of these questions should have a recursive answer, as the proofs travelled through so many other
parts of mathematics.

Another question, which was the point de départ for the results we describe here, is the following: are
there related numbers whose non-vanishing has a similar recursive answer? Our main result is a recursive
answer for the non-vanishing of the analogs of Littlewood-Richardson coefficients for Schur P -functions, and
the same for Schur Q-functions. We give one set of inequalities which determine non-vanishing for the P -
functions and a different set of inequalities for the Q-functions. Because each Schur P -function is a non-zero
multiple of a corresponding Schur Q-function, a Littlewood-Richardson number for P -functions is non-zero
if and only if the corresponding number for Q-functions is non-zero, and thus our two sets of inequalities
have the same sets of solutions.

Another consequence of our work is a new set of recursive Horn-type inequalities for the ordinary
Littlewood-Richardson numbers aλ

µ,ν . While these new inequalities are clearly related to the ordinary Horn
inequalities, they are definitely quite different. (We explain this below.)

Before we define some of these objects and give the different recursions, we remark that our results were
proved using a mixture of the combinatorics of root systems, combinatorial linear algebra in Lie algebras,
and the geometry of certain cominuscule flag varieties G/P . Cominuscule flag varieties are (almost all of)
the flag varieties whose geometrically defined Bruhat order (which is the Bruhat order on the cosets W/WP

of the Weyl groups) is a distributive lattice.
The alert reader will notice that these inequalities for Schur P - and Q-functions are not strictly recursive

because they are indexed by ordinary Littlewood-Richardson numbers which are non-zero. The reason for the
term recursive is that the inequalities stem from a geometric recursion among all cominuscule flag varieties
which is not evident from viewing only the subclass corresponding to, say the Schur Q-functions.

This abstract does not dwell on the geometry, but rather on the fascinating combinatorial consequences
of these recursions. The last section of this extended abstract does however give a broad view of some of the
key geometric ideas which underly our recursion. The results here are proved in the forthcoming preprint
by the authors, “The recursive nature of the cominuscule Schubert calculus”.

1. The classical Horn recursion

For more details and definitions concerning the various flavors of Schur functions that arise here, we
recommend the book of Macdonald [Mac95]. Schur functions Sλ are symmetric functions indexed by
partitions λ, which are weakly decreasing sequences of nonnegative integers, λ : λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
The Schur function Sλ is homogeneous of degree |λ| := λ1 + · · · + λn. Schur functions form a basis for the
Z-algebra of symmetric functions. Thus there are integral Littlewood-Richardson numbers aλ

µ,ν defined by
the identity

Sµ · Sν =
∑

λ

aλ
µ,ν Sλ .

Homogeneity gives the necessary relation |λ| = |µ| + |ν| for aλ
µ,ν 6= 0.

A partition λ is represented by its diagram, which is a left-justified array of boxes in the positive quadrant
with λi boxes in row i. Thus

(4, 2, 1) ↔
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Partitions are partially ordered by the inclusion of their diagrams. Let n × m be the rectangular partition
with n parts, each of size m.

For λ ⊂ n × m (λ1 ≤ m and λn+1 = 0), define λc to be the partition obtained from the set-theoretic
difference n × m − λ of diagrams (placing λ in the upper right corner of n × m). Thus we have

λc

λ

m

n .

The Horn-type inequalities we give are naturally stated in terms of symmetric Littlewood-Richardson

numbers. For λ, µ, ν ⊂ n × m, define

aλ,µ,ν := Coefficient of Sn×m in SλSµSν

= Coefficient of Sλc in SµSν = aλc

µ,ν .

We say that a triple of partitions λ, µ, ν ⊂ n×m is feasible if aλ,µ,ν 6= 0. This convenient terminology comes
from geometry.

Definition 1.1. Suppose that λ ⊂ n × m and α ⊂ r × (n − r), where 0 < r < n. Define

In(α) := {n − r + 1 − α1, n − r + 2 − α2, . . . , n − αr} .

Draw λ in the upper right corner of the n × m rectangle, and number the rows Cartesian-style. Define |λ|α
to be the number of boxes that remain in λ after crossing out the rows indexed by In(α).

Example 1.2. Suppose that n = 7, m = 8, and r = 3, and we have λ = 8654310 and α = 311. Then
the set I7(α) is

{7 − 3 + 1 − 3, 7 − 3 + 2 − 1, 7 − 3 + 3 − 1} = {2, 5, 6} .

If we place λ in the upper-right corner of the rectangle 7 × 8 and cross out the rows indexed by I7(α),

1

2

3

4

5

6

7

we count the dots • to see that |λ|α = 15.

Theorem 1.3 (Classical Horn Recursion: Klyachko [Kly98], Knutson-Tao [KT99]).
A triple λ, µ, ν ⊂ n × m is feasible if and only if |λ| + |µ| + |ν| = nm, and

|λ|α + |µ|β + |ν|γ ≤ (n − r)m

for all feasible triples α, β, γ ⊂ r × (n − r) and for all 0 < r < n.

The first condition, |λ| + |µ| + |ν| = nm, is due to homogeneity.

2. Symmetric Horn recursion

Since replacing a partition λ by its conjugate λt (interchanging rows with columns) induces an involution
on the algebra of symmetric functions, there is a version of the Horn recursion where one crosses out columns
instead of rows. It turns out that there are necessary inequalities obtained by crossing out both rows and
columns, including possibly a different number of each. The cominuscule recursion reveals a sufficient subset
of these.

Definition 2.1. Let 0 < r < min{n, m} and suppose that λ ⊂ n × m, α ⊂ r × (n − r), and we have
another partition α′ ⊂ r × (m − r). Define In(α) as before, and set

Im(α′) := {m − r + 1 − α′

1, m − r + 2 − α′

2, . . . , m − α′

r} .
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Draw λ in the upper right corner of the n × m rectangle and cross out the rows indexed by In(α) and the
columns indexed by Im(α′). Define |λ|α,α′ to be the number of boxes that remain in λ.

Example 2.2. We use the same data as in Example 1.2, and set α′ = 410. Then

I8(α
′) = {8 − 3 + 1 − 4, 8 − 3 + 2 − 1, 8 − 3 + 3 − 0} = {2, 6, 8} .

If we now cross out the rows indexed by I7(α) and the columns indexed by I8(α
′),

1 2 3 4 5 6 7 8

we count the dots • to see that |λ|α,α′ = 8.

Theorem 2.3 (Symmetric Horn Recursion).
A triple λ, µ, ν ⊂ n × m is feasible if and only if |λ| + |µ| + |ν| = nm, and

|λ|α,α′ + |µ|β,β′ + |ν|γ,γ′ ≤ (m − r)(n − r)

for all pairs of feasible triples α, β, γ ⊂ r× (n− r) and α′, β′, γ′ ⊂ r× (m− r) and for all 0 < r < min{m, n}.

3. Schur P - and Q- functions

The algebra of symmetric functions has a natural odd subalgebra which comes from its structure as a
combinatorial Hopf algebra [ABS06]. This algebra was first studied by Schur in the context of the theory
of projective representations of the symmetric group. This odd subalgebra has a pair of distinguished bases,
the Schur P -functions and the Schur Q-functions. They are indexed by strict partitions, which are strictly
decreasing sequences of positive integers λ : λ1 > λ2 > · · · > λk > 0. They are proportional: Qλ = 2kPλ,
where λ has k parts.

We have Littlewood-Richardson coefficients cλ
µ,ν and dλ

µ,ν indexed by triples of strict partitions and
defined by the identities

Qµ · Qν =
∑

λ

cλ
µ,ν Qλ and Pµ · Pν =

∑

λ

dλ
µ,ν Pλ .

Combinatorial formulas for these numbers were given in work of Worley [Wor84], Sagan [Sag87], and
Stembridge [Ste89].

Let
n
: n > n−1 > · · · > 2 > 1 be the strict partition of staircase shape. Then λ ⊂

n
if λ1 ≤ n. If

λ ⊂
n
, define λc to be the partition obtained from the set-theoretic difference

n
−λ of diagrams (placing

λ in the upper right corner of
n
). Thus we have

λc

λ
n

As before, the Horn-type inequalities are naturally stated in terms of symmetric Littlewood-Richardson
numbers. For λ, µ, ν ⊂

n
, define

cλ,µ,ν := Coefficient of Q
n

in QλQµQν

= Coefficient of Qλc in QµQν = cλc

µ,ν .

A triple of strict partitions λ, µ, ν ⊂ n × m is feasible if cλ,µ,ν 6= 0.
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We similarly define symmetric Littlewood-Richardson numbers dλ,µ,ν for the Schur P -functions. Since
the two bases are proportional, the corresponding coefficients are as well. In particular the sets of triples
λ, µ, ν for which the corresponding coefficients are feasible are the same. Nevertheless, we give two very
different sets of inequalities which determine the feasibility of these numbers, arising from the different
geometric origins of Schur Q-functions and Schur P -functions.

Definition 3.1. Let 0 < r < n and suppose that λ ⊂
n

is a strict partition and α ⊂ r × (n − r)

is an ordinary partition. Draw λ in the upper right corner of the staircase
n
. Number the inner corners

1, 2, . . . , n and, for each number in In(α), cross out the row and column emanating from that inner corner.
Then let [λ]α be the number of boxes that remain in λ.

Definition 3.2. Let 0 < r < n+1 and suppose that λ ⊂
n

is a strict partition and α ⊂ r ×

(n+1−r) is an ordinary partition. Draw λ in the upper right corner of the staircase
n
. Number the outer

corners 1, 2, . . . , n, n+1 and for each number in In+1(α), cross out the row and column emanating from the
corresponding outer corner. Then let {λ}α be the number of boxes that remain in λ.

Example 3.3. For example, suppose that n = 8 and r = 4, we have λ = 8643 and α = 4220. Then

I8(α) = {8 − 4 + 1 − 4, 8 − 4 + 2 − 2, 8 − 4 + 3 − 2, 8 − 4 + 4 − 0} = {1, 4, 5, 8} ,

I9(α) = {9 − 4 + 1 − 4, 9 − 4 + 2 − 2, 9 − 4 + 3 − 2, 9 − 4 + 4 − 0} = {2, 5, 6, 9} .

and if we place λ in the upper-right corner of the rectangle
8

and cross out the rows and columns emanating
from the inner corners indexed by I8(α), we see that [λ]α = 6. If we instead cross out the rows and columns
emanating from the outer corners indexed by I9(α), we see that {λ}α = 5. The two diagrams are shown in
Figure 1, on the left and right, respectively.

1

2

3

4

5

6

7

8

[λ]α = 6

1

2

3

4

5

6

7

8

9

{λ}α = 5

Figure 1. Computation of [λ]α = 6 and of {λ}α = 5

Note that the homogeneity of the multiplication of Schur P -functions and Schur Q-functions implies
that

(3.1) |λ| + |µ| + |ν| =
∣

∣

n

∣

∣ =

(

n + 1

2

)

,

is necessary for a triple λ, µ, ν ⊂
n

to be feasible.

Theorem 3.4 (Horn recursion for Schur P - and Q-functions).

A triple λ, µ, ν ⊂
n

of strict partitions is feasible if and only if one of the following two equivalent

conditions hold:

(1) The homogeneity condition (3.1) holds, and for all feasible α, β, γ ⊂ r × (n − r) and all 0 < r < n, we

have

[λ]α + [µ]β + [ν]γ ≤

(

n + 1 − r

2

)

,

or else
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(2) The homogeneity condition (3.1) holds, and for all feasible α, β, γ ⊂ r× (n+1− r) and all 0 < r < n+1
with r even, we have

{λ}α + {µ}β + {ν}γ ≤

(

n + 1 − r

2

)

.

4. Remarks on the geometry of the proof

We first give some general idea of the ingredients in our proof, and then explain a little bit of the relation
of this geometry to the combinatorics given here.

A flag manifold G/P (G is a reductive algebraic group and P is a parabolic subgroup) has a Bruhat
decomposition into Schubert cells indexed by cosets W/WP , where W is the Weyl group of G and WP that
of P . The closures of the Schubert cells are the Schubert varieties, and cohomology classes associated to
them (Schubert classes) form bases for the cohomology ring of G/P . Standard results in geometry show
that the structure constants (generalized Littlewood-Richardson numbers) are the number of points in triple
intersections of general translates of Schubert varieties (and hence are non-negative).

If a structure constant is non-zero, then any triple intersection of corresponding Schubert varieties (not
just a general intersection) is non-empty, and general intersections are transverse. Conversely, if a structure
constant is zero, then any corresponding general intersection is empty, and a non-empty intersection is never
transverse. The key idea is to replace the difficult question on non-emptiness of a general intersection of
Schubert varieties by the easier question of the transversality of a (not completely general) intersection. This
was used by one of us to show transversality of intersections in the Grassmannian of lines [Sot97], but its use
to study the Horn problem is due to Belkale [Bel02], who first gave a geometric proof of the Horn recursion
for the Grassmannian.

This idea transfers the analysis from the flag manifold G/P to its tangent space TpG/P at a given
point p. In fact, all of our diagrams are just pictures of the root-space decompositions of TpG/P for the
corresponding varieties. In our proof, we consider three Schubert varieties which contain the point p, and
then move them independently by the stabilizer P of p so that they are otherwise general. If it is possible
to move the three tangent spaces inside of TpG/P so that they meet transversally, then the triple is feasible,
and if not, then it is not.

This explains where cominuscule flag manifolds come in. The maximal reductive, or Levi, subgroup L
of the parabolic group P acts on the tangent space TpG/P to G/P at that point. Our arguments (moving
the tangent spaces to Schubert varieties around by elements of L) require that L act on TpG/P with finitely
many orbits, and this is one characterization of cominuscule flag manifolds G/P .

It also explains why there is a recursion. The argument requires us to consider the stabilizer Q in L
of a certain linear subspace of TpG/P—the tangent space to an orbit of L through a general point of the
intersection of general translates of the tangents to the three Schubert varieties. Then the Schubert calculus
inside of the smaller flag manifold L/Q is used to analyze the transversality of that triple intersection.
Fortunately, the flag manifold L/Q is itself cominuscule, which is the source of our recursion.

We briefly illustrate these comments on the three flag manifolds that arose in this extended abstract.

4.1. The classical Grassmannian. Let Gr(n, m+n) be the Grassmannian of n-planes in m+n space.
The general linear group GL(m + n, C) acts on Gr(n, m+n). If H ∈ Gr(n, m+n) then THGr(n, m+n) may
be identified with the set of n by m matrices (more precisely with Hom(H, Cm+n/H)). The Levi subgroup
is the group GL(n, C) × GL(m, C) which acts linearly on the rows and columns of n by m matrices. The
orbits of this group are simply matrices of a fixed rank, r, and the subgroup Q is the stabilizer of a pair
(K, K ′), where K ⊂ H and K ′ ⊂ Cm+n/H both have dimension r. This explains why in Definition 2.1, the
number of rows crossed out equals the number of columns crossed out. The smaller cominuscule flag variety
L/Q is the product of two Grassmannians, Gr(r, n) × Gr(r, m).

The Schubert varieties of Gr(n, m+n) are indexed by partitions λ which fit in the n×m rectangle, and
its cohomology ring is the algebra of Schur functions with these restricted indices.

4.2. The Lagrangian Grassmannian. Fix a non-degenerate alternating bilinear (symplectic) form
on C

2n. Let LG(n) be the set of maximal isotropic (Lagrangian) subspaces in C
2n, each of which has

dimension n. This is the quotient of the symplectic group by the parabolic subgroup corresponding to the
long root, LG(n) = Sp(2n, C)/P0.
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Since H ∈ LG(n) is isotropic the symplectic form identifies C2n/H with the dual of H , and THLG(n)
is identified with the space of quadratic forms on H . The Levi subgroup is the general linear group GL(H).
Identifying H with Cn, the Levi becomes GL(n, C) and THLG(n) is the set of n × n symmetric matrices.
(Symmetric matrices are parametrized by their weakly lower triangular parts, which correspond to the

staircase shape
n

where the order of the columns has been reversed.) The general linear group acts
simultaneously on the rows and columns of symmetric matrices. The orbits are simply symmetric matrices
of a fixed rank, r, and the subgroup Q is the stabilizer of the null space of such a matrix. The smaller
cominuscule flag variety L/Q is the Grassmannian G(r, n).

The Schubert varieties of LG(n) are indexed by strict partitions λ which fit inside the staircase
n
, and

its cohomology ring is the algebra of Schur Q-functions with these restricted indices.

4.3. The Orthogonal Grassmannian. Fix a non-degenerate symmetric bilinear form on C2n+2. The
set of maximal isotropic subspaces (each of which has dimension n + 1) of C2n+2 has two isomorphic
components. Let OG(n + 1) be one of these components. This is the quotient of the even orthogonal
group by a parabolic subgroup P corresponding to one of the roots at the fork in the Dynkin diagram,
OG(n + 1) = SO(2n + 2, C)/P .

If H ∈ OG(n + 1) is isotropic, then THOG(n + 1) is identified with the space of alternating forms
on H . The Levi subgroup is the general linear group GL(H). Identifying H with Cn+1, then the Levi
becomes GL(n + 1, C) and THOG(n + 1) is the set of (n + 1) × (n + 1) anti-symmetric matrices. (Anti-
symmetric matrices are parametrized by their lower triangular parts, and these strictly lower triangular
matrices correspond to the staircase shape where the order of the columns has been reversed.) The general
linear group acts simultaneously on the rows and columns of anti-symmetric matrices. The orbits are simply
anti-symmetric matrices of a fixed rank. However, and this comes from the details of the proof and the
roots of SO(2n + 2, C), the subgroup Q is the stabilizer of an even-dimensional subspace of H . The smaller
cominuscule flag variety L/Q is the Grassmannian G(r, n + 1), where r is even.

The Schubert varieties of OG(n+1) are indexed by strict partitions λ which fit inside the staircase
n
,

and its cohomology ring is the algebra of Schur P -functions with these restricted indices.
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Clusters, Coxeter-sortable elements and noncrossing partitions

Extended abstract. Please cite only the full version, available on the arXiv.

Nathan Reading

Abstract. We introduce Coxeter-sortable elements of a Coxeter group W. For finite W, we give bijective
proofs that Coxeter-sortable elements are equinumerous with clusters and with noncrossing partitions. We
characterize Coxeter-sortable elements in terms of their inversion sets and, in the classical cases, in terms of

permutations.

Résumé. Nous introduisons dans ce travail la notion d’éléments sortables pour un groupe de Coxeter W .
Dans le cas où W est fini, nous montrons que les éléments sortables sont en bijection avec les clusters ainsi
qu’avec les partitions non croisées. Nous donnons une caractérisation des éléments sortables au moyen de
leurs ensembles d’inversion et, dans les cas classiques, en terme de permutations.

Introduction

The famous Catalan numbers can be viewed as a special case of the W -Catalan number, which counts
various objects related to a finite Coxeter group W. In many cases, the common numerology is the only
known connection between different objects counted by the W -Catalan number. One collection of objects
counted by the W -Catalan number is the set of noncrossing partitions associated to W, which play a role
in low-dimensional topology, geometric group theory and non-commutative probability [17]. Another is the
set of maximal cones of the cluster fan. The cluster fan is dual to the generalized associahedron [9, 11], a
polytope whose combinatorial structure underlies cluster algebras of finite type [12].

This paper connects noncrossing partitions to associahedra via certain elements of W which we call
Coxeter-sortable elements or simply sortable elements. For each Coxeter element c of W, there is a set of
c-sortable elements, defined in the context of the combinatorics of reduced words. We prove bijectively that
sortable elements are equinumerous with clusters and with noncrossing partitions. Sortable elements and
the bijections are defined without reference to the classification of finite Coxeter groups, but the proof that
these maps are indeed bijections refers to the classification. The bijections are well-behaved with respect to
the refined enumerations associated to the Narayana numbers and to positive clusters.

In the course of establishing the bijections, we characterize1 the sortable elements in terms of their
inversion sets. Loosely speaking, we “orient” each rank-two parabolic subgroup of W and require that the
inversion set of the element be “aligned” with these orientations. In particular, we obtain a characterization
of the sortable elements in types An, Bn and Dn as permutations.

Because sortable elements are defined in terms of reduced words, it is natural to partially order them
as an induced subposet of the weak order. Indeed, the definition of sortable elements arose from the study
of certain lattice quotients of the weak order called Cambrian lattices. In the sequel [22] to this paper, we
show that sortable elements are indeed a combinatorial model for the Cambrian lattices.

2000 Mathematics Subject Classification. 20F55 (Primary) 05E15, 05A15 (Secondary).
Key words and phrases. clusters, Coxeter-sortable elements, noncrossing partitions, W -Catalan combinatorics.
The author was partially supported by NSF grant DMS-0202430.
1This characterization is described in the full version.
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Recently, Brady and Watt [8] observed that the cluster fan arises naturally in the context of noncrossing
partitions. Their work and the present work constitute two seemingly different approaches to connecting
noncrossing partitions to clusters. The relationship between these approaches is not yet understood.

The term “sortable” has reference to the special case where W is the symmetric group. For one particular
choice of c, the definition of c-sortable elements of the symmetric group is as follows: Perform a bubble sort
on a permutation π by repeatedly passing from left to right in the permutation and, whenever two adjacent
elements are out of order, transposing them. For each pass, record the set of positions at which transpositions
were performed. Then π is c-sortable if this sequence of sets is weakly decreasing in the containment order.
There is also a choice of c (see Example 1.8) such that the c-sortable elements are exactly the 231-avoiding
or stack-sortable permutations [15, Exercise 2.2.1.4–5].

1. Coxeter-sortable elements

Throughout this paper, W denotes a finite Coxeter group with simple generators S and reflections T .
Some definitions apply also to the case of infinite W, but we confine the treatment of the infinite case to a
series of remarks (Remarks 1.5, 2.4 and 3.5.).

The term “word” always means “word in the alphabet S.” Later, we consider words in the alphabet
T which, to avoid confusion, are called “T -words.” A cover reflection of w ∈ W is a reflection t such that
tw = ws with l(ws) < l(w). The term “cover reflection” refers to the (right) weak order. This is the partial
order on W whose cover relations are the relations of the form w ·> ws for l(ws) < l(w), or equivalently,
w ·> tw for a cover reflection t of w. For each J ⊆ S, let WJ be the subgroup of W generated by J . The
notation 〈s〉 stands for the set S − {s}.

For the rest of the paper, c denotes a Coxeter element, that is, an element of W with a reduced word
which is a permutation of S. An orientation of the Coxeter diagram for W is obtained by replacing each edge
of the diagram by a single directed edge, connecting the same pair of vertices in either direction. Orientations
of the Coxeter diagram correspond to Coxeter elements (cf. [25]) as follows: Given a Coxeter element c, any
two reduced words for c are related by commutations of simple generators. An edge s—t in the diagram
represents a pair of noncommuting simple generators, and the edge is oriented s −→ t if and only if s precedes
t in every reduced word for c.

We now define Coxeter-sortable elements. Fix a reduced word a1a2 · · · an for a Coxeter element c. Write
a half-infinite word

c∞ = a1a2 · · · ana1a2 · · · ana1a2 · · · an . . .

The c-sorting word for w ∈ W is the lexicographically first (as a sequence of positions in c∞) subword of
c∞ which is a reduced word for w. The c-sorting word can be interpreted as a sequence of subsets of S by
rewriting

c∞ = a1a2 · · · an|a1a2 · · ·an|a1a2 · · ·an| . . .

where the symbol “|” is called a divider. The subsets in the sequence are the sets of letters of the c-sorting
word which occur between adjacent dividers. This sequence contains a finite number of non-empty subsets,
and furthermore if any subset in the sequence is empty, then every later subset is also empty. For clarity in
examples, we often retain the dividers when writing c-sorting words for c-sortable elements.

An element w ∈ W is c-sortable if its c-sorting word defines a sequence of subsets which is decreasing
under inclusion. This definition of c-sortable elements requires a choice of reduced word for c. However, for a
given w, the c-sorting words for w arising from different reduced words for c are related by commutations of
letters, with no commutations across dividers. In particular, the set of c-sortable elements does not depend
on the choice of reduced word for c.

Remark 1.1. The c-sortable elements have a natural search-tree structure rooted at the identity element.
The edges are pairs v, w of c-sortable elements such that the c-sorting word for v is obtained from the c-
sorting word for w by deleting the rightmost letter. This makes possible an efficient traversal of the set
of c-sortable elements of W which, although it does not explicitly appear in what follows, allows various
properties of c-sortable elements to be checked computationally in low ranks. Also, in light of the bijections
of Theorems 2.1 and 3.2, an efficient traversal of the c-sortable elements leads to an efficient traversal of
noncrossing partitions or of clusters.

276



COXETER-SORTABLE ELEMENTS

The next two lemmas are immediate from the definition of c-sortable elements. Together with the fact
that 1 is c-sortable for any c, they completely characterize c-sortability. A simple generator s ∈ S is initial
in (or is an initial letter of) a Coxeter element c if it is the first letter of some reduced word for c.

Lemma 1.2. Let s be an initial letter of c and let w ∈ W have l(sw) > l(w). Then w is c-sortable if and
only if it is an sc-sortable element of W〈s〉.

Lemma 1.3. Let s be an initial letter of c and let w ∈ W have l(sw) < l(w). Then w is c-sortable if and
only if sw is scs-sortable.

Remark 1.4. In the dictionary between orientations of Coxeter diagrams (i.e. quivers) and Coxeter
elements, the operation of replacing c by scs corresponds to the operation on quivers which changes a source
into a sink by reversing all arrows from the source. This operation was used in [16] in generalizing the
clusters of [11] to Γ-clusters, where Γ is a quiver of finite type. We thank Andrei Zelevinsky for pointing
out the usefulness of this operation, which plays a key role throughout the paper.

Remark 1.5. The definition of c-sortable elements is equally valid for infinite W . Lemmas 1.2 and 1.3
are valid and characterize c-sortability in the infinite case as well. However, we remind the reader that for
all stated results in this paper, W is assumed to be finite.

Example 1.6. Consider W = B2 with c = s0s1. The c-sortable elements are 1, s0, s0s1, s0s1|s0,
s0s1|s0s1 and s1. The elements s1|s0 and s1|s0s1 are not c-sortable.

We close the section with a discussion of the sortable elements of the Coxeter group W = An, realized
combinatorially as the symmetric group Sn+1. Permutations π ∈ Sn+1 are written in one-line notation as
π1π2 · · ·πn+1 with πi = π(i). The simple generators of Sn+1 are si = (i i+1) for i ∈ [n].

A barring of a set U of integers is a partition of that set into two sets U and U . Elements of U are

upper-barred integers denoted i and lower-barred integers are elements of U , denoted i .
Recall that orientations of the Coxeter diagram correspond to Coxeter elements. The Coxeter diagram

for Sn+1 has unlabeled edges connecting si to si+1 for i ∈ [n − 1]. We encode orientations of the Coxeter

diagram for Sn+1 as barrings of [2, n] by directing si → si−1 for every i ∈ [2, n] and si−1 → si for every
i ∈ [2, n], as illustrated in Figure 1 for c = s8s7s4s1s2s3s5s6 in S9. Given a choice of Coxeter element, the
corresponding barring is assumed.

barA.ps

Figure 1. Orientation and barring in S9

We now define condition (A), which characterizes c-sortability of permutations. Condition (A) depends
on the choice of c as follows: a fixed choice of c defines a barring as described above, and condition (A)
depends on that fixed barring. A permutation π ∈ Sn+1 satisfies condition (A) if both of the following
conditions hold:

(A1) π contains no subsequence j k i with i < j < k, and
(A2) π contains no subsequence k i j with i < j < k.

Notice that i and k appear in (A1) and (A2) without explicit barrings. This is because the barrings of i

and k are irrelevant to the conditions. For example, to satisfy (A1), π may not contain any sequence of the

form j k i, regardless of the barrings of i and k.

Theorem 1.7. A permutation π ∈ Sn+1 is c-sortable if and only if it satisfies condition (A) with respect
to the barring corresponding to c.

Example 1.8. For W = Sn+1 and c = (n n+1) · · · (2 3)(1 2), the c-sortable elements are exactly the
231-avoiding or stack-sortable permutations defined in [15, Exercise 2.2.1.4–5].

2. Sortable elements and noncrossing partitions

In this section, we define a bijection between sortable elements and noncrossing partitions. Recall that
T is the set of reflections of W . Any element w ∈ W can be written as a word in the alphabet T . To avoid
confusion we always refer to a word in the alphabet T as a T -word. Any other use of the term “word” is
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assumed to refer to a word in the alphabet S. A reduced T -word for w is a T -word for w which has minimal
length among all T -words for w. The absolute length of an element w of W is the length of a reduced T -word
for w. This is not the usual length l(w) of w, which is the length of a reduced word for w in the alphabet S.

The notion of reduced T -words leads to a prefix partial order on W, analogous to the weak order. Say
x ≤T y if x possesses a reduced T -word which is a prefix of some reduced T -word for y. Equivalently, x ≤T y

if every reduced T -word for x is a prefix of some reduced T -word for y. Since the alphabet T is closed under
conjugation by arbitrary elements of W, the partial order ≤T is invariant under conjugation. The partial
order ≤T can also be defined as a subword order: x ≤T y if and only if there is a reduced T -word for y

having as a subword some reduced T -word for x. In particular, x ≤T y if and only if x−1y ≤ y.
The noncrossing partition lattice in W (with respect to the Coxeter element c) is the interval [1, c]T , and

the elements of this interval are called noncrossing partitions. The poset [1, c]T is graded and the rank of a
noncrossing partition is its absolute length.

Let w be a c-sortable element and let a = a1a2 · · · ak be a c-sorting word for w. Totally order the
inversions of w such that the ith reflection in the order is a1a2 · · ·ai−1aiai−1 · · ·a2a1. Equivalently, t is the
ith reflection in the order if and only if tw = a1a2 · · · âi · · · ak, where âi indicates that ai is deleted from the
word. Write the set of cover reflections of w as a subsequence t1, t2, . . . , tl of this order on inversions. Let
ncc be the map which sends w to the product t1t2 · · · tl. Recall that the construction of a c-sorting word
begins with an arbitrary choice of a reduced word for c. However, since any two c-sorting words for w are
related by commutation of simple generators, ncc(w) does not depend of the choice of reduced word for c.

Theorem 2.1. For any Coxeter element c, the map w 7→ ncc(w) is a bijection from the set of c-sortable
elements to the set of noncrossing partitions with respect to c. Furthermore ncc maps c-sortable elements
with k descents to noncrossing partitions of rank k.

Recall that the descents of w are the simple generators s ∈ S such that l(ws) < l(w). Recall also that
these are in bijection with the cover reflections of w. The basic tool for proving Theorem 2.1 is induction on
rank and length, using Lemmas 1.2 and 1.3. A more complicated induction is used to prove the existence of
the inverse map.

Example 2.2. We again consider the case W = B2 and c = s0s1. As a special case of the combinatorial
realization of noncrossing partitions of type B given in [24], the noncrossing partitions in B2 with respect
to c are the centrally symmetric noncrossing partitions of the cycle shown below.

B2cycle.ps

Figure 2 illustrates the map ncc for this choice of W and c.

w 1 ŝ0 s0ŝ1 s0s1|ŝ0 ŝ0s1|s0ŝ1 ŝ1

ncc(w) 1 s0 s0s1s0 s1s0s1 s0 · s1 s1

B2.1.ps B2.a.ps B2.ab.ps B2.aba.ps B2.ababi.ps B2.b.ps

↓
B2.ababii.ps

Figure 2. The map ncc

Example 2.3. Covering reflections of a permutation π ∈ Sn+1 are the transpositions corresponding to
descents (pairs (πi, πi+1) with πi > πi+1). The map ncc sends π to the product of these transpositions.
The relations πi ≡ πi+1 for descents (πi, πi+1) generate an equivalence relation on [n + 1] which can be
interpreted as a noncrossing partition (in the classical sense) of the cycle c. For c = (n n+1) · · · (2 3)(1 2)
as in Example 1.8, this map between 231-avoiding permutations and classical (i.e. type A) noncrossing
partitions is presumably known.

Remark 2.4. The definition of ncc is valid for infinite W . However, Theorem 2.1 address the finite
case only. In particular, for infinite W it is not even known whether ncc maps c-sortable elements into the
interval [1, c]T .
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Remark 2.5. As a byproduct of Theorem 2.1, we obtain a canonical reduced T -word for every x in
[1, c]T . The letters are the canonical generators of the associated parabolic subgroup, or equivalently the
cover reflections of (ncc)

−1(x), occurring in the order induced by the c-sorting word for (ncc)
−1(x). This

is canonical, up to the choice of reduced word for c. Changing the reduced word for c alters the choice of
canonical reduced T -word for x by commutations of letters.

In [1], it is shown that for c bipartite, the natural labeling of [1, c]T is an EL-shelling with respect to the
reflection order obtained from what we here call the c-sorting word for w0. In particular, the labels on the
unique maximal chain in [1, x]T constitute a canonical reduced T -word for x. It is apparent from the proof of
[1, Theorem 3.5(ii)] that these two choices of canonical reduced T -words are identical in the bipartite case,
for W crystallographic. Presumably the same is true for non-crystallographic W .

3. Sortable elements and clusters

In this section we define c-clusters, a slight generalization (from crystallographic Coxeter groups to all
finite Coxeter groups) of the Γ-clusters of [16]. These in turn generalize the clusters of [11]. The main result
of this section is a bijection between c-sortable elements and c-clusters.

We build the theory of clusters within the framework of Coxeter groups, rather than in the framework of
root systems. This is done in order to avoid countless explicit references to the map between positive roots
and reflections in what follows. Readers familiar with root systems will easily make the translation to the
language of almost positive roots of [11] and [16].

Let −S denote the set {−s : s ∈ S} of formal negatives of the simple generators of W, and let T≥−1 be
T ∪ (−S). (Recall that T is the set of all reflections of W.) The notation TJ stands for T ∩WJ and (TJ)≥−1

denotes TJ ∪ (−J).
For each s ∈ S, define an involution σs : T≥−1 → T≥−1 by

σs(t) :=







−t if t = ±s,

t if t ∈ (−S) and t 6= −s, or
sts if t ∈ T − {s}.

We now define a symmetric binary relation ‖c called the c-compatibility relation.

Proposition 3.1. There exists a unique family of symmetric binary relations ‖c on T≥−1, indexed by
Coxeter elements c, with the following properties:

(i) For any s ∈ S, t ∈ T≥−1 and Coxeter element c,

−s ‖c t if and only if t ∈ (T〈s〉)≥−1.

(ii) For any t1, t2 ∈ T≥−1 and any initial letter s of c,

t1 ‖c t2 if and only if σs(t1) ‖scs σs(t2).

A c-compatible subset of T≥−1 is a set of pairwise c-compatible elements of T≥−1. A c-cluster is a maximal
c-compatible subset. A c-cluster is called positive if it contains no element of −S.

Let w be a c-sortable element with c-sorting word a1a2 · · · ak. If s ∈ S occurs in a then the last reflection
for s in w is a1a2 · · · ajaj−1 · · · a2a1, where aj is the rightmost occurrence of s in a. If s does not occur in
a then the last reflection for s in w is the formal negative −s. Let clc(w) be the set of last reflections of w.
This is an n-element subset of T≥−1. This map does not depend on the choice of reduced word for c, because
any two c-sorting words for w are related by commutations of simple generators.

Theorem 3.2. The map w 7→ clc(w) is a bijection from the set of c-sortable elements to the set of
c-clusters. Furthermore, clc restricts to a bijection between c-sortable elements with full support and positive
c-clusters.

The strategy for proving Theorem 3.2 is the same as for Theorem 2.1, but with fewer complications. We
argue by induction on rank and length.

Example 3.3. We continue the example of W = B2 and c = s0s1. Clusters in B2 correspond to
collections of diagonals which define centrally symmetric triangulations of the hexagon shown below.

B2seed.ps
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Each element of T≥−1 is represented by a diameter or a centrally symmetric pair of diagonals. For details,
see [11, Section 3.5]. Figure 3 illustrates the map clc on c-sortable elements for this choice of W and c.

w 1 s0 s0s1 s0s1|s0 s0s1|s0s1 s1

clc(w) −s0,−s1 s0,−s1 s0, s0s1s0 s1s0s1, s0s1s0 s1s0s1, s1 −s0, s1

B2cl.1.ps B2cl.a.ps B2cl.ab.ps B2cl.aba.ps B2cl.abab.ps B2cl.b.ps

Figure 3. The map clc

Example 3.4. By way of contrast with Example 2.3, we offer no characterization of the map clc on
permutations satisfying (A), even in the 231-avoiding case. Such a characterization is not immediately
apparent, due to the dependence of clc(w) on a specific choice of reduced word for w.

Remark 3.5. Even for infinite W, the map clc associates to each c-sortable element an n-element
subset of T≥−1. However, for infinite W, it is not even clear how c-compatibility should be defined, and in
particular the proofs in this section apply to the finite case only. As mentioned in the proof of Proposition 3.1,
Theorem 3.2 implies the following characterization of c-compatibility: Distinct elements t1 and t2 of T≥−1

are c-compatible if and only if there exists a c-sortable element w such that t1, t2 ∈ clc(w). Thus the map
clc itself might conceivably provide some insight into compatibility in the infinite case.

4. Enumeration

In this section we briefly discuss the enumeration of sortable elements. The W -Catalan number is given
by the following formula, in which h is the Coxeter number of W and the ei are the exponents of W.

Cat(W ) =

n
∏

i=1

ei + h + 1

ei + 1
.

The values of the W -Catalan number for finite irreducible W are tabulated below.

An Bn Dn E6 E7 E8 F4 G2 H3 H4 I2(m)

1

n+2

(

2n+2

n+1

) (

2n

n

)

3n−2

n

(

2n−2

n−1

)

833 4160 25080 105 8 32 280 m + 2

The noncrossing partitions (with respect to any Coxeter element) in an irreducible finite Coxeter group W

are counted by the W -Catalan number [3, 18, 24]. The c-clusters (for any Coxeter element c) of an
irreducible finite Coxeter group W are also counted by Cat(W ). This follows from [16, Corollary 4.11] and
[11, Proposition 3.8] for the crystallographic case, or is proved in any finite case by combining Theorems 2.1
and 3.2. We refer the reader to [13, Section 5.1] for a brief account of other objects counted by the W -Catalan
number. By Theorem 2.1 or Theorem 3.2 we have the following.

Theorem 4.1. For any Coxeter element c of W, the c-sortable elements of W are counted by Cat(W ).

The positive W -Catalan number is the number of positive c-clusters (c-clusters containing no element of
−S). The following is an immediate corollary of Theorem 3.2.

Corollary 4.2. For any Coxeter element c, the c-sortable elements not contained in any proper stan-
dard parabolic subgroup are counted by the positive W -Catalan number.

The map ncc also respects this positive W -Catalan enumeration: The map ncc maps the sortable elements
not contained in any proper standard parabolic subgroup to the noncrossing partitions not contained in any
proper standard parabolic subgroup.

The W -Narayana numbers count noncrossing partitions by their rank. That is, the kth W -Narayana
number is the number of elements of [1, c]T whose absolute length is k. The following is an immediate
corollary of Theorem 2.1.

Corollary 4.3. For any Coxeter element c, the c-sortable elements of W which have exactly k descents
are counted by the kth W -Narayana number.
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Remark 4.4. The kth W -Narayana number is also the kth component in the h-vector of the simpli-
cial W -associahedron. Using results from [20] and [22], one associates a complete fan to c-sortable elements.
This fan has the property that any linear extension of the weak order on c-sortable elements is a shelling.
In [23], David Speyer and the author show that the map clc induces a combinatorial isomorphism. Thus as
a special case of a general fact explained in the discussion following [20, Proposition 3.5], the h-vector of
∆c has entry hk equal to the number of c-sortable elements with exactly k descents. This gives an alternate
proof of Corollary 4.3 and, by composing bijections, a bijective explanation of why counting noncrossing
partitions by rank recovers the h-vector of the W -associahedron.
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Coincidences among skew Schur functions

Victor Reiner, Kristin M. Shaw, and Stephanie van Willigenburg

Abstract. We define an equivalence relation on skew diagrams such that two skew diagrams are equivalent
if and only if they give rise to equal skew Schur functions. Then we derive some necessary and sufficient
conditions for equivalence.

Résumé. Nous étudions quand deux fonctions de skew Schur sont égales. Avec plus précision, nous derivons
quelques règles nécessaires et quelques règles suffisantes pour l’égalité.

1. Introduction

Schur functions are ubiquitous in algebraic combinatorics. They have recently been connected to branch-
ing rules for classical Lie groups [8, 11], and eigenvalues and singular values of sums of Hermitian and of
complex matrices [1, 5, 8] via the study of inequalities among products of skew Schur functions.

With this in mind, a natural problem is to describe all equalities among products of skew Schur functions,
or equivalently, to describe all binomial syzygies among skew Schur functions. As we shall see in Section 2
this is equivalent to describing all equalities among individual skew Schur functions indexed by connected
skew diagrams. This is a more tractable instance of a problem that currently seems intractable: describe
all syzygies among skew Schur functions. Famous non-binomial syzygies include various formulations of the
Littlewood-Richardson rule, which give some indication of the complexity that any such description would
involve.

The study of equalities among skew Schur functions can also be regarded as part of the calculus of shapes.
For an arbitrary subset D of Z2, there are polynomial representations SD and WD of GLN (C) known as
a Schur or Weyl modules respectively. These GLN (C)-representations are obtained by row-symmetrizing
and column-antisymmetrizing tensors whose tensor positions are indexed by the cells of D. In general, these
representations have GLN (C)-character equal to a symmetric function sD(x1, . . . , xN ); when D is a skew
diagram, this is a skew Schur function. Therefore, the question of when two skew Schur or Weyl modules
are equivalent in characteristic zero is precisely the question of equalities among skew Schur functions.

Thus we wish to study the following equivalence relation.

Definition 1.1. Given two skew diagrams D1 and D2 we say they are skew-equivalent denoted D1 ∼ D2

if and only if sD1
= sD2

.

For the sake of brevity, in this abstract we assume that the reader is familiar with the basic tenets
of algebraic combinatorics such as skew diagrams and Schur functions. If this is not the case, then we
refer them to the excellent texts [9, 12, 13], whose lead we follow by using english notation throughout. One
further indispensable tool for us will be the more recent Hamel-Goulden determinant, expressing a skew Schur
function sD, for a skew diagram D, in terms of a determinant based on an outside decomposition of D, and
the cutting strip associated to the decomposition; see [4, 7] for further details.

2000 Mathematics Subject Classification. Primary 05E05, 20C30.
Key words and phrases. Symmetric function, skew Schur function, ribbon Schur function, Weyl module.
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2. Reduction to connected diagrams

We begin by explaining two easy reductions:

A. Understanding all binomial syzygies among the skew Schur functions is equivalent to understanding
the equivalence relation ∼ on all skew diagrams, and

B. the latter is equivalent to understanding ∼ among connected skew diagrams.

These reductions follow from some observations about the matrix

JT (λ/µ) := (hλi−µj−i+j)
`(λ)
i,j=1,

which appears in the Jacobi-Trudi formula for a skew diagram λ/µ. We collect these observations in the
following proposition, whose straightforward proof is omitted in this abstract.

Proposition 2.1. Let λ/µ be a skew diagram with ` := `(λ).

(i) The largest subscript k occurring on any nonzero entry hk in the Jacobi-Trudi matrix JT (λ/µ) is

L := λ1 + ` − 1

and this subscript occurs exactly once, on the (1, `)-entry hL.
(ii) The subscripts on the diagonal entries in JT (λ/µ) are exactly the row lengths

(r1, . . . , r`) := (λ1 − µ1, . . . , λ` − µ`)

and the monomial hr1
· · ·hr`

occurs in the determinant sD

(a) with coefficient +1, and
(b) as the monomial whose subscripts rearranged into weakly decreasing order give the smallest parti-

tion of |λ/µ| in dominance order among all nonzero monomials.
(iii) The subscripts on the nonzero subdiagonal entries in JT (λ/µ) are exactly one less than the adjacent

row overlap lengths:

(λ2 − µ1, λ3 − µ2, . . . , λ` − µ`−1).

Corollary 2.1. For a disconnected skew diagram D = D1⊕D2, one has the factorization sD = sD1
sD2

.
For a connected skew diagram D, the polynomial sD is irreducible in Z[h1, h2, . . .].

Proof. (sketch) The first assertion of the proposition is well-known, and follows, for example, immedi-
ately from the definition of skew Schur functions using tableaux.

For the second assertion, let D = λ/µ with ` := `(λ) and L := λ1 + `−1. Then the Jacobi-Trudi formula
and Proposition 2.1(i) imply that the expansion of sD as a polynomial in the hr is of the form

(2.1) s · hL + r

where s, r are polynomials containing no occurrences of hL. Proposition 2.1(ii) implies that r is not the zero
polynomial, and hence if one can show that s is also nonzero, Equation (2.1) would exhibit sD as a linear
polynomial in hL with nonzero constant term, and hence clearly irreducible in Z[h1, h2, . . .]. The latter is
argued using the fact that D is connected, so that its adjacent row overlaps are all positive, along with
Proposition 2.1(iii). �

We can now infer reductions A and B from the beginning of the section. Given a binomial syzygy

c sD1
sD2

· · · sDm
− c′ sD′

1
sD′

2
· · · sD′

m
= 0

among the skew Schur functions, one can rewrite this as c sD = c′sD′ , where

D := D1 ⊕ D2 ⊕ · · · ⊕ Dm

D′ := D′
1 ⊕ D′

2 ⊕ · · · ⊕ D′
m.

Then Proposition 2.1 (ii) implies the unitriangular expansion sD = hρ +
∑

µ:µ>domρ cµhµ in which ρ is the

weakly decreasing rearrangement of the row lengths in D. This forces c = c′ and hence sD = sD′ , achieving
reduction A.

For reduction B, use the fact that Λ = Z[h1, h2, . . .] is a unique factorization domain, along with Corol-
lary 2.1.
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3. Sufficient conditions

The most basic skew-equivalence is the following well-known fact.

Proposition 3.1. [13, Exercise 7.56(a)] If D is a skew diagram then D ∼ D∗, where D∗ is the antipodal
rotation of D.

It transpires that there are several other constructions and operations on skew diagrams that give rise
to more skew-equivalences.

3.1. Composition with ribbons. Recall the subset of skew diagrams that contain no 2×2 subdiagram,
often known as ribbons. In this subsection we generalize in two different ways the composition operation
α ◦ β on ribbons α, β that was introduced in [2].

Given two skew diagrams D1, D2, aside from their disjoint sum D1 ⊕ D2, there are two closely related
important operations called their concatentation D1 ·D2 and their near-concatenation D1 �D2. The conca-
tentation D1 ·D2 (resp. near concatentation D1 �D2) is obtained from the disjoint sum D1 ⊕D2 by moving
all cells of D2 one column west (resp. one row south), so that the same column (resp. row) is occupied by
the rightmost column (resp. topmost row) of D1 and the leftmost column (resp. bottommost row) of D2.
For example, if D1 = (2, 2), D2 = (3, 2)/(1) then

D1 ⊕ D2 =

2 2
2 2

1 1
1 1

D1 · D2 =

2 2
2 2

1 1
1 1

D1 � D2 =
2 2

1 1 2 2
1 1

.

Observe we have used the numbers 1 and 2 to distinguish between those cells in D1 and those cells in D2.
The reason for the names “concatentation” and “near-concatentation” becomes clearer when we restrict
to ribbons. Observe that in this case there exists a natural correspondence that identifies a composition
α = α1 . . . αk with the ribbon whose row lengths are α1, . . . , αk read from the bottom. Hence, if we identify
ribbons with compositions via this natural correspondence, to get α = (α1, . . . , α`) and β = (β1, . . . , βm),
we have

α · β = (α1, . . . , α`, β1, . . . , βm)

α � β = (α1, . . . , α`−1, α` + β1, β2, . . . , βm),

which are the definitions for concatenation and near concatenation given in [6].
Note that the operations · and � are each associative, and associate with each other:

(3.1)

(D1 · D2) · D3 = D1 · (D2 · D3)

(D1 � D2) � D3 = D1 � (D2 � D3)

(D1 � D2) · D3 = D1 � (D2 · D3)

(D1 · D2) � D3 = D1 · (D2 � D3)

.

Consequently a string of operations D1 ?1 D2 ?2 · · · ?k−1 Dk in which each ?i is either · or � is well-defined
without any parenethesization. Also note that ribbons are exactly the skew diagrams that can be written
uniquely as a string of the form

(3.2) α = � ?1 � ?2 · · · ?k−1 �

where � is the Ferrers diagram with exactly one cell.
Given a ribbon α and a skew diagram D, define α ◦ D to be the result of replacing each cell � in the

expression (3.2) for α with D:

α ◦ D := D ?1 D ?2 · · · ?k−1 D.

For example, if

α =
×

× × ×
× ×

and D =
× ×
× ×
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then
α = � � � · � � � � � · �

α ◦ D = D � D · D � D � D · D

=

6 6
6 6

5 5
4 4 5 5

3 3 4 4
3 3

2 2
1 1 2 2
1 1

where we have used numbers to distinguish between copies of D.
It is easily seen that when D = β is a ribbon, then α ◦ β is also a ribbon, and agrees with the definition

in [2].
Similarly, given a skew diagram D and a ribbon β, we can also define D◦β as follows. Create a copy β(i)

of the ribbon β for each of the cells of D, numbered i = 1, 2, . . . , n arbitrarily. Then assemble the ribbons
β(i) into a disjoint decomposition of D ◦ β by translating them in the plane in such a way that β(i) t β(j)

forms a copy of
{

β(i) � β(j) if i is just left of j in some row of D,

β(i) · β(j) if i is just below j in some column of D.

For example, if

D =
1 2

3 4 5
, β =

× × ×
× ×

then D ◦ β is the skew diagram

2 2 2
1 1 1 2 2

1 1 5 5 5
4 4 4 5 5

3 3 3 4 4
3 3

where we have used numbers to distinguish between copies of β.
Again it is clear that when D = α is a ribbon, then α ◦ β is another ribbon agreeing with that in [2].

The following distributivity properties should also be clear.

Proposition 3.2. For a skew diagram D and ribbons α and β the operation ◦ distributes over · and �,
that is

(α · β) ◦ D = (α ◦ D) · (β ◦ D)

(α � β) ◦ D = (α ◦ D) � (β ◦ D)

and
(D1 · D2) ◦ β = (D1 ◦ β) · (D2 ◦ β)

(D1 � D2) ◦ β = (D1 ◦ β) � (D2 ◦ β)
.

Remark 3.1. Observe that D1 ◦ D2 has not been defined for both D1 and D2 being non-ribbons, and
we invite the reader to investigate this situation in order to appreciate the complexities that can arise.

In the meantime, we show that the notation for the operations α ◦ D and D ◦ β is consistent with the
notation for skew Schur functions. These operations also lead to nontrivial skew-equivalences, generalizing
the constructions of [2].

We begin by reviewing the presentation of the ring Λ of symmetric functions by the generating set of
ribbon Schur functions sα, that is, those skew Schur functions indexed by ribbons. Let Q[zα] denote a
polynomial algebra in infinitely many variables zα indexed by all compositions α.
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Proposition 3.3. [2, Proposition 2.2]. The algebra homomorphism

Q[zα] → Λ
zα 7→ sα

is a surjection, whose kernel is the ideal generated by the relations

(3.3) zαzβ − (zα·β + zα�β).

In fact, this same syzygy is well-known to be satisfied [9, Chapter 1.5, Example 21 part (a)] by all skew
diagrams D1, D2:

(3.4) sD1
sD2

= sD1·D2
+ sD1�D2

.

As a consequence, one deduces the following.

Corollary 3.2. For a fixed skew diagram D the map

Q[zα]
(−)◦sD
−→ Λ

zα 7−→ sα◦D

descends to a well-defined map Λ −→ Λ. In other words, for any symmetric function f , one can arbitrarily
write f as a polynomial in ribbon Schur functions f = p(sα) and then set f ◦ sD := p(sα◦D).

We are abusing notation here by using ◦ both for the map (−) ◦ sD on symmetric functions, as well as
the two diagrammatic operations α ◦ D and D ◦ β. The previous corollary says that it is well-defined to set

(3.5) sα ◦ sD = sα◦D

so that we are at least consistent with one of the diagrammatic operations. The next result says that we are
also consistent with the other.

Proposition 3.4. For any skew diagram D and ribbon β

sD◦β = sD ◦ sβ.

Proof. (sketch) One uses the Hamel-Goulden determinant for sD, which starts with an outside decom-
position of D into ribbons (θ1, . . . , θm). The induced outside decomposition (θ1 ◦ β, . . . , θm ◦ β) for D ◦ β
leads to a Hamel-Goulden determinant for sD◦β . The proposition then follows because various operations
commute with each other. �

Theorem 3.3. Assume one has ribbons α, α′ and skew diagrams D, D′ satisfying α ∼ α′ and D ∼ D′.
Then

(i) α ◦ D ∼ α′ ◦ D,
(ii) D ◦ α ∼ D′ ◦ α,
(iii) D ◦ α ∼ D ◦ α′, and
(iv) α ◦ D ∼ α ◦ D∗.

Proof. Assertions (i) and (ii) both follow from the fact that if E is any skew diagram, then D ∼ D′

means sD = sD′ , and hence

(3.6) sD ◦ sE = sD′ ◦ sE .

The third follows by Proposition 3.4 if one can show it when D = α is a ribbon. This special case α◦β1 ∼ α◦β2

was shown in [2]. Assertion (iv) follows from assertion (i) and Proposition 3.1:

α ◦ D ∼ (α ◦ D)∗ = α∗ ◦ D∗ ∼ α ◦ D∗.

�

Remark 3.4. The last skew-equivalence begs the question of whether D1 ∼ D2 for skew diagrams
D1, D2 implies α ◦ D1 ∼ α ◦ D2 for any ribbon α. This turns out to be false. For example, one can check
that

D1 =

× × ×
× ×

× ×
×

∼

× ×
× × ×
× ×
×

= D2,
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e.g. by Corollary 3.20. However, if one takes α = (2), that is, the ribbon having one row with two cells, then
we find

α ◦ D1 =

× × ×
× ×

× ×
× × × ×
× ×

× ×
×

α ◦ D2 =

× ×
× × ×
× ×

× × ×
× × ×
× ×
×

and α ◦ D1 6∼ α ◦ D2, e.g. by Theorem 4.4.

3.2. Amalgamation and amalgamated composition of ribbons. Now in a third way we generalize
the operation α ◦ β to an operation α ◦ω β, which we will call the amalgamated composition of α and β with
respect to ω.

Definition 3.5.
Given a skew diagram D and a nonempty ribbon ω, say that ω lies in the top (resp. bottom) of D if the
restriction of D to its |ω| northeasternmost (resp. southwesternmost) diagonals is (a translated copy of) the
ribbon ω.

Given two skew diagrams D1, D2 and a nonempty ribbon ω lying in the top of D1 and the bottom of D2,
the amalgamation of D1 and D2 along ω, denoted D1 qω D2, is the new ribbon obtained from the disjoint
union D1 ⊕ D2 by identifying the copy of ω in the northeast of D1 with the copy of ω in the southwest of
D2.

Say that ω protrudes from the top (resp. bottom) of D if there is another ribbon ω+ having |ω+| = |ω|+1
such that both ω, ω+ lie at the top (resp. bottom) of D. Equivlalently, ω protrudes from the top (resp.
bottom) of D if it lies at the top (resp. bottom) of D and the restriction of D to its |ω|+1 northeasternmost
(resp. southwesternmost) diagonals is also a ribbon, namely ω+.

Example 3.6.
Consider the skew diagram

D =
× × ×

× × ×
.

Then D has ω1 = × protruding from the top and bottom. It has ω2 = ×× lying in its top and bottom, but
protruding from neither top nor bottom. Furthermore,

D qω1
D =

× × ×
× × o × ×

× × ×
, D qω2

D =
× × ×

× o o ×
× × ×

in which the copies of ω1 and ω2 that have been amalgamated are indicated with the letter o.

Definition 3.7.
When ω lies in the top of D1 and bottom of D2, one can form the outer (resp. inner) projection of D1 onto
D2 with respect to ω. This is a new diagram in the plane, not necessarily skew, obtained from the disjoint
union D1 ⊕D2 by translating D2 until it is underneath and to the right (resp. above and to the left) of D1,
in such a way that the two copies of ω in D1, D2 are adjacent and occupy the same set of diagonals.

One can see that if ω not only lies in the top of D1 and bottom of D2, but actually protrudes from the
top of D1 and from the bottom of D2, then at most one of these two projections can be a skew diagram
(and possibly neither one is). When one of them is a skew diagram, call it D1 ·ω D2, and say that D1 ·ω D2

is defined in this case.
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Example 3.8.
Let D, ω1, ω2 be as in the previous example. Then the outer and inner projections of D onto D with respect
to ω2 are

× o o × × ×
× × × o o ×

× × ×
o o ×
× o o

× × ×

,

which are both skew diagrams. On the other hand, the outer and inner projections of D onto D with respect
to ω1 are

× × o × × ×
× × × o × ×

× × ×
o × ×

× × o
× × ×

= D ·ω1
D

in which only the latter is a skew diagram.

Definition 3.9.
Given a skew diagram D, and ω a ribbon lying in both the top and bottom of D, one can define

Dqωn = D qω D qω · · · qω D
︸ ︷︷ ︸

n factors

:= ((D qω D) qω D) qω · · · qω D.

If one assumes that D ·ω D is also defined so that, in particular, ω protrudes from the top and bottom of
D, then one can check that this will imply that for any positive integers m, n, we have (Dqωm) ·ω (Dqωn) is
also defined. Under this assumption, for any ribbon α = (α1, . . . , αk), define the amalgamated composition
of α and D with respect to ω to be the diagram

(3.7) α ◦ω D := (Dqωα1) ·ω . . . ·ω (Dqωαk).

The following theorems are obtained by consideration of an appropriate Hamel-Goulden determinant.

Theorem 3.10. Let D be a connected skew diagram, and ω a ribbon which protrudes from the top and
bottom of D, with D ·ω D defined. Assume further that the two copies of ω in the top and bottom of D are
separated by at least one diagonal,that is, there is a nonempty diagonal in D intersecting neither copy of ω.

Then for any ribbon α one has
sα◦ωD = sα ◦ω sD.

Theorem 3.11. Let α, α′ be ribbons with α ∼ α′, and assume that D, ω satisfy the hypotheses of Theo-
rem 3.10. Then one has the following skew-equivalences:

α′ ◦ω D ∼ α ◦ω D ∼ α ◦ω∗ D∗.

Theorem 3.12. Let {βi}k
i=1, {γi}k

i=1 be ribbons, and for each i either γi = βi or γi = β∗
i . If the skew

diagrams D, ω satisfy the hypotheses of Theorem 3.10, then

γ1 ◦ω γ2 ◦ω . . . ◦ω γk ◦ω D

∼ β1 ◦ω β2 ◦ω . . . ◦ω βk ◦ω D

∼ β1 ◦ω∗ β2 ◦ω∗ . . . ◦ω∗ βk ◦ω∗ D∗

where all the operations ◦ω or ◦ω∗ are performed from right to left.

Remark 3.13. Theorem 3.11 is analogous to [2, Theorem 4.4 parts 1 and 2], whereas Theorem 3.12 is
analogous to the reverse direction of [2, Theorem 4.1].

3.3. Conjugation and ribbon staircases. The goal here is to construct skew diagrams D that are
skew-equivalent to their conjugates Dt. We first define two decompositions of a connected skew diagram
D into ribbons; when one of these decompositions takes on a very special form, we will show that implies
D ∼ Dt.

Definition 3.14.
Given a connected skew diagram D define the southeast decomposition to be the following unique decompo-
sition into ribbons. The first ribbon θ is the unique ribbon that starts at the cell on the lower left, traverses
the southeast border of D, and ends at the cell on the upper right. Now consider D with θ removed, which
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may decompose into several connected component skew shapes, and iterate the above procedure on each of
these shapes. The northwest decomposition is similarly defined, starting with a ribbon θ that traverses the
northwest border of D.

Note that both of these are outside decompositions of D, and hence give rise to Hamel-Goulden deter-
minants for sD. In both cases, the associated cutting strip for the decomposition coincides with its first and
largest ribbon θ. We will be interested in the case where all of the ribbons in the southeast or northwest
decomposition of D arise in a very special way from the amalgamation construction of Section 3.2.

Definition 3.15.
Let α = (α1, . . . , αk) and β = (β1, . . . , β`) be ribbons. For an integer m ≥ 1, say that the m-intersection
α∩m β exists if there is a ribbon ω = (ω1, . . . , ωm) with m rows lying in the top of α and the bottom of β for
which ω1 = β1 and ωm = αk; when m = 1, we set ω1 := min{αk, β1}. In this case, define the m-intersection
α ∩m β and the m-union α ∪m β to be

α ∩m β := ω

α ∪m β := α qω β
.

If α ∪m β = α or β (resp. or α ∩m β = α or β) then we say the m-union (resp. m-intersection) is trivial. If
α is a ribbon such that α ∩m α exists and is non-trivial then

εk
m(α) := α ∪m α ∪m . . . ∪m α

︸ ︷︷ ︸

k factors

is the ribbon staircase of height k and depth m generated by α.

Example 3.16.
Let α be the ribbon (2, 3). Then

ε3
1(α) = ε3

1

(
× × ×

× ×

)

=

× × ×
× × ×

× × ×
× ×

.

Definition 3.17.
Say that a skew diagram D has a southeast ribbon staircase decomposition if there exists an m < `(α) and
a ribbon α such that all ribbons in the southeast decomposition of D are of the forms α ∩m α or εp

m(α) for
various integers p ≥ 1.

In this situation, let k be the maximum value of p occurring among the εp
m(α) above, so that the largest

ribbon θ equals εk
m(α). We will think of θ as containing k copies of α, numbered 1, 2, . . . , k from southwest

to northeast. We now wish to define the nesting N associated to this decomposition. The nesting N is a
word of length k − 1 using as letters the four symbols, dot “.”, left parenthesis “(”, right parenthesis “)” and
vertical slash “|”. Considering the ribbons in the southeast decomposition of D,

• a ribbon of the form εp
m(α) creates a pair of left and right parentheses in positions i and j if the

ribbon occupies the same diagonals as the i + 1, i + 2, . . . , j − 1, j copies of α in θ, while
• a ribbon of the form α ∩m α creates a vertice slash in position i if it occupies the same diagonals

as the intersection of the i, i + 1 copies of α in θ, and
• all other letters in N are dots.

With this notation, say that D = (εk
m(α),N )se. Analogously define the notation D = (εk

m(α),N )nw using
the northwest decomposition.

Lastly, given a nesting N , denote the reverse nesting, which is the reverse of the word N , by N ∗.
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Example 3.18. Consider the following skew diagram D, with its southeast decomposition into ribbons
θ1, θ2, θ3, θ4 distinguished by the numbers 1, 2, 3, 4 respectively:

D =

4 3 3 1 1
3 3 1 1
3 1 1

2 1 1
1 1

1 1
1

.

This happens to be a southeast ribbon staircase decomposition, in which

α =
× ×
×

, m = 1, k = 6, N = . | ( | ),

that is, D = (ε6
1(α),N )se. Here N ∗ = ( | ) | ., and additionally note that the skew diagram D′ = (ε6

1(α),N ∗)
is the same as the conjugate skew diagram Dt.

The following is a consequence of the Hamel-Goulden determinant associated to the southeast (or north-
west) decomposition of D, when its decomposition is a ribbon staircase decomposition.

Theorem 3.19. Let α be a ribbon, and let

D1 = (εk
m(α),N )x

D2 = (εk
m(α),N ∗)x

where m < `(α) and x = se or nw. Then D1 ∼ D2.

This leads to the following interesting corollary.

Corollary 3.20. Let D = (εk
m(α),N )x where α is a self-conjugate ribbon, m < l(α) and x = se or

nw. Then D ∼ Dt. Furthermore, for any Ferrers diagram µ contained in the staircase partition δn :=
(n − 1, n− 2, . . . , 1) `

(
n
2

)
, one has

δn/µ ∼ (δn/µ)
t
.

We conjecture the following converse, which has been verified for all skew diagrams D with |D| ≤ 18.

Conjecture 3.21. If a skew diagram D satisfies D ∼ Dt, then D = (εk
m(α),N )x for some self-conjugate

ribbon α, some m < `(α) and x = se or nw.

3.4. Adding a full column/row, and complementation within a rectangle. Let D be thought
of as any finite subset of the plane Z2. We wish to consider two operations on D, which turn out to be
closely related.

• Adding a full column (resp. row): Add to the shape a new column (resp. row) which has a cell in
every previously nonempty row (resp. column), and possibly in some new rows (resp. columns).

• Complementation within a rectangle: If R is a rectangular Ferrers diagram containing D, consider
the complementary shape R\D.

When D is a Ferrers diagram λ, it is not hard to see that the result of the latter is at least a skew diagram.
However, when D is only assumed to be a skew diagram, after performing either of these operations, it is
generally not true that the result is another skew diagram. Nevertheless, in some cases, after performing
these operations, one may be able to reorder the columns (resp. rows) so as to obtain a skew diagram again.
This combined with the following definition allows us to derive another sufficiency.

Definition 3.22.
A skew diagram D has spinal columns if it contains either a single column or a union of two adjacent columns
whose union intersects every nonempty row of D. One can similarly define when D has spinal rows.

The following can be proved using results from [10].
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Theorem 3.23. Let Di for i = 1, 2 be skew diagrams, both having spinal columns, and ` nonempty rows.
Let R be a rectangle with ` rows that contains D1, D2. Let D+

i be obtained from Di by adding a full column
of length ` to form a skew diagram. Then

D1 ∼ D2 if and only if D+
1 ∼ D+

2 if and only if R\D1 ∼ R\D2.

4. Necessary conditions

We now present some combinatorial invariants for the skew-equivalence relation D1 ∼ D2 on connected
skew diagrams.

4.1. Frobenius rank. Recall that the Durfee or Frobenius rank of a skew diagram D is defined to be
the minimum number of ribbons in any decomposition of D into ribbons. It was recently conjectured by
Stanley [14], and proven by Chen and Yang [3], that the rank coincides with the highest power of t dividing
the polynomial sD(1, 1, . . . , 1, 0, 0, . . .), where t of the variables have been set to 1, and the rest to zero. This
implies the following.

Corollary 4.1. Frobenius rank is an invariant of skew-equivalence, that is, two skew-equivalent dia-
grams must have the same Frobenius rank.

In particular, skew-equivalence restricts to the subset of ribbons as they are the skew diagrams of Frobenius
rank 1.

4.2. Overlaps. Data about the amount of overlap between sets of rows or columns in the skew diagram
D can be recovered from its skew Schur function sD.

Definition 4.2.
Let D be a skew diagram occupying r rows. For each k in {1, 2, . . . , r}, define the k-row overlap composition

r(k) = (r
(k)
1 , . . . , r

(k)
r−k+1) to be the sequence where r

(k)
i is the number of columns occupied in common by the

rows i, i+1, · · · , i+k−1. Let ρ(k) be the k-row overlap partition that is the weakly decreasing rearrangement
of r(k). Similarly define column overlap compositions c(k) and column overlap partitions γ(k).

Example 4.3. If D =
× ×

× × ×
×

, then the 1-row, 2-row and 3-row overlap compositions are

r(1) = (2, 3, 1)

r(2) = (2, 1)

r(3) = (0).

With this is mind we are able to prove

Theorem 4.4. If D1 ∼ D2 then D1, D2 have the same k-row overlap partitions and the same k-column
overlap partitions for all k.

It transpires that the row overlap partitions (ρ(k))k≥1 and the column overlap partitions (γ(k))k≥1

determine each other uniquely. To see this, we define a third form of data on a skew diagram D, which
mediates between the two, and which is more symmetric under conjugation.

Proposition 4.1. Given a skew diagram D, consider the doubly-indexed array (ak,`)k,`≥1 where ak,` is
defined to be the number of k × ` rectangular subdiagrams contained inside D. Then we have

ak,` =
∑

`′≥`

(

ρ(k)
)t

`′

=
∑

k′≥k

(

γ(`)
)t

k′

.

Consequently, any one of the three forms of data

(ρ(k))k≥1, (γ(k))k≥1, (ak,`)k,`≥1

on D determines the other two uniquely.
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Remark 4.5. Unfortunately, having the same row and column overlap partitions ρ(k), γ(k) is not suffi-
cient for the skew-equivalence of two skew diagrams as

× ×
× × ×
×

6∼
× × ×

× ×
×

even though they have the same row and column overlap partitions ρ(k), γ(k) for every k.

5. Complete classification

The sufficient conditions discussed in this abstract explain all but six of the skew-equivalences among
skew diagrams with up to 18 cells. For example, the following skew-equivalence cannot yet be explained:

× ×
× × ×

× × × ×
× ×

× ×
× ×

∼

× ×
× ×
× ×

× × ×
× × × ×
× ×

.

We end with the following conjectures.

Conjecture 5.1. The skew-equivalence relation ∼, when restricted to skew diagrams of Frobenius rank
at most 3, is explained by all of the constructions in this paper. In other words, it is the equivalence relation
generated by the equivalences listed in

• Proposition 3.1,
• Theorem 3.3,
• Theorem 3.11,
• Theorem 3.19, and
• Theorem 3.23.

Conjecture 5.2. Every skew-equivalence class of skew diagrams has cardinality a power of 2.
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Virtual crystal structure on rigged configurations

Anne Schilling

ABSTRACT. Rigged configurations are combinatorial objects originating from the Bethe Ansatz, that label highest weight
crystal elements. In this note a newunrestrictedset of rigged configurations is introduced by constructing acrystal structure
on the set of rigged configurations.

RÉSUMÉ. Les configurations gréées sont des objets combinatoiresinspirés par l’ansatz de Bethe, et qui sont en correspon-
dence avec les éléments cristallins de plus haut poids. Dans cette note, nous introduisons le concept de ”configurations gréées
généralisées”, en construisant une structure cristalline dans l’espace des configurations gréées.

1. Introduction

This note is based on preprint [33] which gives a crystal structure on rigged configurations for all simply-laced
types. Here we use the virtual crystal method [29, 30] to extend these results to nonsimply-laced types.

There are (at least) two main approaches to solvable latticemodels and their associated quantum spin chains: the
Bethe Ansatz [6] and the corner transfer matrix method [5].

In his 1931 paper [6], Bethe solved the Heisenberg spin chain based on the stringhypothesis which asserts that
the eigenvalues of the Hamiltonian form certain strings in the complex plane as the size of the system tends to infinity.
The Bethe Ansatz has been applied to many models to prove completeness of the Bethe vectors. The eigenvalues and
eigenvectors of the Hamiltonian are indexed by rigged configurations. However, numerical studies indicate that the
string hypothesis is not always true [2].

The corner transfer matrix (CTM) method, introduced by Baxter [5], labels the eigenvectors by one-dimensional
lattice paths. These lattice paths have a natural interpretation in terms of Kashiwara’s crystal base theory [16, 17],
namely as highest weight crystal elements in a tensor product of finite-dimensional crystals.

Even though neither the Bethe Ansatz nor the corner transfermatrix method are mathematically rigorous, they
suggest the existence of a bijection between the two index sets, namely rigged configurations on the one hand and
highest weight crystal paths on the other (see Figure 1). Forthe special case when the spin chain is defined on
V(µ1) ⊗ V(µ2) ⊗ · · · ⊗ V(µk), whereV(µi) is the irreducibleGL(n) representation indexed by the partition(µi) for
µi ∈ N, a bijection between rigged configurations and semi-standard Young tableaux was given by Kerov, Kirillov
and Reshetikhin [21, 22]. This bijection was proven and extended to the case when the(µi) are any sequence of
rectangles in [25]. The bijection has many amazing properties. For example ittakes the cocharge statisticscc defined
on rigged configurations to the coenergy statisticsD defined on crystals.

Rigged configurations and crystal paths also exist for othertypes. In [14, 15] the existence of Kirillov–Reshetikhin
crystalsBr,s was conjectured, which can be naturally associated with thedominant weightsΛr wheres is a positive
integer andΛr is ther-th fundamental weight of the underlying algebra of finite type. For a tensor product of Kirillov–
Reshetikhin crystalsB = Brk,sk ⊗ · · · ⊗ Br1,s1 and a dominant weightΛ let P(B, Λ) be the set of all highest
weight elements of weightΛ in B. In the same papers [14, 15], fermionic formulasM(L, Λ) for the one-dimensional
configuration sumsX(B, Λ) :=

∑
b∈P(B,Λ) qD(b) were conjectured. The fermionic formulas admit a combinatorial

interpretation in terms of the set of rigged configurationsRC(L, Λ), whereL is the multiplicity array ofB. A statistic

2000Mathematics Subject Classification.Primary 17B37, 82B23, 05A15; Secondary 05E99, 81R50.
Key words and phrases.crystal bases, rigged configurations, Kashiwara operators.
Date: November 2005.
Partially supported by NSF grant DMS-0200774 and DMS-0501101.
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FIGURE 1. Schematic origin of rigged configurations and crystal paths

preserving bijectionΦ : P(B, Λ) → RC(L, Λ) has been proven in various cases [25, 28, 32, 35] which implies the
following identity

(1.1) X(B, Λ) :=
∑

b∈P(B,Λ)

qD(b) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J) =: M(L, Λ).

Since the sets in (1.1) are finite, these are polynomials inq. WhenB = B1,sk ⊗ · · · ⊗ B1,s1 of typeA, they are none
other than the Kostka–Foulkes polynomials.

Rigged configurations corresponding to highest weight crystal paths are only the tip of an iceberg. In this note we
extend the definition of rigged configurations to all crystalelements by the explicit construction of a crystal structure
on the set ofunrestrictedrigged configurations (see Definition 4.1). For simply-laced types, the proof is given in [32]
and uses Stembridge’s local characterization of simply-laced crystals [37]. For nonsimply-laced algebras, we show
here how to apply the method of virtual crystals [29, 30] to construct the crystal operators on rigged configurations.

The equivalence of the crystal structures on rigged configurations and crystal paths together with the correspon-
dence for highest weight vectors yields the equality of generating functions in analogy to (1.1) (see Theorem 4.10 and
Corollary 4.11). Denote the unrestricted set of paths and rigged configurations byP(B, Λ) andRC(L, Λ), respec-
tively. The corresponding generating functionsX(B, Λ) = M(L, Λ) are unrestricted generalized Kostka polynomials
or q-supernomial coefficients. A direct bijectionΦ : P(B, Λ) → RC(L, Λ) for type A along the lines of [25] is
constructed in [7, 8].

Rigged configurations are closely tied to fermionic formulas. Fermionic formulas are explicit expressions for the
partition function of the underlying physical model which reflect their particle structure. For more details regarding
the background of fermionic formulas see [14, 19, 20]. For typeA we obtain an explicit characterization of the
unrestricted rigged configurations in terms of lower boundson quantum numbers which yields a new fermionic formula
for unrestricted Kostka polynomials of typeA. Surprisingly, this formula is different from the fermionic formulas
in [13, 18] obtained in the special cases ofB = B1,sk ⊗ · · · ⊗ B1,s1 andB = Brk,1 ⊗ · · · ⊗ Br1,1. The rigged
configurations corresponding to the fermionic formulas of [13, 18] were related to ribbon tableaux and the cospin
generating functions of Lascoux, Leclerc, Thibon [26, 27] in reference [31]. To distinguish these rigged configurations
from the ones introduced in this paper, let us call them ribbon rigged configurations.

The Lascoux–Leclerc–Thibon (LLT) polynomials [26, 27] have recently made their debut in the theory of Mac-
donald polynomials in the seminal paper by Haiman, Haglund,Loehr [9]. The main obstacle in obtaining a combina-
torial formula for the Macdonald–Kostka polynomials is theSchur positivity of certain LLT polynomials. A related
problem is the conjecture of Kirillov and Shimozono [24] that the cospin generating function of ribbon tableaux equals
the generalized Kostka polynomial. A possible avenue to prove this conjecture would be a direct bijection between
the unrestricted rigged configurations of this paper and ribbon rigged configurations.

One of the motivations for considering unrestricted riggedconfigurations was Takagi’s work [38] on the inverse
scattering transform, which provides a bijection between states in thesl2 box ball system and rigged configurations.
In this setting rigged configurations play the role of action-angle variables. Box ball systems can be produced from
crystals of solvable lattice models for algebras other thansl2 [10, 11, 12]. The inverse scattering transform can be
generalized to thesln case [23], which should give a box-ball interpretation of the unrestricted rigged configurations
presented here.

Another motivation for the study of unrestricted configuration sums, fermionic formulas and associated rigged
configurations is their appearance in generalizations of the Bailey lemma [3, 39]. The Andrews–Bailey construction [1,
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4] relies on an iterative transformation property of theq-binomial coefficient, which is one of the simplest unrestricted
configuration sums, and can be used to prove infinite familiesof Rogers–Ramanujan type identities. The explicit
formulas provided in this paper might trigger further progress towards generalizations to higher-rank or other types of
the Andrews–Bailey construction.

The paper is organized as follows. In Section 2 we review basics about crystal bases and virtual crystals. In
Section 3 we define rigged configurations. The new crystal structure on rigged configurations is presented in section 4.
Section 5 is devoted to typeA, where we give an explicit characterization of the unrestricted rigged configurations, a
fermionic formula for unrestricted Kostka polynomials, and the affine crystal structure.

2. Crystals

2.1. Axiomatic definition. Kashiwara [16, 17] introduced acrystal as an edge-colored directed graph satisfying
a simple set of axioms. Letg be a symmetrizable Kac–Moody algebra with associated root,coroot and weight lattices
Q, Q∨, P . Let I be the index set of the Dynkin diagram and denote the simple roots, simple coroots and fundamental
weights byαi, hi andΛi (i ∈ I), respectively. There is a natural pairing〈· , ·〉 : Q∨ ⊗ P → Z defined by〈hi , Λj〉 =
δij .

The vertices of the crystal graph are elements of a setB. The edges of the crystal graph are colored by the index
setI. A P -weightedI-crystal satisfies the following properties:

(1) Fix ani ∈ I. If all edges are removed except those coloredi, the connected components are finite directed
linear paths called thei-strings of B. Givenb ∈ B, definefi(b) (resp. ei(b)) to be the vertex following
(resp. preceding)b in its i-string; if there is no such vertex, declarefi(b) (resp. ei(b)) to be undefined.
Defineϕi(b) (resp.εi(b)) to be the number of arrows fromb to the end (resp. beginning) of itsi-string.

(2) There is a functionwt : B → P such thatwt(fi(b)) = wt(b) − αi andϕi(b) − εi(b) = 〈hi , wt(b)〉.

2.2. Virtual crystals. There exist natural inclusions of affine Lie algebras as indicated in Figures 2 and 3. Even
though these embeddings do not carry over to the corresponding quantum algebras, it is expected that such embeddings
exist for crystals. Note that every affine algebra can be embedded into one of typeA(1), D(1) andE(1) which are the
untwisted affine algebras whose canonical simple Lie subalgebra is simply-laced. Crystal embeddings corresponding
to C

(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 have been studied in [29], whereas the crystal embeddingsB

(1)
n , A

(2)
2n−1 ↪→ D

(1)
n+1 have

been established in [30].
Consider an embedding of the affine algebra with Dynkin diagramX into one with diagramY . We consider a

graph automorphismσ of Y that fixes the 0 node. For typeA(1)
2n−1, σ(i) = 2n − i (mod 2n). For typeD

(1)
n+1 the

automorphism interchanges the nodesn andn + 1 and fixes all other nodes. There is an additional automorphism for
typeD

(1)
4 , namely, the cyclic permutation of the nodes 1,2 and 3. For typeE

(1)
6 the automorphism exchanges nodes 1

and 5 and nodes 2 and 4. In Figures 2 and 3 the automorphismσ is illustrated pictorially by arrows.
Let IX andIY be the vertex sets of the diagramsX andY respectively,IY /σ the set of orbits of the action ofσ

on IY , andι : IX → IY /σ a bijection which preserves edges and sends0 to 0.

EXAMPLE 2.1.
If X is one ofC(1)

n , A
(2)
2n , D

(2)
n+1 andY = A

(1)
2n−1, thenι(0) = 0, ι(i) = {i, 2n− i} for 1 ≤ i < n andι(n) = n.

If X = B
(1)
n or A

(2)
2n−1 andY = D

(1)
n+1, thenι(i) = i for i < n andι(n) = {n, n + 1}.

If X is D
(3)
4 or G

(1)
2 andY = D

(1)
4 , thenι(0) = 0, ι(1) = 2 andι(2) = {1, 3, 4}.

If X is E
(2)
6 or F

(1)
4 andY = E

(1)
6 , thenι(0) = 0, ι(1) = 1, ι(2) = 3, ι(3) = {2, 4} andι(4) = {1, 5}.

To describe the embedding we endow the bijectionι with additional data. For eachi ∈ IX we shall define a
multiplication factorγi that depends on the location ofi with respect to a distinguished arrow (multiple bond) inX .
Removing the arrow leaves two connected components. The factor γi is defined as follows:

(1) SupposeX has a unique arrow.
(a) Suppose the arrow points towards the component of0. Thenγi = 1 for all i ∈ IX .
(b) Suppose the arrow points away from the component of0. Thenγi is the order ofσ for i in the component

of 0 and is1 otherwise.
(2) SupposeX has two arrows. Thenγi = 1 for 1 ≤ i ≤ n − 1. For i ∈ {0, n}, γi = 2 (which is the order of

σ) if the arrow incident toi points away from it and is1 otherwise.
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FIGURE 2. EmbeddingsC(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 andB

(1)
n , A

(2)
2n−1 ↪→ D

(1)
n+1

EXAMPLE 2.2. The values ofγi are summarized in the following table:

X

A
(2)
2n−1

D
(3)
4 γi = 1 for all i

E
(2)
6

B
(1)
n γi = 2 for 0 ≤ i ≤ n − 1

γn = 1

G
(1)
2 γi = 3 for i = 0, 1

γ2 = 1

F
(1)
4 γi = 2 for i = 0, 1, 2

γi = 1 for i = 3, 4

C
(1)
n γi = 1 for 1 ≤ i < n

γ0 = γn = 2

A
(2)
2n γi = 1 for 0 ≤ i < n

γn = 2

D
(2)
n+1 γi = 1 for all i

The embeddingΨ : PX → PY of weight lattices is defined by

Ψ(ΛX
i ) = γi

∑

j∈ι(i)

ΛY
j .

Let V̂ be aY -crystal. We define the virtual crystal operatorsêi, f̂i for i ∈ IX as the composites ofY -crystal
operatorsfj, ej given by

(2.1) f̂i =
∏

j∈ι(i)

fγi

j and êi =
∏

j∈ι(i)

eγi

j .

These are designed to simulateX-crystal operatorsfi, ei for i ∈ IX . The typeY operators on the right hand side,
may be performed in any order, since distinct nodesj, j′ ∈ ι(i) are not adjacent inY and thus their corresponding
raising and lowering operators commute.

A virtual crystal is a pair(V, V̂ ) such that:

(1) V̂ is aY -crystal.
(2) V ⊂ V̂ is closed under̂ei, f̂i for i ∈ IX .
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FIGURE 3. EmbeddingsG(1)
2 , D

(3)
4 ↪→ D

(1)
4 andF

(1)
4 , E

(2)
6 ↪→ E

(1)
6

(3) There is anX-crystalB and anX-crystal isomorphismΨ : B → V such thatei, fi correspond tôei, f̂i.

Sometimes by abuse of notation,V will be referred to as a virtual crystal.
Let us define theY -crystal

V̂ r,s =
⊗

j∈ι(r)

Bj,γrs
Y

except forA(2)
2n andr = n in which caseV̂ n,s = Bn,s

Y ⊗ Bn,s
Y . Denote byu(V̂ r,s) the extremal vector of weight

Ψ(sΛr) in V̂ r,s.

DEFINITION 2.3. LetV r,s be the subset of̂V r,s generated fromu(V̂ r,s) using the virtual crystal operatorŝei and
f̂i for i ∈ IX .

CONJECTURE2.4. [30, Conjecture 3.7]There is an isomorphism ofX-crystalsΨ : Br,s
X

∼= V r,s such thatei and

fi correspond tôei and f̂i respectively, for alli ∈ IX .

In [29] Conjecture 2.4 is proved for embeddingsC
(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 ands = 1. In [30] Conjecture 2.4

is proved for all nonexceptional types whenr = 1.

3. Rigged configurations

In this section we define rigged configurations for all affine Kac–Moody algebras. TypeA(2)
2n requires some special

treatment. We need the variantγ̃a of the multiplication factorγa which is γ̃a = γa except forA(2)
2n anda = n when

γ̃n = 1. Also setα̃a = αa for all a ∈ I except for typeA(2)
2n in which casẽαa are the simple roots of typeBn.

Let L = (L
(a)
i )(a,i)∈H be an array of nonnegative integers whereH = {1, 2, . . . , n}×Z>0, called the multiplicity

array, wheren is the rank of the underlying algebra andΛ a weight. Then an(L, Λ)-configuration is an arraym =

(m
(a)
i )(a,i)∈H such that

(3.1)
∑

(a,i)∈H

i m
(a)
i α̃a =

∑

(a,i)∈H

i L
(a)
i Λa − Λ

except for typeA(2)
2n . In this case the right hand side should be replaced byι(r.h.s) whereι is aZ-linear map from the

weight lattice of typeCn to the weight lattice of typeBn such that

ι(ΛC
a ) =

{
ΛB

a for 1 ≤ a < n

2ΛB
a for a = n.
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The vacancy numbers of a given configuration are defined as

(3.2) p
(a)
i =

∑

(b,j)∈H

−
2(αa | αb)

γb(αa | αa)
min(γ̃ai, γ̃bj)m

(b)
j +

∑

j≥0

min(i, j)L
(a)
j .

An (L, Λ)-configuration is calledadmissibleif p
(a)
i ≥ 0 for all (a, i) ∈ H. The set of admissible(L, Λ)-configurations

is denoted byC(L, Λ).

A rigged configuration is a pair(m, J) wherem = (m
(a)
i )(a,i)∈H is an admissible(L, Λ)-configuration and

J = (J
(a)
i )(a,i)∈H is a matrix of partitions such that the partitionJ

(a)
i is contained in a rectangle of sizem(a)

i × p
(a)
i .

The set of rigged configurations for fixedL andΛ is denoted byRC(L, Λ).
Rigged configurations can also be represented as a sequence of partitions such that each part of each partition is

labeled or “rigged” by a number. Letν = (ν(1), ν(2), . . . , ν(n)) be the sequence of partitions obtained fromm =

(m
(a)
i ) as follows. Letm(a)

i (ν) be the number of parts inν(a) of sizei. Thenν is determined by requiring that

m
(a)
eγai(ν) = m

(a)
i and m

(a)
j (ν) = 0 for j 6∈ γ̃aZ.

The vacancy numberP (a)
i (ν) for each parti of ν(a) is then

P
(a)
i (ν) =

∑

b∈I

−
2(αa | αb)

γb(αa | αa)
Qi(ν

(b)) +
∑

j≥0

min(
i

γ̃a

, j)L
(a)
j ,

whereQi(ρ) is the number of boxes in the firsti columns of the partitionρ. The relation top(a)
i is

p
(a)
i = P

(a)
eγai(ν).

A tuple (i, x) wherei is a part ofν(a) andx is a part ofJ (a)
i is called a string of the rigged partition(ν, J)(a). Herei

is the length andx the label of the string. Thecolabelof a string(i, x) of (ν, J)(a) is P
(a)
i (ν) − x.

EXAMPLE 3.1. LetΛ = Λ1 + Λ3 of typeA
(2)
6 , L

(1)
1 = 7 and all otherL(a)

i = 0. Then

(ν, J) =

0 0
0 0
0 0
0 0
0 0

0 0
1 1
1 1

1 1
0 1

∈ RC(L, Λ),

where the first number behind each part is the label and the second one is the vacancy number.

There is also a statistic calledcochargedefined on rigged configurations. Sett∨a = |ι(a)|γa

γ0
. The cocharge is given

by

cc(ν) =
∑

(i,a),(b,j)∈H

t∨a
γb

·
(αa | αb)

(αa | αa)
min(γ̃ai, γ̃bj)m

(a)
i m

(b)
j

=
1

2

∑

(a,i)∈H

t∨a m
(a)
i

(∑

j≥0

min(i, j)L
(a)
j − p

(a)
i

)(3.3)

for a configurationν andcc(ν, J) = cc(ν)+ |J | where|J | =
∑

(a,i)∈H t∨a |J
(a)
i | is the sum of the sizes of all partitions

J
(a)
i weighted byt∨a .

As mentioned in the introduction, rigged configurations correspond to highest weight crystal elements. LetBr,s

be a Kirillov–Reshetikhin crystal for(r, s) ∈ H andB = Brk,sk ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 . Associate toB the
multiplicity arrayL = (L

(r)
s )(r,s)∈H whereL

(r)
s counts the number of tensor factorsBr,s in B. Denote by

P(B, Λ) = {b ∈ B | wt(b) = Λ, ei(b) undefined for alli ∈ I}

the set of all highest weight elements of weightΛ in B. There is a natural statistics defined onB, called energy
function or more precisely tail coenergy functionD : B → Z (see [35, Eq. (5.1)] for a precise definition).

The following theorem was proven in [25] for typeA
(1)
n−1 and generalB = Brk,sk ⊗ · · ·⊗Br1,s1 , in [32] for type

D
(1)
n andB = Brk,1 ⊗ · · · ⊗ Br1,1 and in [35] for typeD

(1)
n andB = B1,sk ⊗ · · · ⊗ B1,s1 .
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THEOREM 3.2. [25, 32, 35] For Λ a dominant weight,B as above andL the corresponding multiplicity array,
there is a bijectionΦ : P(B, Λ) → RC(L, Λ) which preserves the statistics, that is,D(b) = cc(Φ(b)) for all
b ∈ P(B, Λ).

Defining the generating functions

(3.4) X(B, Λ) =
∑

b∈P(B,Λ)

qD(b) and M(L, Λ) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J),

we get the immediate corollary of Theorem 3.2.

COROLLARY 3.3. [25, 32, 35] LetΛ, B andL as in Theorem 3.2. ThenX(B, Λ) = M(L, Λ).

4. Crystal structure on rigged configurations

The rigged configurations of section 3 correspond to highestweight crystal elements. In this section we introduce
the set of unrestricted rigged configurationsRC(L) by defining a crystal structure generated from highest weight
vectors given by elements inRC(L) =

⋃
Λ∈P+ RC(L, Λ) by the Kashiwara operatorsea, fa. For simply-laced

algebras the following definition was given in [33, Definition 3.3]. The multiplication factorsγa for the simply-laced
case are equal to1.

DEFINITION 4.1. LetL be a multiplicity array. Define the set ofunrestricted rigged configurationsRC(L) as
the set generated from the elements inRC(L) by the application of the operatorsfa, ea for 1 ≤ a ≤ n defined as
follows:

(1) Defineea(ν, J) by removingγa boxes from a string of lengthk in (ν, J)(a) leaving all colabels fixed and
increasing the new label by one. Herek is the length of the string with the smallest negative rigging of
smallest length. If no such string exists,ea(ν, J) is undefined.

(2) Definefa(ν, J) by addingγa boxes to a string of lengthk in (ν, J)(a) leaving all colabels fixed and de-
creasing the new label by one. Herek is the length of the string with the smallest nonpositive rigging of
largest length. If no such string exists, add a new string of length one and label -1. If the result is not a valid
unrestricted rigged configurationfa(ν, J) is undefined.

EXAMPLE 4.2. For(ν, J) of Example 3.1 we have

f1(ν, J) =

−1 -1
0 0
0 0
0 0
0 0

1 1
1 1
1 1

1 1
0 1

and

f3(ν, J) =

0 0
0 0
0 0
0 0
0 0

1 1
1 1
1 1

−1 -1
0 0

.

THEOREM 4.3. The operatorsea, fa of Definition 4.1 are the Kashiwara crystal operators.

For simply-laced algebras Theorem 4.3 was proven in [33] by using the local characterization of simply-laced
crystals given by Stembridge [37]. In the following we show that, assuming that the virtual crystal embeddings of
section 2.2 hold, Theorem 4.3 is also true for the nonsimply-laced algebras.

We definevirtual rigged configurations in analogy to virtual crystals. HereB = Brk,sk ⊗ · · · ⊗ Br1,s1 is a
tensor product of Kirillov-Reshetikhin crystals andL = (L

(a)
i ) the corresponding multiplicity array.

DEFINITION 4.4. LetX ↪→ Y be one of the algebra embeddings of section 2.2,Λ a weight andB a crystal for
type X . Let (V, V̂ ) be the virtualY -crystal corresponding toB. ThenRCv(L, Λ) is the set of elements(ν̂, Ĵ) ∈

RC(L̂, Ψ(Λ)) such that:

(1) For alli ∈ Z>0, m̂
(a)
i = m̂

(b)
i andĴ

(a)
i = Ĵ

(b)
i if a andb are in the sameσ-orbit in IY .

(2) For all i ∈ Z>0, a ∈ IX , andb ∈ ι(a) ⊂ IY , we havem̂(b)
j = 0 if j 6∈ γ̃aZ and the parts of̂J (b)

i are
multiples ofγa.
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THEOREM 4.5. [30, Theorem 4.2]There is a bijectionRC(L, Λ) → RCv(L, Λ) sending(ν, J) 7→ (ν̂, Ĵ) given
as follows. For alla ∈ IX , b ∈ ι(a) ⊂ IY , andi ∈ Z>0,

m̂
(b)
eγai

= m
(a)
i and Ĵ

(b)
eγai

= γaJ
(a)
i .

The cocharge changes bycc(ν̂, Ĵ) = γ0 cc(ν, J).

PROOF OFTHEOREM 4.3. Theorem 4.3 was proved in [33] for the simply-laced algebras. Hence, assuming that
the virtual crystal embeddings of section 2.2 hold, it suffices to check thatea, fa of Definition 4.1 satisfy (2.1). By
Theorem 4.5 this reduces to checking thatf̂a and êa preserve the conditions of Definition 4.4. We demonstrate this
for f̂a; the arguments for̂ea are analogous. Let(ν̂, Ĵ) ∈ RCv(L, Λ). Sincefa andfb of Definition 4.1 for simply-
laced algebras commute ifb ∈ ι(a), point (1) of Definition 4.4 follows forf̂a(ν̂, Ĵ). To prove that point (2) holds, it
suffices to check that ifγa > 1, then the various applications offa in f̂a select the same stringγa times. Note that for
simply-laced algebras the application offa changes the vacancy numberp̂

(b)
i by

(4.1) p̂
(b)
i 7→ p̂

(b)
i − (αa | αb)χ(i > k),

wherek is the length of the selected string. By the definition ofk (see Definition 4.1) and the fact that all riggings
in the a-th rigged partition have parityγa by point (2) of Definition 4.4, all riggings of strings of length i > k in
(ν̂, Ĵ)(a) are greater or equal to−s+γa, where−s is the smallest rigging appearing in(ν̂, Ĵ)(a). By (4.1) the riggings
of lengthi > k in (ν̂, Ĵ)(a) change by -2. Hence the smallestj such that−s + γa − 2j ≤ −s − j is j = γa. This
shows thatγa applications offa select the same string, which in turn proves thatf̂a(ν̂, Ĵ) satisfies the conditions of
Definition 4.4. �

THEOREM 4.6. With the same assumptions as in Theorem 3.2, the graph generated from(ν, J) ∈ RC(L, Λ) and
the crystal operatorsea, fa of Definition 4.1 is isomorphic to the crystal graphB(Λ) of highest weightΛ.

PROOF. For simply-laced types this was proven in [33, Theorem 3.7]. For nonsimply-laced types this follows
from Theorems 4.3 and 4.5. �

EXAMPLE 4.7. Consider the crystalB( ) of typeA2 in B = (B1,1)⊗3. Here is the crystal graph in the usual

labeling and the rigged configuration labeling:
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1
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THEOREM 4.8. The cochargecc as defined in(3.3) is constant on connected crystal components.

PROOF. For simply-laced types this was proved in [33, Theorem 3.9]. For nonsimply-laced types this follows
from Theorems 4.3 and 4.5. �

EXAMPLE 4.9. The cocharge of the connected component in Example 4.7 is 1.

ForB = Brk,sk ⊗ · · · ⊗ Br1,s1 andΛ ∈ P let

P(B, Λ) = {b ∈ B | wt(b) = Λ}.
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THEOREM 4.10. LetΛ ∈ P , B be as in Theorem 3.2 andL the corresponding multiplicity array. Then there is a
bijectionΦ : P(B, Λ) → RC(L, Λ) which preserves the statistics, that is,D(b) = cc(Φ(b)) for all b ∈ P(B, Λ).

PROOF. By Theorem 3.2 there is such a bijection for the maximal elementsb ∈ P(B). By Theorems 4.6 and 4.8
this extends to all ofP(B, Λ). �

Extending the definitions of (3.4) to

(4.2) X(B, Λ) =
∑

b∈P(B,Λ)

qD(b) and M(L, Λ) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J),

we obtain the corollary:

COROLLARY 4.11. With all hypotheses of Theorem 4.10, we haveX(B, Λ) = M(L, Λ).

5. Unrestricted rigged configurations for typeA
(1)
n−1

In this section we give an explicit description of the elements inRC(L, λ) for typeA
(1)
n−1. Generally speaking, the

elements are rigged configurations where the labels lie between the vacancy number and certain lower bounds defined
explicitly. This characterization will be used in section 5.2 to write down an explicit fermionic formulaM(L, λ) for
the unrestricted configuration sumX(B, λ). Section 5.3 is devoted to the affine crystal structure ofRC(L, λ).

5.1. Characterization of unrestricted rigged configurations. Let L = (L
(a)
i )(a,i)∈H be a multiplicity array

andλ = (λ1, . . . , λn) be then-tuple of nonnegative integers. The set of(L, λ)-configurationsC(L, λ) is the set of all
sequences of partitionsν = (ν(a))a∈I such that (3.1) holds. As discussed in Section 3, in the usualsetting a rigged
configuration(ν, J) ∈ RC(L, λ) consists of a configurationν ∈ C(L, λ) together with a double sequence of partitions

J = {J
(a)
i | (a, i) ∈ H} such that the partitionJ (a)

i is contained in am(a)
i × p

(a)
i rectangle. In particular this requires

thatp(a)
i ≥ 0. The unrestricted rigged configurations(ν, J) ∈ RC(L, λ) can contain labels that are negative, that is,

the lower bound on the parts inJ (a)
i can be less than zero.

To define the lower bounds we need the following notation. Letλ′ = (c1, c2, . . . , cn−1)
t, whereck = λk+1 +

λk+2 + · · · + λn is the length of thek-th column ofλ′, and letA(λ′) be the set of tableaux of shapeλ′ such that
the entries are strictly decreasing along columns, and the letters in columnk are from the set{1, 2, . . . , ck−1} with
c0 = c1.

EXAMPLE 5.1. Forn = 4 andλ = (0, 1, 1, 1), the setA(λ′) consists of the following tableaux

3 3 2
2 2
1

3 3 2
2 1
1

3 2 2
2 1
1

3 3 1
2 2
1

3 3 1
2 1
1

3 2 1
2 1
1

.

REMARK 5.2. Denote bytj,k the entry oft ∈ A(λ′) in row j and columnk. Note thatck − j + 1 ≤ tj,k ≤
ck−1 − j + 1 since the entries in columnk are strictly decreasing and lie in the set{1, 2, . . . , ck−1}. This implies
tj,k ≤ ck−1 − j + 1 ≤ tj,k−1, so that the rows oft are weakly decreasing.

Givent ∈ A(λ′), we define thelower bound as

M
(a)
i (t) = −

ca∑

j=1

χ(i ≥ tj,a) +

ca+1∑

j=1

χ(i ≥ tj,a+1),

where recall thatχ(S) = 1 if the the statementS is true andχ(S) = 0 otherwise.
Let M, p, m ∈ Z such thatm ≥ 0. A (M, p, m)-quasipartitionµ is a tuple of integersµ = (µ1, µ2, . . . , µm) such

thatM ≤ µm ≤ µm−1 ≤ · · · ≤ µ1 ≤ p. Eachµi is called a part ofµ. Note that forM = 0 this would be a partition
with at mostm parts each not exceedingp.

The following theorem shows that the set of unrestricted rigged configurations can be characterized via the lower
bounds.

THEOREM5.3. [33, Theorem 4.6]Let(ν, J) ∈ RC(L, λ). Thenν ∈ C(L, λ) andJ
(a)
i is a(M

(a)
i (t), p

(a)
i , m

(a)
i )-

quasipartition for somet ∈ A(λ′). Conversely, every(ν, J) such thatν ∈ C(L, λ) andJ
(a)
i is a(M

(a)
i (t), p

(a)
i , m

(a)
i )-

quasipartition for somet ∈ A(λ′) is in RC(L, λ).
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EXAMPLE 5.4. Letn = 4, λ = (2, 2, 1, 1), L(1)
1 = 6 and all otherL(a)

i = 0. Then

(ν, J) = −2 0
0 3

0 0 −1 -1

is an unrestricted rigged configuration inRC(L, λ), where we have written the parts ofJ
(a)
i next to the parts of length

i in partitionν(a). The second number is the corresponding vacancy numberp
(a)
i . This shows that the labels are indeed

all weakly below the vacancy numbers. For

4 4 1
3 3
2
1

∈ A(λ′)

we get the lower bounds

−2
−1 0 −1,

which are less or equal to the riggings in(ν, J).

For typeA1 we haveλ = (λ1, λ2) so thatA = {t} contains just the single one-column tableau of heightλ2

filled with the numbers1, 2, . . . , λ2. In this caseMi(t) = −
∑λ2

j=1 χ(i ≥ tj,1) = −i, which agrees with the findings
of [38].

The characterization of unrestricted rigged configurations is similar to the characterization of level-restricted
rigged configurations [34, Definition 5.5]. Whereas the unrestricted rigged configurations are characterized in terms
of lower bounds, for level-restricted rigged configurations the vacancy number has to be modified according to tableaux
in a certain set.

5.2. Fermionic formula. With the explicit characterization of the unrestricted rigged configurations of Sec-
tion 5.1, it is possible to derive an explicit formula for thepolynomialsM(L, λ) of (4.2).

Let SA(λ′) be the set of all nonempty subsets ofA(λ′) and set

M
(a)
i (S) = max{M

(a)
i (t) | t ∈ S} for S ∈ SA(λ′).

By inclusion-exclusion the set of all allowed riggings for agivenν ∈ C(L, λ) is
⋃

S∈SA(λ′)

(−1)|S|+1{J | J
(a)
i is a(M

(a)
i (S), p

(a)
i , m

(a)
i )-quasipartition}.

Theq-binomial coefficient
[
m+p

m

]
, defined as

[
m + p

m

]
=

(q)m+p

(q)m(q)p

,

where(q)n = (1 − q)(1 − q2) · · · (1 − qn), is the generating function of partitions with at mostm parts each not
exceedingp. Hence the polynomialM(L, λ) may be rewritten as

(5.1) M(L, λ) =
∑

S∈SA(λ′)

(−1)|S|+1
∑

ν∈C(L,λ)

qcc(ν)+
P

(a,i)∈H
m

(a)
i

M
(a)
i

(S)
∏

(a,i)∈H

[
m

(a)
i + p

(a)
i − M

(a)
i (S)

m
(a)
i

]

calledfermionic formula . By Corollary 4.11 this is also a formula for the unrestricted configuration sumX(B, λ).
This formula is different from the fermionic formulas of [13, 18] which exist in the special case whenL is the multi-
plicity array ofB = B1,sk ⊗ · · · ⊗ B1,s1 or B = Brk,1 ⊗ · · · ⊗ Br1,1.

5.3. The Kashiwara operatorse0 and f0. The Kirillov–Reshetikhin crystalsBr,s are affine crystals and admit
the Kashiwara operatorse0 andf0. It was shown in [36] that for typeA

(1)
n−1 they can be defined in terms of the

promotion operator pr as

e0 = pr−1 ◦ e1 ◦ pr and f0 = pr−1 ◦ f1 ◦ pr.
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The promotion operator is a bijectionpr : B → B such that the following diagram commutes for alla ∈ I

(5.2)

B
pr

−−−−→ B

fa

y
yfa+1

B −−−−→
pr

B

and such that for everyb ∈ B the weight is rotated

(5.3) 〈ha+1 , wt(pr(b))〉 = 〈ha , wt(b)〉.

Here subscripts are taken modulon.
We are now going to define the promotion operator on unrestricted rigged configurations.

DEFINITION 5.5. Let(ν, J) ∈ RC(L, λ). Thenpr(ν, J) is obtained as follows:

(1) Set(ν′, J ′) = fλ1
1 fλ2

2 · · · fλn
n (ν, J) wherefn acts on(ν, J)(n) = ∅.

(2) Apply the following algorithmρ to (ν′, J ′) λn times: Find the smallest singular string in(ν′, J ′)(n). Let
the length bè (n). Repeatedly find the smallest singular string in(ν′, J ′)(k) of length`(k) ≥ `(k+1) for all
1 ≤ k < n. Shorten the selected strings by one and make them singular again.

EXAMPLE 5.6. LetB = B2,2, L the corresponding multiplicity array andλ = (1, 0, 1, 2). Then

(ν, J) = 0
−1

−1
−1 ∈ RC(L, λ)

corresponds to the tableaub = 1 3
4 4

∈ P(B, λ). After step (1) of Definition 5.5 we have

(ν′, J ′) = −1 1
0

−1
−1

−1.

Then applying step (2) yields

pr(ν, J) = ∅ 0 −1

which corresponds to the tableaupr(b) = 1 1
2 4

.

LEMMA 5.7. [33, Lemma 4.10]The mappr of Definition 5.5 is well-defined and satisfies(5.2)for 1 ≤ a ≤ n− 2
and (5.3)for 0 ≤ a ≤ n − 1.

Lemma 7 of [36] states that for a single Kirillov–Reshetikhin crystalB = Br,s the promotion operatorpr is
uniquely determined by (5.2) for1 ≤ a ≤ n − 2 and (5.3) for0 ≤ a ≤ n − 1. Hence by Lemma 5.7pr onRC(L) is
indeed the correct promotion operator whenL is the multiplicity array ofB = Br,s.

THEOREM 5.8. [33, Theorem 4.11]LetL be the multiplicity array ofB = Br,s. Thenpr : RC(L) → RC(L) of
Definition 5.5 is the promotion operator on rigged configurations.

CONJECTURE5.9. [33, Conjecture 4.12]Theorem 5.8 is true for anyB = Brk,sk ⊗ · · · ⊗ Br1,s1 .

Unfortunately, the characterization [36, Lemma 7] does not suffice to definepr uniquely on tensor products
B = Brk,sk ⊗ · · · ⊗ Br1,s1 . In [8] a bijectionΦ : P(B, λ) → RC(L, λ) is defined via a direct algorithm. It
is expected that Conjecture 5.9 can be proven by showing thatpr andΦ commute. Alternatively, an independent
characterization ofpr on tensor factors would give a new, more conceptual way of defining the bijectionΦ between
paths and (unrestricted) rigged configurations. A proof that the crystal operatorsfa and ea commute withΦ for
a = 1, 2, . . . , n − 1 is given in [8].
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Nonnegativity properties of the dual canonical basis

Mark Skandera

Abstract. Using Du’s characterization of the dual canonical basis of the coordinate ring O(GLn(C)), we
show that all basis elements may be expressed in terms of immanants. We then give a new factorization
of permutations avoiding the patterns 3412 and 4231, which in turn yields a factorization theorem for the
corresponding Kazhdan-Lusztig basis of the Hecke algebra Hn(q). Using this factorization, we show that for
every totally nonnegative immanant Immf (x) and its expansion

P

dwImmw(x) with respect to the basis of
Kazhdan-Lusztig immanants, the coefficient dw must be nonnegative when w avoids the patterns 3412 and
4231.

Résumé. En utilissant les résultats de Du, nous démontrons que chacque élement du base dual canonique de
O(GLn(C)), se peut réalise en terme d’immanants. Nous factorisent les permutations qui evitent le 3412 et
le 4231, et aussi les élements du base de Kazhdan-Lusztig pour l’algébre de Hecke Hn(q). En utilissant cette
factorisation, nous montrons que pour chacque immanant totalement nonnegatif Immf (x) et l’expression
P

dwImmw(x) en terme de base dual canonique, le coefficient dw est nonnegatif quand w evite le 3412 et
le 4231.

1. Introduction

Searching for solutions of the quantum Yang-Baxter equation, Drinfeld [Dri85] and Jimbo [Jim85]
introduced a quantization Uq(slnC) of the universal enveloping algebra U(slnC). An explosion of mathemat-
ical research soon led to a quantization Oq(SLnC) of the coordinate ring O(SLnC), related by Hopf algebra
duality to Uq(slnC), and to a development of the representation theory of these algebras now known as
quantum groups. In particular, Kashiwara [Kas91] and Lusztig [Lus90] discovered a canonical (or crystal)
basis of Uq(slnC) which has many interesting representation theoretic properties. The corresponding dual
basis of Oq(SLnC) is known as the dual canonical basis and is perhaps best understood as the projection
of another dual canonical basis of the quantum polynomial ring Cq[x1,1, . . . , xn,n]. (See [Du92].) An ele-
mentary description of the canonical and dual canonical bases has been somewhat elusive, especially in the
nonquantum (q = 1) setting.

In [Lus94] Lusztig proved that when we specialize q = 1, the elements of the dual canonical basis of
C[x1,1, . . . , xn,n] are totally nonnegative (TNN) polynomials in the following sense. We define a matrix to be
totally nonnegative (TNN) if each of its minors is nonnegative. (See, e.g. [FZ00].) We define a polynomial
p(x) ∈ C[x1,1, . . . , xn,n] to be totally nonnegative (TNN) if for each n × n TNN matrix A = (ai,j), we have

p(A) =
def

p(a1,1, . . . , an,n) ≥ 0.

While it is not true that a polynomial is TNN only if it belongs to the dual canonical cone, we will show
that certain coordinates of the polynomial with respect to the dual canonical cone must be nonnegative. Our
criterion involves avoidance of the patterns 3412 and 4231 in permutations and thus links total nonnegativity
to smoothness in Schubert varieties.

In Section 2 we will review Du’s formulation of the dual canonical basis and show that these elements
can be expressed in terms of functions called immanants. In Section 3 we will state a factorization theorem

2000 Mathematics Subject Classification. Primary 81R50; Secondary 20C08.
Key words and phrases. dual canonical basis, Kazhdan-Lusztig basis, total nonnegativity.
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for 3412-avoiding, 4231-avoiding permutations and for the corresponding Kazhdan-Lusztig basis elements.
In Section 4 we will use the factorization and immanant results to prove that for each TNN homogeneous
element p(x) of the coordinate ring O(SLn(C)), certain coordinates with respect to the dual canonical basis
must be nonnegative.

2. Kazhdan-Lusztig immanants and the dual canonical basis

The canonical bases of O(SLn(C)) and O(GLn(C)) may be obtained easily from a basis of the polynomial
ring C[x1,1, . . . , xn,n]. We will call this basis too the dual canonical basis.

Before explicitly describing the dual canonical basis, let us look at a multigrading of C[x1,1, . . . , xn,n] in
terms of multisets. The polynomial ring has a traditional grading by degree,

C[x] =
⊕

r≥0

Ar,

where Ar is the complex span of degree-r monomials. We may refine this grading by defining a multigrading
of Ar indexed by pairs of r-element multisets. Let M(n, r) be the set of r-element multisets of n. Then we
have

Ar =
⊕

M,M ′∈M(n,r)

Ar(M, M ′),

where we define a polynomial to be homogeneous of multidegree (M, M ′) if in each of its monomials, the
multiset of row indices is M and the multiset of column indices is M ′. For example, the polynomial
x1,1x

2
2,1x3,3 − x1,1x2,1x2,3x3,1 belongs to the component A3(1223, 1113) of C[x1,1, . . . , x3,3].

Closely related to this multigrading are generalized submatrices of x. Given two r-element multisets
M = m1 · · ·mr, M ′ = m′

1 · · ·m
′
r of [n] (written as weakly increasing words), define the (M, M ′) generalized

submatrix of x to be the matrix

xM,M ′ =




xm1,m′

1
xm1,m′

2
· · · xm1,m′

r

xm2,m′

1
xm2,m′

2
· · · xm2,m′

r

...
...

...
xmr,m′

1
xmr,m′

2
· · · xmr ,m′

r


 .

Letting y = xM,M ′ , we see that for every permutation w in Sr, the monomial

(2.1) y1,w(1) · · · yr,w(r) = xm1,m′

w(1)
· · ·xmn,m′

w(r)

belongs to Ar(M, M ′). We obtain the polynomial in the preceding paragraph from the matrix y = x1223,1113

as y1,1y2,2y3,3y4,4 − y1,1y2,2y3,4y4,3.
The multigrading is also closely related to parabolic subgroups of Sr as follows. Associate to M a subset

ι(M) of the generators {s1, . . . , sr−1} of Sr by

ι(M) = {sj |mj = mj+1}.

Let I = ι(M) and J = ι(M ′) be the subsets of generators of Sr corresponding to multisets M , M ′. Letting
the parabolic subgroups WI and WJ act by left and right multiplication on all r × r matrices (restricting
the defining representation of Sr to the parabolic subgroups), we see that xM,M ′ is fixed by this action.

The dual canonical basis of C[x1,1, . . . , xn,n] consists of homogeneous elements with respect to the multi-

grading above. Du gives a formula for the elements of this basis in terms of the following polynomials Q̃u,w(q)
which are alternating sums of (inverse) Kazhdan-Lusztig polynomials,

Q̃u,w(q) =
∑

v∈WIwWJ

u≤v≤w

(−1)`(w)−`(v)Pw0v,w0u(q),

where u and w are maximal representatives of cosets in WI\W/WJ , and ≤ is the Bruhat order on Sr. These
are generalizations of Deodhar’s q-parabolic Kazhdan-Lusztig polynomials [Deo91], for when I = ∅ we have

Q̃u,w(q) = P̃ J
w0ww′

0,w0uw′

0
(q),

where w0 and w′
0 are the longest elements of W and WJ , respectively.
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We will express the dual canonical basis in terms of Kazhdan-Lusztig immanants {Immu(x) |u ∈ Sn}
introduced in [RS05a],

Immu(x) =
∑

w≥u

(−1)`(w)−`(u)Pw0w,w0u(1)x1,w(1) · · ·xn,w(n),

and in terms of generalized submatrices as defined above.

Theorem 2.1. Let M , M ′ be two r-element multisets of [n]. The nonzero polynomials in the set
{Immv(xM,M ′ ) | v ∈ Sr} are the dual canonical basis of Ar(M, M ′). In particular, the permutations v corre-
sponding to nonzero polynomials are maximal length representatives of double cosets in Wι(M)\W/Wι(M ′).

Proof. Let I = ι(M), J = ι(M ′). By [Du92, Lem. 2.2], the canonical basis elements of Ar(M, M ′) are
in bijective correspondence with cosets in Wι(M)\W/Wι(M ′), and each has the form

Zu =
∑

z≥u

(−1)`(z′)−`(u′)Q̃u′,z′(1)x
α(z,1,1)
1,1 · · ·x

α(z,i,j)
i,j · · ·xα(z,n,n)

n,n ,

where u, z are minimal representatives of double cosets in WI\W/WJ , u′, z′ are the respective maximal coset
representatives, and

α(z, i, j) = |{z(k) |mk = i} ∩ {k |m′
k = j}|.

It is straightforward to show that u ≤ z if and only if u′ ≤ z′ for any pairs (u, z) and (u′, z′) of minimal coset
representatives and corresponding maximal coset representatives. (See [HS05] and references listed there.)
We may therefore rewrite Du’s description by summing over only maximal coset representatives,

Zu =
∑

z′≥u′

(−1)`(z′)−`(u′)Q̃u′,z′(1)x
α(z,1,1)
1,1 x

α(z,i,j)
1,2 · · ·xα(z,n,n)

n,n .

Let y = xM,M ′ . Then for any function f : Sr → C we have

(2.2) Immf (y) =
∑

w∈Sr

f(w)y1,w(1) · · · yn,w(n).

Since each permutation u in the double coset WIwWJ satisfies

y1,u(1) · · · yn,u(n) = y1,w(1) · · · yn,w(n),

we may sum over these double cosets,

Immf (y) =
∑

D∈WI\W/WJ

(
∑

v∈D

f(v)

)
y1,w(1) · · · yn,w(n),

where w is any representative of the double coset D. Note that yi,w(i) = xj,` if mi = j and m′
w(i) = `. Thus

the exponent of xj,` in y1,w(1) · · · yn,w(n) is equal to the number of indices i which satisfy

mi = j, m′
w(i) = `.

Since this is just α(w, i, j), we have

y1,w(1) · · · yn,w(n) = x
α(w,1,1)
1,1 · · ·xα(w,n,n)

n,n .

Now consider the function fu : v 7→ (−1)`(v)−`(u)Pw0v,w0u(1) and the corresponding immanant of y,
Immu(y) = Immfu

(y). If u is not a maximal representative of a double coset in WI\W/WJ , then by
[Cur85, Thm. 1.2] we have su > u for some transposition s in I, or we have us > u for some transposition
s in J . By [RS05a, Cor. 6.4] either of these conditions implies that Immu(y) = 0. Suppose therefore that
u′ is a maximal coset representative. Then by (2.2) we have

Immu′(y) =
∑

D∈WI\W/WJ



∑

v∈D
v≥u′

(−1)`(v)−`(u′)Pw0v,w0u′(1)


x

α(w′,1,1)
1,1 · · ·xα(w′,n,n)

n,n ,
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where w′ is the maximal representative of D, and we include the inequality v ≥ u′ because the number
Pw0v,w0u′(1) is zero otherwise. For each coset D and its maximal representative w′, the inner sum is equal
to

(−1)`(w′)−`(u′)
∑

v∈WIw′WJ

u′≤v≤w′

(−1)`(w′)−`(v)Pw0v,w0u′(1) = (−1)`(w′)−`(u′)Q̃u′,w′(1),

and we have

Immu′(y) =
∑

D∈WI\W/WJ

(−1)`(w′)−`(u′)Q̃u′,w′(1)x
α(w,1,1)
1,1 · · ·xα(w,n,n)

n,n .

Note that for any double coset whose maximal representative w′ satisfies u′ ≤ w′, we have Q̃u′,w′(1) = 0
and the contribution to the sum is zero. The sum therefore may be taken over double cosets D whose
maximal element w′ satisfies w′ ≥ u′, and we have

Zu = Immu′(xM,M ′ ),

as desired. �

Quantizing the Kazhdan-Lusztig immanants by

Immv(x; q) =
∑

w≥v

(−q−1/2)`(w)−`(v)Q̃v,w(q)x1,w(1) · · ·xn,w(n),

one constructs the quantum dual canonical basis of Ar(M, M ′) by taking all of the polynomials (q1/2)`(wJ
0 )−`(wI

0)Immv(xM,M ′ ; q),
where I = ι(M), J = ι(M ′), v is a maximal length coset representative in WI\W/WJ , and wI

0 , wJ
0 are the

maximal length elements of WI , WJ . Details will appear in [Ska05]. (See [Bru05], [Du92] for other
descriptions of this basis.)

Letting B be the dual canonical basis of C[x1,1, . . . , xn,n], we have the following formulas for the dual
canonical bases of the coordinate rings of GLn(C) and SLn(C). The dual canonical basis of

O(GL(n, C)) ∼= C[x1,1, . . . , xn,n, t]/(det(x)t − 1)

is obtained by dividing elements of B by powers of the determinant,

∪r≥0 ∪(M,M ′)∈M(n,r) {Immw(x) det(x)−k | k ≥ 0; w maximal in WιM\Sr/Wι(M ′)}.

The dual canonical basis of

O(SL(n, C)) ∼= C[x1,1, . . . , xn,n]/(det(x) − 1)

is obtained by projecting C[x1,1, . . . , xn,n] or O(GL(n, C)) onto O(SL(n, C)).

3. A Factorization Theorem

While each nonnegative linear combination of dual canonical basis elements is a totally nonnegative
polynomial, the converse of this statement is false. Intimately related to this fact is the vector space duality
between the component An([n], [n]) of the polynomial ring C[x1,1, . . . , xn,n] and and the group algebra C[Sn],
defined by

〈x1,u(1) · · ·xn,u(n), Tv〉 = δu,v.

In particular, Kazhdan and Lusztig [KL79] defined a basis {C′
w(q) |w ∈ Sn} of the Hecke algebra Hn(q) by

C′
v(q) = q−1/2

∑

u≤v

Pu,v(q)Tu,

where {Pu,v(q) |u, v ∈ Sn} are certain polynomials for which no elementary formula is known. Dual to this
basis is the basis of Kazhdan-Lusztig immanants,

〈Immu(x), C′
v(1)〉 = δu,v.

Since no elementary formula is known for the Kazhdan-Lusztig polynomials, it is not surprising that we
also have no elementary formula for the Kazhdan-Lusztig basis of the Hecke algebra or for the Kazhdan-
Lusztig immanants. Nevertheless, we can deduce certain properties of the Kazhdan-Lusztig immanants
by studying Kazhdan-Lusztig basis elements which have a rather simple form and others which factor as
products of these. The basis elements we shall consider correspond to permutations whose one-line notations

309



DUAL CANONICAL BASIS

avoid certain patterns. The factorization of these basis elements closely resembles the factorization of the
corresponding permutations.

Given a word u = u1 · · ·uk on a totally ordered alphabet and a permutation v in Sk with one-line
notation v1 · · · vk, we will say that u matches the pattern v if the letters of u appear in the same relative
order as those of v. We will also say that u1 matches the v1, u2 matches the v2, etc. For example, a word
u1u2u3 with u2 < u3 < u1 matches the pattern 312, with u1 matching the 3, u2 matching the 1, and u3

matching the 2.
We will say that a permutation w in Sn avoids the pattern v if no subword wi1 · · ·wik

with i1 < · · · < ik
matches the pattern v. We will also call such a permutation v-avoiding. In particular, we will be interested
in permutations which avoid the patterns 3412 and 4231. Note that a permutation w avoids these patterns
if and only if w−1 does, since the patterns are involutions. In particular, corresponding to each adjacent
transposition si is the basis element C′

si
(q) = q−1/2(Te + Tsi

), and we have the following factorization result
of Billey and Warrington [BW01].

Theorem 3.1. Let si1 · · · si`
be a reduced expression for w. Then we have

C′
w(q) = C′

si1
(q) · · ·C′

si`
(q)

if and only if the one-line notation for w avoids the patterns 321, 56781234, 46781235, 56718234, 46718235.

Other permutations w for which C′
w(q) has a particularly nice form are known as reversals. Write

s[i,j] for the permutation which fixes indices 1, . . . , i − 1, j + 1, . . . , n and reverses the remaining indices.
Corresponding to reversals are the Kazhdan-Lusztig basis elements

C′
s[i,j]

(q) = (q−1/2)(
j−i+1

2 )
∑

v≤s[i,j]

Tv

We will show in Theorem 3.3 that permutations which avoid the patterns 3412 and 4231 factor as products
of these basis elements.

To begin, we define the map ⊕ : Sn × Sm → Sn+m, as is somewhat customary, by

si1 · · · si`
⊕ sj1 · · · sjk

= si1 · · · si`
sj1+n · · · sjk+n.

Observation 3.2. If u and v are 3412-avoiding, 4231-avoiding permutations in Sm and Sn, then u⊕ v
is a 3412-avoiding, 4231-avoiding permutation in Sm+n.

We will say that a permutation w has an irreducible zig-zag factorization if there exist a positive integer
r, a sequence of nonnegative integers

j1, . . . , jr, k1, . . . , kr,

all odd except possibly for j1 and kr which may also be zero, and a sequence of intervals

(3.1) a0, b1,1, . . . , b1,j1 , a1, c1,1, . . . , c1,k1 , d1,

. . . , bi,1, . . . , bi,ji
, ai, ci,1, . . . , ci,ki

, di, . . . ,

br,1, . . . , br,jr
, ar, cr,1, . . . , cr,kr

, dr,

all nonempty except possibly for a0, ar, such that w is equal to the product of the reversals on these intervals
in the order listed,

w = sa0 · · · sdr
,

and the endpoints of the intervals, which we denote by

ai = [λ(ai), ρ(ai)], bi,j = [λ(bi,j), ρ(bi,j)], ci,k = [λ(ci,k), ρ(ci,k)], di = [λ(di), ρ(di)],

satisfy the following conditions.

(1) j1 = 0 if and only if a0 = s∅.
(2) kr = 0 if and only if ar = s∅.
(3) For each i satisfying ai−1 6= s∅ we have

λ(ai−1) < λ(bi,1)= λ(bi,2) < λ(bi,3)= · · · < λ(bi,ji
)= λ(di),

ρ(ai−1) = ρ(bi,1)< ρ(bi,2) = ρ(bi,3)< · · · = ρ(bi,ji
)< ρ(di).

(4) For each i satisfying ai 6= s∅ we have

310



M. Skandera

(5) and

λ(ai) = λ(ci,1)> λ(ci,2) = λ(ci,3)> · · · = λ(ci,ki
)> λ(di),

a′
i > ρ(ci,1)= ρ(ci,2) > ρ(ci,3)= · · · > ρ(ci,ki

)= ρ(di),

(6) For i = 1, . . . , r we have
ρ(bi,ji

) < λ(ci,ki
).

(7) For i = 1, . . . , r − 1 we have
ρ(ci,1) < ρ(bi+1,1).

Note that the intervals

{ai | 0 ≤ i ≤ r} ∪ {bi,j | 1 ≤ i ≤ r, j even } ∪ {ci,j | 1 ≤ i ≤ r, j even } ∪ {di | 1 ≤ i ≤ r}

have length at least two when they are nonempty.
Note that the lexicographic order on the set (3.1) of intervals (padded with zeros at the end) is

(3.2) a0, b1,1, . . . , b1,j1 , d1, c1,k1 , . . . , c1,1, a1,

. . . , bi,1, . . . , bi,ji
, di, ci,ki

, . . . , ci,k1 , ai, . . . ,

br,1, . . . , br,jr
, dr, cr,1, . . . , cr,kr

, ar,

If in this factorization we have r = 1 and k1 = 0, then the only intervals to appear are

a0, b1,1, . . . , b1,j1 , d1,

(with a0, b1,1, . . . , b1,j1 not appearing if j1 = 0) and we will say that the irreducible zig-zag factorization
is lexicographically increasing. Given a reversal factorization W1 · · ·Wp in which each Wi is an irreducible
zigzag factorization and the intervals don’t overlap, we will call this a zig-zag factorization. Note that each
permutation u possessing an irreducible zig-zag factorization decomposes as

u = e ⊕ · · · ⊕ e ⊕ v ⊕ e ⊕ · · · ⊕ e,

where e is the identity element of S1, and v possesses the same irreducible zig-zag factorization as u.

Proposition 3.1. A permutation avoids the patterns 3412, 4231 if and only if it has a zig-zag factor-
ization.

Proof. Omitted. �

Two examples of 3412-avoiding, 4231-avoiding permutations and zig-zag factorizations are

654213 = s[1,5]s[3,5]s[3,6], 621354 = s[1,3]s[3,4]s[4,6].

Proposition 3.2. Let sI1 · · · sIp
be a zig-zag factorization of w ∈ Sn, let (t1, . . . , tp) be a subexpression

of this factorization, and define the permutation u = t1 · · · tp. Then u ≤ w in the Bruhat order.

Proof. Omitted. �

The above factorization results for permutations translate into the following factorization result for
Kazhdan-Lusztig basis elements. Given a sequence of intervals I = (I1, . . . , Ir), define the Hn(q) algebra
element

Φ(I1, . . . , Ir ; q) = C′
sI1

(q) · · ·C′
sIr

(q).

Theorem 3.3. Let w avoid the patterns 3412 and 4231 and have zig-zag factoriztion (3.1), define the
sequence of intervals

(3.3) I = (a0, b1,2, b1,4, . . . , b1,j1−1, a1, c1,2, c1,4, . . . , c1,k1−1, d1,

. . . , bi,2, . . . , bi,ji−1, ai, ci,2, . . . , ci,ki−1, di, . . . ,

br,2, . . . , br,jr−1, ar, cr,2, . . . , cr,kr−1, dr)

and define the number

γ =
r∏

i=1

∏

j=1
j odd

|bi,j |!
∏

k=1
k odd

|ci,k|!.
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Then the Kazhdan-Lusztig basis element C′
w(1) factors as

C′
w(1) = 1

γ Φ(I; 1),

and the Kazhdan-Lusztig basis element C′
w(q) factors as

C′
w(q) = q−`(w)/2C′

w(1),

or equivalently

C′
w(q) = 1

γ qδ/2Φ(I; q),

where

δ =

r∑

i=0

(
|ai|

2

)
+

r∑

i=0

(
|di|

2

)
+
∑

j=1
j even

(
|bi,j |

2

)
+
∑

k=1
k even

(
|ci,k|

2

)
− `(w).

Proof. Omitted. �

Corresponding to previoius examples of 3412−avoiding,4231−avoiding permutations and zig-zag fac-
torizations are the factorizations of Kazhdan-Lusztig basis elements,

654213 = s[1,5]s[3,5]s[3,6], 621354 = s[1,3]s[3,4]s[4,6],

C′
654213(q) = C′

s[1,5]
(q)

q3/2

3q!
C′

s[3,6](q), C′
621354(q) = C′

s[1,3]
(q)C′

s[3,4](q)C
′
s[4,6](q).

4. The dual cone of total nonnegativity

In [RS05a, Sec. 7], we have cones of TNN and SNN elements of spanC{x1,w(1) · · ·xn,w(n) |w ∈ Sn} were
defined. Virtually all of the known TNN and SNN polynomials belong to these cones. (See [RS05a, Sec. 1].)
Generalizing these definitions a bit, we will define the following cones of functions on n×n matrices. Define
the dual canonical cone, the dual cone of total nonnegativity, and the dual cone of Schur nonnegativity,
which we will denote by ČB , ČTNN, and ČSNN, respectively, to be the cones whose extreme rays are ho-
mogeneous elements of C[x1,1, . . . , xn,n] belonging to B, having the TNN property, and having the SNN
property, respectively. Our use of the term dual refers to the relationship of this point of view to that of
Stembridge [Ste92], who define the cone of total nonnegativity to be the smallest cone in C[Sn] containing
all of elements of the form

∑
w∈Sn

a1,w(1) · · · an,w(n), where A = (ai,j) is a totally nonnegative matrix.
Using this terminology, we have the following.

Corollary 4.1. The dual canonical cone is contained in the intersection of the dual cones of total
nonnegativity and Schur nonnegativity.

Proof. The main results of [RS05a] and [RS05b] show that Kazhdan-Lusztig immanants of general-
ized submatrices of x = (xi,j)

n
i,j=1 are TNN and SNN. Since the cone generated by these functions is ČB ,

we have the desired result. �

The author and A. Zelevinsky have verified that the containment of ČB in ČTNN is strict. In particular,
the homogeneous element

(4.1) Imm3214(x) + Imm1432(x) − Imm3412(x)

belongs to ČTNN r ČB . Moreover we have used cluster algebras and Maple to show that this element is
equal to a subtraction-free rational expression in matrix minors. Thus the cone of functions which have this
subtraction-free rational function (SFR) property must also properly contain ČB . On the other hand, the
element (4.1) does not belong to ČSNN, for its evaluation on the Jacobi-Trudi matrix H2222 expands in the
Schur basis as

2s62 + 2s53 + 2s521 − s44 + 2s431 + 2s422.

Thus ČB and ČSNN are not known to be different. Let us examine the difference ČTNN r ČB more closely.
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Theorem 4.2. Let H be the planar network corresponding to a zig-zag factorization of a 3412-avoiding,
4231-avoiding permutation w in Sn, and let Aw be the path matrix of H. Then there exists a nonnegative
integer c such that we have

Immv(Aw) =

{
c if v = w,

0 otherwise.

Proof. Omitted. �

The existence of the matrices specified by the previous theorem allows us to compare the dual canonical
cone with the dual cone of total nonnegativity as follows.

Theorem 4.3. Let Immf (x) be totally nonnegative and let its expansion in terms of Kazhdan-Lusztig
immanants be given by

Immf (x) =
∑

w∈Sn

dwImmw(x).

Then cu is nonnegative for each 3412-avoiding, 4231-avoiding permutation u.

Proof. Let u be a 3412-avoiding, 4231-avoiding permutation in Sn, and suppose that du is negative.
Let Gu be the planar network corresponding to the reversal factorization of u, and let Au be the path matrix
of Gu. Then we have

Immf (Au) = cdu < 0,

contradicting the total nonnegativity of Immf (x). �

Theorem 4.3 suggests several problems. Recalling Lakshmibai and Sandhya’s result [LS90] that a
permutation w’s avoidance of the patterns 3412 and 4231 is equivalent to smoothness of the Schubert variety
Γw, we have the following.

Problem 4.4. Find an intuitive reason for the connection between total nonnegativity, the dual canonical
basis, and smoothness of Schubert varieties.

It would also be interesting to understand precisely how the cones mentioned earlier are related.

Problem 4.5. Find the extremal rays of ČTNN, ČSNN, and the cone of SFR functions in C[x1,1, . . . , xn,n],
or describe the containments satisfied by these cones.

Since the factorizations given in Theorems 3.1 and 3.3 agree on permutations which avoid all seven of
the forbidden patterns, the author believes that there is a simple generalization of the two results. It would
be interesting to understand in even greater generality which elements of the Kazhdan-Lusztig basis factor
as products of others.

5. Acknowledgements

The author is grateful to Francesco Brenti, Jie Du, Sergey Fomin, Christophe Hohlweg, Federico Incitti,
Bernard Leclerc, and Andrei Zelevinsky for helpful conversations, to Anders Björner and Richard Stanley for
organizing a special program in algebraic combinatorics at the Institut Mittag-Leffler in Djursholm, Sweden,
and to the Institut staff for their hospitality.

References

[Bru05] J. Brundan, Dual canonical bases and Kazhdan-Lusztig polynomials, Preprint math.CO/0509700 on ArXiv, 2005.
[BW01] S. C. Billey and G. Warrington, Kazhdan-Lusztig polynomials for 321-hexagon avoiding permutations, J. Algebraic

Combin. 13 (2001), no. 2, 111–136.
[Cur85] C. W. Curtis, On Lusztig’s isomorphism theorem for Hecke algebras, J. Algebra 92 (1985), no. 2, 348–365.
[Deo91] V. Deodhar, Duality in parabolic set up for questions in Kazhdan-Lusztig theory, J. Algebra 142 (1991), no. 1, 201–209.
[Dri85] V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk. SSSR 283 (1985), no. 5,

1060–1064.
[Du92] J. Du, Canonical bases for irreducible representations of quantum GLn, Bull. London Math. Soc. 24 (1992), no. 4,

325–334.
[FZ00] S. Fomin and A. Zelevinsky, Total positivity: Tests and parametrizations, Math. Intelligencer 22 (2000), no. 1, 23–33.
[HS05] C. Hohlweg and M. Skandera, A Note on Bruhat order and double coset representatives, Preprint math.CO/0511611

on ArXiv (2005).
[Jim85] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69.

313



DUAL CANONICAL BASIS

[Kas91] M. Kashiwara, On crystal bases of the Q-analog of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.
[KL79] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Inv. Math. 53 (1979), 165–184.
[LS90] V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in SL(n)/B, Proc. Indian Acad. Sci.

(Math Sci.) 100 (1990), no. 1, 45–52.
[Lus90] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.
[Lus94] , Total positivity in reductive groups, Lie Theory and Geometry: in Honor of Bertram Kostant, Progress in
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On the characteristic map of finite unitary groups

Nathaniel Thiem and C. Ryan Vinroot

Abstract. In his classic book on symmetric functions, Macdonald describes a remarkable result by Green
relating the character theory of the finite general linear group to transition matrices between bases of
symmetric functions. This connection allows us to analyze the representation theory of the general linear
group via symmetric group combinatorics. Using the work of Ennola, Kawanaka, Lusztig and Srinivasan, this
paper describes the analogous setting for the finite unitary group. In particular, we explain the connection
between Deligne-Lusztig theory and Ennola’s efforts to generalize Green’s work, and from this we deduce
various representation theoretic results. Applications include finding certain sums of character degrees, and
a model of Deligne-Lusztig type for the finite unitary group, which parallels results of Klyachko and Inglis
and Saxl for the finite general linear group.

Résumé. Dans son livre classique sur les fonctions symétriques, Macdonald décrit un résultat remarquable
dû à Green, qui relie la théorie des caractères du groupe général liéaire fini, aux matrices de transition
entre bases de fonctions symétriques. Cette connexion permet d’analyser la théorie de représentation du
groupe général linéaire à l’aide de combinatoires de groupes symétriques. En utilisant le travail d’Ennola,
Kawanaka, Lusztig et Srinivasan, le présent article décrit le cadre analogue pour le groupe unitaire fini.
En particulier, nous expliquons la connexion entre la théorie de Deligne-Lusztig et les efforts d’Ennola
concernant la généralisation du travail de Green, et nous en déduisons plusieurs résultats en théorie de
représentation. Parmi les applications, nous obtenons certaines sommes de degés de caractères, et un modèle
du type Deligne-Lusztig pour le groupe unitaire fini, qui met en parallèle les résultats de Klyachko, Inglis
et Saxl pour le groupe général linéaire fini.

1. Introduction

In his seminal work [7], Green described a remarkable connection between the class functions of the
finite general linear group GL(n,Fq) and a generalization of the ring of symmetric functions of the symmetric
group Sn. In particular, Green defines a map, called the characteristic map, that takes irreducible characters
to Schur-like symmetric functions, and recovers the character table of GL(n,Fq) as the transition matrix
between these Schur functions and Hall-Littlewood polynomials [14, Chapter IV]. Thus, we can use the
combinatorics of the symmetric group Sn to understand the representation theory of GL(n,Fq). Some of the
implications of this approach include an indexing of irreducible characters and conjugacy classes of GL(n,Fq)
by multi-partitions and a formula for the degrees of the irreducible characters in terms of these partitions.

This paper describes the parallel story for the finite unitary group U(n,Fq2) by collecting known results
for this group and examining some applications of the unitary characteristic map. Inspired by Green, Ennola
[4, 5] used results of Wall [16] to construct the appropriate ring of symmetric functions and characteristic
map. Ennola was able to prove that the analogous Schur-like functions correspond to an orthonormal basis
for the class functions, and conjectured that they corresponded to the irreducible characters. He theorized
that the representation theory of U(n,Fq2) should be deduced from the representation theory of GL(n,Fq) by
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substituting “−q” for every occurrence of “q”. The general phenomenon of obtaining a polynomial invariant
in q for U(n,Fq2) by this substitution has come to be known as “Ennola duality”.

Roughly a decade after Ennola made his conjecture, Deligne and Lusztig [2] constructed a family of
virtual characters, called Deligne-Lusztig characters, to study the representation theory of arbitrary finite
reductive groups. Lusztig and Srinivasan [13] then computed an explicit decomposition of the irreducible
characters of U(n,Fq2) in terms of Deligne-Lusztig characters. Kawanaka [11] used this composition to
demonstrate that Ennola duality applies to Green functions, thereby improving results of Hotta and Springer
[9] and finally proving Ennola’s conjecture.

This paper begins by describing some of the combinatorics and group theory associated with the finite
unitary groups. Section 2 defines the finite unitary groups, outlines the combinatorics of multi-partitions,
and gives a description of some of the key subgroups. Section 2.4 analyzes the conjugacy classes of U(n,Fq2)
and the Jordan decomposition of these conjugacy classes.

Section 3 outlines the statement and development of the Ennola conjecture from two perspectives. Both
points of view define a map from a ring of symmetric functions to the character ring C of U(n,Fq2). However,
the first uses the multiplication for C as defined by Ennola, and the second uses Deligne-Lusztig induction
as the multiplicative structure of C. This multiplicative structure on the graded ring of characters of the
unitary group was studied by Digne and Michel in [3], where the focus is that this multiplication induces a
Hopf algebra structure. While some of the results in Section 3 appear in a different form in [3], our approach
focuses on the explicit map between characters and symmetric functions.

The main results are

I. (Theorem 3.2) The Deligne-Lusztig characters correspond to power-sum symmetric functions via the
characteristic map of Ennola.

II. (Corollary 3.2) The multiplicative structure that Ennola defined on C is Deligne-Lusztig induction.

Section 4 computes the degrees of the irreducible characters, and uses this result to evaluate various
sums of character degrees (see [14, IV.6, Example 5] for the GL(n,Fq) analogue of this method). The main
results are

III. (Theorem 4.1) An irreducible χλ character of U(m,Fq2 ) corresponds to

(−1)bm/2c+n(λ)sλ and χλ(1) = qn(λ′)

∏

1≤i≤m

(qi − (−1)i)

∏

�∈λ

(qh(�) − (−1)h(�))
,

where sλ is a Schur-like function, and both n(λ) and h(�) are combinatorial statistics on the multi-partition
λ.

IV. (Corollary 4.2) If PΘ
n indexes the irreducible characters χλ of U(n,Fq2), then

∑

λ∈PΘ
n

χλ(1) = |{g ∈ U(n,Fq2 ) | g symmetric}|.

V. (Theorem 4.3) We give a subset X ⊆ PΘ
2n such that

∑

λ∈X

χλ(1) = (q + 1)q2(q3 + 1) · · · q2n−2(q2n−1 + 1) =
|U(2n,Fq2)|

|Sp(2n,Fq)|
.

Section 5 uses results by Ohmori [15] and Henderson [8] to adapt a model for the general linear group,
found by Klyachko [12] and Inglis and Saxl [10], to the finite unitary group. The main result is

VI. (Theorem 5.2) Let Um = U(m,Fq2), where q is odd, and let Γm be the Gelfand-Graev character of Um,

1 be the trivial character of the finite symplectic group Sp2r = Sp(2r,Fq), and RG
L be the Deligne-Lusztig

induction functor. Then
∑

0≤2r≤m

RUm

Um−2r⊕U2r

(

Γm−2r ⊗ IndU2r

Sp2r
(1)

)

=
∑

λ∈PΘ
m

χλ.

That is, in the theorem of Klyachko, one may replace parabolic induction by Deligne-Lusztig induction to
obtain a theorem for the unitary group.
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These results give considerable combinatorial control over the representation theory of the finite unitary
group, and there are certainly more applications to these results than what we present in this paper. Fur-
thermore, this characteristic map gives some insight as to how a characteristic map might look in general
type, using the invariant rings of other Weyl groups.

2. Preliminaries

2.1. The unitary group and its underlying field. Let K = F̄q be the algebraic closure of the finite
field with q elements and let Km = Fqm denote the finite subfield with qm elements. Let GL(n,K) denote
the general linear group over K, and define Frobenius maps

(2.1)
F :GL(n,K) −→ GL(n,K)

(aij) 7→ (aq
ji)
−1,

and
F ′ :GL(n,K) −→ GL(n,K)

(aij) 7→ (aq
n−j,n−i)

−1.

Then the unitary group Un = U(n,K2) is given by

Un = GL(n,K)F = {a ∈ GL(n,K) | F (a) = a}(2.2)

∼= GL(n,K)F ′

= {a ∈ GL(n,K) | F ′(a) = a}.(2.3)

We define the multiplicative groups Mm as

Mm = GL(1,K)F m

= {x ∈ K | xqm−(−1)m

= 1}.

Note that Mm
∼= K×m only if m is even. We identify K× with the inverse limit lim

←
Mm with respect to the

norm maps
Nmr : Mm −→ Mr

x 7→ xx−q · · ·x(−q)m/r−1 , where m, r ∈ Z≥1 with r | m.

If M∗m is the group of characters of Mm, then the direct limit K∗ = lim
→

M
∗
m gives the group of characters of

K×. Let
Θ = {F -orbits of K

∗}.

A polynomial f(t) ∈ K2[t] is F -irreducible if there exists an F -orbit {x,x
−q, . . . , x(−q)d

} of K× such that

f(t) = (t− x)(t − x−q) · · · (t− x(−q)d

).

Let

(2.4) Φ = {f ∈ K2[t] | f is F -irreducible}
1−1
←→ {F -orbits of K

×}.

2.2. Combinatorics of Φ-partitions and Θ-partitions. Fix an ordering of Φ and Θ, and let

P = {partitions} and Pn = {ν ∈ P | |ν| = n}.

Let X be either Φ or Θ. An X -partition ν = (ν(x1),ν(x2), . . .) is a sequence of partitions indexed by X .
The size of an X -partition ν is

(2.5) ||ν|| =
∑

x∈X

|x||ν(x)|, where |x| =

{

|x| if X = Θ,
d(x) if X = Φ,

|x| is the size of the orbit x ∈ Θ, and d(x) is the degree of the polynomial x ∈ Φ. Let

(2.6) PXn = {X -partitions ν | ||ν|| = n}, and PX =
∞
⋃

n=1

PXn .

For ν ∈ PX , let

(2.7) n(ν) =
∑

x∈X

|x|n(ν(x)), where n(ν) =

`(ν)
∑

i=1

(i− 1)νi.

The conjugate ν ′ of ν is the X -partition ν ′ = (ν(x1)
′,ν(x2)

′, . . .), where ν′ is the usual conjugate partition
for ν ∈ P .

The semisimple part νs of ν = (ν(x1),ν(x2), . . .) ∈ PXn is

(2.8) νs = ((1|ν(x1)|), (1|ν(x2)|), . . .) ∈ PXn ,
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and the unipotent part νu of ν ∈ PXn is given by

(2.9) νu(11) has parts {|x|ν(x)i | x ∈ X , i = 1, . . . , `(ν(x))}

where

11 =

{

{1} if X = Θ,
t− 1 if X = Φ,

1 is the trivial character in K
∗, and νu(x) = ∅ for x 6= 11.

2.3. Levi subgroups and maximal tori. Let X be either Φ or Θ as in Section 2.2.
For ν ∈ PXn , let

(2.10) Lν =
⊕

x∈Xν

Lν(x), where Xν = {x ∈ X | ν(x) 6= ∅},

and for x ∈ Xν ,

(2.11) Lν(x) =

{

U(|ν(x)|,K2|x|) if |x| is odd,
GL(|ν(x)|,K|x|) if |x| is even.

Then Lν is a Levi subgroup of Un = U(n,K2) (though not uniquely determined by ν). The Weyl group

(2.12) Wν =
⊕

x∈Xν

S|ν(x)|,

of Lν has conjugacy classes indexed by

(2.13) Pν
s = {γ ∈ PX | γs = νs},

and the size of the conjugacy class cγ is

(2.14) |cγ | =
|Wγ |

zγ

, where zγ =
∏

x∈X

zγ(x) and zγ =

`(γ)
∏

i=1

imimi!,

for γ = (1m12m2 · · · ) ∈ P .
For every ν = (ν1, ν2, . . . , ν`) ∈ Pn there exists a maximal torus (unique up to isomorphism) Tν of Un

such that

Tν
∼= Mν1 ×Mν2 × · · · ×Mν`

.

For every γ ∈ Pµ
s , there exists a maximal torus (unique up to isomorphism) Tγ ⊆ Lν such that

(2.15) Tγ =
⊕

x∈Xν

Tγ(x), where Tγ(x) ∼= M|x|γ(x)1 × · · · ×M|x|γ(x)`
.

Note that as a maximal torus of Un, the torus Tγ
∼= Tγu(11).

2.4. Conjugacy classes and Jordan decomposition.

Proposition 2.1. The conjugacy classes cµ of Un are indexed by µ ∈ PΦ
n .

For r ∈ Z≥0, let ψr(x) =
∏r

i=1(1 − x
i).

Proposition 2.2 (Wall). Let g ∈ cµ. The order aµ of the centralizer g in Un is

aµ = (−1)||µ||
∏

f∈Φ

aµ(f)

(

(−q)d(f)
)

, where aµ(x) = x|µ|+2n(µ)
∏

j

ψmj (x
−1),

for µ = (1m12m23m3 · · · ) ∈ P.

For µ ∈ PΦ, let Lµ be as in (2.10). Note that |Lµ| = aµs
.

Lemma 2.1. Suppose g ∈ cµ with Jordan decomposition g = su. Then

(a) s ∈ cµs
and u ∈ cµu

, where µs and µu are as in (2.8) and (2.9),
(b) the centralizer CUn(s) of s in Un is isomorphic to Lµ.
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3. The Ennola Conjecture

3.1. The characteristic map. Let X = {X1, X2, . . .} be an infinite set of variables and let Λ(X) be
the graded C-algebra of symmetric functions in the variables {X1, X2, . . .}. Define the power-sum symmetric
function, pν(X), and the Schur function, sλ(X), for ν, λ ∈ P , as they are in [14, Chapter I].

The irreducible characters ωλ of Sn are indexed by λ ∈ Pn, as in [14, Chapter I]. Let ωλ(ν) be the value
of ωλ on a permutation with cycle type ν. The relationship between pν(X) and sλ(X) is given by

(3.1) sλ(X) =
∑

ν∈P|λ|

ωλ(ν)z−1
ν pν(X), where zν =

∏

i≥1

imimi!

is the order of the centralizer in Sn of the conjugacy class corresponding to ν = (1m12m2 · · · ) ∈ P . Let t ∈ C.
For µ ∈ P , let the Hall-Littlewood symmetric function Pµ(X ; t) be as it is defined in [14].

For ν, µ ∈ Pn, the classical Green function Qµ
ν (t) is given by

(3.2) pν(X) =
∑

µ∈P|ν|

Qµ
ν (t−1)tn(µ)Pµ(X ; t).

The pν(X), sλ(X), and Pµ(X ; t), are all bases of Λ(X) as a C-algebra.

For every f ∈ Φ, fix a set of independent variables X(f) = {X
(f)
1 , X

(f)
2 , . . .}, and for any symmetric

function h, we let h(f) = h(X(f)) denote the symmetric function in the variables X(f). Let

Λ = C-span{Pµ | µ ∈ PΦ}, where Pµ = (−q)−n(µ)
∏

f∈Φ

Pµ(f)(f ; (−q)−d(f)).

Then

Λ =
⊕

n≥0

Λn, where Λn = C-span{Pµ | ||µ|| = n},

makes Λ a graded C-algebra. Define a Hermitian inner product on Λ by

〈Pµ, Pν〉 = a−1
µ δµν .

For each ϕ ∈ Θ let Y (ϕ) = {Y
(ϕ)
1 , Y

(ϕ)
2 , . . .} be an infinite variable set, and for a symmetric function h,

let h(ϕ) = h(Y (ϕ)). Relate symmetric functions in the X variables to symmetric functions in the Y variables
via the transform

(3.3) pn(ϕ) = (−1)n|ϕ|−1
∑

x∈Mn|ϕ|

ξ(x)pn|ϕ|/d(fx)(fx),

where ϕ ∈ Θ, ξ ∈ ϕ, and fx ∈ Φ satisfies fx(x) = 0.
Then

(3.4) Λ = C-span{sλ | λ ∈ PΘ}, where sλ =
∏

ϕ∈Θ

sλ(ϕ)(ϕ).

Let Cn denote the set of complex-valued class functions of the group Un, and for ||µ|| = n, let πµ :
Un → C be the class function which is 1 on cµ and 0 elsewhere. Then the πµ form a C-basis for Cn. By
Proposition 2.2, the usual inner product on class functions of finite groups, 〈·, ·〉 : Cn × Cn → C, satisfies

〈πµ, πλ〉 = a−1
µ δµλ.

For αi ∈ Cni , Ennola [5] defined a product α1 ? α2 ∈ Cn1+n2 , which takes the following value on the
conjugacy class cλ:

α1 ? α2(cλ) =
∑

||µi||=ni

gλ
µ1µ2

α1(cµ1
)α2(cµ2

),

where gλ
µ1µ2

is the product of Hall polynomials (see [14, Chapter II])

gλ
µ1µ2

=
∏

f∈Φ

g
λ(f)
µ1(f)µ2(f)((−q)

d(f)).

319



Nathaniel Thiem and C. Ryan Vinroot

Extend the inner product to C =
⊕

n≥0 Cn, by requiring the components Cn and Cm to be orthogonal for
n 6= m. This gives C a graded C-algebra structure. The characteristic map is

ch : C −→ Λ
πµ 7→ Pµ, for µ ∈ PΦ.

Proposition 3.1. Let multiplication in the character ring C of Un be given by ?. Then the characteristic
map ch : C → Λ is an isometric isomorphism of graded C-algebras.

Following the work of Green [7] on the general linear group, Ennola was able to obtain the following
result. We may follow the proof in Macdonald [14, IV.4] on the general linear group case, making the
appropriate changes.

Proposition 3.2 (Ennola). The set {sλ | λ ∈ PΘ} is an orthonormal basis for Λ.

Now let χλ ∈ R be class functions so that χλ(1) > 0 and ch(χλ) = ±sλ. Ennola conjectured that
{χλ | λ ∈ PΘ

n } is the set of irreducible characters of Un. He pointed out that if one could show that the
product ? takes virtual characters to virtual characters, then the conjecture would follow. There is no known
direct proof of this fact, however. Significant progress on Ennola’s conjecture was only made after the work
of Deligne and Lusztig [2].

3.2. Deligne-Lusztig Induction. Let Tν
∼= Mν1 × · · · ×Mν`

be a maximal torus of Un. If t ∈ Tν ,
then t is conjugate to

J(1m1)(f1)⊕ · · · ⊕ J(1m` )(f`), where fi ∈ Φ, mid(fi) = νi.

Define γt ∈ P
Φ by

(3.5) γt(f) has parts {mi | fi = f}.

Note that (γt)u(t− 1) = ν, but in general t /∈ cγt
.

For µ ∈ PΦ, let Lµ, γ ∈ Pµ
s and Tγ be as in Section 2.3. Let θ be a character of Tν . The Deligne-Lusztig

character Rν(θ) = RUn

Tν
(θ) is the virtual character of Un given by

(

Rν(θ)
)

(g) =
∑

t∈Tν
γt∈P

µ
s

θ(t)Q
Lµ

Tγt
(u),

where g ∈ cµ has Jordan decomposition g = su (thus, by Lemma 2.1 CUn(s) ∼= Lµ), and Q
Lµ

Tγt
(u) is a Green

function for the unitary group (see, for example, [1]).
Deligne and Lusztig proved that the Rν(θ) span the class functions of Un,

Cn = C-span{Rν(θ) | ν ∈ Pn, θ ∈ Hom(Tν ,C
×)},

so we may define Deligne-Lusztig induction by

(3.6)
R

Um+n

Um⊕Un
: Cm ⊗ Cn −→ Cm+n

RUm
α (θα)⊗RUn

β (θβ) 7→ R
Um+n

Tα⊕Tβ
(θα ⊗ θβ),

for α ∈ Pm, β ∈ Pn, θα ∈ Hom(Tα,C), and θβ ∈ Hom(Tβ ,C).
Let Λ and C be as in Section 3.1, except we now give C a graded C-algebra structure using Deligne-

Lusztig induction. That is, we define a multiplication ◦ on C by

χ ◦ η = R
Um+n

Um⊕Un
(χ⊗ η), for χ ∈ Cm and η ∈ Cn.

We recall the characteristic map defined in Section 3.1,

ch : C −→ Λ
πµ 7→ Pµ for µ ∈ PΦ.

It is immediate that ch is an isometric isomorphism of vector spaces, but it is not yet clear if ch is also a
ring homomorphism when C has multiplication given by Deligne-Lusztig induction.
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3.3. The Ennola conjecture. In this section we summarize the remaining steps that are necessary
to obtain the proof of the Ennola conjecture. First, we must compute ch(Rν(θ)), and to do so we need to

write the Green functions Q
Lµ

Tγ
(u) as polynomials in q. These Green functions turn out to be those of the

general linear group, except with q replaced by −q, which is the essence of Ennola’s original idea. This fact
was proven by Hotta and Springer [9] for the case that p = char(Fq) is large compared to n, and was finally
proven in full generality by Kawanaka [11].

Theorem 3.1 (Hotta-Springer, Kawanaka). The Green functions for the unitary group are given by

Q
Lµ

Tγ
(u) = Qµ

γ (−q), where

Qµ
γ (−q) =

∏

f∈Φµ

Q
µ(f)
γ(f)((−q)

d(f)),

and Qµ
γ(q) is the classical Green function as in (3.2).

For ν = (ν1, ν2, . . . , ν`) ∈ P and θ = θ1 ⊗ θ2 ⊗ · · · ⊗ θ` a character of Tν, define

pµνθ
=

∏

ϕ∈Θ

pµνθ(ϕ)(ϕ), where µνθ(ϕ) = (νi/|ϕ| | θi ∈ ϕ).

From Theorem 3.1 and the machinery of the characteristic map, we obtain the following.

Theorem 3.2. Let ν = (ν1, ν2, . . . , ν`) ∈ P, θ = θ1⊗θ2⊗· · ·⊗θ` be a character of Tν , and ν = µνθ ∈ P
Θ.

Then

ch
(

Rν(θ)
)

= (−1)||ν||−`(ν)pν .

Corollary 3.1. Let multiplication in the character ring C of Un be given by ◦. Then the characteristic
map ch : C → Λ is an isometric isomorphism of graded C-algebras.

An immediate consequence is that the graded multiplication that Ennola originally defined on C is
exactly Deligne-Lusztig induction, or

Corollary 3.2. Let χ ∈ Cm and η ∈ Cn. Then

χ ◦ η = χ ? η.

We therefore have the advantage of taking either definition when convenience demands.
For λ ∈ PΘ, let Lλ, Wλ, and Tγ , γ ∈ Pλ

s , be as in Section 2.3.
Note that the combinatorics of γ almost specifies character θγ of Tγ in the sense that

θγ(Tγ(ϕ)) = θϕ(Tγ(ϕ)), for some θϕ ∈ ϕ.

In fact, we may define

(3.7) Rγ = RUn

Tγ
(θγ) = ch−1

(

(−1)||γ||−`(γ)pγ

)

,

where θγ is any choice of the θϕ’s.
For every λ ∈ PΘ there exists a character ωλ of Wλ defined by

ωλ(γ) =
∏

ϕ∈Θ

ωλ(ϕ)(γ(ϕ)),

where ωλ(γ) is the value of ωλ on the conjugacy class cγ corresponding to γ ∈ PΘ
s .

In [13], Lusztig and Srinivasan decomposed the irreducible characters of Un as linear combinations of
Deligne-Lusztig characters, as follows.

Theorem 3.3 (Lusztig-Srinivasan). Let λ ∈ PΘ
n . Then there exists τ ′(λ) ∈ Z≥0 such that the class

function

R(λ) = (−1)τ ′(λ)+bn/2c+
P

ϕ∈Θ |λ(ϕ)|+|ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

ωλ(γ)

zγ

Rγ

is an irreducible character of Un (zγ is as in (2.14)).

Finally, we obtain the Ennola Conjecture.
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Corollary 3.3 (Ennola Conjecture). For λ ∈ PΘ, there exists τ(λ) ∈ Z≥0 such that
{

ch−1

(

(−1)τ(λ)sλ

)

| λ ∈ PΘ
n

}

is the set of irreducible characters of Un.

Proof. By Theorem 3.3 and Theorem 3.2,

ch(R(λ)) = (−1)τ ′(λ)+bn/2c+
P

ϕ∈Θ |λ(ϕ)|+|ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

ωλ(γ)

zγ

(−1)n−`(γ)pγ

= (−1)τ ′(λ)+bn/2c+n+
P

ϕ∈Θ |ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

ωλ(γ)

zγ

(−1)
P

ϕ∈Θ |λ(ϕ)|−`(γ)pγ

Note that the sign character ωλs of Wλ acts by

ωλs(γ) = (−1)
P

ϕ∈Θ |γ(ϕ)|−`(γ),

and that ωλ ⊗ ωλs = ωλ′

, so since γ ∈ Pλ
s ,

ch(R(λ)) = (−1)τ ′(λ)+bn/2c+n+
P

ϕ∈Θ |ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

(ωλ ⊗ ωλs)(γ)

zγ

pγ

= (−1)τ ′(λ)+bn/2c+n+
P

ϕ∈Θ |ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

ωλ′

(γ)

zγ

pγ ,

and by applying (3.1) to a product over Θ,

= (−1)τ ′(λ)+bn/2c+n+
P

ϕ∈Θ |ϕ|d|λ(ϕ)|/2esλ′ . �

Remark. There are at least two natural ways to index the irreducible characters of Un by Θ-partitions:
Theorem 3.3 gives a natural indexing by Θ-partitions, but Corollary 3.3 indicates that the conjugate choice
is equally natural. Since we like to think of Schur functions as irreducible characters, we have chosen the
latter indexing. However, several references, including Ennola [5], Ohmori [15], and Henderson [8], make
use of the former.

4. Characters degrees

In this section, we calculate the degrees of the irreducible characters of the finite unitary group and find
several character degree sums.

Let λ ∈ PΘ, and suppose � ∈ λ is in position (i, j) in λ(ϕ) for some ϕ ∈ Θ. The hook length h(�) of
� is

h(�) = |ϕ|h(�), where h(�) = λ(ϕ)i − λ(ϕ)′j − i− j + 1,

is the usual hook length for partitions.
For λ ∈ PΘ, let

ηλ = ch−1(sλ).

Adapting the computations in [14, IV.6], we obtain the following result.

Theorem 4.1. Let λ ∈ PΘ and let 1 be the identity in U||λ||. Then

ηλ(1) = (−1)τ(λ)qn(λ′)

∏

1≤i≤||λ||

(qi − (−1)i)

∏

�∈λ

(qh(�) − (−1)h(�))
,

where τ(λ) = ||λ||(||λ||+3)/2+n(λ) ≡ b||λ||/2c+n(λ) (mod 2). So for each λ, we have χλ = (−1)τ(λ)ηλ.

The following result follows from Theorem 4.1 and the Littlewood-Richardson rule.
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Corollary 4.1. Let µ,ν ∈ PΘ. Then χµ ◦ χν is a character if and only if every λ ∈ PΘ such that
cλµν > 0 satisfies

n(µ) + n(ν) ≡ n(λ) + ||µ|| ||ν|| (mod 2)

Following a similar approach to [14, IV.6, Example 5], we consider the coefficient of tm in the series

S =
∑

λ∈PΘ

(−1)n(λ)+||λ||δ(sλ)t||λ||,

where n(λ) is as in (2.7), and we obtain the following result.

Theorem 4.2. The sum of the degrees of the complex irreducible characters of Um is given by
∑

||λ||=m

χλ(1) = (q + 1)q2(q3 + 1)q4(q5 + 1) · · ·
(

qm +
(1 − (−1)m)

2

)

.

Write fUm(q) =
∑

||λ||=m χλ(1). The polynomial fGm(q) expressing the sum of the degrees of the

complex irreducible characters of Gm = GL(m,Fq), was computed in [6] for odd q and in [12] and Example
6 of [14, IV.6] for general q. From these results we see that

fUm(q) = (−1)m(m+1)/2fGm(−q),

another example of Ennola duality.
Gow [6] and Klyachko [12] proved that the sum of the degrees of the complex irreducible characters

of Gn is equal to the number of symmetric matrices in Gn. We obtain the same result for Un by applying
Theorem 4.2 and a counting argument.

Corollary 4.2. The sum of the degrees of the complex irreducible characters of U(n,Fq2 ) is equal to
the number of symmetric matrices in U(n,Fq2).

A Θ-partition λ is even if every part of λ(ϕ) is even for every ϕ ∈ Θ.

Theorem 4.3. The sum of the degrees of the complex irreducible characters of U2m corresponding to λ

such that λ′ is even is given by
∑

||λ||=2m

λ′
even

χλ(1) = (q + 1)q2(q3 + 1) · · · q2m−2(q2m−1 + 1) =
|U(2m,Fq2)|

|Sp(2m,Fq)|
.

Write gUm(q) =
∑

||λ||=2m,λ′ even χ
λ(1), and let gGm(q) denote the corresponding sum for Gm. The

polynomial gGm(q) was calculated in Example 7 of [14, IV.6], and similar to the previous example, we see
that we have

gUm(q) = (−1)mgGm(−q).

In the case that q is odd, Proposition 4.3 follows from the following stronger result obtained by Henderson
[8]. Let Sp2n = Sp(2n,Fq) be the symplectic group over the finite field Fq.

Theorem 4.4 (Henderson). Let q be odd. The decomposition of IndU2n

Sp2n
(1) into irreducibles is given by

IndU2n

Sp2n
(1) =

∑

||λ||=2n

λ′even

χλ.

The fact that Proposition 4.3 holds for all q suggests that Theorem 4.4 should as well.

5. A Deligne-Lusztig model

A model of a finite group G is a representation ρ, which is a direct sum of representations induced from
one-dimensional representations of subgroups of G, such that every irreducible representation of G appears
as a component with multiplicity 1 in the decomposition of ρ.

Klyachko [12] and Inglis and Saxl [10] obtained a model for GL(n,Fq), where the induced representations
can be written as a Harish-Chandra product of Gelfand-Graev characters and the permutation character of
the finite symplectic group.

In this section we show that the same result is true for the finite unitary group, except the Harish-
Chandra product is replaced by Deligne-Lusztig induction. The result is therefore not a model for U(n,Fq)
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in the finite group character induction sense, but rather from the Deligne-Lusztig point of view.

Let U ′n = GL(n,K)F ′

as in (2.3), and let

B< = {u ∈ U ′n | u unipotent and uppertriangular} ⊆ U ′n.

Fix a nontrivial character ψ : K
+
2 → C

× of the additive group of the field K2 such that the restriction to the
subgroup {x ∈ K2 | xq + x = 0} is also nontrivial. The map ψ(n) : B< → C given by

ψ(n)(u) = ψ
(

u12 + · · ·+ ubn/2c−1,bn/2c + ubn/2c,dn/2e+1

)

, for u = (uij) ∈ B<,

is a linear character of B<. Then

Γ′(n) = Ind
U ′

n

B<
(ψ(n))

is the Gelfand-Graev character of U ′n. Let Γ(n) be the corresponding Gelfand-Graev character of Un =

GL(n,K)F . For λ ∈ PΘ, define

ht(λ) = max{`(λ(ϕ)) | ϕ ∈ Θ}.

The following appears in Section 5.2 of [15], but we can also give a proof using the characteristic map.

Theorem 5.1. The decomposition of Γ(m) into irreducibles is given by

Γ(m) =
∑

λ∈PΘ
m

ht(λ)=1

χλ.

For a partition λ, let o(λ) denote the number of odd parts of λ, and for λ ∈ PΘ, let o(λ) =
∑

ϕ∈Θ |ϕ|o(λ(ϕ)).

Theorem 5.2. Let q be odd. For each r such that 0 ≤ 2r ≤ m,

Γm−2r ◦ IndU2r

Sp2r
(1) =

∑

o(λ′)=m−2r

χλ.

Furthermore,
∑

0≤2r≤m

Γm−2r ◦ IndU2r

Sp2r
(1) =

∑

||λ||=m

χλ

Proof. Suppose µ,ν ∈ PΘ, such that ht(µ) = 1 and ν′ is even. From the characteristic map, Corollary
3.3, and Pieri’s formula [14, I.5.16],

(5.1) χµ ◦ χν = (−1)τ(µ)+τ(ν)
∑

λ

χλ,

where the sum is taken over all λ such that for every ϕ ∈ Θ, λ(ϕ)− ν(ϕ) is a horizontal |µ(ϕ)|-strip.
We now use Corollary 4.1 to show that χµ◦χν is a character. As λ(ϕ)−ν(ϕ) is a horizontal |µ(ϕ)|-strip,

the part λ(ϕ)′i is either ν(ϕ)′i or ν(ϕ)′i + 1 for every i = 1, 2, . . . , `(λ(ϕ)). By assumption, ν ′ is even, so
ν(ϕ)′i is even for every ϕ ∈ Θ, and so

(

ν(ϕ)′i + 1

2

)

= ν(ϕ)′i +

(

ν(ϕ)′i
2

)

≡

(

ν(ϕ)′i
2

)

(mod 2).

Thus, n(λ(ϕ)) =
∑

i

(

λ(ϕ)′i
2

)

≡ n(ν(ϕ)) (mod 2). The assumption ht(µ) = 1 implies n(µ(ϕ)) = 0, and since
||ν|| is even,

n(µ) + n(ν) ≡ n(λ) + ||µ|| ||ν|| (mod 2).

By Corollary 4.1, χµ ◦ χν is a character.
Use the decompositions of Theorem 4.4 and Theorem 5.1 in the product (5.1) to observe that the

irreducible characters χλ in the decomposition of Γm−2r ◦ IndU2r

Sp2r
(1) are indexed by λ ∈ PΘ

m such that for

every ϕ, λ(ϕ) − ν(ϕ) is a horizontal |µ(ϕ)|-strip, where ||µ|| = m − 2r, for some ν(ϕ) such that ν(ϕ)′ is
even. Then the number of odd parts of λ(ϕ)′ is exactly |µ(ϕ)|, and so the λ in the decomposition must
satisfy

∑

ϕ∈Θ |ϕ|o(λ(ϕ)′) = ||µ|| = m− 2r. �
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A Bijection for Unicellular Partitioned Bicolored Maps

E. Vassilieva and G. Schaeffer

Abstract. In the present paper we construct a bijection that relates a set CN,p,q of unicellular partitioned
bicolored maps to a set of couples (t, σ) of ordered bicolored trees and partial permutations. This bijection
allows us to derive an elegant formula for the enumeration of unicellular bicolored maps, an analogue of the
well-known Harer-Zagier result for unicolored one-face maps.

Résumé. Dans cet article nous construisons une bijection mettant en relation l’ensemble CN,p,q des cartes
bicolores unicellulaires partitionnées et l’ensemble des couples (t, σ) d’arbres bicolores ordonnés et de per-
mutations partielles. Cette bijection nous permet de dériver une formule élégante pour l’énumération des
cartes bicolores unicellulaires, analogue au résultat de Harer et Zagier pour les cartes unicolores monofaces.

1. Introduction

Maps are graphs embedded in orientable surfaces. More precisely, a map is a 2−cell decomposition of a
compact, connected, orientable surface into vertices (0−cells), edges (1−cells) and faces (2 − cells) homeo-
morphic to open discs. Loops and multiple edges are allowed. A detailed description of these objects as well
as examples of their numerous applications in various branches of mathematics and physics can be found in
the survey [2] and in [8]. One face (unicellular) maps represent an object of special interest. In particular,
Harer and Zagier enumerated unicellular maps of genus g with prescribed number of edges in order to cal-
culate the Euler characteristics of the moduli spaces (see [6]). Numerous proofs of this well-known formula
have been proposed. As a rule they are technically complicated and up to recently no elementary proof
was known. A first purely combinatorial method was given by Lass in [7]. Another one involving a direct
bijection was developped by Goulden and Nica in [4].

This paper is focused on unicellular bicolored maps, i.e. one-face maps with white and black vertices
verifying the property that each edge is joining a black and a white vertices. Formally, a unicellular bicolored
map of N edges, m white and n black vertices is equivalent to a couple of permutations (α, β) ∈ ΣN such that
α has m independent cycles, β has n independent cycles and αβ = γ where γ is the long cycle (1 2 3 . . . N).
As a first approach to this question, in [5], Goupil and Schaeffer derived a formula to count the number of
factorizations (α, β) of γ with α of cycle type λ and β of cycle type µ, for any pair (λ, µ) of partitions of
N . Summing over all λ with m parts and µ with n parts allows to recover a complicated formula for this
counting problem. Independently, a more elegant formula for the enumeration of these objects has been
calculated by Adrianov in [1]. His method involves characters on the symmetric group and the resulting
formula, expressed in terms of Gauss hypergeometric function, leaves little room for simple combinatorial
interpretation. In this paper, we derive a new formula solving the same enumeration problem. To this end
we construct a bijection having some aspects similar to the one of Goulden and Nica in [4] for unicolored
maps.

Throughout this paper, we adopt the following notations. We denote by BT (p, q) the set of ordered
bicolored (black and white)trees with p white and q black vertices. We assume that all the trees in this set

2000 Mathematics Subject Classification. Primary 05A15; Secondary 05C10.
Key words and phrases. unicellular bicolored maps, partial permutations, bicolored trees, Harer-Zagier formula.
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have a white root. The cardinality of BT (p, q) (see e.g. [3]) is given by:

(1.1) |BT (p, q)| =
p + q − 1

pq

(

p + q − 2

p − 1

)2

We also denote by PP (X, Y, A) the set of partial permutations from any subset of X of cardinality A to any
subset of Y (of the same cardinality). The cardinality of this set is given by:

(1.2) |PP (X, Y, A)| =

(

|X |

A

)(

|Y |

A

)

A!

For the sake of simplicity, in all what follows, if X or Y is equal to [M ] (all the integers between 1 and M),
we will note M instead of [M ]. Now let us turn to our main result:

Theorem 1.1. The numbers B(m, n, N) of unicellular bicolored maps with m white vertices, n black
vertices and N edges verify:

(1.3)
∑

m,n≥1

B(m, n, N)ymzn = N !
∑

p,q≥1

(

N − 1

p − 1, q − 1

)(

y

p

)(

z

q

)

In the following section we give a bijective proof for this formula. To this extent we introduce a new class of
objects, the unicellular partitioned bicolored maps.

2. Unicellular Partitioned Bicolored Maps

2.1. Definition. Let CN,p,q be the set of triples (π1, π2, α) such that π1 et π2 are partitions of [N ] into
p and q blocks and such that α is a permutation of [N ] verifying the following properties :

• Each block of π1 is the union of cycles of α.
• Each block of π2 is the union of cycles of β = α−1γ, where γ = (1 2 . . . N).

2.2. Geometrical Interpretation. The set CN,p,q can be viewed as a set of unicellular partitioned
bicolored maps. A triple (π1, π2, α) corresponds to a unicellular bicolored map with N edges where :

• The cycles of α describe the white vertices of the map.
• The cycles of β = α−1γ describe the black vertices.
• π1 partitions the white vertices into p subsets
• π2 partitions the black vertices into q subsets

Example 2.1. Figure (1) gives a representation of the triple (π1, π2, α) ∈ C9,3,2, defined by α =

(1)(24)(3)(57)(6)(89), β = (1479)(23)(56)(8), π1 = {π
(1)
1 , π

(2)
1 , π

(3)
1 }, π2 = {π

(1)
2 , π

(2)
2 } with :

π
(1)
1 = {2, 4, 6}, π

(2)
1 = {8, 9}, π

(3)
1 = {1, 3, 5, 7},

π
(1)
2 = {2, 3, 5, 6}, π

(2)
2 = {1, 4, 7, 8, 9}

where the numbering of the blocks is purely arbitrary.

To visualise it better we also assume that each block is associated with some particular shape: π
(1)
1 with

square, π
(2)
1 with circle, π

(3)
1 with triangle, π

(1)
2 with rhombus and π

(2)
2 with pentagon. Therefore each vertex

of our partitioned map will have a shape corresponding to its block.

2.3. Connection with Unicellular Bicolored Maps. Let cN,p,q =| CN,p,q |. Using the Stirling
number of the second kind S(a, b) enumerating the partitions of a set of a elements into b non-empty,
unordered subsets, we have:

(2.1) cN,p,q =
∑

m≥p,n≥q

S(m, p)S(n, q)B(m, n, N)

Then, since
∑a

b=1 S(a, b)(x)b = xa (see e.g [9]) where the falling factorial (x)b =
∏b−1

i=0 (x − i):

(2.2)
∑

m,n≥1

B(m, n, N)ymzn =
∑

p,q≥1

cN,p,q(y)p(z)q
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Figure 1. Example of a Partitioned Bicolored Map

3. Bijective Description of Unicellular Partitioned Bicolored Maps

3.1. Combinatorial Interpretation of the Main Formula. Combining equations 1.3 and 2.2 gives:

(3.1) cN,p,q =
N !

p!q!

(

N − 1

p − 1, q − 1

)

Now if we rearrange the above formula, we get :

(3.2) cN,p,q =

[

p + q − 1

pq

(

p + q − 2

p − 1

)2
]

[(

N

N + 1 − (p + q)

)(

N − 1

N + 1 − (p + q)

)

(N + 1 − (p + q))!

]

We finally have :

(3.3) |CN,p,q| = |BT (p, q)| × |PP (N, N − 1, N + 1 − (p + q))|

In order to prove our main theorem we simply need to show that the number of unicellular partitioned
bicolored maps with N edges, p white blocks and q black blocks is equal to the number of bicolored trees
with p white vertices and q black vertices (with a white root) times the number of partial permutations from
any subset of [N ] containing N + 1 − (p + q) elements to any subset of [N − 1] (containing N + 1 − (p + q)
elements). To this purpose we use a bijection between the appropriate sets.

3.2. Construction of the Bijection. In this section, we construct a bijective mapping that asso-
ciates to a triple (π1, π2, α) ∈ CN,p,q an ordered bicolored tree in BT (p, q) and a partial permutation in
PP (N, N − 1, N + 1 − (p + q)).

Ordered Bicolored Tree

Let π
(1)
1 , . . . , π

(p)
1 and π

(1)
2 , . . . , π

(q)
2 be the blocks of the partitions π1 and π2 respectively. Denote by m

(i)
1

the maximal element of the block π
(i)
1 (1 ≤ i ≤ p) and by m

(j)
2 the maximal element of π

(j)
2 (1 ≤ j ≤ q). We

attribute the index p to the block of partition π1 containing the element 1. Suppose that the indexation of
all other blocks is arbitrary and doesn’t respect any supplementary constraints. We create a labelled ordered
bicolored tree T on the set of p white and q black vertices, such that white vertices have black descendants
and vice versa. The root of T is the white vertex p. For every j = 1, . . . , q we set that a black vertex j is

a descendant of a white vertex i if the element β(m
(j)
2 ) belongs to the white block π

(i)
1 . Similarly, for every
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i = 1, . . . , p − 1 a white vertex i is a descendant of a black vertex j if the element m
(i)
1 belongs to the black

block π
(j)
2 . If black vertices j, k are both descendants of a white vertex i, then j is to the left of k when

β(m
(j)
2 ) < β(m

(k)
2 ); if white vertices i, l are both descendants of a black vertex j, then i is to the left of l

when β−1(m
(i)
1 ) < β−1(m

(l)
1 ). It can be proved that the previous construction allows to specify a unique

path from any vertex i to the root vertex and thus, the tree T is well defined.
Removing the labels from T we obtain the bicolored ordered tree t.

Figure 2. Construction of the Ordered Bicolored Tree

Example 3.1. Let us go back to example 2.1. We keep the previous numbering of the blocks since it

verifies the condition 1 ∈ π
(p)
1 . For this example, β(m

(1)
2 ) = β(6) = 5 ∈ π

(3)
1 and β(m

(2)
2 ) = β(9) = 1 ∈ π

(3)
1

the black rhombus 1 and the black pentagon 2 are both descendants of the white triangle 3. Moreover, as

β(m
(1)
2 ) < β(m

(2)
2 ) the vertex 2 is to the left of vertex 1. Further, m

(1)
1 = 6 ∈ π

(1)
2 , m

(2)
1 = 9 ∈ π

(2)
2 and

hence the white circle 1 is descendant of the black pentagon 1, while the white square 2 is descendant of the
black rhombus 2. Thus, we construct first the tree T then, removing the labels, get the tree t (see Figure 3).

Partial Permutation

The construction of the partial permutation contains two main steps.

(i) Relabelling permutations. Consider the reverse-labelled bicolored tree t′ resulting from the labelling
of t, based on two independant reverse-labelling procedures for white and black vertices. The root
is labelled p, the white vertices at level 2 are labelled from right to left, beginning with p − 1,
proceeding by labelling from right to left white vertices at level 4 and all the other even levels until
reaching the leftmost white vertex at the top even level labelled by 1. The black vertices at level
1 are labelled from right to left, beginning with q, and following by labelling of the black vertices
at all the other odd levels from left to right until reaching the leftmost vertex of the top odd level
labelled by 1. Trees T and t′ give two, possibly different, labellings of t. Suppose that the (black

or white) vertex of t labelled i in T is labelled j in t′. Then define π
j
1 = π

(i)
1 for white vertex and

π
j
2 = π

(i)
2 for black vertex, repeat this re-indexing for all white and all black vertices. We obtain a

different indexing π1
1 , . . . , π

p
1 of the white blocks of partition π1; and a different indexing π1

2 , . . . , π
q
2

of the black blocks of partition π2. The reader can easily see, that π
p
1 = π

(p)
1 . Let ωi and υj be the

strings given by writing the elements of πi
1 and π

j
2 in increasing order. Denote ω = ω1 . . . ωp and

υ = υ1 . . . υq concatenations of ω1, . . . , ωp and υ1, . . . , υq respectively. We define λ ∈ SN by setting
ω the first line and [N ] the second line of λ in the two-line representation of λ. Similarly, we define
ν ∈ SN by setting υ the first line and [N ] the second line of ν in the two-line representation of ν.

Example 3.2. Let us continue Example 3.1 by constructing relabelling permutations λ and
ν. Figure 3 put the tree T and the reversed-labelled tree t′ side by side that gives quite a natural
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Figure 3. Relabelling of the Blocks

illustration of the block relabelling:

π1
1 = π

(2)
1 , π2

1 = π
(1)
1 , π3

1 = π
(3)
1 ,

π1
2 = π

(2)
2 , π2

2 = π
(1)
2

The strings ωi and υj are given by :

ω1 = 89, ω2 = 246, ω3 = 1357,

υ1 = 14789, υ2 = 2356

We construct now the relabelling permutations λ and ν.

λ =

(

8 9
1 2

∣

∣

∣

∣

2 4 6
3 4 5

∣

∣

∣

∣

1 3 5 7
6 7 8 9

)

ν =

(

1 4 7 8 9
1 2 3 4 5

∣

∣

∣

∣

2 3 5 6
6 7 8 9

)

Figures 4 depicts this two new labellings on our example.

Figure 4. Relabellings of the Partitioned Bicolored Map

(ii) Partial permutation We can now introduce a partial permutation that gives an insight both on the
connexion between the λ and ν relabelling and on the structure of the partitioned bicolored map.
Let S be the subset of [N ] containing all the edges of the map that were not used to construct the
bicolored tree. Namely :

(3.4) S = [N ] \ {m1
1, m

2
1, . . . , m

p−1
1 , β(m1

2), . . . , β(mq
2)}
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We define the partial permutation σ on set [N ] as the composition of previously defined permuta-
tions applied to relabelling of S by λ:

(3.5) σ = ν ◦ β−1 ◦ λ−1 |λ(S)

In Lemmae 3.4 and 3.5 we show that σ is a bijection between two subsets of N +1−(p+q) elements
and that its image set is included in [N − 1].

Figure 5. Connections through σ between λ and ν relabelling

Example 3.3. On the example previously described the set S is equal to :

S = {2, 3, 4, 7, 8}

The partial permutation σ is defined by :

σ =

(

1 3 4 7 9
4 7 1 6 2

)

The set of vertices that were not used to construct the tree and their connections to the map
through σ can be viewed on Figure 5.

Lemma 3.4. The cardinal of the set S defined above verifies | S |= N + 1 − (p + q)

Proof. To prove the assertion of this lemma we will show the equivalent statement :

{m1
1, m

2
1, . . . , m

p−1
1 } ∩ {β(m1

2), . . . , β(mq
2)} = ∅

Assume that there exist i, j, i = 1, . . . , p − 1, j = 1, . . . , q, such that

(3.6) β(mj
2) = mi

1

Then as the blocks of π2 are stable by β we have mi
1 ∈ π

j
2 and mi

1 ≤ m
j
2. As the blocks of π1 are stable by

α, the assumption (3.6) also implies that αβ(mj
2) = γ(mj

2) ∈ πi
1. Hence, γ(mj

2) ≤ mi
1. Combining these two

inequalities, we have γ(mj
2) ≤ m

j
2 that occurs only if m

j
2 = N . In this case, γ(mj

2) = 1 and 1 ∈ πi
1, i.e. i = p

which is a contradiction

Lemma 3.5. The element N does not belong to the image of permutation σ.

Proof. Let us remark that according to the construction of the relabelling permutation ν, we have
N = ν(mq

2). Besides,

ν(mq
2) = ν ◦ β−1 ◦ λ−1(λ(β(mq

2)))

Thus, as λ(β(mq
2)) does not belong to λ(S), the element N does not belong to the image of permutation σ
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Bijective Mapping

Let us denote by ΘN,p,q the mapping defined by :

ΘN,p,q : CN,p,q −→ BT (p, q) × PP (N, N − 1, N + 1 − (p + q))

(π1, π2, α) 7−→ (t, σ)(3.7)

We prove in the following section that the mapping ΘN,p,q is actually a bijection.

4. Proof of the Bijection

4.1. Injectivity. Let (t, σ) be the image of some triple (π1, π2, α) ∈ CN,p,q by ΘN,p,q. We show in a
constructive fashion that (π1, π2, α) is actually uniquely determined by (t, σ).

First we use the tree t and the integers lacking in the two lines of σ to find out the number of elements
in each block and the extension of σ to the whole set [N ]. By construction of σ, the integers lacking in its
first line λ(S) are the elements

λ(m1
1), . . . , λ(mp−1

1 ), λ(β(m1
2)), . . . , λ(β(mq

2))

Now, if black vertex j is a descendant of a white vertex i in the reversed-labelled tree t′ then β(mj
2) ∈ πi

1

for j = 1, . . . , q. Due to this property we know exactly how the elements β(m1
2), . . . , β(mq

2) are distributed
between the white blocks. Moreover, by definition of λ any element of λ(πi

1) is strictly less than any element

of λ(πj
1) for all i < j. Thus, to recover the exact order on the elements lacking in the first line of σ, it

remains to establish the order on the lacking elements belonging to the same block λ(πi
1) that are not the

maximum one (obviously the greatest) if any. These elements correspond to the set of descendants of the
white vertex i in t′. As we have defined that a black vertex j1 is on the left of a black vertex j2, descendant of
the same vertex i, if and only if β(mj1

2 ) ≤ β(mj2
2 ) and the restriction of λ to any block of π1 is an increasing

function, their order is naturally induced by the left to right order on the set of descendants of i in the
reversed-labelled tree t′.

Consider the set ν ◦ β−1(S) in the second line of σ. The lacking elements are

ν(m1
2), . . . , ν(mq

2), ν(β)−1(m1
1), . . . , ν(β)−1(mp−1

1 )

Similarly to the first line of σ, we use the structure of t′, the relation between ν and t′ as well as the fact
that ν(β)−1(mi1

1 ) ≤ ν(β)−1(mi2
1 ) if i1 and i2 are descendant of the same black vertex and i1 is on the left of

i2 to order these elements. Once the order on both of the sets of lacking elements is established, the lacking
integers can be uniquely identified with these elements. Hence, the extension σ = ν ◦β−1 ◦λ−1 of the partial
permutation σ to the whole set [N ] is uniquely determined since

∀i ∈ [p − 1], σ(λ(mi
1)) = ν(β−1(mi

1))(4.1)

∀j ∈ [q], σ(λ(β(mj
2))) = ν(mj

2)(4.2)

Now, the knowledge of λ(m1
1), . . . , λ(mp−1

1 ) and ν(m1
2), . . . , ν(mq

2) allows us to determine the number of
elements in each of the blocks of partitions λ(π1) = λ(π1

1), . . . , λ(πp
1) and ν(π2) = ν(π1

2), . . . , ν(πq
2). Indeed,

the blocks of the above partitions are intervals:

λ(π1
1) = [λ(m1

1)]

λ(πi
1) = [λ(mi

1)] \ [λ(mi−1
1 )] for 2 ≤ i ≤ p − 1

λ(πp
1 ) = [N ] \ [ν(mp−1

1 )]

ν(π1
2) = [ν(m1

1)]

ν(πi
2) = [ν(mi

1)] \ [λ(mi−1
1 )] for 2 ≤ i ≤ q

Hence, λ(π1) and ν(π2) are uniquely determined by (t, σ). Besides, since π2 is stable by β, we can use σ to
recover λ(π2). Indeed:
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σ−1(ν(π2)) = λ ◦ β ◦ ν−1(ν(π2))

σ−1(ν(π2)) = λ ◦ β(π2)

σ−1(ν(π2)) = λ(π2)(4.3)

Then as σ and ν(π2) are uniquely determined, so is λ(π2).

Example 4.1. We give here an illustration of the first steps of the injectivity proof. Let us suppose that
we are given the parameters N = 10, p = 3, q = 2, the following partial permutation

σ =

(

3 4 5 6 8 10
4 6 4 1 8 7

)

and the bicolored ordered tree on Figure 6.

Figure 6. A Bicolored Tree

Consider the set λ(S) in the first line of σ. Assuming a reverse labelling of the tree, the elements lacking in
λ(S) are

λ(m1
1), λ(m2

1), λ(β(m1
2), λ(β(m2

2)

The numbers lacking in λ(S) to complete it up to λ([N ]) are 1, 2, 7, 9. According to the previous remarks,
we can identify all these numbers in the following way:

λ(m1
1) = 1, λ(m2

1) = 2, λ(β(m1
2)) = 7, λ(β(m2

2)) = 9

Consider the set (ν ◦ β)−1(S) in the second line of σ. The elements lacking are

ν(m1
2), ν(m2

2), ν(β)−1(m1
1), ν(β)−1(m2

2)

We have

ν(m1
2) = 2, ν(β)−1(m1

1) = 3, ν(β)−1(m2
2) = 9, ν(m2

2) = 10

Now we can extend σ to the permutation σ on the set [N ]:

σ =

(

1 2 3 4 5 6 7 8 9 10
5 9 4 6 3 1 2 8 10 7

)

Note, that as λ(m1
1) = 1, λ(m2

1) = 2, ν(m1
2) = 2, ν(m2

2) = 10, we also can identify the images of white blocks
by λ and images of black blocks by ν:

λ(π1
1) = {1}, λ(π2

1) = {2}, λ(π3
1) = {3, 4, 5, 6, 7, 8, 9, 10},

ν(π1
2) = {1, 2}, ν(π2

2) = {3, 4, 5, 6, 7, 8, 9, 10}

Using (4.3) we obtain the relabelling of partition π2:

λ(π1
2) = {6, 7},(4.4)

λ(π2
2) = {1, 2, 3, 4, 5, 8, 9, 10}
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Now let us show that λ and ν are uniquely determined as well. As 1 ∈ π
p
1 and λ is an increasing function

on each block of π1, λ(1) is necessarily the least element of λ(πp
1). Let then λ(πk

2 ) be the block of λ(π2) such
that λ1 ∈ λ(πk

2 ). As ν is an increasing function on each block of π2, necessarily ν(1) is the least element of
ν(πk

2 ).
Now assume that for a given i in [N − 1], λ(1), . . . , λ(i) and ν(1), . . . , ν(i) have been determined. As π1

is stable by α, necessarily β(i) and i + 1 = γ(i) = α ◦ β(i) belong to the same block of π1. Hence λ(i + 1)
and λ(β(i)) belong to the same block of λ(π1). But:

(4.5) λ(β(i)) = λ ◦ β ◦ ν−1(ν(i)) = σ−1(ν(i))

As a consequence, λ(i+1) and σ−1(ν(i)) belong to the same block of λ(π1). Finally, as λ is an increasing
function on each block of π1, λ(i+1) is necessarily the least element of the block of λ(π1) containing σ−1(ν(i))
that has not been used yet to identify λ(1), . . . , λ(i).

Let us denote by λ(πl
2) the block of λ(π2) containing λ(i + 1). Since ν is an increasing function on each

block of π2, ν(i+1) is uniquely determined as being the least element of the block ν(πl
2) that has not already

been used to identify ν(1), . . . , ν(i). By iterating the above procedure for all the integers in [N − 1] we see
that λ and ν are uniquely determined.

To end this proof, we remark that :

π1 = λ−1(λ(π1))

π2 = ν−1(ν(π2))

α = γ ◦ β−1 = γ ◦ ν−1 ◦ σ ◦ λ

As a result, at most one triple (π1, π2, α) can be associated by ΘN,p,q to (t, σ). Moreover, if such a triple

exists, it can be computed using the description of Θ−1
N,p,q given by the above proof.

Example 4.2. We apply the iterative reconstruction of λ and ν to the previous example. A table of
three lines and N columns will be used to sum up the available information on λ and ν on each step of
the reconstruction: the first line is given by [N ] and represents the initial labelling γ of the edges of the
partitioned map, the second and third lines represent the relabellings of the same edges by λ and ν. We
initialize the procedure by putting 3 = min(λ(π3

1)) at the first position of the line for λ:

γ : 1 2 3 4 5 6 7 8 9 10
λ : 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
ν : ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Now, looking at equations (4.4) we establish, that the element 3 belongs to the second black block λ(π2
2).

As the least element of ν(π2
2) is 3, we put 3 in the first position of the third line of our table:

γ : 1 2 3 4 5 6 7 8 9 10
λ : 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
ν : 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Let us establish now what is the next white block in our partitioned map. For this goal we take the image
of the last discovered element ν(1) by σ−1:

σ−1(ν(1)) = σ−1(3) = 5

Thus σ−1(ν(1)) belongs to π3
1 . We then deduce that λ(2) is the least element of λ(π3

1) which has not been
met yet, i.e 4. We write 4 at the second position on the line for λ:

γ : 1 2 3 4 5 6 7 8 9 10
λ : 3 4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
ν : 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We iterate the process until λ and ν are fully reconstructed :

γ : 1 2 3 4 5 6 7 8 9 10
λ : 3 4 5 1 6 7 8 9 10 2
ν : 3 4 5 6 1 2 7 8 9 10
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Once λ and ν are known, we have the partitioned map reconstructed:

π1 = {{4}{10}{1, 2, 3, 5, 6, 7, 8, 9}}

π2 = {{5, 6}{1, 2, 3, 4, 7, 8, 9, 10}}

α = (13256798)(4)(10)

The bicolored map represented by this permutation is the unicellular map of genus 2 on Figure 7.

Figure 7. The Partitioned Bicolored Map Once Reconstructed

4.2. Surjectivity. Let us now proceed by showing that ΘN,p,q is a surjection. Clearly, up to the
reconstruction of λ and ν the first steps of the procedure described in the previous section can be applied to
any couple (t, σ) belonging to BT (p, q)×PP (N, N −1, N −1− (p+q)) . Namely we can define the extension
σ of σ to the whole set [N ] as well as the partitions λ(π1), λ(π2) and ν(π2). Then we use lemma 4.3 to show
that the reconstruction of λ and ν can also always be succesfully completed.

Lemma 4.3. Given any couple (t, σ) belonging to BT (p, q)×PP (N, N − 1, N − 1− (p+ q)), the iterative
procedure for the reconstruction of λ and ν can always be performed and gives a valid output in any case.

Proof. First of all, we notice that only two reasons can prevent the procedure from being performed
until its end. Either for a given i in [N − 1], σ−1(ν(i)) belongs to a block of λ(π1) that has all its elements
already used for the construction of λ(1), . . . , λ(i) so that we cannot define λ(i + 1); or λ(i + 1) belongs to
a block of λ(π2) such that the corresponding block of ν(π2) has all its elements already been used for the
construction of ν(1), . . . , ν(i) and we are not able to define ν(i+1). We show by induction that this situation
never occurs.

Assume that we have already successfully iterated the procedure up to i ≤ N − 1. Also assume that we
cannot define λ(i +1) due to the reason stated above. We note λ(πk

1 ) the block containing σ−1(ν(i)). Then:

(i) If λ(πk
1 ) does not contain λ(1), the last assumption implies that |πk

1 | + 1 different integers, includ-
ing ν(i), used for the construction of ν have their image by σ−1 in λ(πk

1 ). This is of course a
contradiction with the fact that σ−1 is a bijection.

(ii) If λ(1) belongs to λ(πk
1 ) (thus k = p), we still have a contradiction. In this particular case, we

only know that |πk
1 | different integers have their image by σ−1 in λ(πp

1). However, according to our
definition of σ, λ(π1) and λ(π2), if the white vertex in t corresponding to a given block πa

1 is the
direct descendant of the black vertex associated with πb

2 then :

(4.6) λ(ma
1) ∈ λ(πb

2)

In other words we cannot have used all the elements of ν(πb
2) for the construction of ν until

the maximum element of λ(πa
1 ) (and henceforth all the elements of λ(πa

1 )) has been used for the
construction of λ. In a similar fashion, if the black vertex associated to πc

2 is the direct descendant
of the white one corresponding to πd

1 , we have:

(4.7) σ−1(ν(mc
2)) ∈ λ(πd

1 )

And all the elements of ν(πc
2) must be used for the reconstruction of ν before all the elements of

λ(πd
1) are used for the reconstruction of λ. To summarize, all the elements of a block associated to

a vertex x (either black or white) are not used for the construction of λ and ν until all the elements
of the blocks associated with vertices that are descendant of x are used for the same construction.
As π

p
1 is associated with the root of t, if all the elements of λ(πp

1) have already been used for the
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construction of λ and ν, it means that all the elements of all the other blocks of λ(π1) and ν(π2)

have been already used as well. The reconstruction is hence completed and i = N . That is a
contradiction with our assumption i ≤ N − 1.

Once λ(i +1) is found, we notice that ν(i + 1) can always be defined. Indeed, if λ(i + 1) belonged to a block
λ(πl

2) such that all the elements of ν(πl
2) have been already used to construct ν, it would mean that |πl

2|+ 1
different integers belong to λ(πl

2), which is a contradiction. Our induction is completed by an obvious remark
that λ(1) and ν(1) can always be defined.

For the final step of this proof we need to show that once λ and ν are constructed the permutation α

defined by

(4.8) α = γ ◦ ν−1 ◦ σ ◦ λ

verifies the two following conditions:

(4.9) α(π1) = π1

(4.10) α−1γ(π2) = π2

Condition (4.10) comes from the fact that we have defined:

(4.11) λ(π2) = σ−1(π2)

Thus,

(4.12) π2 = λ−1 ◦ σ−1 ◦ ν ◦ γ−1 ◦ γ(π2)

and by consequence

(4.13) π2 = α−1 ◦ γ(π2)

Condition (4.9) can be shown using the fact that for all i in [N ], λ(i) and σ−1 ◦ ν ◦γ−1(i) belong to the same
block of λ(π1). Hence, λ−1 ◦ σ−1 ◦ ν ◦ γ−1(i) and i belong to the same block of π1. Finally, the blocks of π1

are stable by α−1 and henceforth by α.
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Strong Descent Numbers and Turán Type Theorems
(Extended Abstract)

Ron M. Adin and Yuval Roichman

Abstract. For a permutation π in the symmetric group Sn let the total degree be its valency in
the Hasse diagram of the strong Bruhat order on Sn, and let the down degree be the number of
permutations which are covered by π in the strong Bruhat order. The maxima of the total degree
and the down degree and their values at a random permutation are computed. Proofs involve
variants of a classical theorem of Turán from extremal graph theory.

Résumé. Pour une permutation π du groupe symétrique Sn, on définit le degré total de π comme
sa valence dans le diagramme de Hasse de l’ordre de Bruhat fort sur Sn, et le degré bas de ]pi

comme le nombre de permutations couvertes par π dans l’ordre de Bruhat fort. Nous calculons les
valeurs maximales pour le degré total et le degré bas, ainsi que leur valeurs pour une permutation
aléatoire. Nos démonstrations utilisent des variantes d’un théorème de Turán provenant de la théorie
des graphes extrémaux.

1. The Down, Up and Total Degrees

Definition 1.1. For a permutation π ∈ Sn let the down degree d−(π) be the number of per-
mutations in Sn which are covered by π in the strong Bruhat order. Let the up degree d+(π) be the
number of permutations which cover π in this order. The total degree of π is the sum

d(π) := d−(π) + d+(π),

i.e., the valency of π in the Hasse diagram of the strong Bruhat order.

Explicitly, for 1 ≤ a < b ≤ n let ta,b = tb,a ∈ Sn be the transposition interchanging a and b,
and for π ∈ Sn let

`(π) := min{k |π = si1si2 · · · sik}

be the length of π with respect to the standard Coxeter generators si = ti,i+1 (1 ≤ i < n) of Sn.
Then

d−(π) = #{ta,b | `(ta,bπ) = `(π) − 1}
d+(π) = #{ta,b | `(ta,bπ) = `(π) + 1}

d(π) = d−(π) + d+(π) = #{ta,b | `(ta,bπ) = `(π) ± 1}

For the general definitions and other properties of the weak and strong Bruhat orders see, e.g., [10,
Ex. 3.75] and [3, §§2.1, 3.1].
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We shall describe π ∈ Sn by its sequence of values [π(1), . . . , π(n)].

Observation 1.2. π covers σ in the strong Bruhat order on Sn if and only if there exist
1 ≤ i < k ≤ n such that

(1) b := π(i) > π(k) =: a.
(2) σ = ta,bπ, i.e., π = [. . . , b, . . . , a, . . .] and σ = [. . . , a, . . . , b, . . .].
(3) There is no i < j < k such that a < π(j) < b.

Corollary 1.3. For every π ∈ Sn

d−(π) = d−(π−1).

Example 1.4. In S3, d−[123] = 0, d−[132] = d−[213] = 1, and d−[321] = d−[231] = d−[312] =
2. On the other hand, d[321] = d[123] = 2 and d[213] = d[132] = d[312] = d[231] = 3.

Remark 1.5. The classical descent number of a permutation π in the symmetric group Sn is
the number of permutations in Sn which are covered by π in the (right) weak Bruhat order. Thus,
the down degree may be considered as a “strong descent number”.

Definition 1.6. For π ∈ Sn denote

D−(π) := {ta,b | `(ta,bπ) = `(π) − 1},

the strong descent set of π.

Example 1.7. The strong descent set of π = [7, 9, 5, 2, 3, 8, 4, 1, 6] is

D−(π) = {t1,2, t1,3, t1,4, t2,5, t3,5, t4,5, t4,8, t5,7, t5,9, t6,7, t6,8, t8,9}.

Remark 1.8. Generalized pattern avoidance, involving strong descent sets, was applied by Yong
and Woo [12] to determine which Schubert varieties are Gorenstein.

Proposition 1.9. The strong descent set D−(π) uniquely determines the permutation π.

Proof. By induction on n. The claim clearly holds for n = 1.
Let π be a permutation in Sn, and let π̄ ∈ Sn−1 be the permutation obtained by deleting the

value n from π. Note that, by Observation 1.2,

D−(π̄) = D−(π) \ {ta,n | 1 ≤ a < n}.

By the induction hypothesis π̄ is uniquely determined by this set. Hence it suffices to determine
the position of n in π.

Now, if j := π−1(n) < n then clearly tπ(j+1),n ∈ D−(π). Moreover, by Observation 1.2,
ta,n ∈ D−(π) =⇒ a ≥ π(j + 1). Thus D−(π) determines

π̄(j) = π(j + 1) = min{a | ta,n ∈ D−(π)},

and therefore determines j. Note that this set of a’s is empty if and only if j = n. This completes
the proof.

�

2. Maximal Down Degree

In this section we compute the maximal value of the down degree on Sn and find all the
permutations achieving the maximum. We prove

Proposition 2.1. For every positive integer n

max{d−(π)| π ∈ Sn} = bn2/4c.

Remark 2.2. The same number appears as the order dimension of the strong Bruhat poset [8].
An upper bound on the maximal down degree for finite Coxeter groups appears in [5, Prop. 3.4].
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For the proof of Proposition 2.1 we need a classical theorem of Turán.

Definition 2.3. Let r ≤ n be positive integers. The Turán graph Tr(n) is the complete r-partite
graph with n vertices and all parts as equal in size as possible, i.e., each size is either bn/rc or
dn/re. Denote by tr(n) the number of edges of Tr(n).

Theorem 2.4. [11] [4, IV, Theorem 8] (Turán’s Theorem)

(1) Every graph of order n with more than tr(n) edges contains a complete subgraph of order
r + 1.

(2) Tr(n) is the unique graph of order n with tr(n) edges that does not contain a complete
subgraph of order r + 1.

We shall apply the special case r = 2 (due to Mantel) of Turán’s theorem to the following
graph.

Definition 2.5. The strong descent graph of π ∈ Sn, denoted Γ−(π), is the undirected graph
whose set of vertices is {1, . . . , n} and whose set of edges is

{{a, b} | ta,b ∈ D−(π)}.

By definition, the number of edges in Γ−(π) equals d−(π).

Remark 2.6. Permutations for which the strong descent graph is connected are called indecom-
posable. Their enumeration was studied in [6]; see [7, pp. 7–8]. The number of components in
Γ−(π) is equal to the number of global descents in πw0 (where w0 := [n, n − 1, . . . , 1]), which were
introduced and studied in [2, Corollaries 6.3 and 6.4].

Lemma 2.7. For every π ∈ Sn, the strong descent graph Γ−(π) is triangle-free.

Proof. Assume that Γ−(π) contains a triangle. Then there exist 1 ≤ a < b < c ≤ n such that
ta,b, ta,c, tb,c ∈ D−(π). By Observation 1.2,

ta,b, tb,c ∈ D−(π) =⇒ π−1(c) < π−1(b) < π−1(a) =⇒ ta,c 6∈ D−(π).

This is a contradiction. �

Proof. (of Proposition 2.1) By Theorem 2.4(1) together with Lemma 2.7, for every π ∈ Sn

d−(π) ≤ t2(n) = bn2/4c.

Equality holds since

d−([bn/2c + 1, bn/2c + 2, . . . , n, 1, 2, . . . , bn/2c]) = bn2/4c.

�

Next we classify (and enumerate) the permutations which achieve the maximal down degree.

Lemma 2.8. Let π ∈ Sn be a permutation with maximal down degree. Then π has no decreasing
subsequence of length 4.

Proof. Assume that π = [. . . d . . . c . . . b . . . a . . .] with d > c > b > a and π−1(a) − π−1(d)
minimal. Then ta,b, tb,c, tc,d ∈ D−(π) but, by Observation 1.2, ta,d 6∈ D−(π). It follows that Γ−(π)
is not a complete bipartite graph, since {a, b}, {b, c}, and {c, d} are edges but {a, d} is not. By
Lemma 2.7, combined with Theorem 2.4(2), the number of edges in Γ−(π) is less than bn2/4c.

�
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Proposition 2.9. For every positive integer n

#{π ∈ Sn | d−(π) = bn2/4c} =

{

n, if n is odd;

n/2, if n is even.

Each such permutation has the form

π = [t + m + 1, t + m + 2, . . . , n, t + 1, t + 2, . . . , t + m, 1, 2, . . . , t],

where m ∈ {bn/2c, dn/2e} and 1 ≤ t ≤ n − m. Note that t = n − m (for m) gives the same
permutation as t = 0 (for n − m instead of m).

Proof. It is easy to verify the claim for n ≤ 3. Assume n ≥ 4.
Let π ∈ Sn with d−(π) = bn2/4c. By Theorem 2.4(2), Γ−(π) is isomorphic to the complete

bipartite graph Kbn/2c,dn/2e. Since n ≥ 4, each side of the graph contains at least two vertices. Let
1 = a < b be two vertices on one side, and c < d two vertices on the other side of the graph. Since
tb,c, tb,d ∈ D−(π), there are three possible cases:

(1) b < c, and then π = [. . . c . . . d . . . b . . .] (since π = [. . . d . . . c . . . b . . .] contradicts tb,d ∈ D−).
(2) c < b < d, and then π = [. . . d . . . b . . . c . . .].
(3) d < b, and then π = [. . . b . . . c . . . d . . .] (since π = [. . . b . . . d . . . c . . .] contradicts tb,c ∈ D−).

The same also holds for a instead of b, but then cases 2 and 3 are impossible since a = 1 < c.
Thus necessarily c appears before d in π, and case 2 is therefore impossible for any b on the same
side as a = 1. In other words: no vertex on the same side as a = 1 is intermediate, either in position
(in π) or in value, to c and d.

Assume now that n is even. The vertices not on the side of 1 form (in π) a block of length
n/2 of numbers which are consecutive in value as well in position. They also form an increasing
subsequence of π, since Γ−(π) is bipartite. The numbers preceding them are all larger in value, and
are increasing; the numbers succeeding them are all smaller in value, are increasing, and contain 1.
It is easy to check that each permutation π of this form has maximal d−(π). Finally, π is completely
determined by the length 1 ≤ t ≤ n/2 of the last increasing subsequence.

For n odd one obtains a similar classification, except that the length of the side not containing
1 is either bn/2c or dn/2e. This completes the proof.

�

3. Maximal Total Degree

Obviously, the maximal value of the total degree d = d− + d+ cannot exceed
(

n
2

)

, the total

number of transpositions in Sn. This is slightly better than the bound 2bn2/4c obtainable from
Proposition 2.1. The actual maximal value is smaller.

Theorem 3.1. For n ≥ 2, the maximal total degree in the Hasse diagram of the strong Bruhat
order on Sn is

bn2/4c + n − 2.

In order to prove this result, associate with each permutation π ∈ Sn a graph Γ(π), whose set
of vertices is {1, . . . , n} and whose set of edges is

{{a, b} | `(ta,bπ) − `(π) = ±1}.

This graph has many properties; e.g., it is K5-free and is the edge-disjoint union of two triangle-free
graphs on the same set of vertices. However, these properties are not strong enough to imply the
above result. A property which does imply it is the following bound on the minimal degree.

Lemma 3.2. There exists a vertex in Γ(π) with degree at most bn/2c + 1.
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Proof. Assume, on the contrary, that each vertex in Γ(π) has at least bn/2c + 2 neighbors.
This applies, in particular, to the vertex π(1). Being the first value of π, the neighborhood of π(1)
in Γ(π), viewed as a subsequence of [π(2), . . . , π(n)], consists of a shuffle of a decreasing sequence
of numbers larger than π(1) and an increasing sequence of numbers smaller than π(1). Let a be
the rightmost neighbor of π(1). The intersection of the neighborhood of a with the neighborhood
of π(1) is of cardinality at most two. Thus the degree of a is at most

n − (bn/2c + 2) + 2 = dn/2e ≤ bn/2c + 1,

which is a contradiction.
�

Proof. (of Theorem 3.1) First note that, by definition, the total degree of π ∈ Sn in the
Hasse diagram of the strong Bruhat order is equal to the number of edges in Γ(π). We will prove
that this number e(Γ(π)) ≤ bn2/4c + n − 2, by induction on n.

The claim is clearly true for n = 2. Assume that the claim holds for n− 1, and let π ∈ Sn. Let
a be a vertex of Γ(π) with minimal degree, and let π̄ ∈ Sn−1 be the permutation obtained from π
by deleting the value a (and decreasing by 1 all the values larger than a). Then

e(Γ(π̄)) ≥ e(Γ(π) \ a),

where the latter is the number of edges in Γ(π) which are not incident with the vertex a. By the
induction hypothesis and Lemma 3.2,

e(Γ(π)) = e(Γ(π) \ a) + d(a) ≤ e(Γ(π̄)) + d(a)
≤ b(n − 1)2/4c + (n − 1) − 2 + bn/2c + 1
= bn2/4c + n − 2.

Equality holds since, letting m := bn/2c,

e(Γ([m + 1,m + 2, . . . , n, 1, 2, . . . ,m])) = bn2/4c + n − 2.

�

Theorem 3.3.

#{π ∈ Sn | d(π) = bn2/4c + n − 2} =



















2, if n = 2;

4, if n = 3 or n = 4;

8, if n ≥ 6 is even;

16, if n ≥ 5 is odd.

The extremal permutations have one of the following forms:

π0 := [m + 1,m + 2, . . . , n, 1, 2, . . . ,m] (m ∈ {bn/2c, dn/2e}),

and the permutations obtained from π0 by one or more of the following operations:

π 7→ πr := [π(n), π(n − 1), . . . , π(2), π(1)] (reversing π),
π 7→ πs := π · t1,n (interchanging π(1) and π(n)),

π 7→ πt := t1,n · π (interchanging 1 and n in π).

Proof. It is not difficult to see that all the specified permutations are indeed extremal, and
their number is as claimed (for all n ≥ 2).

The claim that there are no other extremal permutations will be proved by induction on n. For
small values of n (say n ≤ 4) this may be verified directly. Assume now that the claim holds for
some n ≥ 4, and let π ∈ Sn+1 be extremal. Following the proof of Lemma 3.2, let a be a vertex
of Γ(π) with degree at most b(n + 1)/2c + 1, which is either π(1) or its rightmost neighbor. As in
the proof of Theorem 3.1, let π̄ ∈ Sn be the permutation obtained from π by deleting the value a
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(and decreasing by 1 all the values larger than a). All the inequalities in the proof of Theorem 3.1
must hold as equalities, namely: e(Γ(π) \ a) = e(Γ(π̄)), d(a) = b(n + 1)/2c + 1, and π̄ is extremal
in Sn. By the induction hypothesis, π̄ must have one of the prescribed forms. In all of them,
{π̄(1), π̄(n)} = {m,m + 1} is an edge of Γ(π̄). Therefore the corresponding edge {π(1), π(n + 1)}
(or {π(2), π(n + 1)} if a = π(1), or {π(1), π(n)} if a = π(n + 1)) is an edge of Γ(π) \ a, namely of
Γ(π). If a 6= π(1), π(n+1) then π(n+1) is the rightmost neighbor of π(1), contradicting the choice
of a. If a = π(n + 1) we may use the operation π 7→ πr. Thus we may assume from now on that
a = π(1).

Let N(a) denote the set of neighbors of a in Γ(π). Assume first that

π̄ = π0 = [m + 1,m + 2, . . . , n, 1, 2, . . . ,m] (m ∈ {bn/2c, dn/2e}).

Noting that dn/2e = b(n + 1)/2c and keeping in mind the decrease in certain values during the
transition π 7→ π̄, we have the following cases:

(1) a > m + 1 : in this case 1, . . . ,m 6∈ N(a), so that

d(a) ≤ n − m ≤ dn/2e = b(n + 1)/2c < b(n + 1)/2c + 1.

Thus π is not extremal.
(2) a < m : in this case m + 3, . . . , n + 1,m + 1 6∈ N(a), so that

d(a) ≤ 1 + (m − 1) ≤ dn/2e < b(n + 1)/2c + 1.

Again, π is not extremal.
(3) a ∈ {m,m + 1} : in this case

d(a) = 1 + m ≤ b(n + 1)/2c + 1,

with equality if and only if m = b(n + 1)/2c. This gives π ∈ Sn+1 of the required form
(either π0 or πs

0).

A similar analysis for π̄ = πs
0 gives extremal permutations only for a ∈ {m + 1,m + 2} and

d(a) = 3, so that n = 4 and π̄ = [2413] ∈ S4. The permutations obtained are π = [32514] and
π = [42513], which are πrt

0 , πrst
0 ∈ S5, respectively.

The other possible values of π̄ are obtained by the π 7→ πr and π 7→ πt operations from the
ones above, and yield analogous results.

�

4. Expectation

Theorem 4.1. For every positive integer n, the expected down degree of a random permutation
in Sn is

Eπ∈Sn
d−(π) =

n
∑

i=2

i
∑

j=2

j
∑

k=2

1

i · (k − 1)
= (n + 1)

n
∑

i=1

1

i
− 2n.

For a proof see [1].

Corollary 4.2. As n → ∞,

Eπ∈Sn
d−(π) = n ln n + O(n)

and

Eπ∈Sn
d(π) = 2n ln n + O(n).
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5. Generalized Down Degrees

Definition 5.1. For π ∈ Sn and 1 ≤ r < n let

D
(r)
− (π) := {ta,b| `(π) > `(ta,bπ) > `(π) − 2r}

the r-th strong descent set of π.
Define the r-th down degree as

d
(r)
− (π) := #D

(r)
− (π).

Example 5.2. The first strong descent set and down degree are those studied in the previous

section; namely, D
(1)
− (π) = D−(π) and d

(1)
− (π) = d−(π).

The (n − 1)-st strong descent set is the set of inversions:

D
(n−1)
− (π) = {ta,b | a < b, π−1(a) > π−1(b)}.

Thus
d
(n−1)
− (π) = inv(π),

the inversion number of π.

Observation 5.3. For every π ∈ Sn and 1 ≤ a < b ≤ n, ta,b ∈ D
(r)
− (π) if and only if

π = [. . . , b, . . . , a, . . . ] and there are less than r letters between the positions of b and a in π whose
value is between a and b.

Definition 5.4. The r-th strong descent graph of π ∈ Sn, Γr(π) is the graph whose set of
vertices is {1, . . . , n} and whose set of edges is

{{a, b}| ta,b ∈ D
(r)
− (π)}.

The following lemma generalizes Lemma 2.7.

Lemma 5.5. For every π ∈ Sn, the graph Γr(π) contain no subgraph isomorphic to the complete
graph Kr+2.

For a proof see [1].

Corollary 5.6. For every 1 ≤ r < n,

max{d
(r)
− (π)| π ∈ Sn} ≤ tr+1(n) ≤

(

r + 1

2

)(

n

r + 1

)2

.

Proof. Combining Turán’s Theorem together with Lemma 5.5.
�
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On bar partitions and spin character zeros

Christine Bessenrodt

Abstract. The main combinatorial result in this article is a classification of bar partitions of n which
are of maximal p-bar weight for all odd primes p ≤ n. As a consequence, we show that apart from very
few exceptions any irreducible spin character of the double covers of the symmetric and alternating groups
vanishes on some element of odd prime order.

Résumé. Notre résultat principal est une classification des partages barrés de n qui ont un poids p-barré
maximal pour tous les nombres prémiers p impairs inférieur à n. Comme conséquence, on a que, à quelques
exceptions près, tout caractère spin irréductible d’une couverture double des groupes symètriques et groupes
alternants s’annule sur un élément d’ordre premier.

1. Introduction

A well known result by Burnside states that any non-linear irreducible character of a finite group vanishes
on some element of the group. This was refined in [9], where it was shown that such a character always has
a zero at an element of prime power order; it had also been noticed in [9] that any non-linear irreducible
character of a finite simple group except possibly the alternating groups even vanishes on some element of
prime order. This was complemented in [5] where it was shown that this character property also holds for the
symmetric and the alternating groups. Indeed, this vanishing property was a consequence of a combinatorial
result on the weights of partitions.

Here, we deal with the corresponding result on bar weights of partitions into distinct parts (which we
call bar partitions). This then yields a vanishing property for irreducible spin characters of the double covers
of the symmetric and alternating groups on elements of odd prime order.

In the next section we collect together some combinatorial preliminaries; we then briefly recall the
results from [5] in the case of partitions and ordinary characters of the symmetric and alternating groups.
In Section 4 we discuss the case of bar partitions and spin characters of the double cover groups; in the main
result, Theorem 4.1, the bar partitions of n are classified which are of maximal p-bar weight for all primes
p ≤ n. These then give rise to the desired spin character zeros; see Theorem 4.2.

A detailed paper with full proofs will appear elsewhere.

2. Preliminaries

We refer to [8], [12], [7] for details about partitions, Young diagrams, hooks and bar partitions, shifted
diagrams and bars, respectively.

Consider a partition λ = (λ1, λ2, . . . , λl) of the integer n. Thus λ1 ≥ λ2 ≥ . . . ≥ λl > 0 and
λ1 + λ2 + . . . + λl = n, with integer parts λi; l = l(λ) is the length of λ. The Young diagram of λ consists
of n boxes with λi boxes in the ith row. We refer to the boxes in matrix notation, i.e. the (i, j)-box is the

2000 Mathematics Subject Classification. Primary 05A17; Secondary 20C30.
Key words and phrases. partitions, bar partitions, symmetric groups and their double covers, spin characters, vanishing
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jth box in the ith row. The (i, j)-hook consists of the boxes in the Young diagram to the right of and be-
low the (i, j)-box, and including this box. The number of boxes in this hook is its hook length, denoted by hij .

For n ∈ N, we denote by D(n) the set of partitions of n into distinct parts, and we set D =
⋃

n D(n).
We call the partitions in D also bar partitions. A partition λ ∈ D(n) is in D+(n) (or D−(n), respectively)
if n − l(λ) is even (or odd, respectively).

We denote by O(n) the set of partitions of n into odd parts; elements of the double cover groups S̃n which
correspond to elements of Sn of cycle type α ∈ O are said to be of type O.
For λ ∈ D, we consider the corresponding shifted diagram, where in the ith row we start on the diagonal
at (i, i) rather than at the box (i, 1). By flipping over the diagonal we obtain the shift symmetric diagram
S(λ). The bar lengths in λ correspond to the hook lengths in the λ-boxes of S(λ); the bar length at position
(i, j) is then denoted bij ; we abbreviate the bar lengths in the first row by b1i = bi.

Example. Take λ = (4, 3, 1). In the shift symmetric diagram below the bar lengths are filled into the
corresponding boxes of λ.

. 7 5 4 2

. . 4 3 1

. . . 1

. .

The removal of a p-bar from λ ∈ D(n) corresponds to taking a part p or two parts summing to p out
of λ, or subtracting p from a part of λ if possible (i.e., if the resulting partition is in D(n − p)). Doing this
as long as possible gives the p̄-core λ(p̄) of λ; the number of p-bars removed is then the p-bar weight w̄p(λ)
of λ (see [7] or [12] for details). These operations may also be performed on a suitable p̄-abacus.

Example. Take p = 3, λ = (7, 3, 2, 1). Removing a bar of length 3 from λ can be achieved by removing
the parts 2 and 1 from λ, or by removing the part 3, or by replacing 7 by 4. When we do this in succession,
we have reached the bar partition (4), from which we can remove a further 3-bar and thus obtain (1) = λ(3̄);

the 3̄-weight of λ is thus 4.

We will often make use of the following property of the p-bar weight of a partition (see [11], [12]); the
Lemma may easily be proved by considering the p̄-abacus (see [12]).

Lemma 2.1. Let p be an odd prime. If λ is a bar partition of p̄-weight w̄p(λ) = w, then λ has exactly w

bars of length divisible by p. In particular, if λ has a bar of length divisible by p, then it has a bar of length p.

This is used to prove some easy but crucial results about bar lengths (compare this with [4] where a
similar Lemma for hook lengths is used).

For p = 2, a suitable parameter to consider is the 4̄-core of λ which is computed using the 4̄-abacus with
one runner for the even parts, and two conjugate runners for the parts ≡ 1, 3 mod 4; in contrast to the
p̄-abacus for odd p, here we are allowed to subtract 2 from the even parts (so these will be removed when
computing the 4̄-core).

3. Partitions and ordinary characters of Sn and An

Before stating the new results on bar partitions and spin characters in the next section, we recall here
the recent results from [5]. Towards the refinement of Burnside’s Theorem for Sn and An the following main
combinatorial result was proved there:

Theorem 3.1. [5] Let λ be a partition of n ∈ N. Then the following holds:

(i) λ is of maximal p-weight for all primes p ≤ n, if and only if one of the following occurs:

λ = (n) , (1n) or (22) .
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(ii) λ is of maximal p-weight for all odd primes p ≤ n, if and only if λ is one of the partitions in (i), one of

(n − 1, 1), (2, 1n−2), where n = 2a + 1 for some a ∈ N, or one of the following occurs:

n = 6 : λ = (3, 2, 1)
n = 8 : λ = (5, 2, 1) or (3, 2, 13)
n = 9 : λ = (6, 3) or (23, 13)
n = 10 : λ = (4, 3, 2, 1)

This has the desired consequence:

Theorem 3.2. [5] Let n ∈ N. Let χ be any non-linear irreducible character of the symmetric group Sn

or the alternating group An. Then χ vanishes on some element of prime order. If χ(1) is not a 2-power,

then χ is zero on some element of odd prime order.

Theorem 3.1 also has a consequence for the distribution into p-blocks; this was recently taken up in more
detail in [2].

We refer to [8, section 2.5] for the labelling of the irreducible characters of An. A simple relation between
the p-weight of a partition λ and the defect of the p-block containing the irreducible character labelled by λ

is given in [8, 6.2.45]. The principal p-block of a finite group is the block containing the trivial character.

Theorem 3.3. [5] (i) The characters [n], [1n] and [22] are the only irreducible characters of Sn which

are in p-blocks of maximal defect for all primes p.

Apart from [12], [13], [14], [16], [22], the trivial character of Sn is the only irreducible character which is in the

principal p-block for all primes p ≤ n.

(ii) The characters {n}, {2, 1}± and {22}± are the only irreducible characters of An which are in p-blocks

of maximal defect for all primes p.

They belong to the principal p-block for all primes p ≤ n, except for the characters {2, 1}± at p = 2.

We will see that our main result on bar partitions is of a similar type as Theorem 3.1 above, and it has
similar consequences for character zeros of spin characters and for the distribution of spin characters into
spin p-blocks, for odd primes p.

4. Bar partitions and spin characters

In our main result we present a classification of the bar partitions of n which have maximal p̄-weight
⌊

n
p

⌋

for all odd primes p ≤ n; equivalently, the p̄-core of these bar partitions is small in the sense that it is

of size smaller than p. (Here b·c denotes the floor function. Thus bxc is the integral part of x ∈ R.) For
p = 2, we consider the case where the 4̄-core is small, i.e., of size smaller than 4.

The elements of odd prime order p which we are then going to use for the vanishing property for spin
characters of the double cover S̃n of the symmetric group Sn are those where the corresponding cycle type

is of maximal p-bar weight, i.e., the cycle type has
⌊

n
p

⌋

parts of size p. Indeed, the connection to the

vanishing of spin character values is easily explained. The irreducible spin characters of S̃n are labelled by
the bar partitions λ of n (and signs). The recursion formula given by Morris [10] for spin character values on

elements of type O in S̃n shows that the irreducible spin character(s) labelled by λ vanishes on a p-element
of maximal weight (where p is odd), if the p̄-weight of λ is not maximal.

Our main result on bar partitions is the following:

Theorem 4.1. Let λ be a bar partition of n ∈ N. Then λ is of maximal p̄-weight for all odd primes

p ≤ n, if and only if λ = (n) or λ = (n − 1, 1), where n = 2a + 2 for some a ∈ N, or one of the following

occurs:
n = 5 : λ = (3, 2)
n = 6 : λ = (3, 2, 1)
n = 8 : λ = (5, 2, 1)
n = 9 : λ = (4, 3, 2)
n = 10 : λ = (4, 3, 2, 1) or (7, 3)

.

If, in addition, also λ(4̄) is small, then λ = (n) or λ is one of (3, 1), (3, 2, 1), (4, 3, 2, 1).
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The combinatorial classification result immediately has the desired consequence for the spin character
zeros, as explained above; first we have to introduce some more notation (see [7], [10], [12]).

We denote by 〈µ〉 the irreducible spin character of S̃n corresponding to µ ∈ D+(n), and by 〈µ〉+,

〈µ〉
−

= sgn · 〈µ〉+, the irreducible spin characters of S̃n associated to µ ∈ D−(n).

Furthermore, we let 〈〈µ〉〉 denote the irreducible spin character of Ãn corresponding to µ ∈ D−(n) (which

is the reduction of 〈µ〉
±

), and 〈〈µ〉〉
±

the irreducible spin characters of Ãn associated to µ ∈ D+(n) (which

are conjugate and sum to the reduction of 〈µ〉, and which differ only on classes of cycle type λ ∈ D+).

We refer to [7] for further details on the irreducible spin characters of Ãn.

Let n ∈ N, n ≥ 4. First we observe that any irreducible spin character of a double cover S̃n of the
symmetric group or a double cover Ãn of the alternating group has a zero of order 2. For this, note that the
cycle types (2a1b), with a > 0, are neither of type O nor of type D and hence these classes do not split in
the double cover groups. Thus all spin characters are zero on these classes. Hence in the following Theorem
we are only interested in classes of odd prime order.

Theorem 4.2. Let n ∈ N, n ≥ 4. Let χ be any irreducible spin character of a double cover of the

symmetric group S̃n or the alternating group Ãn. Then χ vanishes on some element of odd prime order,

except if χ is a basic spin character, i.e., labelled by (n), or in the cases where χ is labelled by (n− 1, 1) with

n = 2a + 2 for some a ∈ N, or by one of the partitions (3, 2), (3, 2, 1) or (5, 2, 1).

Remark 4.3. If an irreducible character χ of a finite group G has a zero at an element of prime order p,
then p divides χ(1). Note that the irreducible spin characters of S̃n and Ãn of prime power degree have
been classified in [1]; from Theorem 4.2 we can immediately recover the classification of irreducible spin
characters of 2-power degree for these groups. In fact, here they are exactly those that do not have a zero
at an element of odd prime order.
The converse of the statement above does not hold, even for G = S̃n. The spin character 〈8, 4〉 is of degree
5280 = 24 · 3 · 5 · 11, but the character does not vanish on any element of order 3.

Note that for p > 2 there is a simple relation between the p̄-weight of a bar partition λ and the defect
of the p-spin block containing the irreducible spin character(s) of Sn or An labelled by λ (see [12]). For

2 < p ≤ n, the basic spin character(s) of S̃n or Ãn are contained in one spin p-block which we call the basic

spin p-block of S̃n or Ãn, respectively. The following is then another direct consequence of Theorem 4.1
(note that for a > 2 the spin character to (2a + 1, 1) is not in the basic spin p-block for any odd prime p not
dividing n and n − 1).

Theorem 4.4. Let n ∈ N, n ≥ 4.
(i) The basic spin characters 〈n〉(±), the spin characters 〈n − 1, 1〉(±) where n = 2a + 2 for some a ∈ N, and

the spin characters 〈3, 2〉
±

, 〈3, 2, 1〉
±

, 〈5, 2, 1〉
±

, 〈4, 3, 2〉, 〈4, 3, 2, 1〉, 〈7, 3〉 are the only irreducible spin charac-

ters of S̃n which are in spin p-blocks of maximal defect for all odd primes p.

The spin characters 〈3, 1〉, 〈5, 1〉, 〈3, 2〉
±
, 〈3, 2, 1〉

±
, 〈4, 3, 2〉, 〈7, 3〉 are the only non-basic spin characters

contained in the basic spin p-block for all odd primes p ≤ n.

(ii) The basic spin characters 〈〈n〉〉(±), the spin characters 〈〈n − 1, 1〉〉(±) where n = 2a + 2 for some a ∈ N,

and the spin characters 〈〈3, 2〉〉, 〈〈3, 2, 1〉〉, 〈〈5, 2, 1〉〉, 〈〈4, 3, 2〉〉
±
, 〈〈4, 3, 2, 1〉〉

±
, 〈〈7, 3〉〉

±
are the only irre-

ducible spin characters of Ãn which are in spin p-blocks of maximal defect for all odd primes p.

The spin characters 〈〈3, 1〉〉
±

, 〈〈5, 1〉〉
±

, 〈〈3, 2〉〉, 〈〈3, 2, 1〉〉, 〈〈4, 3, 2〉〉
±

, 〈〈7, 3〉〉
±

are the only non-basic spin

characters contained in the basic spin p-block of Ãn for all odd primes p ≤ n.

For p = 2, the blocks contain both ordinary and spin characters; in fact, the 2-block distribution of spin
characters is more intricate and has been determined in [3]. Here the 4̄-combinatorics mentioned before fits

with the distribution of spin characters into the 2-blocks of S̃n (see [3]). We note that when n ≡ 3 mod 4,
the basic spin character is not contained in the principal 2-block. Using also the 2-blocks, the non-basic spin
characters may be even more finely separated from the basic spin characters; one easily checks that only the
spin characters 〈3, 1〉 and 〈3, 2, 1〉

±
are in the same p-block as the basic spin characters for all primes p ≤ n

(analogously for Ãn).
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Now we want to indicate the strategy of the proof of the main classification result. We start by studying
the bar lengths in bar partitions. We write h̄µ for the product of all the bar lengths of a bar partition µ.

From now on, λ = (λ1, . . . , λl) is always a bar partition of n, of length l. The following easy result is
very useful:

Proposition 4.5. Assume that w̄p(λ) =
⌊

n
p

⌋

for the odd prime p ≤ n.

(i) Let µ be obtained from λ by removing the first row. If p does not divide h̄µ, then p, 2p, . . . ,
⌊

n
p

⌋

p

are first row bar lengths of λ.

(ii) If n − λ1 < p, then p, 2p, . . . ,
⌊

n
p

⌋

p are first row bar lengths of λ.

Note that the first row bar lengths of λ, denoted b1, . . . , bλ1
, can explicitly be given; the set of these

numbers is

{λ1 + λ2, . . . , λ1 + λl} ∪ {1, . . . , λ1} \ {λ1 − λ2, . . . λ1 − λl} .

In particular, the largest bar length in λ is λ1 + λ2.
As for the study of hook lengths of partitions, some number theoretic results about the distribution of

primes are needed. In particular, a result due to Hanson is very useful; the exceptions occurring here are
also a reason for exceptions occurring for small n in the classification theorem.

Theorem 4.6. [6] The product of k consecutive numbers all greater than k contains a prime divisor

greater than 3
2k, with the only exceptions 3 · 4, 8 · 9 and 6 · 7 · 8 · 9 · 10.

In the case of partitions, we first dealt with the case of hooks in [5]. Here, one treats the “bar case”
first, i.e., partitions of length at most 2.

Proposition 4.7. Let λ = (n − k, k) for some k ∈ N0, k < n − k. Then w̄p(λ) =
⌊

n
p

⌋

for all odd

primes p ≤ n if and only if one of the following holds:

(i) k = 0, i.e., λ = (n).
(ii) k = 1 and n = 2a + 2 for some a ∈ N0, i.e., λ = (2a + 1, 1).
(iii) λ is one of (3, 2), (7, 3).

If, in addition, also the 4̄-core is small, then λ = (n) or λ is one of (2, 1), (3, 1).

The following observation is crucial for getting a reduction procedure started in the general case.

Lemma 4.8. Let λ ∈ D(n). Let s be a bar length of λ with n
2 ≤ s. Then s is a first row bar length of λ

or s = b23 = λ2 + λ3. In the second case, b1, b2 are then the only first row bar lengths ≥ n
2 .

Corollary 4.9. Let n = 13, 14 or n ≥ 17. Let λ ∈ D(n) be of maximal p̄-weight for all odd primes p

with n
2 ≤ p ≤ n. Then all bar lengths ≥ n

2 are first row bar lengths of λ.

Based on the following result we can then use the same algorithm as in [4]:

Proposition 4.10. Let λ ∈ D(n), n ≥ 17, which is of maximal p̄-weight for all odd primes p ≤ n. Let

s1 < s2 < · · · < sr ≤ n and t1 < t2 < · · · < tr ≤ n be sequences of integers satisfying

(i) si < ti for all i;

(ii) s1, t1 are primes > n
2 ;

(iii) for 1 ≤ i ≤ r − 1, si+1, ti+1 have prime divisors exceeding 2n − si − ti.

Then s1, . . . , sr, t1, . . . , tr are first row bar lengths of λ.

It was already checked for the proof of the classification result in [1] that a suitable algorithm producing
sequences as occurring in the proposition above ends close to n; also, the Theorem is easily checked for
small n. We then obtain the following consequence:

Corollary 4.11. Let n ∈ N. Let λ be a bar partition of n of maximal p̄-weight for all odd primes p ≤ n,

b1 = λ1 + λ2 its largest bar length.

(i) For n ≤ 9.25 · 108, n − b1 ≤ 4.
(ii) For n > 9.25 · 108, n − b1 ≤ 225.
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After this, we still have the tasks to reduce 225 to some manageable number, and to deal with the cases
where n − b1 is small. For this, we use a tailor-made number-theoretic Lemma for reducing d = n − b1 and
k = λ2 − λ3 − 1; it refines Hanson’s Theorem in special situations.

Lemma 4.12. Let 5 ≤ m ≤ 1000. Then any product of m consecutive integers larger than 5.5 · 108 has a

prime divisor q > 2.15 · m, when m ≤ 10, q > 2.58 · m, when 11 ≤ m ≤ 21, and q > 3 · m, when m ≥ 22.

This Lemma also helps to deal with the cases of medium-sized d and k. The cases of small d and k are
dealt with in a tedious case-by-case analysis; here the further exceptions for small n stated in the Theorem
arise. This then finishes the proof.
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A Rook Theory Model for the Generalized p, q-Stirling Numbers of the First

and Second Kind

Karen Sue Briggs

Abstract. In (EJC 11 (2004), #R84), Remmel and Wachs presented two natural ways to define p, q-
analogues of the generalized Stirling numbers of the first and second kind, S1(α, β, r) and S2(α, β, r) as
introduced by Hsu and Shiue (Adv. App. Math 20 (1998), 366-384). In this paper, we present a rook
theoretic model for each type of p, q-analogue based on a pair of boards parametrized by the nonnegative
integers α, β, and r, so that rooks attack cells on its own board as well as on its companion board. For each
model, we provide an analogue of Goldman, Joichi and White’s product formula (Proc. Amer. Math. Soc.
52 (1975), 485-492) and demonstrate how each type of the generalized p, q-Stirling numbers of the first and
second kind arises as a special case of these p, q-rook numbers.

Résumé. Remmel et Wachs, dans (EJC 11 (2004), #R84), ont présenté deux façons naturelles pour définir les
p, q-analogues des nombres de Stirling généralisés, des première et deuxième sortes, S1(α, β, r) et S2(α, β, r),
introduits par Hsu et Shiue (Adv. App. Math 20 (1998), 366-384). Dans cet article, nous présentons un
model théorique des mouvements de la tour pour chaque type des p, q-analogues basé sur une paire de jeux

paramétrisés par les entiers non-négatifs α, β, et r. Ainsi, la tour attaque les cases sur son propre jeu et
celles de l’autre jeu. Pour chacun des modèles, nous donnons une formule analogue à celle du produit de
Goldman, Joichi et White (Proc. Amer. Math. Soc. 52 (1975), 485-492) et démontrons comment chaque
type de p, q-analogues des nombres de Stirling généralisés des première et deuxième sortes forment un cas
spécial de nombres p, q-analogues pour les mouvements de la tour.

1. Introduction

In [11], Remmel and Wachs presented two natural ways to give p, q-analogues of Hsu and Shiue’s gener-

alized Stirling numbers of the first and second kind [7], respectively denoted S
1

n,k(α, β, r) and S
2

n,k(α, β, r)
for 0 ≤ k ≤ n, and defined by

(1.1) x(x − α) · · · (x − (n − 1)α) =

n
∑

k=0

S
1

n,k(α, β, r)(x − r)(x − r − β) · · · (x − r − (k − 1)β),

and

(1.2) x(x − β) · · · (x − (n − 1)β) =

n
∑

k=0

S
2

n,k(α, β, r)(x + r)(x + r − α) · · · (x + r − (k − 1)α).

From these definitions, one can clearly see that S
1

n,k(α, β, r) = S
2

n,k(β, α,−r). Moreover, we find that

S
1

n,k(1, 0, 0) = sn,k and S
2

n,k(1, 0, 0) = Sn,k where sn,k and Sn,k respectively denote the classical Stirling
numbers of the first and second kind.

By setting

S1
n,k(α, β, r) = S

1

n,k(α, β,−r) and S2
n,k(α, β, r) = S

2

n,k(α, β,−r)

2000 Mathematics Subject Classification. Primary 05A10, 05A15, 05A30; Secondary 05E15.
Key words and phrases. generalized stirling numbers, p, q-analogues, rook numbers, bipartite boards.
This research was completed as part of a larger project on rook theory with Jeffrey B. Remmel, Department of Mathematics,

University of California, San Diego.
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and replacing x by t − r in equation (1.1) and x by t in equation (1.2), Remmel and Wachs obtained the
following pair of equations:

(1.3) (t − r)(t − r − α) · · · (t − r − (n − 1)α) =

n
∑

k=0

S1
n,k(α, β, r)t(t − β) · · · (t − (k − 1)β),

and

(1.4) t(t − β) · · · (t − (n − 1)β) =

n
∑

k=0

S2
n,k(α, β, r)(t − r)(t − r − α) · · · (t − r − (k − 1)α).

Replacing (t − γ) by two distinctly natural p, q-analogues, Remmel and Wachs then defined their two
types of p, q-analogues of S1

n,k(α, β, r) and S2
n,k(α, β, r). The p, q-analogue of any real number γ is defined

by

[γ]p,q =
pγ − qγ

p − q
,

so that when γ = n is a nonnegative integer, [n]p,q = qn−1+pqn−2+· · · pn−2q+pn−1. Then, the p, q-analogues
of n! and

(

n
k

)

are naturally defined by [n]p,q! = [n]p,q[n − 1]p,q · · · [1]p,q and
[

n

k

]

p,q

=
[n]p,q!

[k]p,q![n − k]p,q!
.

For their type-I (p, q)-analogues of S1
n,k(α, β, r) and S2

n,k(α, β, r), Remmel and Wachs replaced (t − γ)

by ([t]p,q − [γ]p,q) in (1.3) and (1.4). That is, they defined S
1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r) for 0 ≤ k ≤ n

respectively by the following equations:

([t]p,q − [r]p,q)([t]p,q − [r + α]p,q) · · · ([t]p,q − [r + (n − 1)α]p,q)(1.5)

=
n

∑

k=0

S
1,p,q
n,k (α, β, r)([t]p,q)([t]p,q − [β]p,q) · · · ([t]p,q − [(k − 1)β]p,q)

and

([t]p,q − [β]p,q) · · · ([t]p,q − [(n − 1)β]p,q)(1.6)

=
n

∑

k=0

S
2,p,q
n,k (α, β, r)([t]p,q − [r]p,q)([t]p,q − [r + α]p,q) · · · ([t]p,q − [r + (k − 1)α]p,q).

Moreover, they proved that when 0 ≤ k ≤ n, the S
1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r) defined according to

equations (1.5) and (1.6) satisfy the following recursions:

(1.7) S
1,p,q
0,0 (α, β, r) = 1 and S

1,p,q
n,k (α, β, r) = 0 if k < 0 or k > n

and

(1.8) S
1,p,q
n+1,k(α, β, r) = S

1,p,q
n,k−1(α, β, r) + ([kβ]p,q − [nα + r]p,q)S

1,p,q
n,k (α, β, r),

(1.9) S
2,p,q
0,0 (α, β, r) = 1 and S

2,p,q
n,k (α, β, r) = 0 if k < 0 or k > n

and

(1.10) S
2,p,q
n+1,k(α, β, r) = S

2,p,q
n,k−1(α, β, r) + ([kα + r]p,q − [nβ]p,q)S

2,p,q
n,k (α, β, r).

For their type-II (p, q)-analogues of S1
n,k(α, β, r) and S2

n,k(α, β, r), Remmel and Wachs replaced (t − γ)

by [t − γ]p,q in (1.3) and (1.4). That is, they defined S̃
1,p,q
n,k (α, β, r) and S̃

2,p,q
n,k (α, β, r) for 0 ≤ k ≤ n by the

following equations:

(1.11) [t − r]p,q [t − r − α]p,q · · · [t − r − (n − 1)α]p,q =

n
∑

k=0

S̃
1,p,q
n,k (α, β, r)[t]p,q [t − β]p,q · · · [t − (k − 1)β]p,q

and

(1.12) [t]p,q[t − β]p,q · · · [t − (k − 1)β]p,q =

n
∑

k=0

S̃
2,p,q
n,k (α, β, r)[t − r]p,q[t − r − α]p,q · · · [t − r − (k − 1)α]p,q.

353



A ROOK THEORY MODEL FOR THE GENERALIZED p, q-STIRLING NUMBERS
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Figure 1. A placement in (N|F)23(BBIP(1, 0, 3, 3, 5, 6, 7, 8)).

They further proved that when 0 ≤ k ≤ n, the S̃
1,p,q
n,k (α, β, r) and S̃

2,p,q
n,k (α, β, r) defined according to

equations (1.11) and (1.12) satisfy the following recursions:

(1.13) S̃
1,p,q
n+1,k(α, β, r) = q(k−1)β−nα−r S̃

1,p,q
n,k−1(α, β, r) + pt−kβ [kβ − nα − r]p,qS̃

1,p,q
n,k (α, β, r),

with initial conditions S̃
1,p,q
0,0 (α, β, r) = 1 and S̃

1,p,q
n,k (α, β, r) = 0 if k < 0 or k > n, and

(1.14) S̃
2,p,q
n+1,k(α, β, r) = qr+(k−1)α−nβ S̃

2,p,q
n,k−1(α, β, r) + pt−r−kα[kα + r − nβ]p,qS̃

2,p,q
n,k (α, β, r),

with initial conditions S̃
2,p,q
0,0 (α, β, r) = 1 and S̃

2,p,q
n,k (α, β, r) = 0 if k < 0 or k > n.

Remmel and Wachs gave rook theory interpretations to c
i,j
n,k(p, q) = (−1)n−kS

1,p,q
n,k (j, 0, i) and S

i,j
n,k(p, q) =

S
2,p,q
n,k (j, 0, i) as well as c̃

i,j
n,k(p, q) = (−1)n−kS̃

1,p,q
n,k (j, 0, i) and S̃

i,j
n,k(p, q) = S̃

1,p,q
n,k (j, 0, i) where i, j are nonneg-

ative integers. Moreover, they were able to give combinatorial proofs of certain product formulas involving
these polynomials. In this paper, we provide a generalization of their results by giving combinatorial in-
terpretations to S

i,p,q
n,k (α, β, r) and S̃

i,p,q
n,k (α, β, r) when α, β and r are integers and i ∈ {1, 2}, and we give

combinatorial proofs to the product formulas that Remmel and Wachs did not provide.

2. A Rook Theoretic Model for S
1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r)

In this section, we give a rook theoretic model to interpret the type-I generalized p, q-Stirling numbers
S

1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r). The boards in our model are constructed as follows. Given any two

finite sequences of nonnegative integers {a1, a2, . . . , an} and {b1, b2, . . . , bn}, we construct the bipartite board

BBIP(a1, b1, a2, b2, . . . , an, bn) whose column heights from left to right are a1, b1, a2, b2, . . . , an, bn. We will
call the collection of columns whose heights are a1, a2, . . . , an, the Premier-columns (P -columns), and the
collection of columns whose heights are b1, b2, . . . , bn the Secondary-columns (S-columns). For example, from
the sequences {1, 3, 5, 7} and {0, 3, 6, 8}, we obtain the board BBIP(1, 0, 3, 3, 5, 6, 7, 8) which is illustrated in
Figure 1 with the P -columns given in white and the S-columns shaded in gray.

For any bipartite board B = BBIP(a1, b1, a2, b2, . . . , an, bn), a rook r placed in a P -column (resp.
S-column) of B is said to j-attack the cells in the P -columns of B that are strictly to the right of r in
the first j rows that are weakly above r (resp. in the first j rows beginning with row 1) that are not
j-attacked by any other rook that lies in a column to the left of r. Then, a placement P of rooks in
BBIP(a1, b1, a2, b2, . . . , an, bn) is called j-nonattacking if no rook in P is j-attacked by any rook in P to its

left and there is at most one j-attacking rook per column pair {ai, bi} for each 1 ≤ i ≤ n. We let (N|F)j
k(B)

denote the set of all placements of k j-nonattacking rooks in B.
A placement in (N|F)23(BBIP(1, 0, 3, 3, 5, 6, 7, 8)) is illustrated in Figure 1. As usual, rooks are denoted

in the figure by an “x”. In this example, the leftmost rook in B is placed in row 2 of column a1 and 2-attacks
the cells in rows 2 and 3 of columns a3 and a4. These cells 2-attacked by the leftmost rook contain an “a” in
Figure 1. The second rook from the left in row 3 of column b3 2-attacks the cells in rows 1 and 4 of column
a4. These cells 2-attacked by this second rook contain a “b” in Figure 1. The final rook of the placement is
in row 6 of column a4. Since there are no P -columns to the right of a4, this rook does not j-attack any cells
in the board.
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Figure 2. The p, q-weight of P ∈ (N|F)23(BBIP(1, 0, 3, 3, 5, 6, 7, 8)) as contributed to r
j
k(B, p, q).

For a nonnegative integer j, we say that a board B = BBIP(a1, b1, a2, b2, . . . , an, bn) is a j-attacking

bipartite board if 0 ≤ a1 ≤ a2 ≤ · · · ≤ an, 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn, and for all placements of rooks in B, there
are a sufficient number of cells in the P -columns of B for each rook to j-attack. By this definition, note that
in the case when b1 = · · · = bn = 0, the board BBIP(a1, 0, a2, 0, · · · , an, 0) is a j-attacking bipartite board
provided that for all 1 ≤ i < n, ai 6= 0 implies that ai+1 ≥ ai + j − 1. However, in the case when bi 6= 0 for
some 1 ≤ i < n, B is a j-attacking bipartite board provided that aj+1 ≥ aj + j for all j > i ≥ 1. In Figure 1,
the board BBIP(1, 0, 3, 3, 5, 6, 7, 8) is a 2-attacking bipartite board.

Suppose that P ∈ (N|F)j
k(B) and set

nS(P) = the number of rooks of P placed in an S-column,
AB = the number of non-attacked cells in B directly above some rook in P,
BB = the number of non-attacked cells in B directly below some rook in P,

w
j
p,q,B(P) = (−1)nS(P)qABpBB .

The type-I p, q-rook numbers, denoted r
j
k(B, p, q), are defined by

(2.1) r
j
k(B, p, q) =

∑

P∈(N|F)j

k
(B)

w
j
p,q,B(P).

Here and in what follows, we will place a “•” in the cells j-attacked by rooks in a given placement P, a
q in the cells that contribute a factor of q to w

j
p,q,B(P), and a p in the cells that contribute a factor of p to

w
j
p,q,B(P). As illustrated in Figure 2 for P ∈ (N|F)23(BBIP(1, 0, 3, 3, 5, 6, 7, 8)), w

j
p,q,B(P) = (−1)2q9p5 .

Our first result is a p, q-analogue of Goldman, Joichi, and White’s product formula [5].

Theorem 2.1. Let B = BBIP(s, b1, s + j, b2, . . . , s + (n − 1)j, bn). Then

n
∑

k=0

r
j
n−k(B, p, q)([x]p,q − [s]p,q)([x]p,q − [s + j]p,q) · · · ([x]p,q − [s + (k − 1)j]p,q)(2.2)

= ([x]p,q − [b1]p,q)([x]p,q − [b2]p,q) · · · ([x]p,q − [bn]p,q).

Proof. Given B = BBIP(s, b1, s+ j, b2, . . . , s+(n− 1)j, bn), we let B(x,j) be the board obtained from B

by adjoining a single column of height x + s + (i − 1)j beneath the column pair {ai, bi} for each 1 ≤ i ≤ n.
Here we call the line separating B from the adjoined rows the bar, the first x rows below the bar in B(x,j)

the x-adjoined rows and the last s + (n − 1)j rows in B(x,j) below the bar the j-adjoined rows. Further, we
will call the collection of cells in the column pair {ai, bi} together with the x + s + (i − 1)j adjoined cells
below it the ith joined column. The augmented board B(x,j) is illustrated in Figure 3.

For a given board B, placements of j-attacking rooks placed above the bar in B(x,j) will j-attack the
same cells above the bar as described above. Additionally, any j-attacking rook r placed above the bar will
attack all of the cells below it in its joined column as well as the first j rows in the j-adjoined rows strictly
to the right of r not attacked by any rook to the left. A rook that is placed in one of the x-adjoined rows will
attack all of the cells directly above it in the board B as well as the cells directly below it in the j-adjoined
rows. A rook that is placed in a j-adjoined row will attack the cells directly above it in the x-adjoined
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Figure 3. The board B(x,j)(s, b1, s + j, b2, . . . , s + (n − 1)j, bn)

rows and in the board B. The cells attacked by rooks of a placement in B(x,j)(1, 0, 3, 3, 5, 6, 7, 8) have been
illustrated in Figure 4.

Let (N|F)j
n(B(x,j)) be the set of all placements of n rooks in B(x,j) such that no two rooks lie in the

same joined column, no rook in B(x,j) is j-attacked by any rook in B(x,j) to its left. Thus, the placement in

Figure 4 is in (N|F)24(BBIP(1, 0, 3, 3, 5, 6, 7, 8)(x,2)).
Then for positive integers x, the identity in (2.2) arises from two ways of counting

(2.3) N =
∑

P∈(N|F)j
n(B(x,j))

w
j
p,q,B(x,j)

(P),

where w
j
p,q,B(x,j)

(P) is defined as

w
j
p,q,B(x,j)

(P) = (−1)nS+nj q
AB(x,j) p

BB(x,j) ,

with
nS(P) = the number of rooks of P placed in an S-column,
nj(P) = the number of rooks of P placed in a j-adjoined row,

AB(x,j)
= the number of non-attacked cells in B(x,j) directly above some rook in P,

BB(x,j)
= the number of non-attacked cells in B(x,j) directly below some rook in P.

First we note that each placement P ∈ (N|F)j
n(B(x,j)) can be obtained by placing exactly one rook in

each of the joined columns of B(x,j) proceeding from left to right. In the first joined column, the rook can
be placed in either the first P -column, the first S-column, below the bar in the x-adjoined rows, or in the
j-adjoined rows. It is easy to see that the contribution of the first joined column to N by placing the rook in
the ith row from the top in the first P -column is qi−1ps−i for a total contribution of [s]p,q to N . Likewise,
the contribution of the first joined column to N by placing the rook in the ith row from the top in the first
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Figure 4. A placement in the board B(x,2)(B(1, 0, 3, 3, 5, 6, 7, 8)).

S-column is −qi−1pb1−i for a total contribution of −[b1]p,q to N . Using the same analysis, we find that when
the rook is placed below the bar in the x-adjoined rows, the contribution of the first joined column to N is
[x]p,q while the total contribution is −[s]p,q from the placements in the j-adjoined rows. Therefore, the total
contribution of the first joined column to N is [x]p,q − [b1]p,q.

We now argue that regardless of the placement of the rook in the first joined column, the contributions
from the P -column and the j-adjoined of the second adjoined column will cancel. To see this, first consider
the case when a rook in the first joined column had been placed in B. Such a rook would attack exactly
j cells in the P -columns as well as j cells in each row of the j-adjoined columns weakly to the right of the
rook. In this case, the contribution from the second P -column is [s]p,q while the contribution from the second
j-adjoined column is −[s]p,q. On the other hand, if the rook in the first joined column had been placed below
the bar, then the contribution from the second P -column is [s + j]p,q while the contribution from the second
j-adjoined column is −[s + j]p,q. To this end, we can argue as above, that the contribution of the second
adjoined column to N is [x]p,q − [b2]p,q.

Continuing in this way, we find that the total contribution of all n adjoined columns to N is

([x]p,q − [b1]p,q)([x]p,q − [b2]p,q) · · · ([x]p,q − [bn]p,q).

Now suppose that a placement Q of n−k rooks is fixed in B. Then a placement P ∈ (N|F)j
n(B(x,j)) can

be obtained from Q by placing the remaining k rooks below the bar. As prescribed, each of the n− k rooks
in B will attack j cells in the j-adjoined rows in the columns weakly to the right of each rook. As such, there
will be x places in the x-adjoined rows and s + (i − 1)j places in the j-adjoined rows in which to place the
ith rook below the bar from the left, for 1 ≤ i ≤ k. Therefore, the placement of the k rooks below the bar
will contribute a factor of ([x]p,q − [s]p,q)([x]p,q − [s + j]p,q) · · · ([x]p,q − [s + (k − 1)j]p,q) to N . Furthermore,

each rook placed below the bar will attack the cells above it in B implying that w
j
p,q,B(Q) = w

j
p,q,B(P ∩ B).
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Thus,

N =

n
∑

k=0

∑

Q∈(N|F)j

n−k
(B)

∑

P∈(N|F)
j
n(B(x,j))

P∩B=Q

w
j
p,q,B(x,j)

(P)

=

n
∑

k=0

∑

Q∈(N|F)j

n−k
(B)

w
j
p,q,B(P ∩ B)([x]p,q − [s]p,q)([x]p,q − [s + j]p,q) · · · ([x]p,q − [s + (k − 1)j]p,q)

=

n
∑

k=0

r
j
n−k(B, p, q)([x]p,q − [s]p,q)([x]p,q − [s + j]p,q) · · · ([x]p,q − [s + (k − 1)j]p,q).

�

We are now in a position to give combinatorial interpretations to S
1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r) defined

by (1.5) and (1.6). To begin, let x, y, µ and ν be nonnegative integers and let Bx,y
µ,ν,n denote the bipartite

board BBIP(x, y, x + µ, y + ν, x + 2µ, y + 2ν, . . . , x + (n − 1)µ, y + (n − 1)ν). Then,

Theorem 2.2. If n and k are nonnegative integers for which 0 < k < n, then

S
1,p,q
n,k (α, β, r) = r

β
n−k(B0,r

β,α,n, p, q) and(2.4)

S
2,p,q
n,k (α, β, r) = rα

n−k(Br,0
α,β,n, p, q).(2.5)

Proof. We begin by noting that the identities in (2.4) and (2.5) can be proved by showing that the

p, q-rook numbers r
β
n−k(B0,r

β,α,n, p, q) satisfy the same recursion as S
1,p,q
n,k (α, β, r) given in (1.7) and (1.8) and

that rα
n−k(Br,0

α,β,n, p, q) satisfy the same recursion as S
2,p,q
n,k (α, β, r) given in (1.9) and (1.10).

For n = 0, B
x,y
µ,ν,0 = ∅. So, it immediately follows from our definition that

r
β
0 (B0,r

β,α,0, p, q) = 1 and rα
0 (Br,0

α,β,0, p, q) = 1.

Clearly, r
β
n−k(B0,r

β,α,n, p, q) = 0 and rα
n−k(Br,0

α,β,n, p, q) = 0 if k > n or k < 0 since both (N|F)β
n−k(B0,r

β,α,n)

and (N|F)α
n−k(Br,0

α,β,n) are empty if k > n or k < 0. Therefore, to verify the equalities in (2.4) and (2.5), it
remains to show that for all n ≥ 1 and 0 ≤ k ≤ n,

(2.6) r
β
n+1−k(B0,r

β,α,n+1, p, q) = r
β

n−(k−1)(B
0,r
β,α,n, p, q) + ([kβ]p,q − [nα + r]p,q) r

β
n−k(B0,r

β,α,n, p, q)

and

(2.7) rα
n+1−k(Br,0

α,β,n+1, p, q) = rα
n−(k−1)(B

r,0
α,β,n, p, q) + ([kα + r]p,q − [nβ]p,q) rα

n−k(Br,0
α,β,n, p, q).

To prove (2.6), we note that the set of elements in (N|F)β
n+1−k(B0,r

β,α,n+1) can be partitioned into the

sets No, P − Last, and S − Last where No consists of the placements of (N|F)β
n+1−k(B0,r

β,α,n+1) with no

rook in the column pair {an+1, bn+1}, P −Last consists of the placements of (N|F)β
n+1−k(B0,r

β,α,n+1) with a

rook in the P -column an+1, and S − Last consists of the placements of (N|F)β
n+1−k(B0,r

β,α,n+1) with a rook
in the S-column bn+1. Then,

r
β
n+1−k(B0,r

β,α,n+1, p, q) =
∑

P∈(N|F)β

n+1−k
(B0,r

β,α,n+1)

w
β

p,q,B
0,r

β,α,n+1

(P)

=
∑

P∈No

w
β

p,q,B
0,r

β,α,n+1

(P) +
∑

P∈P−Last

w
β

p,q,B
0,r

β,α,n+1

(P) +
∑

P∈S−Last

w
β

p,q,B
0,r

β,α,n+1

(P).

It is easy to see that a placement in P ∈ No has n − (k − 1) rooks to the left of the column pair

{an+1, bn+1}. Thus, w
β

p,q,B
0,r

β,α,n+1

(P) = w
β

p,q,B
0,r

β,α,n

(Q) where Q ∈ (N|F)β

n−(k−1)(B
0,r
β,α,n) is the placement

that would result in eliminating the last pair of columns {an+1, bn+1} from B
0,r
β,α,n+1. Therefore,

∑

P∈No

w
β

p,q,B
0,r

β,α,n+1

(P) =
∑

Q∈(N|F)β

n−(k−1)
(B0,r

β,α,n
)

w
β

p,q,B
0,r

β,α,n

(Q) = r
β

n−(k−1)(B
0,r
β,α,n, p, q).
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To compute
∑

P∈P−Last w
β

p,q,B
0,r

β,α,n+1

(P), we first observe that each Q ∈ (N|F)β
n−k(B0,r

β,α,n) can be ex-

tended to kβ placements in P − Last by placing an additional rook in a non-attacked cell of column an+1.

This follows since each of the n − k rooks of a fixed Q ∈ (N|F)β
n−k(B0,r

β,α,n) attacks β cells in column an+1

leaving nβ − (n − k)β = kβ non-attacked cells in column an+1 in which to place the additional rook. Next,
we note that nS(P) = nS(Q). So, if the additional rook is placed in the ith non-attacked cell from the top,

then the weight of the corresponding placement Pi is qi−1pkβ−iw
β

p,q,B
0,r

β,α,n

(Q). Therefore,

∑

P∈P−Last

w
β

p,q,B
0,r

β,α,n+1

(P) =
∑

Q∈(N|F)β

n−k
(B0,r

β,α,n
)

(pkβ−1 + qpkβ−2 + · · · + qkβ−2p + qkβ−1) w
β

p,q,B
0,r

β,α,n

(Q)

= [kβ]p,qr
β
n,k(B0,r

β,α,n, p, q).

Finally, we observe that each rook of P ∈ S −Last attacks β cells of column an+1 but no cells of column

bn+1. Accordingly,
∑

P∈S−Last w
β

p,q,B
0,r

β,α,n+1

(P) could be computed by extending each Q ∈ (N|F)β
n−k(B0,r

β,α,n)

to nα + r distinct placements in (N|F)β
n−k+1(B

0,r
β,α,n+1) by placing an additional rook in any of the nα + r

non-attacked cells of column bn+1. For such a placement Pi obtained by placing the additional rook in the

ith non-attacked cell from the top, we note that nS(Pi) = 1 + nS(Q) and consequently w
β

p,q,B
0,r

β,α,n+1

(Pi) =

−qi−1pnα+r+iw
β

p,q,B
0,r

β,α,n

(Q). Therefore, it follows that

∑

P∈S−Last

w
β

p,q,B
0,r

β,α,n+1

(P)

=
∑

Q∈(N|F)β

n−k
(B0,r

β,α,n
)

−(pnα+r−1 + qpnα+r−2 + · · · + qnα+r−2p + qnα+r−1) w
β

p,q,B
0,r

β,α,n

(Q)

= −[nα + r]p,q r
β
n,k(B0,r

β,α,n, p, q).

In the same way, we prove (2.7) by partitioning (N|F)α
n+1−k(Br,0

α,β,n+1) into the sets No, P −Last, and

S − Last where No consists of the placements of (N|F)α
n+1−k(Br,0

α,β,n+1) with no rook in the column pair

{an+1, bn+1}, P − Last consists of the placements of (N|F)α
n+1−k(Br,0

α,β,n+1) with a rook in the P -column

an+1, and S − Last consists of the placements of (N|F)α
n+1−k(Br,0

α,β,n+1) with a rook in the S-column bn+1.

The recursion in (2.7) will follow by showing that

rα
n+1−k(B0,r

β,α,n+1, p, q) =
∑

P∈(N|F)α
n+1−k

(Br,0
α,β,n+1)

wα

p,q,B
r,0
α,β,n+1

(P)

=
∑

P∈No

wα

p,q,B
r,0
α,β,n+1

(P) +
∑

P∈P−Last

wα

p,q,B
r,0
α,β,n+1

(P) +
∑

P∈S−Last

wα

p,q,B
r,0
α,β,n+1

(P).

Again, it is easy to see that
∑

P∈No

wα

p,q,B
r,0
α,β,n+1

(P) = rα
n−(k−1)(B

r,0
α,β,n, p, q).

To compute
∑

P∈P−Last wα

p,q,B
r,0
α,β,n+1

(P), we observe that each fixed placement Q ∈ (N|F)α
n−k(Br,0

α,β,n)

can be extended to kα + r distinct placements in (N|F)α
n−k(Br,0

α,β,n) by placing an additional rook in one of

the nα + r − α(n − k) = kα + r non-attacked cells of column an+1. If the additional rook is placed in the
ith non-attacked cells from the top of column an+1, then the weight of the corresponding placement Pi is
qi−1pkα+r−iwα

p,q,B
r,0
α,β,n

(Q). It follows that

∑

P∈P−Last

wα

p,q,B
r,0
α,β,n+1

(P) =
∑

Q∈(N|F)α
n−k

(Br,0
α,β,n

)

(pkα+r−1 + qpkα+r−2 + · · · + qkα+r−2p + qkα+r−1) wα

p,q,B
r,0
α,β,n

(Q)

= [kα + r]p,qr
α
n,k(Br,0

α,β,n, p, q).
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As above, we observe that each rook of P ∈ S−Last attacks α cells of column an+1 but no cells of column

bn+1. Therefore,
∑

P∈S−Last wα

p,q,B
r,0
α,β,n+1

(P) could be computed by extending each Q ∈ (N|F)α
n−k(Br,0

α,β,n) to

nβ distinct placements in (N|F)α
n−k+1(B

r,0
α,β,n+1) by placing an additional rook in any of the nβ non-attacked

cells of column bn+1. For such a placement Pi obtained by placing the additional rook in the ith non-attacked
cell from the top, we note that nS(Pi) = 1 + nS(Q) and thus wα

p,q,B
0,r

β,α,n+1

(Ps) = −qi−1pnβ+iwα

p,q,B
0,r

β,α,n

(Q).

To this end,
∑

P∈S−Last

wα

p,q,B
r,0
α,β,n+1

(P) =
∑

Q∈(N|F)α
n−k

(Br,0
α,β,n

)

−(pnβ−1 + qpnβ−2 + · · · + qnβ−2p + qnβ−1) wα

p,q,B
r,0
α,β,n

(Q)

= −[nβ]p,qr
α
n,k(Br,0

α,β,n, p, q).

�

We end this section by noting that as a consequence of Theorems 2.1 and 2.2, our single model described
above yields a combinatorial interpretation to both (1.5) and (1.6). In particular, (1.5) is obtained from
(2.2) by setting s = 0, j = β, and bi = r + (i− 1)α. Likewise, setting s = r, j = α, and bi = (i− 1)β in (2.2)
produces (1.5).

3. A Rook Theoretic Model for S̃
1,p,q
n,k (α, β, r) and S̃

2,p,q
n,k (α, β, r)

To define the second type of p, q-rook numbers, let B be a j-attacking bipartite board and suppose
P ∈ (N|F)j

k(B). Assume additionally that the k rooks are in the column pairs {ai, bi} with labels 1 ≤ c1 <

· · · < ck ≤ n and that there are ji non-attacked cells in the column containing the rook among the pair
{aci

, bci
} for 1 ≤ i ≤ k. Setting

aB = the number of non-attacked cells in B directly above some rook in P,
bB = the number of non-attacked cells in B directly below some rook in P,
εB = the number of non-attacked cells in a P -column of an {ai, bi} pair containing no rook,

we define the type-II p, q-rook numbers, denoted r̃
j
k(B, p, q), by

(3.1) r̃
j
k(B, p, q) = q−(b1+···+bn)

∑

P∈(N|F)j

k
(B)

(−1)nS qεB(P)+aB(P)pbB(P)+kt−(j1+j2+···+jk).

The following result gives the generalized product formula for the type-II p, q-rook numbers.

Theorem 3.1. Let B = BBIP(a1, b1, a2, b2, . . . , an, bn) be a j-attacking bipartite board. Then for each

nonnegative integer n,

n
∑

k=0

r̃
j
n−k(B, p, q)[t]p,q[t − j]p,q · · · [t − (k − 1)j]p,q(3.2)

=

n
∏

i=1

q−bi
(

[t + ai − (i − 1)j]p,q − pt+ai−(i−1)j−bi [bi]p,q

)

.

The proof of Theorem 3.1 is similar to that of Theorem 2.1. The idea is to consider all placements of
n j-attacking rooks in the board B

j
t (a1, b1, a2, b2, . . . , an, bn) which is obtained from B by adjoining t rows

below the n P -columns, labeled from bottom to top by 1, 2, . . . , t. The board B
j
t (a1, b1, a2, b2, . . . , an, bn) is

illustrated in Figure 5. Here, rooks placed in B will j-attack in the P -columns as usual, while a rook that
is placed in row i below a P -column will j-attack the cells to the right in the first j rows weakly above it
in the list of rows i, i + 1, . . . , t, 1, . . . , i − 1 that have not been j-attacked by a rook from the left. Such a
placement of n rooks is illustrated in Figure 5 with j = 2.

It can also be shown that the type-II p, q-rook numbers on specific j-attacking bipartite boards satisfy
the same recursions as the type-II Stirling numbers of the first and second kind. To see this, we first note
that

(3.3) [kβ − nα − r]p,q = q−nα−r
(

[kβ]p,q − pkβ−nα−r[nα + r]
)
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t

x

x

x

x

x

Figure 5. The board B
j
t (a1, b1, a2, b2, . . . , an, bn)

and

(3.4) [kα + r − nβ]p,q = q−nβ
(

[kα + r]p,q − pkα+r−nβ [nβ]
)

.

Then, substituting the identity (3.3) into the recursion (1.13) and (3.4) into (1.14) yields the following
three term recursions:

S̃
1,p,q
n+1,k(α, β, r) = q(k−1)β−nα−r S̃

1,p,q
n,k−1(α, β, r) + pt−kβq−nα−r[kβ]p,qS̃

1,p,q
n,k (α, β, r)(3.5)

−pt−nα−rq−nα−r[nα + r]p,qS̃
1,p,q
n,k (α, β, r).

S̃
2,p,q
n+1,k(α, β, r) = qr+(k−1)α−nβ S̃

2,p,q
n,k−1(α, β, r) + pt−r−kαq−nβ [kα + r]p,qS̃

2,p,q
n,k (α, β, r)(3.6)

−pt−nβq−nβ [nβ]p,qS̃
2,p,q
n,k (α, β, r).

As in the proof of Theorem 2.2, we can show that the rook numbers r̃
β
n−k(B0,r

β,α,n) and r̃α
n−k(Br,0

α,β,n) satisfy

the respective recursions in (3.5) and (3.5) by again partitioning the set of placements (N|F)β
n+1(B

0,r
β,α,n+1)

and (N|F)α
n+1(B

r,0
α,β,n+1) into No, P − Last, and S − Last. We summarize these results in the following:

Theorem 3.2. If n and k are nonnegative integers for which 0 < k < n, then

S̃
1,p,q
n,k (α, β, r) = r̃

β
n−k(B0,r

β,α,n) and(3.7)

S̃
2,p,q
n,k (α, β, r) = r̃α

n−k(Br,0
α,β,n).(3.8)

As a consequence of Theorems 3.1 and 3.2, this single rook theoretic model yields a combinatorial
interpretation for the identities given in (1.11) and (1.12). To see this, we observe that

q−bi
(

[t + ai − (i − 1)j]p,q − pt+ai−(i−1)j−bi [bi]p,q

)

= [t + ai − (i − 1)j − bi]p,q.

Then from (3.2), (1.11) is obtained by setting j = β, ai = (i − 1)β, and bi = r + (i − 1)α as is (1.12) by
setting j = α, ai = r + (i − 1)α, and bi = (i − 1)β, and replacing t with t − r.
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4. Directions

While our models have provided a rook theoretic interpretation for both types of p, q-analogues of the
generalized Stirling numbers of the first and second kind, their product formulas and recursions, we have yet
to produce analogues of the orthogonality relations given by Hsu and Shiue [7] for arbitrary parameters α,
β, and r:

n
∑

k=i

S
1

n,k(α, β, r)S
2

k,i(α, β, r) =

n
∑

k=i

S
2

n,k(α, β, r)S
1

k,i(α, β, r) = χ(i = n).

Although, Remmel and Wachs gave direct combinatorial interpretations of the following p, q-analogues
of the orthogonality relations

n
∑

k=r

S
2,p,q
n,k (j, 0, i)S1,p,q

k,r (j, 0, i) = χ(r = n)

and
n

∑

k=r

p(n−k+1
2 )S̃2,p,q

n,k (j, 0, i)(pq)(
k

2)jp−irq−ikS̃
1,p,q
k,r (j, 0, i) = χ(r = n),

they did not provide the p, q-orthogonality relations for arbitrary parameters α, β, and r. We will pursue
this problem in a subsequent paper.
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Restricted Dumont permutations, Dyck paths, and noncrossing partitions

Alexander Burstein, Sergi Elizalde, and Toufik Mansour

Abstract. We complete the enumeration of Dumont permutations of the second kind avoiding a pattern
of length 4 which is in turn a Dumont permutation of the second kind. We also consider some combinatorial
statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection
between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that uses cycle
decomposition, as well as bijections between 132-, 231- and 321-avoiding Dumont permutations and Dyck
paths.

Résumé. Nous complétons l’énumeration des permutations Dumont de deuxième espèce évitant un motif de
longueur 4 étant elle-même une permutation Dumont de deuxième espèce. Nous considérons aussi quelques
statistiques combinatoires sur les permutations Dumont évitant certains motifs de longueur 3 et 4 et nous

démontrons une bijection naturelle entre les permutations Dumont de deuxième espèce évitant le motif 3142
et les partitions non-croisées via le biais de décompositions cycliques, aussi bien qu’une bijection entre les
permutations Dumont de deuxième espèce évitant les motifs 132, 231, 321 et les chemins de Dyck.

1. Preliminaries

The main goal of this paper is to give analogues of known enumerative results on certain classes of
permutations characterized by pattern-avoidance. Instead of taking the symmetric group Sn, we consider
the subset of Dumont permutations (see definition below), and we identify classes of restricted permutations
with enumerative properties that are analogous to the case of general permutations. More precisely, we study
the number of Dumont permutations of length 2n avoiding either a 3-letter pattern or a 4-letter pattern.
We also give direct bijections between equinumerous sets of restricted Dumont permutations of length 2n
and other objects such as restricted permutations of length n, Dyck paths of semilength n, or noncrossing
partitions of [n] = {1, 2 . . . , n}.

1.1. Patterns. Let σ ∈ Sn and τ ∈ Sk be two permutations. We say that τ occurs in σ, or that σ
contains τ , if σ has a subsequence (σ(i1), . . . , σ(ik)), 1 ≤ i1 < · · · < ik ≤ n, that is order-isomorphic to
τ (in other words, for any j1 and j2, σ(ij1) ≤ σ(ij2) if and only if τ(j1) ≤ τ(j2)). Such a subsequence is
called an occurrence (or an instance) of τ in σ. In this context, the permutation τ is called a pattern. If τ
does not occur in σ, we say that σ avoids τ , or is τ-avoiding. We denote by Sn(τ) the set of permutations
in Sn avoiding a pattern τ . If T is a set of patterns, then Sn(T ) =

⋂

τ∈T Sn(τ), i.e. Sn(T ) is the set of
permutations in Sn avoiding all patterns in T .

The first results in the extensive body of research on permutations avoiding a 3-letter pattern are due
to Knuth [9], but the intensive study of patterns in permutations began with Simion and Schmidt [16],
who considered permutations and involutions avoiding each set T of 3-letter patterns. One of the most
frequently considered problems is the enumeration of Sn(τ) and Sn(T ) for various patterns τ and sets of
patterns T . The inventory of cardinalities of |Sn(T )| for T ⊆ S3 is given in [16], and a similar inventory
for |Sn(τ1, τ2)|, where τ1 ∈ S3 and τ2 ∈ S4 is given in [23]. Some results on |Sn(τ1, τ2)| for τ1, τ2 ∈ S4 are
obtained in [22]. The exact formula for |Sn(1234)| and the generating function for |Sn(12 . . . k)| are found
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in [7]. Bóna [2] has found the exact value of |Sn(1342)| = |Sn(1423)|, and Stankova [18, 19] showed that
|Sn(3142)| = |Sn(1342)|. For a survey of results on pattern avoidance, see [1, 8].

Another problem is finding equinumerously avoided (sets of) patterns, i.e. sets T1 and T2 such that
|Sn(T1)| = |Sn(T2)| for any n ≥ 0. Such (sets of) patterns are called Wilf-equivalent and said to belong to
the same Wilf class. The following symmetry operations on Sn map every pattern onto a Wilf-equivalent
pattern:

• reversal r: r(τ)(i) = τ(n + 1 − i), i.e. r(τ) is τ read right-to-left.
• complement c: c(τ)(i) = n+ 1 − τ(i), i.e. c(τ) is τ read upside down.
• r ◦ c = c ◦ r: r ◦ c(τ)(i) = n+ 1 − τ(n+ 1 − i), i.e. r ◦ c(τ) is τ read right-to-left upside down.

The set of patterns 〈r, c〉(τ) = {τ, r(τ), c(τ), r(c(τ)) = c(r(τ))} is called the symmetry class of τ .
Sometimes we will represent a permutation π ∈ Sn by placing dots on an n × n board. For each

i = 1, . . . , n we will place a dot with abscissa i and ordinate π(i) (the origin of the board is at the bottom-
left corner).

1.2. Dumont permutations. In this paper we give a complete answer for the above problems when
we restrict our attention to the set of Dumont permutations. A Dumont permutation of the first kind is a
permutation π ∈ S2n where each even entry is followed by a descent and each odd entry is followed by an
ascent or ends the string. In other words, for every i = 1, 2, . . . , 2n,

π(i) is even =⇒ i < 2n and π(i) > π(i+ 1),

π(i) is odd =⇒ π(i) < π(i+ 1) or i = 2n.

A Dumont permutation of the second kind is a permutation π ∈ S2n where all entries at even positions
are deficiencies and all entries at odd positions are fixed points or excedances. In other words, for every
i = 1, 2, . . . , n,

π(2i) < 2i,

π(2i− 1) ≥ 2i− 1.

We denote the set of Dumont permutations of the first (resp. second) kind of length 2n by D
1
2n (resp.

D
2
2n). For example, D

1
2 = D

2
2 = {21}, D

1
4 = {2143, 3421, 4213}, D

2
4 = {2143, 3142, 4132}. We also define

D
1-Wilf-equivalence and D

2-Wilf-equivalence similarly to the Wilf-equivalence on Sn. Dumont [4] showed
that

|D1
2n| = |D2

2n| = G2n+2 = 2(1 − 22n+2)B2n+2,

where Gn is the nth Genocchi number, a multiple of the Bernoulli number Bn. Lists of Dumont permutations
D

1
2n and D

2
2n for n ≤ 4 as well as some basic information and references for Genocchi numbers and Dumont

permutations may be obtained in [15] and [17, A001469]. The exponential generating functions for the
unsigned and signed Genocchi numbers are as follows:

∞
∑

n=1

G2n
x2n

(2n)!
= x tan

x

2
,

∞
∑

n=1

(−1)nG2n
x2n

(2n)!
=

2x

ex + 1
− x = −x tanh

x

2
.

Some cardinalities of sets of restricted Dumont permutations of length 2n parallel those of restricted permu-
tations of length n. For example, the following results were obtained in [3, 11]:

• |D1
2n(τ)| = Cn for τ ∈ {132, 231, 312}, where Cn = 1

n+1

(

2n
n

)

is the n-th Catalan number.

• |D2
2n(321)| = Cn.

• |D1
2n(213)| = Cn−1, so r, c and r ◦ c do not necessarily produce D

1-Wilf-equivalent patterns.
• |D2

2n(231)| = 2n−1, while |D2
2n(312)| = 1 and |D2

2n(132)| = |D2
2n(213)| = 0 for n ≥ 3, so r, c and

r ◦ c do not necessarily produce D
2-Wilf-equivalent patterns either.

• |D2
2n(3142)| = Cn.

• |D1
2n(1342, 1423)| = |D1

2n(2341, 2413)| = |D1
2n(1342, 2413)| = sn+1, the (n + 1)-st little Schröder

number [17, A001003], given by s1 = 1, sn+1 = −sn + 2
∑n

k=1 sksn−k (n ≥ 2).
• |D1

2n(2413, 3142)| = C(2;n), the generalized Catalan number (see [17, A064062]).

Note that the these results parallel some enumerative avoidance results in Sn, where the same or similar
cardinalities are obtained:

• |Sn(τ)| = Cn = 1
n+1

(

2n
n

)

, the nth Catalan number, for any τ ∈ S3.
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• |Sn(123, 213)| = |Sn(132, 231)| = 2n−1.
• |Sn(3142, 2413)| = |Sn(4132, 4231)| = |Sn(2431, 4231)| = rn−1, the (n−1)-st large Schröder number

[17, A006318], given by r0 = 1, rn = rn−1 +
∑n−1

j=0 rkrn−k, or by rn = 2sn for n ≥ 1.

In this paper, we establish several enumerative and bijective results on restricted Dumont permutations.
In Section 2 we give direct bijections between D

1
2n(132), D

1
2n(231), D

2
2n(321) and the class of Dyck paths

of semilength n (paths from (0, 0) to (2n, 0) with steps u = (1, 1) and d = (1,−1) that never go below the
x-axis). This allows us to consider some permutation statistics, such as length of the longest increasing (or
decreasing) subsequence, and study their distribution on the sets D

1
2n(132), D

1
2n(231) and D

2
2n(321).

In Section 3, we consider Dumont permutations of the second kind avoiding patterns in D
2
4. Note

that [3] showed that |D2
2n(3142)| = Cn using block decomposition (see [12]), which is very surprising given

that it is by far a more difficult task to count all permutations avoiding a single 4-letter pattern (e.g., see
[2, 7, 18, 19, 21]).

Furthermore, we prove that D
2
2n(4132) = D

2
2n(321) and, thus, |D2

2n(4132)| = Cn. The fact that per-
mutations of different lengths are equinumerously avoided is another striking difference between restricted
Dumont permutations and restricted permutations.

Refining the result |D2
2n(3142)| = Cn in [3], we consider some combinatorial statistics on D

2
2n(3142) such

as the number of fixed points and 2-cycles, and give a natural bijection between permutations in D
2
2n(3142)

with k fixed points and the set NC(n, n− k) of noncrossing partitions of [n] into n− k parts that uses cycle
decomposition. This is yet another surprising difference since pattern avoidance on permutations so far has
not been shown to be related to their cycle decomposition in any natural way.

Finally, we prove that |D2
2n(2143)| = anan+1, where a2m = 1

2m+1

(

3m
m

)

and a2m+1 = 1
2m+1

(

3m+1
m+1

)

. This
allows us to relate 2143-avoiding Dumont permutations of the second kind with pairs of northeast lattice
paths from (0, 0) to (2n, n) and (2n+ 1, n) that do not get above the line y = x/2.

Thus, we complete the enumeration problem of D
2
2n(τ) for all τ ∈ D

2
4.

2. Dumont permutations avoiding a single 3-letter pattern

In this section we consider some permutation statistics and study their distribution on certain classes of
restricted Dumont permutations. We focus on the sets D

1
2n(132), D

1
2n(231) and D

2
2n(321), whose cardinality

is given by the Catalan numbers, as shown in [3, 11]. We construct direct bijections between these sets and
the class of Dyck paths of semilength n, which we denote Dn.

2.1. 132-avoiding Dumont permutations of the first kind. Here we present a bijection f1 between
D

1
2n(132) and Sn(132), which will allow us to enumerate 132-avoiding Dumont permutations of the first kind

with respect to the length of the longest increasing subsequences. The bijection is defined as follows. Let
π = π1π2 · · ·π2n ∈ D

1
2n(132). First delete all the even entries of π. Next, replace each of the remaining

entries πi by (πi +1)/2. Note that we only obtain integer numbers since the πi that were not erased are odd.
Clearly, since π was 132-avoiding, the sequence f1(π) that we obtain is a 132-avoiding permutation, that is,
f1(π) ∈ Sn(132). For example, if π = 64357821, then deleting the even entries we get 3571, so f1(π) = 2341.

To see that f1 is indeed a bijection, we now describe the inverse map. Let σ ∈ Sn(132). First replace
each entry σi with σ′

i := 2σi − 1. Now, for every i from 1 to n, proceed according to one of the two following
cases. If σ′

i > σ′
i+1, insert σ′

i + 1 immediately to the right of σ′
i. Otherwise (that is, σ′

i < σ′
i+1 or σ′

i+1 is not
defined), insert σ′

i + 1 immediately to the right of the rightmost element to the left of σ′
i that is bigger than

σ′
i, or to the beginning of the sequence if such element does not exist. For example, if σ = 546231, after the

first step we get (9, 7, 11, 3, 5, 1), so f−1
1 (σ) = (9, 10, 8, 7, 11, 12, 4, 3, 5, 6, 2, 1).

Recall Krattenthaler’s bijection between 132-avoiding permutations and Dyck paths [10]. We denote it
by ϕ : Sn(132) → Dn, and it can be defined as follows. Given a permutation π ∈ Sn(132) represented as an
n× n board, where for each entry π(i) there is a dot in the i-th column from the left and row π(i) from the
bottom, consider a lattice path from (n, 0) to (0, n) not above the antidiagonal y = n−x that leaves all dots
to the right and stays as close to the antidiagonal as possible. Then ϕ(π) is the Dyck path obtained from
this path by reading an u every time the path goes west and a d every time it goes north. Composing f1
with the bijection ϕ we obtain a bijection ϕ ◦ f1 : D

1
2n(132) → Dn.

Again through ϕ, the set S2n(132) is in bijection with D2n. Considering D
1
2n(132) as a subset of S2n(132),

we observe that g1 := ϕ ◦ f−1
1 ◦ϕ−1 is an injective map from Dn to D2n. Here is a way to describe it directly

only in terms of Dyck paths. Recall that a valley in a Dyck path is an occurrence of du, and that a tunnel
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is a horizontal segment whose interior is below the path and whose endpoints are lattice points belonging
to the path (see [5, 6] for more precise definitions). Let D ∈ Dn. For each valley in D, consider the tunnel
whose left endpoint is at the bottom of the valley. Mark the up-step and the down-step that delimit this
tunnel. Now, replace each unmarked down-step d with dud. Replace each marked up-step u with uu, and
each marked d with dd. The path that we obtain after these operations is precisely g1(D) ∈ D2n. The
reason is that through ϕ, each entry of the permutation has an associated tunnel in the path (as described
in [5]), and these operations on the steps of the path create tunnels that correspond to the even elements of
f−1
1 (ϕ−1(D)).

For example, if D = uduududd, then underlining the marked steps we get uduududd, so g1(D) =
ududuuududuudddd.

Denote by lis(π) (resp. lds(π)) the length of the longest increasing (resp. decreasing) subsequence of π.
Using the above bijections we obtain the following result.

Theorem 2.1. Let Lk(z) :=
∑

n≥0 |{π ∈ D
1
2n(132) : lis(π) ≤ k)}| zn be the generating function for

{132, 12 · · · (k + 1)}-avoiding Dumont permutations of the first kind. Then we have the recurrence

Lk(z) = 1 +
zLk−1(z)

1 − zLk−2(z)
,

with L−1(z) = 0 and L0(z) = 1.

Proof. As shown in [10], the length of the longest increasing subsequence of a permutation π ∈ S2n(132)
corresponds to the height of the path ϕ(π) ∈ D2n. Next we describe the statistic, which we denote λ, on
the set of Dyck paths Dn that, under the injection g1 : Dn ↪→ D2n, corresponds to the height in D2n. Let
D ∈ Dn. For each peak p of D, define λ(p) to be the height of p plus the number of tunnels below p
whose left endpoint is at a valley of D. Now let λ(D) := maxp{λ(p)} where p ranges over all the peaks of
D. From the description of g1 it follows that for any D ∈ Dn, height(g1(D)) = λ(D). Thus, enumerating
permutations in D

1
2n(132) according to the parameter lis is equivalent to enumerating paths in Dn according

to the parameter λ. More precisely, Lk(z) =
∑

D∈D:λ(D)≤k z
|D|. To find an equation for Lk, we use that

every nonempty Dyck path D can be uniquely decomposed as D = AuBd, where A,B ∈ D. We obtain that

Lk(z) = 1 + zLk−1(z) + z(Lk(z) − 1)Lk−2(z),

where the term zLk−1(z) corresponds to the case where A is empty (for then λ(uBd) = λ(B) + 1, and
z(Lk(z) − 1)Lk−2(z) to the case there A is not empty. From this we obtain the recurrence

Lk(z) = 1 +
zLk−1(z)

1 − zLk−2(z)
,

where L−1(z) = 0 and L0(z) = 1 by definition. �

It also follows from the definition of ϕ that the length of the longest decreasing subsequence of π ∈
S2n(132) corresponds to the number of peaks of the path ϕ(π) ∈ D2n. Looking at the description of g1,
we see that a peak is created in g1(D) for each unmarked down-step of d. The number of marked down-
steps is the number of valleys of D. Therefore, if D ∈ Dn, we have that the number of peaks of g1(D)
is peaks(g1(D)) = peaks(D) + n − valleys(D) = n + 1. Hence, we have that for every π ∈ D

1
2n(132),

lds(π) = n+ 1.

2.2. 231-avoiding Dumont permutations of the first kind. As we did in the case of 132-avoiding
Dumont permutations, we can give the following bijection f2 between D

1
2n(231) and Sn(231). Let π ∈

D
1
2n(231). First delete all the odd entries of π. Next, replace each of the remaining entries πi by πi/2.

Note that we only obtain integer entries since the remaining πi were even. Compare this to the analogous
transformation described in Section 3.1 for Dumont permutations of the second kind. Clearly the sequence
f2(π) that we obtain is a 231-avoiding permutation (since so was π), that is, f2(π) ∈ Sn(231). For example,
if π = (2, 1, 10, 8, 4, 3, 6, 5, 7, 9), then deleting the odd entries we get (2, 10, 8, 4, 6), so f2(π) = 15423.

To see that f2 is indeed a bijection, we define the inverse map as follows. Let σ ∈ Sn(231). First
replace each entry k with 2k. Now, for every i from 1 to n − 1, insert 2i − 1 immediately to the left of
the first entry to the right of 2i that is bigger than 2i (if such an entry does not exist, insert 2i − 1 at
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the end of the sequence). For example, if σ = 7215346, after the first step we get (14, 4, 2, 10, 6, 8, 12), so
f−1
2 (σ) = (14, 4, 2, 1, 3, 10, 6, 5, 8, 7, 9, 12, 11, 13).

Consider now the bijection ϕR : Sn(231) −→ Dn that is obtained by composing ϕ defined above with
the reversal operation that sends π = π1π2 · · ·πn ∈ Sn(231) to πR = πn · · ·π2π1 ∈ Sn(132).

Through ϕR, the set S2n(231) is in bijection with D2n, so we can identify D
1
2n(231) with a subset of D2n.

The map g2 := ϕR ◦f−1
2 ◦ (ϕR)−1 is an injection from Dn to D2n. Here is a way to describe it directly only in

terms of Dyck paths. Given D ∈ Dn, all we have to do is replace each down-step d of D with udd. The path
that we obtain is precisely g2(D) ∈ D2n. For example, if D = uduuududdd (this example corresponds to
the same σ given above), then g2(D) = uudduuuudduudduddudd. Given g2(D), one can easily recover
D by replacing every udd by d.

Some properties of ϕ trivially translate to properties of ϕR. In particular, the length of the longest
increasing subsequence of a 231-avoiding permutation π equals the number of peaks of ϕR(π), and the
length of the longest decreasing subsequence of π is precisely the height of ϕR(π).

It follows from the description of g2 in terms of Dyck paths that for any D ∈ Dn, g2(D) has exactly n
peaks (one for each down-step of D). Therefore, for any π ∈ D

1
2n(231), the number of right-to-left minima

of π is rlm(π) = n. In fact it is not hard to see directly from the definition of 231-avoiding Dumont
permutations that the right-to-left minima of π ∈ D

1
2n(231) are precisely its odd entries, which necessarily

form an increasing subsequence.
Also from the description of g2 we see that height(g2(D)) = height(D) + 1. In terms of permutations,

this translates to the fact that if π ∈ Sn(231), then lds(f2(π)) = lds(π) + 1. This allows us to enumerate
231-avoiding Dumont permutations with respect to the statistic lds. Indeed, |{π ∈ D

1
2n(231) : lds(π) = k}| =

|{D ∈ Dn : height(D) = k − 1}|.

2.3. 321-avoiding Dumont permutations of the second kind. Let us first notice that a permu-
tation π ∈ D

2
2n(321) cannot have any fixed points. Indeed, assume that πi = i. Then, if we write π = σiτ ,

the fact that π is 321-avoiding implies that σ is a permutation of {1, 2, . . . , i− 1} and τ is a permutation of
{i + 1, i + 2, . . . , n}. Since π ∈ D

2
2n, i must be odd, but then the first element of τ is in an even position,

and it is either a fixed point or an excedance, which contradicts the definition of Dumont permutations of
the second kind.

It is known (see e.g. [14]) that a permutation is 321-avoiding if and only if both the subsequence
determined by its excedances and the one determined by the remaining elements are increasing. It follows
that a permutation in D

2
2n(321) is uniquely determined by the values of its excedances. Another consequence

is that if π ∈ D
2
2n(321), then lis(π) = n.

We can give a bijection between D
2
2n(321) and Dn. We define it in two parts. For the first part, we use

the bijection ψ between Sn(321) and Dn that was defined in [5], and which is closely related to the bijection
between Sn(123) and Dn given in [10]. Given π ∈ Sn(321), consider again the n × n board with a dot in
the i-th column from the left and row π(i) from the bottom, for each i. Take the path with north and east
steps that goes from (0, 0) to the (n, n), leaving all the dots to the right, and staying always as close to the
diagonal as possible. Then ψ(π) is the Dyck path obtained from this path by reading an up-step every time
the path goes north and a down-step every time it goes east.

If we apply ψ to a permutation π ∈ D
2
2n(321) we get a Dyck path ψ(π) ∈ D2n. The second part

of our bijection is just the map g−1
2 defined above, which consists in replacing every occurrence of udd

with a d. It is not hard to check that π 7→ g−1
2 (ψ(π)) is a bijection from D

2
2n(321) to Dn. For example,

for π = (3, 1, 5, 2, 6, 4, 9, 7, 10, 8), we have that ψ(π) = uuudduuddudduuuddudd, and g−1
2 (ψ(π)) =

uududduudd.

3. Dumont permutations avoiding a single 4-letter pattern

In this section we will determine the structure of permutations in D
2
2n(τ) and find the cardinality |D2

2n(τ)|
for each τ ∈ D

2
4 = {2143, 3142, 4132}.

It was shown in [3] that |D2
2n(3142)| = Cn. In Section 3.1, we refine this result with respect to the

number of fixed points and 2-cycles in permutations in D
2
2n(3142) and use cycle decomposition to give

a natural bijection between permutations in D
2
2n(3142) with k fixed points and the set NC(n, n − k) of

noncrossing partitions of [n] into n−k parts. In Section 3.2, we prove that D
2
2n(4132) = D

2
2n(321) and, thus,
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|D2
2n(4132)| = Cn. Finally, in Section 3.3 we prove that |D2

2n(2143)| = anan+1, where a2m = 1
2m+1

(

3m
m

)

and a2m+1 = 1
2m+1

(

3m+1
m+1

)

. Thus, we can relate permutations in D
2
2n(2143) and pairs of northeast lattice

paths from (0, 0) to (2n, n) and (2n+ 1, n) that stay on or below y = x/2. This completes the enumeration
problem of D

2
2n(τ) for τ ∈ D

2
4.

3.1. Avoiding 3142. It was shown in [3] that |D2
2n(3142)| = Cn; moreover, the permutations π ∈

D
2
2n(3142) can be recursively described as follows:

(3.1) π = (2k, 1, r ◦ c(π′) + 1, π′′ + 2k),

where π′ ∈ D
2
2k−2(3142) and π′′ ∈ D

2
2n−2k(3142) (see Figure 1). From this block decomposition, it is easy

to see that the subsequence of odd integers in π is increasing. Moreover, the odd entries are exactly those
on the main diagonal and the first subdiagonal (i.e. those i for which π(i) = i or π(i) = i− 1).

Figure 1. The block decomposition of a permutation in D2
2n(3142).

In subsections 3.1.1 and 3.1.2 we use the above decomposition to derive two bijections from D
2
2n(3142)

to sets of cardinality Cn.

3.1.1. Subsequence of even entries. The first bijection is φ : D
2
2n(3142) → En ⊂ Sn, where

En =
{

(1/2)πev | π ∈ D
2
2n(3142)

}

,

and πev (resp. πov) is the subsequence of even (resp. odd) values in π. (Here 1
2πev is the permutation

obtained by dividing all entries in πev by 2; in other words, if σ = 1
2πev, then σ(i) = πev(i)/2 for all i ∈ [n].)

Define φ(π) = 1
2πev for each π ∈ D

2
2n(3142).

Permutations in En have a block decomposition similar to those in D
2
2n(3142), namely,

σ ∈ En ⇐⇒ σ = (k, r ◦ c(σ′), k + σ′′) for some σ′ ∈ Ek−1 and σ′′ ∈ En−k.

The inverse φ−1 : En → D
2
2n(3142) is easy to describe. Let σ ∈ En. Then π = φ−1(σ) is obtained as

follows: let πev = 2σ (i.e. πev(i) = 2σ(i) for all i ∈ [n]), then for each i ∈ [n] insert 2i−1 immediately before
2σ(i) if σ(i) < i or immediately after 2σ(i) if σ(i) ≥ i. For instance, if σ = 3124 ∈ E4, then πev = 6248 and
π = 61 32 54 87 ∈ D

2
8(3142).

It is not difficult to show that En consists of exactly those permutations that, written in cyclic form,
correspond to noncrossing partitions of [n] by replacing pairs of parentheses with slashes. We remark that
En is also the set of permutations whose tableaux (see [20]) have a single 1 in each column.

Theorem 3.1. For a permutation ρ, define

fix(ρ) = |{i | ρ(i) = i}|, exc(ρ) = |{i | ρ(i) > i}|,

fix
−1

(ρ) = |{i | ρ(i) = i− 1}|, def(ρ) = |{i | ρ(i) < i}|.

Then for any π ∈ D
2
2n(3142) and σ = φ(π) ∈ En, we have

fix(π) + fix
−1

(π) = n,(3.2)

fix(π) = def(σ),(3.3)

fix
−1

(π) = exc(σ) + fix(σ),(3.4)

fix(σ) = # 2-cycles in π.(3.5)
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Proof. Equation (3.2) follows from the fact that odd integers in π are exactly those on the main
diagonal and first subdiagonal.

Let π and σ be as above and let i ∈ [n]. Then there are two cases: either 2i−1 = π(2i) or 2i−1 = π(2i−1).
Case 1: π(2i) = 2i− 1. Then π(2i− 1) ≥ 2i, and hence π(2i− 1) must be even.
Case 2: π(2i− 1) = 2i− 1. Then π(2i) ≤ 2i− 2, and hence π(2i) must be even.

In either case, for each i ∈ [n], we have {π(2i− 1), π(2i)} = {2i− 1, 2si} for some si ∈ [n]. Define σ(i) = si.
Then σ(i) ≥ i if 2i− 1 ∈ fix

−1
(π), and σ(i) ≤ i− 1 if 2i− 1 ∈ fix(π). This proves (3.3) and (3.4).

Finally, let i ∈ [n] be such that σ(i) = i. Since 2σ(i) ∈ {π(2i− 1), π(2i)} and π(2i) < 2i, it follows that
2i = 2σ(i) = π(2i− 1), so 2i− 1 = π(2i), and thus π contains a 2-cycle (2i− 1, 2i).

Conversely, let (ab) be a 2-cycle of π, and assume that b > a. Then π(a) > a, so a must be odd, say
a = 2i − 1 for some i ∈ [n]. Then b = π−1(a) ∈ {2i − 1, 2i}, so b = 2i, and thus (ab) = (2i − 1, 2i). This
proves (3.5). �

Theorem 3.2. Let A(q, t, x) =
∑

n≥0

∑

π∈D2

2n
(3142) q

fix(π)t# 2-cycles in πxn be the generating function for

3142-avoiding Dumont permutations of the second kind with respect to the number of fixed points and the
number of 2-cycles. Then

(3.6) A(q, t, x) =
1 + x(q − t) −

√

1 − 2x(q + t) + x2((q + t)2 − 4q)

2xq(1 + x(1 − t))
.

Proof. By the correspondences in Theorem 3.1, it follows that

A(q, t, x) =
∑

n≥0

∑

σ∈En

qdef(σ)tfix(σ)xn.

For convenience, let us define a related generating function B(q, t, x) =
∑

n≥0

∑

σ∈En
qdef(σ)tfix

−1
(σ)xn. From

the block decomposition of permutations σ ∈ En as σ = (k, r ◦ c(σ′), k+σ′′) for some σ′ ∈ Ek−1, σ
′′ ∈ En−k,

it follows that

(3.7) A(q, t, x) = 1 + xtA(q, t, x) + x(B(1/q, t, xq) − 1)A(q, t, x).

The term xtA(q, t, x) corresponds to the case k = 1, in which σ′ is empty and k is a fixed point. When
k > 1, σ′′ still contributes as A(q, t, x), and the contribution of σ′ is B(1/q, t, xq) − 1, since elements with
σ′(i) = i− 1 become fixed points of σ, and all elements of σ′ other than its deficiencies become deficiencies
of σ.

A similar reasoning gives the following equation for B(q, t, x):

B(q, t, x) = 1 + xA(1/q, t, xq)B(q, t, x).

Solving for B we have B(q, t, x) = 1
1−xA(1/q,t,xq) , and plugging B(1/q, t, xq) = 1

1−xqA(q,t,x) into (3.7) gives

A(q, t, x) = 1 + x

(

1

1 − xqA(q, t, x)
+ t− 1

)

A(q, t, x).

Solving this quadratic equation gives the desired formula for A(q, t, x). �

3.1.2. Cycle decomposition. Letting t = 1 in (3.6), we obtain

Corollary 3.3. We have
∑

n≥0

∑

π∈D2

2n
(3142)

qfix(π)xn = A(q, 1, x) =
1 + x(q − 1) −

√

1 − 2x(q + 1) + x2(q − 1)2

2xq
,

i.e. the number of permutations in π ∈ D
2
2n(3142) with k fixed points is the Narayana number N(n, k) =

1
n

(

n
k

)(

n
k+1

)

, which is also the number of noncrossing partitions of [n] into n− k parts.

Proof. Even though the generating function is an immediate consequence of Theorem 3.2, we will give
a combinatorial proof of the corollary, by exhibiting a natural bijection ψ : D

2
2n(3142) → NC(n), where

NC(n) is the set of noncrossing partitions of [n]. We start by considering a permutation π ∈ D
2
2k(3142).

Iterating the block decomposition (3.1), we obtain

π = (2k1, 1, c ◦ r(π1) + 1, 2k2, 2k1 + 1, c ◦ r(π2) + 2k1 + 1, · · · , 2kr, 2kr−1 + 1, c ◦ r(πr) + 2kr−1 + 1)

= (2k1, 1, 2k1 − r(π1), 2k2, 2k1 + 1, 2k2 − r(π2), · · · , 2kr, 2kr−1 + 1, 2kr − r(πr)),
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where 1 ≤ k1 < k2 < · · · < kr = k, πi ∈ D
2
2(ki−ki−1−1)(3142) (1 ≤ i ≤ r), and we define k0 = 0. Note that

each permutation c ◦ r(πi) + 2ki−1 + 1 = 2ki − r(πi) of [2ki−1 + 2, 2ki − 1] occurs at positions [2ki−1 + 3, 2ki]
in π.

Now consider

π′ = (2k + 2, 1, c ◦ r(π) + 1) = (2kr + 2, 1, 2kr + 2 − r(π)).

Let k′i = k− ki = kr − ki. By (3.1), we have π ∈ D
2
2k+2(3142), πi ∈ D

2
2(k′

i−1
−k′

i
−1)(3142) (1 ≤ i ≤ r), k′r = 0,

k′0 = k, and

π′ = (2k+ 2, 1, πr + 2, 2k′r−1 + 1, 2, πr−1 + 2k′r−1 + 2, 2k′r−2 + 1, 2k′r−1 + 2, . . . , π1 + 2k′1 + 2, 2k+ 1, 2k′1 + 2).

Note that, for each i = 1, 2, . . . , r, the permutation πi + 2k′i + 2 of [2k′i + 3, 2k′i−1] occurs at positions
[2k′i + 3, 2k′i−1] in π′. Moreover, the entries 2k′i + 1 (0 ≤ i ≤ r − 1) occur at positions 2k′i + 1 in π′, and
thus are fixed points of π′. Finally, each entry 2k′i + 2 (1 ≤ i ≤ r) occurs at position 2k′i−1 + 2, 1 occurs at
position 2 = 2k′r + 2, and 2k + 2 = 2k′0 + 2 occurs at position 1.

Thus, γ = (2k′0 +2, 2k′1+2, 2k′2+2, . . . , 2k′r−1+2, 2k′r +2, 1) = (2k+2, 2k′1+2, 2k′2+2, . . . , 2k′r−1+2, 2, 1)
is a cycle of π′, and each remaining nontrivial cycle of π′ is completely contained in some πi +2k′i +2, which
is a 3142-avoiding Dumont permutation of the second kind of [2k′i + 3, 2k′i−1]. Note that

2k′i + 2 < 2k′i + 3 < 2k′i−1 < 2k′i−1 + 2,

so all entries of each remaining cycle of π′ are contained between two consecutive entries of γ.
Now let G be the subset of [2k + 2] consisting of the entries of γ. Then, clearly,

G/{2k′r−1 + 1}/ . . . /{2k′1 + 1}/{2k′0 + 1}/[2k′r + 3, 2k′r−1]/ . . . /[2k
′
1 + 3, 2k′0]

is a noncrossing partition of [2k+ 2]. Now it is easy to see by induction on the size of π′ that the subsets of
π′ formed by entries of the cycles in cycle decomposition of π′ form a noncrossing partition of π′. Moreover,
all the entries of G except the smallest entry are even, so likewise the cycle decomposition of π′ determines
a unique noncrossing partition of π′

ev , hence a unique noncrossing partition of [n].
Finally, any permutation π̂ ∈ D

2
2n(3142) can be written as π̂ = (π′, π′′ + 2k + 2), where π′ is as above

and π′′ ∈ D
2
2n−2k−2(3142), so the cycles of any permutation in D

2
2n(3142) determine a unique noncrossing

partition of [n].
Notice also that each cycle in the decomposition of π̂ contains exactly one odd entry, the least entry in

each cycle, so the number of odd entries of π̂ which are not fixed points, fix
−1

(π̂) = n−fix(π̂), is the number
of parts in ψ(π̂). This finishes the proof. �

For example, if

π̂ = 12, 1, 6, 3, 5, 4, 7, 2, 10, 9, 11, 8, 16, 13, 15, 14

= (12, 8, 2, 1)(6, 4, 3)(10, 9)(16, 14, 13)(15)(11)(7)(5) ∈ D
2
16(3142),

then ψ(π̂) = 641/32/5/87 ∈ NC(8). Note also that π̂ev = 63215487 = (641)(32)(5)(87).

3.2. Avoiding 4132. For Dumont permutations of the second kind avoiding the pattern 4132 we have
the following result.

Theorem 3.4. For any n ≥ 0, D
2
2n(4132) = D

2
2n(321). Moreover, |D2

2n(4132)| = Cn, where Cn is the
nth Catalan number. Thus, 4132 and 3142 are D

2-Wilf-equivalent.

Proof. The pattern 321 is contained in 4132. Therefore, if π avoids 321, then π avoids 4132, so
D

2
2n(321) ⊆ D

2
2n(4132). Now let us prove that D

2
2n(4132) ⊆ D

2
2n(321). Let n ≥ 4 and let π ∈ D

2
2n(4132)

contain an occurrence of 321. Choose the leftmost occurrence of 321 in π, namely, π(i1) > π(i2) > π(i3) with
1 ≤ i1 < i2 < i3 ≤ 2n such that i1+i2+i3 is minimal. If i1 is an even number, then π(i1−1) ≥ i1−1 ≥ π(i1),
so the occurrence π(i1 − 1)π(i1)π(i2) of pattern 321 contradicts minimality of our choice. Therefore, i1 is
odd. If i2 6= i1 + 1, then from the minimality of the occurrence we get that π(i1 + 1) < π(i3). Hence, π
contains 4132 a contradiction. So i2 = i1 + 1. If i3 is odd, then π(i3) ≥ i3 > i1 + 1 ≥ π(i1 + 1), which
contradicts the fact that π(i1) > π(i1 + 1) > π(i3). So i3 is even.

Therefore, the leftmost occurrence of 321 is given by π(2i+ 1)π(2i+ 2)π(j) where 4 ≤ 2i+ 2 ≤ j ≤ 2n
(since π(2) = 1, we must have i ≥ 1). By minimality of the occurrence, we have π(m) ≤ 2i for all m ≤ 2i.
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On the other hand, π(i3) < π(2i+ 2) ≤ 2i+ 1 which means that π(i3) ≤ 2i. Hence, π must contain at least
2i+ 1 letters smaller than 2i, a contradiction.

Therefore, if π ∈ D
2
2n(4132) then π ∈ D

2
2n(321). The rest is a consequence of [11, Theorem 4.3]. �

3.3. Avoiding 2143. Dumont permutations of the second kind that avoid 2143 are enumerated by the
following theorem, which we prove in this section.

Theorem 3.5. For any n ≥ 0, |D2
2n(2143)| = anan+1, where

a2m =
1

2m+ 1

(

3m

m

)

,

a2m+1 =
1

2m+ 1

(

3m+ 1

m+ 1

)

=
1

m+ 1

(

3m+ 1

m

)

.

Remark 3.6. Note that the sequence {an} enumerates, among other objects, pairs of northeast lattice
paths from (0, 0) to (n, bn/2c) that do not get above the line y = x/2 (see [17, A047749] and references
therein). Also note that {a2m+1} is the convolution of {a2m} with itself, while the convolution of {a2m} with
{a2m+1} is {a2m+2}. Alternatively, if f(x) and g(x) are the ordinary generating functions for {a2m} and
{a2m+1}, then f(x) = 1 + xf(x)g(x) and g(x) = f(x)2, so f(x) = 1 + xf(x)3. Now the Lagrange inversion
applied to the last two equations yields the formulas for an.

Note that Theorem 3.5 implies that limn→∞ |D2
2n(2143)|

1

2n = 33

22 = 27
4 . In comparison, [13] and [21]

imply that |Sn(2143)| = |Sn(1234)| and hence limn→∞ |Sn(2143)|
1

n = limn→∞ |Sn(1234)|
1

n = (4 − 1)2 = 9.

Lemma 3.7. Let π ∈ D
2
2n(2143). Then the subsequence (π(1), π(3), . . . , π(2n − 1)) is a permutation of

{n+ 1, n+ 2, . . . , 2n} and the subsequence (π(2), π(4), . . . , π(2n)) is a permutation of {1, 2, . . . , n}.

Proof. Assume the lemma is false. Let i be the smallest integer such that π(2i) ≥ n + 1. Then
π(2i− 1) ≥ 2i− 1 ≥ π(2i) ≥ n+ 1. Therefore, if j ≥ i, then π(2j − 1) ≥ 2j − 1 ≥ 2i− 1 ≥ n+ 1. In fact,
note that for any 1 ≤ j ≤ n, π(2j − 1) ≥ 2j − 1 ≥ π(2j).

By minimality of i, we have π(2j) ≤ n for j < i, so if π(2j − 1) ≤ n for some j < i, then (π(2j −
1), π(2j), π(2i− 1), π(2i)) is an occurrence of pattern 2143 in π. Hence, π(2j − 1) ≥ n+ 1 for all j < i.

Thus, we have π(2j − 1) ≥ n + 1 for any 1 ≤ j ≤ n, and π(2i) ≥ n + 1, so π must have at least n + 1
entries between n+ 1 and 2n, which is impossible. The lemma follows. �

For π ∈ D
2
2n(2143), we denote πo = (π(1), π(3), . . . , π(2n − 1)) − n and πe = (π(2), π(4), . . . , π(2n)).

By Lemma 3.7, πo, πe ∈ Sn(2143). For example, given π = 71635482 ∈ D
2
8(2143), we have πo = 3214 and

πe = 1342. Note that π(2i− 1) = πo(i) + n and π(2i) = πe(i).

Lemma 3.8. For any permutation π ∈ D
2
2n(2143), and πo and πe defined as above, the following is true:

(1) πo ∈ Sn(132) and the entries of πo are on a board with n columns aligned at the top of sizes
2, 4, 6, . . . , 2bn

2 c, n, . . . , n from right to left (see the first and third boards in Figure 2).
(2) πe ∈ Sn(213) and the entries of πe are on a board with n columns aligned at the bottom of sizes

1, 3, 5, . . . , 2bn
2 c − 1, n, . . . , n from left to right (see the second and fourth boards in Figure 2).

Figure 2. The boards of Lemma 3.8 for n = 9 (left) and n = 10 (right).

Proof. If 132 occurs in πo at positions i1 < i2 < i3, then 2143 occurs in π at positions 2i1 − 1 < 2i1 <
2i2 − 1 < 2i3 − 1 since π(2i1) < π(2i1 − 1). Similarly, if 213 occurs in πe at positions i1 < i2 < i3, then 2143
occurs in π at positions 2i1 < 2i2 < 2i3 − 1 < 2i3 since π(2i3 − 1) > π(2i3). The rest simply follows from
the definition of D

2
2n and Lemma 3.7. �
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Let us call a permutation as in part (1) of Lemma 3.8 an upper board, and a permutation as in part
(2) of Lemma 3.8 a lower board. Note that πe(1) = 1 and 213 = r ◦ c(132). Hence it is easy to see that
πe = (1, r ◦ c(π′) + 1) with π′ ∈ Sn−1(132) of upper type. Let bn be the number of lower boards in Sn(213).
Then the number of upper boards in Sn(132) is bn+1.

Lemma 3.9. Let π1 ∈ Sn(132) be an upper board and π2 ∈ Sn(213) be a lower board. Let π ∈ S2n be
defined by π = (π1(1)+n, π2(1), π1(2)+n, π2(2), . . . , π1(n)+n, π2(n)) (i.e. such that πo = π1 and πe = π2).
Then π ∈ D

2
2n(2143).

Proof. Clearly π ∈ D
2
2n. It is not difficult to see that if π contains 2143, then “2” and “1” are

deficiencies (i.e., they are at even positions and come from π2) and “4” and “3” are excedances or fixed
points (i.e. they are at odd positions and come from π1). Such an occurrence is represented in Figure 3,
where an entry π(i) is plotted by a dot with abscissa i and ordinate π(i), and the two diagonal lines indicate
the positions of the fixed points and elements with π(i) = i− 1.

Say the pattern 2143 occurs at positions 2i1 < 2i2 < 2i3−1 < 2i4−1. We have π(2j) ≤ 2j−1 < 2i2−1
for any j < i2. On the other hand, the subdiagonal part of π avoids 213, so π(2j) < π(2i1) ≤ 2i1−1 < 2i2−1
for any j ≥ i2. Thus, π(2j) < 2i2 − 1 for any 1 ≤ j ≤ n. Similarly, π(2j − 1) ≥ 2j − 1 > 2i3 − 1 for any
j > i3, and π(2j − 1) > π(2i4) ≥ 2i4 − 1 > 2i3 − 1 for any j ≤ i3 since the superdiagonal part of π avoids
132. Thus, π(2j − 1) > 2i3 − 1 for any 1 ≤ j ≤ n.

Therefore, no entry of π lies in the interval [2i2− 1, 2i3− 1], which is nonempty since 2i2 < 2i3− 1. This
is, of course, impossible, so the lemma follows. �

?

Figure 3. This situation is impossible in Lemma 3.9: no value between the grey points
(inclusive) can occur in π.

Hence, there is a bijection between π ∈ D
2
2n(2143) and pairs (π1, π2), where π1 ∈ Sn(132) is an upper

board and π2 ∈ Sn(213) is a lower board. Thus, |D2
2n(2143)| = bnbn+1, where bn is the number of lower

boards π ∈ Sn(213) and bn+1 is the number of upper boards π ∈ Sn(132) (see the remark after Lemma 3.8).

Lemma 3.10. Let F (x) =
∑∞

m=0 b2mx
m and G(x) =

∑∞
m=0 b2m+1x

m. Then we have b0 = 1 and

b2m =

m−1
∑

i=0

b2ib2m−2i−1, b2m+1 =

m
∑

i=0

b2ib2m−2i,

F (x) = 1 + xF (x)G(x), G(x) = F (x)2.

Proof. Let π ∈ Sn(213) be a lower board, and let i ≥ 0 be maximal such that π(i + 1) = 2i + 1.
Such an i always exists since π(1) = 1. Then π(j) ≤ 2j − 2 for j ≥ i+ 2. Furthermore, π avoids 213, so if
j1, j2 > i+ 1, and π(j1) > π(i+ 1) > π(j2), then j1 < j2. In other words, all entries of π greater than and
to the right of 2i+ 1 must come before all entries less than and to the right of 2i+ 1 (see Figure 4, the areas
that cannot contain entries of π are shaded). In addition, π(j) ≤ 2i+ 1 for j ≤ i+ 1, so π(j) > 2i+ 1 only
if j > i + 1. There are n − 2i − 1 values greater than 2i + 1 in π, hence they must occupy the n − 2i − 1
positions immediately to the right of π(i + 1), i.e. positions i + 2 through n − i. It is not difficult now to
see from the above argument that all entries of π greater than 2i+ 1 must lie on a board of lower type in
Sn−2i−1(213), while the entries less than 2i+ 1 in π must lie on two boards whose concatenation is a lower
board in S2i(213) (unshaded areas in Figure 4). �

Thus, we get the same generating function equations as in Remark 3.6, so F (x) = f(x), G(x) = g(x),
and hence bn = an for all n ≥ 0. This proves Theorem 3.5.
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Figure 4. A lower board π ∈ Sn(213) (n = 10 (even), left, and n = 11 (odd), right)
decomposed into two lower boards according to the largest i such that π(i + 1) = 2i + 1
(here i = 2).

We can give a direct bijection showing that bn = an. It is well-known that a2n (resp. a2n+1) is the
number of northeast lattice paths from (0, 0) to (2n, n) (resp. from (0, 0) to (2n + 1, n)) that do not get
above the line y = x/2. The following bijection uses the same idea as a bijection of Krattenthaler [10] from
the set of 132-avoiding permutations in Sn to Dyck paths of semilength n, which is described in Section 2.1.

We introduce a bijection between the set of lower boards in Sn(213) and northwest paths from (n, 0)
to (dn/2e, n) that stay on or above the line y = 2n − 2x (see Figure 5). Given a lower board in Sn(213)
represented as an n× n binary array, consider a lattice path from (n, 0) to (dn/2e, n) that leaves all dots to
the left and stays as close to the y = 2n− 2x as possible. We claim that such a path must stay on or above
the line y = 2n − 2x. Indeed, considering rows of a lower board from top to bottom, we see that at most
one extra column appears on the left for every two consecutive rows. Therefore, our path must shift at least
r columns to the right for every 2r consecutive rows starting from the top. The rest is easy to see.

Conversely, given a northwest path from (n, 0) to (dn/2e, n) not below the line y = 2n − 2x, fill the
corresponding board from top to bottom (i.e. from row n to row 1) so that the dots are in the rightmost
column to the left of the path that still contains no dots.

Figure 5. A bijection between lower boards in Sn(213), for n = 10 (left) and n = 11
(right), and northwest paths from (n, 0) to (dn/2e, n) not below y = 2n− 2x.

The median Genocchi number (or Genocchi number of the second kind) Hn [17, A005439] counts the
number of derangements in D

2
2n (also, the number of permutations in D

1
2n which begin with n or n + 1).

Using the preceding argument, we can also count the number of derangements in D
2
2n(2143).

Theorem 3.11. The number of derangements in D
2
2n(2143) is a2

n, where an is as in Theorem 3.5.

Proof. Notice that the fixed points of a permutation π ∈ D
2
2n(2143) correspond to the dots in the

lower right (southeast) corner cells on its upper board (except the lowest right corner when n is odd) (see
Figure 2). It is easy to see that deletion of those cells on an upper board produces a rotation of a lower
board by 180◦. This, together with the preceding lemmas, implies the theorem. �

The following theorem gives the generating function for the distribution of the number of fixed points
among permutations in D

2
2n(2143).

Theorem 3.12. We have

(3.8)
∑

π∈D2

2n
(2143)

qfix(π) = an[xn+1]

(

1

1 − xf(x2)
·

1

1 − qx2f(x2)2

)

.

where f(x) =
∑

n≥0 a2nx
n is a solution of f(x) = 1 + xf(x)3.
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Note that
∑

n≥0 a2nx
2n = f(x2) and g(x) =

∑

n≥0 a2n+1x
n = f(x)2 implies

∑

n≥0 a2n+1x
2n+1 =

xf(x2)2. Hence,
∑

n≥0

anx
n = f(x2) + xf(x2)2 =

1

1 − xf(x2)
.

Proof. Let π ∈ D
2
2n(2143). Note that all fixed points must be on the upper board of π. Therefore,

the lower board of π may be any 213-avoiding lower board. This accounts for the factor an. Now consider
the product of two rational functions on the right. This products corresponds to the fact that the upper
board B of π is a concatenation of two objects: the upper board B′ of rows below the lowest (smallest) fixed
point, and the upper board B′′ of rows not below the lowest fixed point. It is easy to see that B′ may be
any 132-avoiding upper board. Note that B′′ must necessarily have an even number of rows and that B′′ is
a concatenation of a sequence of “slices” between consecutive fixed points, where the ith slice consists of an
even number of rows below the (i+ 1)-th smallest fixed point but not below the ith smallest fixed point.

Thus, we obtain a block decomposition of the upper board B (similar to the one in the Figure 4 for lower
boards) into an possibly empty upper board B′ and a sequence B′′ of nonempty upper boards B′′

1 , B
′′
2 , . . . ,

where each B′′
i contains an even number of rows and exactly 1 fixed point of π. Taking generating functions

yields the product of functions on the right-hand side of (3.8). �

In conclusion, we note that not all results of the full paper fit in the length of this extended abstract.
Using the same methods as in [12], we may similarly obtain the generating function for the number of
Dumont permutations of the first kind simultaneously avoiding certain pairs of 4-letter patterns and another
pattern of arbitrary length in terms of Chebyshev polynomials.
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Linköping, Sweden, arxiv:math.CO/0212221.
[6] S. Elizalde, I. Pak, Bijections for refined restricted permutations, J. Combin. Theory Ser. A 105 (2004), 207–219.
[7] I. Gessel, Symmetric functions and p-recursiveness, J. Combin. Theory, Ser. A 53 (1990), 257–285.
[8] S. Kitaev, T. Mansour, A survey of certain pattern problems, preprint.
[9] D.E. Knuth, The Art of Computer Programming, vols. 1, 3, Addison-Wesley, NY, 1968, 1973.

[10] C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv. Appl. Math. 27 (2001), 510–530.
[11] T. Mansour, Restricted 132-Dumont permutations, Australasian J. Combin. 29 (2004), 103–118.
[12] T. Mansour, A. Vainshtein, Restricted permutations and Chevyshev polynomials, Sem. Loth. Comb. (2002), B47c.
[13] A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. Math. 41 (1981), 115–136.
[14] A. Reifegerste, On the diagram of 132-avoiding permutations, European J. Combin. 24 (2003), 759–776.
[15] F. Ruskey, Combinatorial Object Server, http://www.theory.csc.uvic.ca/~cos/inf/perm/GenocchiInfo.html.
[16] R. Simion, F.W. Schmidt, Restricted permutations, Europ. J. Combin. 6 (1985), 383–406.
[17] N.J.A. Sloane, S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, New York, 1995. Online at

http://www.research.att.com/∼njas/sequences.
[18] Z. Stankova, Forbidden subsequences, Discrete Math. 132 (1994), 291–316.
[19] Z. Stankova, Classification of forbidden subsequences of length 4, Europ. J. Combin. 17 (1996), 501–517.
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Restricted Patience Sorting and Barred Pattern Avoidance

Alexander Burstein and Isaiah Lankham

Abstract. Patience Sorting is a combinatorial algorithm that can be viewed as an iterated, non-recursive
form of the Schensted Insertion Algorithm. In recent work the authors have shown that Patience Sorting
provides an algorithmic description for permutations avoiding the barred (generalized) permutation pattern
3−1̄−42. Motivated by this and a recently formulated geometric form for Patience Sorting in terms of certain
intersecting lattice paths, we study the related themes of restricted input and avoidance of similar barred
permutation patterns. One such result is to characterize those permutations for which Patience Sorting is
an invertible algorithm as the set of permutations simultaneously avoiding the barred patterns 3−1̄−42 and
3−1̄−24. We then enumerate this avoidance set, which involves convolved Fibonacci numbers.

Résumé. Patience Sorting est un algorithme combinatoire que l’on peut comprendre comme étant une

version itérée, non-récursive de la correspondence de Schensted. Dans leur travail récent les auteurs ont
démontré que Patience Sorting donne une description algorithmique des permutations évitant le motif
barré (généralisé) 3−1̄−42. Motivés par ceci et par une forme récemment formulée de Patience Sorting en
termes de certaine parcours du treillis intersectants, nous étudions les thèmes connexe d’input restreinte et
permutations qui évitent de similaire motifs barrés. Un de nos résultats est de caractériser les permutations
pour lesquelles Patience Sorting est un algorithme inversible comme étant l’ensemble des permutations
évitant simultanément les motifs barrés 3−1̄−42 and 3−1̄−24. Nous énumérons ensuite cet ensemble, qui
utilise des convolutions des nombres de Fibonacci.

1. Introduction

The term Patience Sorting was introduced in 1962 by C. L. Mallows [12, 13] while studying a card
sorting algorithm invented by A. S. C. Ross. Given a shuffled deck of cards σ = c1c2 · · · cn (which we take
to be a permutation σ ∈ Sn), Ross proposed the following algorithm:

Step 1 Use what Mallows called a “patience sorting procedure” to form the subsequences
r1, r2, . . . , rm of σ (called piles) as follows:

• Place the first card c1 from the deck into a pile r1 by itself.

• For each remaining card ci (i = 2, . . . , n), consider the cards d1, d2, . . . , dk atop
the piles r1, r2, . . . , rk that have already been formed.

– If ci > max{d1, d2, . . . , dk}, then put ci into a new right-most pile rk+1

by itself.

– Otherwise, find the left-most card dj that is larger than ci and put the
card ci atop pile rj .

2000 Mathematics Subject Classification. Primary: 05A05, 05A15, 05A18; Secondary: 05E10.
Key words and phrases. patience sorting, barred and generalized permutation patterns, shadow diagrams, intersecting
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Step 2 Gather the cards up one at a time from these piles in ascending order.

We call Step 1 of the above algorithm Patience Sorting and denote by R(σ) = {r1, r2, . . . , rm} the pile
configuration associated to the permutation σ ∈ Sn. Moreover, given any pile configuration R, one forms its
reverse patience word RPW (R) by listing the piles in R “from bottom to top, left to right” (i.e., by reversing
the so-called “far-eastern reading”). In [5] these words are characterized as being exactly the elements of
the avoidance set Sn(3-1̄-42). That is, they are permutation avoiding the generalized pattern 2-31 unless
every occurrence of 2-31 is contained within an occurrence of the generalized pattern 3-1-42. (A review of
generalized permutation patterns can be found in Section 1.2 below).

We illustrate the formation of R(σ) and RPW (R) in the following example.

Example 1.1. Let σ = 64518723 ∈ S8. Then we form the pile configuration R(σ) as follows:

Form a new
pile with 6:

6

Then place 4

atop 6:
4

6

Form a new
pile with 5:

4
6 5

Add 1 to the
left-most pile:

1

4
6 5

Form a new
pile with 8:

1
4
6 5 8

Then place 7

atop 8:

1
4 7

6 5 8

Add 2 to the
middle pile:

1
4 2 7
6 5 8

Finally, place 3

atop 7:

1 3

4 2 7
6 5 8

Then, by reading up the columns of R(σ) from left to right, RPW (R(σ)) = 64152873 ∈ S8(3-1̄-42).

Given σ ∈ Sn, the formation of R(σ) can be viewed as an iterated, non-recursive form of the Schensted
Insertion Algorithm for interposing values into the rows of a standard Young tableau (see [2]). In [5] the
authors augment the formation of R(σ) so that the resulting extension of Patience Sorting becomes a full
non-recursive analogue of the celebrated Robinson-Schensted-Knuth (or RSK) Correspondence. As with
RSK, this Extended Patience Sorting Algorithm (given as Algorithm 1.2 in Section 1.1 below) takes a
simple idea — that of placing cards into piles — and uses it to build a bijection between elements of the
symmetric group Sn and certain pairs of combinatorial objects. In the case of RSK, one uses the Schensted
Insertion Algorithm to build a bijection with (unrestricted) pairs of standard Young tableau having the same
shape (see [16]). However, in the case of Patience Sorting, one achieves a bijection between permutations and
(somewhat more restricted) pairs of pile configurations having the same shape. We denote this latter bijection

by σ
PS←→ (R(σ), S(σ)) and call R(σ) (resp. S(σ)) the insertion piles (resp. recording piles) corresponding

to σ. Collectively, we also call (R(σ), S(σ)) the stable pair of pile configurations corresponding to σ and
characterize such pairs in [5] using a somewhat involved pattern avoidance condition on their reverse patience
words.

Barred (generalized) permutation patterns like 3-1̄-42 arise quite naturally when studying Patience
Sorting. We discuss and enumerate the avoidance classes for several related patterns in Section 2. Then,
in Section 3, we examine properties of Patience Sorting under restricted input that can be characterized
using such patterns. One such characterization, discussed in Section 3.1, is for the crossings in the initial
iteration of the Geometric Patience Sorting Algorithm given by the authors in [6]. This geometric form for
the Extended Patience Sorting Algorithm is naturally dual to Viennot’s Geometric RSK (originally defined
in [19]) and gives, among other things, a geometric interpretation for the stable pairs of 3-1̄-42-avoiding
permutations corresponding to a permutation under Extended Patience Sorting. However, unlike Viennot’s
geometric form for RSK, the shadow lines in Geometric Patience Sorting are allowed to cross. While a
complete characterization for these crossings is given in [6] in terms of the pile configurations formed, this
new result is the first step in providing a characterization for the permutations involved in terms of barred
pattern avoidance.
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We close this introduction by describing both the Extended and Geometric Patience Sorting Algorithms.
We also briefly review the notation of generalized permutation patterns.

1.1. Extended and Geometric Patience Sorting. Mallows’ original “patience sorting procedure”
can be extended to a full bijection between the symmetric group Sn and certain restricted pairs of pile
configurations using the following algorithm (which was first introduced in [5]):

Algorithm 1.2 (Extended Patience Sorting Algorithm). Given σ = c1c2 · · · cn ∈ Sn, inductively build
insertion piles R(σ) = {r1, r2, . . . , rm} and recording piles S(σ) = {s1, s2, . . . , sm} as follows:

• Place the first card c1 from the deck into a pile r1 by itself, and set s1 = {1}.
• For each remaining card ci (i = 2, . . . , n), consider the cards d1, d2, . . . , dk atop the piles r1, r2, . . . , rk

that have already been formed.

– If ci > max{d1, d2, . . . , dk}, then put ci into a new pile rk+1 by itself and set sk+1 = {i}.
– Otherwise, find the left-most card dj that is larger than ci and put the card ci atop

pile rj while simultaneously putting i at the bottom of pile sj .

Note that the pile configurations that comprise a resulting stable pair must have the same “shape”, which
we define as follows:

Definition 1.3. Given a pile configuration R = {r1, r2, . . . , rm} on n cards, we call the composition
γ = (|r1|, |r2|, . . . , |rm|) of n the shape of R and denote this by sh(R) = γ |= n.

The idea behind Algorithm 1.2 is that we are using the auxiliary pile configuration S(σ) to implicitly
label the order in which the elements of the permutation σ ∈ Sn are added to the usual Patience Sorting
pile configuration R(σ) (which we now call the “insertion piles” of σ in this context by analogy to RSK). It
is clear that this information then allows us to uniquely reconstruct σ by reversing the order in which the
cards were played. As with normal Patience Sorting, we visualize the pile configurations R(σ) and S(σ) by
listing their constituent piles vertically as illustrated in the following example.

Example 1.4. Given σ = 64518723 ∈ S8 from Example 1.1 above, we simultaneously form the fol-
lowing pile configurations with shape sh(R(σ)) = sh(S(σ)) = (3, 2, 3) under Extended Patience Sorting
(Algorithm 1.2):

R(σ) =
1 3
4 2 7
6 5 8

and S(σ) =
1 5
2 3 6
4 7 8

Note that the insertion piles R(σ) are the same as the pile configuration formed in Example 1.1 and that
RPW (S(64518723)) = 42173865 ∈ S8(3-1̄-42).

In order to now describe a natural geometric form for this Extended Patience Sorting Algorithm, we
begin with the following fundamental definition.

Definition 1.5. Given a lattice point (m, n) ∈ Z
2, we define the (southwest) shadow of (m, n) to be

the quarter space U(m, n) = {(x, y) ∈ R
2 | x ≤ m, y ≤ n}.

As with the northeasterly-oriented shadows that Viennot used when building his geometric form for
RSK (see [19]), the most important use of these southwesterly-oriented shadows is in building shadowlines
(which is illustrated in Figure 1(a)):

Definition 1.6. The (southwest) shadowline of (m1, n1), (m2, n2), . . . , (mk, nk) ∈ Z
2 is defined to be

the boundary of the union of the shadows U(m1, n1), U(m2, n2), . . . , U(mk, nk).
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(f) Shadow Diagram
D(2)(64518723).

Figure 1. Examples of Shadowline and Shadow Diagram Construction.

In particular, we wish to associate to each permutation a certain collection of (southwest) shadow-
lines called its shadow diagram. However, unlike the northeasterly-oriented shadowlines used to define the
northeast shadow diagrams of Geometric RSK [19], these southwest shadowlines are allowed to intersect as
illustrated in Figure 1(d)–(e). (We characterize those permutations having intersecting shadowlines under
Definition 1.7 in Theorem 3.6 below.)

Definition 1.7. The (southwest) shadow diagram D(0)(σ) of σ = σ1σ2 · · ·σn ∈ Sn consists of the

(southwest) shadowlines D(0)(σ) = {L(0)
1 (σ), L

(0)
2 (σ), . . . , L

(0)
k (σ)} formed as follows:

• L
(0)
1 (σ) is the shadowline for those lattice points (x, y) ∈ {(1, σ1), (2, σ2), . . . , (n, σn)} such that the

shadow U(x, y) does not contain any other lattice points.

• While at least one of the points (1, σ1), (2, σ2), . . . , (n, σn) is not contained in the shadowlines

L
(0)
1 (σ), L

(0)
2 (σ), . . . , L

(0)
j (σ), define L

(0)
j+1(σ) to be the shadowline for the points

(x, y) ∈ A := {(i, σi) | (i, σi) /∈
j⋃

k=1

L
(0)
k (σ)}

such that the shadow U(x, y) does not contain any other lattice points from the set A.

In other words, we define a shadow diagram by inductively eliminating points in the permutation diagram
until every point has been used to define a shadowline (as illustrated in Figure 1(a)–(c)).

One can prove (see [5]) that the ordinates (i.e., y-coordinates) of the points used to define each shadowline
in the shadow diagram D(0)(σ) are exactly the left-to-right minima subsequences (a.k.a. basic subsequences)
in the permutation σ ∈ Sn. These are defined as follows:
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Definition 1.8. Let π = π1π2 · · ·πl be a partial permutation on the set [n] = {1, 2, . . . , n}. Then
the left-to-right minima (resp. maxima) subsequence of π consists of those components πj of π such that
πj = min{πi | 1 ≤ i ≤ j} (resp. πj = max{πi | 1 ≤ i ≤ j}).
We then inductively define the left-to-right minima (resp. maxima) subsequences s1, s2, . . . , sk of the per-
mutation σ by taking s1 to be the left-to-right minima (resp. maxima) subsequence for σ itself and then
each remaining subsequence si to be the left-to-right minima (resp. maxima) subsequence for the partial
permutation obtained by removing the elements of s1, s2, . . . , si−1 from σ.

Finally, one can produce a sequence D(σ) = (D(0)(σ), D(1)(σ), D(2)(σ), . . .) of shadow diagrams for
a given permutation σ ∈ Sn by recursively applying Definition 1.7 to the southwest corners (called salient
points) of a given set of shadowlines (as illustrated in Figure 1(d)–(f)). The only difference is that, with each
iteration, newly formed shadowlines can only connect salient points along the same pre-existing shadowline.
One can then uniquely reconstruct the pile configurations R(σ) and S(σ) from these shadowlines by taking
their intersections with the x- and y-axes in a certain canonical order (as detailed in [6]).

Definition 1.9. We call D(k)(σ) the kth iterate of the exhaustive shadow diagram D(σ) for the permu-
tation σ ∈ Sn.

1.2. Generalized Pattern Avoidance. We first recall the following definition:

Definition 1.10. Let σ = σ1σ2 · · ·σn ∈ Sn and π ∈ Sm with m ≤ n. Then we say that σ con-
tains the (classical) permutation pattern π if there exists a subsequence (σi1 , σi2 , . . . , σim

) of σ (meaning
i1 < i2 < · · · < im) such that the word σi1σi2 . . . σim

is order-isomorphic to π. I.e., each σij
< σij+1

if
and only if πj < πj+1.

Note, though, that the elements in the subsequence (σi1 , σi2 , . . . , σim
) are not required to be contiguous

in σ. This motivates the

Definition 1.11. A generalized permutation pattern is a classical permutation pattern π in which one
assumes that every element in the subsequence (σi1 , σi2 , . . . , σim

) of σ must be taken contiguously unless a
dash is inserted between the corresponding order-isomorphic elements of the pattern π.

Finally, if σ does not contain a subsequence that is order-isomorphic to π, then we say that σ avoids the
pattern π. This motivated the

Definition 1.12. Given any collection π(1), π(2), . . . , π(k) of permutation patterns (classical or general-
ized), we denote by

Sn(π(1), π(2), . . . , π(k)) =
k⋂

i=1

Sn(π(i)) =
k⋂

i=1

{σ ∈ Sn | σ avoids π(i)}

the avoidance set of permutations σ ∈ Sn such that σ simultaneously avoids each of the patterns π(1), π(2), . . . ,
π(k). Furthermore, the set ⋃

n≥1

Sn(π(1), π(2), . . . , π(k))

is called the (pattern) avoidance class with basis {π(1), π(2), . . . , π(k)}.
More information about permutation patterns in general can be found in [4].

2. Barred and Unbarred Generalized Pattern Avoidance

An important further generalization of the notion of generalized permutation pattern requires that the
context in which the occurrence of a generalized pattern occurs be taken into account. The resulting concept
of barred permutation patterns, along with the accompanying notation, first arose within the study of stack-
sortability of permutations by J. West [20]. Given how naturally these barred patterns now arise in the
study of Patience Sorting (as illustrated in both [5] and Section 3 below), we initiate their systematic study
in this section.
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Definition 2.1. A barred (generalized) permutation pattern β is a generalized permutation pattern in
which overbars are used to indicate that barred values cannot occur at the barred positions. As before, we
denote by Sn(β(1), . . . , β(k)) the set of all permutations σ ∈ Sn that simultaneously avoid β(1), . . . , β(k) (i.e.,
permutations that contain no subsequence that is order-isomorphic to any of the β(1), . . . , β(k)).

Example 2.2. A permutation σ = σ1σ2 · · ·σn ∈ Sn /∈ Sn(3-5̄-2-4-1) contains an occurrence of the
barred permutation pattern 3-5̄-2-4-1 if it contains an occurrence of the generalized pattern 3-2-4-1 (i.e.,
contains a subsequence (σi1 , σi2 , . . . , σim

) that is order-isomorphic to the classical pattern 3241) in which no
value larger than the element playing the role of “4” is allowed to occur between the elements playing the
roles of “3” and “2”. This is one of the two basis elements for the pattern avoidance class used to characterize
the set of 2-stack-sortable permutations [10, 11, 20]. (The other pattern is 2-3-4-1, i.e., the classical pattern
2341.)

Despite the added complexity involved in avoiding barred permutation patterns, it is still sometimes
possible to characterize the avoidance class for a barred permutation pattern in terms of an unbarred gen-
eralized permutation pattern. The following theorem gives such a characterization for the pattern 3-1̄-42.
(Note, though, that there is no equivalent characterization for such barred permutation patterns as 13̄-42
and 3-5̄-2-4-1.)

Theorem 2.3. Let Bn = 1
e

∑
k≥0

kn

k! denote the nth Bell number. Then

(1) Sn(3-1̄-42) = Sn(3-1̄-4-2) = Sn(23-1)
(2) |Sn(3-1̄-42)| = Bn

Proof. (Sketch)
As in [7], we see that each of these sets consists of permutations having the form

σ = σ1a1σ2a2 . . . σkak,

where ak > ak−1 > · · · > a2 > a1 are the successive right-to-left minima of σ (reversing the order of the
elements in Definition 1.8) and where each segment σiai is a decreasing subsequence. �

Remark 2.4. We emphasize the following important consequences of Theorem 2.3.

(1) Even though Sn(3-1̄-42) = Sn(23-1) by Theorem 2.3(1), it is more natural to use avoidance of
the barred pattern 3-1̄-42 in studying Patience Sorting. As shown in [5] and elaborated upon in
Section 3 below, Sn(3-1̄-42) is the set of equivalence classes of Sn modulo the transitive closure
of the relation 3-1̄-42 ∼ 3-1̄-24. (I.e., two permutations σ, τ ∈ Sn are equivalent if the elements
creating an occurrence of one of these patterns in σ form an occurrence of the other pattern in τ .)
Moreover, each permutation σ ∈ Sn in a given equivalence class has the same pile configuration
R(σ) under Patience Sorting, a description of which is significantly more difficult to describe for
occurrences of the unbarred generalized permutation pattern 23-1.

(2) Marcus and Tardos proved in [14] that the avoidance set Sn(π) for any classical pattern π grows at
most exponentially fast as n → ∞. (This was previously known as the Stanley-Wilf Conjecture.)
The Bell numbers, though, satisfy log Bn = n(log n − log log n + O(1)) and so exhibit superex-
ponential growth. (See [18] for more information about Bell numbers.) While it was previously
known that the Stanley-Wilf Conjecture does not extend to generalized permutation patterns (see,
e.g., [7]), it took Theorem 2.3(2) (originally proven in [5] using Patience Sorting) to provide the
first verification that one also cannot extend the Stanley-Wilf Conjecture to barred generalized
permutation patterns.

A further abstraction of barred permutation pattern avoidance (called Bruhat-restricted avoidance)
was recently given by A. Woo and A. Yong in [21]. The result in Theorem 2.3(2) has led A. Woo
to conjecture to the second author that the Stanley-Wilf ex-Conjecture also does not extend to this
new notion of pattern avoidance.
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We conclude this section with a simple corollary to Theorem 2.3 that gives similar equivalences and
enumerations for some barred permutation patterns that also arise naturally in the study of Patience Sorting
(see Proposition 3.2 and Theorem 3.6 in Section 3 below).

Corollary 2.5. Using the notation in Theorem 2.3,

(1) Sn(31-4̄-2) = Sn(3-1-4̄-2) = Sn(3-12)
(2) Sn(2̄-41-3) = Sn(2̄-4-1-3) = Sn(2-4-1-3̄) = Sn(2-41-3̄)
(3) |Sn(2̄-41-3)| = |Sn(31-4̄-2)| = |Sn(3-1̄-42)| = Bn.

Proof. (Sketches)

(1) Take reverse complements in Sn(3-1̄-42) and apply Theorem 2.3.
(2) Similar to (1). (Note that (2) is also proven in [1].)
(3) This follows from the fact that the patterns 3-1-4̄-2 and 2̄-4-1-3 are inverses of each other. �

3. Patience Sorting under Restricted Input

3.1. Patience Sorting on Restricted Permutations. The similarities between the Extended Pa-
tience Sorting Algorithm (Algorithm 1.2) and RSK applied to permutations is perhaps most observable in
the following simple proposition:

Proposition 3.1. Let ık = 1-2- · · · -k = 12 · · ·k and k = k- · · · -2-1 = k · · · 21 be the classical monotone
permutation patterns. Then there is

(1) a bijection between Sn(ık+1) and pairs of pile configurations having the same composition shape
γ = (γ1, γ2, . . . , γm) |= n but with at most k piles (i.e., m ≤ k).

(2) a bijection between Sn(k+1) and pairs of pile configurations having the same composition shape
γ = (γ1, γ2, . . . , γm) |= n but with no pile having more than k cards in it (i.e., γi ≤ k for each
i = 1, 2, . . . , m).

Proof. (Sketches)

(1) Given σ ∈ Sn, a bijection is formed in [2] between the set of piles R(σ) = {r1, r2, . . . , rk} formed
under Patience Sorting and the components of a particular distinguished longest increasing subse-
quence in σ. Since avoiding the monotone pattern ık+1 is equivalent to restricting the length of the
longest increasing subsequence in a permutation, the result then follows.

(2) Follows from (1) by reversing each of the permutations in Sn(ık+1) in order to form Sn(k+1). �

Proposition 3.1 states that Patience Sorting can be used to efficiently compute the length of both
the longest increasing and longest decreasing subsequences in a given permutation. In particular, one can
compute these lengths without needing to examine every subsequence of a permutation, just as with RSK.
However, while both RSK and Patience Sorting can be used to implement this computation in O(n log(n))
time, an extension of this technique is given in [3] that also simultaneously tabulates all of the longest
increasing or decreasing subsequences without incurring any additional asymptotic computational cost.

As mentioned in Section 2 above, Patience Sorting also has immediate connections to certain barred
permutation patterns:

Proposition 3.2.

(1) Sn(3-1̄-42) = {RPW (R(σ)) | σ ∈ Sn}. In particular, given σ ∈ Sn(3-1̄-42), the entries in each
column of the insertion piles R(σ) (when read from bottom to top) occupy successive positions in
the permutation σ.

(2) Sn(2̄-41-3) = {RPW (R(σ−1)) | σ ∈ Sn}. In particular, given σ ∈ Sn(2̄-41-3), the columns of the
insertion piles R(σ) (when read from top to bottom) contain successive values.

Proof. Part (1) is proven in [5], and part (2) follows immediate by taking inverses in (1). �
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As an immediate corollary, we can characterize an important category of classical permutation patterns
in terms of barred permutation patterns.

Definition 3.3. Given a composition γ = (γ1, γ2, . . . , γm) |= n, the (classical) layered permutation
pattern πγ ∈ Sn is the permutation

γ1 · (γ1 − 1) · · · 1 · (γ1 + γ2) · (γ1 + γ2 − 1) · · · (γ1 + 1) · · ·n · (n− 1) · · · (γ1 + γ2 + · · ·+ γm−1 + 1).

Example 3.4. Given γ = (3, 2, 3) |= 8, the corresponding layered pattern is π(3,2,3) = 3̂215̂48̂76 ∈ S8

(following the notation in [15]). Moreover, applying Extended Patience Sorting (Algorithm 1.2) to π(3,2,3):

R(π(3,2,3)) =
1 6
2 4 7
3 5 8

and S(π(3,2,3)) =
1 6
2 4 7
3 5 8

Note in particular that π(3,2,3) satisfies both of the conditions in Proposition 3.2, which illustrates the
following characterization of layered patterns:

Corollary 3.5. Sn(3-1̄-42, 2̄-41-3) is the set of layered patterns in Sn.

Proof. Apply Proposition 3.2 noting that Sn(3-1̄-42, 2̄-41-3) = Sn(23-1, 31-2) (as considered in [8]). �

As a consequence of this interaction between Patience Sorting and barred permutation patterns, we can
now explicitly characterize those permutations for which the initial iteration of Geometric Patience Sorting
(as defined in Section 1.1 above) yields non-crossing lattice paths.

Theorem 3.6. The set Sn(3-1̄-42, 31-4̄-2) consists of all reverse patience words having non-intersecting
shadow diagrams. (I.e., no shadowlines cross in the 0th iterate shadow diagram.) Moreover, given a permu-
tation σ ∈ Sn(3-1̄-42, 31-4̄-2), the values in the bottom rows of R(σ) and S(σ) increase from left to right.

Proof. From Theorem 2.3 and Corollary 2.5, R(Sn(3-1̄-42, 31-4̄-2)) = R(Sn(23-1, 3-12)) consists exactly
of set partitions of [n] = {1, 2, . . . , n} whose components can be ordered so that both the minimal and
maximal elements of the components simultaneously increase. (These are called strongly monotone partitions
in [9]).

Let σ ∈ Sn(3-1̄-42, 31-4̄-2). Since σ avoids 3-1̄-42, we have that σ = RPW (R(σ)) by Proposition 3.2.

Thus, the ith shadowline L
(0)
i (σ) of σ is the boundary of the union of shadows with generating points in

decreasing segments σiai, i ∈ [k], where σiai are as in the proof of Theorem 2.3. Let bi be the ith left-to-right
maximum of σ. Then bi is the left-most (i.e. maximal) entry of σiai, so σiai = biσ

′
iai for some decreasing

subsequence σ′
i. Note that σ′

i may be empty so that bi = ai.
Since bi is the ith left-to-right maximum of σ, it must be at the bottom of the ith column of R(σ)

(similarly, ai is at the top of the ith column). So the bottom rows of both R(σ) and S(σ) must be in
increasing order.

Now consider the ith and jth shadowlines L
(0)
i (σ) and L

(0)
j (σ) of σ, respectively, where i < j. We have

that bi < bj from which the initial horizontal segment of the ith shadowline is lower than that of the jth

shadowline. Moreover, ai is to the left of bj , so the remaining segment of the ith shadowline is completely

to the left of the remaining segment of the jth shadowline. Thus, L
(0)
i (σ) and L

(0)
j (σ) do not intersect. �

In [6] the authors actually give the following stronger result:

Theorem 3.7. Each iterate D
(m)
SW (σ) (m ≥ 0) of σ ∈ Sn is free from crossings if and only if every row

in both R(σ) and S(σ) is monotone increasing from left to right.

However, this only characterizes the output of the Extended Patience Sorting Algorithm involved. As such,
Theorem 3.6 provides the first step toward characterizing those permutations that result in non-crossing
lattice paths under Geometric Patience Sorting.
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We conclude this section by noting that, while the strongly monotone condition implied by simultaneously
avoiding 3-1̄-42 and 31-4̄-2 is necessary to alleviate such crossings, it is clearly not sufficient. (The problem
lies with what we call “polygonal crossings” in the shadow diagrams in [6], which occur in permutations
like σ = 45312.) Thus, to avoid crossings at all iterations of Geometric Patience Sorting, we need to
impose further “ordinally increasing” conditions on the set partition associated to a given permutation
under Patience Sorting. In particular, in addition to requiring just the minima and maxima elements in the
set partition to increase as in the strongly monotone partitions encountered in the proof of Theorem 3.6,
it is necessary to require that every record value simultaneously increase under an appropriate ordering of
the blocks. That is, under a single ordering of these blocks, we must simultaneously have that the largest
elements in each block increase, then the next largest elements, then the next-next largest elements, and so
on. E.g., the partition {{5, 3, 1}, {6, 4, 2}} of the set [6] = {1, 2, . . . , 6} satisfies this condition.

3.2. Invertibility of Patience Sorting. It is clear that the pile configurations corresponding to two
permutations under the Patience Sorting Algorithm need not be distinct in general (e.g., R(3142) = R(3412)).
As proven in [5], two permutations give rise to the same pile configuration under Patience Sorting if and
only if they have the same left-to-right minima subsequences (e.g., 3142 and 3412 both have the left-to-
right minima subsequences 31 and 42). In this section we characterize permutations having distinct pile
configurations under Patience Sorting in terms of certain barred permutation patterns. We then establish a
non-trivial enumeration for the resulting avoidance sets.

Theorem 3.8. A pile configuration pile R has a unique preimage σ ∈ Sn under Patience Sorting if and
only if σ ∈ Sn(3-1̄-42, 3-1̄-24).

Proof. (Sketch)
It is clear that every pile configuration R has at least one preimage, namely its reverse patience word

σ = RPW (R). By Proposition 3.2, reverse patience words are exactly those permutations that avoid the
barred pattern 3-1̄-42. Furthermore, as shown in [5], two permutations have the same insertion piles under
Extended Patience Sorting (Algorithm 1.2) if and only if one can be obtained from the other by a sequence
of order-isomorphic exchanges 3-1̄-24  3-1̄-42 or 3-1̄-42  3-1̄-24. (I.e., the occurrence of one pattern is
reordered to form an occurrence of the other pattern.) Thus, it is easy to see that R has a unique preimage
σ if and only if σ has no occurrence of 3-1̄-42 or 3-1̄-24. �

Given this pattern avoidance characterization of invertibility, we have the following recurrence relation
for the number of permutations having distinct pile configurations under Patience Sorting:

Lemma 3.9. Set f(n) = |Sn(3-1̄-42, 3-1̄-24)| and, for k ≤ n,

f(n, k) = |{σ ∈ Sn(3-1̄-42, 3-1̄-24) : σ(1) = k}|.
Then f(n) =

∑n

k=1 f(n, k), and we have the following recurrence relation for f(n, k):

f(n, 0) = 0 for n ≥ 1(3.1)

f(n, 1) = f(n, n) = f(n− 1) for n ≥ 1(3.2)

f(n, 2) = 0 for n ≥ 3(3.3)

f(n, k) = f(n, k − 1) + f(n− 1, k − 1) + f(n− 2, k − 2) for n ≥ 3(3.4)

subject to the initial conditions f(0) = f(0, 0) = 1.

Proof. First note that Equation (3.1) is the obvious boundary condition for k = 0.
Now suppose that the first letter of σ ∈ Sn(3-1̄-42, 3-1̄-24) is σ(1) = 1 or n. Then σ(1) cannot be part of

any occurrence of 3-1̄-42 or 3-1̄-24 in σ. Thus, deletion of σ(1), and subtraction of 1 from each component
if σ(1) = 1, yields a bijection with Sn−1(3-1̄-42, 3-1̄-24) so that Equation (3.2) follows.

Similarly, suppose that the first letter of σ ∈ Sn(3-1̄-42, 3-1̄-24) is σ(1) = 2. Then the first column of
R(σ) must be 1

2
regardless of where 1 occurs in σ. Therefore, R(σ) has a unique preimage σ if and only if

σ = 21 ∈ S2 so that Equation (3.3) follows.
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Finally, suppose that σ ∈ Sn(3-1̄-42, 3-1̄-24) with 3 ≤ k ≤ n. Since σ avoids 3-1̄-42, σ is a RPW by
Proposition 3.2, and hence the left prefix of σ from k to 1 is a decreasing subsequence. Let σ′ be the
permutation obtained by interchanging the values k and k− 1 in σ. Then the only instances of the patterns
3-1̄-42 and 3-1̄-24 in σ′ must involve both k and k− 1. Note that the number of σ for which no instances of
these patterns are created by interchanging k and k − 1 is exactly f(n, k − 1).

There are then two cases in which an instance of the barred pattern 3-1̄-42 or 3-1̄-24 will be created in
σ′ by this interchange:

Case 1. If k − 1 occurs between σ(1) = k and 1 in σ, then σ(2) = k − 1, so interchanging k and
k − 1 creates an instance of the pattern 23-1 via the subsequence (k − 1, k, 1) in σ′. Thus, by Theorem 2.3,
σ′ contains 3-1̄-42 from which σ′ ∈ Sn(3-1̄-42) if and only if k − 1 occurs after 1 in σ. Note also that if
σ(2) = k − 1, then deleting k yields a bijection with permutations in Sn−1(3-1̄-42, 3-1̄-24) that start with
k − 1. So the number of permutations counted in Case 1 is exactly f(n− 1, k − 1).

Case 2. If k − 1 occurs to the right of 1 in σ, then σ′ both contains the subsequence (k − 1, 1, k) and
avoids the pattern 3-1̄-42, so it must also contain the pattern 3-1̄-24. If an instance of 3-1̄-24 in σ′ involves
both k− 1 and k, then k− 1 and k must play the roles of “3” and “4”, respectively. If the value ` preceding
k is not 1, then the subsequence (k − 1, 1, `, k) is an instance of 3-1-24, so (k − 1, `, k) is not an instance
of 3-1̄-24. Therefore, for σ′ to contain 3-1̄-24, k must follow 1 in σ′, and so k − 1 follows 1 in σ. If the
letter preceding 1 is some m < k, then the subsequence (m, 1, k − 1) is an instance of 3-1̄-24 in σ, which is
impossible. Therefore, k must precede 1 in σ, from which σ must start with the initial segment (k, 1, k− 1).
But then deleting the values k and 1 and then subtracting 1 from each component yields a bijection with
permutations in Sn−2(3-1̄-42, 3-1̄-24) that start with k − 2. It follows that the number of permutations
counted in Case 2 is then exactly f(n− 2, k − 2), which yields Equation (3.4). �

If we denote by

Φ(x, y) =

∞∑

n=0

n∑

k=0

f(n, k)xnyk

the bivariate generating function for the sequence {f(n, k)}n≥k≥0, then Equation (3.4) implies that

(1 − y − xy − x2y2)Φ(x, y) = 1− y − xy + xy2 − xy2Φ(xy, 1) + xy(1 − y − xy)Φ(x, 1).

Moreover, using the kernel method, one can show that

x + 1 +

√
1 + 2x + 5x2 − x− 1

2
· F (x)− F

(√
1 + 2x + 5x2 − x− 1

2x

)
= 0

where F (x) =
∑

n≥0 f(n)xn = Φ(x, 1) is the generating function for the sequence {f(n)}n≥0.

We conclude with the following main enumerative result about invertibility of Patience Sorting.

Theorem 3.10. Denote by Fn the nth Fibonacci number (with F0 = F1 = 1) and by

a(n, k) =
∑

n1,...,nk≥0

n1+···+nk=n−k−2

Fn1
Fn2

. . . Fnk

convolved Fibonacci numbers for n ≥ k + 2 (where a(n, k) := 0 otherwise). Then, defining
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X =




f(0)
f(1)
f(2)
f(3)
f(4)

...




, F =




1
F0

F1

F2

F3

...




, and A = (a(n, k))n,k≥0 =




0
0 0

a(2, 0) 0 0
a(3, 0) a(3, 1) 0 0
a(4, 0) a(4, 1) a(4, 2) 0 0

...
...

...
...

...
. . .




,

we have that X = (I−A)−1F , where I is the infinite identity matrix and A is lower triangular.

Proof. (Sketch)
From Equations (3.1)–(3.4), we can conjecture an equivalent recurrence where (3.3) and (3.4) are replaced

by the following equation (here δnk is the Kronecker delta function):

(3.5) f(n, k) =

k−3∑

m=0

c(k, m)f(n− k + m) + δnkFk−2, n ≥ k ≥ 2.

For this relation to hold, the coefficients c(k, m) must satisfy the following recurrence relation:

c(k, m) = c(k − 1, m− 1) + c(k − 1, m) + c(k − 2, m), k ≥ 2,

or, equivalently,

c(k − 1, m− 1) = c(k, m)− c(k − 1, m)− c(k − 2, m), k ≥ 2,

with c(2, 0) = 1 and c(k, m) = 0 in the case that k < 2, m < 0 or m > k−2. This implies that the generating
function for the sequence {c(k, m)}k≥0 (for each m ≥ 0) is

∑

n≥0

c(k, m)xk =
xm+2

(1− x− x2)m+1
.

It follows that the coefficients c(k, m) = a(k, m) in Equation (3.5) are convolved Fibonacci numbers [17]
forming the so-called skew Fibonacci-Pascal triangle in the matrix A = (a(k, m))k,m≥0. In particular, the
sequence of nonzero entries in column m ≥ 0 of A is the mth convolution of the sequence {Fn}n≥0.

Combining the expansion of f(n, n) from Equation (3.5) with Equation (3.2), we obtain

f(n) =
n−2∑

m=0

a(n, m)f(m) + Fn−1,

which is equivalent to the matrix equation X = AX + F . Since I − A is clearly invertible, the result
follows. �

Due to space restrictions, we omit a direct bijective proof of Theorem 3.10 that will be included in the
full article.

Remark 3.11. Note that A is a strictly lower triangular matrix with zero sub-diagonal. From this it
follows that multiplication of a matrix B by A shifts the position of the highest nonzero diagonal in B down
by two rows, so (I −A)−1 =

∑
n≥0 An as a Neumann series, and thus all nonzero entries of (I −A)−1 are

positive integers.

Finally, one can explicitly compute
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A =




0
0 0
1 0 0
1 1 0 0
2 2 1 0 0
3 5 3 1 0 0
5 10 9 4 1 0 0
8 20 22 14 5 1 0 0
...

...
...

...
...

...
...

...
. . .




=⇒ (I−A)−1 =




1
0 1
1 0 1
1 1 0 1
3 2 1 0 1
7 6 3 1 0 1
21 16 10 4 1 0 1
66 50 30 15 5 1 0 1
...

...
...

...
...

...
...

...
. . .




from which the first few values of the sequence {f(n)}n≥0 are immediately calculable as

1, 1, 2, 4, 9, 23, 66, 209, 718, 2645, 10373, 43090, 188803, 869191, 4189511, 21077302, 110389321 . . . .
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Séminaire Lotharingien de Combinatoire, Volume 54A. arXiv:math.CO/0506358.
[6] A. Burstein and I. Lankham. “A Geometric Form for the Extended Patience Sorting Algorithm.” Adv. Appl. Math. 36

(2006), 106-117. arXiv:math.CO/0507031.
[7] A. Claesson. “Generalized Pattern Avoidance.” Europ. J. Combin. 22 (2001), 961–971.
[8] A. Claesson and T. Mansour. “Counting Occurrences of a Pattern of Type (1, 2) or (2, 1) in Permutations.” Adv. Appl.

Math. 29 (2002), 293–310.
[9] A. Claesson and T. Mansour. “Enumerating Permutations Avoiding a Pair of Babson-Steingŕımsson Patterns.” Ars Com-
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[19] X. G. Viennot. “Une forme géométrique de la correspondance de Robinson-Schensted.” In Combinatoire et Représenatation

du Groupe Symétrique, D. Foata, ed. Lecture Notes in Mathematics 579. Springer-Verlag, 1977, pp. 29–58.
[20] J. West. Permutations with Forbidden Subsequences and Stack-sortable Permutations. Ph.D. thesis, M.I.T., 1990.
[21] A. Woo and A. Yong. “When is a Schubert variety Gorenstein?” To appear in Adv. in Math. arXiv:math.CO/0409490.

Department of Mathematics, Iowa State University, Ames, IA 50011-2064, USA

E-mail address: burstein@math.iastate.edu

URL: http://www.math.iastate.edu/burstein/

Department of Mathematics, University of California, Davis, CA 95616-8633, USA

E-mail address: issy@math.ucdavis.edu

URL: http://www.math.ucdavis.edy/∼issy/

386



Formal Power Series and Algebraic Combinatorics
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Area of Catalan Paths on a Checkerboard

Szu-En Cheng, Sen-Peng Eu, and Tung-Shan Fu

Abstract. It is known that the area of all Catalan paths of length n is equal to 4n−
`

2n+1

n

´

, which coincides
with the number of inversions of all 321-avoiding permutations of length n + 1. In this paper, a bijection
between the two sets is established. Meanwhile, a number of interesting bijective results that pave the way
to the required bijection are presented.

Résumé. Le fait que la somme des surfaces des chemins Catalan de longueur n est égale à 4n −
`

2n+1

n

´

, ce
qui est aussi le nombre d’inversions dans toutes les permutations de longueur n + 1 qui évitent le motif 321,
est bien connu. Nous présentons dans cet article une bijection entre ces deux ensembles. Pour ce faire, nous

établissons plusieurs résultats bijectifs intermédiaires intéressants.

1. Introduction

Among many other combinatorial structures, the nth Catalan number cn = 1
n+1

(
2n
n

)
enumerates the

number of lattice paths, called Catalan paths of length n, in the plane Z×Z from (0, 0) to (n, n) using north
steps (0, 1) and east steps (1, 0) that never pass below the line y = x. Let Cn denote the set of Catalan
paths of length n. A Catalan path is said to be elevated if it remains strictly above the line y = x except at
the start and end points. The area of a Catalan path is defined to be the number of triangles of the region
enclosed by the path and the line y = x. For example, the area of the path shown in Figure 1 is 13. In [8],
Merlini et al. derived that the area an of all Catalan paths of length n is an = 4n −

(
2n+1

n

)
, which is also

equal to
∑n

k=1 4n−kck as shown in [15]. Shapiro et al. proved that the area of all elevated Catalan paths
of length n is 4n−1 [11]. There is other literature concerning the area and moments of Catalan paths (e.g.,
[3, 6, 9]).

A permutation σ = σ1 · · ·σn of {1, . . . , n}, where σi = σ(i), is called a 321-avoiding permutation of

length n if there are no integers i < j < k such that σi > σj > σk (i.e., every decreasing subsequence is of
length at most two). Let Sn(321) denote the set of 321-avoiding permutations of length n. A pair (σi, σj) is
called an inversion of σ if i < j and σi > σj . What catches our attention is that, as reported by Deutsch in
[13, A008549], the number sequence {an}n≥0 = {0, 1, 6, 29, 130, 562, . . .} counts the number of inversions of
all 321-avoiding permutations of length n + 1. The main purpose of this paper is to establish a bijection Πn

between the set of triangles under all Catalan paths of length n and the set of inversions of all 321-avoiding
permutations of length n + 1. The bijection is composed of two major stages (see Theorems 1.1 and 1.2).

To resolve this problem, we color the unit squares in the plane Z×Z in black and white like a checkerboard.
A unit square B is colored black if the upper left corner (i, j) of B satisfies the condition that i + j is odd,
and white otherwise. For example, there are 1 black square and 3 white squares under the path shown in
Figure 1. An intriguing observation is that the number of white squares under all Catalan paths of length
n + 1 is also equal to an (see Theorem 2.1). As the first stage of Πn, the following bijection is one of the
major results in this paper.

Theorem 1.1. There is a bijection between the set of triangles under all Catalan paths of length n and

the set of white squares under all Catalan paths of length n + 1.

2000 Mathematics Subject Classification. 05A15.
Key words and phrases. Catalan paths; permutations; inversions; polyominoes.
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Figure 1. A Catalan path of length 5.

For the second stage of Πn, we employ a variant of parallelogram polyominoes to establish the following
bijection Ψn : Cn → Sn(321), which is different from the one given by Billy et al. [2, page 361].

Theorem 1.2. There is a bijection Ψn between the set Cn of Catalan paths of length n and the set

Sn(321) of 321-avoiding permutations of length n such that there is a one-to-one correspondence between the

white squares under a path π ∈ Cn and the inversions of Ψn(π) ∈ Sn(321).

We organize this paper as follows. Regarding the plane as a checkerboard, we enumerate the black and
white squares under Catalan paths in Section 2. The proofs of Theorems 1.1 and 1.2 are given in Sections
3 and 4, respectively. Finally, some enumerative results for variants of parallelogram polyominoes are given
in Section 5.

2. Area of Catalan paths on a checkerboard

In this section, we shall enumerate the black and white squares under all Catalan paths of length n by
the method of generating functions. The generating function C = C(z) =

∑
n≥0 cnzn for Catalan numbers

{cn}n≥0 satisfies the equation C = 1 + zC2. Another useful fact is [zn]Ct = t
2n+t

(
2n+t

n

)
, which is known as

the ballot number [4, p. 21]. Let N and E denote a north step and an east step, respectively. A block of a
Catalan path is a section of the form NµE, where N is a north step leaving the line y = x, E is the first east
step returning to the line y = x afterward, and µ is a Catalan path of certain length (possibly empty). A
peak (resp. valley) of a path is formed by a consecutive NE (resp. EN) pair.

Theorem 2.1. For n ≥ 2, the following results hold.

(i) The number of white squares under all Catalan paths of length n is 4n−1 −
(
2n−1
n−1

)
.

(ii) The number of black squares under all Catalan paths of length n is 4n−1 −
(

2n
n−1

)
.

(iii) The number of white squares under all elevated Catalan paths of length n is 4n−2.

Proof. Let fn,k (resp. gn,k) denote the number of paths π ∈ Cn with k white squares (resp. black
squares) under π. Define the generating functions F (t, z) =

∑
n,k≥0 fn,ktkzn, and G(t, z) =

∑
n,k≥0 gn,ktkzn.

Taking partial derivative with respect to t and then setting t = 1, we have
(

∂F (t,z)
∂t

)

t=1
=

∑
n≥0

(∑
k≥0 kfn,k

)
zn

and
(

∂G(t,z)
∂t

)

t=1
=

∑
n≥0

(∑
k≥0 kgn,k

)
zn, which are the generating functions for the numbers in (i) and

(ii), respectively.
A non-trivial path π ∈ Cn has a factorization π = NµEν, where E is the first east step that returns to the

line y = x, and µ and ν are Catalan paths of certain lengths (possibly empty). Since, in the elevated path
NµE, the black squares under µ become white and vice versa, we observe that the number of white squares
under the first block NµE of π is equal to the sum of the number of black squares under µ and the length
of µ. Moreover, the number of black squares under the first block NµE of π is equal to the number of white
squares under µ. Hence F (t, z) and G(t, z) satisfy the following equations.

(2.1)






F (t, z) = 1 + zG(t, tz)F (t, z),

G(t, z) = 1 + zF (t, z)G(t, z).
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Let F ′ =
(

∂F (t,z)
∂t

)

t=1
and G′ =

(
∂G(t,z)

∂t

)

t=1
. Taking partial derivative with respect to t, setting t = 1, and

taking into account that F (1, z) = G(1, z) = C(z), we have

(2.2)






F ′ = z((G′ + C′z)C + F ′C),

G′ = z(F ′C + G′C).

Since C = 1 + zC2, 1 − zC = 1
C

and C′ = C2 + 2zCC′. Solving (2.2) with C = 1−
√

1−4z
2z

, we have

F ′ =
z2C′

1 − 2zC
=

1 − 2z −
√

1 − 4z

2(1 − 4z)
, and G′ = F ′ − z2CC′ = F ′ − z

2
(C′ − C2).

It follows that

[zn]F ′ =
1

2
[zn]

1

1 − 4z
− [zn−1]

1

1 − 4z
− 1

2
[zn]

1√
1 − 4z

= 4n−1 −
(

2n − 1

n − 1

)
,

and

[zn]G′ = [zn]F ′ − 1

2
[zn−1]C′ +

1

2
[zn−1]C2 = 4n−1 −

(
2n

n − 1

)
.

Hence (i) and (ii) follow.
Let hn,k denote the number of elevated Catalan paths τ of length n with k white squares under τ ,

and let H(t, z) =
∑

n,k≥0 hn,ktkzn. We observe that H(t, z) satisfies the equation H(t, z) = zG(t, tz).

Let H ′ =
(

∂H(t,z)
∂t

)

t=1
. By the same method as above, we have H ′ = z(G′ + C′z). Hence [zn]H ′ =

[zn−1]G′ + [zn−2]C′ = 4n−2, and (iii) follows. �

Similarly, the area of a Catalan path is partitioned into regions of the four types: white up-triangles,
white down-triangles, black up-triangles, and black down-triangles. For example, the area of the path in
Figure 1 consists of 3 white up-triangles, 3 white down-triangles, 6 black up-triangles, and 1 black down-
triangle. The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2. Among the area of all Catalan paths of length n, there are

(i) 4n−1 −
(
2n−1
n−1

)
white up-triangles,

(ii) 4n−1 −
(
2n−1
n−1

)
white down-triangles,

(iii) 4n−1 black up-triangles, and

(iv) 4n−1 −
(

2n
n−1

)
black down-triangles.

Proof. It is clear that (i) and (ii) are equivalent to Theorem 2.1(i), and that (iv) is equivalent to
Theorem 2.1(ii). Note that the number of black up-triangles under a path π ∈ Cn is equal to the number of
white squares under the elevated path NπE ∈ Cn+1. Hence (iii) follows from Theorem 2.1(iii). �

Remarks: In [1, page 6], Barcucci et al. derived that the generating function for the number of inversions

of all 321-avoiding permutations of length n is 1−2z−
√

1−4z
2(1−4z) . Corollary 2.2(iii) has appeared in [15, Theorem

A], which is obtained by making use of an enumerative result on parallelogram polyominoes in [11].

3. Proof of Theorem 1.1

Let Tn denote the set of ordered pairs (A, π), where π ∈ Cn and A is a triangle under π, and let Wn+1

denote the set of ordered pairs (B, τ), where τ ∈ Cn+1 and B is a white square under τ . In this section, we
shall establish a bijection Φn : Tn → Wn+1. Let Tn be partitioned into the following four subsets.

T1(n) = {(A, π) ∈ Tn| A is a black up-triangle under π},
T2(n) = {(A, π) ∈ Tn| A is a white up-triangle under π},
T3(n) = {(A, π) ∈ Tn| A is a white down-triangle under π},
T4(n) = {(A, π) ∈ Tn| A is a black down-triangle under π}.
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For any (A, π) ∈ T1(n) ∪ T2(n) (i.e., A is an up-triangle), A is said to be at position (i, j) if the upper left
corner of A is (i, j), and A is said to be on the line L : x+ y = i + j. For each up-triangle A, the top triangle

of A is the up-triangle Â to the northwest of A at the intersection of π and L.
On the other hand, for any (B, τ) ∈ Wn+1, B is said to be at position (i, j) if the upper left corner of

B is (i, j), and B is said to be on the line L : x + y = i + j (note that i + j is even). For each white square

B, the top box of B is the white square B̂ to the northwest of B at the intersection of τ and L. Moreover,

we say that B̂ is falling if the top edge of B̂ coincides with an east step of τ , and rising otherwise. For any
(B, τ) ∈ Wn+1, B is called a downhill square (resp. uphill square) of τ if the top box of B is falling (resp.
rising). Let Wn+1 be partitioned into the following four subsets.

W1(n + 1) = {(B, τ) ∈ Wn+1| B is a downhill square in the first block of τ},
W2(n + 1) = {(B, τ) ∈ Wn+1| the first block β of τ is of length 1, i.e., β = NE},
W3(n + 1) = {(B, τ) ∈ Wn+1| B is an uphill square in the first block of τ},
W4(n + 1) = {(B, τ) ∈ Wn+1| the first block β of τ is of length > 1, and B is not in β}.

For each i (1 ≤ i ≤ 4), we shall establish a bijection Φn,i : Ti(n) → Wi(n + 1) (see Propositions 3.1-3.4).
Then Φn is established by the refinement Φn|Ti(n) = Φn,i, for 1 ≤ i ≤ 4, and hence Theorem 1.1 is proved.

Proposition 3.1. There is a bijection Φn,1 between T1(n) and W1(n + 1).

Proof. Given a pair (A, π) ∈ T1(n), say A is at (i, j), we have i+ j = 2h−1, for some h (h ≥ 1). Let Â

be the top triangle of A. We factorize π as π = µν, where µ goes from the origin to the upper left corner of Â,
and ν is the remaining part of π. Define a mapping Φn,1 that carries (A, π) into Φn,1((A, π)) = (B, τ), where
τ = NµEν ∈ Cn+1 (i.e., with a north step N attached to the beginning and an east step E inserted between

µ and ν) and B is the white square at (i, j + 1). Note that the top box B̂ of B is at the end point of µ, and

that E is the top edge of B̂. Hence B̂ is a falling box and B is downhill. Hence Φn,1((A, π)) ∈ W1(n + 1).

To find Φ−1
n,1, given a pair (B, τ) ∈ W1(n + 1), say B is at (i, j), we have i + j = 2h′, for some h′.

Since B is a downhill square, the top box B̂ of B is a falling box. We factorize τ as τ = NµEν, where N is

the first step of τ , E is the top edge of B̂, µ is the section between N and E, and ν is the remaining part
of τ . Since B is in the first block of τ , µ remains above the line y = x + 1 and hence µν ∈ Cn. Hence
Φ−1

n,1((B, τ)) = (A, π) ∈ T1(n), where π = µν and A is the black up-triangle at (i, j − 1). �

For example, on the left of Figure 2 is a pair (A, π) ∈ T1(9), where A is at (2, 5). The top triangle Â of

A in π is at (1, 6). Note that A is the second up-triangle on the line x + y = 7 from Â. The corresponding

pair Φ9,1((A, π)) = (B, τ) ∈ W1(10) is shown on the right of Figure 2, where B is at (2, 6) and B̂ is at (1, 7).

Note that B is the second square on the line x + y = 8 from B̂.

E

A

N

A
V

B
B

Figure 2. A pair (A, π) ∈ T1(9) and the corresponding pair Φ9,1((A, π)) = (B, τ) ∈ W1(10).

Proposition 3.2. There is a bijection Φn,2 between T2(n) and W2(n + 1).

Proof. Given a pair (A, π) ∈ T2(n), say A is at (i, j), we have i + j = 2h, for some h (h ≥ 1). Define
a mapping Φn,2 : T2(n) → W2(n + 1) that carries (A, π) into Φn,2((A, π)) = (B, τ) ∈ W2(n + 1), where

τ = NEπ ∈ Cn+1 and B is the white square at (i + 1, j + 1). It is easy to find Φ−1
n,2 by a reverse process. �
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For example, on the left of Figure 3 is a pair (A, π) ∈ T2(9), where A is at (4, 6). The corresponding
pair Φ9,2((A, π)) = (B, τ) ∈ W2(10) is shown on the right of Figure 3, where B is at (5, 7).

N

E

B
BA

V
A

Figure 3. A pair (A, π) ∈ T2(9) and the corresponding pair Φ9,2((A, π)) = (B, τ) ∈ W2(10).

Proposition 3.3. There is a bijection Φn,3 between T3(n) and W3(n + 1).

Proof. Given a pair (V, π) ∈ T3(n), say the lower right corner of V is (i, j), we have i + j = 2h, for
some h (h ≥ 1). Let A be the white up-triangle at (i − 1, j + 1). Clearly, (A, π) ∈ T2(n). We shall use the
mapping Φn,2 given in Proposition 3.2 as an intermediate stage to establish Φn,3.

Let Φn,2((A, π)) = (B, τ) ∈ W2(n + 1). Then B is at (i, j + 2). Let B̂ be the top box of B in τ , and let

B be the kth square on the line L : x + y = i + j + 2 from B̂, for some k. We factorize τ as τ = NEµβν,
where NE is the first block of τ , β is the block containing B, µ is the section between the first block and
β, and ν is the remaining part of τ . Moreover, β is further factorized as β = αγ, where α goes from the

beginning of β to the upper left corner of B̂, and γ is the remaining part of β. Let pα denote the end point

of α. Define a mapping Φn,3 that carries (V, π) into Φn,3((V, π)) = (C, ω), where ω = αNµEγν, Ĉ is the top

box at pα in ω, and C is the kth square from Ĉ. Since α is followed by a north step, Ĉ is a rising box and
C is uphill. Moreover, C is in the first block αNµEγ of ω. Hence Φn,3((V, π)) ∈ W3(n + 1).

To find Φ−1
n,3, given a pair (C, ω) ∈ W3(n+1), say C is at (i, j), we have i+j = 2h′, for some h′. Let Ĉ be

the top box of C in ω, say Ĉ is at (i′, j′), and let C be the k′th square on the line x+ y = 2h′ from Ĉ. First,
we factorize ω as ω = βν, where β is the first block of ω, and ν is the remaining part of ω. Since C is an uphill

square in β, Ĉ is a rising box and β has a factorization β = αNµEγ, where α goes from the origin to the

upper left corner of Ĉ, E is the first step after Ĉ that returns to the line y = x+j′−i′, and γ is the remaining

part of β. Let pα denote the end point of α. Locate the pair (B, τ), where τ = NEµαγν, B̂ is the top box

at pα in τ , and B is the k′th square from B̂. Since the first block of τ is of length 1, (B, τ) ∈ W2(n + 1).
Let Φ−1

n,2((B, τ)) = (A, π) ∈ T2(n). Then we retrieve the required pair Φ−1
n,3((C, ω)) = (V, π) ∈ T3(n) from

(A, π), where V is the white down-triangle that shares an edge with A. �

For example, given the pair (V, π) ∈ T3(9) shown on the left of Figure 3, where the lower right corner
of V is (5, 5). Let A be the white up-triangle at (4, 6). The intermediate pair Φ9,2((A, π)) = (B, τ) is shown
on the left of Figure 4. Factorize τ as τ = NEµβν, where N = 1, E = 2, µ = (3, . . . , 8), β = (9, . . . , 18), and
ν = (19, 20). Moreover, β is further factorized as β = αγ, where α = (9, 10, 11, 12) and γ = (13, . . . , 18). The
corresponding pair Φ9,3((V, π)) = (C, ω) ∈ W3(10) is shown on the right of Figure 4, where ω = αNµEγν,
and C is at (1, 3).

Proposition 3.4. There is a bijection Φn,4 between T4(n) and W4(n + 1).

Proof. Given a pair (V, π) ∈ T4(n), say the lower right corner of V is (i, j), we have i + j = 2h + 1,
for some h (h ≥ 1). Let A be the up-triangle at (i − 1, j + 1). Clearly, (A, π) ∈ T1(n). We shall use the
mapping Φn,1 given in Proposition 3.1 as an intermediate stage to establish Φn,4. Let Φn,1((A, π)) = (B, τ) ∈
W1(n + 1). Then B is at (i − 1, j + 2). Let B̂ be the top box of B in τ , and let B be the kth square on the

line L : x + y = i + j + 1 from B̂, for some k. Since B is at (i − 1, j + 2) and j > i, B is above the line
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Figure 4. The pairs Φ9,2((A, π)) = (B, τ) ∈ W2(10) and Φ9,3((V, π)) = (C, ω) ∈ W3(10) that are
associated with the pairs (A, π) ∈ T2(9) and (V, π) ∈ T3(9) shown on the left of Figure 3.

y = x + 2. First, we factorize τ as τ = βν, where β is the first block of τ and ν is the remaining part of τ .

Next, β is further factorized as β = NNµ1µ2, where µ1 goes from (0, 2) to the first step after B̂ that returns
to the line L2 : y = x + 2, and µ2 is the remaining part of β. Form a new path β′ = NNµ2µ1 from β by
switching µ1 and µ2. Note that NNµ2 is the first block of β′, and that B is in µ1. Moreover, the section µ1

of β′ might have a valley on the line L1 : y = x − 1 (in front of B̂). There are two cases.
Case I. µ1 has no valley on the line L1. We define a mapping Φn,4 that carries (V, π) into Φn,4((V, π)) =

(C, ω), where ω = β′ν = NNµ2µ1ν, and C is the white square B in µ1. Since the first block NNµ2 is of
length at least 2, Φn,4((V, π)) ∈ W4(n + 1). It is worth mentioning that C is a downhill square since B is
downhill in µ1.

Case II. µ1 has at least one valley on the line L1. Then we factorize µ1 as µ1 = λENαγ, where EN

is the last valley on the line L1, α goes from the end point of N to the upper left corner of B̂, and γ is
the remaining part of µ1. Let pα be the end point of α. The mapping Φn,4 is then defined by carrying

(V, π) into Φn,4((V, π)) = (C, ω), where ω = NNµ2αNλEγν, Ĉ is the top box at pα in ω, and C is the kth

square from Ĉ. Since the first block NNµ2 of ω is of length at least 2 and since C is not in the first block,

Φn,4((V, π)) ∈ W4(n + 1). Note that, since α is followed by a north step, Ĉ is a rising box and C is uphill.

To find Φ−1
n,4, given a pair (C, ω) ∈ W4(n +1), say C is at (i, j), for some i ≥ 2, j ≥ 4. First, we factorize

ω as ω = NNµ2βν, where NNµ2 is the first block of ω, β is the section that ends with the block containing
C, and ν is the remaining part of ω. There are two cases.

Case i. C is a downhill square. We locate the pair (B, τ), where τ = NNβµ2ν, and B is the square C

in β. We observe that B is a downhill square in the first block NNβµ2 of ω. Hence (B, τ) ∈ W1(n + 1).

Case ii. C is an uphill square. The top box Ĉ of C in β is a rising box, say Ĉ is at (i′, j′). Let C be the

k′th square on the line x + y = i + j from Ĉ. We further factorize β as β = αµ1Eγ, where α goes from the

beginning of β to the upper left corner of Ĉ, E is the first east step that goes from the line y = x + j′ − i′ to

the line y = x + j′ − i′ − 1, and γ is the remaining part of β. Let pα denote the end point of α. Since Ĉ is
a rising box, µ1 starts with a north step. Factorize µ1 as µ1 = NλE, and let µ′

1 = λEN. We locate the pair

(B, τ), where τ = NNµ′
1αEγµ2ν, B̂ is the top box at pα in τ , and B is the k′th square from B̂. Since α is

followed by an east step, B̂ is a falling box and B is a downhill square in the first block NNµ′
1αEγµ2 of τ .

Hence (B, τ) ∈ W1(n + 1).
For both cases, let Φ−1

n,1((B, τ)) = (A, π) ∈ T1(n). Then we retrieve the required pair Φ−1
n,4((C, ω)) =

(V, π) ∈ T4(n) from (A, π), where V is the black down-triangle that shares an edge with A. �

For example, given the pair (V, π) ∈ T4(9) shown on the left of Figure 2, where the lower right corner
of V is (3, 4). Let A be the up-triangle at (2, 5). The intermediate pair Φ9,1((A, π)) = (B, τ) ∈ W1(10) is
shown on the left of Figure 5. First, factorize τ = βν, where β = (1, . . . , 18) and ν = (19, 20). Next, β

is further factorized as β = N1N2µ1µ2, where N1 = 1, N2 = 2, µ1 = (3, . . . , 14) and µ2 = (15, 16, 17, 18).
Let β′ = N1N2µ2µ1. On the right of Figure 5 is the path β′ν. We observe that N1N2µ2 is the first
block of β′, and that µ1 has no valley on the line L1 : y = x − 1. Hence we have the corresponding pair
Φ9,4((V, π)) = (C, ω) ∈ W4(10), where ω = β′ν = N1N2µ2µ1ν and C is at (5, 7).
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Figure 5. The pairs Φ9,1((A, π)) = (B, τ) ∈ W1(10) and Φ9,4((V, π)) = (C, ω) ∈ W4(10) that are
associated with the pairs (A, π) ∈ T1(9) and (V, π) ∈ T4(9) shown on the left of Figure 2.

For the latter case, consider the pair (V, π) ∈ T4(11) shown on the left of Figure 6, where the lower right
corner of V is (7, 8). Let A be the up-triangle at (6, 9). The intermediate pair Φ11,1((A, π)) = (B, τ) ∈ W1(12)
is shown on the right of Figure 6. First, τ is factorized as τ = βν, where β = (1, . . . , 22) and ν = (23, 24).
Next, β is factorized as β = N1N2µ1µ2, where µ1 = (3, . . . , 18) and µ2 = (19, 20, 21, 22). Let β′ = N1N2µ2µ1.
On the left of Figure 7 is the path β′ν. We observe that N1N2µ2 is the first block of β′, and that µ1

has two valleys on the line L1 : y = x − 1. Hence µ1 is further factorized as µ1 = λE3N3αγ, where
E3 = 11 and N3 = 12 form the last valley on the line L1 of µ1, λ = (3, . . . , 10), α = (13, 14, 15, 16), and
γ = (17, 18). With N3 moved in front of λ, we have N3λE3 = (12, 3, 4, . . . , 11). The corresponding pair
Φ11,4((V, π)) = (C, ω) ∈ W4(12) is shown on the right of Figure 7, where ω = N1N2µ2αN3λE3γν and C is at
(4, 6).

A
V

7

23

1

2

3

4
5 6

8 9 10

11 12

13

1514

16

17 18 19
20 21 22

24

B

Figure 6. A pair (V, π) ∈ T4(11) and the corresponding pair Φ11,1((A, π)) = (B, τ) ∈ W1(12).

4. Proof of Theorem 1.2

In this section, making use of a variant of parallelogram polyominoes, we shall prove Theorem 1.2 in two
stages (see Propositions 4.1 and 4.3).

A shortened polyomino is formed by a pair (P, Q) of paths using north steps (0, 1) and east steps (1, 0)
that start from the origin, end in a common point, and satisfy the following conditions

(H1) P never goes below Q, and
(H2) there are no north steps of P and Q overlapped.

The perimeter of a polyomino is twice of the length of its paths, and its area is the number of unit squares
enclosed. As another occurrence of Catalan numbers, it is known that the number of shortened polyominoes
of perimeter 2n is cn (see [7, Section 5]). The shortened polyominoes of perimeter 6 are shown in Figure 8.
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Figure 7. The intermediate path β′ν and the corresponding pair Φ11,4((V, π)) = (C, ω) ∈ W4(12).

Making use of a similar argument to the one in [15, Theorem A], we prove the following proposition. Here,
the end point of a step is said to be at level h if it is on the line y = x + h, for some integer h.

Figure 8. The shortened polyominoes with perimeter 6.

Proposition 4.1. There is a bijection Ωn between the set Cn of Catalan paths of length n and the set

Hn of shortened polyominoes of perimeter 2n such that there is a one-to-one correspondence between the

white squares under a path ω ∈ Cn and the squares in Ωn(ω) ∈ Hn.

Proof. Given a path ω ∈ Cn, let P (resp. Q) be the path formed by the even steps (resp. odd steps) of
ω, and let Q∗ be the path obtained from Q by interchanging north steps and east steps. Define a mapping
Ωn by carrying ω into Ωn(ω) = (P, Q∗). Let P = p1 · · · pn and Q∗ = q1 · · · qn. Clearly, P and Q∗ have
the same number of north steps (as well as east steps), and P always remains above Q∗ since the distance
between the end points of pi and qi (1 ≤ i ≤ n) is one half of the level of the end point of pi in ω. Moreover,
whenever two steps in (P, Q∗) overlap, they are east steps since their corresponding steps in ω form a peak
at level 1. Hence Ωn(ω) ∈ Hn. To find Ω−1

n , it is simply to reverse the procedure.
We observe that each white square under ω is on the line x + y = 2h, for some h (1 ≤ h ≤ n − 1), and

that the number of white squares under ω on the line x + y = 2h is equal to the number of squares on the
line x + y = h in Ωn(ω). Hence there is a one-to-one correspondence between the set of white squares under
ω and the set of squares in Ωn(ω) such that the kth square on the line x + y = 2h from its top box under ω

corresponds to the kth square on the line x + y = h (from upper left to lower right) in Ωn(ω). �

We remark that the actual distance between the end points of pi and qi in (P, Q∗) has a factor
√

2, but
we omit it.

For example, given the pair (C, ω) ∈ W10 shown on the right of Figure 5. The shortened polyomino
Ω10(ω) = (P, Q∗) is shown on the left of Figure 9, where P = NNEENNENEE consists of the even steps of ω

and Q∗ = ENNEEENNNE is obtained from the odd steps Q = NEENNNEEEN of ω by interchanging north
steps and east steps. The white square C under ω is carried into the square D in Ω10(ω).

Let us turn to the second half of the proof of Theorem 1.2. Let Sn be the set of permutations of
[n] := {1, . . . , n}. We write σ = σ1 · · ·σn ∈ Sn, where σi = σ(i). For a σ ∈ Sn, an excedance (resp. weak

excedance) of σ is an integer i ∈ [n − 1] such that σi > i (resp. σi ≥ i). Here the element σi is called
an excedance letter (resp. weak excedance letter). Non-weak excedances and non-weak excedance letters are
defined in the obvious way, in terms of i and σi, such that σi < i. Let E(σ) be the set of excedances of σ,
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and let inv(σ) be the number of inversions of σ. The following characterization of 321-avoiding permutations
was given by R. Simion [12, Lemma 5.6] (see also [10, Proposition 2.3]).

Lemma 4.2. A permutation σ is 321-avoiding if and only if

inv(σ) =
∑

k∈E(σ)

(σk − k).

Proposition 4.3. There is a bijection Υn between the set Hn of shortened polyominoes of perimeter 2n

and the set Sn(321) of 321-avoiding permutations of length n such that there is a one-to-one correspondence

between the squares in a polyomino (P, Q) ∈ Hn and the inversions of Υn((P, Q)) ∈ Sn(321).

Proof. Given a shortened polyomino (P, Q) ∈ Hn, let P = p1 · · · pn and Q = q1 · · · qn. Let the
steps p1, . . . , pn of P be labeled from 1 to n. For each i (1 ≤ i ≤ n), we assign the ith step qi of Q the
label zi of the opposite step across the polyomino. The mapping Υn is defined by carrying (P, Q) into
Υn((P, Q)) = z1 · · · zn. Since the labels of the north steps (resp. east steps) of Q are increasing, every
decreasing subsequence of Υn((P, Q)) is of length at most two. Hence Υn((P, Q)) ∈ Sn(321).

To find Υ−1
n , we shall retrieve a shortened polyomino Υ−1

n (σ) for any σ = σ1 · · ·σn ∈ Sn(321). Let
{j1, . . . , jt} be the set of weak excedances of σ (i.e., σ(ji) ≥ ji, for 1 ≤ i ≤ t). For each i (1 ≤ i ≤ t), put
an east step Ei at height y = σ(ji) − i as the top of the ith column of Υ−1

n (σ). The upper path of Υ−1
n (σ)

goes from (0, 0) to the end point of Et containing E1, . . . , Et. On the other hand, for each i (1 ≤ i ≤ t), put
an east step E

′
i at height y = ji − i as the bottom of the ith column of Υ−1

n (σ). The lower path of Υ−1
n (σ)

goes from (0, 0) to the end point of Et containing E
′
1, . . . , E

′
t. Since σ(ji) ≥ ji ≥ i (1 ≤ i ≤ t), Υ−1

n (σ) ∈ Hn

is well-defined.
Note that there are σ(ji) − ji squares in the ith column of Υ−1

n (σ), and that, by Lemma 4.2, inv(σ) =∑t

i=1(σ(ji)−ji). Hence the number of inversions of σ is equal to the number of squares in Υ−1
n (σ). Moreover,

the columns (resp. rows) of Υ−1
n (σ) are labeled with weak excedance letters (resp. non-weak excedance

letters) increasingly. Since each square D in Υ−1
n (σ) is the intersection of the column with label σi and

the row with label σj , for some excedance i and non-weak excedance j, there is one-to-one correspondence
between the squares in Υ−1

n (σ) and the inversions of σ such that D is carried into the inversion (σi, σj). �

For example, in Figure 9, the labeling of the shortened polyomino (P, Q∗) on the left is shown in the
center. The corresponding permutation σ = Υ10((P, Q∗)) = 312479568a (a = 10) can be obtained from the
labeling of the lower path Q∗. Note that the square D in (P, Q∗) is carried into the inversion (σ6, σ7) = (9, 5)
of Υ10((P, Q∗)). To show Υ−1

10 (σ), note that the weak excedances of σ are {1, 4, 5, 6, 10}, i.e., σ1 = 3, σ4 = 4,

σ5 = 7, σ6 = 9, and σ10 = 10. The east steps on the upper path and lower path of Υ−1
10 (σ) are shown on the

right of Figure 9.
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7 8
9 10
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Figure 9. The shortened polyomino Ω10(ω) associated with the path ω ∈ C10 in Figure 5, and its labeling.

By the composition Ψn = Υn ◦Ωn, Theorem 1.2 is proved. Hence, by Theorems 1.1 and 1.2, we establish
the required bijection between the area of all Catalan paths of length n and the inversions of all 321-avoiding
permutations of length n + 1.
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5. Some enumerative results for parallelogram polyominoes

In the previous section, we introduced a variant of parallelogram polyominoes, called shortened poly-
ominoes. A parallelogram polyomino is a pair of non-intersecting paths that starts from the origin and ends
in a common point. A shrunk polyomino is a pair of paths that start from the origin and end in a common
point such that one path never goes below the other. In fact, a shortened polyomino of perimeter 2n can be
obtained from a parallelogram polyomino (P, Q) of perimeter 2n + 2 by deleting the initial (north) step of
the upper path P and deleting the final (north) step of the lower path Q. Moreover, a shrunk polyomino of
perimeter 2n − 2 can be obtained from a shortened polyomino (P ′, Q′) of perimeter 2n by further deleting
the final (east) step of the upper path P ′ and deleting the first (east) step of the lower path Q′. Figure 10
shows polyominoes of the three types for the case of n = 3. Refer also to [14, Exercise 6.19(l)(m)].

Figure 10. The polyominoes of three kinds for the case n = 3.

A bijection Ω′
n between Catalan paths of length n and parallelogram polyominoes of perimeter 2n + 2

can be obtained from the bijection Ωn in Proposition 4.1 as follows. Given a path ω ∈ Cn, let (P, Q∗) =
Ωn(ω) ∈ Hn be the corresponding shortened polyomino. The bijection Ω′

n is defined by Ω′
n(ω) = (NP, Q∗

N),
which is obtained from Ωn(ω) with a north step attached to the beginning of the upper path and a north
step attached to the end of the lower path. We remark that this bijection is different from the one given by
Delest and Viennot in [5, Section 4] and the one given by Reifegerste in [10, Theorem 3.10]. The following
proposition is also an immediate consequence of the bijection Ωn.

Proposition 5.1. There is a bijection Θn between the set Cn of Catalan paths of length n and the set

Rn of shrunk polyominoes of perimeter 2n − 2 such that there is a one-to-one correspondence between the

black squares under a path π ∈ Cn and the squares in Θn(π) ∈ Rn.

Proof. Given a path π ∈ Cn, consider the shortened polyomino Ωn(π) = (P, Q∗) under the mapping
Ωn in Proposition 4.1. Let P = p1 · · · pn and Q∗ = q1 · · · qn. There is an immediate bijection Θn : Cn → Rn

that carries π into Θn(π) = (P ′, Q∗′) ∈ Rn, where P ′ = p1 · · · pn−1 and Q∗′ = q2 · · · qn. Moreover, the
number of black squares under π on the line x+ y = 2h+1, (1 ≤ h ≤ n− 2) is equal to the distance between
the end points of ph and qh+1 in (P ′, Q∗′). Hence there is a one-to-one correspondence between the black
squares under π and the squares in Θn(π). �

The following bijective result can be obtained by the same argument as in the proof of Proposition 4.1,
which appeared implicitly in [15, Theorem A].

Proposition 5.2. There is a bijection Λn between the set En of elevated Catalan paths of length n+1 and

the set Pn of parallelogram polyominoes of perimeter 2n + 2 such that there is a one-to-one correspondence

between the white squares under a path π ∈ En and the squares in Λn(π) ∈ Pn.

By Theorem 2.1 and Propositions 4.1, 5.1, and 5.2, we deduce the enumerative results on the area of
the various polyominoes.

Theorem 5.3. For n ≥ 2, the following results hold.

(i) The area of all shortened polyominoes of perimeter 2n is 4n−1 −
(
2n−1
n−1

)
.
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(ii) The area of all shrunk polyominoes of perimeter 2n − 2 is 4n−1 −
(

2n
n−1

)
.

(iii) The area of all parallelogram polyominoes of perimeter 2n + 2 is 4n−1.

A 2-Motzkin path of length n is a lattice path from (0, 0) to (n, 0) that never goes below the x-axis, using
up steps (1, 1), down steps (1,−1), and level steps (1, 0), where the level steps can be either of two kinds:
straight and wavy. The area of a 2-Motzkin path is defined to be the sum of the heights of the end points
of all steps. By a simple substitution, there is a bijection between the set Mn of 2-Motzkin paths of length
n and the set Rn+1 of shrunk polyominoes of perimeter 2n. Given a τ ∈ Mn, for each i (1 ≤ i ≤ n), we
associate the ith step ti of τ with a pair (pi, qi) of steps, where

(pi, qi) =






(N, E) if ti is an up step
(E, N) if ti is a down step
(N, N) if ti is a straight level step
(E, E) if ti is a wavy level step.

The corresponding shrunk polyomino of τ is the pair (P, Q) of paths, where P = p1 · · · pn and Q = q1 · · · qn.
It is straightforward to verify that the height of the end point of ti in τ is equal to the distance between pi

and qi in (P, Q). By Theorem 5.3(ii), we have the following result.

Corollary 5.4. The area of all 2-Motzkin paths of length n is 4n −
(
2n+2

n

)
.
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Conjugacy in Permutation Representations of the Symmetric Group

Extended Abstract

Yona Cherniavsky and Mishael Sklarz

Abstract. Although the conjugacy classes of the general linear group are known, it is not obvious (from
the canonic form of matrices) that two permutation matrices are similar if and only if they are conjugate
as permutations in the symmetric group, i.e. that conjugacy classes of Sn do not unite under the natural
representation. We prove this fact, and give its application to the enumeration of fixed points under a
natural action of Sn × Sn. We also consider the permutation representations of Sn which arise from the
action of Sn on k-tuples, and classify which of them unite conjugacy classes and which do not.

Résumé. Bien que les classes de conjugaison du groupe linéaire général soient bien connues, il n’est pas
évident (à partir de la forme canonique des matrices) que deux oermutations sont similaires si et seulement
si elles sont conjuguées comme permutations du groupe symétrique, i.e. que les classes de conjugaison
de Sn ne s’unissent pas sous la représentation naturelle.Nous prouvons ici ce fait et nous l’appliquons à
l’énumération des points fixes pour une action naturelle de Sn ×Sn. We étudions aussi la représentation par
permutations de Sn qui découle de l’action de Sn sur les k-uplets, et nous distinguons celles qui unissent les
classes de conjugaisons.

1. Introduction

In this extended abstract we study the action of Sn on ordered k-tuples. Denote by ρk the corresponding
permutation representation over an arbitrary field F. The following problem was presented to us by Lubotzky
and Roichman.

Problem 1. For which 1 ≤ k ≤ n and for which fields F does the following hold:

For any two permutations π, σ ∈ Sn, ρk(π) is conjugate to ρk(σ) in GL(n, F) if and only if π and σ are

conjugate in Sn.

This problem arises in the enumeration of invertible matrices with respect to a certain natural action of
Sn × Sn, see [BC] and Section 4 below.

For k = n, i.e. the regular representation, a negative solution to Problem 1 was essentially given by
Burnside (See [B] p. 23-24). In Section 2 it is shown that for k = 1 the answer is positive. A full solution
is given in Section 3: We find that ρ1 and ρ2 do not unite any classes, that ρ3 unites classes only when n
is even, and that ρk for k ≥ 4 always unites some classes. These results do not depend on the choice of the
field F. Finally, our results are applied in Section 4 to the enumeration of fixed points of a natural action of
Sn × Sn on invertible matrices. This is an extended abstract: Proofs and full details can be found in [CS].

2. The Natural Representation of Sn

There is a natural embedding of Sn in GL(n, F) where F is any field. Consider a permutation π ∈ Sn as
an n × n matrix obtained from the identity matrix by permutations of the rows. More explicitly: for every
permutation π ∈ Sn we identify π with the matrix:

2000 Mathematics Subject Classification. Primary 20C30; Secondary 05E15.
Key words and phrases. conjugacy classes, symmetric group, permutation representations, characters, fixed points.
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[π]i,j =

{

1 i = π(j)
0 otherwise

This representation can also be realized as the permutation representation which is obtained from the natural
action of Sn on {1, 2, . . . , n} defined by π · i = π(i).

Our first result is that this representation does not unite conjugacy classes of Sn. We shall use the
following well known fact:

Fact 2.1. If σ is a cycle of length n, then σk consists of (n, k) cycles, each of length n/(n, k).1

Proposition 2.1. Let F be a field of characteristic 0. The conjugacy classes of Sn do not unite in

GL(n, F). In other words, if π and σ are permutations with similar matrices in GL(n, F), then they are

conjugate in Sn too.

Proof. Let π and σ be permutations which are similar as matrices. First of all, we note that for any
k, πk and σk are also similar.

Each cycle of length k in π contributes the term xk − 1 into the characteristic polynomial of the per-
mutation matrix. Under the above restriction on char(F) it seems reasonable that the cycle structure of a
permutation can be recovered from the characteristic polynomial of the corresponding permutation matrix.
However, our proof utilizes the trace of the permutation matrix and the traces of its powers.

Denote by cd(π) the number cycles with length equal to d in π. We shall use induction on d to prove
that cd(π) = cd(σ), for all d, and this will show that π and σ are conjugate.

Since π and σ are similar as matrices, we have trace(π) = trace(σ). However, the trace function counts
the 1’s on the diagonal (here we use the restriction on char(F)), and each such 1 corresponds to a fixed point
of the permutation, so trace(π) = c1(π). Therefore, c1(π) = c1(σ), i.e. π and σ have the same number of
fixed points. This is the base of our induction.

Now let d be an arbitrary number, and suppose that ck(π) = ck(σ) for all k < d. From Lemma 2.1 it
follows that a k-cycle in π ends up as a product of k 1-cycles in πd if and only if k divides d. Therefore, we
can conclude that

trace(πd) =
∑

k|d

k · ck(π) = d · cd(π) +
∑

k|d,k<d

k · ck(π).

Now, by our induction hypothesis, for all proper divisors k | d we have ck(π) = ck(σ). On the other hand,
trace(πd) = trace(σd). This implies that cd(π) = cd(σ), and completes the induction argument.

We have shown that π and σ have the same cycle structure, so they are conjugate as permutations. �

Note that if F is such that char(F) < n then the trace of a permutation matrix no longer gives the
number of fixed points of the permutation, so a more devious route is necessary.

In this case it is impossible to recover the cycle structure of a permutation from the characteristic
polynomial of the corresponding permutation matrix: for example, if char(F) = 2 we have x4+1 = (x2+1)2 =
(x + 1)4, i.e. one cycle of length 4, two cycles of length 2 and four cycles of length 1 all have the same
characteristic polynomial.

However, in [CS] we extend Proposition 2.1, and prove the following:

Theorem 2.2. Let F be an arbitrary field. The conjugacy classes of Sn do not unite in GL(n, F). In

other words, if π and σ are permutations with similar matrices in GL(n, F), then they are conjugate in Sn

too.

The proof is obtained by considering certain eigenspaces of powers of π and σ. See [CS] for full details.
It should be noted that this property of the natural representation seems to be very “delicate”. For

example, in the natural representations of the signed permutation groups this property fails to hold. In
particular, in B2, the permutations σ = (1, 2) and τ = (1, 1̄) are not conjugate, and yet the matrices
associated with them, namely

P (σ) =

(

0 1
1 0

)

and P (τ) =

(

−1 0
0 1

)

are similar matrices.

1We use (n, k) to denote the greatest common divisor of n and k.
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3. Other Permutation Representations

3.1. Representations Arising from the Action of Sn on k-tuples. In Section 2 we proved that
the natural representation of Sn does not unite conjugacy classes. On the other hand, it is well known (see
[B] p. 23-24) that the regular representation of Sn (indeed, of any group) unites all elements of equal order.
The natural representation can be seen as the permutation representation obtained from the natural action
of Sn on the set {(1), (2), . . . , (n)} of 1-tuples. On the other hand, the regular representation can be seen as
the permutation representation which arises from the action of Sn on all n! ordered n-tuples of numbers from
{1, 2, . . . , n}. In this section we wish to address the representations in between: the representation arising
from the action of Sn on pairs, triplets, etc. and to see where the representations start uniting conjugacy
classes.

At first we shall confine ourselves to the complex field, and prove our results there. The results for
general fields will follow from these results.

We begin with a general theorem, which holds true for any representation of any finite group.

Theorem 3.1. Let G be a group, and σ, τ ∈ G. Let T : G → GL(d, C) a representation of G, with

character χ. Then T (σ) ∼ T (τ) as matrices if and only if χ(σk) = χ(τk) for all k.

Proof is given in [CS].
Note that the fact that the regular representation unites all elements of equal order can be derived from

this theorem: If χ is the character of the regular representation, then

χ(σk) =

{

|G| |σ| | k,

0 otherwise

so obviously χ(σk) = χ(τk) for all k if and only if σ and τ have the same order.
The criterion which we just presented is still rather complicated to use for general groups, but it can be

simplified in our case, because of the following simple fact.

Fact 3.2. Let σ ∈ Sn, with |σ| = m.

• If k is relatively prime to m. Then σk ∼ σ.

• For any k, σk ∼ σ(m,k).

Claim 3.3. Let T : Sn → GL(d, C) be a representation of the symmetric group, with character χ, and

σ, τ ∈ Sn elements of order m. Then T (σ) ∼ T (τ) if and only if χ(σk) = χ(τk) for k | m.

Corrolary 3.4. If σ and τ are of prime order p, then T (σ) ∼ T (τ) if and only if χ(σ) = χ(τ).

Definition 3.5. Let σ, τ ∈ Sn be elements of equal order m, such that if k 6= 1 and k | m then σk ∼ τk.
It follows from 3.3 that T (σ) ∼ T (τ) if and only if χ(σ) = χ(τ). We call such elements almost similar. In
fact, it is sufficient to require that σp ∼ τp for all prime divisors of m.

We next show that almost similar elements are typical examples of elements that are united by repre-
sentations, in the following sense:

Theorem 3.6. Let T : Sn → GL(d, C) be a representation. If T unites some two conjugacy classes,

then there must exist a pair of almost similar elements which it unites.

Having proved this, we now have a criterion to check whether a representation unites classes: It is
sufficient to show that all pairs of almost similar elements remain non united, i.e. that the character of the
representation takes different values on them.

Using this criterion, we show

Theorem 3.7.

(1) The natural representation does not unite classes.

(2) The representation arising from the action on pairs does not unite classes.

(3) The representation arising from the action on triplets unites classes iff n is even.

(4) Representations arising from the action on k-tuples, with k ≥ 4, always unite some classes.
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3.2. Representations Arising from the Action of Sn on Subsets. The natural route to follow
now would be to try and generalize these results to other permutation representations, and in particular to
those arising from the action of Sn on k-subsets of {1, 2, . . . , n}. The general answer eludes us at present,
and seems to be pretty unsatisfactory. However, we have managed to show that the representation arising
from the action of Sn on all subsets of [n] does in fact not unite any classes. In all this section, we shall
omit proofs, and refer the interested reader to [CS] for full details.

Theorem 3.8. The action of Sn on the power set 2[n] of [n] does not unite classes.

Consider now the action of Sn on even sized subsets of [n]. If n is even, then this action unites some
classes. For example, (1, 2)(3, 4) . . . (n − 1, n) and (1)(2)(3, 4) . . . (n − 1, n) get united. (They are almost
similar, and both fix 2n/2 sets.)

However, if n is odd, then this representation does not unite classes.

Theorem 3.9. Let n be odd. The action of Sn on the set of even-sized subsets of [n] does not unite

classes.

Finally, we conclude this section by exploring the behavior of the representation arising from the action
of Sn on odd sized subsets of [n].

Theorem 3.10. The action of Sn on the set of odd-sized subsets of [n] does not unite classes. This does

not depend on n’s parity.

3.3. General Fields. The proofs in the two previous sections apply only to the complex field C, (in
fact, to all fields with characteristic 0.) We shall now show that the same applies to any field. We shall base
ourselves on Theorem 2.1 from Section 2, where we proved that the natural representation does not unite
classes, regardless the base field.

Lemma 3.11. Let f : G → H and g : H → K be group homomorphisms.

(1) If f and g both do not unite classes, then also gf does not unite them.

(2) If gf does not unite classes, then neither does f .

Theorem 3.12. Let T be any permutation representation of Sn. If T does not unite classes when

considered a representation into GL(m, C), then it does not unite classes when considered as a representation

into GL(m, F), for any field F.

Proof. Any permutation representation can be factored into Sn → Sm → GL(m, C), where the first
homomorphism is the permutation representation and the second is the natural representation. Now, suppose
T does not unite classes. By Lemma 3.11, neither does the permutation representation Sn → Sm. We
already know that the natural representation does not unite classes, whatever the field. Tacking these two
homomorphisms together gives us the representation in any field, and another appeal to Lemma 3.11 proves
that it still doesn’t unite any classes. �

4. The action of Sn × Sn on invertible matrices

In this section we present an application of Theorem 2.1.

Definition 4.1. Let F be any field. We define an action of Sn × Sn on the group GL(n, F) by

(π, σ) • A = πAσ−1 where (π, σ) ∈ Sn × Sn and A ∈ GL(n, F) (1)

Definition 4.2. Let M be a finite subset of GL(n, F), invariant under the action of Sn × Sn defined
above. We denote by αM the permutation representation of Sn × Sn obtained from the action (1) . In the
sequel we identify the action (1) with the permutation representation αM associated with it.

Now we define a generalization of the conjugacy representation of Sn

We present a conjugacy representation of Sn on a subset M of GL(n, F).

Definition 4.3. Denote by β the permutation representation of Sn obtained by the following action on
M .

π ◦ A = (π, π) • A = πAπ−1 (2)

The connection between αM and βM is given by the following easily seen claim:
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Claim 4.4. Consider the diagonal embedding of Sn into Sn × Sn. Then

βM = αM ↓Sn×Sn

Sn
. �

Corrolary 4.5. For every finite set M ⊆ GL(n, F) invariant under the action (1) of Sn × Sn defined

above:

If π and σ are conjugate in Sn then

χαM
((π, σ)) = χαM

((π, π)) = χβM
(π) = #{A ∈ M |πA = Aπ} .

If π is not conjugate to σ in Sn then

χαM
((π, σ)) = 0 .

Proof. If π and σ are conjugate in Sn then (π, σ) is conjugate to (π, π) in Sn ×Sn. Since the character
is a class function, we have:

χαM

(

π, σ) = χαM
(π, π) = #{A ∈ M |πAπ−1 = A} = #{A ∈ M |πA = Aπ}

i.e. the value of the character of αM calculated on the element (π, σ) with π conjugate to σ in Sn is equal
to the number of matrices in M which commute with the permutation matrix π.

Now, we know that the character of a permutation representation counts the number of fixed points, so:

χαM
(π, σ) = #{A ∈ M |πAσ−1 = A} = #{A ∈ M |π = AσA−1}.

Note that π = AσA−1 means that π and σ are similar as invertible matrices. Thus, by Theorem 2.1, if π
and σ are not conjugate in Sn they can not be conjugate in GL(n, F) and we have:

{A ∈ M |π = AσA−1} = ∅

and so
χαM

(π, σ) = 0

if π and σ are not conjugate in Sn. �

For an application of Corrolary 4.5 to the enumeration of fixed points, see [BC].
Acknowledgments. The authors are grateful to Alex Lubotzky, Yuval Roichman, Eli Bagno, Uzi
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San Diego, California 2006

Enumeration of Bruhat intervals between nested involutions in Sn

Alessandro Conflitti

Abstract. We build a chain
id = ϑ0 < ϑ1 < · · · < ϑbn

2 c−1
< ϑbn

2 c

of nested involutions in the Bruhat ordering of Sn, with ϑbn
2
c the maximal element for the Bruhat order,

and we study the cardinality of the Bruhat intervals [ϑj , ϑk] for all 0 ≤ j < k ≤
¨

n
2

˝

, and the number of

permutations incomparable with ϑt, for all 0 ≤ t ≤
¨

n
2

˝

.

Résumé. Nous construisons une châıne

id = ϑ0 < ϑ1 < · · · < ϑbn
2 c−1

< ϑbn
2 c

des involutions nichées dans l’ordre de Bruhat de Sn, avec ϑbn
2 c

l’élément maximal pour l’ordre de Bruhat,

et nous étudions la cardinalité des intervalles de Bruhat [ϑj , ϑk] pour tout les 0 ≤ j < k ≤
¨

n
2

˝

, et le nombre

de permutations incomparables avec ϑt, pour tout le 0 ≤ t ≤
¨

n
2

˝

.

1. Overview

For any n ≥ 2, let Sn be the symmetric group of n elements equipped with the Bruhat ordering ≤;
see e.g. [3, 6, 8, 21, 22]. One of the most celebrated combinatorial and algebraic problems is to study its
Bruhat graph and its Bruhat intervals [a, b] = {z ∈ Sn : a ≤ z ≤ b} for a, b ∈ Sn; see e.g. [1, 7, 12, 15].
These are intimately related with the Kazhdan–Lusztig polynomials of Sn and the algebraic geometry of
Schubert varieties. See e.g. [9, 10, 13, 14, 18] and the references therein.

In this work we build a chain

id = ϑ0 < ϑ1 < · · · < ϑbn
2 c−1 < ϑbn

2 c

of nested involutions in the Bruhat ordering of Sn, with ϑbn
2 c

the maximal element for the Bruhat order

(see Definition 3.1 for the exact definition of ϑt, t = 0, . . . ,
⌊

n
2

⌋

), and we study the cardinality of the Bruhat

intervals [ϑj , ϑk] for all 0 ≤ j < k ≤
⌊

n
2

⌋

. Moreover we study the number of permutations incomparable

with ϑt, for all 0 ≤ t ≤
⌊

n
2

⌋

. Our results imply and generalize the result of [27], where a closed formula for
the cardinality of [ϑ0, ϑ1] is proved. This problem is related to the explicit computation of Kazhdan–Lusztig
polynomials for some classes of elements. See e.g. [24, 25] and the references therein.

The importance of the set {ϑt : t = 0, . . . ,
⌊

n
2

⌋

} lies in the fact that involutions of the symmetric group
and, more generally, of Coxeter groups, are elements having nice algebraic properties, see [28, 29, 30, 31].
In particular, in [28] it is proved that the maximal length element of any conjugacy class in Sn containing
involutions is one of the ϑt for some t = 0, . . . ,

⌊

n
2

⌋

.

2. Preliminaries

In this section we collect together some definitions, notation and results that will be used in the following.
We follow [11, 20, 32] for combinatorics and poset notation and terminology.

2000 Mathematics Subject Classification. 05A15, 05E15, 20F55, 33C05.
Key words and phrases. symmetric group, Bruhat intervals, nested involutions.
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For x ∈ R we let bxc = max{n ∈ Z : n ≤ x}; for n ∈ N we let [n] = {t ∈ N : 1 ≤ t ≤ n} = {1, . . . , n},

and [0] = ∅. For any complex number a, we define the rising factorial as (a)0 = 1 and (a)m =
∏m−1

j=0 (a+ j)

for any m ∈ N \ {0}. The cardinality of a set X will be denoted by #X .
For any n ≥ 2, let Sn be the symmetric group of permutations of n objects, viz. the set of all bijections

σ : [n]
∼
−→ [n] .

If σ ∈ Sn then we write σ = [a1, . . . , an] to mean that σ (j) = aj for j ∈ [n]. Sometimes we also write σ
in disjoint cycle form and we usually omit writing the 1–cycles of σ. Given σ, τ ∈ Sn we let στ = σ ◦ τ
(composition of functions) so that, for example (1, 2)(2, 3) = (1, 2, 3). For any σ = (a1, . . . , an) ∈ Z

n we say
that a pair (i, j) ∈ [n]× [n] is an inversion of σ if i < j and ai > aj , and we denote the number of inversions
of σ by inv (σ).

We set

: En = {(j, j + 1) : j ∈ [n− 1]},
: Tn = {(i, j) : 1 ≤ i < j ≤ n}, the set of transpositions in Sn,
: D (σ) = {τ ∈ En : inv (στ) < inv (σ)}, the descent set of σ ∈ Sn.

We recall the definition of Bruhat order on Sn:

Definition 2.1. Let n ≥ 2. For any u, v ∈ Sn, u < v in Bruhat order if and only if there exist k ∈ N

and t1, . . . , tk ∈ Tn such that

v = ut1 · · · tk,

inv (ut1 · · · tj+1) > inv (ut1 · · · tj) for any j ∈ [k − 1] .

It is easy to see that [n, . . . , 1] is the maximum element in Sn for the Bruhat order.
Now we state a criterion for deciding when two permutations are comparable in the Bruhat ordering,

which was achieved in [5].

Theorem 2.2. Let n ≥ 2, and for any σ, τ ∈ Sn, let σ [j, k] be the j-th entry in the increasing rearrange-
ment of {σ (1) , . . . , σ (k)} for all 1 ≤ j ≤ k ≤ n − 1, and define τ [j, k] similarly. Then the following are
equivalent:

(1) σ ≤ τ in the Bruhat order,
(2) σ [j, k] ≤ τ [j, k], for all k ∈ D (σ) and 1 ≤ j ≤ k,
(3) σ [j, k] ≤ τ [j, k], for all k ∈ {1, . . . , n− 1} \D (τ) and 1 ≤ j ≤ k.

3. Main Results

Definition 3.1. Let n ≥ 2. We define

ϑt =

t−1
∏

j=0

(j + 1, n− j) = (1, n) · · · (t, n− t+ 1)

= [n, . . . , n− t+ 1, t+ 1, . . . , n− t, t, . . . , 1] ∈ Sn

for all 0 ≤ t ≤
⌊

n
2

⌋

.

Obviously ϑt is an involution for all 0 ≤ t ≤
⌊

n
2

⌋

, and

id = ϑ0 < ϑ1 < · · · < ϑbn
2 c−1 < ϑbn

2 c
= max{σ ∈ Sn}

in the Bruhat order of Sn.

Definition 3.2. Let n ≥ 2, and 0 ≤ t ≤ n− 1. We define

Ft (n) =

{

{σ ∈ Sn : σ ≤ ϑt} = [ϑ0, ϑt] if t ≤
⌊

n
2

⌋

,

Sn if t ≥
⌊

n
2

⌋

;

and

Ft (n) = #Ft (n) ,

setting Ft (0) = Ft (1) = 1.
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Lemma 3.3. Let n ≥ 2, 0 ≤ t ≤ n− 1, and j ∈ [t+ 1]. The number of permutations σ ∈ Ft (n) with the
constraint that there exists a subset A = {α1, . . . , αj} ⊂ [t+ 1] and an array B = (β1, . . . , βj) with pairwise
distinct coordinates βk ∈ [t+ 1] for all k ∈ [j] such that

σ (αl) = βl for all l ∈ [j]

equals

j!

(

t+ 1

j

)2

Ft (n− j) .

Proof. Of course we can always assume t ≥ 1 otherwise the result is trivial.
For any fixed A = {α1, . . . , αj} and B = (β1, . . . , βj) with the desired properties, let

Zn
t [j] (A,B) = {σ ∈ Ft (n) : σ (αk) = βk for all k ∈ [j]}.

We note that from Theorem 2.2 and Definition 3.1 we get that Zn
t [j] (A,B) 6= ∅ for all possible choices of A

and B.
Consider the order–preserving bijections

ϕ : [n] \A
∼
−→ [n− t] ,

ψ : [n] \B
∼
−→ [n− t] .

Then from Theorem 2.2 there is a bijection

f : Zn
t [j] (A,B)

∼
−→ Ft (n− j)

defined in the following way: we delete σ (k) if k ∈ A, whereas for all k /∈ A

σ (k)
f

−→ ψ (σ (ϕ (k))) .

Noticing that there are
(

t+1
j

)

ways for choosing A and j!
(

t+1
j

)

ways for choosing B, the desired result

follows. �

Theorem 3.4. For any n ≥ 2,

Ft (n) =

{

∑t+1
j=1 (−1)

j−1
j!
(

t+1
j

)2
Ft (n− j) if 0 ≤ t ≤ n− 1,

n! if t ≥ n.

Proof. Of course we can always assume t ∈ [n− 1] otherwise the result is trivial.
From Theorem 2.2 we see that if σ ∈ Ft (n) then

{σ (k) : k ∈ [t+ 1]}
⋂

[t+ 1] 6= ∅.

Let k ∈ [t+ 1] and

Rk = {σ ∈ Ft (n) : σ (k) ∈ [t+ 1]}.

Then by inclusion–exclusion we have

Ft (n) = #





⋃

k∈[t+1]

Rk



 =

t+1
∑

j=1

(−1)
j−1

∑

I⊂[t+1]
#I=j

#

(

⋂

z∈I

Rz

)

,

and the desired result follows from Lemma 3.3. �

The following Corollary is immediate, and it gives a purely combinatorial proof of an identity for the
factorial.

Corollary 3.5. For any n ≥ 2 and for all
⌊

n
2

⌋

≤ k, t ≤ n− 1,

k+1
∑

j=1

(−1)
j−1

j!

(

k + 1

j

)2

(n− j)! =

t+1
∑

j=1

(−1)
j−1

j!

(

t+ 1

j

)2

(n− j)! = n!

Proof. From Definition 3.2, Fk (n) = Ft (n) = n! for all
⌊

n
2

⌋

≤ k, t ≤ n − 1. Taking in account
Theorem 3.4, the desired result follows. �
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We note that this identity can be also proved using the theory of hypergeometric series and applying
Chu–Vandermonde summation, see [2, 17, 19, 23]. In fact, it is equivalent to

∞
∑

j=0

(−1)
j
j!

(

t+ 1

j

)2

(n− j)! = 0

for all
⌊

n
2

⌋

≤ t ≤ n− 1, and we have that

∞
∑

j=0

(−1)
j
j!

(

t+ 1

j

)2

(n− j)! =

(

2F1

[

−t− 1,−t− 1
−n

; 1

])

((1)n)

=
((1)n)

(

(1 − n+ t)1+t

)

(−n)1+t

;

obviously if
⌊

n
2

⌋

≤ t ≤ n− 1 then 1 − n+ t ≤ 0 ≤ 1 − n+ 2t, therefore (1 − n+ t)1+t = 0.
Now we give an explicit formula for the generating function of the sequence {Ft (n)}n≥2t for any t ≥ 1,

and then, using it, we are able to prove a closed formula for the function Ft (n) for any t ≥ 1 and any n ≥ 2t.

Theorem 3.6. For any t ≥ 1,

∑

n≥2t

Ft (n)Xn = X2t

∑t

k=0

(

∑t+1
j=k+1 (−1)

j−1 (t+1
j

)2
j! (2t− j + k)!

)

Xk

∑t+1
j=0 (−1)

j (t+1
j

)2
j!Xj

.

Proof. From Theorem 3.4 we get

∑

n≥2t

Ft (n)Xn =
∑

n≥2t

t+1
∑

j=1

(−1)
j−1

(

t+ 1

j

)2

j!Ft (n− j)Xn

=

t+1
∑

j=1

(−1)
j−1

(

t+ 1

j

)2

j!Xj

·





2t−1
∑

m=2t−j

Ft (m)Xm +
∑

m≥2t

Ft (m)Xm



 .

From Definition 3.2 we have Ft (n) = n! if 2t+ 1 ≥ n, thus

2t−1
∑

m=2t−j

Ft (m)Xm =
2t−1
∑

m=2t−j

m!Xm =

j−1
∑

k=0

(2t− j + k)!X2t−j+k,

hence




∑

n≥2t

Ft (n)Xn









t+1
∑

j=0

(−1)
j

(

t+ 1

j

)2

j!Xj





= X2t





t+1
∑

j=1

(−1)
j−1

(

t+ 1

j

)2

j!

j−1
∑

k=0

(2t− j + k)!Xk





= X2t ·
t
∑

k=0





t+1
∑

j=k+1

(−1)
j−1

(

t+ 1

j

)2

j! (2t− j + k)!



Xk,

and the desired result follows. �
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Theorem 3.7. For any t ≥ 1 and any n ≥ 2t

Ft (n) =

min{t,n−2t}
∑

z=0









t+1
∑

j=z+1

(−1)j−1

(

t+ 1

j

)2

j! (2t− j + z)!





·









∑

α∈N
t+1

Ω(α)=n−2t−z

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)j−1

(

t+ 1

j

)2

j!

)αj





















,

where for any multi–index α = (α1, . . . αt+1) ∈ N
t+1 we set ‖α‖ =

∑t+1
j=1 αj and Ω (α) =

∑t+1
j=1 j · αj.

Proof. With an eye on Theorem 3.6, observe first that

1
∑t+1

j=0 (−1)
j (t+1

j

)2
j!Xj

=
1

1 −
∑t+1

j=1 (−1)
j−1 (t+1

j

)2
j!Xj

(3.1)

=
∑

l≥0





t+1
∑

j=1

(−1)
j−1

(

t+ 1

j

)2

j!Xj





l

.

Now, for any r ≥ 1 and any multi–index α = (α1, . . . αr) ∈ N
r, we set ‖α‖ =

∑r

j=1 αj and Ω (α) =
∑r

j=1 j · αj , and we recall that for any r ≥ 1, s ≥ 1, and z1, . . . , zr ∈ R we have





r
∑

j=1

zj





s

=
∑

α∈N
r

‖α‖=s

s!
∏r

k=1 (αk!)





r
∏

j=1

z
αj

j



 .

Therefore (3.1) equals

∑

l≥0





t+1
∑

j=1

(−1)j−1

(

t+ 1

j

)2

j!Xj





l

=
∑

l≥0

∑

α∈N
t+1

‖α‖=l

l!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)
j−1

(

t+ 1

j

)2

j!Xj

)αj





=
∑

α∈Nt+1

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)j−1

(

t+ 1

j

)2

j!

)αj



XΩ(α)(3.2)

=
∑

v≥0









∑

α∈N
t+1

Ω(α)=v

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)j−1

(

t+ 1

j

)2

j!

)αj













Xv,
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and combining Theorem 3.6 and (3.2) we get
∑

n≥2t

Ft (n)Xn

= X2t ·





t
∑

k=0





t+1
∑

j=k+1

(−1)
j−1

(

t+ 1

j

)2

j! (2t− j + k)!



Xk





·
∑

v≥0









∑

α∈N
t+1

Ω(α)=v

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)
j−1

(

t+ 1

j

)2

j!

)αj













Xv

=
∑

l≥0





min{l,t}
∑

z=0





t+1
∑

j=z+1

(−1)
j−1

(

t+ 1

j

)2

j! (2t− j + z)!





·









∑

α∈N
t+1

Ω(α)=l−z

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)
j−1

(

t+ 1

j

)2

j!

)αj





















X2t+l.

The desired result follows. �

Now we show that knowing the cardinality of Bruhat intervals starting from the identity leads to knowing
the cardinality of Bruhat intervals between two general nested involutions.

Theorem 3.8. Let n ≥ 2 and 0 ≤ j < k ≤
⌊

n
2

⌋

; then

#[ϑj , ϑk] = Fk−j (n− 2j) .

Proof. In order to prove the statement we exhibit a bijection

f : [ϑj , ϑk]
∼
−→ Fk−j (n− 2j)

σ 7−→ fσ

From Theorem 2.2 we see that if σ ∈ [ϑj , ϑk] then σ (l) = n+ 1− l for all l ∈ [j]
⋃

([n] \ [n− j]). We set

fσ (l) = σ (l + j) − j

for all l ∈ [n− 2j], and the desired result follows. �

Knowing the cardinality of Bruhat intervals starting from the identity and Bruhat intervals between two
nested involutions leads to knowing the number of permutations less or equal than one of the two nested
involutions and incomparable with the other one.

Theorem 3.9. Let n ≥ 2 and 0 ≤ j < k ≤
⌊

n
2

⌋

; then

#{σ ∈ Sn : σ ≤ ϑk and σ is incomparable with ϑj}

= Fk (n) − Fj (n) − Fk−j (n− 2j) + 1.

Proof. We have

{σ ∈ Sn : σ ≤ ϑk and σ is incomparable with ϑj}

= Fk (n) \
(

Fj (n)
⋃

[ϑj , ϑk]
)

,

and Fj (n)
⋂

[ϑj , ϑk] = {ϑj}; the desired result follows. �

Corollary 3.10. Let n ≥ 2 and 0 ≤ t ≤
⌊

n
2

⌋

; then

#{σ ∈ Sn : σ is incomparable with ϑt} = n! + 1 − Ft (n) − Fbn
2 c−t

(n− 2t) .

�
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4. Remarks

Studying the cardinality of Bruhat intervals between similar nested involutions in different Coxeter
systems leads to other challenging questions.

In particular, one can consider the chains

id = φ0 < φ1 < · · · < φn−1 < φn,

id = ψ0 < ψ1 < · · · < ψbn
2 c−1 < ψbn

2 c

of nested involutions in the Bruhat ordering of Bn, the hyperoctahedral group of rank n (see [6, 26]), where

φr =

r−1
∏

j=0

(−n+ j, n− j) ,

ψt =

t−1
∏

j=0

(j + 1,−n+ j) (−j − 1, n− j)

for any r = 0, . . . , n− 1 and any t = 0, . . . ,
⌊

n
2

⌋

, and to investigate # [φj , φk] for all 0 ≤ j < k ≤ n− 1 and

# [ψh, ψz] for all 0 ≤ h < z ≤
⌊

n
2

⌋

.
We note that in order to study enumeration of Bruhat intervals in a Coxeter system (W,S) (see [6, 21, 22]

for comprehensive references about Coxeter systems) it is not required that W < ∞. In fact, the following
fact is well–known, and we refer e.g. to [6] for a proof.

Proposition 4.1. Let (W,S) be a Coxeter system, and u, v ∈ W . Bruhat intervals [u, v] = {z ∈ W :
u ≤ z ≤ v} are finite (even if #S = ∞). In fact, #[u, v] ≤ 2l(v), where l (v) denotes the length of v.

Therefore, another tempting choice to investigate the cardinality of Bruhat intervals between suitable
involutions would be to consider Ãn, the affine group of type Ã and rank n; see [4, 6, 16].
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Overpartitions, lattice paths and Rogers-Ramanujan identities

Sylvie Corteel and Olivier Mallet

Abstract. We define the notions of successive ranks and generalized Durfee squares for overpartitions. We
show how these combinatorial statistics give extensions to overpartitions of combinatorial interpretations
in terms of lattice paths of the generalizations of the Rogers-Ramanujan identities due to Burge, Andrews
and Bressoud. All our proofs are combinatorial and use bijective techniques. Our result includes the
Andrews-Gordon identities, the generalization of the Gordon-Göllnitz identities and Gordon’s theorems for
overpartitions.

Résumé. Nous définissons les notions de rangs successifs et de carré de Durfee généralisé pour les overparti-
tions. Nous montrons comment ces statistiques combinatoires permettent d’étendre aux overpartitions des
interprétations combinatoires en termes de chemins des généralisations des identités de Rogers-Ramanujan

dues à Burge, Andrews et Bressoud. Toutes nos preuves sont combinatoires et utilisent des techniques bi-
jectives. Notre résultat englobe les identités d’Andrews-Gordon, les généralisations de l’identité de Gordon-
Göllnitz et les theorèmes de Gordon pour les overpartitions.

1. Introduction

The starting point of this work is a result of Lovejoy of 2003 [25], called Gordon’s theorem for overpar-
titions which states that

Theorem 1.1. [25] Let Bk(n) denote the number of overpartitions of n of the form (λ1, λ2, . . . , λs),
where λj − λj+k−1 ≥ 1 if λj+k−1 is overlined and λj − λj+k−1 ≥ 2 otherwise. Let Ak(n) denote the number

of overpartitions of n into parts not divisible by k. Then Ak(n) = Bk(n).

An overpartition here is a partition where the final occurrence of a part can be overlined [16]. For
example there exist 8 overpartitions of 3

(3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), (1, 1, 1).

Overpartitions have been recently heavily studied under different names and guises. They can be called joint
partitions [9], or dotted partitions [11] and they are also closely related to 2-modular diagrams [28], jagged
partitions [21, 22] and superpartitions [20]. Results on (for example) combinatorics of basic hypergeomet-
ric series identities [17, 32], q-series [22, 25, 26], congruences of the overpartition function [21, 29] and
supersymmetric functions [20] have been discovered.

Gordon’s theorem was proved in 1961 and is the following

Theorem 1.2. [24] Let Bk,i(n) denote the number of partitions of n of the form (λ1, λ2, . . . , λs), where
λj − λj+k−1 ≥ 2 and at most i− 1 of the parts are equal to 1. Let Ak,i(n) denote the number of partitions
of n into parts not congruent to 0,±i modulo 2k + 1. Then Ak,i(n) = Bk,i(n).

2000 Mathematics Subject Classification. Primary 11P81; Secondary 05A17.
Key words and phrases. Partitions, overpartitions, Rogers-Ramanujan identities, lattice paths.
The authors are partially supported by the ACI Jeunes Chercheurs “Partitions d’entiers à la frontière de la combinatoire,
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This theorem is an extension of the famous Rogers-Ramanujan identities proved by Rogers in 1894 [31]
which correspond to the cases k = i = 2 and k = 2, i = 1. It is still a well known open problem to find a
natural bijective proof of these identities, even though an impressive number of nearly combinatorial proofs
have been published. A recent example was presented at FPSAC last year [10]. Lovejoy’s result can be seen
as an analog of Gordon’s theorem, as the conditions on the Bk(n) reduce to the conditions on the Bk,k(n)
if the overpartition has no overlined parts and is indeed a partition.

Other combinatorial interpretations related to Gordon’s theorem were given by Andrews and these
became the Andrews-Gordon identities :

Theorem 1.3. [4] Let Ck,i(n) be the number of partitions of n whose successive ranks lie in the interval
[−i + 2, 2k − i − 1] and let Dk,i(n) be the number of partitions of n with i − 1 successive Durfee squares
followed by k − i successive Durfee rectangles. Then

Ak,i(n) = Bk,i(n) = Ck,i(n) = Dk,i(n).

Details can be found in [2, Chapter 7]. It is well understood combinatorially that Bk,i(n) = Ck,i(n) =
Dk,i(n) and that result was established by some beautiful work of Burge [14, 15] using some recursive
arguments. This work was reinterpreted by Andrews and Bressoud [7] who showed that Burge’s argument
could be rephrased in terms of binary words and that Gordon’s theorem can be established thanks to these
combinatorial arguments and the Jacobi Triple product identity [23]. Finally Bressoud [12] reinterpreted
these in terms of ternary words and showed some direct bijections between the objects counted by Bk,i(n),
Ck,i(n), Dk,i(n) and the ternary words.

The purpose of this extended abstract is therefore to extend these works [7, 12, 14, 15] to overpartitions
to try to generalize both Gordon’s theorem for overpartitions and the Andrews-Gordon identities.

Our main result is the following and is proved totally combinatorially:

Theorem 1.4.

• Let Bk,i(n, j) be the number of overpartitions of n of the form (λ1, λ2, . . . , λs) with j overlined parts
and where λ` − λ`+k−1 ≥ 1 if λ`+k−1 is overlined and λ` − λ`+k−1 ≥ 2 otherwise and at most i− 1
parts are equal to 1.
• Let Ck,i(n, j) be the number of overpartitions of n with j non-overlined parts in the bottom row of

their Frobenius representation and whose successive ranks lie in [−i + 2, 2k − i− 1].
• Let Dk,i(n, j) be the number of overpartitions of n with j overlined parts and i − 1 successive

Durfee squares followed by k − i successive Durfee rectangles, the first one being a generalized
Durfee square/rectangle.
• Let Ek,i(n, j) be the number of paths that use four kinds of unitary steps with special (k, i)-

conditions, major index n, and j South steps.

Then Bk,i(n, j) = Ck,i(n, j) = Dk,i(n, j) = Ek,i(n, j).

We use the classical q-series notations : (a)∞ = (a; q)∞ =
∏∞

i=0(1 − aqi), (a)n = (a)∞/(aqn)∞ and

(a1, . . . , ak; q)∞ = (a1; q)∞ . . . (ak; q)∞. The generating function Ek,i(a, q) =
∑

n,j Ek,i(n, j)qnaj is :

Theorem 1.5.

(1.1) Ek,i(a, q) =
(−aq)∞
(q)∞

∞
∑

n=−∞

(−1)nanqkn2+(k−i+1)n (−1/a)n

(−aq)n

.

In some cases, we can use the Jacobi Triple Product identity [23]:

(−1/z,−zq, q; q)∞ =
∞
∑

n=−∞

znq(
n+1

2 )

and show that this generating function has a very nice form. For example,
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Corollary 1.1.

Ek,i(0, q) =
(qi, q2k+1−i, q2k+1; q2k+1)∞

(q)∞
(1.2)

Ek,i(1/q, q2) =
(q2; q4)∞(q2i−1, q4k+1−2i, q4k; q4k)∞

(q)∞
(1.3)

Ek,i(1, q) =
(−q)∞
(q)∞

2(k−i)
∑

j=0

(−1)j(qi+j , q2k−i−j , q2k; q2k)∞(1.4)

Ek,i(1/q, q) =
(−q)∞
(q)∞

(

(qi, q2k−i, q2k; q2k)∞ + (qi−1, q2k+1−i, q2k; q2k)∞
)

(1.5)

Hence our result gives a general view of different problems on partitions and overpartitions and shows
how they are related.

• The case a→ 0 corresponds to the Andrews-Gordon identities [4].
• The case q → q2 and a → 1/q corresponds to Andrew’s generalization of the Gordon-Göllnitz

identities [5, 7].
• The cases a → 1 and i = k and a → 1/q and i = 1 correspond to the two Gordon’s theorems for

overpartitions of Lovejoy [25].

Therefore our extension of the work on the Andrews-Gordon identities [7, 12, 14, 15] to the case of overpar-
titions includes these identities, but it also includes Andrew’s generalization of the Gordon-Göllnitz identities
and Gordon’s theorems for overpartitions.

We start by some definitions in Section 2. In Section 3 we present the paths counted by Ek,i(n, j) and
compute the generating function. In Section 4 we present a direct bijection between the paths counted by
Ek,i(n, j) and the overpartitions counted by Ck,i(n, j). In Section 5 we present a recursive bijection between

the paths counted by Ek,i(n, j) and the overpartitions counted by Bk,i(n, j). We also give a generating
function proof. In Section 6, we present a combinatorial argument that shows that the paths counted by
Ek,i(n, j) and the overpartitions counted by Dk,i(n, j) are in bijection. All these bijections are refinements
of Theorem 1.4. The number of the peaks of the paths will correspond respectively to the number of columns
of the Frobenius representations, the number of weighted pairs and the size of the generalized Durfee square.
We conclude in Section 7 with open further questions.

Due to the length of this extended abstract, we will most of the time present the sketch of the proofs.
More details can be found in [19, 30].

2. Definitions on overpartitions

We will define all the notions in terms of overpartitions. We refer to [2] for definitions for partitions. In
all of the cases the definitions coincide when the overpartition has no overlined parts.

An overpartition of n is a non-increasing sequence of natural numbers whose sum is n in which the
final occurrence (equivalently, the first occurrence) of a number may be overlined. Alternatively n can be
called the weight of the overpartition. Since the overlined parts form a partition into distinct parts and the

non-overlined parts form an ordinary partition, the generating function of overpartitions is (−q)∞
(q)∞

.

The multiplicity of the part j of an overpartition, denoted by fj, is the number of occurrences of this
part. We overline the multiplicity if the part appears overlined. For example, the multiplicity of the part 4
in the overpartition (6, 6, 5, 4, 4, 4, 3, 1) is f4 = 3. The multiplicity sequence is the sequence (f1, f2, . . .). For
example the previous overpartition has multiplicity sequence (1, 0, 1, 3, 1, 2).

The Frobenius representation of an overpartition [16, 27] of n is a two-rowed array
(

a1 a2 ... aN

b1 b2 ... bN

)

where (a1, . . . , aN ) is a partition into distinct nonnegative parts and (b1, . . . , bN) is an overpartition into
nonnegative parts where the first occurrence of a part can be overlined and N +

∑

(ai + bi) = n.
We now define the successive ranks.
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Figure 1. The generalized Durfee square of λ = (7, 4, 3, 3, 2, 1) has side 4.

Figure 2. Successive Durfee squares and successive Durfee rectangles of (6, 5, 5, 4, 4, 3, 2, 2, 2, 1).

Definition 2.1. The successive ranks of an overpartition can be defined from its Frobenius representa-

tion. If an overpartition has Frobenius representation

(

a1 a2 · · · aN

b1 b2 · · · bN

)

then its ith successive rank ri is

ai − bi minus the number of non-overlined parts in {bi+1, . . . , bN}.

This definition in an extension of Lovejoy’s definition of the rank [27]. For example, the successive ranks

of

(

7 4 2 0

3 3 1 0

)

are (2, 0, 1, 0).

We say that the generalized Durfee square of an overpartition λ has side N if N is the largest integer
such that the number of overlined parts plus the number of non-overlined parts greater or equal to N is
greater than or equal to N (see Figure 1). Thanks to the Algorithm Z [8], we can easily show that there
exists a bijection between overpartitions whose Frobenius representation has N columns and whose bottom
line has j overlined parts and overpartitions with generalized Durfee square of size N and N − j overlined
parts. See [19] for details. The generating function of overpartitions with generalized Durfee square of size
N where the exponent of q counts the weight and the exponent of a the number of overlined parts is

aNq(
N+1

2 )(−1/a)N

(q)N (q)N

.

Definition 2.2. The successive Durfee squares of an overpartition are its generalized Durfee square
and the successive Durfee squares of the partition below the generalized Durfee square, if we represent the
partition as in Figure 1, with the overlined parts above the non-overlined ones. We can also define similarly
the successive Durfee rectangles by dissecting the overpartition with d× (d+1)-rectangles instead of squares.

These definitions imply that

(2.1)
∑

n1≥...≥nk−1≥0

q(
n1+1

2 )+ni+...+nk−1(−1/a)n1
an1

(q)n1

(

qn2
2

[

n1

n2

]

q

)(

qn2
3

[

n2

n3

]

q

)

· · ·

(

qn2
k−1

[

nk−2

nk−1

]

q

)

where
[

n

k

]

q

=
(q)n

(q)k(q)n−k

is the generating function of overpartitions with i− 1 successive Durfee squares followed by k − i successive
Durfee rectangles, the first one being a generalized Durfee square/rectangle.
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Figure 3. This path has four peaks : two NES peaks (located at (2, 2) and (6, 1)) and two
NESE peaks (located at (4, 1) and (7, 1)). Its major index is 2 + 4 + 6 + 7 = 19.

3. Paths and generating function

This part is an extension of papers of Andrews and Bressoud [7, 12] based on ideas of Burge [12]. We
study paths in the first quadrant that use four kinds of unitary steps :

• North-East NE : (x, y)→ (x + 1, y + 1),
• South-East SE : (x, y)→ (x + 1, y − 1),
• South S : (x, y)→ (x, y − 1),
• East E : (x, 0)→ (x + 1, 0).

The height corresponds to the y-coordinate. A South step can only appear after a North-East step and an
East step can only appear at height 0. The paths must end with a North-East or South step. A peak is a
vertex preceeded by a North-East step and followed by a South step (in which case it will be called a NES
peak) or by a South-East step (in which case it will be called a NESE peak). If the path ends with a North-
East step, its last vertex is also a NESE peak. The major index of a path is the sum of the x-coordinates
of its peaks (see Figure 3 for an example). When the paths have no South steps, this is the definition of the
paths in [12].

Let Ek,i(n, j, N) be the number of such paths of major index n with N peaks, j South steps that start

at height k − i and whose height is less than k. Let Ek,i(N) be the generating function of those paths, that

is Ek,i(N) = Ek,i(N, a, q) =
∑

n,j Ek,i(n, j, N)ajqn.
Then

Proposition 3.1.

Ek,i(N) = qNEk,i+1(N) + qNΓk,i−1(N); i < k

Γk,i(N) = qNΓk,i−1(N) + (a + qN−1)Ek,i+1(N − 1); 0 < i < k

Ek,k(N) =
qN

1− qN
Γk,k−1(N)

Ek,i(0) = 1 Γk,0(N) = 0

Proof. We prove that by induction on the length of the path. If the path is empty, then its major
index is 0 and N = 0. Moreover if N = 0 the only path counted in Ek,i(0) is the empty path. If the path is

not empty, then we take off its first step. If i < k, then a path counted in Ek,i(N) starts with a North-East

(defined by qNΓk,i−1(N)) or a South-East step (qNEk,i+1(N)). If i > 0, Γk,i(N) is the generating function

of paths counted in Ek,i+1(N) where the first North-East step was deleted. These paths can start with a

North-East step (qNΓk,i−1(N)), a South step (aEk,i+1(N −1)) or a South-East step (qN−1Ek,i+1(N −1)). If

i = k then a path counted in Ek,k(N) starts with a North-East (qNΓk,k−1(N)) or an East step (qNEk,k(N)).
The height of the paths is less than k, therefore no path which starts at height k − 1 can start with a
North-East step and Γk,0(N) = 0. �

These recurrences uniquely define the series Ek,i(N) and Γk,i(N). We get that :

Theorem 3.1.

Ek,i(N) = aNq(
N+1

2 )(−1/a)N

N
∑

n=−N

(−1)n qkn2+n(k−i)−(n

2)

(q)N−n(q)N+n

Γk,i(N) = aNq(
N

2 )(−1/a)N

N−1
∑

n=−N

(−1)n qkn2+n(k−i)−(n+1

2 )

(q)N−n−1(q)N+n

The proof is omitted. It uses simple algebraic manipulation to prove that these generating functions
satisfy the recurrence relations of Proposition 3.1.
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We just need a proposition (which is in fact a aprticular case of the q-Gauss identity [23]) that can be
proved combinatorially and analytically [19] to prove Theorem 1.5.

Proposition 3.2. For any n ∈ Z

∑

N≥|n|

(−azq)n(−qn/a)N−nq(
N+1

2 )−(n+1

2 )zN−naN−n

(zq)N+n(q)N−n

=
(−azq)∞
(zq)∞

.

Summing on N using the previous proposition we get

∑

N≥0

Ek,i(N) =
(−aq)∞
(q)∞

∞
∑

n=−∞

(−1)nanqkn2+(k−i+1)n (−1/a)n

(−aq)n

.

This is equation (1.1).

4. Paths and successive ranks

This section is a generalization of Bressoud’s correspondence for partitions presented in [12]. The aim
of this section is the following:

Proposition 4.1. There exists a one-to-one correspondence between the paths of major index n with j
south steps counted by Ek,i(n, j) and the overpartitions of n zith j non-overlined parts in the bottom line of

their Frobenius representation and whose successive ranks lie in [−i + 2, 2k − i − 1] counted by Ck,i(n, j).
This correspondence is such that the paths have N peaks if and only if the Frobenius representation of the
overpartition has N columns.

Given a lattice path which starts at (0, a) and a peak (x, y) with u South steps to its left, we map this
peak to the pair (s, t) where

s = (x + a− y + u)/2

t = (x− a + y − 2− u)/2

if there are an even number of East steps to the left of the peak, and

s = (x + a + y − 1 + u)/2

t = (x− a− y − 1− u)/2

if there are an odd number of East steps to the left of the peak. Moreover, we overline t if the peak is a
NESE peak. In both cases, s and t are integers and we have s + t + 1 = x. In the case of partitions treated
in [12], u is always 0.

Let N be the number of peaks in the path and j the number of South steps of the paths. If the ith
peak from the right has coordinates (xi, yi) and the corresponding pair is (si, ti), then we show in [19] that
the sequence (s1, s2, . . . , sN) is a partition into distinct nonnegative parts and the sequence (t1, t2, . . . , tN )

is an overpartition into nonnegative parts with j non-overlined parts. Therefore

(

s1 s2 · · · sN

t1 t2 · · · tN

)

is the

Frobenius representation of an overpartition whose weight is

N
∑

i=1

(si + ti + 1) =
N
∑

i=1

xi

i.e. the major index of the corresponding path.

As an example, the path in Figure 4 corresponds to the partition

(

14 11 6 4 2

7 6 5 4 3

)

.

The peaks all have height at least one, thus for a peak (x, y) which is preceeded by an even number of
East steps, we have :

1 ≤ y = a + 1 + t− s + u

⇔ s− t− u ≤ a

⇔ the corresponding successive rank is ≤ a
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× ×

×

× ×

× ×

× ×

×

×

(6, 4, 0)

(9, 3, 0) (12, 3, 1)

(18, 2, 1)

(22, 4, 1)

Figure 4. Illustration of the correspondence between paths and successive ranks. The
values of x, y and u are given for each peak.

and if the peak is preceeded by and odd number of East steps, we have :

1 ≤ y = s− t− u− a

⇔ s− t− u ≥ a + 1

⇔ the corresponding successive rank is ≥ a + 1

Thus, given a Frobenius representation of an overpartition and a nonnegative integer a, there is a unique
corresponding path which starts at (0, a).

In our paths, all peaks have height at most k− 1 and a = k− i, therefore in the first case the successive
rank r ∈ [−i + 2, k − i] and in the second case r ∈ [k − i + 1, 2k − i− 1].

The map is easily reversible. This proves Proposition 4.1.

5. Paths and multiplicities

Recall that Bk,i(n, j) is the number of overpartitions λ of n with j overlined parts such that for all `,










λ` − λ`+k−1 ≤

{

1 if λ`+k−1 is overlined

2 otherwise

f1 < i

or equivalently










∀`, f` + f`+1 ≤

{

k + 1 if a part ` is overlined

k otherwise

f1 < i

The aim of this section is the following:

Proposition 5.1. There exists a one-to-one correspondence between the paths counted by Ek,i(n, j) and

the overpartitions counted by Bk,i(n, j). This correspondence is such that the paths have N peaks if and only
if the overpartition has N weighted pairs.

We will first give a generating function proof of that proposition (without the refinement). Then we will
give a combinatorial proof which is a generalization of Burge’s correspondence for partitions presented in
[14].

5.1. A generating function proof. Let Bk,i(a, q) =
∑

n≥0 Bk,i(n, j)ajqn. We prove that

Proposition 5.2.
Bk,i(a, q) = Ek,i(a, q)

Proof. We generalize Lovejoy’s proof of Theorem 1.1 of [25]. Let

Jk,i(a, x, q) = Hk,i(a, xq, q)− axqHk,i−1(a, xq, q)

Hk,i(a, x, q) =

∞
∑

n=0

xknqkn2+n−inan(1− xiq2ni)(axqn+1)∞(1/a)n

(q)n(xqn)∞
.

Andrews showed in [2, p. 106-107] that for 2 ≤ i ≤ k,

Jk,i(a, x, q)− Jk,i−1(a, x, q) = (xq)i−1Jk,k−i+1(a, xq, q)− a(xq)i−1Jk,k−i+2(a, xq, q)

Jk,1(a, x, q) = Jk,k(a, x, q).
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This functional equation of Jk,i(a, x, q) implies that

Bk,i(a, q) = Jk,i(−a, 1, q).

Hence

Bk,i(a, q) =
(−aq)∞
(q)∞

∞
∑

n=0

(−1)nan qkn2+n(k−i+1)(−1/a)n(1− q(2n+1)i)

(−aq)n+1

+aq
(−aq)∞
(q)∞

∞
∑

n=0

(−1)nan qkn2+n(k−i+2)(−1/a)n(1− q(2n+1)(i−1))

(−aq)n+1

=
(−aq)∞
(q)∞

∞
∑

n=0

(−1)nan qkn2+n(k+1)(−1/a)n(q−in + aq1−(i−1)n)

(−aq)n+1

−
(−aq)∞
(q)∞

∞
∑

n=0

(−1)nan qkn2+n(k+1)(−1/a)n(q(n+1)i + aq(n+1)(i−1)+1)

(−aq)n+1

=
(−aq)∞
(q)∞

(

∞
∑

n=0

(−1)nan qkn2+n(k+1−i)(−1/a)n

(−aq)n

−

∞
∑

n=0

(−1)nan+1 qkn2+n(k+i)+i(−1/a)n+1

(−aq)n+1

)

=
(−aq)∞
(q)∞

(

∞
∑

n=0

(−1)nan qkn2+n(k+1−i)(−1/a)n

(−aq)n

+

−1
∑

n=−∞

(−1)na−n qkn2+n(k−i)(−1/a)−n

(−aq)−n

)

=
(−aq)∞
(q)∞

∞
∑

n=−∞

(−1)nan qkn2+n(k+1−i)(−1/a)n

(−aq)n

= Ek,i(a, q)

�

5.2. A combinatorial proof. This part is a generalization of [14, Section 3]. Like Burge, we define
operations on overpartitions represented by their multiplicity sequence.

The operation α is defined as follows. We divide the overpartition into (` + 1)-tuples of the form
(fm, . . . , fm+`) with ` ≥ 1 starting at the smallest part. When we find a multiplicity fm > 0, we open a
parenthesis to its left. If fm is not overlined then we close the parenthesis to the right of fm+1. Otherwise,
we look for the next non-overlined multiplicity, say fp. If fp = 0 then we close the parenthesis to its right,
otherwise we close the parenthesis to the right of fp+1. Then we look for the next positive multiplicity, and
so on. Finally, for each (` + 1)-tuple (fm, . . . , fm+`), we do :

• fm ← fm − 1
• fm+` ← fm+` + 1
• if fm is overlined, we remove its overlining and we overline the smallest non-overlined multiplicity

in the (` + 1)-tuple.

The operation β (resp. δ) consists in setting f0 = 1 (resp. f0 = 1) and applying α.
The inverse operation α−1 is performed by first dividing the overpartition into (`+1)-tuples of the form

(fm, . . . , fm+`), with ` ≥ 1 starting at the largest part, such that :

• fm+` > 0
• fm is not overlined
• fm+p is overlined for 1 ≤ p ≤ `− 1

(for an example, see the first line of Table 1, which corresponds to the overpartition (5, 5, 5, 4, 3, 2)) and then
doing for each (` + 1)-tuple :

• if fm+` = 1 :
– remove the overlining of fm+`

– underline fm

• else if ` > 1 :
– remove the overlining of fm+`−1

– underline fm

• fm+` ← fm+` − 1
• fm ← fm + 1
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Operation N i 0 1 2 3 4 5

α−1 3 1 0 (0 1) (1 1 3)

δ−1 3 2 (0 1) (0 2) (1 2)

α−1 2 2 0 0 (1 1) (2 1)

α−1 2 3 0 (0 2) (0 3)

α−1 2 4 0 (1 1) (1 2)

β−1 2 4 (0 2) 0 (2 1)

δ−1 2 3 (0 1) (0 3)

α−1 1 3 0 0 (1 2)

α−1 1 4 0 0 (2 1)

α−1 1 4 0 (0 3)

α−1 1 4 0 (1 2)

α−1 1 4 0 (2 1)

β−1 1 4 (0 3)

β−1 1 3 (0 2)

δ−1 1 2 (0 1)

0 2 0

Table 1. Reduction of the overpartition (5, 5, 5, 4, 3, 2).

If there is an (` + 1)-tuple (f0, . . . , f`), the operation α−1 will produce a zero part, which may be
overlined or not. The operation β−1 (resp. δ−1) consists in applying α−1 and removing the non-overlined
(resp. overlined) zero part.

The inverse operations allow us to define a reduction process for overpartitions which is similar to Burge’s
reduction for partitions [14]. An example is shown on Table 1.

Let Bk,i(n, j, N) be the number of partitions counted by Bk,i(n, j) such that N =
∑

(`+1)−tuples `. We

call N the number of weighted pairs (for partitions, we always have ` = 1 and N is the number of pairs [14]).
Let Bk,i(N) =

∑

n,j Bk,i(n, j, N)qnaj . Starting with an overpartition counted in Bk,i(N), when we apply

the reduction the weight will decrease by N . We can only apply a β−1 or δ−1 if i > 0. We show in [19]
that when we apply α−1 (resp. β−1, (resp. δ−1)), N stays the same (resp. stays the same or decreases by
1 [in which case the next reduction is an α−1], (resp. decreases by 1)) and i increases by 1 (resp. decreases
by 1, (resp. stays the same)). These observations imply that Bk,i(N) satisfies exactly the same recurrences

relations as Ek,i(N) defined in Proposition 3.1. Therefore Bk,i(N) = Ek,i(N). This proves Proposition 5.1.

6. Paths and successive Durfee squares

We will prove here that

Proposition 6.1.

q(
n1+1

2 )+n2
2+···+n2

k−1+ni+···+nk−1(−1/a)n1
an1

(q)n1−n2
· · · (q)nk−2−nk−1

(q)nk−1

is the generating function of the paths counted by major index and number of South steps starting at height
k − i, whose height is less than k and having nj peaks of relative height ≥ j for 1 ≤ j ≤ k − 1.

The relative height of a peak was defined by Bressoud in [12] when he proved that

Lemma 6.1 (Bressoud).

qn2
1+n2

2+···+n2
k−1+ni+···+nk−1

(q)n1−n2
· · · (q)nk−2−nk−1

(q)nk−1

is the generating function of the paths with no South steps starting at height k − i, whose height is less than
k and having nj peaks of relative height ≥ j for 1 ≤ j ≤ k − 1.
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×

Figure 5. Example of a path.

× ×

× ×

×

× ×

×

×

Figure 6. Effect of the “volcanic uplift”.

× ×

× ×

×

× ×

×

×

Figure 7. After adding the n1 − n2 = 4 NES peaks of relative height one.

An example of such a path, taken from [12], is shown on Figure 5.
A mountain in a path is a portion of the path that starts at the beginning of the path or at height 0

stays above the x-axis and ends at height 0. We recall Bressoud’s definition of the relative height of a peak
[12]. We first map each peak of the path to a pair (y, y′) where y is the height of the peak and y′ is defined
as follows. In each mountain, we choose the leftmost peak of maximal height relative to that mountain. For
this peak, y′ is the minimal height over all vertices to its left. Then, if there are any unchosen peaks left,
we cut all the mountains off at height one. This may divide some moutains into several mountains relative
to height one. For each mountain relative to height one in which no peaks have been chosen, we choose the
leftmost peak of maximal height relative to that mountain ; for this peak, y′ is the greater of one and the
minimal height over all vertices to its left. We continue cutting the mountains off at height 2, 3, etc. until
all peaks have been chosen.

Definition 6.2. [12] The relative height of a peak is then defined by y − y′.

This definition extends naturally to overpartitions. We can now move on to the proof of Proposition 6.1.

Proof. We prove the proposition using Bressoud’s result. We consider a path counted by

qn2
2+···+n2

k−1+ni+···+nk−1

(q)n2−n3
· · · (q)nk−2−nk−1

(q)nk−1

where 2 ≤ i ≤ k. Thanks to Lemma 6.1, we know that this path starts at height k− i, its height is less than
k − 1 and having nj peaks of relative height ≥ j − 1 for 2 ≤ j ≤ k − 1. We first insert a NES peak at each
peak (see Figure 6). This “volcanic uplift” operation increases the weight of the path by

1 + 2 + · · ·+ n2 =

(

n2 + 1

2

)

and the relative height of each peak by one.
We then insert n1 − n2 NES peaks at the beginning of the path (see Figure 7). These new peaks have

total weight
(

n1−n2+1
2

)

and they increase the weight of each of the old peaks by n1−n2. Altogether, the two
operations introduce a factor

q(
n2+1

2 )+(n1−n2+1

2 )+n2(n1−n2) = q(
n1+1

2 ).

If i = 2, so that the path starts at (0, k − 2), we have the option to introduce an extra step at the
beginning of the path, from (0, k − 1) to (1, k − 2). This introduces the factor qn1 .

The factor (−1)n1
corresponds to a partition into distinct parts which lie in [0, n1 − 1]. If this partition

contains a part j − 1 (1 ≤ j ≤ n1), we transform the jth NES peak from the right into a NESE peak (see
Figure 8). This operation increases the weight of the path by j − 1.
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×

× ×

× ×

×

× × ×

×

×

Figure 8. Effect of transforming some NES peaks into NESE peaks. The partition into
distinct parts is (5, 4, 3, 1).

1

× ×
2

× ×
3

4

× ×
5

×
6

Figure 9. The rules for moving peaks.

× × × ×

Figure 10. We want to move the leftmost peak to the right twice, but after the first move,
we come up against a sequence of adjacent peaks. We then move the rightmost peak in this
sequence.

The factor 1
(q)n1−n2

corresponds to a partition (b1, b2, . . . , bn1−n2
) where b1 ≥ b2 ≥ . . . ≥ bn1−n2

≥ 0. For

1 ≤ j ≤ n1 − n2, we move the jth peak of relative height one from the right bj times according to the rules
illustrated in Figure 9. See [19] for details.

When we move a peak, it can meet the next peak to the right. We say that a peak (x, y) meets a peak
(x′, y′) if

x′ − x =

{

2 if (x, y) is a NESE peak

1 if (x, y) is a NES peak
.

If this happens, we abandon the peak we have been moving and move the next one. If we come up against
a sequence of adjacent peaks, we move the rightmost peak in the sequence (see Figure 10).

It can be shown that the distribution of relative heights is not modified by the operations of Figure 9
and that the construction procedure is uniquely reversible. �

The multiple series

∑

n1≥...≥nk−1≥0

q(
n1+1

2 )+n2
2+···+n2

k−1+ni+···+nk−1(−1/a)n1
an1

(q)n1−n2
· · · (q)nk−2−nk−1

(q)nk−1

can be re-expressed as (2.1), which is the generating function of overpartitions with i− 1 successive Durfee
squares followed by k−i successive Durfee rectangles, the first one being a generalized Durfee square/rectangle.
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7. Conclusion

We showed in this work how the combinatorial interpretation of the Andrews-Gordon identities can be
generalized to the case of overpartitions, when the combinatorial statistics (successive ranks, generalized Dur-
fee square, weighted pairs) are defined properly. There exist other generalizations of the Rogers-Ramanujan
identities, see for example [13]. It was shown that the combinatorial interpretation in terms of lattice paths
can also be done for these identities [1, 12, 14, 15]. Our work can also be extended in that direction
and the results are presented in [18]. Finally there exists an extension of the concept of successive ranks
for partitions due to Andrews, Baxter, Bressoud, Burge, Forrester and Viennot [6] and our goal now is to
extend that notion to overpartitions.
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Macdonald polynomials at roots of unity

Francois Descouens and Hideaki Morita

Abstract. The aim of this note is to give some factorisation formulas for different versions of the Macdonald
polynomials when the parameter t is specialized at roots of unity, generalizing those given in [LLT1] for
Hall-Littlewood functions.

Résumé. Le but de cette note est de donner quelques formules de factorisations pour différentes versions des
polynômes de Macdonald lorsque le paramètre t est spécialisé aux racines de l’unité. Ces formules généralisent
celles données dans [LLT1] pour les fonctions de Hall-Littlewood.

1. Introduction

In [LLT1], Lascoux, Leclerc and Thibon give some factorisation formulas for the specialization of the
parameter q at roots of unity for Hall-Littlewood functions. They also give a corollary of these formulas
in terms of cyclic characters of the symmetric group. In this note, we give a generalization of these spe-
cializations for different versions of the Macdonald polynomials. We obtain similar formulas in terms of
plethystic substitutions and cyclic characters. We also give in the last section a congruence for (q, t)-Kostka
polynomials indexed by rectangles using Schur functions in the alphabet constituted by the powers of the
parameter t. We will mainly follow the notations of [M].

Acknowlegdements: This note reports on work in progress in collaboration with Jean-Yves Thibon (Uni-
versité de Marne-la-Vallée). All the computations about Macdonald polynomials have been done using the
MuPAD package MuPAD-Combinat (see [HT] for more details on the project or the website http://mupad-
combinat.sourceforge.net/).

2. Preliminaries

For a partition λ = (λ1, . . . , λn), we write l(λ) its length, |λ| its weight, mi(λ) the multiplicity of the

part of length i and λ
′

its conjugate partition. Let q and t be two indeterminates and F = Q(q, t). Let
ΛF be the ring of symmetric functions over the field F . Let us denote by 〈·, ·〉q,t the inner product on ΛF

defined on the power sums products by

〈 pλ(x) , pµ(x) 〉q,t = δλµzλ(q, t),

where

zλ(q, t) =
∏

i≥1

(mi)! i
mi(λ)

l(λ)∏

i=1

1 − qλi

1 − tλi
.

The special case 〈·, ·〉 = 〈·, ·〉 q=0
t=0

is the usual inner product.

Key words and phrases. Macdonald polynomials, Symmetric functions, Plethysm.
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Let {Pλ(x; q, t)}λ be the family of Macdonald polynomials obtained by orthogonalization of the Schur basis
with respect to the inner product 〈·, ·〉q,t . Define a normalization of these functions by

Qλ(x; q, t) =
1

〈Pλ(x; q, t), Pλ(x; q, t)〉q,t
Pλ(x; q, t).

It is clear from the previous definitions that the families {Pλ}λ and {Qµ}µ are dual to each other with
respect to the inner product 〈·, ·〉q,t (c.f., [M, I, Section 4] and [M, VI, (2.7)]).

Proposition 2.1. Let x = (x1, x2, . . . ) and y = (y1, y2, . . . ) be two sets of variables. The Macdonald
polynomials {Pλ}λ and {Qλ}λ satisfy the following Cauchy formula

∑

λ

Pλ(x; q, t)Qλ(y; q, t) =
∏

i,j

(txiyj; q)∞
(xiyj; q)∞

,

where (a; q)∞ is defined to be the infinite product
∏

r≥0(1 − aqr).

Let f(x) ∈ ΛF be a symmetric function in the variables x = (x1, x2, . . . ). We consider the following algebra
homomorphism

˜: ΛF −→ ΛF

f(x) 7−→ f̃(x) = f

(
x

1 − t

)
.

The images of the powersum functions (pk)k ≥ 1 by this morphism are

∀k ≥ 1, p̃k(x) =
1

1 − tk
pk(x).

We also define the algebra morphism

′ : ΛF −→ ΛF

f(x) 7−→ f ′(x) = f

(
1 − q

1 − t
x

)
.

The images of the powersum functions are

∀k ≥ 1, p
′

k(x) =
1 − qk

1 − tk
pk(x).

Let us consider the following modified version of the Macdonal polynomial

Q′
µ(x; q, t) = Qµ

(
1 − q

1 − t
x; q, t

)
.

We can see that the set {Q′
µ}µ is the dual basis of {Pλ}λ with respect to the usual inner product.

Proposition 2.2. Let x = (x1, x2, . . . ) and y = (y1, y2, . . . ) be two sets of variables. The Macdonald

polynomials {Pλ}λ and {Q
′

λ}λ satisfy the following Cauchy formula
∑

λ

Pλ(x; q, t)Q′
λ(y; q, t) =

∏

i,j

1

1 − xiyj
.

Let Jµ(x; q, t) be the symmetric function with two parameters defined by

Jµ(x; q, t) = cµ(q, t)Pµ(x; q, t) = c′µ(q, t)Qµ(x; q, t), (2.1)

where

cµ(q, t) =
∏

s∈µ

(1 − qa(s)tl(s)+1) and c′µ(q, t) =
∏

s∈µ

(1 − qa(s)+1tl(s)).

The symmetric function Jµ(x; q, t) is called the integral form of Pµ(x; q, t) or Qµ(x; q, t) [M, VI, Section 8].
Using this integral form, we can define an other modified version of the Macdonald polynomial and the
(q, t)-Kostka polynomials Kλ,µ(q, t) by

J̃µ(x; q, t) = Jµ

(
x

1 − t
; q, t

)
=
∑

λ

Kλ,µ(q, t)sλ.
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Haiman, Haglund and Loehr consider a modified version of J̃µ(x; q, t) and introduce others (q, t)-Kostka

polynomials K̃λ,µ(q, t) by

H̃µ(x; q, t) = tn(µ)J̃µ(x; q, t−1) =
∑

λ

K̃λ,µ(q, t)sλ

where n(µ) =
∑

i(i − 1)µi. In [HHL], they give a combinatorial interpretation of this modified version
expanded on monomials by introducing a notion of major index and inversion on arbitrary fillings of µ by
integers.

Remark 2.1. Let µ and ρ be partitions of the same weight. We have

Xµ
ρ (q, t) = 〈 J̃µ(q, t) , pρ(x) 〉,

where Xµ
ρ (q, t) is the Green polynomial with two variables, defined by

Xµ
ρ (q, t) =

∑

λ

χλ
ρKλµ(q, t).

Here χλ
ρ is the value of the irreducible character of the symmetric group corresponding to the partition λ on

the conjugancy class indexed by ρ.

3. Plethystic formula

We recall the definitions of some combinatorial quantities associated to a cell s = (i, j) of a given

partition. The arm length a(s), arm-colength a
′

(s), leg length l(s) and leg-colength l
′

(s) are respectively
the number of cells at the east, at the west, at the south and at the north of the cell s (cf [M, VI, (6.14)])

a(s) = λi − j , a
′

(s) = j − 1,

l(s) = λ
′

j − i , l
′

(s) = i− 1.

We call plethysm of a symmetric function g by a powersum pn, the following operation

pn ◦ g = g(xn
1 , x

n
2 , . . .).

As the powersums generate ΛF , the operation f ◦ g is naturaly defined for any symmetric functions f and g
(see [M, I, 8] for more details).

In this section, we shall show a plethystic formula for Macdonald polynomials when the second parameter t
is specialized at primitive roots of unity.

Proposition 3.1. ([M,VI, (6.11’)]) Let l be a positive integer and λ a partition such that l(λ) ≤ l. The
Macdonald polynomials Pλ(x; t, q) on the alphabet xi = ti for 0 ≤ i ≤ l − 1 and xi = 0 for all i ≥ l can be
written

Pλ(1, t, . . . , tl−1; q, t) = tn(λ)
∏

s∈λ

1 − qa′(s)tl−l′(s)

1 − qa(s)tl(s)+1
. (3.1)

Proposition 3.2. Let l be a positive integer and λ a partition such that l(λ) ≤ l.
For ζ a primitive l-th root of unity, the Macdonald polynomial Pλ satisfy the following specialization

Pλ(1, ζ, ζ2, . . . , ζl−1; q, ζ) =

{
(−1)(l−1)r if λ = (rl) for some r ≥ 0,

0 otherwise.

Proof. Supplying zeros at the end of λ, we consider the partition λ as a sequence of length exactly
equal to l, i.e., λ = (λ1, λ2, . . . , λl) for λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0. The multiplicity of 0 in λ is m0 = l − l(λ).
We will denote by ϕr(t) the polynomial

ϕr(t) = (1 − t)(1 − t2) . . . (1 − tr).

Let

f(t) =
(1 − tl)(1 − tl−1) · · · (1 − tl−l(λ))(1 − tl−l(λ)−1) · · · (1 − t2)(1 − t)

ϕm0(t)ϕm1(t)ϕm2 (t) · · · · · ·

be the product of factors of the form 1 − q0tα for some α > 0 in the formula (3.1). If we suppose that
f(ζ) 6= 0, the factor 1 − tl should be contained in one of ϕmi(t). This means that there exists i ≥ 0 such
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that mi ≥ l. Since we consider λ as a sequence of length exactly l, this implies the condition mr = l for
some r ≥ 0. Thus, if Pλ(1, ζ, ζ2, . . . , ζl−1; q, ζ) 6= 0, the shape of λ should be (rl).

Suppose now that λ = (rl). By Proposition 3.1, it follows that

Pλ(1, ζ, ζ2, . . . , ζl−1; q, ζ) = ζn(λ)
∏

s∈λ

1 − qa′(s)ζl−l′(s)

1 − qa(s)ζ1+l(s)

= ζn(λ)
∏

(i,j)∈λ

1 − qj−1ζl−(i−1)

1 − qr−jζl−i+1

= ζn(λ)
l∏

i=1

r∏

j=1

1 − qj−1ζl−i+1

1 − qr−jζl−i+1

For each i, it is easy to see that
r∏

j=1

1 − qj−1ζl−i+1

1 − qr−jζl−i+1
= 1.

Hence, we obtain
Pλ(1, ζ, ζ2, . . . , ζl−1; q, ζ) = ζn(λ),

and it follows immediately from the definition of n(λ) that

ζn(λ) = ζl(l−1))r/2 = (−1)(l−1)r.

�

Theorem 3.1. Let l and r be two positive integers and ζ a primitive l-th root of unity. The Macdonald
polynomials Q

′

(rl)(x; q, t) satisfy the following specialization formula at t = ζ

Q′
(rl)(x; q, ζ) = (−1)(l−1)r(pl ◦ hr)(x).

Proof. Recall that ∑

λ

Pλ(x; q, t)Q′
λ(y; q, t) =

∏

i,j

1

1 − xiyj
.

If we let xi = ζi−1 for i = 1, 2, . . . , l and xi = 0 for i > l and t = ζ, we obtain

∑

λ

Pλ(1, ζ, ζ2, . . . , ζl−1; q, ζ)Q′
λ(y; q, ζ) =

∏

j≥1

l∏

i=1

1

1 − ζi−1yj
. (3.2)

By Proposition 3.2, the left hand side of (3.2) is equal to
∑

r≥0

(−1)(r−1)lQ′
(rl)(y; q, ζ).

Since
∏l

i=1(1 − ζi−1t) = 1 − tl, the right hand side of (3.2) coincides with
∑

r≥0

hr(y
l),

where yl denotes the set of variables (yl
1, y

l
2, · · · ). Comparing the degrees, we can conclude that

Q′
(rl)(y; q, ζ) = (−1)(l−1)rhr(y

l) = (−1)(l−1)r(pl ◦ hr)(y).

�

Example 3.2. For λ = (222) and l = 3, we can compute

Q
′

(222)(x; q, e
2iπ
3 ) = −s321 + s33 + s411 − s51 + s6 + s222

= p3 ◦ h2(x).

In order to give similar formula for the modified versions of the integral form of the Macdonald polynomials,
we give a formula for the specialization of the constant c′(rl)(t, q) at t a primitive l-th root of unity.
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Lemma 3.3. Let l and r be two positive integers and ζ a l-th primitive root of unity. The normalization
constant satisfies the following specialization at t = ζ

c
′

(rl)(q, ζ) =

r∏

i=1

(1 − qil).

Proof. Recall the definition of the normalization constant

c′(rl)(q, t) =
∏

s∈µ

(1 − qa(s)+1tl(s)) =

r∏

i=1

l∏

j=1

(1 − qr−i+1tj) =

r∏

i=1

l∏

j=1

(1 − qitj).

Specializing t at ζ a l-th primitive root of unity, we obtain

c′(rl)(q, ζ) =

r∏

i=1

l∏

j=1

(1 − qiζj) =

r∏

i=1

(1 − qil).

�

Corollary 3.1. With the same notation as in Theorem 3.1, the modified integral form of the Macdonald
polynomials J̃µ(x; q, t) satisfy a similar formula at t = ζ, a primitive l-th root of unity

J̃(rl)(x; q, ζ) = (−1)(l−1)r
r∏

i=1

(1 − qil) pl ◦ hr

(
x

1 − q

)
.

Proof. Using the definition (2.1) of the integral form of the Macdonald polynomials

J̃(rl)(x; q, t) = J(rl)

(
x

1 − t
; q, t

)
= c

′

(rl)(q, t)Q
′

(rl)

(
x

1 − q
; q, t

)

= c
′

(rl)(q, t)

(
Q

′

(rl)( . ; q, t) ◦
1

1 − q
p1

)
(x).

By specializing the previous egality at a primitive l-th root of unity ζ, we obtain with Theorem 3.1 and the
associativity of the plethysm

J̃(rl)(x; q, ζ) = c
′

(rl)(q, ζ)(−1)r(l−1)

(
(pl ◦ hr) ◦

1

1 − q
p1

)
(x)

= c
′

(rl)(q, ζ)(−1)r(l−1)pl ◦ hr

(
x

1 − q

)
.

Using the formula of Lemma 3.3, we obtain the formula. �

Corollary 3.2. With the same notations than in Theorem 3.1, the modified Macdonald polynomials
H̃µ(x; q, t) satisfy the following specialization at t = ζ, a primitive l-th root of unity

H̃(rl)(x; q, ζ) =
r∏

i=1

(1 − qil) pl ◦ hr

(
x

1 − q

)
.

Proof. The result follows from corollary 3.1 and ζn(rl) = ζrl(l−1)/2 = (−1)(l−1)r. �

Example 3.4. For λ = (222) and l = 3, we can compute

J̃(222)(x; q, e
2iπ
3 ) = q3(s111111 − s21111 + s3111) − (q3 + 1)(s321 − s33 − s222) + s411 − s51 + s6

= (1 − q3)(1 − q6) p3 ◦ h2

(
x

1 − q

)
.

Remark 3.5. As the Madonald polynomials P(rl)(x; q, t) indexed by rectangles satisfy the following spe-
cialization at t = ζ, a primitive l-th root of unity,

1

〈P(rl)(x; q, t) , P(rl)(x; q, t)〉q,t

∣∣∣∣
t=ζ

= 0
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we obtain the following specializations

Q(rl)(x; q, ζ) = 0 and J(rl)(x; q, ζ) = 0.

4. Pieri formula at roots of unity

In order to prove the factorization formulas, we prepare an auxiliary result (Proposition 4.1) on the
coefficients of Pieri formula at root of unity (cf [M, VI, (6.24 ii)])

Q
′

µ(x; q, t)g
′

r(x; q, t) =
∑

λ

ψλ/µ(q, t) Q
′

λ(x; q, t). (4.1)

Let λ and µ be partitions such that λ/µ is a horizontal (r-)strip θ. Let Cλ/µ (resp. Rλ/µ) be the union of
columns (resp. rows) of λ that intersects with θ, and Dλ/µ = Cλ/µ−Rλ/µ the set theoretical difference. Then
it can be seen from the definition that for each cell s of Dλ/µ (resp. Dλ̃/µ̃) there exists a unique connected

component of θ (resp. θ̃), which lies in the same row as s. We denote the corresponding component by θs

(resp. θ̃s).

Suppose that l and r are positive integers. Set λ̃ = λ∪ (rl) and µ̃ = µ∪ (rl). We shall consider the difference
between Dλ̃/µ̃ and Dλ/µ. It can be seen that there exists a projection

p = pλ/µ : Dλ̃/µ̃ −→ Dλ/µ.

The cardinality of the fiber of each cell s = (i, j) ∈ Dλ/µ is exactly one or two. Let Js denote the set of

second coordinates of the cells in θs. If all elements of Js are all strictly larger than r, the fiber p−1(s)
consists of a single element s = (i, j). If all elements of Js are strictly smaller than r, then the fiber p−1(s)
consists of a single element s̃ := (i, j + l). In the case where Js contains r, then the fiber p−1(s) consists of
exactly two elements s = (i, j) and s̃ = (i, j + l). For the case where r ∈ Js, we have the followig lemma,
which follows immediately from the definition of the projection p = pλ/µ.

Lemma 4.1. Let s = (i, j) be a cell of Dλ/µ and s̃ = (i, j + l) be a cell of Dλ̃/µ̃ such that r ∈ Js. The

arm length, the arm-colength, the leg length and the leg-colength satisfy the following properties :

(1) aµ̃(s) = aλ̃(s̃),
(2) lµ̃(s) − lλ̃(s̃) = l,
(3) aµ̃(s̃) = aµ(s),
(4) lµ̃(s̃) = lµ(s),
(5) aλ̃(s) = aλ(s),
(6) lλ̃(s) − lλ(s) = l.

Proposition 4.1. Let λ and µ be two partitions such that µ ⊂ λ and θ = λ− µ a horizontal strip. Let
r and l be positive integers and ζ a primitive root of unity. Then it follows that

ψλ∪(rl)/µ∪(rl)(q, ζ) = ψλ/µ(q, ζ).

Proof. Recall that for a cell s of the partition ν,

ψλ/µ(q, t) =
∏

s∈Dλ/µ

bµ(s)

bλ(s)
,

where

bν(s) =
1 − qaν(s)tlν(s)+1

1 − qaν(s)+1tlν(s)

If s = (i, j) ∈ Dλ/µ satisfies the condition r > j for all j ∈ Js, then the fiber p−1(s) of the projection p is
{s̃ = (i, j + l)}, and we have aµ(s) = aµ̃(s), aλ(s) = aλ̃(s) and lµ(s) + l = lµ̃(s), lλ(s) + l = lλ̃(s). It is clear
from these identities that bµ(s)/bλ(s) = bµ̃(s)/bλ̃(s) at t = ζ in this case. Suppose that s satisfies j > r for
all j ∈ Js. In this case, the fiber p−1(s) consisits of a single element {s = (i, j)}, and we have aµ(s) = aµ̃(s)
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and aλ(s) = aλ̃(s) and lµ(s) = lµ̃(s) and lλ(s) = lλ̃(s). Hence we have bµ(s)/bλ(s) = bµ̃(s)/bλ̃(s). Consider
the case where r ∈ Js. In this case, the fiber p−1(s) consists of two elements {s, s̃}. Let consider

∏

u∈p−1(s)

bµ̃(u)

bλ̃(u)
=

1 − qaµ̃(s)tlµ̃(s)+1

1 − qaµ̃(s)+1tlµ̃(s)

1 − qaλ̃(s)+1tlλ̃(s)

1 − qaλ̃(s)tlλ̃(s)+1

1 − qaµ̃(s̃)tlµ̃(s̃)+1

1 − qaµ̃(s̃)+1tlµ̃(s̃)

1 − qaλ̃(s̃)+1tlλ̃(s̃)

1 − qaλ̃(s̃)tlλ̃(s̃)+1

By items (1) and (2) of Lemma 4.1, it follows that
{

1 − qaµ̃(s)tlµ̃(s)+1

1 − qaµ̃(s)+1tlµ̃(s)

}−1 ∣∣∣∣
t=ζ

=
1 − qaλ̃(s̃)+1tlλ̃(s̃)

1 − qaλ̃(s̃)tlλ̃(s̃)+1

∣∣∣∣
t=ζ

.

It also follows from item (3) and (4) of Lemma 4.1,

1 − qaµ̃(s̃)tlµ̃(s̃)+1

1 − qaµ̃(s̃)+1tlµ̃(s̃)

∣∣∣∣
t=ζ

=
1 − qaµ(s)tlµ(s)+1

1 − qaµ(s)+1tlµ(s)

∣∣∣∣
t=ζ

,

and from item (5) and (6),

1 − qaλ̃(s)+1tlλ̃(s)

1 − qaλ̃(s)tlλ̃(s)+1

∣∣∣∣
t=ζ

=
1 − qaλ(s)+1tlλ(s)

1 − qaλ(s)tlλ(s)+1

∣∣∣∣
t=ζ

.

Therefore, it follows that
∏

u∈p−1(s)

bµ̃(u)

bλ̃(u)
=
bµ(s)

bλ(s)
.

Combining these, the assertion follows. �

5. Factorization formulas

In this section, we shall show factorization formulas for different kinds of Macdonald polynomials at
roots of unity.

Theorem 5.1. Let l be a positive integer and ζ a primitive l-th root of unity. Let µ = (1m12m2 · · ·nmn) be
a partition of a positive integer n. For each i, let mi = lqi+ri with 0 ≤ ri ≤ l−1 and let µ̄ = (1r12r2 · · ·mrn).

The function Q
′

µ satisfy the following factorisation formula at t = ζ

Q
′

µ(x; q, ζ) =
(
Q

′

(1l)(x; q, ζ)
)q1

(
Q

′

(2l)(x; q, ζ)
)q2

· · ·
(
Q

′

(nl)(x; q, ζ)
)qn

Q
′

µ̄(x; q, ζ).

Proof. We shall show that the C-linear map defined by

fr : ΛF −→ ΛF

Q
′

µ(x; q, ζ) 7−→ Q
′

µ∪(rl)(x; q, ζ)

is an ΛC(q)-linear map. Let ζ be a primitive l-th root of unity. From (3.1), we have

Q
′

µ(x; q, ζ)g
′

k(x; q, ζ) =
∑

λ

ψλ/µ(q, ζ)Q
′

λ(x; q, ζ)

where the sum is taken over the partitions λ such that λ − µ is a horizontal (k-)strip. Using the result of
Proposition 4.1, it follows that

Q
′

µ∪(rl)(x; q, ζ)g
′

k(x; q, ζ) =
∑

λ

ψλ∪(rl)/µ∪(rl)(q, ζ)Q
′

λ∪(rl)(x; q, ζ)

=
∑

λ

ψλ/µ(q, ζ)Q
′

λ∪(rl)(x; q, ζ).

Consequently, for each r ≥ 1, the multiplication by gk commutes with the morphism fr. Since {gk(x; q, ζl)}k≥1

generate the algebra ΛC(q) [M, VI, (2.12)], the map fr is ΛC(q)-linear. This implies that

∀F ∈ ΛCq , fr(F (x)) = F (x)fr(1)

= F (x)Q
′

(rl)(x; q, ζ).

�
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Corollary 5.1. With the same notation as in Theorem 3.1, we have

J̃µ(x; q, ζ) =
(
J̃(1l)(x; q, ζ)

)q1
(
J̃(2l)(x; q, ζ)

)q2

· · ·
(
J̃(nl)(x; q, ζ)

)qn

J̃µ̄(x; q, ζ).

Proof. If we define

Ψλ/µ(q, t) := ψλ/µ(q, t)
c′µ(q, t)

c′λ(q, t)
,

then the Pieri formula for the integral form J̃µ(x; q, t) is written as follows

J̃µ(x; q, t)g̃k(x; q, t) =
∑

λ

Ψλ/µ(q, t)J̃λ(x; q, t),

where the sum is over the partitions λ such that λ− µ is a horizontal (k-)strip.
Let a positive integer r be arbitrarily fixed, and ν̃ denote the partition ν ∪ (rl). Since we have already shown
that ψλ̃/µ̃(q, ζ) = ψλ/µ(q, ζ), it suffices to show that

c′µ̃(q, ζ)

c′
λ̃
(q, ζ)

=
c′µ(q, ζ)

c′λ(q, ζ)
.

We shall actually show that
c′µ̃(q, ζ)

c′µ(q, ζ)
=
c′
λ̃
(q, ζ)

c′λ(q, ζ)
.

It follows from the definition that

c′µ̃(q, t)

c′µ(q, t)
=

∏
s∈µ̃(1 − qaµ̃(s)+1tlµ̃(s))

∏
s∈µ(1 − qaµ̃(s)+1tlµ̃(s))

=

∏
s∈µ̃

s/∈(rl)

(1 − qaµ̃(s)+1tlµ̃(s))
∏

s∈µ(1 − qaµ̃(s)+1tlµ̃(s))

∏

s∈(rl)⊂µ̃

(1 − qaµ̃(s)+1tlµ̃(s)).

The Young diagram of the partition µ̃ is the disjoint union of the cells {s̃ ∈ µ̃|s ∈ µ} and (rl). For each
s ∈ µ, we have as seen in previous Theorem that aµ̃(s̃) = aµ(s), and lµ̃(s̃) = lµ(s) or lµ(s) + l. Hence at
t = ζ, we have

c′µ(q, ζ)

c′µ̃(q, ζ)
=

∏

s∈(rl)⊂µ̃

(1 − qaµ̃(s)+1ζlµ̃(s)). (3.1)

c′λ(q, ζ)

c′
λ̃
(q, ζ)

=
∏

s∈(rl)⊂λ̃

(1 − qaλ̃(s)+1ζlλ̃(s)). (3.2)

Although there is a difference between the positions where the block (rl) is inserted in the Young diagram
of µ and λ, (3.1) and (3.2) coincide at t = ζ, since aµ̃(s) = aλ̃(s) for each s ∈ (rl). Thus we have

c′µ(q, ζ)

c′µ̃(q, ζ)
=
c′λ(q, ζ)

c′
λ̃
(q, ζ)

.

�

Let ν = (ν1, . . . , νp) be a partition. For some l ≥ 0, we denote by νl the partition where each part of ν is
repeated l times. We can give a more explicit expression for the factorisation formula in the special case
where µ = νl.

Corollary 5.2. Let ν be a partition and l a positive integer. We have the following special cases for
the factorisation formulas

Q
′

νl(X ; q, ζ) = (−1)(l−1)|ν|pl ◦ hν(x),(5.1)

J̃νl(X ; q, ζ) = (−1)(l−1)|ν|

l(ν)∏

j=1

νj∏

i=1

(1 − qil) pl ◦ hν

(
x

1 − q

)
.(5.2)
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Example 5.2. For λ = (222111) and k = 3, we can compute

Q
′

222111(x; q, e
2iπ/3) = −s22221 − s321111 + s3222 + s33111 − s3321 + 3s333 + s411111

−2s432 + 2s441 − s51111 + 2s522 − 2s54 + s6111 − 2s621 + 2s63

+s711 − s81 + s9 + s222111

= p3 ◦ h21(x).

6. A generalization of the plethystic formula

In this section, using the factorisation formula given in Theorem 5.1, we shall give a generalization of
the plethystic formula obtained by specializing Macdonald polynomials at roots of unity in Theorem 3.1.
For λ a partition, let consider the following map which is the plethystic substitution by the powersum pλ

Ψλ : ΛF −→ ΛF

f 7−→ pλ ◦ f

Lemma 6.1. Let λ and µ be two partitions, the maps Ψλ and Ψµ satisfy the following multiplicative
property

Ψλ (f)Ψµ (f) = Ψλ∪µ (f) .

Proposition 6.1. Let d be an integer such that d|l and ζd be a primitive d-th root of unity,

Q
′

(rl)(x; q, ζd) = (−1)
rl(d−1)

d p
l/d
d ◦ hr(x).

Proof. Let d and l be two integers such that d divide l. Let µ = (rl) the rectangle partition with parts
of length r. Using the factorisation formula described in Theorem 5.1, we can write

Q
′

(rl)(x; q, ζd) =
(
Q

′

(rd)(x; q, ζd)
)l/d

. (6.1)

With the specialization formula at root of unity written in Theorem 3.1, we have

(
Q

′

(rd)(x; q, ζd)
)l/d

=
(
(−1)(d−1)rpd ◦ hr(x)

)l/d

= (−1)
lr(d−1)

d (pd ◦ hr(x))
l/d

Using the Lemma 6.1, we obtain

(
Q

′

(rd)(x; q, ζd)
)l/d

= (−1)
lr(d−1)

d p
l/d
d ◦ hr(x)

Finally, we obtain by (6.1)

Q
′

(rl)(x; q, ζd) = (−1)
lr(d−1)

d p
l/d
d ◦ hr(x)

�

Using the same proof, we can write a similar specialization for integral forms of the Macdonald Polynomials.

Corollary 6.1. The Macdonald polynomials J̃µ(x; q, t) satisfy the same generalization than the Q′
µ(x; q, t)

J̃(rl)(x; q, ζd) = (−1)
rl(d−1)

d

(
r∏

i=1

(1 − qil)

)l/d

p
l/d
d ◦ hr

(
x

1 − q

)
.
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Example 6.2. For λ = (222222) (i.e r = 2 and l = 6) and d = 3 we can compute

Q
′

(222222)(x; q, e
2iπ/3) = −s322221 + s33222 + 2s333111 − 2s33321 + 2s3333 + s422211 − 2s432111

+s43221 + 2s441111 − s4422 + 4s444 + s522111 − 2s52221 + s53211 − 2s54111

+s5421 − 4s543 + 3s552 − s621111 + 2s6222 + s63111 − 2s6321 + 4s633

+s6411 − 3s651 + 3s66 + s711111 − 2s732 + 2s741 − s81111 + 2s822 − 2s84

+s9111 − 2s921 + 2s93 + s1011 − s111 + s12 + s222222

= p2
3 ◦ h2(x) = p(33) ◦ h2(x).

7. Macdonald polynomials at roots of unity and cyclic characters of the symmetric group

In the following, we will denote the symmetric group of order k by Sk. Let Γ ⊂ Sk be a cyclic subgroup
generated by an element of order r. As Γ is a commutative subgroup its irreducible representations are
one-dimensional vector space. The corresponding maps (γj)j=0...r−1 can be defined by

γj : Γ −→ GL(C) ' C∗

τ 7−→ ζj
r

where ζr is a r-th primitive root of unity (See [S] for more details). In [F], Foulkes considered the Frobenius
characteristic of the representations of Sk induced by these irreducible representations and obtained an
explicit formula that we will give in the next Proposition.
Let k and n be two positive integers such that u = (k, d) (the greatest common divisor between k and n)
and d = u ·m. Let us define the Ramanujan (or Von Sterneck) sum c(k, d) by

c(k, d) =
µ(m)φ(d)

φ(m)

where µ is the Moebius function and φ the Euler totient. The quantity c(k, d) corresponds to the sum of
the k-th powers of the primitive d-th roots of unity (the previous expression was first given by Holder, see
[HW]).

Proposition 7.1. Let τ be a cyclic permutation of length k and Γ the maximal cyclic subgroup of Sk

generated by τ . Let j be a positive integer less than k. The Frobenius characteristic of the representation of
Sk induced by the irreducible representation of Γ, γj : τ 7−→ ζj

r , is given by

l
(j)
k (x) =

1

k

∑

d|k

c(j, d) p
k/d
d (x).

Example 7.1. For S6 and k = 2, the corresponding cyclic character l
(2)
6 can be written

l
(2)
6 =

1

6
(p111111 + p222 − p33 − p6)

= s51 + 2s42 + s411 + 3s321 + 2s3111 + s222 + s2211 + s21111.

Theorem 7.2. Let r and l be two positive integers. The specialization of the Macdonald polynomials
Q

′

(rl)(x; q, t) at t = ζ, a primitive l-th root of unity, is equivalent to

Q
′

(rl)(x; q, t) mod 1 − tl =

l−1∑

j=0

tj (l
(j)
l ◦ hr)(x).

Proof. We will first give a generalization of the Moebius inversion formula due to E. Cohen (see [C]
for the original work and [D] for a simpler proof). Let

P (q) =

n−1∑

k=0

akq
k

be a polynomial of degree less than n− 1 with coefficients ak in Z. P is said to be even modulo n if

(i, n) = (j, n) =⇒ ai = aj .
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Lemma 7.3. The polynomial P is even modulo n if and only if for every divisor d of n, the residue of
P modulo the d-th cyclotomic polynomial Φd is a constant rd in Z. In this case, one has

(i) ak =
1

n

∑

d|n

c(k, d) rd

(ii) rd =
∑

t|n

c(n/d, t) an/t.

Let d be an integer such that d|l. By expanding Q
′

(rl)(x; q, t) (and more generally Q
′

λ(x; q, t)) on the Schur

basis, we can define a kind of (q, t)-Kostka polynomials K
′

µ,(rl)(q, t)

Q
′

(rl)(x; q, t) =
∑

µ

K
′

µ,(rl)(q, t) sµ(x).

Let µ be a partition and d an integer such that d|l. P q
µ(t) =

∑l−1
j=0 aj(q)t

j is the residue modulo 1− tl of the

(q, t)-Kostka polynomial K
′

µ,(rl)(q, t) if and only if for all ζd primitive d-th root of unity

P q
µ(ζd) = K

′

µ,(rl)(q, ζd).

Using Theorem 5.1 , one has

P q
µ(ζd) = (−1)(d−1)rl/d 〈 p

l/d
d ◦ hr(x) , sµ(x) 〉.

So, P (ζd) ∈ Z since the entries of the transition matrix between the powersum to the Schur functions are all
integers. Using the Lemma 7.3, we obtain

aj(q) =
1

l

∑

d|l

c(j, d) 〈 p
l/d
d ◦ hr(x) , sµ(x) 〉

= 〈 l
(j)
l ◦ hr(x) , sµ(x) 〉.

�

Corollary 7.1. For two positive integers r and l, the same residue formulas occurs for the modified
Macdonald polynomials J̃(rl)(x; q, t) and J

′

(rl)(x; q, t)

J̃(rl)(x; q, t) mod 1 − tl =

r∏

i=1

(1 − qil)

l−1∑

j=0

tj (l
(j)
l ◦ hr)

(
x

1 − q

)
.

8. Congruences for (q, t)-Kostka polynomials

For a given partition λ, let denote by s̃
(q)
λ the symmetic function defined as follows

s̃
(q)
λ (x) = sλ

(
x

1 − q

)
.

We also define on the power sums products the internal product between two symmetric functions. For λ
and µ two partitions, we have ([M, I, (7.12)])

pλ ? pµ = δλ,µzλpλ.

Proposition 8.1. Let r and l be two positive integers and µ a partition of weight nl. Let denote by
Φl(t) the cyclotomic polynomial of order l. The (q, t)-Kostka polynomial K̃µ,(rl)(q, t) satisfy the following
congruence

K̃µ,(rl)(q, t) =

r∏

i=1

(1 − qil) s̃(q)µ (1, t, t2, . . . , tl−1) mod Φl(t).

And more generally, for all partition ν of weight r

K̃µ,νl(q, t) =

l(ν)∏

j=1

νj∏

i=1

(1 − qil) h̃lν ? sµ

(q)

(1, t, t2, . . . , tl−1) mod Φl(t),

where lν denote the partition (lν1, . . . , lνp).
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The m-colored composition poset

Brian Drake and T. Kyle Petersen

Abstract. We generalize Björner and Stanley’s poset of compositions to m-colored compositions. Their
work draws many analogies between their (1-colored) composition poset and Young’s lattice of partitions,
including links to (quasi-)symmetric functions and representation theory. Here we show that many of these
analogies hold for any number of colors. While many of the proofs for Björner and Stanley’s poset were
simplified by showing isomorphism with the subword order, we remark that with 2 or more colors, our posets
are not isomorphic to a subword order.

Résumé. Nous généralisons le poset de Björner et de Stanley des compositions aux compositions m-coloré.
Leur travail met à jour de nombreuses analogies entre leur poset sur les compositions (une couleur) et le
trellis de Young sur les partitions, y compris des liens avec les fonctions (quasi-)symétriques et la théorie
de représentations. Dans ce travail, nous prouvons que plusieurs de ces analogies sont vraies quel que soit
le nombre de couleurs. Tandis que plusieurs des preuves dans le travail de Björner et de Stanley se simpli-
fiaient en montrant un isomorphisme avec l’ordre sur les mots et les sous-mots, nous remarquons qu’avec
deux couleurs ou plus, nos posets ne sont pas isomorphes à un tel ordre.

1. Introduction

This paper explores a generalization of the poset of compositions introduced in recent work of Björner
and Stanley [3], which draws several analogies between their poset and Young’s lattice of partitions. We
recall some key facts about Young’s lattice.

A partition λ = (λ1, λ2, . . .) of n, denoted λ ` n, is a sequence of nonnegative integers λ1 ≥ λ2 ≥ · · · ≥ 0
such that

∑
λi = n. The set of all partitions of all integers n ≥ 0 forms a lattice under the partial order

given by inclusion of Young diagrams: λ ≤ µ if λi ≤ µi for all i. This lattice is called Young’s lattice, Y ,
which has several remarkable properties, including the following list given in [3].

Y1. Y is a graded poset, where a partition λ ` n has rank n.
Y2. The number of saturated chains from the minimal partition ∅ to λ is the number fλ of Young

tableaux of shape λ.
Y3. The number of saturated chains from ∅ to rank n is the number of involutions in the symmetric

group Sn.
Y4. Let sλ denote a Schur function. Pieri’s rule [5] gives

s1sλ =
∑

λ≺µ

sµ,

where λ ≺ µ means that µ covers λ in Y .
Y5. Since Y is in fact a distributive lattice, every interval [λ, µ] is EL-shellable and hence Cohen-

Macaulay.
Y6. Y is the Bratteli diagram for the tower of algebras KS0 ⊂ KS1 ⊂ · · · , where KSn denotes the

group algebra of Sn over K, a field of characteristic zero.

1991 Mathematics Subject Classification. Primary 06A07; Secondary 05A99, 52B22.
Key words and phrases. colored composition, poset, CL-shellable.
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For each of the properties listed above, Björner and Stanley give an analogous property for their poset
of compositions. Here we will consider more generally the poset of m-colored compositions, and show that
this poset has properties analogous to Y1–5 above. Finding an analog of property Y6 is an open problem.

Recall that a composition α = (α1, α2, . . . , αk) is an ordered tuple of positive integers, called the parts

of α. We write l(α) = k for the number of parts of α. If the sum of the parts of α is n, i.e., |α| :=
α1 + α2 + · · · + αk = n, then we say α is a composition of n, written α |= n. Let Comp(n) denote all the
compositions of n, and define the set of all compositions

C :=
⋃

n≥0

Comp(n),

where ∅ is the unique composition of 0.
Björner and Stanley give C a partial order defined by the following covering relations. We say β covers

α, written α ≺ β, if α < β and there is no β′ such that α < β′ < β. We can obtain all compositions β that
cover α by adding 1 to a part of α or adding 1 to a part and splitting that part into two parts. In other
words, for some j we can write β as:

(1) (α1, . . . , αj−1, αj + 1, αj+1, . . . , αk), or
(2) (α1, . . . , αj−1, h + 1, αj − h, αj+1, . . . , αk) for some 0 ≤ h ≤ αj − 1.

We can generalize this poset to a family of posets indexed by the number of “colors” m ≥ 1. An m-
colored composition is an ordered tuple of colored positive integers, say α = (ε1α1, ε2α2, . . . , εkαk), where
the αs are positive integers and if ω is a primitive m-th root of unity, εs = ωis , 0 ≤ is ≤ m − 1. We say the
part εsαs has color εs, and we write α |=m n if |α| := α1 + α2 + · · · + αk = n. For example, if m = 3, then
α = (ω2, 1, ω21, 3) is a 3-colored composition of 2 + 1 + 1 + 3 = 7.

Note that there are mk ways to color any ordinary composition of n with k parts, leading us to conclude
that there are

n∑

k=1

(
n − 1

k − 1

)
mk = m(m + 1)n−1

m-colored compositions of n (so if m = 1, we have 2n−1 ordinary compositions). Let Comp(m)(n) denote
the set of all m-colored compositions of n, and define

C(m) :=
⋃

n≥0

Comp(m)(n),

where ∅ is again the unique composition of 0.

We can define a partial order on C(m) with many of the same properties of C. The covering relations are
as follows. We have β covers α if, for some j, we can write β as:

(1) (ε1α1, . . . , εj−1αj−1, εj(αj + 1), εj+1αj+1, . . . , εkαk),
(2) (ε1α1, . . . , εj−1αj−1, εj(h + 1), εj(αj − h), εj+1αj+1, . . . , εkαk) for some 0 ≤ h ≤ αj − 1, or
(3) (ε1α1, . . . , εj−1αj−1, εjh, ε′1, εj(αj − h), εj+1αj+1, . . . , εkαk) where ε′ 6= εj and 0 ≤ h ≤ αj − 1,

with the understanding that we will ignore parts of size 0.

Relations (1) and (2) are just like those of C: while preserving the color, we add 1 to a part, or we add 1 to
a part and split that part into two parts. Relation (3) handles the case where the color of the “1” we add

differs from where we try to add it. Notice that it is immediate from these cover relations that C(m) is a
graded poset with level n consisting of all m-compositions of n. This property is analogous to property Y1
of Young’s lattice. See Figure 1 for the first four levels of the 2-colored composition poset.

In this paper we will show that for any positive fixed m, the poset C(m) possesses properties analogous

to C = C(1) (and indeed to Young’s lattice). In fact many of the arguments used in [3] generalize in a
straightforward way. One important argument that doesn’t generalize is the isomorphism shown between C
and the subword order; see Remark 4.4. In section 2 we discuss colored permutations, their color-descent

compositions, and chains in C(m). In section 3 we present Poirier’s colored quasisymmetric functions [4]

and show that C(m) gives a Pieri-type rule for multiplying a fundamental basis. We define a CL-labeling in
section 4 and use this to calculate the Möbius function of lower intervals. Section 5 contains the proof that
this labeling is a CL-labeling.
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Figure 1. The first four levels of the 2-colored composition poset.

2. Colored permutations and descent sets

Compositions can be used to encode descent classes of ordinary permutations in the following way. Recall
that a descent of a permutation w ∈ Sn is a position i such that wi > wi+1, and that an increasing run

(of length r) of a permutation w is a maximal subword of consecutive letters wi+1wi+2 · · ·wi+r such that
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wi+1 < wi+2 < · · · < wi+r. By maximality, we have that if wi+1wi+2 · · ·wi+r is an increasing run, then i
is a descent of w (if i 6= 0), and i + r is a descent of w (if i + r 6= n). For any permutation w ∈ Sn define
the descent composition, C(w), to be the ordered tuple listing from left to right the lengths of the increasing
runs of w. If C(w) = (α1, α2, . . . , αk), we can recover the descent set of w:

Des(w) := {i : wi > wi+1} = {α1, α1 + α2, . . . , α1 + α2 + · · · + αk−1}.

For example, the permutation w = 345261 has C(w) = (3, 2, 1) and Des(w) = {3, 5}. We now define colored
permutations and colored descent compositions.

Loosely speaking, m-colored permutations are permutations where each of the elements permuted are
given one of m “colors.” If ω is any primitive m-th root of unity,

ω3 ω2 1 ω34

is an example of a colored permutation. We can think of building colored permutations by taking an ordinary
permutation and then arbitrarily assigning colors to the letters, so we see that there are mnn! m-colored
permutations of [n] := {1, 2, . . . , n}.

Strictly speaking, m-colored permutations are elements of the wreath product Cm o Sn, where Cm =
{1, ω, . . . , ωm−1} is the cyclic group of order m. We write an element u = u1u2 · · ·un ∈ Cm o Sn as a word
in the alphabet

Cm × [n] := {1, 2, . . . , n, ω1, ω2, . . . , ωn, . . . , ωm−11, ωm−12, . . . , ωm−1n},

such that |u| = |u1||u2| · · · |un| is an ordinary permutation in Sn. We say εi = ui/|ui| is the color of ui.
For any u ∈ Cm oSn, we can write u = v1v2 · · · vk so that each vi is a word in which all the letters have

the same color, ε′i, and no two consecutive colors are the same: ε′i 6= ε′i+1, i = 1, 2, . . . , k− 1. Then we define
the color composition of u,

Col(u) := (ε′1α
′
1, ε

′
2α

′
2, . . . , ε

′
kα′

k),

where α′
s denotes the number of letters in vs. Now suppose an m-colored permutation u has color composition

Col(u) = (ε′1α
′
1, ε

′
2α

′
2, . . . , ε

′
kα′

k). Then the colored descent composition

C(m)(u) := (ε1α1, ε2α2, . . . , εlαl),

is the refinement of Col(u) where we replace part ε′iα
′
i with ε′i C(|vi|), where C is the ordinary descent

composition, and we view |vi| as an ordinary permutation of distinct letters.

More intuitively, the colored descent composition C(m)(u) is the ordered tuple listing the lengths of
increasing runs of u with constant color, where we record not only the length of such a run, but also its
color. An example should cement the notion. If we have two colors (indicated with a bar), let

u = 12̄3̄48̄5̄76.

Then the color composition is Col(u) = (1, 2̄, 1, 2̄, 2), and

C(m)(u) = (1, 2̄, 1, 1̄, 1̄, 1, 1).

For any α ∈ Comp(m)(n), a saturated chain from ∅ to α is a sequence of compositions

∅ = α0 ≺ α1 ≺ · · · ≺ αn = α,

where ≺ denotes a cover relation in C(m), and therefore αi ∈ Comp(m)(i). Now, given any u ∈ Cm o Sn, let
u[i] denote the restriction of u to letters in Cm × [i]. For example, if u = 2̄176̄3̄4̄58, then u[5] = 2̄13̄4̄5. We
then define the sequence

m(u) := (C(m)(u[1]), . . . , C(m)(u[n])),

so that C(m)(u[i]) ∈ Comp(m)(i). Using the same example u = 2̄176̄3̄4̄58, we have

m(u) = (1, 1̄1, 1̄11̄, 1̄12̄, 1̄12̄1, 1̄11̄2̄1, 1̄21̄2̄1, 1̄21̄2̄2).

The following theorem is the natural generalization of Theorem 2.1 of [3].

Theorem 2.1. The map m is a bijection from Cm oSn to saturated chains from ∅ to α, where α ranges

over all colored compositions in Comp(m)(n).

This proof follows the same line of reasoning used by Björner and Stanley in proving Theorem 2.1 of [3].
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Proof. For any colored permutation u ∈ Cm o Sn define, for all 0 ≤ i ≤ n and all 0 ≤ j ≤ m − 1,

u(i,j) := u1 · · ·ui ωj(n + 1)ui+1 · · ·un.

In other words, the u(i,j) are all those permutations w in Cm o Sn+1 such that w[n] = u. We will show

that the compositions C(m)(u(i,j)) are all distinct and moreover that they are precisely those compositions

in Comp(m)(n + 1) that cover C(m)(u).

Suppose C(m)(u) = (ε1α1, . . . , εkαk), and let bs = α1 + · · · + αs, with the convention that b0 = 0. For
any fixed j = 0, 1, . . . , m − 1, we have two cases, corresponding to cover relations of type (1) or type (3):

C(m)(u(bs,j)) =

{
(ε1α1, . . . , εs(αs + 1), . . . , εkαk) if εs = ωj,

(ε1α1, . . . , εsαs, ω
j1, . . . , εkαk) otherwise.

All these compositions, over s = 0, . . . , k, j = 0, . . . , m − 1, are distinct and cover C(m)(u). To consider the
other cases, suppose i is not of the form α1 + · · ·+αs. Then it can be written as i = α1 + · · ·+αs +h, where
0 ≤ s ≤ k and 1 ≤ h ≤ αs+1 − 1 (if s = 0, then i = h). Again we have two cases, corresponding to cover
relations of type (2) or type (3):

C(m)(u(i,j)) =

{
(ε1α1, . . . , εs+1(1 + h), εs+1(αs+1 − h), . . . , εkαk) if εs+1 = ωj ,

(ε1α1, . . . , εs+1h, ωj1, εs+1(αs+1 − h), . . . , εkαk) otherwise.

These cases are again distinct and provide the remaining covers for C(m)(u). �

Theorem 2.1 yields several easy corollaries. The first is analogous to property Y2 of Young’s lattice; the
second corresponds to Y3.

Corollary 2.2. The number of saturated chains from ∅ to α in C(m) is equal to the number f
(m)
n (α)

of m-colored permutations w with colored descent composition α.

Corollary 2.3. The total number of saturated chains from ∅ to rank n is equal to the number of

m-colored permutations of [n], ∑

α∈Comp(m)(n)

f (m)
n (α) = mnn!.

Corollary 2.4. The number of m-colored compositions β ∈ Comp(m)(n+1) covering α ∈ Comp(m)(n)
is m(n + 1).

3. Colored quasisymmetric functions

One key use for compositions is as an indexing set for quasisymmetric functions. Similarly, there exist
colored quasisymmetric functions (due to Poirier [4]) that use colored compositions as indices. Both these
situations are analogous to how partitions index symmetric functions.

Recall ([5], ch. 7.19) that a quasisymmetric function is a formal series

Q(x1, x2, . . .) ∈ Z[[x1, x2, . . .]]

of bounded degree such that for any composition α = (α1, α2, . . . , αk), the coefficient of xα1

i1
xα2

i2
· · ·xαk

ik
with

i1 < i2 < · · · < ik is the same as the coefficient of xα1
1 xα2

2 · · ·xαk

k . One natural basis for the quasisymmetric
functions homogeneous of degree n is given by the fundamental quasisymmetric functions, Lα, where α
ranges over all of Comp(n). If α = (α1, . . . , αk) |= n, then define

Lα :=
∑

xi1 · · ·xin
,

where the sum is taken over all i1 ≤ i2 ≤ · · · ≤ in with is < is+1 if s = α1 + · · ·+αr for some r. For example,

L21 =
∑

i≤j<k

xixjxk.

Colored quasisymmetric functions are simply a generalization of quasisymmetric functions to an alphabet
with several colors for its letters. For fixed m, we consider formal series in the alphabet

X(m) := {x0,1, x0,2, . . . , x1,1, x1,2, . . . , xm−1,1, xm−1,2, . . .},
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(so the first subscript corresponds to color) with the same quasisymmetric property. Namely, an m-colored
quasisymmetric function Q(X(m)) is a formal series of bounded degree such that for any m-colored composi-
tion α = (ωj1α1, . . . , ω

jkαk), the coefficient of xα1

j1,i1
xα2

j2,i2
· · ·xαk

jk,ik
with i1 < i2 < · · · < ik is the same as the

coefficient of xα1

j1,1x
α2

j2,2 · · ·x
αk

jk,k. Intuitively, the letters are colored the same as the parts of α. The m-colored

fundamental quasisymmetric functions are defined as follows. First, if s = α1 + · · · + αr + h, 1 ≤ h ≤ αr+1,
then define j′s = jr+1, the color of part αr+1. Then,

L(m)
α :=

∑
xj′1,i1 · · ·xj′

n
,in

,

where the sum is taken over all i1 ≤ i2 ≤ · · · ≤ in with is < is+1 if both j′s ≥ j′s+1 and s = α1 + · · ·+ αr for
some r. For example,

L
(2)

12̄1̄
=

∑

i≤j≤k<l

xiyjykyl and L
(3)

2¯̄12̄
=

∑

i≤j≤k<l≤m

xixjzkylym.

As in the ordinary case, the L
(m)
α , where α ranges over Comp(m)(n), give a basis for the m-colored quasisym-

metric functions homogeneous of degree n.
There is a nice formula for multiplying colored quasisymmetric functions in the fundamental basis. Let

u ∈ Cm o Sn and let v be an m-colored permutation of the set {n + 1, n + 2, . . . , n + r}. Let α = C(m)(u)

and β = C(m)(v). Then we have

L(m)
α L

(m)
β =

∑

w

L
(m)

C(m)(w)
,

where the sum is taken over all shuffles w of u and v, i.e., all colored permutations w ∈ Cm oSn+r such that
w[n] = u and w restricted to {n + 1, n + 2, . . . , n + r} is v.

If r = 1, then we see that the shuffles of u and v = ωj(n+1) are precisely those permutations u(i,j) from
the proof of Theorem 2.1. Applying the multiplication rule, and summing over all j, we have a Pieri-type
rule analogous to property Y4 of Young’s lattice.

Proposition 3.1. We have:

(L
(m)
1 + L

(m)
ω1 + · · · + L

(m)
ωm−11)L

(m)
α =

∑

α≺β

L
(m)
β .

As Björner and Stanley remark in the case of a single color, we could have used Proposition 3.1 to define

the poset C(m) in the first place. At the least, it is a good justification for the study of C(m).
Repeated application of the proposition gives the formula

(L
(m)
1 + L

(m)
ω1 + · · · + L

(m)
ωm−11)

n =
∑

α∈Comp(m)(n)

f (m)
n (α)L(m)

α ,

where f
(m)
n is the number of m-colored permutations with colored descent composition α. This equation

is equivalent to Corollary 2.2, and analogous to the following formula for Schur functions (see [5]) that
corresponds to property Y2 of Young’s lattice:

sn
1 =

∑

λ`n

fλsλ,

where fλ is the number of Young tableaux of shape λ.

4. Shellability and Möbius function

In this section we show that C(m) is CL-shellable by giving an explicit dual CL-labeling. See [2] for
an introduction to CL-shellable posets. We use a model of removing colored balls from urns to define our
labeling on downward maximal chains. Given a colored composition of n, α = (ε1α1, . . . , εkαk), we picture k
urns next to each other, labeled U1, U2, . . . , Uk from left to right. In urn Ui we start with αi balls of color εi,
for a total of n balls. Moving down along a maximal chain, we remove a ball from an urn for each covering
relation, and possibly move some balls from one urn to another. There are three different types of moves,
which we now describe. After some number of steps, suppose that Ui is a nonempty urn, Uh is the first
nonempty urn on its left, and Uj is the first nonempty urn on its right. Let βi, βh, βj be the number of balls
in the corresponding urns and let εi, εh, εj be the colors of those balls. The three possible moves are:
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(1) If βi ≥ 2, or if εh 6= εi, or if Ui is the first nonempty urn, then remove a ball from urn Ui.
(2) If βi = 1 and εh = εj 6= εi, then remove the ball from Ui and place all the balls from Uh and Uj

into Ui.
(3) If βi ≥ 2 and εj = εi, then move all balls from Uj to Ui and remove a ball from Ui.

After any number of moves, we may associate the distribution of colored balls in urns with an element of

C(m). The different urns represent the parts of the composition, the number of balls in an urn is the size
of that part, and the color of the balls is the color of the part. Here we ignore parts of size 0. Notice that
the color of a part is well defined, since none of the moves allows balls of different colors to be combined in

a single urn. It is an easy exercise to check that each covering relation in C(m) corresponds to one of these
three possible moves for some urn, and furthermore that the urn and type of move are unique.

Let [∅, α] be an interval in C(m), |α| = n. We will now define a labeling λ(c) = (λ1(c), λ2(c), . . . , λn(c))
for a maximal chain

c = (α = α0 � α1 � · · · � αn = ∅).

Our set of labels is N × {1, 2, 3}, totally ordered with the lexicographic order. For each covering relation
αr−1 � αr we have a unique urn and type of move that takes the distribution of balls in urns for αr−1 to
the distribution for αr . Suppose that move is of type t, and removes a ball from urn Ui. Then we define the
label λr(c) = (i, t).

Notice that with labels defined on maximal chains in lower intervals [∅, α], there is an induced labeling
defined on maximal chains in arbitrary intervals [β, α]. As an example, consider the following two maximal
chains in [3, 221̄2]:

c0 = (221̄2 � 121̄2 � 21̄2 � 11̄2 � 3)

c = (221̄2 � 211̄2 � 21̄2 � 22 � 3)

They are labeled λ(c0) = ((1, 1), (1, 1), (2, 1), (3, 2)) and λ(c) = ((2, 1), (1, 3), (3, 1), (1, 3)). Pictured as colored
balls and urns, we have:

c0 : b••cb••cb◦cb••c → b•cb••cb◦cb••c → bcb••cb◦cb••c → bcb•cb◦cb••c → bcbcb• • •cbc

c : b••cb••cb◦cb••c → b••cb•cb◦cb••c → b••cbcb◦cb••c → b••cbcbcb••c → b• • •cbcbcbc.

In fact, the chain c0 above is lexicographically minimal and has the only increasing label. Notice that if we
start with all balls of the same color, moves of type (2) cannot occur and we recover the construction in the
appendix of [3]. These labels agree with the labels defined there, with (i, 1) 7→ i and (i, 3) 7→ i′.

By proving that this labeling is in fact a CL-labeling, we obtain our analog of property Y5 of Young’s
lattice. The proof is given in section 5.

Theorem 4.1. Intervals in C(m) are dual CL-shellable and hence Cohen-Macaulay.

Now we calculate the Möbius function of lower intervals. As always, we must have µC(m)(∅, ∅) = 1. For
α 6= ∅, we have the following.

Proposition 4.2.

µC(m)(∅, α) =






(−1)|α| if α = (ε11, ε21, . . . , ε|α|1)

for some colors ε1 6= ε2 6= · · · 6= ε|α|,

0 otherwise.

Proof. We make use of the combinatorial description of the Möbius function for a graded poset with
a CL-labeling, given in [2]. That is, the Möbius function of an interval is −1 to the length of the interval,
times the number of maximal chains with a strictly decreasing label.

Suppose that α = (ε11, ε21, . . . , ε|α|1), with ε1 6= ε2 6= · · · 6= ε|α|. Then there is a unique chain with
a strictly decreasing label, obtained by removing the balls from right to left using only type (1) moves.
Therefore µC(m)(∅, α) = (−1)|α|.

Now suppose that α has a part i of size 2 or greater. We want to show that there is no chain in [∅, α]
with a strictly decreasing label. Any chain that makes a type (1) move from the same urn twice will have
a repeated label. The only way to remove the balls from urn i and possibly have a decreasing label is to
remove at most one ball with a type (1) move, and then move all the balls to an urn on the left with a type
(2) or (3) move. But in the new urn we have at least two balls, and the process repeats. At some point we
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must have an urn with at least two balls and no way to make a type (2) or (3) move. Then we must use two
type (1) moves for the same urn, so the chain label cannot be strictly decreasing.

Finally, suppose that α has parts αi and αi+1 of size 1 and the same color. The only legal way to remove
the balls from the corresponding urns is to remove the left one first, creating an increase in the chain label.

�

Note that for α |=m n with µC(m)(∅, α) 6= 0, there are m choices for the color of the first part, and m− 1
choices for the color of each succeeding part. Hence there are m(m − 1)n−1 compositions α |=m n with
µC(m)(∅, α) 6= 0. For m > 1 an elementary calculation gives the following generating function.

∑

α∈C(m)

µC(m)(∅, α)t|α| =
1 + t

1 − (m − 1)t
.

Define the following “truncated” poset,

C(m)
n := 1̂ ∪

⋃

1≤i≤n

Comp(m)(i),

with the order relation as before except with a new maximal element 1̂ that covers all the compositions in

Comp(m)(n).

Corollary 4.3. The poset C(m)
n is shellable, with Möbius function

µ(∅, 1̂) = (−1)n+1(m − 1)n.

The proof of this corollary follows the argument of [3].

Proof. First we want to show that every m-colored composition α = (ε1α1, ε2α2, . . . , εkαk) of at most n
lies below the composition γn |=m mn, defined as the concatenation of n copies of γ = (1, ω1, ω21, . . . , ωm−11).
To the ith part of α we can associate αi copies of γ. First, we use covering relations of type (2) (as originally
described), αi times to split the part into all parts of size 1 and color εi. Then we use covering relations of

type (3) to fill in the remaining 1’s of different colors. Therefore C(m)
n is obtained via rank selection from the

interval [∅, γn], so shellability follows by results of [1].
For the Möbius function:

µ(∅, 1̂) = −
∑

|α|≤n

µ(∅, α) = −

(
1 +

n∑

k=1

(−1)km(m − 1)k−1

)

= −

(
1 − m

n−1∑

k=0

(1 − m)k

)

= −

(
1 − m

(
1 − (1 − m)n

1 − (1 − m)

))

= (−1)n+1(m − 1)n.

�

Remark 4.4. Björner and Stanley show that C(1) is isomorphic to the subword order on 2 letters. This
allows the transfer of many results, such as CL-shellability and the Möbius function of an arbitrary interval.

Since there are m(m + 1)n−1 colored compositions of n, one might expect that C(m) is isomorphic to the
subword order on m+1 letters, with a restriction on the first or last letter of a word. However, this turns out

to be false. For example, consider the colored composition (1, 1̄, 1), which is present in C(m) for all m ≥ 2. It
covers 4 colored compositions: (2), (1, 1̄), (1̄, 1), (1, 1), but a word of length 3 can cover at most 3 subwords.
Therefore the results of this section do not follow directly from properties of the subword order.
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5. Proof of CL-shellability

In this section we give the proof of Theorem 4.1. We first note that the labeling is a well defined chain
labeling. That is, if two chains agree on their first k edges, then their first k labels agree. This is clear from
the definition.

The labeling of maximal chains in [∅, α] gives an induced labeling on rooted intervals ([β, α], c), where
c is a maximal chain in [∅, β]. This induced labeling is of the same kind, so it suffices to check that the
properties of a CL-labeling hold in an arbitrary interval [β, α].

First, we want to show that the chain with the lexicographically first label has a weakly increasing label.
The lexicographically first label is well defined, since all the moves from a given distribution of balls in urns
have distinct labels. Moreover, we can describe the lexicographically first chain, c0, as follows. If

c0 = (α = α0 � α1 � · · · � αk = β),

then at each step, to move down from αr−1 to αr, we must remove a ball from an urn as far to the left as
possible, such that the new composition is still in the interval [β, α]. To prove that λ1(c0) ≤ λ2(c0) ≤ · · · ≤
λk(c0), we use the following lemma.

Lemma 5.1. On an interval of length two, the chain with the lexicographically first label is weakly in-

creasing.

Proof. On an interval of length two, all chains correspond to removing two balls from urns, such that
the starting and ending distributions are the same. For the chain c0 with the lexicographically first label,
the urns are consecutively chosen to be as far to the left as possible. Suppose that one ball is removed from
urn Ui and the other ball is removed from urn Uj .

If j > i + 1, then there is a nonempty urn between Ui and Uj , and removing a ball from one of the
urns does not affect the possibility of removing the other ball from its urn. Therefore it is clear that λ(c0)
is weakly increasing.

Suppose that j = i + 1, so there is no urn between Ui and Uj . Removing a ball from Ui does not affect
the possibility of removing a ball from Ui+1, unless εi 6= εi+1 = εi−1 and αi = 1. In this case, the urns could
have been chosen to be Uh and Ui, for an appropriate urn Uh with h < i, making a type (1) or type (3) move
in Uh and then a type (2) move in urn Ui. However, this contradicts our assumption that Ui was chosen to
be the leftmost possible. So if i 6= j, λ(c0) is weakly increasing.

The only remaining case is if Ui = Uj . If αi > 2, then we have the weakly increasing label λ(c0) =
((i, 1), (i, 1)). Now suppose that αi = 2 and εi−1 6= εi. Then we also have λ(c0) = ((i, 1), (i, 1)). If εi−1 = εi,
then c0 is found by choosing an appropriate urn Uh, h < i and making a type (1) or (3) move in urn Uh

and then a type (1) move in urn Ui. Again, this contradicts our assumption that Ui was chosen to be the
leftmost possible. Therefore if i = j, λ(c0) is weakly increasing. �

Returning to the general case, for every r, the induced labeling of c0 on the chain αr−1 � αr � αr+1

is lexicographically first on the interval [αr+1, αr−1]. Then by Lemma 5.1, λ1(c0) ≤ λ2(c0) ≤ · · · ≤ λk(c0),
i.e., λ(c0) is weakly increasing. Now it remains only to show no chain other than c0 has a weakly increasing
label.

If another chain results with the same distribution of balls into urns as the lexicographically first chain,
including the locations of the empty urns, then the label on that chain must have a descent. To see this,
consider the point where it deviates from the lexicographically first chain. It is leaving a ball behind in a
lower numbered urn. At some later step it must remove a ball from that urn, which will create a descent.

Now we need to consider chains which result in the same distribution of balls into nonempty urns as
the lexicographically first chain, but such that the empty urns are in different positions. Let c be such a
chain. Since the lexicographically first chain removes balls from urns from left to right, the final distribution
of balls into urns for the lexicographically first chain has its nonempty urns as far to the right as possible
(though they need not be consecutive).

Let U1, U2, . . . be the urns labeled from left to right. Let Ui(c) be the number of balls in urn Ui in the
final distribution for the chain c. Let r be the largest number such that Ur(c) > 0 and Ur(c0) = 0. There
is such an r by our assumption on c. We must have a j such that: 1) Ur+i(c) = 0 for all 1 ≤ i ≤ j, 2)
Ur+i(c0) = 0 for all 1 ≤ i < j, and 3) Ur+j(c0) 6= 0. Note that the color and number of the balls in urn Ur

for c is the same as the color and number of the balls in urn Ur+j for c0.
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If c has an increasing label, then the urns Ur+1, . . . , Ur+j must be emptied from left to right. Therefore
at some point the urns Ur+1, . . . , Ur+j−1 are empty and we need to remove the last ball from Ur+j. The only
way to do this is to use a move of type (2), which has a label (r, 2) and creates a descent.
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Abstract. In this paper we consider a restricted class of polyominoes that we call Z-convex polyominoes.
Z-convex polyominoes are polyominoes such that any two pairs of cells can be connected by a monotone path
making at most two turns (like the letter Z). In particular they are convex polyominoes, but they appear
to resist standard decompositions. We propose a construction by “inflation” that allows us, through a quite
tedious case analysis, to write a system of functional equations for their generating functions. Even though
intermediate steps involve heavy computations, it turns out in the end that the generating function P (t) of
Z-convex polyominoes with respect to the semi-perimeter can be expressed as a simple rational function of
t and the generating function of Catalan numbers, like the generating function of convex polyominoes.

Résumé. Dans cet article nous étudions une classe restreinte de polyominos que nous appelons Z-convexes :

un polyomino est Z-convexe si deux cases quelconques peuvent toujours être jointes par un chemin monotone
avec au plus deux virages. En particulier ces polyominos sont des polyominos convexes, mais ils ne se laissent
pas compter par les méthodes usuelles (en tout cas pas par nous). Nous proposons une construction “gonflée”
qui permet d’écrire un système d’équations fonctionnelles pour les séries gératrices associées au terme d’une
longue analyse de cas. De manière inattendue, bien que les calculs intermédiaires soient assez touffus, la série
génératrice P (t) des polyominos Z-convexes selon le demi-périmètre, à l’instar de la série génératrice des
polyominos convexes, s’exprime comme une fonction rationnelle en x et en la série génératrice des nombres
de Catalan.

1. Introduction

1.1. Convex polyominoes. In the plane Z × Z a cell is a unit square, and a polyomino is a finite
connected union of cells having no cut point. Polyominoes are defined up to translations. A column (row)
of a polyomino is the intersection between the polyomino and an infinite strip of cells lying on a vertical
(horizontal) line. For the main definitions and results concerning polyominoes we refer to [S] and, for those
who can read french, to [BM]. Invented by Golomb [G2] who coined the term polyomino, these combinatorial
objects are related to many mathematical problems, such as tilings [BN, G1], or games [Ga] among many
others. The enumeration problem for general polyominoes is difficult to solve and still open. The number
an of polyominoes with n cells is known up to n = 56 [JG] and asymptotically, these numbers satisfy the
relation limn (an)

1/n
= µ, 3.96 < µ < 4.64, where the lower bound is a recent improvement of [BMRR].

In order to probe further, several subclasses of polyominoes have been introduced on which to hone
enumeration techniques. One natural subclass is that of convex polyominoes. A polyomino is said to be
column-convex (row-convex) when its intersection with any vertical (horizontal) line of cells in the square
lattice is connected (see Fig. 1 (a)), and convex when it is both column and row-convex (see Fig. 1 (b)).
The area of a polyomino is just the number of cells it contains, while its semi-perimeter is half the length of
the boundary. Thus, in a convex polyomino the semi-perimeter is the sum of the numbers of its rows and
columns. Moreover, any convex polyomino is contained in a rectangle in the square lattice which has the
same semi-perimeter (called the minimal bounding rectangle of the polyomino).

2000 Mathematics Subject Classification. Primary 05A15; Secondary 82B41.
Key words and phrases. Enumeration, algebraic generating functions, recursive decomposition.

The authors acknowledge support from the french ANR under the SADA project.
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(a) (b)

Figure 1. (a) a column-convex (but not convex) polyomino; (b) a convex polyomino.

The number fn of convex polyominoes with semi-perimeter n + 2 was obtained by Delest and Viennot,
in [DV]:

fn+2 = (2n + 11)4n − 4(2n + 1)

(

2n

n

)

, n ≥ 0; f0 = 1, f1 = 2.

In particular the generating function of convex polyominoes with respect to the semi-perimeter

F (t) =
∑

n≥0

fntn+2 = t2 + 2t3 + 7t4 + 28t5 + 120t6 + 528t7 + O(t8)

is an algebraic series which has a rational expression R0(t, d(t)) in t and the Catalan generating function

c(t) =
1 −

√
1 − 4t

2t
= 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + O(t7).

More precisely, the generating function of convex polyominoes with respect to the numbers of columns
(variable x) and rows (variable y) is

F (x, y) =
8x2y2d(x, y)

∆2
+

xy(1 − x − xy − y)

∆
,

where d(x, y) is the unique power series satisfying the relation d = (x + d)(y + d),

d(x, y) =
1

2
(1 − x − y −

√
∆),

and,

∆ = (1 − x − y)2 − 4xy = (1 − x − y)2(1 − 4xy
(1−x−y)2 ).

Observe that d(t) := d(t, t) is just a shifted version of the Catalan generating function,

d(t) = t(c(t) − 1) =
1

2
(1 − 2t −

√
1 − 4t) = t2 + 2t3 + 5t4 + 14t5 + 42t6 + 132t7 + O(t8).

Incidentally, d(x, y) is the generating function of parallelogram polyominoes with respect to the numbers of
columns and rows.

1.2. Monotone paths and k-convexity. In [CR03] the authors observed that convex polyominoes
have the property that every pair of cells is connected by a monotone path. More precisely, a path in a
polyomino is a self-avoiding sequence of unitary steps of four types: north N = (0, 1), south S = (0,−1),
east E = (1, 0), and west W = (−1, 0). A path is monotone if it is made with steps of only two types. Given
a path w = u1 . . . uk, with ui ∈ {N, S, E, W}, each pair of steps uiui+1 such that ui 6= ui+1, 0 < i < k, is
called a change of direction. These definitions are illustrated by Fig. 2, in which the non monotone path (a)
has 6 changes of direction and the monotone path (b) has 4 changes of direction.

The authors of [CR03] further proposed a classification of convex polyominoes based on the number
of changes of direction in the paths connecting any two cells of a polyomino. More precisely, a convex
polyomino is k-convex if every pair of its cells can be connected by a monotone path with at most k changes
of direction. In a convex polyomino of the first level of this classification, any two cells can be connected by
a path with at most one change of direction: in view of the L-shape of these paths, 1-convex polyominoes
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(a) (b)

Figure 2. (a) a path between two highlighted cells in a polyomino; (b) a monotone path
between the same cells, made only of north and east steps.

(a) (c)(b)

Figure 3. (a) a L-convex polyomino, and a monotone path with a single change of direction
joining two of its cells; (b) a Z-convex but not L-convex polyomino: the two highlighted cells
cannot be connected by a path with only one change of direction; (c) a centered polyomino
(not L-convex).

are also called L-convex. The reader can easily check that in Fig. 3, the polyomino (a) is L-convex, while the
polyominoes (b), (c) are not, but are 2-convex.

This class of polyominoes has been considered from several points of view: in [CR05] it is shown that the
set of L-convex polyominoes is well-ordered with respect to the sub-picture order, in [CFRR1] the authors
have investigated some tomographical aspects of this family, and have shown that L-convex polyominoes are
uniquely determined by their horizontal and vertical projections. Finally, in [CFRR2] it is proved that the
number gn of L-convex polyominoes with semi-perimeter n + 2 satisfies the recurrence relation:

gn = 4gn−1 − 2gn−2, n ≥ 3,

with g0 = 1, g1 = 2, g2 = 7. In other terms the generating function of L-convex polyominoes is rational:

G(t) =
∑

n≥0

gntn+2 = t2 + 2t3 + 7t4 + 24t5 + 82t6 + 280t7 + O(t8)

=
1 − 2t + t2

1 − 4t + 2t2
.

Indeed, in [CFMRR], the authors have provided an encoding of L-convex polyominoes by words of a regular
language, and have furthermore studied the problem of enumerating L-convex polyominoes with respect to
the area.

In view of the definition of L-convex polyominoes as 1-convex polyominoes, it is natural to investigate
which of the previous properties remain true for some classes of k-convex polyominoes, with k > 1. Concern-
ing enumeration in particular, one would like to know if the generating functions of k-convex polyominoes
are rational, algebraic, or D-finite.

1.3. Z-convex polyominoes. In the present paper we deal with the family of 2-convex polyominoes,
which we rename Z-convex polyominoes in analogy with the L-convex notation. We shall prove the following
results for the number pn of Z-convex polyominoes with semi-perimeter n + 2:
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Theorem 1.1. The generating function P (t) of Z-convex polyominoes with respect to the semi-perimeter

is

P (t) =
∑

n≥0

pntn+2 = t2 + 2t3 + 7t4 + 28t5 + 116t6 + 484t8 + O(t8),

=
2t4(1 − 2t)2d(t)

(1 − 4t)2(1 − 3t)(1 − t)
+

t2(1 − 6t + 10t2 − 2t3 − t4)

(1 − 4t)(1 − 3t)(1 − t)
,

where

d(t) =
1

2
(1 − 2t −

√
1 − 4t).

More generally, the generating function P (x, y) of Z-convex polyominoes with respect to the numbers of rows

and columns is a rational power series R(x, y, d(x, y)) in x, y and the unique power series d(x, y) solution

of the equation d = (x + d)(y + d),

d(x, y) =
1

2
(1 − x − y −

√
∆),

where

∆ = (1 − x − y)2 − 4xy = (1 − x − y)2(1 − 4xy

(1 − x − y)2
).

More precisely,

P (x, y) =
2x2y2d(x, y)

∆2

(1 − x − y)2

((1 − x − y)2 − xy)

+
xy(1 − x − y)2(1 − x − y − xy) − x2y2(1 − x − y − 3xy)

∆ ((1 − x − y)2 − xy)
.

As conjectured by Marc Noy [N], the asymptotic number of Z-convex polyominoes with semi-perimeter
n + 2 grows like n · 4n (more precisely, pn ∼ n

24 · 4n, so that fn/pn → 3), while the number of L-convex

polyominoes grows only like (2 +
√

2)n, and the number of centered polyominoes (see below) grows like 4n.
The fact that the generating function ends up in the same algebraic extension as convex polyominoes

looks surprising to us because we were unable to derive it using the standard approaches to convex polyomino
enumeration (Temperley-like methods, wasp-waist decompositions, or inclusion/exclusion on walks). Instead,
one interesting feature of our paper is a construction of polyominoes by “inflating” smaller ones along a hook.
We believe that this approach could in principle allow for the enumeration of k-convex polyominoes in general.

The rest of the paper is organized as follows. The general strategy of decomposition is explained in
Section 2. The different cases are listed and the corresponding relations for generating functions are derived
in Section 3. Finally the resulting system of equations is solved in Section 4.

2. Classification and general strategy

In order to present our strategy for the decomposition, we need to distinguish between several types of
Z-convex polyominoes.

2.1. Centered polyominoes. The first class we consider is the set C of horizontally centered (or
simply centered) convex polyominoes. A convex polyomino is said to be centered if it contains at least one
row touching both the left and the right side of its minimal bounding rectangle (see Fig. 3 (c)). Observe
that centered polyominoes have a simple characterization in terms of monotone paths:

Lemma 2.1. A convex polyomino is centered if and only if any pair of its cells can be connected by means

of a path Sh1EkSh2 or Sh1W kSh2 , with h1, h2, k ≥ 0.

In particular any L-convex polyomino is centered, and, more importantly for us, any centered polyomino
is Z-convex, while the converse statements do not hold. Figure 3 (c) shows a centered polyomino which is
not L-convex, and Figure 3 (b) a Z-convex polyomino which is not centered.

Centered convex polyominoes can also be described as being made of two stack polyominoes glued
together at their bases. As we shall see in Section 3.1, this decomposition allows us to compute easily their
generating function.
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Figure 4. A non-centered polyomino of class D with its rows x, y, and columns s and t;
its division into Regions ω, ξ, θ and Λ; its reduction.

2.2. Non centered polyominoes. Let us thus turn to non centered polyominoes. The starting point
of our decomposition is that we wish to remove the leftmost column. By definition of Z-convexity, any two
cells must be connected by a path of type Sh1EkSh2 , Sh1W kSh2 , Eh1NkEh2 or Eh1SkEh2 , with h1, h2, k ≥ 0.
In particular, we are interested in the set of cells that require a path with two changes of direction to be
reached from the cells of the leftmost column.

Let P be a non-centered convex polyomino, and let c1(P ) (briefly, c1) denote its leftmost column, and
let us consider the following rows (as sketched in Fig. 4):

• The row X which contains the top cell of c1.
• The row Y which contains the bottom cell of c1.

Since the polyomino P is convex and non-centered, its rightmost column does not intersect any row between
X and Y , hence it is placed entirely above X or below Y .

This remark leads to the following definitions:

• A non-centered convex polyomino is ascending if its rightmost column is above the row X . Let U
denote the set of descending Z-convex polyominoes.

• A non-centered convex polyomino is descending if its rightmost column is below the row Y . Let D
denote the set of ascending Z-convex polyominoes.

The whole set of Z-convex polyominoes is given by the union of the three disjoint sets C, D, and U . Moreover,
by symmetry, for any fixed size, D and U have the same number of elements, thus, we will only consider
non-centered polyominoes of the class D, as the one represented in Fig. 4.

A first property of polyominoes of class D is the following consequence of their convexity: the boundary
path from the end of row X to the end of row Y is made only of south and east steps.

2.3. The strategy. Let us denote by S and T the columns starting from the rightmost cell of X and Y
respectively, and running until they reach the bottom of the polyomino (see Fig. 4). The rows and columns
X , Y , S and T allow us to separate the cells of any polyomino in class D into four connected sets, as
illustrated by Figure 4:

(1) the set of cells strictly above X , called ω;
(2) the set of cells strictly on the right of T , called θ;
(3) the set of cells that are at the same time below Y and on the left of S, called ξ;
(4) the remaining set of cells, called Λ: these cells are either between X and Y , or between S and T

(or both).
• In the previous definitions, the hook H starting horizontally with the left hand part of Y and

continuing down with the bottom part of S is included in ξ. The other cells of the row X , Y and
columns S and T are included in Λ.

The cells of θ require at least two turns to be reached with a monotone path from the cells of c1. The
Z-convexity thus induces a restriction on the position of the lowest cells of θ.
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Figure 5. (a) a hooked polyomino with hook of type A and (b) one with hook of type B.

Property 2.1. The region θ of a non-centered Z-convex polyomino contains no cell lower than the

lowest cell of its column S.

If a row between X and Y reaches the right side of the bounding box, the polyomino is centered:

Property 2.2. The set θ of a non-centered convex polyomino is non empty.

As already mentioned, we wish to decompose polyominoes of D by removing the leftmost column. For
the decomposition to be one-to-one we then need to be able to replace a column to the left of a polyomino.
But, as the reader can verify, if one takes a Z-convex polyomino and add a leftmost column, it is not so easy
to grant a priori that Property 2.1 will be satisfied by the rows and columns X , Y , S, and T of the grown
polyomino.

In order to circumvent this problem, our decomposition will consist in removing the whole region Λ
together with the leftmost column. More precisely, given a descending polyomino P , let us define its reduction

Φ(P ) as the polyomino obtained as follows (see Figure 4):

• glue region ω to ξ, keeping the relative abscissa of cells between ω and ξ;
• glue region θ to ω ∪ ξ by keeping the relative ordinates of cells between ξ and θ.

Since the hook H is kept in Φ(P ), ω and ξ have at least one common column (as soon as ω is non empty)
and ξ and θ have at least one common row, so that the reduction makes sense and it is a polyomino, in which
we highlight the hook H . (The hook is highlighted in order to make easier the forthcoming description of
the inverse construction.)

The following lemma explains our interest in this reduction.

Lemma 2.2. A descending convex polyomino is Z-convex if and only if it satisfies Property 2.1 and its

reduction Φ(P ) is Z-convex.

Proof. Assume first that P is Z-convex. Then Property 2.1 is satisfied and a monotone path connecting
a cell x to a cell y of Φ(P ) can easily be constructed from the monotone path connecting x and y in P : any
section of the path in the deleted region Λ can be replaced by a simpler section in the hook.

Conversely assume that Φ(P ) is Z-convex, that P satisfies Property 2.1 is satisfied, and let (x, y) be two
cells of P . If x and y are not in Λ then there exists a monotone path in Φ(P ) connecting these points, and
there is no need to add a turn to extend this path into a monotone path in P . If x belongs to Λ, one easily
construct the path in each case y ∈ ω, y ∈ ξ and, using Lemma 2.1, u ∈ θ. �

To characterize the set of polyominoes that can occur in the image of D by Φ, let us define a hooked

polyomino as a polyomino P of C ∪ D in which a hook is highlighted, in such a way that

• the hook is made of a top row (the arm of hook) starting in the leftmost column of P and traversing
the polyomino, and a partial column (the leg of the hook) starting in the right most cell of the top
row and including all cells below in this column,

• the region on the right hand side of the hook is non empty.

The hook is called a hook of type A if its bottom cell belongs to the lowest row of P , and a hook of type

B otherwise (see Figure 5). The following lemma is an immediate consequence of the definition of hooked
polyominoes.
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st pi(u) (z* yu)*  ((z*)  y)
2 +

Figure 6. The decomposition of a staircase st(u) = (z∗yu)∗ and of a non empty pile pi = ((z∗)2y)+.

Property 2.3. The reduction of a polyomino of D is a hooked polyomino.

In view of Lemma 2.2, our strategy will consist in the description of the types of region Λ that can be
added to a hooked polyomino so that the “inflated” polyomino satisfies Property 2.1.

2.4. Generating functions. We shall compute the generating function P (x, y) of Z-convex polyomi-
noes with respect to the number of columns, or width (variable x) and to the number of rows, or height

(variable y). In order to do that we shall need generating functions of hooked polyominoes with respect to
their width and their height, but also with respect to an auxiliary parameter k which will be marked by a
variable u: given a hooked polyomino, the parameter k is a non negative integer indicating the difference of
ordinate between the lowest cell of the leg of the hook and the lowest cell of the next column to the right
(see Figure 5). This definition makes sense since the region on the right hand side of the hook is assumed
non empty.

We shall more precisely use the generating functions

• CA(x, y, u) of hooked centered polyominoes with hook of type A,
• CB(x, y, u) of hooked centered polyominoes with hook of type B,
• A(x, y, u) =

∑

k ak(x, y)uk of hooked non-centered polyominoes with hook of type A,
• B(x, y, u) =

∑

k bk(x, y)uk of hooked non-centered polyominoes with hook of type B.

Most of the time we drop the variables x, y and use the shorthand notation A(u) = A(x, y, u), ak = ak(x, y),
etc.

3. Decompositions

We shall need the following elementary notations and results, illustrated by Figure 6:

• The sequence notation for formal power series is w∗ = 1
1−w . The non-empty sequence notation is

w+ = w · w∗ = w
1−w .

• The generating function of possibly empty staircases with width marked by z and height marked
by yu is st(u) = (z∗yu)∗.

• The generating function of non empty piles of lines with width marked by z and height marked by
y is pi = ((z∗)2y)+.

• Given a generating function F (u) =
∑

n≥0 fnun we define the series

F (u, v) =
∑

n≥0

∑

i+j=n

fnuivj =
uF (u)

u − v
+

vF (v)

v − u
,

where the inner summation is on non negative i and j with i + j = n, and

F (u, v, w) =
∑

n≥0

∑

i+j+k=n

fnuivjwk =
u2F (u)

(u − v)(u − w)
+

v2F (v)

(v − u)(w − u)
+

w2F (w)

(w − u)(w − v)
,

where the inner summation is on non negative i, j and k with i + j + k = n. The values at u = v
of the previous series can be obtained by continuity:

A(u, u, w) =

(

u2A(u)

u − w

)′

+
w2A(w)

(w − u)2
=

u2A′(u)

u − w
+

u(u − 2w)A(u)

(u − w)2
+

w2A(w)

(w − u)2
.
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(b)

(a)

x+

(x∗)2y

⇒ ((x∗)2y)∗x+

(x∗)2y

Figure 7. (a) The decomposition of a stack polyomino with baseline width marked by x
and height marked by y. (b) The decomposition of a centered polyomino into a non-empty
sequence of central rows and two stack polyominoes.

3.1. Centered polyominoes. Recall that a centered polyomino is a polyomino that contains at least
one row touching both the left and the right hand side of its minimal bounding rectangle. We need to
count polyominoes of the family C of centered polyominoes but also of the families CA and CB of hooked
polyominoes with a hook of type A and B respectively.

Let S(x, y) be the generating function of stack polyominoes with x marking the length of the baseline
and y marking the height. In view of Figure 7(a),

S(x, y) = x+ · ((z∗)2y)∗ =
x(1 − x)

(1 − x)2 − y
=

(

1

2

1

1 − x
1−√

y

+
1

2

1

1 − x
1+

√
y

− 1

)

.

Observe then that for any power series F (x, y) the Hadamard product S(x, y) �x F (x, y) is equal to:

1

2

(

F
( x

1 −√
y
, y
)

+ F
( x

1 +
√

y
, y
)

)

− F (0),

which is a rational function of x and y if F (x) is.
In view of Figure 7(b), centered polyominoes are formed of a centered rectangle supporting 2 strictly

smaller stacks polyominoes:
C(x, y) = y+[S>(x, y) �x S>(x, y)],

where S>(x, y) stands for the generating function of stack polyominoes with a first row strictly smaller than
the baseline (so that the central rectangle is effectively given by the factor y+). The series S>(x, y) is readily
obtain by difference,

S>(x, y) = S(x, y) − yS(x, y) =
x(1 − x)(1 − y)

(1 − x)2 − y
,

and computing the Hadamard product with the previous formula yields:

C(x, y) =
xy(−y − xy + 1 − 2x + x2)(1 − y)

(1 − x − y)(x2 − 2xy − 2x + y2 − 2y + 1)
.

We shall also need centered polyominoes with a marked hook, of type A and B. As illustrated by
Figure 8, the series for the first type is CA(u) = S(z, y)�z FA(zx, x, y, u) where

FA(z, x, y, u) = y2z+ · st(u) · (xy∗(yz∗)∗)+.

Indeed, with z marking columns on the left hand side of the leg of the hook, the Hadamard product accounts
for gluying, along the arm of the hook, a staircase, with generating series S(z, y), to the rest of the polyomino,
with generating series FA(z, x, y, u): in this later series, a factor xy(z∗y)∗ corresponds to the central rectangle;
each factor x((z∗y)∗)y∗ corresponds to a column on the right of the hook and to the lines having their
rightmost cell in that column; the factor st(u) corresponds to the bottom staircase made of lines having
their rightmost cell in the hook.

Similarly, the series for the second type is CB(u) = S(z, y)�z FB(zx, x, y, u) where

FB(z, x, y, u) = FA(z, x, y, u) · z · pi,
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Figure 8. Construction of elements of the classes CA(u) and CB(u).

with the extra factor corresponding to cells lower than the leg of the hook.

3.2. Hooked polyominoes with hooks of type A. A hooked polyomino with hook ok type A can
be a hooked centered polyomino (with gf CA(u) already computed) or can be obtained from its reduction
which must be a hooked polyomino with a hook of type A (recall that type A means that the leg of the hook
reaches the lowest row of the polyomino). Let us describe the different cases, with respect to the properties
of the resulting inflated polyomino:

• The leg of the hook and the two columns S and T have same abscissa (Figure 9, left): let

A1(u) = x(y∗)2 · A(u).

• The leg of the hook has same abscissa as the column T but not as S (Figure 9, middle): by definition
of type A, the column S cannot be longer than the leg of the hook, and

A2(u) = xy∗y+ · st(u) · z+A(u).

The series A2(u) apparently does not takes into account the construction of the staircase starting
on the righthand side of the column S and connecting it to the top-right angle of the hook. Instead
each column between column S (excluded) and the leg of the hook (included) is marked by a factor
z. However upon setting z = xy∗, each column marked by z gets a factor x and a factor y∗ that
accounts for the rows ending in that column. The generating function of polyominoes of this case
is thus A2(u)

∣

∣

z=xy∗
.

In all forthcoming cases, we describe similarly generating functions of polyominoes without the
staircase connecting X to the top-right corner of the hook. In other terms, in the following pages
z is to be understood as a shorthand notation for xy∗.

• The leg of the hook has same abscissa as the column S but not as T (Figure 9, right): by definition
of type A, the leg of the hook is at least as long as the column T , and

A3(u) = xy∗y+ · z+A(u, z∗).

As suggested by Figure 9, the factor A(u, z∗) accounts for the fact that from a polyomino of type
A with parameter k, one constructs a new polyomino with parameter i with 0 ≤ i ≤ k.

• The abscissa of the leg of the hook is strictly between S and T and the cells marked by a factor u
are strictly below the lowest cells of columns S and T (Figure 10, left):

A4(u) = x(y+)2 · st(u) · pi · (z+)2A(z∗).

• The abscissa of the leg of the hook is strictly between S and T and the cells marked by a factor u
intersects the baseline of column S (Figure 10, right):

A5(u) = x(y+)2 · st(u) · (z+)2A(u, z∗).
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The generating series of hooked polyominoes with a hook of type A is then

A(u) = CA(u) +
5
∑

i=1

Ai(u)
∣

∣

z=xy∗
.

3.3. Hooked polyominoes with hooks of type B. A hooked polyomino with hook of type B can be
a hooked centered polyomino (with gf CB(u) already computed) or can be obtained by inflating its reduced
polyomino. We start with those that are produced from a hooked polyomino with hook of type A, and we
give again the different cases with respect to the properties of the obtained inflated polyomino:

• The leg of the hook has same abscissa as column T and it is strictly longer than column S: in order
to produce a hook of type B, some other column between S and T must be even longer, and

B1(u) = A2(u) · z · pi = xy∗y+ · pi · z · st(u) · z∗yu · z+A(u).

In agreement with the relation B1(u) = A2(u) · z · pi, polyominoes of B1 (Figure 11, left) can be
obtained from polyominoes of A2 (Figure 9, middle) by adding a non-empty pile of rows just before
the leg of the hook.

• The abscissa of the leg of the hook is strictly between S and T , and the cells marked by a factor u
are strictly below the lowest cells of columns S and T :

B2(u) = A4(u) · z · pi = x(y+)2 · pi · z · st(u) · pi · (z+)2A(z∗).

These polyominoes are obtained from the polyominoes of A4 upon adding a non-empty pile of rows
just before the leg of the hook.

• The abscissa of the leg of the hook is strictly between S and T , and the cells marked by a factor u
intersects the baseline of column S.

B3(u) = A5(u) · z · pi = x(y+)2 · pi · z · st(u) · (z+)2A(u, z∗).

These polyominoes are obtained from the polyominoes of A5 upon adding a non-empty pile of rows
just before the leg of the hook.

• The abscissa of the leg of the hook is strictly between S and T , and the cells marked by a factor u
are strictly above the lowest cell of column S.

B4(u) = x(y+)2 · (1 + pi · z)(z+)2(A(z∗, z∗, u) − A(z∗, u)).

Observe that difference is due to the restriction j 6= 0, as illustrated by the Figure 11: the leg of
the hook must end strictly above the lowest cell of columns S, so that one must have j ≥ 1.

Now we present the cases produced from a hooked polyomino with hook of type B, again arranged according
to the properties of the resulting polyomino. Observe that in these cases the column S is at least as long as
the column T :

• The leg of the hook and the columns S and T have the same abscissa:

B5(u) = x(y∗)2 · B(u)

• The leg of the hook has the same abscissa as the column S or the same abscissa as the column T
(but not both):

B6(u) = 2 · xy∗y+ · z∗B(z∗, u).

• The abscissa of the leg of the hook is strictly between column S and T :

B7(u) = x(y+)2 · (z+)2B(z∗, z∗, u).

The generating series of hooked polyominoes with a hook of type B is then

B(u) = CB(u) +

7
∑

i=1

Bi(u)
∣

∣

z=xy∗
.
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3.4. Z-convex polyominoes. Again we start with polyominoes that are produced from a hooked
polyomino with hook of type A:

• The columns S and T have the same abscissa:

P1 = xy∗A(1).

• The columns S and T have distinct abscissa and the column S is strictly shorter than T :

P2 = xy+ · pi · zA(1).

• The columns S and T have distinct abscissa and the column S is at least as long as T :

P3 = xy+ · (1 + z · pi)(z∗A(z∗) − A(1)).

The difference is due to the fact that at least one horizontal column must be inserted at the level
of the rows that were marked by the factor u to ensure that the column T is not longer that S.

Next we present the polyominoes obtained from a hooked polyomino with hook of type B:

• The columns S and T have the same abscissa:

P4 = xy∗B(1).

• The columns S and T have distinct abscissa and the lowest cell of S is below or at the same level
as the lowest cell of T :

P5 = xy+ · (z∗B(z∗) − B(1)).

Finally the generating function of Z-convex polyominoes is

P = C +

5
∑

i=1

Pi

∣

∣

z=xy∗
.

4. Resolution

In view of the previous section, upon setting as announced z = xy∗, the system of equations defining
the series P has the following form:

A(u) = CA(u) + a1(u)A(u) + a2(u)A(z∗)

B(u) = CB(u) + b1(u)A(u) + b2(u)A(z∗) + b3(u)A′
u(z∗) + b4(u)B(u) + b5(u)B(z∗) + b6(u)B′

u(z∗)

P = C0 + p1A(z∗) + p2A(1) + p3B(z∗) + p4B(1),

where the CA(u), CB(u) and C0 are the rational generating series of centered polyominoes computed in
Section 3.1, the ai(u) and bi(u) are explicit rational functions of x, y and u, and the pi are explicit rational
functions of x and y.

The first step of the resolution is to apply the kernel method to the first equation, which involves only
A(u) and A(z∗) as unknown. The kernel equation 1 − a1(u) = 0 contains a factor that can be written

u = 1 + (x − y)u + yu2,

so that it clearly admits a power series root c(x, y), which is a refinement of the Catalan generating function

c(t, t) =
1 −

√
1 − 4t

2t
.

Setting u = c(x, y) in the first equation, the kernel is canceled and A(z∗) is obtained as

A(z∗) =
CA(c)

a2(c)
.

Then, using again the first equation of the system we derive A(u). Once A(u) is known, A′
u(z∗) can also be

computed.
The second step consists in applying now the kernel method to the second equation of the system, which

now has three unknowns B(u), B(z∗) and B′
u(z∗). The kernel 1 − b4(u) admits two roots R1 and R2 that

are rational power series in x1/2 and y:

R1 =
1 − y + x1/2

1 − y − x + (1 − x)x1/2
, and R2 =

1 − y − x1/2

1 − y − x − (1 − x)x1/2
.
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Using these two roots we write two linear equations for B(z∗) and B′
u(z∗) and solve the system. The resulting

series are rational series in x, y and C(x, y) (in particular fractional powers of x cancel, as one could expect
from the symmetry with respect to ±x1/2). Returning to the second equation of the system, we obtain B(u)
and finally, turning to the third equation, the generating function P of Z-convex polyominoes.

It should be remarked that our method leads to heavy computations in the intermediary steps, involving
big rational expressions. The fact that things dramatically simplify when all pieces are put together in P
calls for a simpler, more combinatorial, derivation. In particular, the expression are nicer in terms of the
more symmetric parametrization d(x, y) = y(c(x, y) − 1) satisfying d = (x + d)(y + d).

Acknowledgments. The authors wish to thank Andrea Frosini and Marc Noy for inspiring discussions
on the topic of this paper. Andrea Frosini also provided the first terms of the series by exhaustive generation,
allowing us to double check our results.
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A Spectral Approach to Pattern-Avoiding Permutations

Richard Ehrenborg, Sergey Kitaev, and Peter Perry

Abstract. We study the number of permutations in the symmetric group on n elements that avoid con-
secutive patterns S. We show that the spectrum of an associated integral operator on the space L2[0, 1]m

determines the asymptotic behavior of such permutations. Moreover, using an operator version of the clas-
sical Frobenius-Perron theorem due to Krĕın and Rutman, we prove asymptotic results for large classes of
patterns S. This extends previously known results of Elizalde.

Résumé. Nous étudions le nombre de permutations dans le groupe symétrique sur n éléments qui évitent des
motifs S consécutifs. Nous montrons que le spectre d’un opérateur intégral associé sur L2[0, 1]m détermine
le comportement asymptotique de telles permutations. Utilisant de plus une version d’opérateur du théorm̀e
classique de Frobenius-Perron en raison de Krĕın et Rutman, nous donnons des résultats asymptotiques

pour les grandes classes de motifs S. Ceci étend résultats précédemment des connus de Elizalde.

1. Introduction

In this paper, we study integral operators of the form

T : L2 ([0, 1]
m

) −→ L2 ([0, 1]
m

)(1.1)

f 7−→
∫ 1

0

χ(t, x1, . . . , xm)f(t, x1, . . . , xm−1) dt

and their applications to the theory of pattern avoidance in permutations. Here χ is a real-valued function
on [0, 1]

m+1
which takes the values 0 or 1 on each of the simplices in the standard triangulation of [0, 1]

m+1
,

i.e., the partition

[0, 1]k =
⋃

π∈Sk

∆π

where the simplex ∆π is given by

∆π =
{

(x1, . . . , xk) : xπ−1(1) ≤ xπ−1(2) ≤ · · · ≤ xπ−1(k)

}

We will show how integral operators of this type arise naturally in counting pattern-avoiding permutations
where the pattern has length m+ 1.

Recall that a pattern of length m + 1 is an element σ ∈ Sm+1. A permutation π ∈ Sn, n ≥ m + 1,
avoids the consecutive pattern σ if there is no integer j, 0 ≤ j ≤ n − m − 1, with the property that
πj+σ−1(1) < πj+σ−1(2) < · · · < πj+σ−1(m+1). More generally, if S is a subset of Sm+1, we say that π avoids
S if π avoids each σ ∈ S.

Fix a subset S of Sm+1 and, for n ≥ m + 1, let an denote the number of permutations π ∈ Sn that

avoid S. Let χS : [0, 1]m+1 → {0, 1} be given by

(1.2) χS(x1, . . . , xm+1) =

{

0 if xσ−1(1) ≤ xσ−1(2) ≤ · · · ≤ xσ−1(m+1) for some σ ∈ S;
1 otherwise.

2000 Mathematics Subject Classification. Primary 05A16, 05D40, 45C05, 45P05, 47N30; Secondary 05A05.
Key words and phrases. Consecutive pattern avoidance, integral operators, eigenvalues, eigenfunction expansion.
Ehrenborg supported in part by NSF Grant DMS-0200624.
Perry supported in part by NSF Grant DMS-0408419.
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Let TS be the integral operator on L2 ([0, 1]
m

) given by

(1.3) (TSf)(x1, . . . , xm) =

∫ 1

0

χS(t, x1, . . . , xm)f(t, x1, . . . , xm−1) dt.

Theorem 1.1. The formula

(1.4)
an

n!
= (1, T n−m

S 1)

holds for any n ≥ m+ 1, where 1 denotes the constant function with value 1 and ( · , · ) denotes the usual
inner product on L2 ([0, 1]m). Moreover, we have the inequality

(1.5)
an

n!
≤ CS

(

a2m

(2m)!

)n/m

.

The inequality (1.5) is not optimal.
It is natural to attempt a large-n asymptotic expansion of the right-hand side of (1.4) using the spectral

theory of the operator TS . Recall that, if A is a bounded operator, the resolvent set of the operator A is the
set ρ(A) of complex numbers with the property that (A− zI)−1 exists as a bounded operator. The spectrum
of A is the set σ(A) is the complement of ρ(A) in C. The spectral radius of a bounded operator A is the
quantity

r(A) = lim sup
n→∞

‖An‖1/n
.

Note that σ(A) is contained in the closed disc of radius r(A) about 0 in C (see, for example, §VI.3 of [12]).

Theorem 1.2. Let TS be an integral operator of the form (1.3) for some nonempty pattern S. Then
σ(TS) is a discrete set with 0 as its only possible accumulation point. Moreover, r(TS) < 1 strictly.

The proof uses the fact that, although TS is not compact, the operator T k
S is compact–in fact Hilbert-

Schmidt–for any k ≥ m. We will show that the Hilbert-Schmidt norm of Tm
S is strictly less than 1, from

which the statement about the spectral radius follows. We will also give examples of sets of patterns S for
which r(TS) = 0, and the ratio an/n! converges to zero as n→ ∞.

Our main interest is in patterns for which r(TS) > 0. With an additional condition on S, we can use
spectral theory to obtain an asymptotic formula for an. Below (Theorem 1.5), we will give a sufficient
condition on a pattern S so that the hypotheses of Theorem 1.3 hold. To state this condition, recall that
an operator A on the space L2(X,µ) of complex-valued measurable functions on the measure space (X,µ)
is called strongly positive if for every f ≥ 0 there is an integer n so that (T nf)(x) > 0 for almost every x.
As we show through examples below, there are patterns S for which TS is not strongly positive.

Theorem 1.3. Suppose that TS is an operator of the form (1.3) for some set of patterns S, and that
TS is strongly positive. Then TS has a unique simple eigenvalue ρ > 0 with positive eigenfunction φ, and all
other eigenvalues λ ∈ σ(TS) satisfy |λ| < ρ strictly. Moreover, the adjoint operator T ∗

S has ρ as its unique
positive eigenvalue and a positive eigenfunction ψ of T ∗

S with eigenvalue ρ.

It is important to note that the strong positivity of TS implies that TS has nonzero spectral radius, and
that the positive eigenvalue is the only eigenvalue on the circle |z| = ρ. The existence of such a “spectral
gap” and the associated positive eigenfunctions follows from an operator version of the celebrated Perron-
Frobenius Theorem (see, e.g., Gantmacher [8], vol. 2, §XIII.2) due to Krĕın and Rutman (see Theorem 6.3
of [10]). Under the assumption of Theorem 1.3, let

(1.6) r2(TS) = sup
λ∈σ(TS),λ6=ρ

|λ|

Using spectral theory, we obtain:

Theorem 1.4. Suppose that TS is a strongly positive operator of the form (1.3). Let ρ be the largest
eigenvalue of TS with associated eigenfunction φ. Let ψ be the eigenfunction of the adjoint operator T ∗

S with
eigenvalue ρ. Finally, let r2 be given by equation (1.6). Then we have

an

n!
= ρn−m (ψ, 1)(1, φ)

(ψ, φ)
+ O(rn−m

2 ).
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Here ( · , · ) denotes the usual inner product on L2 ([0, 1]
m

). Note that the leading term in this expansion
is strictly positive since φ and ψ are positive functions of TS and T ∗

S . Higher-order terms in the expansion
can be computed if further eigenvalues and eigenfunctions of the operator TS are known (see, for example,
Section 3 in what follows); see Section 2.3 for a statement of the full expansion.

We can give a sufficient condition in combinatorial terms for a pattern S to have a spectral gap in the
sense of Theorem 1.3. To do so we associate to a pattern S a directed graph, GS , defined as follows. If
x ∈ Zm is a vector of positive integers define Π(x) to be the permutation π ∈ Sm with the property that
xi < xj if and only if π(i) < π(j) for all 1 ≤ i < j ≤ m. The vertices of GS are the elements of Sm,
and the edge σ = (σ1, . . . , σm+1) ∈ Sm+1 − S goes from the permutation Π(σ1, . . . , σm) to the permutation
Π(σ2, . . . , σm+1). The graph GS is strongly connected if any point of GS is connected to any other point of
GS by a directed path. A strongly connected graph is aperiodic if there exists a positive integer k and two
vertices u and v such that there exists a directed path from u to v of any length greater than or equal to k.
The condition that two such vertices exist is equivalent to the statement that between any two vertices in
the graph, one can find directed paths of any length greater than or equal to k.

Theorem 1.5. Let S ⊂ Sm+1 and suppose that GS is strongly connected and the two monotone per-
mutations 12 · · ·m+ 1 and m+ 1 · · · 21 do not belong to the set S. Then TS is strongly positive. Hence we
conclude that there exist three positive constants ρ, r2 and c such that r2 < ρ and

an

n!
= cρn−m + O(rn−m

2 ).

Example 1.6. Let S be the set {132, 231}. Hence, S-avoiding permutations are permutations without a
peak, and there are 2n−1 such permutations in Sn. In this case, the operator TS has no eigenvalues and our
spectral methods do not apply. Also, observe that the graph GS is not strongly connected, so Theorem 1.5
does not apply.

Example 1.7. Let S be the set {123, 213, 231, 321}. The directed graph GS is strongly connected, but
not aperiodic. Again Theorem 1.5 does not apply. In fact, in this case, an = 2 for all n ≥ 2.

In many cases of interest the leading term is explicitly computable. Using Theorem 1.4, we will prove
the following asymptotic formulas.

Theorem 1.8. The number an of 123-avoiding permutations in Sn obeys the asymptotic formula

an

n!
= λn+1

0 exp

(

1

2λ0

)

+ O
(

λn
−1

)

where

λ0 =
3
√

3

2π
, λ−1 =

3
√

3

4π
.

In this case, all of the eigenvalues of TS are real and TS has empty kernel. We can easily obtain higher-
order terms in the expansion from the spectral methods used there since, in fact, all of the eigenvalues and
eigenfunctions of the operator TS and its adjoint can be computed explicitly: see Theorem 3.3.

We also have the following result for 213-avoiding permutations.

Theorem 1.9. The number bn of 213-avoiding permutations in the symmetric group Sn obeys the
asymptotic formula

bn/n! = exp

(

1

2λ2
0

)

· λn+1
0 + O

(

(

1√
2

)n−2
)

,

where λ0 = 0.7839769312 . . . is the unique real root to the equation

erf

(

1

λ
√

2

)

=

√

2

π
.

In this case, the other eigenvalues of TS are not real and the kernel of TS has infinite dimension.
We close our introduction by a brief overview on the subject of pattern avoidance in permutations (for

more details we refer to [2]). The “classical” definition of a pattern is slightly different than one provided
above. We say that a permutation π avoids a pattern σ if π does not contain a subsequence which is order-
isomorphic to σ. The study of such patterns originated in theoretical computer science by Donald Knuth [9].
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However, the first systematic study was done by Simon and Schmidt [13], who completely classified the
avoidance of patterns of length three. Since then several hundred papers related to the field have been
published.

One of the most important results in the subject is the proof by Marcus and Tardos [11] of the so-called
Stanley-Wilf conjecture related to the asymptotic behavior of the number of permutations that avoid a given
pattern. It states that for any pattern S there exists a constant c (depending on σ) such that the number of
the permutations of length n that avoid S is less than cn.

In this paper we also study asymptotic behavior of permutations avoiding patterns, but we consider
consecutive patterns, occurrences of which correspond to (contiguous) factors, rather than subsequences,
anywhere in permutations. Suppose αn(S) is the number of permutations avoiding a consecutive pattern S.

It is known [5] that limn→∞ n
√

αn(S)/n! is a nonnegative constant. Moreover, in [6] asymptotics for the
following consecutive patterns is given: 123, 132, 1342, 1234, and 1243. These results are obtained by
representation of permutations as increasing binary trees, then using symbolic methods followed by solving
certain linear differential equations with polynomial coefficients to get corresponding exponential generating
functions, and, finally, using the following result:

Theorem 1.10. [See [7, Chapter 4] for a discussion] Let A(z) be a meromorphic function on a domain
of the complex plane including the origin, and let ρ be the unique pole of A(z) such that |ρ| is minimum.
Then the following asymptotic estimate holds:

[zn]A(z) ∼ γ · ρ−n

where γ is the residue of A in ρ.

In our paper we develop a general method (not involving generating functions) that gives detailed
asymptotic expansions and allows for explicit computation of leading terms in many cases. As special cases
of our results, we get a more detailed asymptotics for some of the results of Elizalde and Noy [6].

The outline of this paper is as follows. In § 2 we prove Theorems 1.1, 1.2, 1.3, and 1.4. We also note some
symmetries of the operator TS for certain patterns S, and consider the case of descent pattern avoidance.
We use Theorem 1.4 to give the proof of Theorem 1.8 in Section 3 and the proof of Theorem 1.9 in Section 4.

2. The Operator T

Lemma 2.1. Let T be an operator of the form (1.1) with 0 ≤ χ(x) ≤ 1 for all x ∈ [0, 1]m. Then ‖T ‖ ≤ 1
and Tm is compact.

The adjoint operator of T is given by the expression

T ∗(f) =

∫ 1

0

χ(x1, . . . , xm, u)f(x2, . . . , xm, u) du.

2.1. Symmetries. Let J and R be the following two involutions on the space L2([0, 1]m):

(Jf)(x1, x2, . . . , xm) = f(1 − xm, . . . , 1 − x2, 1 − x1),(2.1)

(Rf)(x1, x2, . . . , xm) = f(xm, . . . , x2, x1).(2.2)

Observe that both J and R are self adjoint operators.

Lemma 2.2. Assume that χ has the symmetry

χ(x1, x2, . . . , xm, xm+1) = χ(1 − xm+1, 1 − xm, . . . , 1 − x2, 1 − x1).

Then the adjoint of the associated operator T is given by T ∗ = JTJ . Moreover, if φ is an eigenfunction of
the operator T with eigenvalue λ then Jφ is an eigenfunction of the adjoint T ∗ with the eigenvalue λ.

Similarly to Lemma 2.2 we have the next lemma.

Lemma 2.3. Assume that χ has the symmetry

χ(x1, x2, . . . , xm, xm+1) = χ(xm+1, xm, . . . , x2, x1).

Then we have that the adjoint of the associated operator T is given by T ∗ = RTR. Moreover, if φ is an
eigenfunction of the operator T with eigenvalue λ then Rφ is an eigenfunction of the adjoint T ∗ with the
eigenvalue λ.
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Finally, we have the following relation between TS and T ∗
S . For a permutation π ∈ Sn, let π∗ be the

reverse permutation, that is, if π = (π1, π2, . . . , πn) then π∗ = (πn, πn−1, . . . , π1). Similarly, if S ⊂ Sn, then
S∗ = {π ∈ Sn : π∗ ∈ S}.

Lemma 2.4. The equality
T ∗

S = RTS∗R

holds, where R is given by (2.2).

2.2. Connection with Pattern Avoidance. Here we show how operators of the form (1.1) arise
naturally in the study of pattern-avoiding permutations, proving Theorem 1.1. We recall that the standard
triangulation of the unit cube [0, 1]

n
into n-simplices is in one-to-one correspondence with permutations

σ ∈ Sn: a given σ corresponds to the simplex
{

(x1, . . . , xn) : xσ−1(1) ≤ xσ−1(2) ≤ · · · ≤ xσ−1(n)

}

which has Euclidean volume (n!)−1.
Choose and fix a nonempty subset S of Sm+1 (the set of patterns to be avoided), and define χS and TS

respectively as in (1.2) and (1.3). For n ≥ m+ 1, let

(2.3) χn(x1, . . . , xn) =

n−m
∏

j=1

χS(xj , . . . , xm+j)

Then χn(x) is 0 if x belongs to an n-simplex of [0, 1]
n

corresponding to a permutation containing a forbidden
pattern (starting at any j between 1 and n − m), and 1 otherwise. From this observation, the following
lemma is immediate.

Lemma 2.5. The formula

an = n!

∫

[0,1]n
χn(x) dx

holds for any n ≥ m.

Now define a sequence of functions {fn}∞n=m on [0, 1]
m

by the formulas

fm(y1, . . . , ym) = 1

fn(y1, . . . , ym) =

∫

[0,1]n−m

χn(x1, . . . , xn−m, y1, . . . , ym) dx.

Lemma 2.6. For any n ≥ m, the formula

fn+1(y1, . . . , ym) = (TSfn)(y1, . . . , ym)

holds.

We can also estimate the norm of ‖Tm
S ‖. The following estimate shows that ‖Tm

S ‖ < 1 strictly, when S
is non-empty.

Lemma 2.7. The estimate

‖Tm
S ‖ ≤

(

a2m

(2m)!

)1/2

holds.

Proof of Theorem 1.1. From Lemma 2.5 and the definition of fn, it is easy to see that for any
n ≥ m+ 1,

an

n!
= (1, fn)

where the right-hand side is the inner product of the constant function 1 and the function fn in L2 ([0, 1]
m

).
From Lemma 2.6 it follows that fm+n = T n

S fm = T n
S 1 from which we conclude that for any n ≥ m+ 1,

an

n!
=
(

1, T n−m
S 1

)

.

It easily follows that
an

n!
≤
∥

∥T n−m
S

∥

∥
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and if n = km+ r with 0 ≤ r ≤ m− 1 we have by Lemma 2.7 that

∥

∥T n−m
S

∥

∥ ≤
(

a2m

(2m)!

)(k−1)/2

‖T ‖r

from which it follows that

an

n!
≤ CS

(

a2m

(2m)!

)n/m

.

�

2.3. Spectral Theory: The Spectral Gap. In this subsection, we prove Theorem 1.2.
Suppose that T is a bounded operator on a Hilbert space H with the property that Tm is compact for

some positive integer m. For a bounded operator A, let σ(A) denote the spectrum of A, i.e., the set of all

λ ∈ C for which (A− λI)
−1

does not exist as a bounded operator on H. Recall that the spectral mapping
theorem (see Dunford and Schwarz [3], chapter VII, Theorem 11, p. 569) implies that if f is an analytic
function and T is a bounded operator, then the spectrum of f(T ) is the image under f of σ(T ). Here f(T )
is defined by

f(T ) =
1

2πi

∫

γ

f(z)(T − zI)−1dz

where γ is any contour surrounding σ(T ); is is easy to see that if f(z) = zm, then this coincides with the
usual definition of Tm. Since σ(Tm) is at most a countable set with 0 as the only possible accumulation
point, we immediately obtain:

Lemma 2.8. Suppose that T is a bounded operator on a Hilbert space H and that Tm is compact for
some positive integer m. Then the spectrum of T is at most countable and has zero as the only possible
accumulation point.

Proof of Theorem 1.2. All of the statements except the assertion that r(TS) < 1 follow from
Lemma 2.8. From Lemma 2.7 we have ‖Tm

S ‖ < 1 The discreteness of the spectrum of TS implies that
r(TS) = sup {|λ| : λ ∈ σ(TS)}. Since σ(Tm

S ) = {λm : λ ∈ σ(TS)} it follows from this estimate that σ(TS) is

contained in a closed disc of radius (a2m/(2m)!)
1/(2m)

< 1. �

To give the proof of Theorem 1.3, we note the following result which is a special case of Theorem 6.3 in
Krĕın and Rutman [10].

Theorem 2.9. (see [10], Theorem 6.3) Let (X,µ) be a measure space and A be a compact operator on
L2(X,µ). Suppose that A is strongly positive. Then:
(a) There is a unique strictly positive function φ ∈ L2(X,µ) and ρ > 0 with Aφ = ρφ and ‖φ‖ = 1,
(b) There is a unique nonnegative function ψ ∈ L2(X,µ) with A∗ψ = ρψ and ‖ψ‖ = 1, and
(c) If λ is any other eigenvalue of A, then |λ| < ρ strictly.

Proof of Theorem 1.3. It follows from the hypothesis and Theorem 2.9(a) and (c) that the operator
T k

S has a positive eigenvalue α of maximum modulus with associated positive eigenfunction φ. Let ρ be the
unique positive kth root of α. By the spectral mapping theorem, ωρ is an eigenvalue of TS for some kth
root of unity ω = exp(2πij/k), 0 ≤ j ≤ k − 1. From the spectral mapping theorem again, it follows that
ωnρn is an eigenvalue of T n

S for any positive integer n. Moreover, since ωkρk is an eigenvalue of maximum
modulus for T k

S , it follows from the spectral mapping theorem that ωnρn will be an eigenvalue of maximum
modulus for T n

S if n ≥ k. But T n
S is positivity improving for any such n, so ωn is real for all n ≥ k. Hence

ω = 1 and ρ is an eigenvalue of TS. We may now identify φ as the unique positive eigenfunction of TS

whose real eigenvalue ρ > 0 has maximum modulus, and applying the spectral mapping theorem again we
see that all other eigenvalues of TS have modulus strictly less than ρ. The statements about T ∗

S follow from
Theorem 2.9(b) and (c) and a similar argument. �

To prove Theorem 1.5, we will need the following lemma. In what follows, ∆π denotes the simplex in
[0, 1]

n
corresponding to π ∈ Sn.
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Lemma 2.10. Let S ⊂ Sm+1 and suppose that GS is strongly connected and the two monotone permuta-
tions 12 · · ·m+ 1 and m+ 1 · · · 21 do not belong to the set S. Then there exist a positive integer k such that
for any two permutations σ and π in Sn and any function f ∈ L2 ([0, 1]

m
) such that f |∆π

is nonnegative

and nonzero, the function T kf
∣

∣

∆σ
is strictly positive.

Now consider the adjoint operator T ∗
S . Since (T ∗

S)
m

is compact it follows that σ(T ∗
S) is a discrete set

whose only accumulation point is 0. It is not difficult to see that σ(T ∗
S)\ {0} consists of those λ with

λ ∈ σ(TS). Indeed, if λ ∈ σ(T ) and λ 6= 0, then λ is an isolated singularity of T . Hence ker(T − λI) is
nonempty since ker(T −λI) is the range of the projection given by the residue of (T − zI)−1 at z = λ. Since
any eigenvector of T with eigenvalue λ is also an eigenvector of Tm with eigenvalue λm and Tm is compact,
it follows that Vλ = ker(T − λI) has finite dimension Nλ for any λ 6= 0. A similar argument applies to T ∗,
and the identity

[

(T − zI)
−1
]∗

= (T ∗ − zI)
−1

shows that the finite-dimensional space Wλ = ker(T ∗ − λI) has the same dimension as Vλ. Recall that

P = Res
z=λ

(T − zI)
−1

projects onto Vλ, so clearly P ∗ projects onto Wλ.

Now let
{

ϕi
}Nλ

i=1
be an orthogonal basis for Vλ. By the Riesz representation theorem, the functional

ψ 7→ (ϕi, Pψ) is represented by a vector ψi so that

(2.4) P =

Nλ
∑

i=1

(ψi, · )ϕi.

Since P ∗ is the projection onto ker
(

T ∗ − λI
)

, the vectors ψi are eigenvectors of T ∗ with eigenvalue λ. The

condition that P 2 = P implies that

(2.5)
(

ψi, ϕj
)

= δij

These conditions suffice to determine the ψj given a choice of
{

ϕj
}

.

2.4. Spectral Theory: The Expansion Theorem. We now consider the spectral expansion of T n,
assuming now that σ(T ) is contained in the interior of the unit disc. From the analytic functional calculus
we have

T n =
1

2πi

∫

|z|=1

(T − zI)
−1

zn dz

If we write σ(T ) = {λk}∞k=1 with |λ1| ≥ |λ2| ≥ . . . ≥ 0 and let rk = |λk| we then have

(2.6) T n =

k
∑

j=1

λn
j Pj + O

(

rn
k+1

)

by shrinking the contour. Here Pj is the projection for λ = λj and the remainder estimate depends on

sup
|z|=r

∥

∥

∥
(T − zI)

−1
∥

∥

∥

where r > 0 is chosen so that (i) all the eigenvalues {λj}k
j=1 lie in the exterior of the disc of radius r and (ii)

the circle |z| = r contains no eigenvalues of T . This choice is possible since σ(T ) is discrete.
Note that, in case σ(T ) = {0}, we do not obtain a meaningful formula–there must be at least one nonzero

eigenvalue for the expansion to make sense.

Proof of Theorem 1.4. We take T = TS and note that, by hypothesis, the eigenvalue of TS having
greatest modulus is positive and simple. From (2.6), (2.4) and the simplicity of ρ we get

(1, T k
S1) = ρk(ψ, 1)(ϕ, 1) + O

(

rk
2

)

provided (ψ, ϕ) = 1; here ϕ and ψ are respectively the eigenfunctions of TS and T ∗
S associated with eigen-

value ρ. The conclusion is immediate. �
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From (2.6) and (2.4), one can refine the expansion as follows if other eigenvalues and eigenvectors are
known. Ordering the eigenvalues as above we have for any integer N that

(2.7)
(

1, T k
S1
)

=

N
∑

j=1

cjλ
k
j + O(rk

N+1)

where

cj = (1, Pj1)

=

Nj
∑

m=1

(ψm
j , 1)(ϕm

j , 1)

where
{

ϕm
j

}

and
{

ψm
j

}

are bases for the λ = λj eigenspaces of TS and T ∗
S , respectively, so chosen that the

normalization (2.5) holds.

2.5. Descent pattern avoidance. The descent set of a permutation π in the symmetric group on n
elements is the subset of {1, . . . , n− 1}, given by {i : πi > πi+1}. An equivalent notion is the descent word,
defined as follows. The descent word of the permutation π is the word u = u1 · · ·un−1 where ui = a if
πi < πi+1 and ui = b otherwise.

Let U be a collection of ab-words of length m. The permutation π avoids the set U if there is no
consecutive subword of the descent word of π contained in the collection U .

Descent pattern avoidance is a special case of consecutive pattern avoidance. For instance, permuta-
tions avoiding the word aab is the permutations avoiding the set S = {1243, 1342, 2341}, since these three
permutations are the permutations with descent word aab.

For an ab-word u of length m−1 define the descent polytope Pu to be the subset of the unit cube [0, 1]m

corresponding to all vectors with descent word u. That is,

Pu = {(x1, . . . , xm) ∈ [0, 1]m : xi ≤ xi+1 if ui = a and xi ≥ xi+1 if ui = b}.
Observe that the m-dimensional unit cube is the union of the 2m−1 descent polytopes Pu. Now the operator
T corresponding to the descent pattern avoidance of the set U has the following form. For an ab-word u of
length m− 2 and y ∈ {a, b} we have

T (f)|Puy
=

∫ x1

0

χ(auy) · f(t, x1, . . . , xm−1)|Pau
dt(2.8)

+

∫ 1

x1

χ(buy) · f(t, x1, . . . , xm−1)|Pbu
dt,

where by abuse of notation we let χ(w) = 1 if w does not belong to the set U and χ(w) = 0 otherwise.

Proposition 2.11. Let T be the operator associated with a descent pattern avoidance and let k be an
integer such that 1 ≤ k ≤ m − 1. Let u be an ab-word of length m − 1. Then the function T k(f) restricted
to the descent polytope Pu only depends on the variables x1 through xm−k.

Corollary 2.12. Let T be the operator associated with a descent pattern avoidance and let φ be an
eigenfunction associated with a non-zero eigenvalue λ. Let u be an ab-word of length m − 1. Then the
eigenfunction restricted to the descent polytope Pu only depends on the variable x1.

Let V be the subspace of L2([0, 1]m) consisting of all functions f that only depend on the variable x1

when restricted to each of the descent polytopes Pu. Observe that the subspace V is invariant under the
operator T . That is, the operator T restricts to the subspace V . Moreover the constant function 1 belongs
to V . Hence to understand the behavior of T n(1) it is enough to study this restricted operator.

In order to describe the subspace V more explicitly define for an ab-word u of lengthm−1 the polynomial
f(u;x1) as follows:

f(u;x1) =

∫

(x1,x2,...,xm)∈Pu

1dx2 · · ·dxm.

This polynomial was first introduced and studied in [4], with a different indexing.
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Let p be a vector (pu(x1))u∈{a,b}m−1 . That is, the vector p consists of one-variable functions in the

variable x1 and is indexed by ab-words of length m− 1. Consider the function f on [0, 1]m defined by

f(x1, . . . , xm)|Pu
= pu(x1)

for all ab-words u of length m − 1. Observe that the function f belongs to L2([0, 1]m), and hence to the
invariant subspace V , if and only if

∫ 1

0

f(u;x1) · |pu(x1)|2 dx1 <∞

for all ab-words u of length m− 1. For two functions f and g in the subspace V , corresponding to the two
vectors (pu(x1))u∈{a,b}m−1 and (qu(x1))u∈{a,b}m−1 , the inner product is given by

(f, g) =
∑

u∈{a,b}m−1

∫ 1

0

f(u;x1) · pu(x1) · qu(x1)dx1.

This discussion leads to the following structural result about the subspace V .

Proposition 2.13. The invariant subspace V is isometrically isomorphic to the space L2 ([0, 1])
2m−1

.

3. 123-Avoiding Permutations

A 123-avoiding permutation is a permutation π ∈ Sn with no index j so that πj < πj+1 < πj+2, where
1 ≤ j ≤ n− 2. We denote by an the number of 123-avoiding permutations in Sn. Thus, in the notation of
the introduction S consists of the single permutation 123 and

(3.1) χS(x1, x2, x3) =

{

0 if x1 ≤ x2 ≤ x3;
1 otherwise.

We will obtain an asymptotic formula for an by computing the eigenvalues and eigenfunctions of the cor-
responding operator TS and using the spectral expansions of Section 2.3. As we will see, in this case the
operator TS has real eigenvalues and a trivial kernel. This is related to the fact that the eigenvalue problem
for TS can be recast as an eigenvalue problem for a first-order system of differential equations.

3.1. Eigenfunctions and Eigenvectors. Since 123-avoiding permutations can be viewed as permu-
tations with no double descents Corollary 2.12 allows us to recast then problem of finding eigenfunctions in
two variables into finding two one-variable functions.

Proposition 3.1. The eigenvalues λk of the operator T on L2([0, 1]2) are given by

(3.2) λk =

√
3

2π ·
(

k + 1
3

) ,

where k ∈ Z and the associated eigenfunctions φk =

{

pk(x) if 0 ≤ x ≤ y ≤ 1
qk(x) if 0 ≤ y ≤ x ≤ 1

are given by

(3.3) φk = exp
(

− x

2λ

)

·







cos
(

π
6 +

√
3

2 · x
λ

)

if 0 ≤ x ≤ y ≤ 1,

sin
(

π
3 +

√
3

2 · x
λ

)

if 0 ≤ y ≤ x ≤ 1.

Note that the eigenvalues are ordered by

λ0 > −λ−1 > λ1 > −λ−2 > λ2 > −λ−3 > λ3 > · · · > 0.

By applying the involution J we obtain the adjoint eigenfunction

(3.4) ψk = exp

(

y − 1

2λ

)

·







cos
(

π
6 +

√
3

2 · 1−y
λ

)

if 0 ≤ x ≤ y ≤ 1,

sin
(

π
3 +

√
3

2 · 1−y
λ

)

if 0 ≤ y ≤ x ≤ 1.
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Proposition 3.2. For the eigenfunctions φk = φ of T and ψk = ψ of T ∗ with eigenvalue λk = λ =√
3/(2π(k + 1/3)),

(1, φ) = (1, ψ) =

√
3

2
λ2(3.5)

(ψ, φ) =
3

4
(−1)kλ exp

(

− 1

2λ

)

(3.6)

In particular

(3.7)
(1, φ) (1, ψ)

(φ, ψ)
= (−1)kλ3 exp

(

1

2λ

)

3.2. Asymptotics. The above computations show that all eigenvalues of TS are simple and give ex-
plicit formulas. We thus obtain the following expansion for an/n! as an immediate consequence of (2.7),
Propositions 3.1, and 3.2.

Theorem 3.3. For any positive integer n ≥ 2 and any positive integer K, the formula

an

n!
=
∑

|k|≤K

(−1)kλn+1
k exp

(

1

2λk

)

+ O
(

rn
K+1

)

holds, where λk is given by (3.2) and

rk =

√
3

2π ·
(

k − 1
3

)

4. 213-Avoiding Permutations

A 213-avoiding permutation is a permutation π ∈ Sn which contains no sequence of the form

πj+1 < πj < πj+2

for any j with 1 ≤ j ≤ n − 2. We denote the number of 213-avoiding permutations of Sn by bn. Thus, S
consists of the single permutation (213) and

χS(x1, x2, x3) =

{

0 if x2 ≤ x1 ≤ x3,
1 otherwise.

By symmetry, the study of 213-avoiding permutations is equivalent to 132-avoiding permutations, 231-
avoiding permutations and 312-avoiding permutations. However the case of 213-avoiding permutations gives
the most straightforward equations.

We will compute the eigenvalues and eigenfunctions of the operator TS and obtain an asymptotic ex-
pansion for bn using spectral methods. In this case, it turns out that TS has a nontrivial kernel and its
eigenvalues need not be real. However, its eigenvalue of largest modulus is real and isolated, as we will show,
so that we can still obtain an asymptotic formula for bn.

4.1. Eigenfunctions and Eigenvectors. In what follows, we will make use of the error function

(4.1) erf(x) =
2√
π

∫ x

0

exp(−t2) dt

which extends to an entire function on C, and the function

(4.2) q(x) = exp

(

− x2

2λ2

)

.

Let

f(x, y) =

{

p(x, y) if 0 ≤ x ≤ y ≤ 1,
q(x, y) if 0 ≤ y ≤ x ≤ 1.

Then

(Tf)(x, y) =

{

∫ x

0
p(t, x)dt+

∫ 1

y
q(t, x)dt if 0 ≤ x ≤ y ≤ 1,

∫ x

0 p(t, x)dt+
∫ 1

x q(t, x)dt if 0 ≤ y ≤ x ≤ 1.

Now we characterize the nonzero eigenvalues and eigenfunctions.
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Proposition 4.1. The non-zero eigenvalues λ of the operator T satisfies the equation

(4.3) erf

(

1√
2 · λ

)

=

√
2√
π

and the corresponding eigenfunctions are

ϕ(x, y) =

{

q(x) − 1

λ

∫ y

x q(t) dt if x ≤ y,

q(x) if x > y,

where q(x) is given by (4.2).

The adjoint operator T ∗ is given by

T ∗(f(x, y)) =

{

∫ y

0 q(y, u)du+
∫ 1

y p(y, u)du if 0 ≤ x ≤ y ≤ 1,
∫ y

0 q(y, u)du+
∫ x

y p(y, u)du if 0 ≤ y ≤ x ≤ 1.

Proposition 4.2. For a non-zero eigenvalue λ of the operator T the corresponding eigenfunction of the
adjoint operator T ∗ is

ψ(x, y) =

{

p∗(y) if 0 ≤ x ≤ y ≤ 1,

p∗(y) − 1
λ ·
∫ 1

x
p∗(u)du if 0 ≤ y ≤ x ≤ 1.

where

(4.4) p∗(y) = −2 · y · exp

(

y2

2λ2

)

+ 2 · λ+
√

2π · y · exp

(

y2

2λ2

)

· erf
(

y√
2λ

)

.

Proposition 4.3. For a non-zero eigenvalue λ with eigenvector φ and adjoint eigenvector ψ, we have

(1, φ) = λ2,

(1, ψ) = 2 · λ3,

(ψ, φ) = 2 · λ2 · exp(−1/(2λ2)).

In particular,
(1, φ) · (1, ψ)

(ψ, φ)
= λ3 · exp(1/(2λ2)).

4.2. Asymptotics. To obtain leading asymptotics for bn, we need to compute the eigenvalue of greatest
modulus of the operator TS and show that all other eigenvalues of T have strictly smaller moduli. From the
eigenvalue condition (4.3), it suffices to study the roots of the equation erf(z) =

√

2/π.

Since the error function is an increasing function on the real axis, the equation erf(z) =
√

2/
√
π has

a unique real root z0 = 0.9019484541 . . .. Hence the eigenvalue equation (4.3) has the unique real root
λ0 = 0.7839769312 . . .. Since the error function is an odd function we know by the strong version of the little
Picard theorem that the equation erf(z) =

√
2/

√
π has infinitely many roots. The location of these roots is

the subject of the next result.

Proposition 4.4. The equation erf(z) =
√

2/
√
π has exactly one root in the interior of the unit disc,

namely the unique real root z0 = 0.9019484541 . . ., and all other (infinitely many) roots lie in the complement
of the closed unit disc.

As a corollary we have:

Corollary 4.5. The eigenvalue equation (4.3) has the unique real root

λ0 = 0.7839769312 . . .

outside the disc of radius 1/
√

2 centered at the origin, and all other (infinitely many) roots lie inside this
disc.

Combining Propositions 4.1 through 4.3 and Corollary 4.5 using Theorem 1.4 we obtain Theorem 1.9.
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5. Concluding remarks

In the case of descent pattern avoidance, can one prove that T restricted to the invariant subspace V is
compact? We have done so in the case of 123-avoiding permutations.

It is straightforward to design a Viennot “pyramid” to compute the number an of S-avoiding permuta-
tions. For the original Viennot triangle, see [14, 15]. Let the entry ai1,...,im

n of the pyramid be the number
of permutations in the symmetric group on n elements, avoiding the set S and ending with the m entries

i1, . . . , im. Then the entry ai1,...,im
n is a sum of entries of the form a

j,i1,...,im−1

n−1 . This sum being a discrete
analogue of the operator T . How far does this analogue between the discrete model and the continuous one
go? Does the function fn = T n−m(1) approximate the n-th level of the pyramid? More exactly, how well
does the integer ai1,...,im

n compare with n! · fn(i1/n, . . . , im/n)?
The next four largest roots to the eigenvalue equation in the 213-avoiding permutation case are:

λ1 = 0.2141426360 . . .± 0.2085807022 . . . · i
λ2 = −0.1677323922 . . .± 0.2418627350 . . . · i

Knowing these roots enables us to give an explicit error estimate in Theorem 1.9.
In this paper our object is to understand consecutive pattern avoidance. Generalized pattern avoidance

was introduced by Babson and Steingŕımsson [1]. Is there an analytic approach to obtain asymptotics
for these classes of permutations? Lastly, it would be daring to ask for an analytic proof of the former
Stanley-Wilf conjecture, recently proved in [11].
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Statistics on Signed Permutations Groups (Extended Abstract)

Michael Fire

Abstract. A classical result of MacMahon shows that the length function and the major index are equi-
distributed over the symmetric groups. Through the years this result was generalized in various ways to
signed permutation groups. In this paper we present several new generalizations, in particular, we study the
effect of different linear orders on the letters [−n, n] and generalize a classical result of Foata and Zeilberger.

Résumé. MacMahon a demontré que la fonction de longueur et l’indice majeur sont équi-distribué dans les
groupes symétriques. Depuis, ce résultat a été generalisé aux groupes de permutations signées de plusieurs
façons. Dans ce travail, nous présentons plusieurs généralisations, et en particulier, nous étudions l’effet
d’imposer un ordre linéaire sur [−n, n] et nous généralisons un résultat de Foata et Zeilberger.

1. Introduction

The signed permutation groups, also known as the Weyl groups of type B or as the hyperoctahedral
groups, are fundamental objects in today’s mathematics. A better understanding of these groups may help
to advance research in many fields. One method of studying these groups is by using numerical statistics
and finding their generating functions. This method was successfully applied in the case of the symmetric

groups. MacMahon [13] considered four different statistics for a permutation π in the symmetric group: the
number of descents (des(π)), the number of excedances (exc(π)), the length statistic (`(π)), and the major

index (maj(π)). MacMahon showed that the excedance number is equidistributed with the descent number,
and that the length is equidistributed with the major index over the symmetric groups.

We will discuss three types of statistics: Eulerian statistics, which are equidistributed with the descent

number ; Mahonian statistics, which are equidistributed with length; Euler-Mahonian pairs of statistics,
which are equidistributed with the pair consisting of the descent number and the major index. Through the
years many generalizations to MacMahon’s results were found. In particular, Foata and Zeilberger found
that the Denert statistic and the excedance number are Euler-Mahonian [10]. Recently, Adin and Roichman
[3] generalized MacMahon’s result on the major index to the signed permutations groups, by introducing a
new Mahonian statistic, the flag major index. See also [1]. The associated signed Mahonian statistic was
studied in [2]. In this extended abstract we will generalize the Foata-Zeilberger result to signed permutation
groups, and will investigate the effect of different linear orders on the letters [−n, n] \ {0} on the resulting
generating functions.

The full background, proofs and extensions for colored permutations groups to this work can be found in [8].

2000 Mathematics Subject Classification. Primary 05A15.
Key words and phrases. algebraic combinatorics, permutations groups, signed permutations groups, permutations statis-

tics, Mahonian statistics .
Partially supported by EC’s IHRP Programme, within the Research Training Network “Algebraic Combinatorics in Eu-

rope”, grant HPRN-CT-2001-00272.
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2. Background

2.1. Statistics on the Symmetric Group. In this subsection we present the main definitions, nota-
tion, and theorems on the symmetric groups (i.e., the Weyl groups of type A), denoted Sn.

Definition 2.1. Let N the set of all the natural numbers, a permutation of order n ∈ N is a bijection
π : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n}.

Remark 2.2. Permutations are traditionally written in a two-line notation as:

π =

(

1 2 3 . . . n

π(1) π(2) π(3) . . . π(n)

)

.

However for convenience we will use the shorter notation:

π = [π(1), π(2), π(3), . . . , π(n)].

For example: π =

(

1 2 3 4 5
2 4 3 1 5

)

will be written as π = [2, 4, 3, 1, 5].

Definition 2.3. The symmetric group of degree n ∈ N (denoted Sn) is the group consisting of all the
permutations of order n, with composition as the group operation.

Definition 2.4. The Coxeter generators of Sn are s1, s2, . . . , sn−1 where
si := [1, 2, . . . , i + 1, i, . . . , n].

It is a well-known fact that the symmetric group is a Coxeter group with respect to the above generating
set {si | 1 ≤ i ≤ n−1}. This fact gives rise to the following natural statistic of permutations in the symmetric
group:

Definition 2.5. The length of a permutation π ∈ Sn is defined to be:

`(π) := min{ r ≥ 0 | π = si1 . . . sir
for some i1, . . . , ir ∈ [1, n] }.

Here are other useful statistics on Sn that we are going to work with:

Definition 2.6. Let π ∈ Sn. Define the following:

(1) The inversion number of π:

inv(π) := |{(i, j) | 1 ≤ i < j ≤ n, π(i) > π(j)}|.

Note that inv(π) = `(π).
(2) The descent set of π: Des(π) := {1 ≤ i ≤ n − 1 | π(i) > π(i + 1)}.
(3) The decent number of π: des(π) = |Des(π)|.
(4) The major-index of π: maj(π) :=

∑

i∈Des(π)

i.

(5) The sign of π: sign(π) := (−1)`(π).
(6) The excedance number of π: exc(π) := |{1 ≤ i ≤ n | π(i) > i}|.

Example 2.7. Let π = [2, 3, 1, 5, 4] ∈ S5. We can compute the above statistics on π, namely:

inv(π) = `(π) = 3, Des(π) = {2, 4}, des(π) = 2, maj(π) = 6,

sign(π) = (−1)3 = −1, and exc(π) = 3.

Remark 2.8. Throughout the paper we use the following notations for a nonnegative integer n:

[n]q :=
1 − qn

1 − q
, [n]q! = [1]q[2]q . . . [n]q,

[n]±q! := [1]q[2]−q[3]q[4]−q . . . [n](−1)n−1q, and also

(a; q)n :=

{

1, if n = 0;
(1 − a)(1 − aq) . . . (1 − aqn−1), otherwise.

MacMahon [13] was the first to find a connection between these statistics. He discovered that the ex-

cedance number is equidistributed with the descent number, and that the inversion number is equidistributed
with the major index :
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Theorem 2.9. [13]
∑

π∈Sn

qinv(π) =
∑

π∈Sn

qmaj(π) = [1]q[2]q[3]q . . . [n]q = [n]q!.

Theorem 2.10. [13]
∑

π∈Sn

qexc(π) =
∑

π∈Sn

qdes(π).

Gessel and Simion gave a similar factorial type product formula for the signed Mahonian:

Theorem 2.11. [14, Cor. 2]
∑

π∈Sn

sign(π)qmaj(π) = [n]±q!.

A bivariate generalization of MacMahon’s Theorem 2.9 was achieved during the 1970’s by Foata and
Schützenberger :

Theorem 2.12. [9]
∑

π∈Sn

qmaj(π)tdes(π−1) =
∑

π∈Sn

qinv(π)tdes(π−1).

In the same article Foata and Schützenberger also proved another bivariate connection between the
different statistics:

Theorem 2.13. [9]
∑

π∈Sn

qmaj(π−1)tmaj(π) =
∑

π∈Sn

q`(π)tmaj(π).

In 1990 during her research of the genus zeta function, Denert found a new statistic which was also
Mahonian:

Definition 2.14. [6] Let be π ∈ Sn, define the Denert’s statistic to be:

den(π) := |{1 ≤ l < k ≤ n | π(k) < π(l) < k}|

+ |{1 ≤ l < k ≤ n | π(l) < k < π(k)}|

+ |{1 ≤ l < k ≤ n | k < π(k) < π(l)}|.

Later in the same year Foata and Zeilberger proved that the pair of statistics (exc, den) is equidistributed
with the pair (des, maj):

Theorem 2.15. [10]
∑

π∈Sn

qexc(π)tden(π) =
∑

π∈Sn

qdes(π)tmaj(π).

2.2. Signed Permutations Groups. In this subsection we present the main definitions, notation and
theorems for the classical Weyl groups of type B, also known as the hyperoctahedral groups or the signed

permutations groups, and denoted Bn.

Definition 2.16. The hyperoctahedral group of order n ∈ N (denoted Bn) is the group consisting of
all the bijections σ of the set [−n, n]\{0} onto itself such that σ(−a) = −σ(a) for all a ∈ [−n, n]\{0}, with
composition as the group operation.

Remark 2.17. There are different notations for a permutation σ ∈ Bn. We will use the notation
σ = [σ(1), ..., σ(n)].

We identify Sn as a subgroup of Bn, and Bn as a subgroup of S2n. As in Sn we also have many different
statistics; we will describe the main ones:

Theorem 2.18. Let σ ∈ Bn, define the following statistics on σ:

(1) The inversion number of σ: inv(σ) := |{(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}|.
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(2) The descent set of σ:

Des(σ) := {1 ≤ i ≤ n − 1 | σ(i) > σ(i + 1)}.

(3) The type A descent number of σ: desA(σ) := |Des(σ)|.
(4) The type B descent number of σ:

desB(σ) := |{0 ≤ i ≤ n − 1 | σ(i) > σ(i + 1)}|, where here σ(0) := 0.

(5) The major index of σ: maj(σ) :=
∑

i∈Des(σ)

i.

(6) The negative set of σ: Neg(σ) := {i ∈ [1, . . . , n] | σ(i) < 0 }.
(7) The negative number of σ: neg(σ) := |Neg(σ)|.
(8) The negative number sum of σ: nsum(σ) := −

∑

i∈Neg(σ)

σ(i).

It is well known (see, e.g. [5, Proposition 8.1.3]) that Bn is a Coxeter group with respect to the generating
set {s0, s1, . . . , sn−1}, where si, 1 ≤ i ≤ n − 1, are defined as in Sn (see 2.4), and s0 is defined as:

s0 := [−1, 2, 3, . . . , n].

This gives rise to another natural statistic on Bn, the length statistic:

Definition 2.19. For all σ ∈ Bn the length of σ is:

`(σ) := min{r ≥ 0 | σ = si1si2 . . . sin
for some i1, . . . , ir ∈ [0, n − 1]}.

There is a well-known direct combinatorial way to compute this statistic:

Theorem 2.20. ([5, Propositions 8.1.1 and 8.1.2]) For all σ ∈ Bn the length of σ can be computed as:

`(σ) = inv(σ) −
∑

i∈Neg(σ)

σ(i).

Using the last definition we can define another natural statistic on Bn, the sign statistic:

Definition 2.21. For all σ ∈ Bn the sign of σ is:

sign(σ) := (−1)`(σ).

The generating function of length is also called the Poincaré polynomial and can be presented in the
following manner:

Theorem 2.22. [12, §3.15]

∑

σ∈Bn

q`(σ) = [2]q[4]q . . . [2n]q =

n
∏

i=1

[2i]q.

Recently, Adin and Roichman generalized MacMahon’s result Theorem 2.9 to Bn, by introducing a new
Mahonian statistic, the flag major index :

Definition 2.23. [3] The flag major index of σ ∈ Bn is defined as:

flag-major(σ) := 2maj(σ) + neg(σ),

where maj(σ) is calculated with respect to the linear order

−1 < −2 < . . . < −n < 1 < 2 < . . . < n.

Theorem 2.24. [3, §2]
∑

σ∈Bn

q`(σ) =
∑

σ∈Bn

qflag−major(σ) = [2]q[4]q . . . [2n]q.

Remark 2.25. The previous result still holds if maj(σ) is calculated with respect to the natural order

−n < −(n − 1) < ... < −2 < −1 < 1 < 2 < ... < n − 1 < n, see also [3].

Adin, Brenti and Roichman introduced another statistic which was also Mahonian, the nmaj statistic:
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Definition 2.26. [1, §3.2] Let σ ∈ Bn then the negative major index is defined as:

nmaj(σ) := maj(σ) −
∑

i∈Neg(σ)

σ(i) = maj(σ) + nsum(σ).

Theorem 2.27. [1]
∑

σ∈Bn

q`(σ) =
∑

σ∈Bn

qnmaj(σ).

In the same article [1] they also defined a new descent multiset and new descent statistics, and found a
new Euler-Mahonian bivariate distribution for these statistics:

Definition 2.28. [1, §3.1 and §4.2] Let σ ∈ Bn define:

(1) The negative descent multiset of σ:

NDes(σ) := Des(σ)
⋃

{−σ(i) | i ∈ Neg(σ)},

where
⋃

stands for multiset union.
(2) The negative descent statistic of σ: ndes(σ) := |NDes(σ)|.
(3) The flag-descent number of σ: fdes(σ) := desA(σ) + desB(σ) = 2desA(σ) + ε(σ), where

ε(σ) :=

{

1, if σ(1) < 0;
0, otherwise.

Theorem 2.29. [1, §4.3]
∑

σ∈Bn

tndes(σ)qnmaj(σ) =
∑

σ∈Bn

tfdes(σ)qflag−major(σ).

In their article from 2005 Adin, Gessel, and Roichman gave a type B analogue to the Gessel-Simion
Theorem(e.g. [14, Cor. 2]):

Theorem 2.30. [2, §5.1]
∑

σ∈Bn

sign(σ)qflag−major(σ) = [2]−q[4]q . . . [2n](−1)nq.

Where flag major index computed with respect to the linear order:

−1 < −2 < . . . < −n < 1 < 2 < . . . < n.

3. Main Results

3.1. Signed-Mahonian and Mahonian-Mahonian Statistics.

Definition 3.1. A linear order of length n, denoted Kn, is a bijection

Kn : [−n, n]\{0} → [1, 2n].

We can calculate permutation statistics according to a linear order Kn, we use the following notation:
majKn

(σ), desKn
(σ), f lag − majorKn

(σ), nmajKn
(σ) etc, to indicate that the corresponding statistic is

calculated with respect to the linear order Kn. We also use the notation: m >Kn
l, to indicate, that

according to the linear order Kn ’m’ is larger than ’l’, i.e. that s = Kn(m), r = Kn(l), and s > r.

Example 3.2. Let Kn be a linear order and let σ ∈ Bn. Then:

majKn
(σ) :=

∑

σ(i)>Kn
σ(i+1)

i.

Note 3.3. Notice that for any linear order Kn, and for any σ ∈ Bn, neg(σ) = negKn
(σ). This also

applies to the length statistic, because it is defined with respect to the Coxeter generators, which do not
depend on the choice of linear order.

The following proposition is a more general version of Remark 2.25:
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Proposition 3.4. Let Kn be a linear order then:
∑

σ∈Bn

qflag−major(σ) =
∑

σ∈Bn

qflag−majorKn
(σ).

In the following theorems we give simple factorial-type product formulas for the generating function for
the signed-Mahonian and Mahonian-Mahonian statistics over Bn.

Let be N the natural order, N : −n < −(n − 1) < . . . < −1 < 1 < . . . < n − 1 < n, then:

Theorem 3.5.
∑

σ∈Bn

sign(σ)qflag−majorN (σ) = (q;−1)n[n]±q2 !.

The next theorem presents signed-Mahonian calculation using the new Mahonian statistic nmaj:

Theorem 3.6.
∑

σ∈Bn

sign(σ)qnmajN (σ) = (q;−q)n[n]±q!.

Definition 3.7. Define the following set:

Un := {τ ∈ Bn | τ(1) < τ(2) < . . . < τ(n − 1) < τ(n)}.

There are several facts (see also [1],[2]) about the set Un that can be directly concluded from the
definition of Un, namely: each σ ∈ Bn has a unique representation as:

σ = τπ (τ ∈ Un , and π ∈ Sn).

Definition 3.8. Define the following subsets of Un:

(1) Un1 := {τ ∈ Un | τ(1) = −n}.
(2) Un2 := {τ ∈ Un | τ(n) = n}.

Note 3.9. Un = Un1 ] Un2, where ] stands for disjoint union.

We also define two bijections from Un−1 one onto Un1, and one onto Un2:

Definition 3.10. For i ∈ 1, 2, define ϕni : Un−1 → Uni by:

(1) ϕn1(τ)(i) =

{

−n, i=1;
τ(i − 1), 2 ≤ i ≤ n.

(2) ϕn2(τ)(i) =

{

τ(i), 1 ≤ i ≤ n − 1;
n, i = n.

Theorem 3.11.
∑

σ∈Bn

qflag−majorN (σ)tnmajN (σ) =

n
∏

i=1

(1 + qti)[n]q2t!.

Proof. (Sketch, more detailed proof can be found at [8]) We will prove this theorem by reducing the
problem to Un:

∑

σ∈Bn

qflag−majorN (σ)tnmajN (σ) =
∑

π∈Sn, τ∈Un

q2maj(π)+neg(τ)tmaj(π)+nsum(τ)

=
∑

τ∈Un

qneg(τ)tnsum(τ)
∑

π∈Sn

q2maj(π)tmaj(π)

=
∑

τ∈Un

qneg(τ)tnsum(τ)
∑

π∈Sn

(q2t)maj(π).

We know according to Theorem 2.9 that:
∑

π∈Sn

(q2t)maj(π) = [n]q2t!, and by calculation we get:
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an =
∑

τ∈Un

qneg(τ)tnsum(τ) =
∑

τ∈Un1

qneg(τ)tnsum(τ) +
∑

τ∈Un2

qneg(τ)tnsum(τ)

=
∑

τ ′∈Un−1

qneg(ϕn1(τ ′))tnsum(ϕn1(τ
′))

+
∑

τ ′∈Un−1

qneg(ϕn2(τ ′))tnsum(ϕn2(τ
′))

=
∑

τ ′∈Un−1

qneg(τ ′)+1tnsum(τ ′)+n +
∑

τ ′∈Un−1

qneg(τ ′)tnsum(τ ′)

= qtnan−1 + an−1 = (1 + qtn)an−1.

We got the recurrence equation: an = (1 + qtn)an−1, a1 = 1 + qt, and the solution to this equation is:

an =
n
∏

i=1

(1 + qti), and therefore; the general solution is:

∑

σ∈Bn

qflag−majorN (σ)tnmajN (σ) = [n]q2t!

n
∏

i=1

(1 + qti)

�

Note 3.12. Notice that substituting t = 1 in Theorem 3.11, we get Theorem 2.24 and the equation:

[n]q2 !(1 + q)n =
n
∏

i=1

[2i]q.

We can also calculate the generating function of length and flag major index by using a similar method:

Theorem 3.13.
∑

σ∈Bn

qflag−majorN (σ)t`(σ) = An(q2, t)

n
∏

i=1

(1 + qti),

where An(q, t) =
∑

π∈Sn

qmaj(π)t`(π) =
∑

π∈Sn

qmaj(π)tinv(π).

3.2. Flag-Excedance and Flag-Denerts Statistic. In this subsection we present the flag-Denert’s

statistic (denoted fden) and the flag-excedance (denoted fexc) statistic. We prove that the pair of statistics
(fden, fexc) are equidistributed with (flag − major, fdes) over Bn and, therefore, the flag-Denert and
flag-excedance statistics gives a type B generalization to the Foata-Zeilberger Theorem 2.15.

Definition 3.14. Define the type b excedance number of σ ∈ Bn to be:

excB(σ) := |{ 1 ≤ i ≤ n | i < |σ(i)| }|.

Definition 3.15. Define the flag-excedance of σ ∈ Bn to be:

fexc(σ) := 2excB(σ) + ε(σ).

Definition 3.16. Let n be a nonnegative integer. Define the following subset of Bn:

Colorn
2 := {σ ∈ Bn| σ(i) = ±i, ∀i ∈ [1, n]}.

Note 3.17. Notice that each σ ∈ Bn has a unique representation as:

σ = πτ, where π ∈ Sn, τ ∈ Colorn
2 .

Definition 3.18. We define the friends order to be:

F : −1 < 1 < −2 < 2 < ... < −n < n.

We prove that the flag-excedance statistics is Eulerian:

Theorem 3.19.
∑

σ∈Bn

qfexc(σ) =
∑

σ∈Bn

qfdesF (σ).
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We define the type B Denert’s statistic (denoted denB):

Definition 3.20. Let σ ∈ Bn. Define the type B Denert’s statistic to be:

denB(σ) = |{1 ≤ l < k ≤ n | |σ(k)| < |σ(l)| < k}|

+ |{1 ≤ l < k ≤ n | |σ(l)| < k < |σ(k)|}|

+ |{1 ≤ l < k ≤ n | k < |σ(k)| < |σ(l)|}|.

Remark 3.21. According to the definition of denB we can see that:

denB(σ) = denB(τπ) = denB(π), ∀σ ∈ Bn, τ ∈ Colorn
2 , π ∈ Sn.

We define the flag-Denert’s statistic (denoted fdenB), and prove that it is equidistributed with the flag

major index over the signed permutations groups :

Definition 3.22. Let σ ∈ Bn. Define the flag-Denert’s statistic to be:

fden(σ) := 2denB(σ) + neg(σ).

Theorem 3.23.
∑

σ∈Bn

qfden(σ) =
∑

σ∈Bn

qflag−majorF (σ).

We prove that the pair of statistics (fden,fexc) is equidistributed with (flag-major,fdes).

Theorem 3.24.
∑

σ∈Bn

qfden(σ)tfexc(σ) =
∑

σ∈Bn

qflag−majorF (σ)tfdesF (σ).

Proof. (Sketch, more detailed proof can be found at [8]) We use the Definitions 3.15, 3.22, [8, Lemma
6.4], and Theorem 2.15 and conclude the following equality:

∑

σ∈Bn

qfden(σ)tfexc(σ) =
∑

σ∈Bn

q2denB(σ)+neg(σ)t2excB(σ)+ε(σ)

=
∑

τ∈Colorn

2

qneg(τ)tε(τ)
∑

π∈Sn

q2den(π)t2exc(π)

=
∑

τ∈Colorn

2

qneg(τ)tε(τ)
∑

π∈Sn

q2maj(π)t2des(π)

=
∑

σ∈Bn

qflag−majorF (σ)tfdesF (σ)

�

Remark. Extensions to wreath products and more results may be found in [8].
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New results on the combinatorial invariance

of Kazhdan-Lusztig polynomials

Federico Incitti

Abstract. We prove that the Kazhdan-Lusztig polynomials are combinatorial invariants for intervals up to
length 8 in Coxeter groups of type A and up to length 6 in Coxeter groups of type B and D. As a consequence
of our methods, we also obtain a complete classification, up to isomorphism, of Bruhat intervals of length 7
in type A and of length 5 in types B and D, which are not lattices.

Résumé. On montre que les polynômes de Kazhdan-Lusztig sont invariants combinatoires pour les intervaux
de longueur jusqu’à 8 pour les groupes de Coxeter de type A et de longueur jusqu’à 6 pour les groupes de
Coxeter de type B et D. Comme conséquence de nos méthodes, on obtient aussi une classification complète,
à isomorphisme près, des intervaux de Bruhat de longueur 7 pour le type A et de longueur 5 pour les types
B et D, qui ne sont pas des réseaux.

1. Introduction

In [12] Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed
by pairs of elements of W , which have become known as the Kazhdan-Lusztig polynomials of W . They
are related to the algebraic geometry and topology of Schubert varieties, and also play a crucial role in
representation theory (see, e.g., [7, Chapter 7], [1, Chapter 5]). In order to prove the existence of these
polynomials, Kazhdan and Lusztig used another family of polynomials which arise from the multiplicative
structure of the Hecke algebra associated with W . These are known as the R-polynomials of W . Lusztig’s
and Dyer’s combinatorial invariance conjecture states that the Kazhdan-Lusztig polynomial associated with
a pair (x, y) supposedly only depends on the poset structure of the Bruhat interval [x, y]. The conjecture is
equivalent to the same statement for the R-polynomials and it is known to hold for intervals up to length 4.
In [10] we proved that the conjecture is true for intervals of length 5 and 6 in Coxeter groups of type A.

In this paper, we establish the conjecture for intervals of length 7 and 8 in Coxeter groups of type A and
for those of length 5 and 6 in Coxeter groups of type B and D. We use the combinatorial descriptions of such
groups in terms of (signed) permutations (see, e.g., [1, Chapter 8]). One of the main tools is an extension of
the notion of diagram of a pair, introduced for the symmetric group by Kassel et al. in [11] and developed
in [9], to the groups of signed permutations. The main idea behind the proof is that of determining certain
subsets of pairs of (signed) permutations, which somehow “summarize” the behaviour of all the pairs. The
combinatorial invariance is then proved by enumerating all the pairs in these sets, with the assistance of
Maple computation, and for each of them determining the poset structure of the associated interval and
computing the corresponding R-polynomial. As a consequence of our methods, we also obtain a complete
classification, up to isomorphism, of Bruhat intervals of length 7 in type A and of length 5 in types B and
D, which are not lattices (see [2, 3, 6, 10] for previous classification results).

2000 Mathematics Subject Classification. 05E15, 20F55.
Key words and phrases. Classical Weyl group, Bruhat order, Kazhdan-Lusztig polynomial, R-polynomial, combinatorial

invariance conjecture.
Research supported by the Swedish Institute of Stockholm and by the Istituto Nazionale di Alta Matematica of Rome.
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2. Preliminaries

Let N = {1, 2, . . .} and Z be the set of integers. For n, m ∈ Z, with n ≤ m, let [n, m] = {n, n+1, . . . , m}.
For n ∈ N, let [n] = [1, n], [−n] = [−n,−1] and [±n] = [n] ∪ [−n]. We refer to [13] for general poset
theory. Given a poset P , we denote by C the covering relation. Given x, y ∈ P , with x < y, we set
[x, y] = {z ∈ P : x ≤ z ≤ y}, and call it an interval of P . We denote by −P the poset dual to P , that is,
the poset having the same elements of P but the reverse order.

We refer to [1] for basic notions about Coxeter groups. Given a Coxeter group W , with set of generators
S, the set of reflections of W is T = {wsw−1 : w ∈ W, s ∈ S}. Given x ∈ W , the length of x, denoted
by `(x), is the minimal k such that x is the product of k generators. The Bruhat graph of W , denoted by
BG(W ) is the directed graph having W as vertex set and such that there is an edge x → y if and only if
y = xt, with t ∈ T , and `(x) < `(y). If this happens, we label the edge (x, y) by the reflection t and write

x
t

−→ y. A Bruhat path is a (directed) path in the Bruhat graph of W . The Bruhat order of W is the partial
order induced by BG(W ): given x, y ∈ W , x ≤ y in the Bruhat order if and only if there is a Bruhat path
from x to y. Every Coxeter group W , partially ordered by the Bruhat order, is a graded poset with rank
function given by the length. For x, y ∈ W , with x < y, we set `(x, y) = `(y)− `(x) and call it the length of
the pair (x, y). In [9] we introduced the absolute length of the pair (x, y), denoted by a`(x, y), which is the

(directed) distance from x to y in BG(W ). If `(x, y) = 3, then it is known that x
t

−→ y if and only if the
interval [x, y] is isomorphic to the 2-crown, that is, the poset whose Hasse diagram is the following:

Finally, if W is finite then it has a maximum, denoted by w0. The maps x 7→ x−1 and x 7→ w0xw0 are
automorphisms of the Bruhat order, while the maps x 7→ xw0 and x 7→ w0x are antiautomorphisms.

We refer to [1, §5.2] for basic notions about reflection orderings, which are total orderings on the set T
of reflections with certain properties. We only recall that, if W is finite and s1s2 . . . sm is a reduced decom-
position of w0, then a possible reflection ordering is t1 ≺ t2 ≺ · · · ≺ tm, where ti = sm . . . si+1sisi+1 . . . sm,
for all i ∈ [m]. Moreover, all reflection orderings are obtained in this way (see [1, Exercise 5.20]).

We follow [1, Chapter 5] for the definition of R-polynomials and Kazhdan-Lusztig polynomials of W .
There exists a unique family of polynomials {Rx,y(q)}x,y∈W ⊆ Z[q] satisfying the following conditions:

(i) Rx,y(q) = 0, if x 6≤ y;
(ii) Rx,y(q) = 1, if x = y;
(iii) if x < y and s ∈ S is such that ys C y then

Rx,y(q) =

{
Rxs,ys(q), if xs C x,
qRxs,ys(q) + (q − 1)Rx,ys(q), if xs B x.

These are known as the R-polynomials of W . The existence of such a family is a consequence of the
invertibility of certain basis elements of the Hecke algebra H of W and is proved in [7, §§7.4, 7.5]. Then,
there exists a unique family of polynomials {Px,y(q)}x,y∈W ⊆ Z[q] satisfying the following conditions:

(i) Px,y(q) = 0, if x 6≤ y;
(ii) Px,y(q) = 1, if x = y;
(iii) if x < y then deg(Px,y(q)) < `(x, y)/2 and

q`(x,y) Px,y

(
q−1

)
− Px,y(q) =

∑

x<z≤z

Rx,z(q)Pz,y(q).

These are known as the Kazhdan-Lusztig polynomials of W . The existence of such a family is proved in [7,
§§7.9, 7.10, 7.11]. We also need the following property of the R-polynomials (see [1, Exercise 5.11]):

(1)
∑

x≤z≤y

(−1)`(x,z)Rx,z(q)Rz,y(q) = 0.
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Finally, there exists a unique family of polynomials {R̃x,y(q)}x,y∈W ∈ Z≥0[q] such that

Rx,y(q) = q`(x,y)/2R̃x,y(q1/2 − q−1/2)

for all x, y ∈ W . These are known as the R̃-polynomials of W and their coefficients have a nice combinatorial
interpretation in terms of reflection orderings. Given x, y ∈ W , with x < y, we denote by BP (x, y) the
set of all Bruhat paths from x to y. The length of ∆ = (x0, x1, . . . , xk) ∈ BP (x, y), denoted by |∆|,
is the number k of its edges. Let ≺ be a fixed reflection ordering on the set T of reflections. A path
∆ = (x0, x1, . . . , xk) ∈ BP (x, y), with

x0
t1−→ x1

t2−→ · · ·
tk−→ xk,

is said to be increasing with respect to ≺ if t1 ≺ t2 ≺ · · · ≺ tk. We denote by BP≺(x, y) the set of all paths
in BP (x, y) which are increasing with respect to ≺. Then, we have the following (see [1, Theorem 5.3.4]):

(2) R̃x,y(q) =
∑

∆∈BP≺(x,y)

q|∆|.

More precisely, set ` = `(x, y) and a` = a`(x, y), the following holds (see [4] and [9, Corollary 2.6]):

(3) R̃x,y(q) = q` + c`−2 q`−2 + · · · + ca`+2 qa`+2 + ca` qa`,

where ck = |{∆ ∈ BP≺(x, y) : |∆| = k}| ≥ 1, for all k ∈ [a`, ` − 2], with k ≡ ` (mod 2). Finally, by results
in [3] and [5], we have that the absolute length of a pair is a combinatorial invariant, that is, a`(x, y) only
depends on the poset structure of the interval [x, y].

We now briefly recall some basic facts about Bruhat order in classical Weyl groups, that is, Coxeter
groups of type A, B and D, following [1, Chapter 8]. We denote by Sn the symmetric group over n
elements. To denote a permutation x ∈ Sn we use the one-line notation: we write x = x1x2 . . . xn to mean
that x(i) = xi for all i ∈ [n]. The symmetric group Sn is a Coxeter group of type An−1, with generators
given by the simple transpositions (i, i + 1), for i ∈ [n − 1]. We recall that, given x ∈ Sn, a free rise of
x is a pair (i, j) ∈ N2, with i < j and x(i) < x(j), such that there is no k ∈ N, with i < k < j and
x(i) < x(k) < x(j). Given x, y ∈ Sn, then x C y in the Bruhat order if and only if y = x(i, j), where (i, j) is
a free rise of x. Following [8], if this happen we write y = ct(i,j)(x) and x = ict(i,j)(y), where ct stands for
covering transformation and ict for inverse covering transformation.

We denote by Bn the hyperoctahedral group, defined by

Bn = {x : [±n] → [±n] : x is a bijection, x(−i) = −x(i) for all i ∈ [n]}.

and call its elements signed permutations. To denote a signed permutation x ∈ Bn we use the window

notation: we write x = [x1, x2, . . . , xn], to mean that x(i) = xi for all i ∈ [n] (the images of the negative
entries are then uniquely determined). We also denote x by the sequence |x1| |x2| . . . |xn|, with the negative
entries underlined. For example, 3 2 1 denotes the signed permutation [−3,−2, 1]. As a set of generators for
Bn, we take S = {s0, s1, . . . , sn−1}, where s0 = (1,−1) and si = (i, i + 1)(−i,−i− 1) for all i ∈ [n− 1]. The
hyperoctahedral group Bn, with this set of generators, is a Coxeter group of type Bn. Let x ∈ Bn. A rise
(i, j) of x is central if (0, 0) ∈ [i, j] × [x(i), x(j)]. A central rise (i, j) of x is symmetric if j = −i. Then, we
have the following characterization of the covering relation in the Bruhat order of Bn (see [8, Theorem 5.5]).
Let x, y ∈ Bn. Then x C y if and only if either (i) y = x(i, j)(−i,−j), where (i, j) is a noncentral free rise of
x, or (ii) y = x(i, j), where (i, j) is a central symmetric free rise of x. In both cases we write y = ct(i,j)(x)
and x = ict(i,j)(y). The maximum of Bn is w0 = 12 . . . n.

We denote by Dn the even-signed permutation group, defined by

Dn = {x ∈ Bn : neg(x) is even}.

Notation and terminology are inherited from the hyperoctahedral group. As a set of generators for Dn, we
take S = {s0, s1, . . . , sn−1}, where s0 = (1,−2)(−1, 2) and si = (i, i + 1)(−i,−i − 1) for all i ∈ [n − 1]. The
even-signed permutation group Dn, with this set of generators, is a Coxeter group of type Dn. Let x ∈ Dn.
A central rise (i, j) of x is semi-free if {k ∈ [i, j] : x(k) ∈ [x(i), x(j)]} = {i,−j, j}. Then, for x, y ∈ Dn, we
have (see [8, Theorem 6.7]) x C y if and only if y = x(i, j)(−i,−j), where (i, j) is (i) a noncentral free rise
of x, or (ii) a central nonsymmetric free rise of x, or (iii) a central semi-free rise of x. In all cases we write
y = ct(i,j)(x) and x = ict(i,j)(y). The maximum of Dn is w0 = 12 . . . n if n is even, 1 2 . . . n if n is odd.
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3. Main tools

3.1. Diagram of a pair of (signed) permutations. Let W ∈ {Sn, Bn, Dn}. For convenience, we
set 〈n〉 = [n] if W = Sn and 〈n〉 = [±n] if W ∈ {Bn, Dn}. The diagram of a (signed) permutation x ∈ W is
the subset of Z2 defined by

Diag(x) = {(i, x(i)) : i ∈ 〈n〉}.

For x ∈ W and (h, k) ∈ 〈n〉2, we set

(4) x[h, k] = |{i ∈ 〈n〉 : i ≤ h, x(i) ≥ k}|

and given x, y ∈ W and (h, k) ∈ 〈n〉2, we set

(5) (x, y)[h, k] = y(h, k) − x(h, k)

There are well-known characterizations of the Bruhat order in Sn and Bn (see [1, Theorems 2.1.5, 8.1.8]),
which can be stated as follows: if W ∈ {Sn, Bn} and x, y ∈ W then

x ≤ y ⇔ (x, y)[h, k] ≥ 0, for all (h, k) ∈ 〈n〉2 .

See [1, Theorem 8.2.8] for a combinatorial characterization of the Bruhat order relation in Dn. Here we only
recall that if x, y ∈ Dn then only one implication is true:

x ≤ y ⇒ (x, y)[h, k] ≥ 0, for all (h, k) ∈ 〈n〉2 .

For our purposes, it is convenient to extend the definitions given in (4) and (5) to every (h, k) ∈ R2. We
call the mapping (h, k) 7→ (x, y)[h, k] the multiplicity mapping of the pair (x, y). Then, the diagram of the
pair (x, y) is the collection of: (i) the diagram of x, (ii) the diagram of y and (iii) the multiplicity mapping
of (x, y). From the preceding considerations, if x ≤ y, then the values of this mapping are always non-
negative. In this case, we pictorially represent the diagram of a pair (x, y) with the following convention: the
diagrams of x and y are denoted by black and white dots, respectively, and the mapping (h, k) 7→ (x, y)[h, k]
is represented by colouring the preimages of different positive integers with different levels of grey, with the
rule that a lighter grey corresponds to a lower integer. Examples for the symmetric group can be found
in [9]. In Figure 1, the diagram of (x, y), where x = 2341 and y = 3421 ∈ B4, is illustrated. Note that,
although x, y ∈ D4, we have x 6≤ y in D4, since condition (ii) of [1, Theorem 8.2.8] fails for (a, b) = (2, 1).
Figure 2 shows the diagram of (x, y), where x = 1342 and y = 3412 ∈ D4. Now, x ≤ y in D4.

Figure 1: Diagram of a pair in Bn. Figure 2: Diagram of a pair in Dn.

The support of (x, y) is

Ω(x, y) = {(h, k) ∈ R2 : (x, y)[h, k] > 0}

and the support index set of (x, y) is

IΩ(x, y) = {i ∈ 〈n〉 : (i, x(i)) ∈ Ω(x, y)},

where Ω(x, y) denotes the (topological) closure of the set Ω(x, y). A pair (x, y) ∈ W 2, with x < y, is said to
have full support if IΩ(x, y) = 〈n〉. For instance, both the pairs in Figures 1 and 2 have full support.
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3.2. Computing R̃-polynomials. In [9] we described an algorithm for computing R̃-polynomials in

the symmetric group. Following a similar strategy, R̃-polynomials can be efficiently computed in the groups
of signed permutations starting from equation (2), by choosing convenient reflection orderings.

We recall that, if we set T1 = {(i, j)(−i,−j) : i ∈ [−n], j ∈ [±(−i − 1)]} and T2 = {(i,−i) : i ∈ [−n]},
then, the set of reflections in Dn is T1 (see, e.g., [1, Prop. 8.1.5]) and the set of reflections in Bn is T1 ∪ T2

(see, e.g., [1, Prop. 8.2.5]). In both Bn and Dn we identify the reflection (i, j)(−i,−j) ∈ T1, where i ∈ [−n]
and j ∈ [±(−i − 1)], with the pair (i, j). Then, we have the following.

Proposition 3.1. A possible reflection ordering in Dn is the lexicographic order between pairs. And a

possible reflection ordering in Bn is the same as in Dn, with the reflection (i,−i) inserted between (i,−1)
and (i, 1), for all i ∈ [−n,−2], and (−1, 1) inserted as the last one.

Proof. They arise from appropriate choices of a reduce decomposition of the maximum element w0. �

For example, a reflection ordering in D4 is

(−4,−3) ≺ (−4,−2) ≺ (−4,−1) ≺ (−4, 1) ≺ (−4, 2) ≺ (−4, 3) ≺

(−3,−2) ≺ (−3,−1) ≺ (−3, 1) ≺ (−3, 2) ≺

(−2,−1) ≺ (−2, 1),

and a reflection odering in B4 is

(−4,−3) ≺ (−4,−2) ≺ (−4,−1) ≺ (−4, 4) ≺ (−4, 1) ≺ (−4, 2) ≺ (−4, 3) ≺

(−3,−2) ≺ (−3,−1) ≺ (−3, 3) ≺ (−3, 1) ≺ (−3, 2) ≺

(−2,−1) ≺ (−2, 2) ≺ (−2, 1) ≺

(−1, 1).

3.3. Symmetries. Let W be any finite Coxeter group and let w0 be its maximum. We define the
following equivalence relations between pairs (x, y) ∈ W 2, with x < y:

(x1, y1) ∼
+ (x, y) ⇔ (x1, y1) ∈ {(x, y), (x−1, y−1), (w0xw0, w0yw0), (w0x

−1w0, w0y
−1w0)}

(x1, y1) ∼
− (x, y) ⇔ (x1, y1) ∈ {(yw0, xw0), (w0y, w0x), (y−1w0, x

−1w0), (w0y
−1, w0x

−1)}

(x1, y1) ∼ (x, y) ⇔ (x1, y1) ∼
+ (x, y) or (x1, y1) ∼

− (x, y)

Then, it is known that

(x1, y1) ∼
+ (x, y) ⇒ [x1, y1] ∼= [x, y]

(x1, y1) ∼
− (x, y) ⇒ [x1, y1] ∼= −[x, y]

Moreover (see, e.g., [1, Exercise 4.10]) we have

(x1, y1) ∼ (x, y) ⇒ R̃x1,y1(q) = R̃x,y(q).

In classical Weyl groups, if (x1, y1) ∼ (x, y) then the diagram of (x1, y1) is obtained from that of (x, y)
by a certain reflection, as described for the symmetric group in [10, Figure 2]. The only exception is the
case W = Dn and n odd when, for example, xw0 = [x(1),−x(2), . . . ,−x(n)]. Then, in order to generate all

possible intervals and R̃-polynomials, we will consider diagrams up to these symmetries.

3.4. Odd signed permutation poset. In the remainder of the paper we will act on diagrams by
“deleting” or “inserting” dots. In the groups of type D, this would not always be allowed, because of the
restriction on the parity of the number of negative entries. In this subsection we present a way of bypassing
this problem. We start with defining the odd-signed permutation set :

Dodd
n = {x ∈ Bn : neg(x) is odd}.

Although Dodd
n is not a group, we can still define on it the Bruhat order as in Dn, giving the same charac-

terization of the covering relation (see the end of Section 2). More precisely, given x, y ∈ Dodd
n , we say that

x C y in the Bruhat order if and only if y = x(i, j)(−i,−j), where (i, j) is (i) a noncentral free rise of x, or
(ii) a central nonsymmetric free rise of x, or (iii) a central semifree rise of x. Then, we have the following.
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Proposition 3.2. The map ϕ : Dn → Dodd
n defined by

[x1, x2, . . . , xn]
ϕ

7−→ [−x1, x2, . . . , xn]

is an isomorphism of posets.

By Proposition 3.2, whose proof is omitted, working with the posets Dn and Dodd
n is essentially the same

thing. From now on, we will denote the even-signed permutation group by Deven
n and we will write x, y ∈ Dn

to mean either x, y ∈ Deven
n or x, y ∈ Dodd

n , with the only requirement that neg(x) ≡ neg(y) (mod 2).

3.5. Simplifications. Let W ∈ {Sn, Bn, Dn}. An index set is a subset I ⊆ 〈n〉, such that I = −I
if W ∈ {Bn, Dn}. Let x ∈ W and I be an index set. We denote by x |I the (signed) permutation whose
diagram is obtained from that of x, by considering only the dots corresponding to the indices in I, removing
the others, and renumbering the remaining indices and values. We call x |I the subpermutation of x induced
by I. We start with noting that all the information about the poset structure of [x, y] and about the

R̃-polynomial associated is contained in the support of (x, y).

Proposition 3.3. Let x, y ∈ W , with x < y. Set xΩ = x
∣∣
IΩ(x,y) and yΩ = y

∣∣
IΩ(x,y) . Then

(i) [x, y] ∼= [xΩ, yΩ];

(ii) R̃xΩ,yΩ(q) = R̃x,y(q).

Proof. For the symmetric group, it has been proved in [9, Proposition 5.2] and [10, Proposition 3.1].
For the groups Bn and Dn, the characterization of the covering relation in terms of rises ensures that the
interval [x, y] reflects a process of “unmounting” the diagram of (x, y) similar to that described in [9] for the
symmetric group and (i) follows. A similar consideration together with equation (2) implies (ii). �

It is useful to introduce the following notion of Ω-equivalence between pairs:

(x′, y′) ∼Ω (x, y) ⇔ (x′
Ω, y′

Ω) = (xΩ, yΩ).

According to Proposition 3.3, the same interval (up to poset isomorphism) and the same R̃-polinomial are
associated with all the pairs in an Ω-equivalence class.

Now, let x ∈ W and I be an index set. For (h, k) ∈ R2, we set

x[h, k] |I = |{i ∈ I : i ≤ h, x(i) ≥ k}|,

Let x, y ∈ W and I be an index set such that x(I) = y(I). For (h, k) ∈ R2, we set

(x, y)[h, k] |I = y(h, k) |I − x(h, k) |I .

Then, we set

Ω(x, y) |I = {(h, k) ∈ R2 : (x, y)[h, k] |I > 0}

Definition 3.4. Let x, y ∈ W , with x < y. Let I1 and I2 be two index sets, with IΩ(x, y) = I1 ∪ I2 and
I1 ∩ I2 = ∅, such that x(I1) = y(I1) and x(I2) = y(I2). Set xr = x |Ir

, yr = y |Ir and Ωr = Ω(x, y) |Ir
, for

r = 1, 2. Note that, necessarily, x1 < y1 and x2 < y2. We say that the pair (x, y) is trivially decomposable

into the two pairs (x1, y1) and (x2, y2) if Ω1 and Ω2 are either disjoint or if they intersect in a region whose
closure does not contain any of the dots of the diagrams of x and y.

For example, the pair (x, y) ∈ B2
4 , whose diagram is shown in Figure 1, is trivially decomposable into

the two pairs (123, 231) ∈ B2
3 and (1, 1) ∈ B2

1 . We have the following general result.

Proposition 3.5. Let x, y ∈ W , with x < y, be trivially decomposable into (x1, y1) and (x2, y2). Then

(i) [x, y] ∼= [x1, y1] × [x2, y2];

(ii) R̃x,y(q) = R̃x1,y1(q) · R̃x2,y2(q).

Proof. For Sn, it has been proved in [9, Proposition 2.16] and [10, Propositions 3.2, 3.4, 3.5]. For Bn

and Dn the proof is similar, since under the hypotheses of the proposition, the process of “unmounting” the
diagram of (x, y), that the interval [x, y] reflects, is completely independent for Ω1 and Ω2 and (i) follows.
A similar consideration together with equation (2) implies (ii). �
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3.6. Enlarging an interval. In this subsection we show how it is possible, given an interval [x, y], to
obtain all intervals of length `(x, y)+1 containing [x, y] as subinterval, in terms of the diagram of (x, y). We
start with introducing a notion of “insertion” of a dot in a diagram.

Definition 3.6. Let x ∈ Sn and h, k ∈ [n + 1]. The permutation obtained from x by inserting the dot

(h, k), denoted by x(h,k), is the only permutation x̂ ∈ Sn+1 satisfying (i) x̂(h) = k, (ii) x̂
∣∣
[n+1]\{h} = x.

Similarly, for x ∈ Bn (resp. Dn), h ∈ [n + 1] and k ∈ [±(n + 1)], the signed permutation obtained from
x by inserting the dot (h, k), denoted by x(h,k), is the only permutation x̂ ∈ Bn+1 (resp. Dn+1 or Dodd

n+1,

depending on whether k > 0 or k < 0) satisfying (i) x̂(h) = k (thus x̂(−h) = −k), (ii) x̂
∣∣
[±(n+1)]\{h,−h} = x.

If we consider the pairs (x, y) whose diagrams are shown in Figures 1 and 2, then the diagrams of the
pairs

(
x(3,−3), y(3,−3)

)
are illustrated in Figures 3 and 4, respectively. Note that the signed permutations

x(3,−3), y(3,−3) shown in Figure 4 belong to Dodd
5 and, according to the considerations following Proposi-

tion 3.2, we still write
(
x(3,−3), y(3,−3)

)
∈ D5.

Figure 3: Inserting a dot in Bn. Figure 4: Inserting a dot in Dn.

In particular, we are interested in inserting dots out of the support, as it happens in the diagrams in
Figures 3 and 4. In this case we obtain a pair which is in the same Ω-equivalence class as the originary pair.
Then, we have the following result, which is an immediate consequence of Proposition 3.3.

Corollary 3.7. Let x, y ∈ W, with x < y, and (h, k) ∈ [n + 1]× 〈n + 1〉, with (h, k) /∈ Ω(x(h,k), y(h,k)).

(i) [x, y] ∼=
[
x(h,k), y(h,k)

]
;

(ii) R̃x,y(q) = R̃x(h,k),y(h,k)(q).

Let x, y ∈ W , with x < y. The intervals of length `(x, y) + 1 containing [x, y] are exactly those of the
form [x, z] (if y 6= w0), with z = ct(i,j)(y) and those of the form [w, y] (if x 6= id), with w = ict(i,j)(x). In
both cases we say that the new pair, (x, z) or (w, y), is obtained from (x, y) by

(i) an external move, if {i, j} ⊆ 〈n〉 \IΩ(x, y);
(ii) an internal move, if {i, j} ⊆ IΩ(x, y);
(iii) an enlarging move, if |{i, j} ∩ IΩ(x, y)| = 1.

In case (iii), if {i, j}\IΩ(x, y) = {h}, then we also say that the enlarging move uses the dot (h, x(h)). Also, if
(x, y) is a pair with full support, (x′, y′) is any pair Ω-equivalent to (x, y) and (w, z) is obtained from (x′, y′)
by one of the three kinds of moves described, then we say that (w, z) is obtained from (x, y) as well.

External moves can be easily managed by the following result.

Proposition 3.8. Let x, y ∈ W , with x < y. Let (w, z) be obtained from (x, y) by an external move and

suppose both (x, y) and (w, z) have full support. Then (w, z) is trivially decomposable into (x, y) and a pair

(a, b), with a C b. In particular (i) [w, z] = [x, y] × {0, 1}; (ii) R̃w,z(q) = qR̃x,y(q).

We need one last definition.

Definition 3.9. Let W ∈ {Sn, Bn, Dn} and x, y ∈ W , with x < y, be such that (x, y) has full support.
The enlarging set of (x, y), denoted by Enl(x, y), is the union of all the pairs with full support obtained from
(x, y) by internal moves and enlarging moves.
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4. Main result

The combinatorial invariance of Kazhdan-Lusztig polynomials for intervals up to a certain length is

equivalent to that of the R-polynomials (or their counterpart, the R̃-polynomials) for the same intervals.

We will prove our main result by showing that the R̃-polynomials are combinatorial invariants. First of all,
note that an interval [x, y] does not contain a 2-crown if and only if a`(x, y) = `(x, y) and, by equation (3),

this happens if and only if R̃x,y(q) = q`(x,y). Thus, we only need to consider intervals containing 2-crowns.

Let FA = {Sn : n ≥ 2}, FB = {Bn : n ≥ 1} and FD = {Dn : n ≥ 2}.

Definition 4.1. Let F ∈ {FA,FB,FD}. The essential sets of F are recursively defined by

ES3(F) = {(x, y) ∈ W 2 : W ∈ F , [x, y] is a 2-crown and (x, y) has full support}/ ∼

and, for k ≥ 4

ESk(F) =
[⋃

{Enl(x, y) : [(x, y)]∼ ∈ ESk−1(F)}
]
/ ∼ .

The sets ES3(F) can be easily determined and they are as follows:

ES3(FA) = {(123, 321)},

ES3(FB) = {(123, 321), (213, 31 2), (3 12, 21 3), (3 21, 12 3), (12, 12), (12, 2 1)},

ES3(FD) = {(123, 321), (213, 31 2), (3 12, 21 3), (3 21, 12 3), (123, 32 1), (213, 31 2), (312, 21 3)},

where, for simplicity, we have identified every equivalence class with one of its elements.

theorem 4.2. Let F ∈ {FA,FB,FD} and k ≥ 3. The essential set ESk(F) contains, up to ∼, all

possible pairs of length k, in Coxeter groups in F , which have full support and are not trivially decomposable,

whose corresponding interval [x, y] contains a 2-crown.

Proof. We proceed by induction on k. For k = 3, the result is true by definition. Assume k ≥ 4. It is
easy to prove that all the pairs in ESk(F) have the required properties. Now, let (x, y) be a pair of length k
which has full support and is not trivially decomposable, such that [x, y] contains a 2-crown. We want to show
that [(x, y)]∼ ∈ ESk(F). As one can easily check, it is always possible to find an atom z (or a coatom w) of
[x, y] such that (z, y) (or (x, w)) is still not trivially decomposable and [z, y] (or [x, w]) still contains a 2-crown.
Let z be an atom of [x, y] with this properties (the case of a coatom w is similar). Now, let zΩ = z

∣∣
IΩ(z,y)

and yΩ = y
∣∣
IΩ(z,y) . Then, (zΩ, yΩ) has length k − 1, has full support, is not trivially decomposable and

[zΩ, yΩ] contains a 2-crown. By the induction hypotesis, this implies [(zΩ, yΩ)]∼ ∈ ESk−1(F). Also note
that (x, y) is necessarily obtained from (zΩ, yΩ) by either an internal move or an enlarging move. Thus, by
definition, (x, y) ∈ Enl(zΩ, yΩ) and [(x, y)]∼ ∈ ESk(F). �

We can now state and prove the main result of this work.

theorem 4.3. The Kazhdan-Lusztig polynomials are combinatorial invariants for intervals up to length

6 in Coxeter groups of type B and D and for intervals up to length 8 in Coxeter groups of type A.

Proof. The combinatorial invariance is known to hold for intervals up to length 4 in all Coxeter groups
and in [10] it has been established for intervals of length 5 and 6 in the symmetric group. Moreover, by
equation (1), if the combinatorial invariance is true for intervals up to a given odd length `, then it is also

true for intervals of length `+1. So we only need to prove the combinatorial invariance of the R̃-polynomials
for intervals of length 5 in the groups of signed permutations and for those of length 7 in the symmetric
group. As already observed, we only need to consider intervals containing 2-crowns. By Proposition 3.3, we
may only consider pairs which have full support. Pairs which are trivially decomposable can be managed by
Proposition 3.5. Then, by Theorem 4.2, we only need to consider the pairs in the sets ESk(F).

For the remainder of the proof, we need the assistance of Maple computation. In fact, the essential
sets have been generated, according to Definition 4.1, by a Maple program. For the symmetric group it has
been done up to length 7 and for the groups of signed permutations up to length 5. The cardinalities of the
essential sets are as follows:
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k |ESk(FA)| |ESk(FB)| |ESk(FD)|

3 1 6 7

4 4 209 158

5 47 9543 3942

6 913

7 22400

For each pair (x, y) in the essential sets ES7(FA), ES5(FB) and ES5(FD), the poset structure of the

interval [x, y] has been determined, and the corresponding R̃-polynomial has been computed, by our own
Maple programs, based on algorithms that use the characterizations of the Bruhat order, equation (2) and the
reflection orderings mentioned in the previous section. Then, the pairs have been grouped in isomorphism
classes, with the help of Stembridge’s Maple package for posets [14], which includes a fast algorithm for

isomorphism testing. Finally, the combinatorial invariance of the R̃-polynomials for these pairs has been
checked. The results of the computation are summarized in Tables 1, 2 and 3, described later.

Note that it may happen that a pair (x, y), which is not trivially decomposable, has a corresponding
interval which is reducible as a poset (that is, direct product of smaller posets), say [x, y] ∼= [x, z] × [z, y].
Then, consistently with Proposition 3.5, it has to be proved that, whenever this happens, the factorization

R̃x,y(q) = R̃x,z(q) · R̃z,y holds. This has also been checked by Maple computation. �

In Tables 1, 2 and 3 (the last one in a short version) all isomorphism types of intervals associated with
pairs in the essential sets ES5(FD), ES5(FB) and ES7(FA), respectively, are listed. They are grouped by

the value of the R̃-polynomial and, within each group, they are listed for lexicographically nondecreasing
f -vector. For each isomorphism type a representative pair (x, y) is indicated. Self-dual intervals and reducible
intervals are marked, and, for each group, the expression of the R-polynomial is also indicated.

Note that some of the reducible intervals associated with trivially decomposable pairs might not have
been considered. Nevertheless, this is not the case, since, by Maple computation, it has also been checked
that all possible intervals containing 2-crowns that are direct product of smaller intervals belong to one of
the isomorphism classes listed in the tables. Moreover, by an unpublished result of Dyer, we have that a
Bruhat interval is a lattice if and only if it does not contain a 2-crown. We can conclude that Tables 1, 2
and 3 contain a complete classification, up to isomorphism, of Bruhat intervals which are not lattices, for
the respective lengths and types.

The diagrams of the representative pairs are finally depicted in Figures 5, 6 and 7.

type (x, y) f -vector s.d. red. eRx,y(q) Rx,y(q)

1. (1 2 3, 1 3 2) (3, 5, 6, 4) q5 + 2q3 + q (q − 1)(q2 − q + 1)2

2. (1 2 3, 2 1 3) (3, 5, 5, 3)
√

q5 + 2q3 (q − 1)3(q2 + 1)

3. (1 2 3 4, 2 4 1 3) (4, 7, 7, 4)
√ √

4. (1 2 3 4, 1 2 4 3) (4, 8, 9, 5)
√

5. (1 2 3 4, 1 4 3 2) (4, 9, 10, 5)

6. (2 1 3 4, 4 3 2 1) (4, 10, 12, 6)

7. (1 2 3 4, 3 4 2 1) (5, 10, 10, 5) q5 + q3 (q − 1)3(q2 − q + 1)

8. (1 2 3 4, 1 4 3 2) (5, 10, 11, 6)

9. (1 2 3 4, 1 2 4 3) (5, 11, 14, 8)

10. (1 2 3 4, 1 4 3 2) (5, 12, 13, 6)

11. (1 3 2 4, 1 4 2 3) (5, 12, 14, 7)

12. (1 4 2 3, 1 2 4 3) (7, 15, 16, 8)

Table 1. Isomorphism types of pairs in ES5(FD).
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type (x, y) f -vector s.d. red. eRx,y(q) Rx,y(q)

1. (1 2 3, 3 2 1) (3, 5, 6, 4)

2. (1 2 3, 1 2 3) (3, 6, 7, 4) q5 + 2q3 + q (q − 1)(q2 − q + 1)2

3. (2 1 3, 2 1 3) (4, 7, 7, 4)
√

4. (3 1 2, 1 3 2) (3, 4, 4, 3)
√ √

5. (1 2 3, 2 3 1) (3, 5, 5, 3)
√

6. (1 2 3, 3 2 1) (3, 5, 6, 4)

7. (1 3 2, 1 2 3) (3, 5, 6, 4) q5 + 2q3 (q − 1)3(q2 + 1)

8. (1 2 3, 3 2 1) (3, 6, 6, 3)
√

9. (1 2 3, 2 3 1) (3, 6, 7, 4)

10. (1 3 2, 1 3 2) (4, 7, 7, 4)
√

11. (2 1 3, 1 3 2) (4, 7, 7, 4)

12. (2 1 3, 2 1 3) (4, 7, 7, 4)
√ √

13. (1 2 3 4, 4 2 1 3) (4, 8, 9, 5)
√

14. (1 2 3 4, 3 4 1 2) (4, 9, 10, 5)

15. (1 2 4 3, 4 2 3 1) (4, 10, 12, 6)

16. (2 1 3 4, 4 2 1 3) (5, 10, 10, 5)
√ √

17. (2 1 3 4, 4 2 3 1) (5, 10, 10, 5)

18. (1 2 3 4, 1 4 2 3) (5, 10, 10, 5)
√

19. (2 1 3 4, 4 3 1 2) (5, 10, 11, 6)

20. (1 3 2 4, 1 4 3 2) (5, 10, 11, 6)

21. (3 1 2 4, 4 3 1 2) (5, 11, 12, 6)

22. (3 1 2 4, 4 3 1 2) (5, 11, 12, 6)

23. (4 2 3 1, 3 2 1 4) (5, 11, 12, 6)

24. (2 1 3 4, 3 4 2 1) (5, 11, 12, 6)

25. (1 3 2 4, 1 4 3 2) (5, 11, 12, 6)

26. (1 2 3 4, 4 3 2 1) (5, 11, 13, 7)

27. (1 2 3 4, 1 2 4 3) (5, 11, 14, 8)

28. (1 2 3 4, 1 4 3 2) (5, 12, 13, 6)

29. (4 1 3 2, 3 1 2 4) (5, 12, 13, 6) q5 + q3 (q − 1)3(q2 − q + 1)

30. (2 4 1 3, 2 3 4 1) (5, 12, 13, 6)

31. (2 4 1 3, 2 3 4 1) (5, 12, 14, 7)

32. (1 3 2 4, 1 4 2 3) (5, 12, 14, 7)

33. (3 1 2 4, 4 3 2 1) (6, 12, 12, 6)
√

34. (1 3 2 4, 4 3 1 2) (6, 12, 12, 6)

35. (2 4 1 3, 3 4 2 1) (6, 13, 13, 6)
√

36. (1 2 4 3, 3 4 2 1) (6, 13, 13, 6)

37. (4 3 2 1, 3 2 1 4) (6, 13, 13, 6)

38. (2 3 1 4, 2 4 3 1) (6, 13, 13, 6)

39. (2 1 4 3, 4 1 3 2) (6, 13, 13, 6)

40. (3 2 1 4, 3 4 2 1) (6, 13, 13, 6)

41. (4 3 1 2, 1 2 4 3) (6, 13, 14, 7)

42. (1 4 2 3, 1 3 4 2) (6, 13, 14, 7)

43. (3 1 2 4, 4 3 2 1) (6, 13, 14, 7)

44. (3 2 1 4, 4 3 2 1) (6, 14, 15, 7)

45. (1 4 3 2, 1 2 4 3) (6, 14, 15, 7)

46. (1 4 2 3, 1 2 4 3) (7, 15, 16, 8)

Table 2. Isomoprhism types of pairs in ES5(FB).
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types eRx,y(q) Rx,y(q)

1–2 q7 + 3q5 + 3q3 + q (q − 1)(q2 − q + 1)3

3–5 q7 + 3q5 + 2q3 (q − 1)3(q2 + 1)(q2 − q + 1)

6–11 q7 + 3q5 + q3 (q − 1)3(q4 − q3 + q2 − q + 1)

12–57 q7 + 2q5 + q3 (q − 1)3(q2 − q + 1)2

58–89 q7 + 2q5 (q − 1)5(q2 + 1)

90–217 q7 + q5 (q − 1)5(q2 − q + 1)

Table 3. Isomorphism types of pairs in ES7(FA).

Figure 5. Representative diagrams of pairs in ES5(FD).

Figure 6. Representative diagrams of pairs in ES5(FB).
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Figure 7. Representative diagrams of pairs in ES7(FA).
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The Partition Function of Andrews and Stanley and Al-Salam-Chihara

Polynomials

Masao Ishikawa and Jiang Zeng

Abstract. For any partition λ let ω(λ) denote the four parameter weight

ω(λ) = a
P

i≥1dλ2i−1/2e
b

P

i≥1bλ2i−1/2c
c

P

i≥1dλ2i/2e
d

P

i≥1bλ2i/2c
,

and let `(λ) be the length of λ. We show that the generating function
P

ω(λ)z`(λ), where the sum runs
over all ordinary (resp. strict) partitions with parts each ≤ N , can be expressed by the Al-Salam-Chihara
polynomials. As a corollary we prove G.E. Andrews’ result by specializing some parameters and C. Boulet’s
results when N → +∞ . In the last section we study the weighted sum

P

ω(λ)z`(λ)Pλ(x) where Pλ(x) is
Schur’s P -function and the sum runs over all strict partitions.

Résumé.

Pour toute partition λ on définit ω(λ) comme la fonction poids de quatre paramètres

ω(λ) = a
P

i≥1dλ2i−1/2e
b

P

i≥1bλ2i−1/2c
c

P

i≥1dλ2i/2e
d

P

i≥1bλ2i/2c
,

et désigne `(λ) la longueur de λ. On démontre que la fonction génératrice
P

ω(λ)z`(λ), où la somme porte
sur toutes les partitions ordinaires (resp. strictes) avec chaque part ≤ N , peut s’exprimer par les polynômes
d’Al-Salam-Chihara. Comme corollaire on en déduit un résultat de G.E. Andrews en spécialisant certain
parametres et ceux de C. Boulet quand N → +∞. Dans la dernière section on étudie la somme pondérée
P

ω(λ)z`(λ)Pλ(x) où Pλ(x) est la P -fonction de Schur et la somme porte sur toutes les partitions strictes.

1. Introduction

Let λ be an integer partition and λ′ its conjugate. Let O(λ) denote the number of odd parts of λ and
|λ| the sum of its parts. R. Stanley ([13]) has shown that if t(n) denotes the number of partitions λ of n for
which O(λ) ≡ O(λ′) (mod 4), then

t(n) =
1

2
(p(n) + f(n)) ,

where p(n) is the total number of partitions of n, and

∞∑

n=0

f(n)qn =
∏

i≥1

(1 + q2i−1)

(1 − q4i)(1 + q4i−2)
.

In [1] G.E. Andrews has computed the generating function of ordinary partitions λ with parts each less than

or equal to N , with respect to the weight zO(λ)yO(λ′)q|λ|. We should note that in [12] A. Sills has given a
combinatorial proof of this result, and in [14] A. Yee has generalized this result to the generating function
of ordinary partitions of parts≤ N and length ≤ M .

As a generalization of this weight, we consider the following four parameter weight. Let a, b, c and d be
commuting indeterminates. Define the following weight functions ω(λ) on the set of all partitions,

(1.1) ω(λ) = a
P

i≥1dλ2i−1/2eb
P

i≥1bλ2i−1/2cc
P

i≥1dλ2i/2ed
P

i≥1bλ2i/2c,

Key words and phrases. Partitions, symmetric functions, Al-Salam-Chihara polynomials, basic hypergeometric functions,
Schur’s Q-functions, Pfaffians, minor summation formula of Pfaffians.
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where dxe (resp. bxc) stands for the smallest (resp. largest) integer greater (resp. less) than or equal to
x for a given real number x. For example, if λ = (5, 4, 4, 1) then ω(λ) is the product of the entries in the
following diagram for λ.

a b a b a

c d c d

a b a b

c

In [3] C. Boulet has obtained results on the generating functions for the weights ω(λ) when λ runs over all
ordinary partitions and when λ runs over all strict partitions

In this paper we consider a refinement of these results, i.e., the generating functions for the weights
ω(λ)z`(λ), where `(λ) is the length of λ, when λ runs over all ordinary partitions with parts each ≤ N and
when λ runs over all strict partitions with parts each ≤ N , and show that they are related to the basic
hypergeometric series, i.e. the Al-Salam-Chihara polynomials (see Theorem 3.4 and Theorem 4.3).

In the last section we show the weighted sum
∑

ω(µ)z`(µ)Pµ(x) of Schur’s P -functions Pµ(x) (when

z = 2, this equals the weighted sum
∑

ω(µ)Qµ(x) of Schur’s Q-functions Qµ(x)) can be expressed by a
Pfaffian where µ runs over all strict partitions (with parts each ≤ N).

2. Preliminaries

A q-shifted factorial is defined by

(a; q)0 = 1, (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), n = 1, 2, . . . .

We also define (a; q)∞ =
∏∞

k=0(1 − aqk). Since products of q-shifted factorials occur very often, to simplify
them we shall use the compact notations

(a1, . . . , am; q)n = (a1; q)n · · · (am; q)n,

(a1, . . . , am; q)∞ = (a1; q)∞ · · · (am; q)∞.

We define an r+1φr basic hypergeometric series by

r+1φr

(
a1, a2, . . . , ar+1

b1, . . . , br
; q, z

)
=

∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, . . . , br; q)n
zn.

The Al-Salam-Chihara polynomial Qn(x) = Qn(x; α, β|q) is, by definition,

Qn(x; α, β|q) =
(αβ; q)n

αn 3φ2

(
q−n, αu, αu−1

αβ, 0
; q, q

)
,

= (αu; q)nu−n
2φ1

(
q−n, βu−1

α−1q−n+1u−1
; q, α−1qu

)
,

= (βu−1; q)nun
2φ1

(
q−n, αu

β−1q−n+1u
; q, β−1qu−1

)
,

where x = u+u−1

2 (see [6] p.80). This is a specialization of the Askey-Wilson polynomials (see [2]), and
satisfies the three-term recurrence relation

(2.1) 2xQn(x) = Qn+1(x) + (α + β)qnQn(x) + (1 − qn)(1 − αβqn−1)Qn−1(x),

with Q−1(x) = 0, Q0(x) = 1.
We also consider a more general recurrence relation:

(2.2) 2xQ̃n(x) = Q̃n+1(x) + (α + β)tqnQ̃n(x) + (1 − tqn)(1 − tαβqn−1)Q̃n−1(x),
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which we call the associated Al-Salam-Chihara recurrence relation. Put

Q̃(1)
n (x) = u−n (tαu; q)n 2φ1

(
t−1q−n, βu−1

t−1α−1q−n+1u−1
; q, α−1qu

)
,(2.3)

Q̃(2)
n (x) = un (tq; q)n(tαβ; q)n

(tβuq; q)n
2φ1

(
tqn+1, α−1qu

tβqn+1u
; q, αu

)
,(2.4)

where x = u+u−1

2 . In [5], Ismail and Rahman have presented two linearly independent solutions of the
associated Askey-Wilson recurrence equation (see also [4]). By specializing the parameters, we conclude

that Q̃
(1)
n (x) and Q̃

(2)
n (x) are two linearly independent solutions of the associated Al-Salam-Chihara equation

(2.2) (see [4, p.203]). Here, we use this fact and omit the proof. The series (2.3) and (2.4) are convergent if
we assume |u| < 1 and |q| < |α| < 1 (see [4, p.204]).

Let

(2.5) Wn = Q̃(1)
n (x)Q̃

(2)
n−1(x) − Q̃

(1)
n−1(x)Q̃(2)

n (x)

denote the Casorati determinant of the equation (2.2). Then we obtain

W1 =
u−1(tαu, βu; q)∞
(αu, tβuq; q)∞

.(2.6)

In the following sections we need to find a polynomial solution of the recurrence equation (2.2) which satisfies

a given initial condition, say Q̃0(x) = Q̃0 and Q̃1(x) = Q̃1. Since Q̃
(1)
n (x) and Q̃

(2)
n (x) are linearly independent

solutions of (2.2), this Q̃n(x) can be written as a linear combination of these functions, say

Q̃n(x) = C1 Q̃(1)
n (x) + C2 Q̃(2)

n (x).

If we substitute the initial condition Q̃0(x) = Q̃0 and Q̃1(x) = Q̃1 into this equation and solve the linear
equation, then we conclude that

Q̃n(x) =
u(αu, tβuq; q)∞
(tαu, βu; q)∞

[{
Q̃1Q̃

(2)
0 (x) − Q̃0Q̃

(2)
1 (x)

}
Q̃(1)

n (x)

+
{
Q̃0Q̃

(1)
1 (x) − Q̃1Q̃

(1)
0 (x)

}
Q̃(2)

n (x)
]

(2.7)

and

(2.8) lim
n→∞

unQ̃n(x) =
u(tβuq, αu; q)∞

(u2; q)∞

{
Q̃1Q̃

(2)
0 (x) − Q̃0Q̃

(2)
1 (x)

}
.

3. Strict Partitions

A partition µ is strict if all its parts are distinct. One represents the associated shifted diagram of µ as a
diagram in which the ith row from the top has been shifted to the right by i places so that the first column
becomes a diagonal. A strict partition can be written uniquely in the form µ = (µ1, . . . , µ2n) where n is an
non-negative integer and µ1 > µ2 > · · · > µ2n ≥ 0. The length `(µ) is, by definition, the number of nonzero
parts of µ. We define the weight function ω(µ) exactly the same as in (1.1). For example, if µ = (8, 5, 3),
then `(µ) = 3, ω(µ) = a6b5c3d2 and its shifted diagram is as follows.

Let

(3.1) ΨN = ΨN (a, b, c, d; z) =
∑

ω(µ)z`(µ),
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where the sum is over all strict partitions µ such that each part of µ is less than or equal to N . For example,
we have

Ψ0 = 1,

Ψ1 = 1 + az,

Ψ2 = 1 + a(1 + b)z + abcz2,

Ψ3 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3.

In fact, the only strict partition such that `(µ) = 0 is ∅, the strict partitions µ such that `(µ) = 1 and µ1 ≤ 3
are the following three:

a a b a b a ,

the strict partitions µ such that `(µ) = 2 and µ1 ≤ 3 are the following three:

a b
c

a b a
c

a b a
c d ,

and the strict partition µ such that `(µ) = 3 and µ1 ≤ 3 is the following one:

a b a
c d

a .

The sum of the weights of these strict partitions is equal to Ψ3. In this section we always assume |a|, |b|, |c|, |d| <
1. One of the main results of this section is that the even index terms and the odd index terms of ΨN re-
spectively satisfy the associated Al-Salam-Chihara recurrence relation:

Theorem 3.1. Set q = abcd. Let ΨN = ΨN (a, b, c, d; z) be as in (3.1) and put XN = Ψ2N and
YN = Ψ2N+1. Then XN and YN satisfy

XN+1 =
{
1 + ab + a(1 + bc)z2qN

}
XN

− ab(1 − z2qN )(1 − acz2qN−1)XN−1,(3.2)

YN+1 =
{
1 + ab + abc(1 + ad)z2qN

}
YN

− ab(1 − z2qN )(1 − acz2qN )YN−1,(3.3)

where X0 = 1, Y0 = 1 + az, X1 = 1 + a(1 + b)z + abcz2 and

Y1 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3.

Especially, if we put X ′
N = (ab)−

N
2 XN and Y ′

N = (ab)−
N
2 YN , then X ′

N and Y ′
N satisfy

{
(ab)

1
2 + (ab)−

1
2

}
X ′

N = X ′
N+1 − a

1
2 b−

1
2 (1 + bc)z2qNX ′

N

+ (1 − z2qN )(1 − acz2qN−1)X ′
N−1,(3.4)

{
(ab)

1
2 + (ab)−

1
2

}
Y ′

N = Y ′
N+1 − a

1
2 b

1
2 c(1 + ad)z2qNY ′

N

+ (1 − z2qN )(1 − a2bc2dz2qN−1)Y ′
N−1,(3.5)

where X ′
0 = 1, Y ′

0 = 1 + az, X ′
1 = (ab)−

1
2 + a

1
2 b−

1
2 (1 + b)z + (ab)

1
2 cz2 and

Y ′
1 = (ab)−

1
2 + a

1
2 b−

1
2 (1 + b + ab)z + a

1
2 b

1
2 c(1 + a + ad)z2 + a

5
2 b

1
2 cdz3.

One concludes that, when |a|, |b|, |c|, |d| < 1, the solutions of (3.2) and (3.3) are expressed by the linear
combinations of (2.3) and (2.4) as follows.

Theorem 3.2. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let ΨN = ΨN (a, b, c, d; z) be as in (3.1).
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(i) Put XN = Ψ2N . Then we have

XN =
(−az2q,−abc; q)∞
(−a,−abcz2; q)∞

×
{

(sX
0 X1 − sX

1 X0)(−abcz2; q)N 2φ1

(
q−Nz−2,−b−1

−(abc)−1q−N+1z−2
; q,−c−1q

)

+(rX
1 X0 − rX

0 X1)(ab)N (qz2, acz2; q)N

(−aqz2; q)N
2φ1

(
qN+1z2,−c−1q

−aqN+1z2
; q,−abc

)}
,(3.6)

where

rX
0 = 2φ1

(
z−2,−b−1

−(abc)−1z−2q
; q,−c−1q

)
,

sX
0 = 2φ1

(
z2q,−c−1q

−az2q
; q,−abc

)
,

rX
1 = (1 + abcz2) 2φ1

(
z−2q−1,−b−1

−(abc)−1z−2
; q,−c−1q

)
,

sX
1 =

ab(1 − z2q)(1 − acz2)

1 + az2q
2φ1

(
z2q2,−c−1q

−az2q2
; q,−abc

)
.

(ii) Put YN = Ψ2N+1. Then we have

YN =
(−a2bcdz2q,−abc; q)∞
(−a2bcd,−abcz2; q)∞

×
{

(sY
0 Y1 − sY

1 Y0)(−abcz2; q)N 2φ1

(
q−Nz−2,−acd

−(abc)−1q−N+1z−2
; q,−c−1q

)

+ (rY
1 Y0 − rY

0 Y1)(ab)N (qz2, a2bc2dz2; q)N

(−a2bcdqz2; q)N
2φ1

(
qN+1z2,−c−1q

−a2bcdqN+1z2
; q,−abc

)}
,(3.7)

where

rY
0 = 2φ1

(
z−2,−acd

(−abc)−1qz−2
; q,−c−1q

)
,

rY
1 = (1 + abcz2) 2φ1

(
q−1z−2,−ac

−(abc)−1z−2
; q,−c−1q

)
,

sY
0 = 2φ1

(
z2q,−c−1q

−a2bcdz2q
; q,−abc

)
,

sY
1 =

ab(1 − z2q)(1 − a2bc2dz2)

1 + a2bcdz2q
2φ1

(
z2q2,−c−1q

−a2bcdz2q2
; q,−abc

)
.

If we take the limit N → ∞ in (3.6) and (3.7), then by using (2.8), we obtain the following generalization
of Boulet’s result (see Corollary 3.6).

Corollary 3.3. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let sX
i , sY

i , Xi, Yi (i = 0, 1) be as in the
above theorem. Then we have

∑

µ

ω(µ)z`(µ) =
(−abc,−az2q; q)∞

(ab; q)∞
(sX

0 X1 − sX
1 X0)

=
(−abc,−a2bcdz2q; q)∞

(ab; q)∞
(sY

0 Y1 − sY
1 Y0),(3.8)

where the sum runs over all strict partitions.

Especially, by substituting z = 1 into (3.6) and (3.7), we conclude that the solutions of the recurrence
relations (3.4) and (3.5) with the above initial condition are exactly the Al-Salam-Chihara polynomials:

Theorem 3.4. Put u =
√

ab, x = u+u−1

2 and q = abcd. Let ΨN(a, b, c, d; z) be as in (3.1).
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(i) The polynomial Ψ2N (a, b, c, d; 1) is given by

Ψ2N (a, b, c, d; 1) = (ab)
N
2 QN (x;−a

1
2 b

1
2 c,−a

1
2 b−

1
2 |q),

= (−a; q)N 2φ1

(
q−N ,−c

−a−1q−N+1
; q,−bq

)
.(3.9)

(ii) The polynomial Ψ2N+1(a, b, c, d; 1) is given by

Ψ2N+1(a, b, c, d; 1) = (1 + a)(ab)
N
2 QN (x;−a

1
2 b

1
2 c,−a

3
2 b

1
2 cd|q)

= (−a; q)N+1 2φ1

(
q−N ,−c

−a−1q−N
; q,−b

)
.(3.10)

If we substitute a = zyq, b = z−1yq, c = zy−1q and d = z−1y−1q into Theorem 3.4, then we immediately
obtain the following corollary, which is a strict version of Andrews’ result.

Corollary 3.5.

(3.11)
∑

µ strict partitions
µ1≤2N

zO(µ)yO(µ′)q|µ| =
N∑

j=0

[
N

j

]

q4

(−zyq; q4)j(−zy−1q; q4)N−j(yq)2N−2j ,

and

(3.12)
∑

µ strict partitions
µ1≤2N+1

zO(µ)yO(µ′)q|µ| =

N∑

j=0

[
N

j

]

q4

(−zyq; q4)j+1(−zy−1q; q4)N−j(yq)2N−2j ,

where [
N

j

]

q

=

{
(1−qN )(1−qN−1)···(1−qN−j+1)

(1−qj)(1−qj−1)···(1−q) , for 0 ≤ j ≤ N ,

0, if j < 0 and j > N .

If we put N → ∞ in Corollary 3.4, then we immediately obtain the following corollary (cf. Corollary 2
of [3]). We can also prove this corollary by setting z → 1 in (3.8).

Corollary 3.6. (Boulet) Let q = abcd, then

∑

µ

ω(µ) =
(−a; q)∞(−abc; q)∞

(ab; q)∞
,(3.13)

where the sum runs over all strict partitions µ.

4. Ordinary Partitions

First we present a generalization of Andrews’ result in [1]. Let us consider

(4.1) ΦN = ΦN (a, b, c, d; z) =
∑

λ
λ1≤N

ω(λ)z`(λ),

where the sum runs over all partitions λ such that each part of λ is less than or equal to N . For example,
the first few terms can be computed directly as follows:

Φ0 = 1,

Φ1 =
1 + az

1 − acz2
,

Φ2 =
1 + a(1 + b)z + abcz2

(1 − acz2)(1 − qz2)
,

Φ3 =
1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3

(1 − z2ac)(1 − z2q)(1 − z2acq)
,

where q = abcd as before. If one compares these with the first few terms of Ψn, one can easily guess the
following theorem holds:
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Theorem 4.1. Let N be a non-negative integer, and let ΦN = ΦN (a, b, c, d; z) be as in (4.1). Then we
have

ΦN (a, b, c, d; z) =
ΨN(a, b, c, d; z)

(z2q; q)bN/2c(z2ac; q)dN/2e
,(4.2)

where ΨN = ΨN (a, b, c, d; z) is the generating function defined in (3.1). Note that ΨN is explicitly given in
terms of basic hypergeometric functions in Theorem 3.2.

First of all, as an immediate corollary of Theorem 4.1 and Corollary 3.3, we obtain the following gener-
alization of Boulet’s result.

Corollary 4.2. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let sX
i , sY

i , Xi, Yi (i = 0, 1) be as in
Theorem 3.2. Then we have

∑

λ

ω(λ)z|µ| =
(−abc,−az2q; q)∞
(ab, acz2, z2q; q)∞

(sX
0 X1 − sX

1 X0)(4.3)

where the sum runs over all partitions λ.

Theorem 4.1 and Theorem 3.4 also give the following corollary:

Corollary 4.3. Put x = (ab)
1
2 +(ab)−

1
2

2 and q = abcd. Let ΦN = ΦN (a, b, c, d; z) be as in (4.1).

(i) The generating function Φ2N (a, b, c, d; 1) is given by

Φ2N (a, b, c, d; 1) =
(ab)

N
2 QN(x;−a

1
2 b

1
2 c,−a

1
2 b−

1
2 |q)

(q; q)N (ac; q)N

=
(−a; q)N

(q; q)N (ac; q)N
2φ1

(
q−N ,−c

−a−1q−N+1
; q,−bq

)
.(4.4)

(ii) The generating function Φ2N (a, b, c, d; 1) is given by

Φ2N+1(a, b, c, d; 1) =
(1 + a)(ab)

N
2 QN (x;−a

1
2 b

1
2 c,−a

3
2 b

1
2 cd|q)

(q; q)N (ac; q)N+1

=
(−a; q)N+1

(q; q)N (ac; q)N+1
2φ1

(
q−N ,−c

−a−1q−N
; q,−b

)
.(4.5)

As before we immediately deduce the following corollary from Corollary 4.3. Let SN (n, r, s) denote the
number of partitions π of n where each part of π is ≤ N , O(π) = r, O(π′) = s. Then we have the result of
Andrews [1, Theorem 1].

Corollary 4.4. (Andrews)

(4.6)
∑

n,r,s≥0

S2N (n, r, s)qnzrys =

∑N
j=0

[
N
j

]

q4
(−zyq; q4)j(−zy−1q; q4)N−j(yq)2N−2j

(q4; q4)N (z2q4; q4)N
,

and

(4.7)
∑

n,r,s≥0

S2N+1(n, r, s)qnzrys =

∑N
j=0

[
N
j

]

q4
(−zyq; q4)j+1(−zy−1q; q4)N−j(yq)2N−2j

(q4; q4)N (z2q4; q4)N+1
.

Corollary 4.5. (Boulet) Let q = abcd, then

∑

λ partitions

ω(λ) =
(−a; q)∞(−abc; q)∞

(q; q)∞(ab; q)∞(ac; q)∞
.(4.8)

Here the sum runs over all partitions λ (cf. [3, Theorem 1]).

First we show the following recurrence equations hold.
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Proposition 4.6. Let ΦN = ΦN (a, b, c, d; z) be as before and q = abcd. Then the following recurrences
hold for any positive integer N .

(1 − z2qN )Φ2N = (1 + b)Φ2N−1 − b Φ2N−2,(4.9)

(1 − z2acqN )Φ2N+1 = (1 + a)Φ2N − aΦ2N−1.(4.10)

5. A weighted sum of Schur’s P -functions

We use the notation X = Xn = (x1, . . . , xn) for the finite set of variables x1, . . . , xn. In [8], one of the

authors used a Paffian expression of
∑

λ

ω(λ)sλ(X) to prove Stanley’s open problem, where the sum runs

over all partitions λ and sλ(X) stands for the Schur function with respect to a partition λ. The aim of
this section is to give some determinantial formulas for the weighted sum

∑
ω(µ)z`(µ)Pµ(x) where Pµ(x) is

Schur’s P -function.
Let An denote the skew-symmetric matrix

(
xi − xj

xi + xj

)

1≤i,j≤n

and for each strict partition µ = (µ1, . . . , µl) of length l ≤ n, let Γµ denote the n × l matrix
(
xµi

j

)
. Let

Aµ(x1, . . . , xn) =

(
An ΓµJl

−Jl
tΓµ Ol

)

which is a skew-symmetric matrix of (n+l) rows and columns. Define Pfµ(x1, . . . , xn) to be Pf Aµ(x1, . . . , xn)
if n + l is even, and to be Pf Aµ(x1, . . . , xn, 0) if n + l is odd. By Ex.13, p.267, [11], Schur’s P -function
Pµ(x1, . . . , xn) is defined to be

Pfµ(x1, . . . , xn)

Pf∅(x1, . . . , xn)
,

where it is well-known that Pf∅(x1, . . . , xn) =
∏

1≤i<j≤n
xi−xj

xi+xj
. Meanwhile, by (8.7), p.253, [11], Schur’s

Q-function Qµ(x1, . . . , xn) is defined to be 2`(λ)Pµ(x1, . . . , xn).
In this section, we consider a weighted sum of Schur’s P -functions and Q-functions, i.e.

ξN (a, b, c, d; Xn) =
∑

µ

µ1≤N

ω(µ)Pµ(x1, . . . , xn),

ηN (a, b, c, d; Xn) =
∑

µ

µ1≤N

ω(µ)Qµ(x1, . . . , xn),

where the sums run over all strict partitions µ such that each part of µ is less than or equal to N . More
generally, we can unify these problems to finding the following sum:

(5.1) ζN (a, b, c, d; z; Xn) =
∑

µ
µ1≤N

ω(µ)z`(µ)Pµ(x1, . . . , xn),

where the sum runs over all strict partitions µ such that each part of µ is less than or equal to N . One of
the main results of this section is that ζN (a, b, c, d; z; Xn) can be expressed by a Pfaffian. Further, let us put

ζ(a, b, c, d; z; Xn) = lim
N→∞

ζN (a, b, c, d; z; Xn) =
∑

µ

ω(µ)z`(µ)Pµ(Xn),(5.2)

where the sum runs over all strict partitions. We also write

ξ(a, b, c, d; Xn) = ζ(a, b, c, d; 1; Xn) =
∑

µ

ω(µ)Pµ(Xn),

where the sum runs over all strict partitions. Then we have the following theorem:

Theorem 5.1. Let n be a positive integer. Then

ζ(a, b, c, d; z; Xn) =

{
Pf (γij)1≤i<j≤n / Pf∅(Xn) if n is even,

Pf (γij)0≤i<j≤n / Pf∅(Xn) if n is odd,
(5.3)
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where

γij =
xi − xj

xi + xj
+ uijz + vijz

2(5.4)

with

uij =

a det

(
xi + bx2

i 1 − abx2
i

xj + bx2
j 1 − abx2

j

)

(1 − abx2
i )(1 − abx2

j )
,(5.5)

vij =

abcxixj det

(
xi + ax2

i 1 − a(b + d)x2
i − abdx3

i

xj + ax2
j 1 − a(b + d)x2

j − abdx3
j

)

(1 − abx2
i )(1 − abx2

j)(1 − abcdx2
i x

2
j )

,(5.6)

if 1 ≤ i, j ≤ n, and

γ0j = 1 +
axj(1 + bxj)

1 − abx2
j

z(5.7)

if 1 ≤ j ≤ n.
Especially, when z = 1, we have

ξ(a, b, c, d; Xn) =

{
Pf (γ̃ij)1≤i<j≤n / Pf∅(Xn) if n is even,

Pf (γ̃ij)0≤i<j≤n / Pf∅(Xn) if n is odd,
(5.8)

where

γ̃ij =

{ 1+axj

1−abx2
j

if i = 0,
xi−xj

xi+xj
+ ṽij if 1 ≤ i < j ≤ n,

with(5.9)

(5.10) ṽij =

a det

(
xi + bx2

i 1 − b(a + c)x2
i − abcx3

i

xj + bx2
j 1 − b(a + c)x2

j − abcx3
j

)

(1 − abx2
i )(1 − abx2

j)(1 − abcdx2
i x

2
j)

.

We can generalize this result in the following theorem (Theorem 5.2) using the generalized Vandermonde
determinant used in [9]. Let n be an non-negative integer, and let X = (x1, . . . , x2n), Y = (y1, . . . , y2n),
A = (a1, . . . , a2n) and B = (b1, . . . , b2n) be 2n-tuples of variables. Let V n(X, Y, A) denote the 2n×n matrix

whose (i, j)th entry is aix
n−j
i yj−1

i for 1 ≤ i ≤ 2n, 1 ≤ j ≤ n, and let Un(X, Y ; A, B) denote the 2n × 2n
matrix

(
V n(X, Y, A) V n(X, Y, B)

)
. For instance if n = 2 then U2(X, Y ; A, B) is




a1x1 a1y1 b1x1 b1y1

a2x2 a2y2 b2x2 b2y2

a3x3 a3y3 b3x3 b3y3

a4x4 a4y4 b4x4 b4y4


 .

Hereafter we use the following notation for n-tuples X = (x1, · · · , xn) and Y = (y1, · · · , yn) of variables:

X + Y = (x1 + y1, . . . , xn + yn), X · Y = (x1y1, . . . , xnyn),

and, for integers k and l,

Xk = (xk
1 , . . . , xk

n), XkY l = (xk
1yl

1, . . . , x
k
nyl

n).

Let 111 denote the n-tuple (1, . . . , 1). For any subset I = {i1, . . . , ir} ∈
(
[n]
r

)
, let XI denote the r-tuple

(xi1 , . . . , xir
).

Theorem 5.2. Let q = abcd. If n is an even integer, then we have

ξ(a, b, c, d; Xn) =

n/2∑

r=0

∑

I∈([n]
2r)

(−1)|I|−(r+1
2 )arq(

r
2)

∏
i∈I(1 − abx2

i )

∏

i,j∈I

i<j

xi + xj

(xi − xj)(1 − qx2
i x

2
j )

× detU r(X2
I ,111 + qX4

I , XI + bX2
I ,111 − b(a + c)X2

I − abcX3
I ).(5.11)

498



Masao Ishikawa and Jiang Zeng

If n is an odd integer, then we have

ξ(a, b, c, d; Xn) =

n∑

m=1

1 + axm

1 − abx2
m

(n−1)/2∑

r=0

∑

I∈([n]\{m}
2r )

(−1)|I|−(r+1
2 )arq(

r
2)

∏
i∈I(1 − abx2

i )

∏

i∈I

xm + xi

xm − xi

×
∏

i,j∈I
i<j

xi + xj

(xi − xj)(1 − qx2
i x

2
j)

· detU r(X2
I ,111 + qX4

I , XI + bX2
I ,111 − b(a + c)X2

I − abcX3
I ).(5.12)

Theorem 5.3. Let q = abcd. If n is an even integer, then ζ(a, b, c, d; z; Xn) is equal to

n/2∑

r=0

z2r
∑

I∈([n]
2r)

(−1)|I|−(r+1
2 )(abc)rq(

r
2)

∏
i∈I xi∏

i∈I(1 − abx2
i )

∏

i,j∈I
i<j

xi + xj

(xi − xj)(1 − qx2
i x

2
j)

× detV r(X2
I ,111 + qX4

I , XI + aX2
I ,111 − a(b + d)X2

I − abdX3
I )

+

n/2∑

r=0

z2r−1
∑

I∈([n]
2r)

∑

k<l

k,l∈I

(−1)|I|−(r

2)−1arbr−1cr−1q(
r−1
2 ){1 + b(xk + xl) + abxkxl}

∏
i∈I′ xi∏

i∈I(1 − abx2
i )

×
∏

i,j∈I
i<j

(xi + xj) · detV r−1(X2
I′ ,111 + qX4

I′ , XI′ + aX2
I′ ,111 − a(b + d)X2

I′ − abdX3
I′)

∏
i,j∈I′

i<j

(xi − xj)(1 − qx2
i x

2
j)

,(5.13)

where I ′ = I \ {k, l}.
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Bijections of trees arising from Voiculescu’s free probability theory

Artur Jeż and Piotr Śniady

Abstract. We present a bijective proof of the multidimensional generalizations of the Cauchy identity. Our
bijection uses oriented planar trees equipped with some linear orders. The considered identities play an im-
portant role in the theory of operator algebras and our bijective prove can be used to prove multidimensional
analogues of the arc-sine law in classical probability theory.

Résumé. Nous présentons une preuve bijective des généralisations multidimensionnelles de l’identité de
Cauchy. Notre bijection emploie les arbres planaires orientés équipés de quelques ordres linéaires. Les identités
considérés jouent un rôle important dans la théorie d’algèbres d’opérateur et notre bijection peut être employé
pour prouver des analogues multidimensionnels de la loi d’arcsinus dans la théorie des probabilités classique.

1. Introduction

1.1. How to generalize the Cauchy identity? Cauchy identity states that for each nonnegative
integer l

(1) 22l =
∑

p+q=l

(
2p

p

)(
2q

q

)

,

where the sum runs over nonnegative integers p, q. Cauchy identity and its bijective proof have important
implications to the classical probability theory since they can be used to extract some information about
random walks and arc-sine law [Śni04], it is therefore very tempting to look for some more identities which
would share some resemblance to the Cauchy identity. Such identities could shed some light on the properties
of the random walks in higher dimensions.

Guessing how the left-hand side of (1) could be generalized is not difficult and something like mml is a
reasonable candidate. Unfortunately, it is by no means clear which sum should replace the right-hand side
of (1). The strategy of writing down lots of wild and complicated sums with the hope of finding the right
one by accident is predestined to fail. It is much more reasonable to find some combinatorial objects which
are counted by the right-hand side of (1) and then to find a reasonable generalization of these objects.

For fixed integers p, q ≥ 0 we consider the tree from Figure 1. Every edge of this tree is oriented and it is
a good idea to regard these edges as one-way-only roads: if vertices x and y are connected by an edge and the
arrow points from y to x then the travel from y to x is permitted but the travel from x to y is not allowed.
This orientation defines a partial order ≺ on the set of the vertices: we say that x ≺ y if it is possible to
travel from the vertex y to the vertex x by going through a number of edges (in order to remember this
convention we suggest the Reader to think that ≺ is a simplified arrow←). Let < be a total order on the set
of the vertices. We say that < is compatible with the orientations of the edges if for all pairs of vertices x, y
such that x ≺ y we also have x < y. It is very easy to see that for the tree from Figure 1 there are

(
2p
p

)(
2q
q

)

total orders < which are compatible with the orientations of the edges; this cardinality coincides with the
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Figure 1. There are
(
2p
p

)(
2q
q

)
total orders < on the vertices of this oriented tree which are

compatible with the orientation of the edges.

summand on the right-hand side of (1). It remains now to find some natural way of generating the trees of
the form depicted on Figure 1 with the property p + q = l. We shall do it in the following.

1.2. Quotient graphs and quotient trees. We recall now the construction of Dykema and Haagerup
[DH04a]. For integer k ≥ 1 let G be an oriented k–gon graph with consecutive vertices v1, . . . , vk and edges
e1, . . . , ek (edge ei connects vertices vi and vi+1). The vertex v1 is distinguished, see Figure 2. We encode
the information about the orientations of the edges in a sequence ε(1), . . . , ε(k) where ε(i) = +1 if the arrow
points from vi+1 to vi and ε(i) = −1 if the arrow points from vi to vi+1. The graph G is uniquely determined
by the sequence ε and sometimes we will explicitly state this dependence by using the notation Gε.

Let σ =
{
{i1, j1}, . . . , {ik/2, jk/2}

}
be a pairing of the set {1, . . . , k}, i.e. pairs {im, jm} are disjoint and

their union is equal to {1, . . . , k}. We say that σ is compatible with ε if

(2) ε(i) + ε(j) = 0 for every {i, j} ∈ σ.

It is a good idea to think that σ is a pairing between the edges of G, see Figure 2. For each {i, j} ∈ σ
we identify (or, in other words, we glue together) the edges ei and ej in such a way that the vertex vi is
identified with vj+1 and vertex vi+1 is identified with vj and we denote by Tσ the resulting quotient graph.
Since each edge of Tσ origins from a pair of edges of G, we draw all edges of Tσ as double lines. The condition
(2) implies that each edge of Tσ carries a natural orientation, inherited from each of the two edges of G it
comes from, see Figure 3.

From the following on, we consider only the case when the quotient graph Tσ is a tree. One can show
[DH04a] that the latter holds if and only if the pairing σ is non–crossing [Kre72]; in other words it is not
possible that for some p < q < r < s we have {p, r}, {q, s} ∈ σ. The name of the non–crossing pairings
comes from their property that on their graphical depictions (such as Figure 2) the lines do not cross. Let
the root R of the tree Tσ be the vertex corresponding to the distinguished vertex v1 of the graph G.

1.3. How to generalize the Cauchy identity? (continued). Let us come back to the discussion
from Section 1.1. We consider the polygon Gε corresponding to

ε = ( −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

, −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

).

All possible non-crossing pairings σ which are compatible with ε are depicted on Figure 4 and it easy to see
that the corresponding quotient tree Tσ has exactly the form depicted on Figure 1.

In this way we managed to find relatively natural combinatorial objects, the number of which is given by
the right-hand side of the Cauchy identity (1). After some guesswork we end up with the following conjecture
(please note that the usual Cauchy identity (1) corresponds to m = 2).
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v1

v2

v3

v4

v5

v6

v7

v8

e1

e2e3

e4

e5

e6 e7

e8

Figure 2. A graph Gε corresponding to the sequence ε = (+1,−1, +1, +1,−1,−1, +1,−1).
The dashed lines represent the pairing σ =

{
{1, 6}, {2, 3}, {4, 5}, {7, 8}}

}
.

e1

e6

e8

e7

e2
e3

e4
e5

R = v1 = v7
v8

v2 = v4 = v6

v3

v5

Figure 3. The quotient graph Tσ corresponding to the graph from Figure 2. The root R
of the tree Tσ is encircled.

l edges oriented counterclockwisel edges oriented clockwise

l edges oriented counterclockwise

p edges

q edges

Figure 4. A graph T corresponding to sequence ε = ( −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

, −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

). The

dashed lines denote a pairing σ for which the quotient graph Tσ is depicted on Figure 1.
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Theorem 1 (Generalized Cauchy identity). For integers l, m ≥ 1 there are exactly mml pairs (σ, <),
where σ is a non-crossing pairing compatible with

(3) ε = ( −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

, −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

, . . .

︸ ︷︷ ︸

2m blocks, i.e. total of 2ml elements

)

and < is a total order on the vertices of Tσ which is compatible with the orientations of the edges.

Above we provided only vague heuristical arguments why the above conjecture could be true. Surpris-
ingly, as we shall see in the following, Theorem 1 is indeed true.

The formulation of Theorem 1 is combinatorial and therefore appears to be far from its motivation, the
usual Cauchy identity (1), which is formulated algebraically, nevertheless for each fixed value of m one can
enumerate all ‘classes’ of pairings compatible with (3) and for each class count the number of compatible
orders <. To give to the Reader a flavor of the algebraic implications of Theorem 1, we present the case of
m = 3 [DY03]:

(4) 33l =
∑

p+q=l

(
3p

p, p, p

)(
3q

q, q, q

)

+ + 3
∑

p+q+r=l−1
r′+q′=r+q+1

p′′+r′′=p+r+1

(
2p + p′′

p, p, p′′

)(
2q + q′

q, q, q′

)(
r + r′ + r′′

r, r′, r′′

)

.

and the case of m = 4 [Śni03]:

(5) 44k =
X

p+q=k

“ 4p

p, p, p, p

”“ 4q

q, q, q, q

”

+ 8
X

p+q+r=k−1

p′+q′=p+q+1

p′′+q′′=p+q+1

q′′′+r′′′=q+r+1

“2p + p′ + p′′

p, p, p′, p′′

”“q + q′ + q′′ + q′′′

q, q′, q′′, q′′′

”“ 3r + r′′′

r, r, r, r′′′

”

+

+ 4
X

p+q′+r′=k−1

p+q′′+r′′=k−1

p′′′+q′′′=p+q′+1

p′′′′+q′′′′=p+q′′+1

“2p + p′′′ + p′′′′

p, p, p′′′, p′′′′

”“q′ + q′′′

q′, q′′′

”“q′′ + q′′′′

q′′, q′′′′

”“ 2r′′

r′′, r′′

”“ 2r′

r′, r′

”“ q′ + q′′ + q′′′ + q′′′′ + 2r′ + 2r′′ + 2

q′ + q′′′ + 2r′ + 1, q′′ + q′′′′ + 2r′′ + 1

”

+

+ 8
X

p+q+r+s=k−2

q′+r′=q+r+s+2

p′′+r′′=p+q+r+2

“ 2p

p, p

”“q + q′

q, q′

”“r + r′′

r, r′′

”“ 2s

s, s

”“ 3p + p′′ + 2q + q′ + 2

2p + q + q′ + 1, p + q + 1, p′′

”“ 2r + r′ + r′′ + 3s + 2

r + r′′ + 2s + 1, r + s + 1, r′

”

.

1.4. Bijective proof of generalized Cauchy identities. Theorem 1 was conjectured by Dykema
and Haagerup [DH04a] and its first proof (analytic one) was given by the second-named author [Śni03].
Another analytic proof was given by Aagaard and Haagerup [AH04]. The main result of this article (which

is a shortened and edited version of [Śni04]) is the first bijective proof of Theorem 1, formulated explicitly
as the following theorem.

Theorem 2 (The main result). Let integers l, m ≥ 1 be given. We set L = lm + 1 and

εi =
(

(−1)i−1

︸ ︷︷ ︸

l times

, (−1)i

︸ ︷︷ ︸

l times
︸ ︷︷ ︸

i times, i.e. a total of 2li elements

)
for 1 ≤ i ≤ m.

Note that εm coincides (up to a possible sign change) with (3). The function described in this article provides
a bijection between

(α) the set of pairs (σ, <), where σ is a pairing compatible with εm and < is a total order on the vertices
of Tσ which is compatible with the orientations of the edges;

(β) the set of tuples (B1, . . . , Bm), where B1, . . . , Bm are disjoint sets such that B1 ∪ · · · ∪ Bm =
{1, 2, . . . , L} and

|B1|+ · · ·+ |Bn| ≤ ln

holds true for each 1 ≤ n ≤ m− 1;

Alternatively, set (β) can be described as
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(γ) the set of sequences (a1, . . . , aL) such that a1, . . . , aL ∈ {1, . . . , m} and for each 1 ≤ n ≤ m− 1 at
most ln elements of the sequence (ai) belong to the set {1, . . . , n};

where the bijection between sets (β) and (γ) is given by Bj = {k : ak = j}.

From the Raney lemma [Ran60] it follows that the set (β) has mml elements [Śni03] hence Theorem 1
indeed follows from Theorem 2.

2. Quotient trees

In the following we shall discuss some aspects of the quotient trees which were not included in Section
1.2. Sometimes, with a very small abuse of notation, we will denote by the same symbol Tσ the set of the
vertices of the tree Tσ.

2.1. Structure of a planar tree. Order �. For a non–crossing pairing σ we can describe the process
of creating the quotient graph as follows: we think that the edges of the graph G are sticks of equal lengths
with flexible connections at the vertices. Graph G is lying on a flat surface in such a way that the edges
do not cross. For each pair {i, j} ∈ σ we glue together edges ei and ej by bending the joints in such a way
that the sticks should not cross. In this way Tσ has a structure of a planar tree, i.e. for each vertex we can
order the adjacent edges up to a cyclic shift (just like points on a circle). We shall provide an alternative
description of this planar structure in the following.

Let us visit the vertices of G in the usual cyclic order v1, v2, . . . , vk, v1 by going along the edges e1, . . . , ek;
by passing to the quotient graph Tσ we obtain a journey on the graph Tσ which starts and ends in the root
R. The structure of the planar tree defined above can be described as follows: if we travel on the graphical
representation of Tσ by touching the edges by our left hand, we obtain the same journey. For each vertex
of Tσ we mark the time we visit it for the first time; comparison of these times gives us a total order �,
called preorder [Sta99], on the vertices of Tσ. For example, in the case of the tree from Figure 3 we have
v1 � v2 � v3 � v5 � v8.

2.2. Catalan sequences. We say that ε =
(
ε(1), . . . , ε(k)

)
is a Catalan sequence if ε(1), . . . , ε(k) ∈

{−1, +1}, ε(1) + · · ·+ ε(k) = 0 and all partial sums are non-negative: ε(1) + · · ·+ ε(l) ≥ 0 for all 1 ≤ l ≤ k.
We say that ε is anti-Catalan if −ε is Catalan.

Lemma 3. For a Catalan sequence ε there exists a unique compatible pairing σ with the property that
R � v for every vertex v ∈ Tσ. For an anti-Catalan sequence ε there exists a unique compatible pairing σ
with the property that R � v for every vertex v ∈ Tσ.

3. Proof of almost the main result

3.1. Statement of the result. The following result will be crucial for the bijective proof of generalized
Cauchy identities in Section 4.

Theorem 4. Let ε =
(
ε(1), . . . , ε(k)

)
be a Catalan sequence. The function described in this section

provides a bijection between

(A) the set of pairs (σ, <), where σ is a pairing compatible with ε and < is a total order on the vertices
of Tσ compatible with the orientation of the edges;

(B) the set of pairs (σ, <), where σ is a pairing compatible with ε and < is a total order on the vertices
of Tσ with the following two properties:
• on the set {x ∈ Tσ : x � R} the orders < and � coincide;
• for all pairs of vertices v, w ∈ Tσ such that R 6� v and R 6� w we have

v ≺ w =⇒ v < w.

Proof. In this article we will present only the bijection without presenting its inverse and without any
proofs which can be found in [Śni04].

Our bijection will be given by repeating the following procedure: if the pair (σ, <) is as in (B) then
we our algorithm finishes. Otherwise, let D be the maximal element (with respect to the order <) such
that D � R and such that on the subtree U = {x : x � R and x < D} the orders < and � coincide.
The vertex D is a leaf of the tree U which is not maximal in U (with respect to the order �); otherwise
this would contradict the maximality of D. We start in D a walk on the graph U with the first step going
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A CB

R

D

Figure 5. The case D 6= B. The order of the vertices is given by R ≤ A < B < C < D.
Note that only the edges belonging to the subtree U are displayed.

R

D

Figure 6. The tree from Figure 5 after ungluing the edges BA and CA.

A

B

D

R

C

Figure 7. The tree from Figure 5 after regluing the edges BA and CA in a different way.
Please notice the change of the labels of the vertices A, B, C, D.

towards the root R, always touching the edges by our left hand (as we did in Section 2.1) and we denote
by w0 = D, w1, w2, . . . the consecutive vertices we visit on our journey. Let n be the smallest number for
which the arrow on the edge connecting wn and wn+1 points from wn+1 towards wn; we denote B = wn−1,
A = wn, C = wn+1.

Let us consider the case when B 6= D, cf. Figure 5. Each of the edges BA and CA of the quotient graph
Tσ was created by gluing a pair of edges of the graph G; let us unglue these four edges of G, cf. Figure 6
and let us glue these four edges in pairs in a different way, cf Figure 7. In this way we obtain a quotient
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A CD

R

Figure 8. The case D = B. The order of vertices is given by R ≤ A < C < D.

A

C

D

R

Figure 9. The tree from Figure 8 after regluing the edges DA and CA in a different way.
Please notice the change of the labels of the vertices A, C, D.

graph Tσ′ , where σ′ is a pairing of edges obtained from σ by changing connections between certain four
edges. Figure 5 and Figure 7 show an identification between the vertices of Tσ and Tσ′ ; please note that this
identification is nontrivial only on the vertices A, B, C, D. We define the order < on Tσ′ to be the inherited
order < from Tσ under the above identification of the vertices.

We consider now the case when B = D, cf. Figure 8. Similarly as above, we unglue and reglue in a
different way edges DA and CA and thus we obtain a tree Tσ′ depicted on Figure 9. Figure 8 and Figure 9
show the identification between the vertices of Tσ and the vertices of Tσ′ and we define the order < on Tσ′

to be the inherited order < from Tσ.
After a finite number of steps the above procedure will eventually stop. �

Remark 5. For each pair (σ, <) from the set (A) and the corresponding pair (σ′, <) from the set (B)
there is a canonical unique bijection j mapping the vertices of Tσ onto the vertices of Tσ′ with the property
that for all v, w ∈ Tσ the condition v < w holds if and only if j(v) < j(w). In fact this identification is very
easy to see since the bijection from Theorem 4 is a composition of a number of elementary operations. Each
such operation is either a replacement of Figure 5 by Figure 7 or replacement of Figure 8 by Figure 9 and
for each such a replacement the corresponding identification preserves the labels of the vertices.

4. Proof of the main result

Proof. We shall construct now the main result of the article: the bijection announced in Theorem 2.
In this article we will present only the bijection without presenting its inverse and without any proofs which
can be found in [Śni04].
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Figure 10. Example of a tree Tσ̃. A subtree {v : R � v} was marked in gray.

Firstly, observe that the order < on the vertices of the tree Tσ can be alternatively described by labeling
the vertices by the numbers from the set {1, 2, . . . , L} in such a way that each number appears exactly once
and the order of the labels coincides with the order < on the vertices.

Our algorithm consists of m−1 steps; in the first step the variable i takes the value i := m and after each
step its value decreases by one. At the beginning of each step we start with a tree Tσ, where σ is a pairing
compatible with εi such that some of the vertices are labeled by the numbers from the set {1, 2, . . . , L} and
some vertices might be unlabeled (in the first step i = m there are no unlabeled vertices) and in this step
we will construct the set Bi.

Let us consider the case when i is odd. We define a total order < on the vertices of Tσ as follows: for
a pair of vertices v, w which carry some labels we set v < w if and only if the label of v is smaller than the
label of w; if v has no label and w has a label then v < w; if both v and w have no labels then v < w if and
only if v � w. In this way (σ, <) is as prescribed in point (A) of Theorem 4.

Let (σ̃, <) denote the corresponding element of the point (B). We consider the canonical identification
of the vertices of the tree Tσ with the vertices of the tree Tσ̃, as described in Remark 5; in this way some
of the vertices of the tree Tσ̃ are labeled by the numbers from the set {1, . . . , L}. We consider a subtree
U = {x ∈ Tσ̃ : R � x}. We define Bi to be the set of the labels on the vertices of U and we remove all labels
from the vertices of U .

Each edge of Tσ̃ consists of two edges of the graph G; let us unglue all the edges belonging to the tree U .
We denote by T ′ the resulting graph, cf Figure 10 and Figure 11. The sequence εi−1 can be obtained from
the sequence εi by removal of the first l and the last l elements therefore the polygonal graph Gεi−1

can be
obtained from the graph Gεi

by removing two groups (of l edges each) surrounding the distinguished vertex
R from both sides; clearly these 2l edges must be among the unglued ones in the graph T ′. We denote by
T ′′ the graph obtained from T ′ by the removal of these 2l edges, cf Figure 12.

Please note that T ′′ can be obtained from the polygonal graph Gεi−1
by gluing some pairs of edges hence

it can be viewed as a certain polygonal graph Gε′ with a number of trees attached to it. The sequence ε′

can be obtained from εi−1 by a removal of a number of blocks of consecutive elements, provided the sum of
elements of each block is equal to zero. Since εi−1 is anti-Catalan, ε′ is anti-Catalan as well. We denote by
Tσ′ the tree resulting from T ′′ by gluing the edges constituting Gε′ by the pairing given by Lemma 3 applied
to ε′; please note that in this way we defined implicitly the pairing σ′ compatible with εi−1, cf Figure 13.
Thus, the description of the step of the algorithm in the case when i is odd is finished.

To cover the case when i is even we can simply reverse the orientations on all edges (which corresponds
to a change of signs in the sequence εi) and consider the opposite order on the set {1, . . . , L}; since sequence
−εi is Catalan and −εi−1 is anti-Catalan we reduced the situation to the case considered previously.

Our algorithm takes a particularly simple form for i = 1; we simply set B1 to be the set of the labels of
the tree Tσ and the algorithm stops. �

5. Combinatorial calculus: how to convert an analytic proof into a bijection?

The bijection presented in this article might look artificial and it is by no means clear how the authors
invented it. It turns out that there is a very systematic way of constructing this bijection given by careful
analysis of the analytic proof of generalized Cauchy identities given by the second-named author [Śni03]. In
this analytic proof we associated to oriented trees certain polynomials and we proved that these polynomials
fulfill recursion relation analogous to the one fulfilled by Abel polynomials. It turns out that if we replace the
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Figure 11. The graph T ′ obtained for Tσ′ depicted on Figure 10.

Figure 12. The graph T ′′ is obtained from T ′ depicted on Figure 11 by removal of the
dashed edges. The graph T ′′ can be regarded as a certain polygonal graph Gε′ with a
number of trees attached to it.

Figure 13. Tree Tσ′ is obtained from the graph T ′′ depicted on Figure 12 by gluing edges
as prescribed in Lemma 3.

usual differential calculus by a combinatorial calculus in which the role of polynomials is played by certain
graphs and oriented sets then the analytic proof from [Śni03] is valid also in this more general setup and it

determines uniquely the bijection presented in this article [JŚ06a].

6. Postscript: operator algebras, free probability and triangular operator T

The story presented in Sections 1.1 and 1.3 is too beautiful to be true. In fact, it is not how the
generalized Cauchy identities were discovered. In this section we will present the true story which also gives
very strong motivations for studying these identities.

6.1. Invariant subspace conjecture. The Voiculescu’s free probability [VDN92, HP00] is a non-
commutative probability theory with the classical notion of independence replaced by the notion of freeness.
Natural examples which fit nicely into the framework of the free probability include large random matrices,
free products of von Neumann algebras and asymptotics of large Young diagrams. Families of operators
which arise in the free probability are, informally speaking, very non-commutative and for this reason they
are perfect candidates for counterexamples to the conjectures in the theory of operator algebras [Voi96].

Dykema and Haagerup [DH04a] suggested that free probability could be used to construct a coun-
terexample for the famous invariant subspace conjecture (this conjecture asks if for every bounded operator
x acting on an infinite-dimensional Hilbert space H there exists a closed subspace K ⊂ H such that K is
nontrivial in the sense that K 6= {0}, K 6= H and which is an invariant subspace of x). They also described
explicitly a very good candidate for such a counterexample, namely the triangular operator T [DH04a].

For more details on the history of the search of such a counterexample within free probability theory we
refer to [Śni04].

6.2. Combinatorics of the triangular operator T . Even though the primary description of the
triangular operator T was purely analytic as a limit of certain random matrices, already in the original
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article [DH04a] Dykema and Haagerup gave a purely combinatorial description of this operator and we will
present it in the following.

The triangular operator T is an element of a certain algebra (finite von Neumann algebra) equipped
with a functional φ. The elements of such algebras can be uniquely determined by the values of φ on
all polynomials in T and T ? therefore we need to specify the numbers φ(T ε(1) · · ·T ε(n)) for any sequence
ε(1), . . . , ε(n) ∈ {1, ?}. Dykema and Haagerup proved that that (n/2 + 1)! φ(T ε(1) · · ·T ε(n)) is equal to the
number of pairs (σ, <) such that σ is a pairing compatible with ε and < is a total order on the vertices of
Tσ which is compatible with the orientation of the edges (please notice that the sequence ε considered above
takes the values 1 and ? while in the rest of this article we used the convention that ε takes the values +1
and −1, this difference is irrelavant). The Reader may easily see that the latter definition of T is very closely
related to the results presented in this paper; in particular Theorem 1 can be now equivalently stated as
follows (in fact it is the form in which Dykema and Haagerup stated originally their conjecture [DH04a]):

Theorem 6. If l, m ≥ 1 are integers then

φ
[(

T l(T ?)l
)m]

=
mml

(ml + 1)!
.

Theorem 1 and Theorem 6 were conjectured by Dykema and Haagerup [DH04a] in the hope that they
might be useful in the study of spectral properties of T . Literally speaking, this hope turned out to be wrong
since the later construction of the hyperinvariant subspaces of T by Dykema and Haagerup [DH04b, Haa02]
did not make use of Theorem 1 and Theorem 6, however it made use of one of the auxiliary results used in
our proof [Śni03] of these theorems. In this way, indirectly, Theorem 1 and Theorem 6 turned out to be
indeed helpful for their original purpose. Later on Aagaard and Haagerup [AH04] gave a different analytic
proof of the generalized Cauchy identities based on very clever matrix manipulations.

As we already mentioned, Dykema and Haagerup [DH04b, Haa02] constructed a family of hyperin-
variant subspaces of T and in this way the original motivation for studying the operator T (as a possible
counterexample for the invariant subspace conjecture) ended up as a failure. Nevertheless, operator T is
still regarded as a canonical example of a quasinilpotent operator and its deep understanding may give us
an insight into the structure of all quasinilpotent operators.

6.3. Applications in classical probability theory. The generalized Cauchy identities and their
bijective proof can be used [JŚ06b] to extract some information about multidimensional random walks and
Brownian motions.
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Schubert polynomials for the affine Grassmannian

Thomas Lam

Abstract. Confirming a conjecture of Mark Shimozono, we identify polynomial representatives for the
Schubert classes of the affine Grassmannian as the k-Schur functions in homology and affine Schur functions
in cohomology. Our results rely on Kostant and Kumar’s nilHecke ring, work of Peterson on the homology
of based loops on a compact group, and earlier work of ours on non-commutative k-Schur functions.

Résumé. Nous prouvons une conjecture de Mark Shimozono en montrant que des representations polyno-
miales pour les classes de Schubert des Grassmanniennes affines sont des fonctions k-Schur en homologie,
et des fonctions de Schur affines en cohomologie. Nous utilisons l’anneau nilHecke de Kostant et Kumar, le
travail de Peterson sur l’homologie des circuits basés sur un groupe compact, et notre travail antérieur sur
les fonctions de k-Schur non-commutatives.

1. Introduction

This article is an extended abstract of the paper [11] with the same title. Some results and many details
have been omitted.

In [3], Bott calculated the homology and cohomology rings of the based loop spaces ΩK, where K is a
compact Lie group. In type A, both H∗(ΩSUn) and H∗(ΩSUn) can be identified with a ring of symmetric
functions: in cohomology as a quotient of the ring of symmetric functions and in homology as a subring of
the ring of symmetric functions. Separately, Kostant and Kumar [8] have calculated the cohomology rings
H∗(G/P) of homogeneous spaces of Kac-Moody groups in terms of the Schubert classes σw ∈ H∗(G/P). It
is well known that when G is of affine type and P a maximal parabolic, then G/P is homotopy-equivalent

to the based loops on the finite-dimensional compact group associated to G. Thus in type Ân−1, we have
H∗(G/P) = H∗(ΩSU(n)). While some of our results generalize to all Dynkin types, we will restrict ourselves
to type A for the remainder of this article.

Our main result is the identification of the Schubert classes σw ∈ H∗(G/P) and σw ∈ H∗(G/P) as explicit
symmetric functions. In the homology case, these polynomials are known as the k-Schur functions, originally
introduced by Lapointe, Lascoux and Morse [16] and studied thoroughly by Lapointe and Morse [13, 14].
In the cohomology case, these polynomials were introduced by Lapointe and Morse in [15] where they were
called dual k-Schur functions and also studied by myself in [10] where they were called affine Schur functions.
These results were conjectures of Mark Shimozono (in the cohomology case, the conjecture was made precise
by Jennifer Morse).

Thus the k-Schur functions s
(k)
λ (x) and the affine Schur functions F̃λ(x) can be considered affine homology

and cohomology Schubert polynomials respectively. Schubert polynomials for the flag variety were intro-
duced by Lascoux and Schützenberger [17] and has led to numerous developments in algebra, geometry and
combinatorics. It should be expected that affine Schubert polynomials lead to many exciting developments as
well. Note that since ΩSU(n) is a loop space, its homology H∗(ΩSU(n)) = H∗(G/P) is a Hopf-algebra. Our

2000 Mathematics Subject Classification. Primary 05E05; Secondary 14N15.
Key words and phrases. Schubert polynomials, symmetric functions, Schubert calculus, affine Grassmannian.
I am indebted to my coauthors Luc Lapointe, Jennifer Morse and Mark Shimozono, with whom I have studied k-Schur

functions and the affine Grassmannian for nearly a year. I began working on k-Schur and dual k-Schur functions more than a
year ago when Jennifer first introduced them to me, and Mark explained his geometric conjectures to me.
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identification of Schubert classes is actually an isomorphism of Hopf-algebras, and gives an interpretation of
the Hall inner product as the natural pairing between homology and cohomology. This feature of the affine
theory is lacking in the classical finite case. We will only briefly discuss the Hopf-structures in this article.

Our results rely heavily on the nilHecke ring A introduced by Kostant and Kumar [8], results of Peter-
son [19] on the homology of based loop spaces, and the non-commutative k-Schur functions by the author

in [10]. The non-commutative k-Schur functions are elements s
(k)
w of a commutative subalgebra B ⊂ A,

which we call the affine Fomin-Stanley algebra (since it is closely related to the work in [6]), of the nilHecke
ring. We showed in [10] that B was isomorphic to a subring of the ring of symmetric functions which can be
identified via Bott’s result with H∗(G/P). Peterson has constructed an isomorphism j : HT

∗ (G/P) → ZA(S)
of the equivariant homology HT

∗ (G/P) with a certain centraliser subalgebra ZA(S) ⊂ A of the nilHecke
ring. We show here that “evaluation at 0” takes ZA(S) onto B and that the composition with Peterson’s j-

homomorphism takes the Schubert classes σ(w) to the non-commutative k-Schur functions s
(k)
w . Kostant and

Kumar have calculated the structure constants of H∗(G/P) in terms of a coproduct ∆ on A and we compute
directly that this coproduct, when restricted to the subalgebra B, agrees with the usual coproduct of the
symmetric functions. This shows that B, when viewed as a ring of symmetric functions, is Hopf-isomorphic
to H∗(G/P).

There are many open problems related to this work, and we mention a couple: it is natural to ask for
representatives in K-theory, in equivariant (co)homology and in quantum cohomology. It is also natural to
ask to generalize our work from the affine Grassmannian G/P to the affine flag variety G/B and to generalize
from type A to all Weyl types. Together with Luc Lapointe, Jennifer Morse and Mark Shimozono, we have
been developing an affine version of Schensted insertion and an affine Pieri rule [12].

2. Equivariant homology and cohomology of G/P

Let G be the affine Kac-Moody Group of type Ân−1 over C and let T be a Cartan subgroup of G.
Let B be a Borel subgroup of G. Let P be a parabolic subgroup of G. The homogeneous space G/P is
not a finite dimensional variety but an ind-variety (see [9]). The group G possesses a Bruhat decomposi-
tion G =

⋃

w∈W BwB where W denotes the affine symmetric group. The Bruhat decomposition induces a
decomposition of G/P into Schubert cells:

G/P =
⋃

w∈W P

Xw

where P is the parabolic subgroup of W associated to P and WP denotes the elements of shortest length
in W/P (see [7]). The Schubert classes σw = [Xw] representing Xw in H∗(G/P) form a basis of the homol-
ogy. We will denote the Schubert classes in homology, cohomology, equivariant homology and equivariant
cohomology as follows

σw ∈ H∗(G/P) , σw ∈ H∗(G/P) , σ(w) ∈ HT
∗ (G/P) , σ(w) ∈ H∗

T (G/P).

Throughout this paper, all homology and cohomology rings will be with Z-coefficients.
From now on we shall assume that P is a maximal parabolic subgroup. The corresponding parabolic

subgroup W0 ⊂ W is the usual symmetric group Sn and we denote the minimal-length representatives of
W/W0 by W 0. We call the elements of W 0 Grassmannian elements. The homogeneous space G/B is known
as the affine flag variety and G/P is known as the affine Grassmannian. The isomorphism type of G/P does
not depend on the choice of maximal parabolic P . It is in fact homeomorphic to GLn(K)/GLn(O) where
K = C((t)) denotes the field of Laurent series and O = C[[t]] denotes the subring of power series.

A special feature of G/P is that it is a group as follows. Let K = Un ⊂ GLn be the compact group of
type An−1. Then it is well known that G/P is homotopy equivalent to (the identity component of) ΩK, the
space of based loops into K. The group structure of ΩK induces a multiplication on (equivariant) homology,
so that H∗(G/P) and H∗(G/P) are dual Hopf-algebras. Thus one can sensibly ask for homology Schubert
polynomials representing the Schubert classes σw ∈ H∗(G/P). This is a feature not present in classical
Schubert calculus.

The homology and cohomology rings (and their Hopf-algebra structures) of ΩK were earlier computed
by Bott.
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Theorem 2.1 ([3]). We have the isomorphisms

H∗(G/P) = Z[σ1, σ2, . . . , σn−1]

and

H∗(G/P) = SH∗(CP
n−1)

where S denotes an infinite symmetric power.

These rings can be identified respectively with a subring and a quotient ring of the ring of symmetric
functions. The aim of this paper is thus to identify the Schubert classes σw ∈ H∗(G/P) and σw ∈ H∗(G/P)
as explicit symmetric functions.

3. NilHecke Ring

Let {ri | i ∈ Z/nZ} denote the simple generators of W and let {αi | i ∈ Z/nZ} denote the simple roots

of the root system of type Ân−1 and for a real root α we let α∨ denote the corresponding coroot. For each
root α, we denote the corresponding reflection by rα. Let h∗

Z
denote the Z-span of the fundamental weights,

and let S = Sym(h∗
Z
) denote the ring of polynomials in the weights so that S = H∗

T (point).

Let A denote the affine nilHecke ring of type Ân−1 (see [8]). (Note that Kostant and Kumar define A

over the rationals, but we have found it more convenient, following Peterson [19], to work over Z.) It is the
ring with a 1 given by generators {Ai | i ∈ Z/nZ} ∪ {λ | λ ∈ h∗

Z
} and the relations

Ai λ = (ri · λ)Ai + 〈λ, α∨
i 〉 · 1 for λ ∈ h∗

Z

Ai Ai = 0

Ai Aj = Aj Ai if |i− j| ≥ 2

Ai Ai+1 Ai = AiAi+1 Ai.

The ring A acts as generalized BGG-Demazure operators on H∗
T (X) for any LK-space X (here LK is

the space of all loops into the unitary group Un). The element Ai corresponds to the map H∗
T (G/B) →

H∗−2
T (G/B) obtained by integration along the fibers of the P1-fibration G/B → G/Pi where Pi are the

minimal parabolic subgroups. In fact Peterson [19] has shown that A is exactly the ring of “compact
characteristic operators”; see also [9]. Combinatorially, in the classical case the elements Ai act as divided
difference operators on the Schubert polynomials.

Let w ∈ W and let w = si1 · · · sil
be a reduced decomposition of w. Then Aw := Ai1 · · ·Ail

is a well
defined element of A. We let A0 := 1. By [8] or [19, Proposition 2-7], {Aw | w ∈ W} is an S-basis of A. We
will also identify ri with the element 1 − αiAi ∈ A and abusing notation, we write w ∈ A for the element in
the nilHecke ring corresponding to w ∈W .

Let A0 ⊂ A denote the subring over Z of A generated by the Ai only. I called this the affine nilCoxeter
algebra in [10]. There is a specialization map φ0 : A → A0 given by

φ0 :
∑

w

awAw 7−→
∑

w

φ0(aw)Aw

where φ0 evaluates a polynomial s ∈ S by setting all αi to 0.
For later use, we note the following straightforward result, whose proof we omit; see [8, Proposition

4.30].

Lemma 3.1. Let w ∈W and λ ∈ S be of degree 1. Then

Awλ = (w · λ)Aw +
∑

rαwlw

〈λ, α∨〉Arαw.

Here l denotes a cover in strong Bruhat order.

The coefficients 〈λ, α∨〉 are known as Chevalley coefficients.
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4. The coproduct on A

Define the coproduct map ∆ : A → A ⊗S A by

∆(s) = 1 ⊗ s = s⊗ 1 for s ∈ S

∆(Ai) = Ai ⊗ 1 + ri ⊗Ai = 1 ⊗Ai +Ai ⊗ ri

= Ai ⊗ 1 + 1 ⊗Ai −Ai ⊗ αiAi.

This is a well defined map, which in addition is cocommutative. One can deduce from these relations that
∆(w) = w ⊗ w. (In the original work of [8], this last relation was used to define ∆, but we shall follow the
set up of [19]).

One should be careful since the tensor product A ⊗S A is not a ring. For example,

(Ai ⊗ 1).(1 ⊗ αi) 6= (Ai ⊗ 1).(αi ⊗ 1)

However, it is shown in [19] that the action of A on A ⊗S A given by the above formulae still give a well
defined action of A on A ⊗S A. That is, ∆(a) = a · (1 ⊗ 1) for any a ∈ A.

Note that φ0 also sends A⊗S A to A0 ⊗Z A0 by evaluating the coefficients at 0 when writing in the basis
{Aw ⊗Av}w,v∈W .

Theorem 4.1 ([8]). Let

∆(Aw) =
∑

u,v∈W

au,v
w Au ⊗Av.

Then au,v
w are the (Schubert) structure constants of H∗

T (G/B), so that

σ(u) · σ(v) =
∑

w∈W

au,v
w σ(w).

Theorem 4.1 is in fact valid for all symmetrizable Kac-Moody groups. Since the product of two Grass-
mannian classes σ(u) and σ(v) (where u, v ∈W 0) in HT (G/P) is Grassmannian, we have the following simple
result.

Lemma 4.2. If w /∈W 0 and u, v ∈W 0 then au,v
w = 0.

5. Symmetric functions

We refer to [18] for details concerning the material of this section. Let Λ = ΛZ denote the ring of
symmetric functions over Z in infinitely many variables x1, x2, . . .. We write hi(x) for the homogeneous
symmetric functions and for a partition λ = (λ1 ≥ λ2 ≥ · · · ), we write hλ(x) = hλ1(x)hλ2(x) · · · . The elements
h1(x), h2(x), . . . ∈ Λ form a set of algebraically independent set of generators of Λ. We let mλ(x) ∈ Λ denote
the monomial symmetric functions. They form a basis of the ring of symmetric functions over the integers.

Let Λn ⊂ Λ denote the subring of the symmetric functions generated by hi(x) for i ∈ [0, n − 1]. Let
Λn denote the quotient of Λ given by Λn = Λ/〈mλ(x) | λ1 ≥ n〉. Clearly the set {mλ(x) | λ1 < n} forms a
basis of Λn. When giving an element f̄ ∈ Λn we will usually just give a representative f ∈ Λ without further
comment.

The Hall inner product, denoted 〈., .〉 : Λ × Λ → Z, is a symmetric non-degenerate pairing defined by
〈hλ(x),mµ(x)〉 = δλµ. It induces a non-degenerate pairing 〈., .〉 : Λn × Λn → Z.

It is not too difficult to see from Theorem 2.1 that Λn
∼= H∗(G/P) and Λn ∼= H∗(G/P).

In fact the ring of symmetric functions Λ is a Hopf algebra with coproduct given by ∆(hi(x)) =
∑

j≤i hj(x) ⊗ hi(x). This Hopf-algebra structure gives Λn and Λn the structures of dual Hopf algebras.

6. Affine Schur functions and k-Schur functions

An integral orthonormal basis of Λ is given by the set of Schur functions sλ(x). We will be concerned

with a set of dual bases {s
(k)
λ (x)} of Λn and {Fλ(x)} of Λn called respectively the k-Schur functions, and

affine Schur functions or dual k-Schur functions. The k-Schur functions {s
(k)
λ (x)} were introduced in [16],

and were further studied in [13, 14]. We will give a quick “dual” definition of these functions.
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Definition 6.1. Let a = a1a2 · · · ak be a word with letters from Z/nZ so that ai 6= aj for i 6= j. Let
A = {a1, a2, . . . , ak} ⊂ [0, n− 1]. The word a is cyclically decreasing if for every i such that i, i+ 1 ∈ A, the
letter i + 1 precedes i in a. A permutation w is cyclically decreasing if w = sa1

· · · sak
for some cyclically

decreasing sequence a1a2 · · · ak.

Now define, following [10], the elements hi ∈ A0 ⊂ A : i ∈ [0, n− 1] by the formula

hi =
∑

w

Aw

where the sum is over cyclically decreasing permutations w with length l(w) = i. If I ⊂ [0, n− 1] and w be
the corresponding cyclically decreasing permutation. Then we will write AI for Aw.

Let B denote the subalgebra of A0 ⊂ A generated by the hi for i ∈ [0, n − 1], which we call the affine
Fomin-Stanley subalgebra.

Theorem 6.2 ([10]). The algebra B is commutative. It is isomorphic to the subalgebra Λn of the
symmetric functions generated by the homogeneous symmetric functions hi(x) for i ∈ [0, n − 1], under the
map ψ : hi(x) 7→ hi.

Let 〈., .〉 : A0 × A0 → Z denote the bilinear pairing defined by 〈Aw, Av〉 = δwv.

Definition 6.3 ([10]). Let w ∈ W . Define the affine Stanley symmetric functions F̃w(x) ∈ Λ by

F̃w(x) =
∑

a=(a1,a2,...,at)

〈

hat
hat−1

· · ·ha1
· 1, Aw

〉

xa1

1 x
a2

2 · · ·xat

t ,

where the sum is over compositions of l(w) satisfying ai ∈ [0, n− 1].

The (image in Λn of the) set {F̃w(x) | w ∈W 0} forms a basis of Λn (see [10]). We called these functions
affine Schur functions in [10]. They were earlier introduced in a different manner in [15], where they were

called dual k-Schur functions. The k-Schur functions {s
(k)
w (x) | w ∈ W 0} are the dual basis of Λn to the

affine Schur functions under the Hall inner product. There is a bijection w ↔ λ(w) from Grassmannian
permutations {w ∈ W 0} to partitions {λ | λ1 < n} obtained by taking the code of the permutation; see [2].

We make the identifications F̃w(x) = F̃λ(w)(x) and s
(k)
w (x) = s

(k)
λ(w)(x) under this bijection. Note that in the

terminology of [16], k = n− 1.

7. Non-commutative k-Schurs

Recall that we have an isomorphism ψ : Λn → B. Define ∆B : B → B ⊗Z B by

∆B(hi) =
∑

j≤i

hj ⊗ hi−j

and extending ∆B to a ring homomorphism. This is just the natural coproduct of the symmetric functions
as explained in Section 5. The following definition is inspired by work of Fomin and Greene [5].

Definition 7.1. Let w ∈W 0. The non-commutative k-Schur functions are given by

s(k)
w := ψ(s(k)

w (x)) ∈ B.

The main result we need concerning the non-commutative k-Schur functions is the following.

Theorem 7.2 ([10]). The non-commutative k-Schurs can be written in the Aw basis as

s(k)
w = Aw +

∑

v/∈W 0

bw,vAv

where w is a Grassmannian permutation and the second term is a summation over non-Grassmannian
permutations.
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8. The Main Theorem

Our main theorem is the following.

Theorem 8.1. The map θ : H∗(G/P) → Λn given by

θ : σw 7−→ s(k)
w (x)

is an isomorphism of Hopf-algebras. The map θ′ : H∗(G/P) → Λn given by

θ′ : σw 7−→ F̃w(x)

is an isomorphism of Hopf-algebras.

In the homology case, this theorem was a conjecture of Mark Shimozono. The conjecture in the coho-
mology case was made precise by Jennifer Morse.

We shall prove the following technical result in Section 13.

Theorem 8.2. The two coproducts ∆,∆B agree on B up to specialisation at 0:

φ0 ◦ ∆ = ∆B.

The following theorem proves half of Theorem 8.1. Recall that au,v
w are the multiplicative structure

constants of H∗(G/P).

Theorem 8.3. We have

φ0(∆(s(k)
w )) =

∑

u,v∈W 0 : l(u)+l(v)=l(w)

au,v
w s(k)

u ⊗ s(k)
v .

Note that since the k-Schur functions s
(k)
w (x) are Hall-dual to the affine Schur functions F̃w(x), The-

orem 8.3 immediately implies that multiplication of F̃w(x) in Λn agrees with the multiplication of σw in
H∗(G/P). See also the discussion in [10].

Proof. By Theorems 4.1 and 7.2, we have

∆(s(k)
w ) = ∆(Aw +

∑

v

bw,vAv)

=
∑

u,v

au,x
w Au ⊗Ax +

∑

v

bw,v

∑

y,z

ay,z
v Ay ⊗Az

The polynomials au,x
w are known to have (homogeneous) degree l(u) + l(x) − l(w), so we get

φ0(∆(s(k)
w )) =

∑

u,x

l(u)+l(x)=l(w)

au,x
w Au ⊗Ax +

∑

v

bw,v

∑

y,z

l(y)+l(z)=l(v)

ay,z
v Ay ⊗Az .

By Lemma 4.2, we may actually write

(8.1) φ0(∆(s(k)
w )) =

∑

u,v∈W 0:l(u)+l(v)=l(w)

au,x
w Au ⊗Ax + other terms.

The other terms involve Ay ⊗Az where one of y or z is not Grassmannian.

Now by Theorem 8.2, we have φ0(∆(s
(k)
w )) ∈ B ⊗Z B so we may write it as

φ0(∆(s(k)
w )) =

∑

u,x∈W 0

cu,x
w s(k)

u ⊗ s(k)
x

where cu,x
w are some integers. Using Theorem 7.2 again, we have

φ0(∆(s(k)
w )) =

∑

u,x∈W 0

cu,x
w Au ⊗Ax + other terms,

where as before the other terms involve the basis elements Ay ⊗Az where one of y or z is not Grassmannian.
Comparing with (8.1) we have cu,x

w = au,x
w , as required. �
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9. B nearly annihilates S

To prove Theorem 8.2, and also to obtain the multiplicative constants of the homology H∗(G/P) we first
prove a technical property of the Fomin-Stanley subalgebra B.

Theorem 9.1. Let b ∈ B and s ∈ S. Then

φ0(bs) = φ0(s)b.

Proof. We show that φ0(hi · αj) = 0 for each i and the theorem follows since hi generate B. Without
loss of generality we will assume that j = 1. Let I ⊂ Z/nZ be of size i. We calculate φ0(AIα1) explicitly.
In the following [2, r] is the largest interval of its form (possibly empty) contained in I which contains 2. It
is possible that [2, r] contains 0 but it cannot contain 1 (since then it will have size n). Also the subset I ′

never contains any of 0, 1, 2. The sums over a are always over a ∈ [2, r]. The (A),(B),(C) are for marking the
terms only, for later use.

I φ0(AIα1)
I ′ ∪ [2, r] −

∑

aAI−{a}(A)
I ′ ∪ [2, r] ∪ {1} 2AI−{1}(A) +

∑

aAI−{a}(C)
I ′ ∪ [2, r] ∪ {0} −AI−{0}(A) −

∑

aAI−{a}(B)
I ′ ∪ [2, r] ∪ {0, 1} −AI−{0}(C) +AI−{1}(B)

For example

A[2,r]A1A0α1

= A[2,r]A1((α1 + α0)A0 − 1)

= −A[2,r]A1 +A[2,r](−α1A1A0 + 2A0 + (α1 + α0)A1A0 −A0)

= −A[2,r]−{0} +A[2,r]−{1} + α0A[2,r]A1A0.

The At factors for t ∈ I ′ always commute in these calculations.
One observes that the terms marked (A) or (B) or (C) when grouped together cancel out. We have: (A)

corresponds to subsets J of size i− 1 such that J contains neither 1 nor 0; and (B) corresponds to subsets
J of size i− 1 such that J contains 0 but not 1; and (C) corresponds to subsets J of size i− 1 such that J
contains 1 but not 0. Every such subset in say case (A) will appear in all 3 case (A) terms. No other subsets
(those containing both 0 and 1) appear in the sum

∑

I AIα1.
For example, the subset J = [2, 4] ∪ [5, 7] will appear in φ0(AIα1) for I = [2, 7] or [1, 4] ∪ [5, 7] or

{0} ∪ [2, 4] ∪ [5, 7]. The multiplicities will be −1, 2, and −1 respectively, which cancel out.
�

10. An identity for finite Weyl groups

Let W fin be a finite Weyl group and H∗(K/T ) be the cohomology of the corresponding flag variety. Also
let w◦ denote the longest element of W fin.

Proposition 10.1. Suppose that for some coefficients {bu ∈ Z}u∈W fin the following identity holds in
ZW fin for all integral weights λ ∈ h∗

Z
∑

u∈W fin; l(u)>0

bu
∑

urαlu

〈λ, α∨〉urα = 0.

Then bu = 0 for all u.

Proof. First apply the transformation u 7→ w◦u to the identity of the Proposition. Then reindexing
the bu, we obtain

∑

u∈W fin; u6=w◦

bu
∑

urαmu

〈λ, α∨〉urα = 0

for all λ.
Let σ

(0)
u ∈ H∗(K/T ) denote the Schubert classes in the finite flag variety. By the Chevalley-Monk

formula [1] we have

[λ] · σ(0)
u =

∑

urαmu

〈λ, α∨〉σ(0)
urα

517



Thomas Lam

where [λ] ∈ H∗(K/T ) denotes the image of λ under the characteristic homomorphism S(h∗
Z
) → H∗(K/T ).

For example, if λ = ωi is a fundamental weight then [ωi] = σ
(0)
si . It is well known that σ

(0)
s1
, σ

(0)
s2
, . . . , σ

(0)
sn−1

generate H∗(K/T ) or alternatively that the characteristic homomorphism is surjective.
Suppose that [λ] · σ = 0 for some σ ∈ H∗(K/T ) and all λ ∈ h∗

Z
. If l(v) + l(u) = l(w◦) we have

σ
(0)
v · σ

(0)
u = δv,w◦uσ

(0)
w◦

. Since σ
(0)
u · σ = 0 for all u 6= id, we find that σ must be a multiple of the class σ

(0)
w◦

.

Letting σ =
∑

u buσ
(0)
u and applying the Chevalley-Monk formula we obtain the proposition. �

11. The subalgebra B′

Define a subalgebra B′ ⊂ A0 as follows:

B
′ = {a ∈ A0 | φ0(as) = φ0(s)a for all s ∈ S}.

Thus Theorem 9.1 says that B ⊂ B′. It turns out that B′ is always a commutative subalgebra for all
affine types, though we will not need such generality here.

Proposition 11.1. Let b 6= 0 ∈ B′ and write b =
∑

w bwAw with bw ∈ Z. Then bw 6= 0 for some
w ∈W 0.

Proof. Let D = {w ∈ W | bw 6= 0}. For each w ∈W we may uniquely write w = xwyw where xw ∈ W 0

and yw ∈W0. Let d = {min(l(yw)) | w ∈ D}. We write l0(w) := l(yw).
Suppose d 6= 0 and let w ∈ D minimize l0(w). Let λ ∈ S be of degree 1. Then by Lemma 3.1,

φ0(Awλ) =
∑

wrαlw 〈λ, α∨〉Awrα
. We know that w m v if and only if a reduced decomposition of v is

obtained from a reduced decomposition of w by removing a simple generator. Since w = xwyw, each such
v satisfies l0(v) ≥ l0(w) − 1. Let Dw = {v l w | l0(v) = l0(w) − 1}. Then v ∈ Dw if and only if v = xvyv

where xv = xw and yv l yw.
Now write φ0(bλ) =

∑

v b
′
vAv and focus only on the coefficients of b′v satisfying l0(v) = d−1 and v = xyv

for some fixed x ∈ W 0. If b ∈ B′ then b′v = 0. Thus in particular, for every λ ∈ S of degree 1, we have
∑

u∈W0

bxu

∑

urαlu

〈λ, α∨〉AxAurα
= 0.

Factorizing Ax to the front, we see that this is impossible by Proposition 10.1. Since this is true for all
x ∈W 0 we conclude that we must have d = 0. �

12. Peterson’s j-homomorphism

To further understand the non-commutative k-Schur functions, we require a result of Peterson. Let
ZA(S) denote the centralizer of S in A.

Theorem 12.1 ([19]). There is an isomorphism j : HT
∗ (ΩK) → ZA(S) such that

j(σ(x)) = Ax mod I

where x is a Grassmannian permutation and

I =
∑

w∈W0 ; w 6=id

A ·Aw.

Recall that W0 = Sn is the usual symmetric group.

Theorem 12.2. We have φ0(ZA(S)) = B′. More precisely, {φ0(j(σ(u))) | u ∈ W 0} forms a basis of B′

over Z.

Proof. The fact that φ0(ZA(S)) ⊂ B′ is a trivial calculation. Now let b ∈ B′. By Proposition 11.1
it contains a Grassmannian term Au with non-zero coefficient bu. By Theorem 12.1, b − buφ0(j(σ(u))) has
strictly fewer Grassmannian terms and also lies in B′. Repeating, we see that one can write b uniquely as a
Z-linear combination of the elements φ0(j(σ(u))). �

Corollary 12.3. The two algebras B and B′ are identical (as subalgebras of A0) and we have

φ0(j(σ(u))) = s(k)
u .
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Proof. This follows immediately from Theorems 12.2 and 7.2 together with Proposition 11.1: both

φ0(j(σ(u))) and s
(k)
u lie in B′ and have a unique Grassmannian term Au. �

Finally, we can complete the proof of our main theorem.

Proof of Theorem 8.1. Let x, y ∈ W 0. If σ(x)σ(y) =
∑

z∈W 0 czx,yσ(z) in HT (G/P) then σxσy =
∑

z∈W 0 φ0(c
z
x,y)σz in H∗(G/P). Thus B = B′ is isomorphic to H∗(G/P) and we have

s(k)
x s(k)

y =
∑

z∈W 0

φ0(c
z
x,y)s(k)

z .

This, together with Theorem 8.3 shows that θ and θ′ are both algebra and co-algebra homomorphisms. The
agreement of the remainder of the Hopf algebra structures is straightforward to verify. �

13. Proof of Theorem 8.2

We now return to the proof of Theorem 8.2. It will follow quickly from the following computation.

Proposition 13.1. We have

φ0(∆(hi)) =
∑

j

hj ⊗ hi−j

Proof. Let βi = −αi be the negative simple roots. We use ∆(Ai) = Ai ⊗ 1 + 1 ⊗Ai +Ai ⊗ βiAi.
Let i1, i2, . . . , il be a cyclically decreasing sequence. Thus

∆(Ai1Ai2 · · ·Ail
) =

∏

j ∆(Aij
)

= (Ai1 ⊗ 1 + 1 ⊗Ai1 +Ai1 ⊗ βi1Ai1 ) · · · (Ail
⊗ 1 + 1 ⊗Ail

+Ail
⊗ βil

Ail
)

Let us expand the product, by picking one of the three terms in each parentheses. (Strictly speaking we
cannot multiply within A ⊗S A, instead we are calculating the action of A on A ⊗S A via the coproduct:
∆(Ai) · (∆(Aj) · (1 ⊗ 1)) = ∆(AiAj)).

Because of the cyclically decreasing assumption, the only times we encounter a factor looking like Aia
βib

(where a < b) we have either

(13.1) Aia
βib

= βib
Aia

or we will have a = b− 1 and ia+1 = ia − 1 and

(13.2) Aia
βia−1 = (βia−1 + βia

)Aia
+ 1.

If (13.1) ever occurs, then βib
commutes with all Aic

where c < b and we may ignore the term since eventually
we will apply φ0. Similarly, if (13.2) occurs, the contribution of the term involving βia−1 is 0 after applying
φ0.

Also we perform the calculation

(13.3) Ai+1(βi)
m = βm

i+1Ai+1 + βm−1
i+1 + other terms,

where the other terms involve βi on the left somewhere (and would be killed by φ0 later).
Let B and C be two subsets of [0, n− 1] with total size equal to k ≤ n− 1. We will first describe how to

obtain the term AB ⊗AC (which occurs in h|B| ⊗ h|C|) from ∆(hk). Define a sequence of integers (“current
degree”) (cd(i) : i ∈ Z/nZ) by cd(i) = maxt{|I ∩ [i − t, i]| + |J ∩ [i− t, i]| − t− 1}. Since |B| + |C| < n we
can find i so that cd(i) = 0 and i /∈ B ∪C.

We may assume that i = 0. Let B = (b1 > · · · > bg) and C = (c1 > · · · > ch). Define a sequence
(t1, t2, . . . , tn−1) ∈ {L,R,B,E}n−1 as follows (E = empty, L = left, R = right and B = both):

ti =



















E if cd(i) = 0 and E /∈ B ∪ C

L if cd(i) = 0 and E ∈ B but E /∈ C

R if E /∈ B and (cd(i) > 0 or E ∈ C)

B otherwise.

Now let I = {i ∈ [1, n− 1] | t 6= E} ⊂ [1, n− 1]. Then AB ⊗AC is obtained from ∆(AI) by picking the term
Ais

⊗ 1 if tis
= L, the term 1 ⊗Ais

if tis
= R and Ais

⊗ βis
Ais

if tis
= B.
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The sequence of integers (cd(i)) tells us the current degree (in the second factor of the tensor product)
in S of the term that we want to pick whenever we encounter the situation of (13.3).

For example if cd(t) = 3 and cd(t + 1) = 3 then t + 1 ∈ B or t + 1 ∈ C. In the first case we will have
(At+1 ⊗ 1) · (a ⊗ β3

i b), for some a and b not involving S, and there is no further choice. In the second case
we get

(1 ⊗At+1) · (a⊗ β3
i b) = a⊗ (β3

i+1At+1 + β2
i+1)b,

modulo terms involving βi on the right. One must make a further choice between β3
i+1At+1 and β2

i+1. We
pick the first term since we want t+ 1 ∈ C and this agrees with the degree being cd(t+ 1) = 3.

Thus every term of the form AB ⊗ AC appears in the expansion of φ0(∆(hi)). Conversely, one can
reverse the description given above to see that every term in the expansion is indeed of that form. �

Proof of Theorem 8.2. From Proposition 13.1, we have ∆B(hi) = φ0(∆(hi)). Now let a ∈ B and b ∈
B and suppose we have shown that ∆B(a) = φ0(∆(a)) and ∆B(b) = φ0(∆(b)). Let ∆(a) =

∑

w,v Aw⊗aw,vAv

and ∆(b) =
∑

x,y Ax ⊗ bx,yAy, where aw,v, bx,y ∈ S. Then

φ0(∆(ab)) = φ0(∆(a)∆(b))

= φ0(
∑

w,v,x,y

AwAx ⊗ aw,vAvbx,yAy)

=
∑

w,v,x,y

AwAx ⊗ φ0(aw,v)Avφ0(bx,y)Ay by Theorem 9.1.

= φ0(∆(a))φ0(∆(b))

= ∆B(a)∆B(b)

= ∆B(ab).

Since the hi generate B this completes the proof. �
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An algorithm to describe bijections involving Dyck paths

Yvan Le Borgne

Abstract. We use an algorithm to define bijections involving Dyck paths. This algorithm is parametrized
by rewriting rules and is similar to the derivation of a word in a context-free grammar. The bijections are
variations of a classical one which is based on the insertion of a peak in the last descent. A systematic
study of the algorithms parametrized by a single rewriting rule leads to 6 bijections, taking into account
a trivial symmetry. We obtain 6 classical or new parameters on Dyck paths, which are distributed as the
length of the last descent. We have a description for 5 of these parameters. We present additional bijections
appearing in several combinatorial contexts that can be defined by generalizations of the initial algorithm.

Résumé. On utilise un algorithme pour définir des bijections impliquant les chemins de Dyck. Cet algorithme
est paramétré par des règles de réécriture et est proche de la dérivation d’un mot dans une grammaire

algébrique. Les bijections sont des variations de la construction classique des chemins de Dyck par l’insertion
d’un pic dans la dernière descente. Une étude systématique des algorithmes paramétrés par une seule règle
de réécriture permet d’identifier essentiellement 6 bijections. De chacune de ces bijections on déduit un
paramètres classique ou nouveau dont la distribution est identique à celle de la longueur de la dernière
descente. On donne une description de 5 de ces 6 paramètres. On présente d’autres bijections définissables
par des généralisations de cet algorithme et utilisées dans divers contextes combinatoires.

Introduction

The Catalan numbers ( 1
2n+1

(

2n+1
n

)

)n≥0 = 1, 1, 2, 5, 14, 42, 129, . . . define a sequence which occurs as the
counting sequence of more than one hundred classes of combinatorial objects: ordered trees, binary trees,
triangulations of polygons, Dyck paths . . . (see Exercises 6.19 and 6.25 in [8] and its periodic update on
the web). This sequence is also the expansion of an algebraic power series C(t) that satisfies the functional
equation C(t) = 1 + tC(t)2. This equation is usually reflected on these combinatorial classes as a recursive
decomposition of any object into two independent and smaller objects of the same class, if any smaller.
Providing such a decomposition as regards a class usually proves that the counting sequence of this class
is the Catalan sequence. Another way to fix this counting sequence consists of defining a bijection, which
preserves the size of objects, between this class and another one counted by the Catalan sequence (see [2] for
a more general discussion). Once the counting sequence has been computed, there often remain enumerative
and open problems about the class: one wants to take into account not only the size of the objects, but
also additional parameters. For example, in the case of two additional parameters, we need to obtain some
information on the generating function

C(t; u, v) =
∑

n,i,j≥0

cn(i, j)uivjtn

where cn(i, j) is the number of objects of size n for which these two parameters equal i and j respectively.
The usual decomposition of the objects may not fit well with the additional parameters. In such a case, we
have to find either a new decomposition or a bijection that translates these objects and their parameters
into other objects with more tractable parameters. In the literature, this kind of problem motivates many
bijections between the various combinatorial interpretations of the Catalan sequence.

2000 Mathematics Subject Classification. Primary 05A15.
Key words and phrases. Enumeration, Dyck paths, Bijections.
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The main aim of this extended abstract is not to solve a particular enumerative problem, but to propose
a common framework describing some of these bijections. In an enumerative context we require that these
bijections induce one-to-one maps when restricted to objects of any fixed size. Thus, there are 1!1!2!5!14!42!
different restrictions of bijections to objects of size less than 5 between two classes counted by the Catalan
sequence. But bijections of practical use in combinatorics are not so arbitrary. We want to define a subset
B of these bijections satisfying the following (informal) condition. The set B should be expressive: it
contains many bijections already present in the literature and many parameters with classical distributions
are preserved or translated. The bijections of B should admit a uniform description, without too many ad

hoc definitions. We formalize the notion of uniform description for maps between two classes C and D. A
uniform description will be a ordered pair (P , F ) where P is a set whose elements are called “programs”, and
F is a map between P × C and D such that for any p ∈ P and c ∈ C, the size of c is the size of F (p, c) ∈ D.
We denote by M the set of maps {F (p, .)|p ∈ P} that is the set of the partial evaluations of F on its first
argument. By definition, B is the set of the one-to-one maps in M. With this uniform description, we could
formulate some additional wishes. For any program p ∈ P , we could check if F (p, .) is a bijection. Given a
partial map m between a finite subset C ⊂ C and D, we could efficiently compute, if any, at least one (or all)
of the programs p compatible on C with m. Given finite subsets C and D of C and D respectively and two
families of parameters on C and D respectively, we could also efficiently compute, if any, the programs in P
that translate the size and the additional parameters when restricted to C and D. This is the end of the
dream. Our modest attempt in this extended abstract is a relatively expressive set, as regards the length of
the last descent and the area of Dyck paths. The description and the proofs are also relatively uniform. The
last two properties (identify a description or guess a bijection preserving parameters) are not even discussed
here.

In this extended abstract, we restrict the study to maps between two classes counted by the Catalan
sequence: almost decreasing sequences and Dyck paths/words which stand for the classes C and D respec-
tively. The latter class is very often used as the image set of a bijection, to prove that a class admits an
algebraic recursive decomposition. The former class appears in a classical recursive step-by-step construc-
tion of Dyck paths, obtained by inserting a new peak in the last descent. In Section 1 we propose a first
uniform description (P , F ) for maps between almost decreasing sequences and Dyck paths. These maps are
variations of the step-by-step construction of Dyck paths. The definition of F is an algorithm similar to
the derivation of a word in a context-free grammar. This algorithm is parametrized by certain rewriting
rules called insertion modes. P is the set of these insertion modes. In Section 2, we study all maps that are
defined by the algorithm parametrized by a single insertion mode. Among the 210 = |P| possibilities, we
prove that 32 code bijections. Actually, some of these bijections are identical, and we only obtain 12 = |B|
distinct bijections. We deduce from this study classical and new parameters that have the same distribution
on Dyck paths as the length of the last descent. Another such a systematic study was made in [9], but
the approach was to define a set of parameters with the appropriate (Narayana) distribution, then to find
bijections, whereas here, we define a set of bijections and then identify the parameters. In Section 3, we
present generalizations of the algorithm that allow us to describe relevant bijections in several combinatorial
contexts: a description of the Haiman statistic on Dyck paths and a combinatorial interpretation of the
calculations involved in the kernel method.

This work summarizes a chapter of the author’s PhD thesis [7].

1. An insertion algorithm

In this section, we define almost decreasing sequences and Dyck paths. We recall a classical bijection
between these objects. Then we introduce some labelings of Dyck paths and some rewriting rules for these
labels, which we respectively call Dyck buildings and insertion mode. Finally we present an algorithm
parametrized by a single insertion mode that generalizes the classical bijection. This allow us to define the
uniform description (P , F ) systematically studied in Section 2.

Let w be a word. By definition, the letter a occurs |w|a times in w. We denote the empty word by ε. A
word w over the alphabet X ≡ {x, x} is a Dyck word if |w|x = |w|x and for any prefix u of w, |u|x ≥ |u|x.
The size of the Dyck word w is the number |w|x. A Dyck path is a walk in the plane, that starts from the
origin, is made up of rises, i.e. steps (1, 1), and falls, i.e. steps (1,−1), remains above the horizontal axis
and finishes on it. The Dyck path related to a Dyck word w is the walk obtained by representing a letter x
by a rise, and a letter x by a fall, see Figure 1. In the rest of the paper we identify the two notions, denoting
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Figure 1. A Dyck path with its Dyck word w and its canonical almost decreasing sequence s.

them both w. A vertex in a Dyck path w is the origin of the plane or an endpoint of a step in w. In terms
of Dyck words, a vertex corresponds to a factorization w = uv where u is the subwalk between the origin
and the vertex while v is the remaining subwalk. A peak is a vertex preceded by a rise and followed by a
fall. A sequence of n non-negative integers s = (sk)k=1...n is an almost decreasing sequence if s1 = 0 and for
all k < n, sk+1 ≤ 1 + sk. The empty sequence, denoted ∅, is an almost decreasing sequence.

The height of a rise is the ordinate of its starting vertex. We map a Dyck path to the sequence of
the heights of its rises which is an almost decreasing sequence. We call this sequence the canonical almost
decreasing sequence of this Dyck path since the map is a classical bijection. We recall a recursive step-by-step
definition of the reverse of this map that we illustrate in Figure 1. We assume that we have already fixed
that s is mapped to w. We want to define the image wi of the almost decreasing sequence s, i obtained from
s by the appending of the non-negative integer i. In Figure 1, the canonical sequence s ends with the value
2. Therefore, the possible values for i are 3, 2, 1, or 0. These are exactly the values not bigger than the
height of the rightmost peak of w. This fact is a property called (P ) of the bijection. The Dyck path wi is
obtained from w by an insertion of a factor xx in vi, which is the rightmost vertex of w at height i. This
insertion induces that the rightmost peak of wi is the peak in the inserted factor xx thus this peak is at
height i + 1. This corresponds to the property (P ) for wi. This leads to the following step-by-step definition
of the image of an almost decreasing sequence s of size n: starting from the empty path ε, insert a factor xx
in the rightmost vertex at height sk for k running from 1 to n.

To generalize this kind of step-by-step definition of a map, we use some labels in the Dyck words to
indicate where a rise and a fall should be inserted in the path mapped to s to obtain the word image of s, i.
Consider the (infinite) alphabet L =

⋃

0≤k{k, k}. The letters k ∈ N will be called rising labels of index k

while the letters k will be called falling labels of index k. Let L(N) =
⋃

0≤k≤N{k, k}. Given an alphabet

A, the projection πB over the alphabet B ⊆ A is the morphism defined on the letters by πB(a) = a if
a ∈ B and πB(a) = ε otherwise. A word w over the alphabet X ∪ L is a Dyck building if πX(w) is a Dyck
word, and there exists a non-negative integer K, the rank of w, such that |w|k = |w|k = 1 for k ≤ K and
|w|k = |w|k = 0 otherwise. See examples on Figure 3. When a sequence l1, l2 . . . li of labels occurs between
two letters x or x, we represent them, on the corresponding vertex of the Dyck path, by a stack of labels
where l1 is at the bottom and li at the top. In our construction, the labels of index i in a Dyck building
indicate where to insert the rise and the fall when we read the value i in the almost decreasing sequence.

A step-by-step definition of these insertions requires updates of the labels during each insertion to prepare
the following insertions. We use rewriting rules to describe these updates. The set G = {A, A, B, B} is the
alphabet of generic labels. A ordered pair m = (u, v) of words over the alphabet X ∪G is an insertion mode

if all the letters of X ∪G occur exactly once in uv, x occurs in u, x occurs in v, A occurs before A in uv and
B occurs before B in uv. For instance, the pair (BxAB, xA) is an insertion mode. The substitution of all
occurrences of the letter a by the word u in the word w is denoted w[a := u]. Two substitutions performed
in parallel are denoted by w[a := u, b := v] whereas a sequence of substitutions, first of the occurrences of
a and then of the occurrences of b, is denoted w[a := u][b := v]. For example, abc[a := bb, b := c] = bbcc
and abc[a := bb][b := c] = cccc. The insertion is a map ρ with three arguments: a Dyck building w, an
insertion mode m = (u, v) and a value k in an almost decreasing sequence. This triplet is mapped to the
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Dyck building
ρk

m(w) = w[k := u, k := v][A := k, A := k, B := k + 1, B := k + 1]

also called the result of the insertion according to m of the value k in w.
Repeating this procedure, with a fixed insertion mode m, for all values of an almost decreasing sequence

leads to the algorithm on Figure 2 where comments are enclosed by /∗ and ∗/.

Input: An almost decreasing sequence s = (sk)k=1...n

Parameter: An insertion mode m
w0 := 00; /* Start from the “empty” building containing only labels */
For k from 1 to n do
– w′

k := πX∪L(sk)(wk−1); /* Erase in w the labels of index greater than sk */
– wk := ρsk

m (w′
k); /* Insert x and x in w at the location of the labels sk and sk

– wk := ρsk

m (w′
k); /* then update locally the labels of indexes sk and 1 + sk */

done;
Output: πX(wn); /* Erase all the labels to obtain a Dyck word */

Figure 2. Step-by-step algorithm with a single insertion mode

The word output by the algorithm with the almost decreasing sequence s as input and the insertion
mode m as parameter is denoted Υm(s).

Example 1.1. In Figure 3, we trace the algorithm during the computation of Υ(BABx,Ax)(0, 1, 1, 2, 3, 1, 2).

In terms of words :

w0 = 00

−→0 w1 = 101x0x

−→1 w2 = 212x01xx0x

−→1 w3 = 212xx01xxx0x

−→2 w4 = 323x12xxx01xxx0x

−→3 w5 = 434x23xx12xxx01xxx0x

−→1 w6 = xxx212xxxx01xxxx0x

−→2 w7 = xxx323x12xxxxx01xxxx0x

Output: xxxxxxxxxxxxxx

In terms of paths:

0
0

1
0
1 0 00

1

2
1
2 0

0
1

2
1
2

−→0 −→1 −→1

0

0
1

1
2

3
2
3

0

0

1

1
2

2
3

4
3
4

−→2 −→3

0

0
1

2
1
2

0

0
1

1
2

3
2
3

−→1 −→2

Figure 3. An example of uniform insertion according to (BABx, Ax)

First, we check that this algorithm has an expected behavior:

Lemma 1.2. For any insertion mode m, the transformation Υm maps almost decreasing sequences of

size n to Dyck words of size n.

Proof. For the smallest objects, Υm(∅) = ε and Υm(0) = xx. For longer sequences there is an invariant
in this algorithm: after k loops (k ≥ 1), w is a Dyck building of rank sk + 1 in which πX(w) is a Dyck word
of size k and any rising label i appears before the falling label i. The constraints of order on the generic
labels in the definition of insertion modes implies that this invariant is preserved.

�
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If P denotes the set of insertion modes and F is defined by F (m, s) = Υm(s), Lemma 1.2 proves that
the ordered pair (P , F ) is a uniform description.

2. A systematic study of insertion modes

There are only finitely many programs in the uniform description (P , F ) defined in Section 1. We count
them. Then we show that certain transformations on insertion mode produces maps Υm = F (m, .) that are
either equal, or equivalent through a very simple involution. Then, with the help of the computer, we list
counter-examples for maps Υm that are not one-to-one, and, with a pen and a paper, we prove that the
remaining maps are bijections. Thus we fix the set B of 12 bijections defined by this uniform description.
A trivial symmetry on Dyck paths relates each bijection to another one, so we obtain only 6 significantly
distinct bijections. Each bijection in B is related to a parameter on Dyck path with the same distribution
as the length of the last descent. We provide a description for 5 of these 6 parameters which are sometimes
classical sometimes new.

2.1. Relations between insertion modes. If we consider the comma as a letter in an insertion mode,
there are seven different letters in an insertion mode. Since we independently impose that A appears before
A, B before B and x, , , x in this order, there are 7!/(2! ∗ 2! ∗ 3!) = 210 = |P| insertion modes.

2.1.1. Insertion modes defining the same maps. We define three relations of equivalence on insertion
modes. Let m1 = (u1, v1) and m2 = (u2, v2) be two insertion modes. These modes are rising-equivalent,
m1 ≡rise m2, if there exists Y ∈ {A, B} such that m1 = (Y x, v) and m2 = (xY, v). They are falling-

equivalent, m1 ≡fall m2, if there exists Y ∈ {A, B} such that m1 = (u, Y x) and m2 = (u, xY ). These two

modes are peak-equivalent, m1 ≡peak m2, if u1v1 = u2v2 and AA, BB are factors of u1v1.

Lemma 2.1. Two insertion modes m1 and m2 that are either rising, falling or peak-equivalent, define

the same map Υm1
= Υm2

.

Proof. Let m1 and m2 be two insertion modes, s an almost decreasing sequence of n integers. We denote
(w1

k)k=1...n, respectively (w2
k)k=1...n, the sequence of Dyck buildings (wk)k=1...n obtained in the algorithm

when the input is s and the parameter m1, respectively m2.
• First we assume that m1 and m2 are rising-equivalent (m1 ≡rise m2). The key observation is that

when m1 corresponds to an insertion of a rise at the beginning of a sequence of rises xj , m2 corresponds to
an insertion of a rise at the end of the same sequence of rises, leading to the same Dyck word. Formally, we
define an equivalence ≡r over Dyck buildings as the symmetric and transitive closure of the relation −→r

that corresponds to the commutation of a rising label i and the rise at its right : u.x.i.v −→r u.i.x.v. To
prove that w1

k ≡r w2
k, we will prove the following stronger fact: given the Dyck buildings w and w′ such

that w −→r w′, the insertions of the value i in w and w′ according to the modes m1 or m2, leads to four
equivalent Dyck buildings:

ρi
m1

(πX∪L(i)(w)) ≡r ρi
m2

(πX∪L(i)(w)) ≡r ρi
m1

(πX∪L(i)(w
′)) ≡r ρi

m2
(πX∪L(i)(w

′)).

Since w −→r w′, there exists a label j in w and w′ such that w = u′.j.x.u′′ and w′ = u′.x.j.u′′. We discuss
according to the relative values of i and j:

j > i The rising label j is erased by πX,L(i) so πX,L(i)(w) = πX,L(i)(w
′). The insertion according to

m1 (respectively m2) leads to v.(i.x).v′ (respectively v.(x.i).v′). These two buildings are clearly
equivalent.

j = i We write w = u.i.x.u′ and w′ = u.x.i.u′. We observe that

ρi
m1

(πX∪L(i)(w)) = u.(i.x).x.v′ −→r ρi
m2

(πX∪L(i)(w)) = u.(x.i).x.v′

= ρi
m1

(πX∪L(i)(w
′)) = u.x.(i.x).v′ −→r ρi

m2
(πX∪L(i)(w

′)) = u.x.(x.i).v′

where v′ = ρi
m1

(u′) = ρi
m2

(u′) by definition of ≡rise.
j < i We assume that w = u.j.x.u′.i.u′′ and w′ = u.x.j.u′.i.u′′. We observe that

ρi
m1

(πX∪L(i)(w)) = u.j.x.u′.(i.x).v′′ −→r ρi
m2

(πX∪L(i)(w)) = u.j.x.u′.(x.i).v′′

−→r ρi
m2

(πX∪L(i)(w
′)) = u.x.j.u′.(x.i).v′′ −→r ρi

m1
(πX∪L(i)(w

′)) = u.x.j.u′.(i.x).v′′

where v′′ = ρi
m1

(u′′) = ρi
m2

(u′′) by the definition of ≡rise. The careful reader will check that the
relative positions of the rising labels i and j do not perturb the proof.
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For k = 0, the assumption w1
0 ≡r w2

0 is satisfied since w1
0 = 00 = w2

0 . By induction, for all k ≤ n,
w1

k ≡r w2
k and in particular for k = n. Since the projection over the alphabet X is the same for two buildings

≡r-equivalent :
Υm1

(s) = πX(w1
n) = πX(w2

n) = Υm2
(s).

• If m1 ≡fall m2, the proof of Υm1
= Υm2

is symmetric to the previous one.
• We assume that m1 = (u1, v1) and m2 = (u2, v2) are peak-equivalent (m1 ≡peak m2). We check by

induction on k that w1
k = w2

k and that the labels of index i, if they appear, appear as the factor ii. This
assumption is satisfied for k = 0 since w1

0 = 00 = w2
0 . We suppose that it is satisfied for k−1. Since sksk is a

factor of w1
k−1 = w2

k−1, the rewriting induced by sk corresponds to the insertion at the same place, in terms

of generic labels, of u1.v1 respectively u2.v2 which are equal by the definition of ≡peak. Thus w1
k = w2

k.

Moreover, AA and BB are factors of u1v1 = u2v2 so sksk and sk+1sk+1 are factors of w1
k = w2

k. For any

index i < sk, ii remains a factor of w1
k = w2

k since the insertion in w1
k−1 = w2

k−1 does not insert anything

between the occurrence of i and i. �

2.1.2. Two symmetries on insertion modes. The reflexion according to the vertical axis defines a natural
involution over Dyck paths. We generalize this mapping to words over an alphabet L ∪ L ∪ K. Let w be a
word, the mirror word mir(w) of w is recursively defined by mir(ε) = ε, for l ∈ L, mir(l.w′) = mir(w′).l, for

l ∈ L, mir(l.w′) = mir(w′).l and for k ∈ K, mir(k.w) = mir(w′).k. Let m = (u, v) be an insertion mode,
the mirror insertion mode is mir(m) = (mir(v), mir(u)). The exchange of the (generic) labels of indexes A
and B leads to the notion of exchanged insertion mode :

exc(m) = (u[A := B, B := A, A := B, B := A], v[A := B, B := A, A := B, B := A]).

Let s = (sk)k=1...n be a sequence of n integers and i ∈ N; by definition the sequence t = s ⊕ i is such
that tk = sk + i for all k = 1 . . . n. An almost decreasing sequence s admits a single decomposition

s = 0, t1 ⊕ 1, t2

where t1 and t2 are almost decreasing sequences. (t1 ⊕ 1 is the sequence of integers before the second 0 of s,
which is the beginning of t2, if any.) We use this decomposition to recursively define a map exc over almost
decreasing sequences : exc(∅) = ∅ and exc(0, t1 ⊕ 1, t2) = 0, exc(t2) ⊕ 1, exc(t1). An inductive proof shows
that this map exc is indeed an involution since

exc(exc(s)) = exc(0, exc(t2) ⊕ 1, exc(t1)) = (0, exc(exc(t1)) ⊕ 1, exc(exc(t2))) = (0, t1 ⊕ 1, t2) = s.

The canonical bijection between almost decreasing sequences and Dyck paths relates the involution exc to
an involution on Dyck paths already considered in [4]. These transformations of insertion modes, almost
decreasing sequences and Dyck paths define relations between maps Υm:

Lemma 2.2. For any insertion mode m,

mir ◦ Υm = Υmir(m)

and

Υm ◦ exc = Υexc(m).

Proof. Let s be an almost decreasing sequence of n integers and let (wk)k=1...n the sequence of buildings
constructed by the algorithm computing Υm(s).

•mir ◦ Υm = Υmir(m): Let (w′
k)k=1...n be the sequence of buildings when the algorithm computes

Υmir(m)(s). We check by induction on k that w′
k = mir(wk). Thus mir ◦ Υm(s) = Υmir(m)(s).

•Υm◦exc = Υexc(m): Let u be a non-empty word on the alphabet X∪G. We denote by Υu
m(s) the result of

the algorithm when s is any sequence of non-negative integers, and the initial value w0 is the word u. Since the

labels are not moved in the buildings (wk)0≤k≤n while not erased, we have Υm(s) = Υ00
m (s) = Υ0

m(s).Υ0
m(s).

Moreover the insertion mode does not depend on the index of the labels so Υ0
m(s) = Υ1

m(s ⊕ 1).
We now check by induction on the length of the almost decreasing sequence s that Υ0

m(exc(s)) =

Υ0
exc(m)(s) and Υ0

m(exc(s)) = Υ0
exc(m)(s). For the empty sequence ∅, Υ0

m(exc(∅)) = ε = Υ0
exc(m)(∅) and

Υ0
m(exc(∅)) = ε = Υ0

exc(m)(∅). A non-empty sequence s satisfies s = 0.t1 ⊕ 1.t2 and exc(s) = 0.exc(t2) ⊕

1.exc(t1). The insertion mode m is written m = (u, v). By definition

Υ0
m(exc(s)) = u[0 := Υ0

m(exc(t1)), 1 := Υ1
m(exc(t2) ⊕ 1), . . .]
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where . . . denotes an expression for the falling labels similar to the one for rising labels that appears before the

comma. Here for example, . . . replace 0 := Υ0
m(exc(t1)), 1 := Υ1

m(exc(t2)⊕ 1). By the induction hypothesis,
Υ0

m(exc(t1)) = Υ0
exc(m)(t1) and Υ1

m(exc(t2) ⊕ 1) = Υ0
m(exc(t2)) = Υ0

exc(m)(t2) and so we have

Υ0
m(exc(s)) = u[0 := Υ0

exc(m)(t1), 1 := Υ0
exc(m)(t2), . . .].

By definition exc(m) = (u, v)[A := B, B := A, . . .] and so,

Υ0
exc(m)(s) = u[0 := 1, 1 := 0, . . .][0 := Υ0

exc(m)(t2), 1 := Υ1
exc(m)(t1 ⊕ 1), . . .],

Υ0
exc(m)(s) = u[1 := Υ0

exc(m)(t2), 0 := Υ1
exc(m)(t1 ⊕ 1), . . .].

Since Υ1
exc(m)(t1 ⊕ 1) = Υ0

exc(m)(t1) we conclude that

Υ0
exc(m)(s) = u[1 := Υ0

exc(m)(t2), 0 := Υ0
exc(m)(t1), . . .] = Υ0

m(exc(s)).

A symmetric proof holds for Υ0
exc(m)(s) = Υ0

m(exc(s)). The two equalities lead to

Υm(exc(s)) = Υ0
m(exc(s))Υ0

m(exc(s)) = Υ0
exc(m)(s)Υ

0
exc(m)(s) = Υexc(m)(s).

�

2.2. 210 insertion modes. We have written a computer program that computes Υm(s) in a sensible
amount of time for all insertion modes and all almost decreasing sequences of length at most 11.

2.2.1. The 178 insertion modes inducing non-injective maps. For 178 insertion modes the program gives
a pair of distinct almost decreasing sequences s and s′ such that Υm(s) = Υm(s′). Each of these counter-
examples implies that the given Υm is not one-to-one. Remarkably, these counter-examples have length at
most 3. We do not reproduce them here. The study of these maps may be of combinatorial interest since
the generating functions of the Dyck paths in the images seem to be well known (i.e. present in the Sloane
encyclopedia of integer sequences).

2.2.2. The 32 insertion modes inducing one-to-one maps. For the remaining 32 insertion modes, the
program shows that there are no counter-examples involving almost decreasing sequences of length shorter
than 11. We have to prove ”by hand” that these modes induce bijections. Using Lemma 2.1, we identify
modes that define the same map. Moreover, Lemma 2.2 indicates modes related by the involutions mir on
Dyck paths or exc on almost decreasing sequences. Finally we obtain a partition of the 32 modes into three
classes, see Figure 4.

In each class, the equivalences and symmetries preserve the fact that the mode induces or not a bijection.
So we merely have to show that one mode in the class induces a bijection to conclude that all modes in the
class induce bijections.

Theorem 2.3. For any insertion mode m in
{

(xBB, xAA), (ABBx, xA), (BABx, Ax)
}

, the map Υm

is a size-preserving bijection between almost decreasing sequences and Dyck paths.

The almost decreasing sequence s = 0, 0, 1, 0, 0, 1 is mapped to 12 distinct Dyck paths by the 12 bijections.
Thus we have the following corollary :

Corollary 2.4. The 32 insertion modes in Figure 4 define 12 different bijections.

Proof. (of Theorem 2.3) All proofs follow the same scheme. For an insertion mode m, the first key
element of the proof is a conjectured labeling map fm which maps a Dyck path w into a Dyck building
fm(w). Roughly speaking, the map fm recovers the labels erased by πX in the last step of the algorithm.
Then we are able to recover from fm(w) the last value of the almost decreasing sequence and the last two
steps inserted in the path during the algorithm. This is only true because the mode m = (u, v) is locally

reversible : u and v both contain at least one generic label. 1 Thus an induction on the size of the Dyck
paths allows us to compute the reverse map of Υm.

Given an almost decreasing sequence of n elements we denote Υ+
m(s) the last building wn produced by

the algorithm at the end of the For-loop. Thus the output is Υm(s) = πX(Υ+
m(s)). Our induction hypothesis

is that for any Dyck path v of size n, there exists a unique almost decreasing sequence s = s1 . . . sn such
that Υm(s) = v and Υ+

m(s) = fm(v).

1The mode (x, BBxAA) is an example of a not locally reversible mode.
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(xBB, xAA)
≡peak (x, BBxAA)

≡peak (xB, BxAA)

≡rise (Bx, BxAA)

⇐⇒ exc



















(xAA, xBB)
≡peak (x, AAxBB)

≡peak (xA, AxBB)

≡rise (Ax, AxBB)
mmir mmir

















(AAx, BBx)
≡peak (AAxBB, x)

≡peak (AAxB, Bx)

≡fall (AAxB, xB)

⇐⇒ exc



















(BBx, AAx)
≡peak (BBxAA, x)

≡peak (BBxA, Ax)

≡fall (BBxA, xA)

{

(ABBx, xA)

≡fall (ABBx, Ax)
⇐⇒ exc

{

(BAAx, xB)

≡fall (BAAx, Bx)
mmir mmir

{

(Ax, xBBA)
≡rise (xA, xBBA)

⇐⇒ exc

{

(Bx, xAAB)
≡rise (xB, xAAB)

{

(BABx, Ax)
≡fall (BABx, xA)

⇐⇒ exc

{

(ABAx, Bx)
≡fall (ABAx, xB)

mmir mmir
{

(xA, xBAB)
≡rise (Ax, xBAB)

⇐⇒ exc

{

(xB, xABA)
≡rise (Bx, xABA)

Figure 4. The 32 insertion modes inducing bijections

Let u be a Dyck path of size n + 1, we look for s = s1, . . . sn, sn+1 such that Υm(s) = u. We want
fm(u) = Υ+

m(s) and the rank of Υ+
m(s1, . . . sn, sn+1) is sn+1 + 1 thus necessarily sn+1 = r − 1 where r is

the rank of fm(u). Since m is locally reversible, we identify in fm(u) the unique rise and fall that may be

inserted during the n + 1th loop. We remove these steps in fm(u) and consider the projection v over X
which is a Dyck path of size n. The induction hypothesis gives us an almost decreasing sequence sv such
that v = Υm(sv) and Υ+

m(sv) = fm(v). The unique possibility for s is (sv, r− 1). It remains to check that it
works. During the computation of Υm(s) the first n loops are similar to those of the computation of Υm(sv)
thus un = vn = Υ+

m(v) = fm(v) and so Υ+
m(s) = ρr−1

m (πX∪L(r−2)(fm(v))). The only equality to check is

ρr−1
m (πX∪L(r−2)(fm(v))) = fm(u).

We prove this identity only for the first insertion mode, the other cases are similar and left to the reader
in this summary. We focus on the simplest case: the canonical bijection. We do so to avoid technical details
that the reader can find in [7] and to bring the essential steps into focus.

The labeling map fm for the insertion mode m = (ABBx, xA) will be denoted fdescent : the rank r of

fdescent(u) is the height of the rightmost peak in u and, for i ≤ r, the factors ii are inserted in the rightmost
vertex of height i to produce fdescent(u) (see Figure 6).

We assume that u is a Dyck word of size n+1 and that the induction hypothesis is satisfied for paths of
size n. Figure 5 illustrates the proof. From fm(u), the rank r is the height of the rightmost peak. The path v
is obtained by deleting the rightmost rise and the next fall. The reverse operation is the insertion of a factor
xx in the rightmost vertex V in v at height r − 1. In fm(v), this vertex V contains the factor r − 1r − 1
implying u = Υm(sv, r−1). Now we check that fm(v) is converted into fm(u) when we insert steps according
to m and the value r − 1. Labels of indexes greater than r − 1 in fm(v) are erased in πX∪L(k−1)(fm(v))
and by definition there is no label greater than r in fm(u). According to m, labels of index r appear in the
new rightmost peak of u and labels of index r − 1 in the following vertex, coinciding with the labels in the
rightmost vertices at height r and r − 1 in fm(u). Since the suffix xr−1 of v is also a suffix of u after the
insertion, labels of index i < r − 1 coincide with those of fm(u).
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Figure 5. ρr−1
m (πX∪L(r−2)(fm(v))) = fm(u) for m = (xBB, xAA) and r = 4

The labeling map for (ABBx, xA) is denoted faxis. The rank r of faxis(u) is the number of falls ending

on the horizontal axis. For i < r, the falling label i is inserted in the vertex next the (r − i)th fall ending on
the horizontal axis. We insert the factor 01 . . . rr in the first vertex of the path. See Figure 6.

The labeling map for (ABBx, xA) is denoted fumbrella. A descent in the Dyck path u is a maximal
sequence of falls. We associate to each descent of k falls an umbrella of size k that is the smallest factor of
u containing the k falls of the descent and the k preceding rises in u. The center of an umbrella is the peak
preceding the k last falls. The start is the vertex preceding the leftmost rise of the umbrella. We consider
the suffix su of u which is the longest concatenation of umbrellas: su = urur−1 . . . u2u1. Some additional
umbrellas may appear as factors of su, see the umbrella of center α in Figure 6. The rank r of fumbrella(u)

is the number of umbrellas appearing in the concatenation su. The label 0 is inserted in the center of u1, for
i < r − 1 the factor ii + 1 is inserted in the center of ui+1 and the factor r(r − 1)r in the start of ur. This
produces fumbrella(u).

�
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Figure 6. Labeling maps for five insertion modes and one unknown map

The labeling map, associated with an insertion mode inducing a bijection, defines a parameter which
has the same distribution on Dyck paths as the value of the last element on the almost decreasing sequences.
Some of these parameters were known to have the same distribution (in particular the length of the last
descent and the number of returns to the horizontal axis). We increase the list of such parameters.

529



Y. Le Borgne

Proposition 2.1. The following parameters have the same distribution on Dyck paths:

• the number of falls in the last descent,

• the number of falls ending on the horizontal axis,

• the number of umbrellas in the longest suffix which is a concatenation of umbrellas,

• the number of peaks before the first double fall,

• the number of double falls in the longest increasing prefix .

Proof. Let u be a Dyck path. Figure 6 provides examples of the definitions of the labelings. The first
three labelings already have been defined in the proof of Theorem 2.3.

The number of falls in the last descent, the number of falls ending on the horizontal axis and the
number of umbrellas in the longest suffix which is a concatenation of umbrellas are respectively the rank of
fdescent(u), faxis(u) and fumbrella(u).

The labeling map for the mode (xAA, xBB) = exc(xBB, xAA) is denoted fdouble-fall. The rank r of
fdouble-fall(u) is the number of peaks in the longest prefix of u that does not contain a double-fall, i.e. a

factor xx. For i < r, we insert a factor ii in the (i+1)th peak and the factor rr is inserted in the last vertex
of the prefix (usually the first double-fall).

The labeling map for the mode (BAA, xB) = exc(ABBx, xA) is denoted fdouble-fall. A valley in u is
a vertex in the middle of a factor xx. A prefix of a Dyck path is increasing if the height of any vertex is
not strictly lower than a valley at its left. The rank r of fdouble-fall(u) is the number of double-falls in the

longest increasing prefix pu. We insert in u, for i < r, the factor ii in the (i + 1)th peak, the label r in the
rightmost peak in pu and the label r in the last vertex in pu.

�

We do not mention here the parameters equivalent up to a vertical reflexion mir. We were not able to
identify the labeling map of the mode (ABAx, Bx) even we know, by Lemma 2.2, that it induces a bijection.
The last building in Figure 6 is an example of a building produced by this mode.

3. Variations on the algorithm for bijections in several combinatorial contexts

We use modifications of the initial algorithm to define bijections that are relevant in several combinatorial
contexts. In this extended abstract we do not emphasize these combinatorial contexts but the alteration of
the algorithm. Moreover, we do not prove that the algorithms define the claimed bijections. The interested
reader will find detailed proofs and other examples in [7].

3.1. Cyclic permutation of the labels. A cyclic permutation of the label indexes in a building w of
rank k is denoted Cyc(w). It consists of replacing for 0 ≤ i ≤ k, the label i, respectively i by the label (i +1

mod k), respectively (i + 1 mod k). We generalize the algorithm presented in the Section 1 by performing
a cyclic permutation at the end of each For-loop : wn := Cyc(wn). We denote by ΥCyc

m the map defined by
this algorithm parametrized by the insertion mode m.

In [5], the authors conjectured a formula defined by summation over integer partitions relevant for a
problem in algebraic combinatorics. Haiman and Haglund, see [6], independently proposed two different
pairs of parameter on Dyck paths that interpret this formula by summation over Dyck paths. Both pairs
use the area below the Dyck path, that is the number of squares between the path and the horizontal axis
placed as in Figure 1. We have

C(u, v; t) =
∑

w

uarea(w)vdinv(w)tsize(w) =
∑

w

uarea(w)vbounce(w)tsize(w)

where in the summations w runs over Dyck paths and dinv(w), respectively bounce(w), are the parameters
defined by Haiman respectively Haglund. There exists another definition of C(u, v; t) which is clearly sym-
metric in u and v. An open problem is to find a bijection that explains directly this symmetry in terms of
Dyck paths.

If we consider the diagonal of squares below each rise, as in Figure 1, we remark that the area of a path
is also the sum of the heights of the rises. Thus the canonical bijection shows that the area is distributed over

the Dyck paths as the sum
∑k

i=1 si on the almost decreasing sequences. In fact all the previous bijections
Υm define parameters on Dyck path distributed as the sum of the value of the almost decreasing sequences
but alas no pair of parameters has the same join distribution as (area, dinv) and (area, bounce). We show a
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variation of our algorithm that convert the sum of the si into dinv. In [7], we also provide a labeling map
to define a bijection that convert the sum of the si into bounce. In the future, we plan (hope) to use these
algorithms to produce other pairs of parameters whose distribution defines C(u, v; t).

Let w be a Dyck path of size n and let h = h1, h2 . . . hn be the sequence of the height of rises in w. The
parameter dinv(w) counts the numbers of pairs (i, j) such that i < j and hi ∈ {hj , 1 + hj}.

We will use the labeling map fdinv illustrated in Figure 7. Let k be the number of vertices at maximal
height H in w and let l be the number of vertices at height H − 1 lying to the right of the rightmost vertex

at height H . The rank of fdinv(w) is k + l − 1. For 0 ≤ i ≤ k − 1 the factor ii is inserted in the (k − i)th

vertex at height H and for k ≤ i ≤ k + l − 1, the factor ii is inserted in the (k + l − i)th vertex at height
H − 1 lying to the right of the rightmost vertex at height H . In fdinv(w), an insertion of a rise and a fall
in the labels of index k increases the parameter dinv by exactly k.
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Figure 7. Map labeling fdinv for the parameter dinv where k = 3 and l = 4

Proposition 3.1. The map ΥCyc

(xBB,xAA)
is a bijection that maps an almost decreasing sequence s to a

Dyck path w such that
n

∑

k=1

sk = dinv(w).

The proof checks that fdinv(w) equals ΥCyc,+

(xBB,xAA)
(s) which is the last building wn at the end of the

For-loop in the generalized algorithm. A similar map was presented in [1] in terms of plane trees.

3.2. Insertion depending on the parity of the value. We define an algorithm parametrized by two
insertion modes m1 and m2. If the value sk in the almost decreasing sequence is even, we use m1 to compute
wk otherwise we use m2. For the example traced on Figure 8 we use in the even case the insertion mode
m1 = (BBx, AAx) and in the odd case the mode m2 = exc(m1) = (AAx, BBx). This defines a bijection
denoted Υ[(BBx,AAx);(AAx,BBx)], that we use in the following context.

4
4

0
0

1
1

2
2

0
0

1
1

1
1

0
0

0
0

0
0

1
1 2

2

1

02
02

0
0

1
1

2
2

3
3

0
0

1
1

3
3 2

2

0 1 2

0 11

1 3

Figure 8. The image of 0, 1, 2, 3, 1, 0, 1 with insertion depending on the parity

In [7], we interpret combinatorially the formal manipulations of generating functions involved in the
solution of an equation usually used in the kernel method [3]. At some point we need a bijection that
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translates a parameter into another to conclude the interpretation. Here we only present these parameters
and the description of the bijection by the extension of the algorithm that distinguish the parity of si’s.

The first parameter is the height of a Dyck path w, that is the maximal value of ordinate of a vertex in
w. A ray in a Dyck path is a segment with one endpoint a valley, the source of the ray, and the other one
the preceding vertex of the path that is at the same height. The ray height of a peak is the number of rays
that cross the vertical segment starting at the peak and finishing on the horizontal axis. The ray height of
a Dyck path is the maximal height of its peaks. Figure 9 illustrates these definitions.

01

1

232

232

Figure 9. A Dyck path of ray height 3

Proposition 3.2. For any N ≥ 0, there are as many Dyck paths of height at most 2N + 1 as Dyck

paths of ray height at most N .

The bijection Υ[(BBx,AAx);(AAx,BBx)] maps almost decreasing sequences whose maximal value is either

2N or 2N + 1 to Dyck paths of ray height exactly N .

Acknowledgments. I thank Mireille Bousquet-Mélou for technical and linguistic advices. I am also
grateful to Mike Robson for linguistic help.
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Algebraic structures on Grothendieck groups of a tower of algebras

Huilan Li

Abstract. The Grothendieck group of the tower of symmetric group algebras has a self-dual graded Hopf
algebra structure. In this work, we define the general notation of a tower of algebras and study the two
Grothendieck groups on this tower. Using representation theory, we prove that the two Grothendieck groups
are graded Hopf algebras. Moreover, we define a paring and show that the two Grothendieck groups are
dual to each other as Hopf algebras.

Résumé. Les configurations gréées sont des objets combinatoires inspirés par l’ansatz de Bethe, et qui sont
en correspondence avec les éléments cristallins de plus haut poids. Dans cette note, nous introduisons le
concept de ”configurations gréées généralisées”, en construisant une structure cristalline dans l’espace des
configurations gréées.

1. Introduction

In 1977, L. Geissinger realized that Sym (symmetric functions in infinite variables) is a self-dual graded
Hopf algebra [6], which can be interpreted as the self-dual Grothendieck Hopf algebra of the tower of
symmetric groups

⊕
n≥0 CSn using the work of Frobenius and Schur. After this, mathematicians have

encountered many instances of combinatorial Hopf algebras that can be realized as the Grothendieck Hopf
algebras of a tower of algebras. In each instance, they study a pair of dual Hopf algebras, and it turns out
that this duality can be interpreted as the duality of the Grothendieck groups of an appropriate tower of
algebras. For example, C. Malvenuto and C. Reutenauer established the duality between the Hopf algebra of
NSym (noncommutative symmetric functions) and the Hopf algebra of QSym (quasi-symmetric functions)
when looking at the combinatorics of descents [12]. Later, D. Krob and J.-Y. Thibon showed that this
duality can be interpreted as the duality of the Grothendieck groups associated to

⊕
n≥0 Hn(0) the tower of

Hecke algebras at q = 0 [10]. More recently, N. Bergeron, F. Hivert, and J.-Y. Thibon showed that if one
uses

⊕
n≥0 HCln(0) the tower of Hecke-Clifford algebras at q = 0, then one gets a similar interpretation for

the duality between the Peak algebra and its dual [2].
In this work, we study the algebraic structure on the Grothendieck groups G0(A) and K0(A) in the

more general case where (A =
⊕

n≥0 An, ρm,n) is a graded algebra and each component An is an algebra.
We will call A a tower of algebras if it satisfies some conditions. No formal study of this kind has been done
so far. Up to this point it was not clear what were the right conditions to impose on a tower of algebra to
get the desired algebraic structure on their Grothendieck groups. Here, we find a list of axioms on a tower
of algebras which will imply that their Grothendieck groups are graded Hopf algebras. Moreover, we define
a paring and show that the corresponding Grothendieck groups are dual to each other as Hopf algebras if
the tower of algebras satisfying an additional condition.

This paper is divided into 5 sections as follows. Section 1 is the introduction. In Section 2 we recall
some definitions and propositions about bialgebras and Grothendieck groups. In Section 3 we discuss the
axioms on a tower of algebras (A =

⊕
n≥0 An, ρm,n) with ρ preserving unities so that their Grothendieck

2000 Mathematics Subject Classification. Hopf algebras 16W30; Grothendieck groups 18F30.
Key words and phrases. graded algebra, Hopf algebra, Grothendieck group, representation.
The author thanks NSERC and CRC.
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groups are graded Hopf algebras. Moreover, we define a paring and show that the Grothendieck groups are
dual to each other as Hopf algebras. In Section 4 we weaken the condition of ρ and modify the definitions
of inductions and restrictions to get the similar results as above. In Section 5 we will give some examples to
indicate that the Grothendieck groups of a tower of algebras satisfying these axioms are Hopf algebras dual
to each other, and these axioms are necessary.

2. Notations and Propositions

In this section there is a brief review of some ideas from the theory of bialgebras [6] and Grothendieck
groups [8] which is useful for later discussion.

Definition 2.1. Let K be a commutative ring. A K-algebra B is a K-module with multiplication π :
B⊗K B → B and unit map µ : K → B satisfying associativity and unitary property, i.e., π(π⊗1) = π(1⊗π)
and π(µ⊗1) = π(1⊗µ), where 1 is the identity map of module B. Denote this algebra by the triple (B, π, µ).

A K-coalgebra C is a K-module with comultiplication ∆ : C → C ⊗ C and counit map ε : C → R
satisfying coassociativity and counitary property, i.e., (∆⊗ 1)∆ = (1⊗∆)∆ and (ε⊗ 1)∆ = (1⊗ ε)∆, where
1 is the identity map of module C. Denote this coalgebra by the triple (C, ∆, ε).

If a K-module B is simultaneously an algebra and a coalgebra it is called a bialgebra provided these
structures are compatible in the sense that the comultiplication and counit are algebra homomorphisms.
Explicitly this means that ε(µ(1)) = 1, ε(gh) = ε(g)ε(h), ∆µ(1) = µ(1) ⊗ µ(1), and ∆(gh) = Σgihp ⊗ g′ih

′
p

if ∆(g) = Σgi ⊗ g′i and ∆(h) = Σhp ⊗ h′
p, where 1 is the unity of K and gh = π(g ⊗ h). This is equivalent

to requiring that the multiplication and unit map are coalgebra homomorphisms. Denote this bialgebra by
the 5-tuple (B, π, µ,∆, ε).

A K-linear map γ : H → H on a bialgebra H is an antipode if for all h in H , Σhiγ(h′
i) = ε(h)1H =

Σγ(hi)h
′
i when ∆h = Σhi ⊗ h′

i. A Hopf algebra is a bialgebra with antipode.

Definition 2.2. An algebra B is a graded algebra if there is a direct sum decomposition B =
⊕

Bi (i ≥
0) such that the product of homogeneous of degrees p and q is homogeneous of degree p + q, that is,
π(Bp ⊗ Bq) ⊆ Bp+q, and µ(K) ⊆ B0.

A coalgebra C is a graded coalgebra if there is a direct sum decomposition C =
⊕

Ci (i ≥ 0) such that
∆(Cn) ⊆

⊕
(Ck ⊗ Cn−k) and ε(Cn) = 0 if n ≥ 1.

A bialgebra H =
⊕

Hi over K is called graded connected if it is Z-graded, concentrated in nonnegative
degrees, and satisfies H0 = K1H, where K is a field.

It is a known fact that a connected bialgebra is a connected Hopf algebra [17].
The coassociativity and counitary property are dual to associativity and unitary property, respectively.

It is natural to expect the dual of a coalgebra to be an algebra and vice versa. In fact, if a module is a
graded bialgebra with all homogeneous components finitely generated, then its graded dual is also a graded
bialgebra [6].

The definition of Grothendieck groups is introduced in [8]. Let B be an arbitrary algebra. Denote

BM = the category of all left B-modules,

Bmod = the category of all finitely generated left B-modules,
P(B) = the category of all finitely generated projective left B-modules.

Definition 2.3. Let C be one of the above categories. Let F be the free abelian group generated by
symbols (M), one for each isomorphism class of modules M in C. Let F0 be the subgroup of F generated
by all expressions

(M) − (L) − (N)

arising from all short exact sequences
0 → L → M → N → 0

in C. The Grothendieck group K0(C) of the category C is defined by

K0(C) = F/F0,

an abelian additive group. For M ∈ C, let [M ] denote its image in K0(C).

Each x ∈ K0(C) is expressible as a difference [M ]− [N ] with M, N ∈ C, though not in a unique manner.
Furthermore, it may occur that x = 0 even though M is not isomorphic to N .
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Definition 2.4. The Grothendieck group G0(B) of the algebra B is defined by

G0(B) = K0(Bmod).

The Grothendieck group K0(B) of the algebra B is defined by

K0(B) = K0(P(B)).

Thus, G0(B) is generated by expressions [M ], one for each isomorphism class (M) of finitely generated
left B-modules M , with relations

[M ] = [M ′] + [M ′′]

for each short exact sequence 0 → M ′ → M → M ′′ → 0 of finitely generated left B-modules.
K0(B) is generated by expressions [P ], one for each isomorphism class (P ) of finitely generated left

B-modules P , with relations

[P ⊕ P ′] = [P ] + [P ′]

for all P, P ′ ∈ P(B). (Note that each short exact sequence 0 → P ′ → P → P ′′ → 0 of modules from P(B)
must split, because P ′′ is a projective B-module. Hence, the defining relations for K0(B) can be expressed
in the simpler form involving direct sums, rather than exact sequences from P(B).)

Now let B be a finite-dimensional algebra over a field K. Let {V1, · · · , Vs} be a complete list of noniso-
morphic simple B-modules. Then their projective covers {P1, · · · , Ps} are a complete list of nonisomorphic
indecomposable projective B-modules [13]. With these lists, we have

Proposition 2.1.

G0(B) =

s⊕

i=1

Z[Vi]

is a free abelian group with basis {[V1], · · · , [Vs]}. And

K0(B) =

s⊕

i=1

Z[Pi]

is a free abelian group with basis {[P1], · · · , [Ps]}.

Let A be an algebra and B ⊆ A a subalgebra. Let M be a (left) A-module and N a (left) B-module,
then the induction of N from B to A is IndA

BN = A⊗B N an A-module and the restriction of M from A to
B is ResA

BM = HomA(A, M) a B-module.

3. Grothendieck groups of a tower of algebras (Preserving unities)

In this section, first we list all the axioms we need on a graded algebra (A =
⊕

n≥0 An, ρm,n) with ρ

preserving unities. Then we define the inductions and restrictions on their Grothendieck groups G0(A) and
K0(A) respectively. After this, we use these definitions to construct the multiplications and comultiplica-
tions on G0(A) and K0(A) and show that G0(A) and K0(A) are graded connected Hopf algebras with these
operators. Moreover, we define a paring on the Grothendieck groups G0(A) and K0(A). It develops that
they are dual to each other as Hopf algebras.

Let A =
⊕

n≥0 An, we call it a tower of algebras over field K = C if the following conditions are satisfied:

(1) An is a finite-dimensional algebra with unit, for each n. A0
∼= K.

(2) There is an external graded multiplication ρm,n : Am ⊗ An → Am+n such that
(a) ρm,n is an injective homomorphism of algebras, for all m and n (sending 1m ⊗ 1n to 1m+n);
(b) ρ is associative, that is, ρl+m,n · (ρl,m ⊗ 1n) = ρl,m+n · (1l ⊗ ρm,n) := ρl,m,n, for all l, m, n.

(3) An+m is a two-sided projective An ⊗ Am-module by the action defined to be a · (b ⊗ c) = aρm,n(b ⊗
c) and (b ⊗ c) · a = ρm,n(b ⊗ c)a, for a ∈ Am+n, b ∈ Am and c ∈ An.

(4) For every primitive idempotent g in Am+n, Am+ng ∼=
⊕

(Am⊗An)(e⊗f) as (left) Am⊗An-modules
if and only if gAm+n

∼=
⊕

(e⊗f)(Am⊗An) as (right) Am⊗An-modules for the same indexing of idempotents
(e ⊗ f)’s in Am ⊗ An.
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(5) The following equality holds

[Res
Am+n

Ak⊗Am+n−k
Ind

Am+n

Am⊗An
(M ⊗ N)]

=
∑

t+s=k[Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(ResAm

At⊗Am−t
M ⊗ ResAn

As⊗An−s
N)]

for all 0 < k < m + n, M an Am-module and N an An-module. We will explain the notations later.
Why we need these conditions? We can give a brief explanation here. Condition (1) guarantees that

their Grothendieck groups are grade connected; with conditions (2) and (3) the inductions and restrictions
are well defined; with (4) the duality holds; with (5) the multiplication and comultiplication are compatible.
We will come up to the details later.

Now we define the inductions on G0(A) as follows:

im,n : G0(Am)
⊗

Z
G0(An) → G0(Am+n)

[M ] ⊗ [N ] 7→ [Ind
Am+n

Am⊗An
M ⊗ N ],

where

Ind
Am+n

Am⊗An
M ⊗ N = Am+n

⊗
Am⊗An

(M ⊗ N)

=
Am+n ⊗ M ⊗ N

< a ⊗ [(b ⊗ c)(w ⊗ u)] − [aρm,n(b ⊗ c)] ⊗ w ⊗ u >
,

for a ∈ Am+n, b ∈ Am, c ∈ An, w ∈ M and u ∈ N. Here let k = t + s, define the twisted induction

Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(M1 ⊗ M2) ⊗ (N1 ⊗ N2)

= (Ak ⊗ Am+n−k)
⊗̃

At⊗Am−t⊗As⊗An−s
((M1 ⊗ M2) ⊗ (N1 ⊗ N2)).

This means
(a ⊗ b) ⊗ [(c1 ⊗ c2) · (w1 ⊗ w2) ⊗ (d1 ⊗ d2) · (u1 ⊗ u2)]

≡ [aρt,s(c1 ⊗ d1) ⊗ bρm−t,n−s(c2 ⊗ d2)] ⊗ (w1 ⊗ w2 ⊗ u1 ⊗ u2),

where a ∈ Ak, b ∈ Am+n−k, c1 ∈ At, c2 ∈ Am−t, d1 ∈ As, d2 ∈ An−s, wi ∈ Mi, ui ∈ Ni. Also define the
restrictions

rk,l : G0(An) → G0(Ak)
⊗

Z
G0(Al) with k + l = n

[N ] 7→ [ResAn

Ak⊗Al
N ],

where ResAn

Ak⊗Al
N = HomAn

(An, N) is an Ak ⊗ Al-module by the action defined to be ((b ⊗ c) · f)(a) =
f(aρk,l(b ⊗ c)), for a ∈ An, b ∈ Ak, c ∈ Al and f ∈ HomAn

(An, N).

Proposition 3.1. i and r are well defined.

Proof. Assume [M ] = [M ′] + [M ′′]. Since Am+n is a (right) projective Am ⊗ An-module, it is not
difficult to get that

0 → Am+n ⊗Am⊗An
(M ′ ⊗ N) → Am+n ⊗Am⊗An

(M ⊗ N) → Am+n ⊗Am⊗An
(M ′′ ⊗ N) → 0

is exact as left Am+n-modules by the properties of tensor product and short exact sequence. Hence

[Ind
Am+n

Am⊗An
M ⊗ N ] = [Ind

Am+n

Am⊗An
M ′ ⊗ N ] + [Ind

Am+n

Am⊗An
M ′′ ⊗ N ].

Similarly,

[Ind
Am+n

Am⊗An
M ⊗ N ] = [Ind

Am+n

Am⊗An
M ⊗ N ′] + [Ind

Am+n

Am⊗An
M ⊗ N ′′]

for [N ] = [N ′] + [N ′′]. Hence i is well defined on G0(A).
Assume [N ] = [N ′] + [N ′′]. Since HomAn

(An, M) ∼= M for all An-modules M , it is clear that

0 → HomAn
(An, N ′) → HomAn

(An, N) → HomAn
(An, N ′′) → 0

is exact, which is also exact as Ak ⊗ Al-modules. Hence

[ResAn

Ak⊗Al
N ] = [ResAn

Ak⊗Al
N ′] + [ResAn

Ak⊗Al
N ′′].

Therefore, all r are well defined. �
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Let G0(A) =
⊕

n≥0 G0(An). We construct the multiplication and comultiplication by i and r and define
the unit and counit as follows:

π : G0(A)
⊗

Z
G0(A) → G0(A)

by π|G0(Ak)
N

G0(Al) = ik,l

∆ : G0(A) → G0(A)
⊗

Z
G0(A)

by ∆|G0(An) =
∑

k+l=n rk,l

µ : Z → G0(A)
by µ(a) = a[K] ∈ G0(A0), for a ∈ Z

ε : G0(A) → Z

by ε([M ]) =

{
a if [M ] = a[K], where a ∈ Z

0 otherwise.

Later we will prove the associativity of π, the unitary property of µ, the coassociativity of ∆ and the
counitary property of ε, which imply that (G0(A), π, µ) is an algebra and (G0(A), ∆, ε) is a coalgebra. We
will also show the compatibility of the algebra and coalgebra structures to indicate that (G0(A), π, µ, ∆, ε)
is a graded connected bialgebra.

Now we define the inductions and restrictions on K0(A) analogously. As before,

i′m,n : K0(Am)
⊗

Z
K0(An) → K0(Am+n)

[P ] ⊗ [Q] 7→ [Ind
Am+n

Am⊗An
P ⊗ Q],

where

Ind
Am+n

Am⊗An
P ⊗ Q = Am+n

⊗
Am⊗An

(P ⊗ Q)

=
Am+n ⊗ P ⊗ Q

< a ⊗ [(b ⊗ c)(p ⊗ q)] − [aρm,n(b ⊗ c)] ⊗ p ⊗ q >
,

a ∈ Am+n, b ∈ Am, c ∈ An, p ∈ P and q ∈ Q. Let k = t + s. Denote

Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(P1 ⊗ P2) ⊗ (Q1 ⊗ Q2)

= (Ak ⊗ Am+n−k)
⊗̃

At⊗Am−t⊗As⊗An−s
((P1 ⊗ P2) ⊗ (Q1 ⊗ Q2))

the twisted induction with the same meaning as above. And set

r′k,l : K0(An) → K0(Ak)
⊗

Z
K0(Al) with k + l = n

[R] 7→ [ResAn

Ak⊗Al
R],

where ResAn

Ak⊗Al
R = HomAn

(An, R) as a left projective Ak ⊗ Al-module by the action defined to be ((b ⊗

c) · f)(a) = f(aρk,l(b ⊗ c)), a ∈ An, b ∈ Ak, c ∈ Al and f ∈ HomAn
(An, R).

Proposition 3.2. i′ and r′ are well defined.

Proof. To show that i′ are well defined, we only need that Ind
Am+n

Am⊗An
P ⊗Q = Am+n

⊗
Am⊗An

(P ⊗Q)
is a projective Am+n-module for all projective Am-module P and all projective An-module Q. This is
straightforward by the properties of tensor product and short exact sequence and the property of projective
modules that there is a module P ′ such that P ⊕ P ′ is a free module for the projective module P .

Assume R is a projective An-module. Since HomAn
(An, M) ∼= M for all An-modules M , we can get

that HomAn
(An, R) is a summand of some free An-module by the property of projective modules. Hence,

HomAn
(An, R) is a Ak ⊗ Al-module for all k and l with n = k + l. Therefore, r′ are well defined �
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Let K0(A) =
⊕

n≥0 K0(An). Using i′ and r′ we also define the multiplication, comultiplication, unit

and counit on K0(A).

π′ : K0(A)
⊗

Z
K0(A) → K0(A)

by π′|K0(Ak)
N

K0(Al) = i′k,l

∆′ : K0(A) → K0(A)
⊗

Z
K0(A)

by ∆′|K0(An) =
∑

k+l=n r′k,l

µ′ : Z → K0(A)
by µ′(a) = a[K] ∈ K0(A0), for a ∈ Z

ε′ : K0(A) → Z

by ε′([M ]) =

{
a if [M ] = a[K], where a ∈ Z

0 otherwise.

Similarly, we will realize that (K0(A), π′, µ′) is an algebra and (K0(A), ∆′, ε′) is a coalgebra later. It will
also be verified that the compatibility of these algebra and coalgebra structures hold, i.e., (K0(A), π′, µ′, ∆′, ε′)
is a graded connected bialgebra.

Theorem 3.1. (i) π is associative and
(
G0(A), π, µ

)
is an algebra. So is

(
K0(A), π′, µ′

)
.

(ii) ∆ is coassociative and
(
G0(A), ∆, ε

)
is a coalgebra. So is

(
K0(A), ∆′, ε′

)
.

(iii) ∆ and ε are algebra homomorphisms and G0(A) is a graded connected bialgebra. Hence G0(A) is a
graded Hopf algebra. So is K0(A).

Proof. (i) We only need to check the associativity of π, i.e., il+m,n · (il,m ⊗ 1n) = il,m+n · (1l ⊗ im,n).
Form the associativity of ρ and the definition of i, we can check it directly. Same for π′.

(ii) We only need to show the coassociativity of ∆, i.e., (rl,m ⊗ 1) · rl+m,n = (1 ⊗ rm,n) · rl,m+n. Form
the definition of r and the Adjointness Theorem [8], we can check it directly. Similarly for ∆′.

(iii) Using the definition of compatibility of algebra and coalgebra structures, we show that G0(A) is a
graded bialgebra since condition (5) holds. From condition (1), we know that G0(A) is a graded connected
bialgebra. Hence a graded Hopf algebra. Similarly for K0(A). �

Next we define a pairing on K0(A) × G0(A). With this pairing we can consider the duality between
K0(A) and G0(A). The pairing is defined as follows:

<, >: K0(A) × G0(A) → Z

such that

< [P ], [M ] >=

{
dimK

(
HomAn

(P, M)
)

if [P ] ∈ K0(An) and [M ] ∈ G0(An)
0 otherwise.

and with the same notation <, >: (K0(A) ⊗ K0(A)) × (G0(A) ⊗ G0(A)) → Z by

< [P ] ⊗ [Q], [M ]⊗ [N ] >=





dimK

(
HomAk⊗Al

(P ⊗ Q, M ⊗ N)
)

if [P ] ⊗ [Q] ∈ K0(Ak) ⊗ K0(Al)
and [M ] ⊗ [N ] ∈ G0(Ak) ⊗ G0(Al)

0 otherwise.

Proposition 3.3. <, > is a well-defined bilinear pairing on K0(A) × G0(A) satisfying the following
identities

< [P ] ⊗ [Q], [M ] ⊗ [N ] > = < [P ], [M ] >< [Q], [N ] >
< π′([P ] ⊗ [Q]), [M ] > = < [P ] ⊗ [Q], ∆[M ] >
< ∆′[P ], [M ] ⊗ [N ] > = < [P ], π([M ] ⊗ [N ]) >

< µ′(1), [M ] > = ε([M ])
< [P ], µ(1) > = ε′([P ]).

Proof. It is straightforward to check the linearity by the properties of short exact sequences and direst
sums of modules .

The identity < [P ] ⊗ [Q], [M ] ⊗ [N ] >=< [P ], [M ] >< [Q], [N ] > is trivial.
To show < π′([P ] ⊗ [Q]), [M ] >=< [P ] ⊗ [Q], ∆[M ] >, it is equivalent to prove that < i′k,l([P ] ⊗

[Q]), [M ] >=< [P ] ⊗ [Q], rk,l[M ] >, for all [P ] ∈ K0(Ak), [Q] ∈ K0(Al) and [M ] ∈ G0(Ak+l), which can be
reached by the Adjointness Theorem.

To show < ∆′[P ], [M ] ⊗ [N ] >=< [P ], π([M ] ⊗ [N ]) >, we only need to prove that < r′k,l[P ], [M ] ⊗

[N ] >=< [P ], ik,l([M ] ⊗ [N ]) >, for all [P ] ∈ K0(Ak+l), [M ] ∈ K0(Ak) and [N ] ∈ G0(Al). We can simplify
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this by proving that < r′k,l[P ], [M ] ⊗ [N ] >=< [P ], ik,l([M ] ⊗ [N ]) > holds when P is an indecomposable
projective Ak+l-module. We know that each indecomposable projective module corresponding to a primitive
idempotent. We establish this identity by the following lemma and condition (4).

Lemma 3.2. [15] Let B be a finite-dimensional algebra over field K, M a left B-module and e a primitive
idempotent. Then HomB(Be, M) ∼= eM as vector spaces.

< µ′(1), [M ] >= ε([M ]) and < [P ], µ(1) >= ε([P ]) follow from the definitions of µ and µ′. �

To get the duality between G0(A) and K0(A) these identities are not enough. We should verify that their
bases are orthonormal to each other. Let {V1, · · · , Vs} be a complete list of nonisomorphic simple An-modules.
Then the set of their projective covers {P1, · · · , Ps} is a complete list of nonisomorphic indecomposable
projective An-modules. Then

Proposition 3.4. < [Pi], [Vj ] >= δi,j for 1 ≤ i, j ≤ s.

Proof. This follows from the property of simple modules and the Schur’s Lemma. �

Theorem 3.3 (Main Result 1). (G0(A), π, µ, ∆, ε) and (K0(A), π′, µ′, ∆′, ε′) are both graded connected
bialgebras. Hence both are graded Hopf algebras. And they are dual to each other with respect to the pairing.

Proof. This follows directly from Theorem 3.1 and Propositions 3.3 and 3.4. �

4. Grothendieck groups of a tower of algebras (Not preserving unities)

In [1], N. Bergeron, C. Holhweg, M. Rosas, and M. Zabrocki consider a semi-tower of algebras with ρ
not preserving unities. If we only weaken the condition of ρ and modify the definitions of inductions and
restrictions can we get a similar result? In this section, we will do this job. The structure of this section is
parallel to Section 3.

Let A =
⊕

n≥0 An, we call it a tower of algebras over field K = C if the following conditions are satisfied:

(1) An is a finite-dimensional algebra with unit, for each n. A0
∼= K.

(2) There is an external graded multiplication ρm,n : Am ⊗ An → Am+n such that

(a) ρm,n is an injective homomorphism of algebras, for all m and n (but ρm,n(1m ⊗ 1n) 6=
1m+n for some or all m and n );

(b) ρ is associative, that is, ρl+m,n · (ρl,m ⊗ 1n) = ρl,m+n · (1l ⊗ ρm,n) := ρl,m,n, for
all l, m, n.

(3) An+m is a two-sided projective An ⊗ Am-module by the action defined to be a · (b ⊗ c) = aρm,n(b ⊗
c) and (b ⊗ c) · a = ρm,n(b ⊗ c)a, for a ∈ Am+n, b ∈ Am and c ∈ An.

(4) For every primitive idempotent g in Am+n, Am+ng ∼=
⊕

(Am⊗An)(e⊗f) as (left) Am⊗An-modules
if and only if gAm+n

∼=
⊕

(e⊗f)(Am⊗An) as (right) Am⊗An-modules for the same indexing of idempotents
(e ⊗ f)’s in Am ⊗ An.

(5) The following equalities hold

[Res
Am+n

Ak⊗Am+n−k
Ind

Am+n

Am⊗An
(M ⊗ N)]

=
∑

t+s=k[Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(ResAm

At⊗Am−t
M ⊗ ResAn

As⊗An−s
N)]

for all 0 < k < m + n, M an Am-module and N an An-module, and

[Res
Am+n

Ak⊗Am+n−k
Ind

Am+n

Am⊗An
(P ⊗ Q)]

=
∑

t+s=k[Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(ResAm

At⊗Am−t
P ⊗ ResAn

As⊗An−s
Q)]

for all 0 < k < m + n, P a projective Am-module and Q a projective An-module. We will explain the
notations later.

The definition of inductions on G0(A) is

im,n : G0(Am)
⊗

Z
G0(An) → G0(Am+n)

[M ] ⊗ [N ] 7→ [Ind
Am+n

Am⊗An
M ⊗ N ],
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which is same as the one in Section 3. Let k = t + s, define the twisted induction

Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(M1 ⊗ M2) ⊗ (N1 ⊗ N2)

= (Ak ⊗ Am+n−k)
⊗̃

At⊗Am−t⊗As⊗An−s
((M1 ⊗ M2) ⊗ (N1 ⊗ N2)),

which is also same as the one in Section 3. Define the restrictions r on G0(A) by

rk,l : G0(An) → G0(Ak)
⊗

Z
G0(Al) with k + l = n

[N ] 7→ [ResAn

Ak⊗Al
N ],

where ResAn

Ak⊗Al
N = {u ∈ N | ρk,l(1k ⊗ 1l)u = u} ⊆ N is an Ak ⊗ Al-module by the action defined to

be (b ⊗ c) · u = ρk,l(b ⊗ c)u, for u ∈ ResAn

Ak⊗Al
N, b ∈ Ak and c ∈ Al. When ρ preserving unities, we have

ResAn

Ak⊗Al
N = N ∼= HomAn

(An, N). This coincides with the restrictions r in Section 3.

Proposition 4.1. i and r are well defined.

Proof. For i, it follows from Proposition 3.1 since they have the same definition.
For r, we know ResAn

Ak⊗Al
N = ρk,l(1k ⊗ 1l)N and ρk,l(1k ⊗ 1l) is an idempotent in An, hence N =

ρk,l(1k ⊗ 1l)N ⊕ (1 − ρk,l(1k ⊗ 1l))N. From the properties of short exact sequence and homomorphisms of
modules which can be written as a direct sum, one can get that all r are well defined. �

As in Section 3, we define π, ∆, µ and ε by the inductions i and restrictions r on G0(A). Later we will
prove that G0(A) is a graded bialgebra with these operators.

Now we define inductions and restrictions on K0(A) as follows:

i′m,n : K0(Am)
⊗

Z
K0(An) → K0(Am+n)

[P ] ⊗ [Q] 7→ [Ind
Am+n

Am⊗An
P ⊗ Q],

where P = Amem, Q = Anen for some primitive idempotents em ∈ Am and en ∈ An, and

Ind
Am+n

Am⊗An
P ⊗ Q

= Ind
Am+n

Am⊗An
Amem ⊗ Anen

:= Am+nρm,n(em ⊗ en),

which is a projective Am ⊗ An-module. Here i′ is only defined on the basis of K0(Am) ⊗ K0(An). To get
induction we only need i′ to satisfy linearity. i.e.,

i′((a[P ′] + b[P ′′]) ⊗ (c[Q′] + d[Q′′]))
= aci′([P ′] ⊗ [Q′]) + adi′([P ′] ⊗ [Q′′]) + bci′([P ′′] ⊗ [Q′]) + bdi′([P ′′] ⊗ [Q′′]),

where a, b, c, d ∈ Z, P ′, P ′′ ∈ K0(Am) and Q′, Q′′ ∈ K0(An) are indecomposable. Hence i′ is well defined.
And when ρ preserving unities, this i′ coincides with the inductions i′ in Section 3.

Let k = t + s, define the twisted induction

Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(Ate1 ⊗ Am−te2) ⊗ (Asf1 ⊗ An−sf2)

:= Akρt,s(e1 ⊗ f1) ⊗ Am+n−kρm−t,n−s(e2 ⊗ f2),

where e1, e2, f1 and f2 are primitive idempotents in At, Am−t, As and An−s respectively.
Set

r′k,l : K0(An) → K0(Ak)
⊗

Z
K0(Al) with k + l = n

[R] 7→ [ResAn

Ak⊗Al
R],

where ResAn

Ak⊗Al
R = {x ∈ R | ρk,l(1k ⊗ 1l)x = x} as a left projective Ak ⊗ Al-module.

Proposition 4.2. r′ is well defined.

Proof. To show r′ well defined, there are three steps. Let R be a projective An-module.
1. ρk,l(1k ⊗ 1l) is an idempotent and ResAn

Ak⊗Al
R = ρk,l(1k ⊗ 1l)R.

2. ResAn

Ak⊗Al
R is an Ak ⊗ Al-module.

3. ResAn

Ak⊗Al
R is a projective Ak ⊗ Al-module. Here we verify that ResAn

Ak⊗Al
R is a summand of R by

lemma 3.2, step 1 and the property of idempotents.
�
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As before, using the definitions of inductions i′ and restrictions r′ we construct π′, ∆′, µ′ and ε′ on
K0(A). Later we will prove that K0(A) with these operators is a graded bialgebra.

Theorem 4.1. (i) π is associative and
(
G0(A), π, µ

)
is an algebra. So is

(
K0(A), π′, µ′

)
.

(ii) ∆ is coassociative and
(
G0(A), ∆, ε

)
is a coalgebra. So is

(
K0(A), ∆′, ε′

)
.

(iii) ∆ and ε are algebra homomorphisms and G0(A) is a graded bialgebra. Hence G0(A) is a graded
Hopf algebra. So is K0(A).

Proof. (i) For G0(A), it holds from Theorem 3.1(i).
For the associativity of π′ in K0(A), we need to show i′l+m,n · (i′l,m ⊗ 1n) = i′l,m+n · (1l ⊗ i′m,n). One can

get it by the associativity of ρ and the definition of i′.
(ii) We only need to show the coassociativity of ∆, that is, (rl,m ⊗ 1) · rl+m,n = (1⊗ rm,n) · rl,m+n. This

follows from the associativity of ρ and the definition of r. Similarly for
(
K0(A), ∆′, ε′

)
.

(iii) From condition (5), one can prove that G0(A) is a graded bialgebra by the definition of compatibility
of algebra and coalgebra structures. Do the similar work to K0(A). From condition (1), we know that G0(A)
is a graded connected bialgebra. Hence a graded Hopf algebra. Similarly for K0(A). �

Define a pairing <, >: K0(A) × G0(A) → Z by

< [P ], [M ] >=

{
dimK

(
HomAn

(P, M)
)

if [P ] ∈ K0(An) and [M ] ∈ G0(An)
0 otherwise.

and with the same notation <, >: (K0(A) ⊗ K0(A)) × (G0(A) ⊗ G0(A)) → Z by

< [P ] ⊗ [Q], [M ]⊗ [N ] >=





dimK

(
HomAk⊗Al

(P ⊗ Q, M ⊗ N)
)

if [P ] ⊗ [Q] ∈ K0(Ak) ⊗ K0(Al)
and [M ] ⊗ [N ] ∈ G0(Ak) ⊗ G0(Al)

0 otherwise.

Proposition 4.3. <, > is a well-defined bilinear pairing on K0(A) × G0(A) satisfying the following
identities

< [P ] ⊗ [Q], [M ] ⊗ [N ] > = < [P ], [M ] >< [Q], [N ] >
< π′([P ] ⊗ [Q]), [M ] > = < [P ] ⊗ [Q], ∆[M ] >
< ∆′[P ], [M ] ⊗ [N ] > = < [P ], π([M ] ⊗ [N ]) >

< µ′(1), [M ] > = ε([M ])
< [P ], µ(1) > = ε′([P ]).

Proof. The bilinearity and the first identity are same as Proposition 3.3.
To show < π′([P ] ⊗ [Q]), [M ] >=< [P ] ⊗ [Q], ∆[M ] >, we only need to prove that < i′k,l([P ] ⊗

[Q]), [M ] >=< [P ] ⊗ [Q], rk,l[M ] >, for all [P ] ∈ K0(Ak), [Q] ∈ K0(Al) and [M ] ∈ G0(Ak+l). Without
loss of generality, let P = Akek and Q = Alel for some primitive idempotents ek ∈ Ak and el ∈ Al. Using
Lemma 3.2 one can get it straightforwardly.

To show < ∆′[P ], [M ] ⊗ [N ] >=< [P ], π([M ] ⊗ [N ]) >, we only need to prove that < r′k,l[P ], [M ] ⊗

[N ] >=< [P ], ik,l([M ] ⊗ [N ]) >, for all [P ] ∈ K0(Ak+l), [M ] ∈ K0(Ak) and [N ] ∈ G0(Al). One can get it
from Lemma 3.2 and condition (4).

< µ′(1), [M ] >= ε([M ]) and < [P ], µ(1) >= ε([P ]) follow from the definitions of µ and µ′. �

Theorem 4.2 (Main Result 2). (G0(A), π, µ, ∆, ε) and (K0(A), π′, µ′, ∆′, ε′) are both graded connected
bialgebras. Hence both are graded Hopf algebras. And they are dual to each other with respect to the pairing.

Proof. This follows directly from Theorem 4.1 and Propositions 4.3 and 3.4. �

5. Some examples

In this section, we will verify that
⊕

n≥0 Sn,
⊕

n≥0 Hn(0) and
⊕

n≥0 HCln(0) satisfy all the axioms
listed in Section 3. They are towers of algebras and we already know that their Grothendieck groups are
dual Hopf algebras, respectively. And we will discuss some graded algebras which don’t satisfy some axiom
are not towers of algebras. Consequently, their Grothendieck groups are not dual Hopf algebras.

Let A =
⊕

n≥0 An with An = CSn. Here

ρm,n : CSm ⊗ CSn → CSm+n
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is defined to be ρm,n(σ ⊗ τ) = σ(1)σ(2) · · ·σ(m)(τ(1) + m)(τ(2) + m) · · · (τ(n) + m) if we use the one line
notation of permutations, where σ ∈ Sm and τ ∈ Sn. It is easy to check that ρ’s preserve unities and
have the associativity. Since CSn is a semi-simple algebra, we know that CSm+n is a two-sided projec-
tive CSm ⊗CSn-module and satisfies condition (4). Condition (5) is just the Mackey’s Formula [16]. Hence
A = CSn is a tower of algebra and the Grothendieck group G0(A) = K0(A) is a self-dual graded Hopf algebra.

For
⊕

n≥0 Hn(0) of 0-Hecke algebras, the ρ’s are defined by ρm,n(Ti ⊗ 1) = Ti and ρm,n(1⊗Tj) = Tj+m,

where Ti’s and Tj ’s are the generators of Hm(0) and Hn(0), 1 ≤ i ≤ m − 1 and 1 ≤ i ≤ n − 1. For⊕
n≥0 HCln(0) of 0-Hecke-Clifford algebras, the ρ’s are defined by ρm,n(Ti ⊗ 1) = Ti, ρm,n(Ck ⊗ 1) = Ck,

ρm,n(1 ⊗ Tj) = Tj+m and ρm,n(1 ⊗ Cl) = Cl+m, where Ti’s with Ck’s and Tj ’s with Cl’s are the generators
of HClm(0) and HCln(0) respectively, 1 ≤ i ≤ m− 1, 1 ≤ k ≤ m, 1 ≤ i ≤ n− 1 and 1 ≤ l ≤ n. We will also
check that these two satisfy all the axioms listed in section 3. In the introduction we have mentioned that
their Grothendieck groups are dual graded Hopf algebras.

Now we describe an example not satisfying condition (5). In [1], (Π,∧) =
⊕

n≥0(CΠn,∧) of the partition
lattice algebras with

ρm,n : (CΠm,∧) ⊗ (CΠn,∧) → (CΠm+n,∧)

defined by ρm,n(A ⊗ B) = A|B, where A|B = {A1, A2, . . . , Al(A), B1 + m, B2 + m, . . . , Bl(B) + m}. Here ρ’s

do not preserve unities. Although
( ⊕

n≥0(CΠn,∧), {ρm,n}
)

satisfies conditions (1)-(4) in section 4, there

is no similar Mackey’s fomula (5), i.e., the operations of induction and restriction are not compatible as a
bialgebra. Hence the Grothendieck groups G0(Π,∧) and K0(Π,∧) do not have the Hopf algebra structure
although the operation of restriction on G0(Π,∧) is dual to the operation of induction on K0(Π,∧) and the
induction on G0(Π,∧) is dual as graded operations to restriction on K0(Π,∧).

If one consider a direct sum of algebras that does not satisfy conditions (3) then the inductions and
restrictions may not be well defined. Hence we can not construct the multiplication and comultiplication.
Consequently, its Grothendieck groups are not Hopf algebras. If it does not satisfy condition (4), then its
Grothendieck groups are graded Hopf algebras respectively but not necessarily dual to each other.
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San Diego, California 2006

Classifying ascents and descents with specified equivalences mod k

Jeffrey Liese

Abstract. Given a permutation τ of length j, we say that a permutation σ has a τ -match starting at
position i, if the elements in position i, i + 1, . . . , i + j − 1 in σ have the same relative order as the elements
of τ . If Υ is set of permutations of length j, then we say that a permutation σ has an Υ-match starting
at position j if it has a τ -match at position j for some τ ∈ Υ. A number of recent papers have studied
the distribution of τ -matches and Υ-matches in permutations. In this paper, we consider a more refined
pattern matching condition where we take into account conditions involving the equivalence classes of the
elements mod k for some integer k ≥ 2. In general, when one includes parity conditions or conditions
involving equivalence mod k, then the problem of counting the number of pattern matchings becomes more
complicated. In this paper, we prove explicit formulas for the number of permutations of n which have s τ -
equivalence mod k matches when τ is of length 2. We also show that similar formulas hold for Υ-equivalence
mod k matches for certain subsets of permutations of length two.

Résumé. Étant donnée une permutation τ de longueur j, on dit qu’une permutation σ a un τ -motif débutant
en position i si les éléments en position i, i + 1, . . . , i + j − 1 de σ ont le même ordre relatif que les éléments
de τ . Si Υ est un ensemble de permutations de longueur j, alors on dit que σ a un Υ-motif en position i

si σ a un τ -motif en position i pour une permutation τ de Υ. Plusieurs travaux récents ont portés sur la
distribution des τ -occurrences et Υ-occurrences dans les permutations. Dans ce travail, nous étudions un
raffinement de la notion de motif prenant en compte de conditions basée sur les classes d’équivalences des
éléments mod k. De manière générale, lorsque l’on prend en compte la parité ou l’équivalence mod k, le
problème de l’énumération du nombre d’occurrences d’un motif devient plus compliqué. Nous démontrons
une formule explicite pour le nombre de permutations de n qui ont s τ -motifs équivalents mod k quand τ

est de longueur 2. Nous montrons aussi que des formules similaires existent pour les Υ-motifs quand Υ est
limité à certains sous-ensembles de permutations de longueur 2.

1. Introduction

Given any sequence σ = σ1 · · ·σn of distinct integers, we let red(σ) be the permutation that results
by replacing the i-th largest integer that appears in the sequence σ by i. For example, if σ = 2 7 5 4,
then red(σ) = 1 4 3 2. Given a permutation τ in the symmetric group Sj , we define a permutation
σ = σ1 · · ·σn ∈ Sn to have a τ -match at place i provided red(σi · · ·σi+j−1) = τ . Let τ -mch(σ) be the
number of τ -matches in the permutation σ. To prevent confusion, we note that a permutation not having
a τ -match is different than a permutation being τ -avoiding. A permutation is called τ -avoiding if there are
no indices i1 < · · · < ij such that red[σi1 · · ·σij

] = τ . For example, if τ = 2 1 4 3, then the permutation
3 2 1 4 6 5 does not have a τ -match but it does not avoid τ since red[2 1 6 5] = τ .

In the case where |τ | = 2, then τ -mch(σ) reduces to familiar permutation statistics. That is, if σ =
σ1 · · ·σn ∈ Sn, let Des(σ) = {i : σi > σi+1} and Rise(σ) = {i : σi < σi+1}. Then it is easy to see that
(2 1)-mch(σ) = des(σ) = |Des(σ)| and (1 2)-mch(σ) = rise(σ) = |Rise(σ)|.

A number of recent publications have analyzed the distribution of τ -matches in permutations. See, for
example, [EN03, Kit03, Kit]. A number of interesting results have been proved. For example, let τ -nlap(σ)

2000 Mathematics Subject Classification. Primary 17B10; Secondary 05E10.
Key words and phrases. ascents, descents, parity, pattern matching, permutations.
This paper adapted from a section of the Doctoral thesis of Jeffrey Liese with thanks to the direction and assistance

provided by the thesis advisor, Jeffrey Remmel.
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be the maximum number of non-overlapping τ -matches in σ where two τ -matches are said to overlap if they
contain any of the same integers. Then Kitaev [Kit03, Kit] proved the following.

Theorem 1.1.

(1.1)
∑

n≥0

tn

n!

∑

σ∈Sn

xτ-nlap(σ) =
A(t)

(1− x) + x(1 − t)A(t)

where A(t) =
∑

n≥0
tn

n! |{σ ∈ Sn : τ-mch(σ) = 0}|.

In other words, if the exponential generating function for the number of permutations in Sn without any
τ -matches is known, then so is the exponential generating function for the entire distribution of the statistic
τ -nlap.

In this paper, we consider a more refined pattern matching condition where we take into account con-
ditions involving equivalence mod k for some integer k ≥ 2. That is, suppose we fix k ≥ 2 and we are given
some sequence of distinct integers τ = τ1 · · · τj . Then we say that a permutation σ = σ1 · · ·σn ∈ Sn has a τ -
k-equivalence match at place i provided red(σi · · ·σi+j−1) = red(τ) and for all s ∈ {0, . . . , j−1}, σi+s = τ1+s

mod k. For example, if τ = 1 2 and σ = 5 1 7 4 3 6 8 2, then σ has τ -matches starting at positions 2, 5, and
6. However, if k = 2, then only the τ -match starting at position 5 is a τ -2-equivalence match. Later, it will
be explained that the τ -match starting a position 2 is a (1 3)-2-equivalence match and the τ -match starting
a position 6 is a (2 4)-2-equivalence match. Let τ -k-emch(σ) be the number of τ -k-equivalence matches in
the permutation σ. Let τ -k-enlap(σ) be the maximum number of non-overlapping τ -k-equivalence matches
in σ where two τ -matches are said to overlap if they contain any of the same integers.

More generally, if Υ is a set of sequences of distinct integers of length j, then we say that a permu-
tation σ = σ1 · · ·σn ∈ Sn has a Υ-k-equivalence match at place i provided there is a τ ∈ Υ such that
red(σi · · ·σi+j−1) = red(τ) and for all s ∈ {0, . . . , j − 1}, σi+s = τ1+s mod k. Let Υ-k-emch(σ) be the
number of Υ-k-equivalence matches in the permutation σ and Υ-k-enlap(σ) be the maximum number of
non-overlapping Υ-k-equivalence matches in σ.

In this paper, we shall begin the study of the polynomials

Tτ,k,n(x) =
∑

σ∈Sn

xτ-k-emch(σ) =

n
∑

s=0

T s
τ,k,nxs and(1.2)

UΥ,k,n(x) =
∑

σ∈Sn

xΥ-k-emch(σ) =

n
∑

s=0

Us
Υ,k,nxs.(1.3)

In particular, we shall focus on certain special cases of these polynomials where we consider only patterns
of length 2. That is, fix k ≥ 2 and let Ak equal the set of all sequences (a b) such that 1 ≤ a < b ≤ 2k where
there is no lexicographically smaller sequence x y having the property that x ≡ a mod k and y ≡ b mod k.
For example,

A4 = {1 2, 1 3, 1 4, 1 5, 2 3, 2 4, 2 5, 2 6, 3 4, 3 5, 3 6, 3 7, 4 5, 4 6, 4 7, 4 8}.

Let Dk = {b a : a b ∈ Ak} and Ek = Ak ∪ Dk. Thus Ek consists of all k-equivalence patterns of length 2
that we could possibly consider. Note that if Υ = Ak, then Υ-k-emch(σ) = rise(σ) and if Υ = Dk, then
Υ-k-emch(σ) = des(σ).

Our goal is to give explicit formulas for the coefficients of T s
τ,k,n and Us

Υ,k,n. First we shall show that we
can use inclusion-exclusion to find a formula for Us

Υ,k,n for any Υ ⊂ Ek in terms of certain rook numbers of
a sequences of boards associated with Υ. While this approach is straightforward, it is unsatisfactory since it
reduces the computation of Us

Υ,k,n to another difficult problem, namely, computing rook numbers for general
boards. However, we can give two other more direct formulas for the coefficients T s

τ,k,n where τ ∈ Ek. For
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example, in the case where τ = (1 k), our results will imply that for all 0 ≤ s ≤ n and for all 0 ≤ j ≤ k − 1,

T s
(1 k),k,kn+j =

n
∑

r=s

(−1)r−s(kn + j − r)!

(

r

s

)

Sn+1,n+1−r(1.4)

= ((k − 1)n + j)!
s

∑

r=0

(−1)s−r((k − 1)n + j + r)n

(

(k − 1)n + j + r

r

)(

kn + j + 1

s− r

)

= ((k − 1)n + j)!

n−s
∑

r=0

(−1)n−s−r(1 + r)n

(

(k − 1)n + j + r

r

)(

kn + j + 1

n− s− r

)

where Sn,k is the Stirling number of the second kind, i.e., Sn,k is the number of partitions of an n-set into
k parts. These formulas lead to interesting identities in their own right. For example, we see that for all
k ≥ 2, 0 ≤ s ≤ n and 0 ≤ j ≤ k − 1,

s
∑

r=0

(−1)s−r((k − 1)n + j + r)n

(

(k − 1)n + j + r

r

)(

kn + j + 1

s− r

)

=

n−s
∑

r=0

(−1)n−s−r(1 + r)n

(

(k − 1)n + j + r

r

)(

kn + j + 1

n− s− r

)

.

The general problem of finding explicit expressions for the coefficients Us
Υ,k,n for arbitrary Υ is open.

However, Kitaev and Remmel [KR05, KR06] have developed formulas for Us
Υ,k,n in certain other special

cases. In particular, Kitaev and Remmel studied permutation statistics which classified the descents of a
permutation according to whether either the first element or the second element of a descent pair is equivalent
to 0 mod k. In our language, they computed explicit formulas for Us

Υ,k,n where either Υ = {b a : (b a) ∈

Dk & b ≡ 0 mod k} or Υ = {b a : (b a) ∈ Dk & a ≡ 0 mod k}. In this paper, we shall generalize some
of their results by deriving explicit formulas for Us

Υ,k,n in the special cases where Υ is a subset of the form

{(x1, y1), (x2, y2), . . . , (xn, yn)} where for all i, j yi ≡ yj mod k and either Υ ⊆ Ak or Υ ⊆ Dk.
The outline of this paper is as follows. In section 2, we shall discuss some of the previous results of Kitaev

and Remmel [KR05, KR06] and give some examples of the polynomials Tτ,k,n(x). In section 3, we will show
how to one can use inclusion-exclusion to derive an UΥ,k,n(x) in terms of certain rook numbers. In section
4, we shall prove formulas in the case where Υ consists of a sequences of pairs {(x1, y1), . . . , (xt, yt)} ⊆ Ak

such that for all i and j, yi = yj mod k. Using the bijection which sends each permutation σ = σ1 · · ·σn to
its reverse, σr = σn · · · , σ1, one can show that the same formulas hold for Υr = {(y1, x1), . . . , (yt, xt)} ⊆ Dk.
We shall also see that the identities that result by equating the different formulas for any given coefficient are
interesting in their own right. Then, we shall make a few comments about the problem of finding UΥ,k,n(x)
for arbitrary Υ.

2. Previous results and examples

In this section, we shall state some previous results and give some examples of the polynomials Tτ,k,n(x)
and UΥ,k,n(x). As mentioned in the introduction, Kitaev and Remmel [KR05, KR06], found explicit
formulas for the coefficients Us

Υ,k,n in certain special cases. In particular, they studied descents according
to the equivalence class mod k of either the first or second element in a descent pair. That is, for any set
X ⊆ {0, 1, 2, . . .}, define

•
←−−
DesX(σ) = {i : σi > σi+1 & σi ∈ X} and

←−
desX(σ) = |

←−−
DesX(σ)|

•
−−→
DesX(σ) = {i : σi > σi+1 & σi+1 ∈ X} and

−→
desX(σ) = |

−−→
DesX(σ)|

In [KR05], Kitaev and Remmel studied the following polynomials.

(1) Rn(x) =
∑

σ∈Sn
x
←−
desE(σ) =

∑n

k=0 Rk,nxk,

(2) Pn(x, z) =
∑

σ∈Sn
x
−→
desE(σ)zχ(σ1∈E) =

∑n

k=0

∑1
j=0 Pj,k,nzjxk

(3) Mn(x) =
∑

σ∈Sn
x
←−
desO(σ) =

∑n
k=0 Mk,nxk, and

(4) Qn(x, z) =
∑

σ∈Sn
x
−→
desO(σ)zχ(σ1∈O) =

∑n

k=0

∑1
j=0 Qj,k,nzjxk.
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where E = {0, 2, 4, . . . , } is the set of even numbers, O = {1, 3, 5, . . .} is the set of odd numbers, and for any
statement A, we let χ(A) = 1 is A is true and χ(A) = 0 if A is false. Thus, for example, in our language,
Rn(x) = UΥ,2,n(x) where Υ = {2 1, 4 2} and Pn(x, 1) = UΥ,2,n(x) where Υ = {3 2, 4 2}. In this case,
there are some surprisingly simple formulas for the coefficients of this polynomials. For example, Kitaev and
Remmel [KR05] proved the following.

Theorem 2.1.

Rk,2n =

(

n

k

)2

(n!)2,(2.1)

Rk,2n+1 = (k + 1)

(

n

k + 1

)2

(n!)2 + (2n + 1− k)

(

n

k

)2

(n!)2 =
1

k + 1

(

n

k

)2

((n + 1)!)2,(2.2)

P1,k,2n =

(

n− 1

k

)(

n

k + 1

)

(n!)2,(2.3)

P0,k,2n =

(

n− 1

k

)(

n

k

)

(n!)2,(2.4)

P0,k,2n+1 = (k + 1)

(

n

k

)(

n + 1

k + 1

)

(n!)2 = (n + 1)

(

n

k

)2

(n!)2, and(2.5)

P0,k,2n+1 =

(

n

k

)

(n!)2
(

n

(

n− 1

k

)

+ (k + 1)

(

n

k

))

.(2.6)

In [KR06], Kitaev and Remmel studied the polynomials

(1) A
(k)
n (x) =

∑

σ∈Sn
x
←−
deskN (σ) =

∑bn
k
c

j=0 A
(k)
j,nxj and

(2) B
(k)
n (x, z) =

∑

σ∈Sn
x
−→
deskN (σ)zχ(σ1∈kN) =

∑bn
k
c

j=0

∑1
i=0 B

(k)
i,j,nzixj .

where kN = {0, k, 2k, . . .}. Again both A
(k)
n (x) and B

(k)
n (x, z) are special cases of UΥ,k,n(x). When k ≥ 2,

the formulas for A
(k)
n (x) and B

(k)
n (x, z) become more complicated. Nevertheless, certain nice formulas arise.

For example, Kitaev and Remmel [KR06] proved the following.

Theorem 2.2. For all 0 ≤ j ≤ k − 1 and all n ≥ 0, we have

A
(k)
s,kn+j = ((k − 1)n + j)!

s
∑

r=0

(−1)s−r

(

(k − 1)n + j + r

r

)(

kn + j + 1

s− r

) n−1
∏

i=0

(r + 1 + j + (k − 1)i)(2.7)

= ((k − 1)n + j)!

n−s
∑

r=0

(−1)n−s−r

(

(k − 1)n + j + r

r

)(

kn + j + 1

n− s− r

) n
∏

i=1

(r + (k − 1)i)(2.8)

In general, when one includes parity conditions or conditions involving equivalence mod k, then the
problem of counting the number of pattern matchings become more complicated. For example, if τ = 2 1,
then the number of permutations of Sn with no τ -matches is 1 since the only permutation of Sn with
no (2 1)-matches is the identity permutation 1 2 · · · n − 1 n. However, according to Theorem 2.1, the
number of permutations of Sm with no {(2 1), (4 2)}-2-equivalences matches is (n!)2 if m = 2n and is
((n + 1)!)2 if m = 2n + 1. Similarly, the analogue of the Kitaev’s result (1.1) fails to hold in general. For
example, in the case where k = 2 and τ = 1 2, then (1.4) implies that for n ≥ 1, T 0

(1 2),2,2n
= nn(n!) and

T 0
(1 2),2,2n+1 = (n + 1)n((n + 1)!),

A(t) =
∑

n≥0

tn

n!
|{σ ∈ Sn : (1 2)-2-emch(σ) = 0}| = 1 +

∑

n≥1

t2n

(2n)!
nn(n!) +

∑

n≥0

t2n+1

(2n + 1)!
(n + 1)n(n + 1)!.

Moreover for any σ ∈ Sn, (1 2)-2-emch(σ) = (1 2)-2-enlap(σ). But is easy to check that

∑

n≥0

tn

n!

∑

σ∈Sn

x(1 2)-2-emch(σ) 6=
A(t)

(1− x) + x(1 − t)A(t)
.
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Next we give some examples of our polynomials. Here is a table that lists T(a b),k,n(x) for all possible
values of a and b where k = 3 and 2 ≤ n ≤ 8.

T(12),3,2(x) = 1 + x T(13),3,2(x) = 2 T(14),3,2(x) = 2

T(12),3,3(x) = 4 + 2x T(13),3,3(x) = 4 + 2x T(14),3,3(x) = 6

T(12),3,4(x) = 18 + 6x T(13),3,4(x) = 18 + 6x T(14),3,4(x) = 18 + 6x

T(12),3,5(x) = 54 + 60x + 6x
2

T(13),3,5(x) = 96 + 24x T(14),3,5(x) = 96 + 24x

T(12),3,6(x) = 384 + 312x + 24x
2

T(13),3,6(x) = 384 + 312x + 24x
2

T(14),3,6(x) = 600 + 120x

T(12),3,7(x) = 3000 + 1920x + 120x
2

T(13),3,7(x) = 3000 + 1920x + 120x
2

T(14),3,7(x) = 3000 + 1920x + 120x
2

T(12),3,8(x) = 15000 + 20520x + 4680x
2

+ 120x
3

T(13),3,8(x) = 25920 + 13680x + 720x
2

T(14),3,8(x) = 25920 + 13680x + 720x
2

Glancing at these values, certain things become apparent. First, observe that for each of these polynomials
all the coefficients are divisible by the coefficient of the highest power of x appearing in the polynomial.
Second, one can observe that polynomials T(ab),3,n(x) depend only on b. Finally, one can also observe that
for any given n, the function T(ab),k,n(x) takes at most three distinct values. For example when n = 5, one
can see that all the polynomials T(ab),3,5(x) are equal to one of T(12),3,5(x), T(13),3,5(x), or T(36),3,5(x) and
that these three polynomials are distinct. All of these facts are true in general for any k and n since they
follow from our closed forms for T(ab),k,n(x).

T(23),3,2(x) = 2 T(24),3,2(x) = 2 T(25),3,2(x) = 2

T(23),3,3(x) = 4 + 2x T(24),3,3(x) = 6 T(25),3,3(x) = 6

T(23),3,4(x) = 18 + 6x T(24),3,4(x) = 18 + 6x T(25),3,4(x) = 24

T(23),3,5(x) = 96 + 24x T(24),3,5(x) = 96 + 24x T(25),3,5(x) = 96 + 24x

T(23),3,6(x) = 384 + 312x + 24x
2

T(24),3,6(x) = 600 + 120x T(25),3,6(x) = 600 + 120x

T(23),3,7(x) = 3000 + 1920x + 120x
2

T(24),3,7(x) = 3000 + 1920x + 120x
2

T(25),3,7(x) = 4320 + 720x

T(23),3,8(x) = 25920 + 13680x + 720x
2

T(24),3,8(x) = 25920 + 13680x + 720x
2

T(25),3,8(x) = 25920 + 13680x + 720x
2

T(34),3,2(x) = 2 T(35),3,2(x) = 2 T(36),3,2(x) = 2

T(34),3,3(x) = 6 T(35),3,3(x) = 6 T(36),3,3(x) = 6

T(34),3,4(x) = 18 + 6x T(35),3,4(x) = 24 T(36),3,4(x) = 24

T(34),3,5(x) = 96 + 24x T(35),3,5(x) = 96 + 24x T(36),3,5(x) = 120

T(34),3,6(x) = 600 + 120x T(35),3,6(x) = 600 + 120x T(36),3,6(x) = 600 + 120x

T(34),3,7(x) = 3000 + 1920x + 120x
2

T(35),3,7(x) = 4320 + 720x T(36),3,7(x) = 4320 + 720x

T(34),3,8(x) = 25920 + 13680x + 720x
2

T(35),3,8(x) = 25920 + 13680x + 720x
2

T(36),3,8(x) = 25920 + 13680x + 720x
2

3. Finding the coefficients for UΥ,k,n(x) by inclusion-exclusion

In this section, we shall show how we can use inclusion-exclusion to obtain an expression for UΥ,k,n(x)
for any Υ ⊂ Ek. The idea is as follows. Suppose that we fix k and Υ ⊆ Ek. Given any two element sequence
ab ∈ Ek, we shall write ab u xy mod k if (i) x ≡ a mod k, (ii) y ≡ b mod k, (iii) a < b implies x < y, and
(iv) a > b implies x > y. Then for each n ≥ 1, we let Υn = {xy : 1 ≤ x, y ≤ n & xy u ab mod k where
(ab) ∈ Υ}. For each xy ∈ Υn, we let Cxy,n equal the set of all σ = σ1 · · ·σn ∈ Sn such that there exist an
1 ≤ i < n such that σi = x and σi+1 = y. Given σ ∈ Sn, we define PrΥ,n(σ), the property set of σ relative
to Υ, to be the set of all xy ∈ Υn such that σ ∈ Cxy,n. Then we define the following.

(1) For each T ⊆ Υn, let E=T,Υ,n = {σ ∈ Sn : PrΥ,n(σ) = T } and βT,Υ,n = |E=T,Υ,n|.
(2) For each T ⊆ Υn, let E⊇T,Υ,n = {σ ∈ Sn : PrΥ,n(σ) ⊇ T } and αT,Υ,n = |E⊇T,Υ,n|.
(3) For each r ≥ 0, let βr,Υ,n =

∑

S⊆Υn,|S|=r βS,Υ,n and αr,Υ,n =
∑

S⊆Υn,|S|=r αS,Υ,n.

It is an easy consequence of the inclusion-exclusion principle that

(3.1)
∑

t≥0

βt,Υ,nxt =
∑

t≥0

αt,Υ,n(x− 1)t.

It is also easy to see from our definitions that

(3.2)
∑

t≥0

βt,Υ,nxt = UΥ,k,n(x).

Thus we get an expression for UΥ,k,n(x) by calculating the RHS of (3.1).
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Next we observe that it is easy to compute αT,Υ,n. We say that T ⊆ Υn is consistent if there does not
exist distinct ab and cd in T such that either a = c or b = d. For example, if k = 4 and Υ = {12, 34, 32, 46},
then Υ7 = {12, 16, 56, 34, 32, 72, 76, 46}. Then T1 = {12, 16, 34} and T2 = {12, 32, 76} are not consistent
while T3 = {12, 34, 46} is consistent. First we claim that if T is consistent, then αT,Υ,n = (n−|T |)!. That is,
we need to construct E⊇T,Υ,n which consists of all permutations σ ∈ Sn such that each pattern in T occurs
consecutively in σ. We do this by first constructing the maximal blocks of elements of {1, . . . , n} where xy
occurs consecutively in a block if and only if xy ∈ T . For example, if n = 7 and T = T3 as given above, then
the maximal blocks constructed from T are 12, 346, 5 and 7. Then it is easy to see that any permutation
of the maximal blocks constructed from T corresponds to a permutation σ ∈ E⊇T,Υ,n. For example, the
permutation of the maximal blocks 346 5 12 7 corresponds to the permutation 3 4 6 5 1 2 7 ∈ E⊇T3,Υ,7.
Now it is easy to see that the number of maximal blocks of {1, . . . , n} constructed from T is n− |T |. Thus
αT,Υ,n = |E⊇T,Υ,n| = (n− |T |)!. Of course, if T is inconsistent, there there is no permutation σ ∈ Sn such
that all the sequences in T occur consecutively in σ. In this situation, αT,Υ,n = 0.

Thus to compute αt,Υ,n, we need only count the number of consistent subsets of size t in Υn. We can
think of this problems as counting the number of rook placements of size t in a certain board associated
with Υn. That is, given Υn, let BΥ,n be the set of all (x, y) such that xy ∈ Υn. For example, if k = 4 and
Υ = {12, 34, 32, 46} so that Υ7 = {12, 16, 56, 34, 32, 72, 76, 46}, then BΥ,7 consists of the shaded squares on
the board pictured in Figure 1.

1

3

4

5

7

2 4 6

Figure 1. The board BΥ,7.

Given any board B ⊆ {1, . . . , n} × {1, . . . , n}, we let rk(B) denote the number of placements of k rooks
in B such that no two rooks lie in the same row or the same column. It is then easy to see that number of
consistent subsets of size t in Υn equals rt(BΥ,n) and thus, αt,Υ,n = (n− t)!rt((BΥ,n). It follows that

UΥ,k,n(x) =
∑

t≥0

βt,Υ,nxt =
∑

t≥0

αt,Υ,n(x − 1)t

=
∑

t≥0

(n− t)!rt(BΥ,n)

t
∑

s=0

(−1)t−s

(

t

s

)

xs =
∑

s≥0

xs

n
∑

t=s

(n− t)!(−1)t−s

(

t

s

)

rt(BΥ,n).

The problem with formula (3.3) is that we obtain an expression for the coefficients of UΥ,k,n(x) in terms
of the numbers rt(BΥ,n) which are not easy to compute in general. There are however some special cases
of (3.3) where the numbers rt(BΥ,n) are familiar. That is, suppose Υ = {(1k)}. Then it is easy to see that
BΥ,kn+j consists of the set of squares {(1 + ik, jk) : 0 ≤ i < j ≤ n}. For example, if k = 3 and Υ = {(13)},
then BΥ,12 consists of the shaded squares on the board pictured in Figure 2.

1

4

7

10

3 6 9 12

Figure 2. The board B{13},12.

It is well known that the Stirling number of the second kind, Sn+1,k, is the number of placements of
n + 1− k rooks on the staircase board, consisting of columns of heights 0, 1, . . . , n reading from right to left,

549



CLASSIFYING ASCENTS

so that no two rooks lie in the same row or column. It then easily follows that

(3.3) T s
(1k),k,kn+j = Us

{(1k)},k,kn+j =
n

∑

r=s

(−1)r−s

(

r

s

)

(kn + j − r)!Sn+1,n+1−r .

Another case that involves the Stirling numbers is when Υ = Dk. As pointed out in the introduction,
in that case, Υ-k-emch(σ) = des(σ). In this case the board the BΥ,n equals {(j, i) : 0 ≤ i < j ≤ n} which is
equivalent to a staircase board with column heights 0, 1, . . . , n− 1.

It is also well known that the Eulerian numbers, Em,n counts the number of permutations in Sm that
have exactly n descents. Thus we can derive the following formula for the Eulerian numbers in terms of the
Stirling numbers.

(3.4) En,s = Us
Ak,k,n(x) =

n
∑

r=s

(−1)r−s

(

r

s

)

(n− r)!Sn,n−r.

In some other cases, we have been able to derive formulas that involve sums over products of Stirling
numbers. In such cases, the board BΥ,n naturally breaks up as a disjoint union of staircase boards. However,
because of lack of space, we shall not give such examples in this paper.

4. Finding the coefficients of UΥ,k,n by iterating recursions

In this section, we shall give an alternative approach to finding the UΥ,k,n that exploits the fact that we
can find simple recursion for the polynomials UΥ,k,n.

Given any permutation σ = σ1 · · ·σn ∈ Sn, we label with the integers from 0 to n (from left to right)
the possible positions of where we can insert n + 1 to get a permutation in Sn+1. In other words, inserting
n + 1 in position 0 means that we insert n + 1 at the beginning of σ and for i ≥ 1, inserting n + 1 in position
i means we insert n+1 immediately after σi. In such a situation, we let σ(i) denote the permutation of Sn+1

that results by inserting n + 1 in position i.
Throughout the rest of this section, we shall assume that k ≥ 2 and Υ ⊆ Ak is a subset of the

form {(x1, y1), (x2, y2), . . . , (xt, yt)} where for all i, j yi ≡ yj mod k. Now, define y = min({y1, . . . , yt})
and α = |{xi : xi < y}|. We then let AscΥ,k(σ) = {i : σi < σi+1 & σi ≡ xj mod k & σi+1 ≡ yj

mod k for some (xj , yj) ∈ Υ}. We shall call the elements of AscΥ,k(σ) the Υ-ascents of σ.
For j = y − k + 1, . . . , y − 1, let ∆kn+j be the operator which sends xs to sxs−1 + (kn + j − s)xs and

Γkn+y be the operator that sends xs to ((k − |Υ|)n + y + s− α)xs + (|Υ|n + α− s)xs+1. Then we have the
following.

Theorem 4.1. Given Υ, y, and α as described above, the polynomials {UΥ,k,n(x)}n≥1 satisfy the fol-

lowing recursions.

(1) UΥ,k,1(x) = 1,
(2) For j = y − k + 1, . . . , y − 1, UΥ,k,kn+j(x) = ∆kn+j(UΥ,k,kn+j−1(x)), and

(3) UΥ,k,kn+y(x) = Γkn+y(UΥ,k,kn+y−1(x)).

Proof. Part (1) is trivial.
For part (2), fix j such that y − k + 1 ≤ j ≤ y − 1. Now suppose σ = σ1 · · ·σkn+j−1 ∈ Skn+j−1 and

ascΥ,k(σ) = s. It is then easy to see that if we insert kn + j in position i where i ∈ AscΥ,k(σ), then

ascΥ,k(σ(i)) = s− 1. However, if we insert kn + j in position i where i /∈ AscΥ,k(σ), then ascΥ,k(σ(i)) = s.

Thus {σ(i) : i = 0, . . . , kn + j − 1} gives a contribution of sxs−1 + (kn + j − s)xs to UΥ,k,kn+j .
For part (3), suppose σ = σ1 · · ·σkn+y−1 ∈ Skn+y−1 and ascΥ,k(σ) = s. In this situation we can create

a Υ-ascent, but we can’t lose one. That is, if we place kn + y after any element equivalent to xi mod k for
some (xi, yi) ∈ Υ which isn’t already part of a Υ-ascent, we would create an additional Υ-ascent. There are
|Υ|n + α − s such locations. This means that the number of locations that keep the number of ascents the
same must be (k− |Υ|)n + y + s−α as the two must sum to kn + y. Thus {σ(i) : i = 0, . . . , kn + y− 1} gives
a contribution of ((k − |Υ|)n + y + s− α)xs + (|Υ|n + α− s)xs+1 to UΥ,k,kn+y. �

We can give combinatorial proofs of two simple formulas for the extreme coefficients of UΥ,k,n(x).
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Theorem 4.2. Let Υ, y, and α be as described above. Then for all k ≥ 2, for all j = y − k, . . . , y − 1
and n such that kn + j > 0,

U0
Υ,k,kn+j = ((k − 1)n + j)!

n−1
∏

i=0

(k − 1)n + j + 1− α− i(|Υ| − 1)(4.1)

Un
Υ,k,kn+j = ((k − 1)n + j)!

n−1
∏

i=0

α + i(|Υ| − 1)(4.2)

Proof. Clearly when n = 0, the only j ∈ {y − k, . . . , y − 1} such that kn + j > 0 are j = 1, . . . y − 1.
In these cases, no permutation σ of Sj can have an Υ-k- equivalence match so that UΥ,k,j(x) = j!. By
convention, we assume the empty product is equal to 1 so that our formulas holds when n = 0.

Next assume that n ≥ 1 and Υ = {(xi, yi) : i = 1, . . . t} where x1, . . . xα consist of those xi’s such that
(xi, y) ∈ Υ. Suppose that j ∈ {y − k, . . . , y − 1}.

First we consider those permutations σ ∈ Skn+j such that Υ-k-emch(σ) = 0. We claim that we can
construct all such σ as follows. By our definition, there are (k−1)n+ j elements in {1, . . . , kn+ j} which are
not equivalent to y mod k. We can arrange these elements in ((k− 1)n+ j)! ways. Given an arrangement τ
of the elements in {1, . . . , kn + j} which are not equivalent to y mod k, we can extend τ to a permutation
σ ∈ Skn+j such that Υ-k-emch(σ) = 0 as follows. First we can insert y into τ so that we do not create any
Υ-k-equivalence matches. Clearly this can be done in (k− 1)n + j + 1−α ways since all we have to do is to
ensure that we do not insert y immediately after any of x1, . . . xα. Now suppose τ1 is a sequence that results
from inserting y into τ so that we do not create any Υ-k-equivalence matches. Then, the number of ways to
insert y + k into τ1 so that we do not create any Υ-k-equivalence matches is (k− 1)n + j + 1−α− (|Υ| − 1).
That is there are (k − 1)n + j + 2 possible ways to insert y + k into τ1 but that are α+|Υ| elements z
such that if we insert y + k after z, then we would form an Υ-k-equivalence match. Now suppose τ2 is a
sequence that results from inserting y + k into τ1 so that we do not create any Υ-k-equivalence matches.
Then, the number of ways to insert y + 2k into τ2 so that we do not create any Υ-k-equivalence matches is
(k−1)n+j+1−α−2(|Υ|−1). That is there are (k−1)n+j+3 possible ways to insert y+2k into τ2 but that
are α+2|Υ| elements z such that if we insert y + 2k after z, then we would form an Υ-k-equivalence match.

Continuing on in this way, we see that U0
Υ,k,kn+j = ((k− 1)n + j)!

∏n−1
i=0 (k− 1)n + r + j + 1−α− i(|Υ| − 1).

Next we consider those permutations σ ∈ Skn+j such that Υ-k-emch(σ) = n. We claim that we can
construct all such σ as follows. By our definition, there are (k−1)n+ j elements in {1, . . . , kn+ j} which are
not equivalent to y mod k. We can arrange these elements in ((k− 1)n+ j)! ways. Given an arrangement τ
of the elements in {1, . . . , kn + j} which are not equivalent to y mod k, we can extend τ to a permutation
σ ∈ Skn+j such that Υ-k-emch(σ) = n as follows. Clearly, we must insert y, y + k, . . . , y + (n− 1)k in such
a way that each of these elements create an Υ-k-equivalence match. Thus we must insert y into τ so that
it immediately follows one of x1, . . . , xα. Hence we have α ways to insert y. Now suppose τ1 is a sequence
that results from inserting y into τ so that we did create a Υ-k-equivalence match. Then the number of
ways to insert y + k into τ1 so that we create another Υ-k-equivalence match is α + (|Υ| − 1) since there
α + |Υ| elements x < y + k such that (x (y + k)) would be an Υ-k-equivalence match and we can not insert
y + k immediately before y. Now suppose τ2 is a sequence that results from inserting y + k into τ1 so that
we have created a second Υ-k-equivalence match. Then the number of ways to insert y + 2k into τ2 so that
we create an additional Υ-k-equivalence matches is α = 2(|Υ| − 1) since there α + 2|Υ| elements x < y + k
such that (x (y + 2k)) would be an Υ-k-equivalence match and we can not insert y + 2k immediately before

y or y + 2k. Continuing on in this way, we see that Un
Υ,k,kn+j = ((k − 1)n + j)!

∏n−1
i=0 α + i(|Υ| − 1). �

This given, we can derive a general formula Us
Υ,k,n using the recursions implicit in Theorem 4.1. It is

easy to see from Theorem 4.1 that we have two following recursions for the coefficients Us
Υ,k,n.

For y − k + 1 ≤ j ≤ y − 1,

(4.3) Us
Υ,k,kn+j = (kn + j − s)Us

Υ,k,kn+j−1 + (s + 1)Us+1
Υ,k,kn+j−1

Similarly, we have

(4.4) Us
Υ,k,kn+y = ((k − |Υ|)n + y − α + s)Us

Υ,k,kn+y−1 + (|Υ|n + α− s + 1)Us−1
Υ,k,kn+y−1

We will now turn to a closed form for Us
Υ,k,kn+j . This formula was obtained by using (4.3) and iterating

these recursions from the bottom up.
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Theorem 4.3. For all y − k ≤ j ≤ y − 1 and all s ≤ n such that kn + j > 0, we have

Us
Υ,k,kn+j = ((k − 1)n + j)!

[

s
∑

r=0

(−1)s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

s− r

)

Γ(r, j, n)

]

where Γ(r, j, n) =

n−1
∏

i=0

((k − 1)n + r + j + 1− α− i(|Υ| − 1))

Proof. We shall prove by induction, first on s, and then n that our formulas hold. That is, by Theorem
4.2, our formulas hold when s = 0 for all n ≥ 0 and and y − k ≤ j ≤ y − 1 if kn + j > 0. Next assume
that our formulas satisfy the recursions (4.3) and (4.4), which we will verify later in the proof. Then, we
can complete the induction as follows. First assume that that our formulas hold at some s for all n ≥ s and
y − k ≤ j ≤ y − 1 if kn + j > 0. Note that the recursions (4.3) and (4.4) can be rewritten as

(4.5) Us+1
Υ,k,kn+j−1 =

1

s + 1
(Us

Υ,k,kn+j − (kn + j − s)Us
Υ,k,kn+j−1),

for y − k + 1 ≤ j ≤ y − 1, and

(4.6) Us+1
Υ,k,kn+y−1 =

1

((k − |Υ|)n + y − α + s + 1)
(Us+1

Υ,k,kn+y − (|Υ|+ α− s)Us
Υ,k,kn+y−1)

Thus in particular, (4.5) implies our formulas hold at s + 1 when n ≥ s + 1 and j = y− k, . . . , y− 2. We are
then able to use (4.6) to establish that our formula holds at s + 1 when n ≥ s + 1 and j = y − 1.

Thus to complete our proof, we need only verify that our formulas satisfy the recursions (4.3) and (4.4).
In order to simplify the algebra, we will convert the form from (4.5) to the following

(4.7) Us
Υ,k,kn+j =

s
∑

r=0

(−1)s−r((k − 1)n + r + j)!(kn + j + 1)!Γ(r, j, n)

(kn + j − s + r + 1)!r!(s − r)!
.

So, for y − k + 1 ≤ j ≤ y − 1 plugging in the above form into the RHS of (4.3) gives

(kn + j − s)

[

s
∑

r=0

(−1)s−r((k − 1)n + r + j − 1)!(kn + j)!Γ(r, j − 1, n)

(kn + j − s + r)!r!(s − r)!

]

+(s + 1)

[

s+1
∑

r=0

(−1)s+1−r((k − 1)n + r + j − 1)!(kn + j)!Γ(r, j − 1, n)

(kn + j − s + r − 1)!r!(s + 1− r)!

]

Removing the s + 1 term from the second summand, recognizing that Γ(r, j − 1, n) = Γ(r − 1, j, n) and
combining the rest of the terms yields

s
∑

r=0

(−1)s−r((k − 1)n + r + j − 1)!(kn + j)!Γ(r − 1, j, n) [−r(kn + j + 1)]

(kn + j − s + r)!r!(s + 1− r)!
+

((k − 1)n + s + j)!Γ(s + 1, j − 1, n)

s!

Since there is a factor of r in the numerator, we may omit the r = 0 term from the summand, shift indices
and recognize that Γ(s + 1, j − 1, n) = Γ(s, j, n) to get

s−1
∑

r=0

(−1)s−r((k − 1)n + r + j)!(kn + j + 1)!Γ(r, j, n)

(kn + j − s + r + 1)!r!(s− r)!
+

((k − 1)n + s + j)!Γ(s, j, n)

s!

=

s
∑

r=0

(−1)s−r((k − 1)n + r + j)!(kn + j + 1)!Γ(r, j, n)

(kn + j − s + r + 1)!r!(s − r)!
= Us

Υ,k,kn+j

Thus we have shown that our formula for Us
Υ,k,kn+j satisfies (4.3) for y − k + 1 ≤ j ≤ y − 1. We will now

show that our formula satisfies (4.4). The RHS of (4.4) becomes

((k − |Υ|)n + s + y − α)

[

s
∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y)!Γ(r, y − 1, n)

(kn + y − s + r)!r!(s − r)!

]

+(|Υ|n + α− s + 1)

[

s−1
∑

r=0

(−1)s−r−1((k − 1)n + r + y − 1)!(kn + y)Γ(r, y − 1, n)!

(kn + y − s + r + 1)!r!(s − r − 1)!

]
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Removing the s term from the first summand, and combining the rest of the terms yields

s−1
∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y)!Γ(r, y − 1, n) [(kn + y + 1)(kn− n|Υ|+ r + y − α)]

(kn + y − s + r + 1)!r!(s− r)!

+
((k − |Υ|)n + s + y − α)((k − 1)n + y + s− 1)!Γ(s, y − 1, n)

s!

=
s−1
∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y + 1)!Γ(r, y − 1, n)

(kn + y − s + r + 1)!r!(s− r)!

+
((k − |Υ|)n + s + y − α)((k − 1)n + y + s− 1)!Γ(s, y − 1, n)

s!

=
s

∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y + 1)!Γ(r, y − 1, n)((k − |Υ|)n + r + y − α)

(kn + y − s + r + 1)!r!(s − r)!

=

s
∑

r=0

(−1)s−r((k − 1)n + r + y − 1)!(kn + y + 1)!Γ(r, y − k, n + 1)

(kn + y − s + r + 1)!r!(s− r)!
= Us

Υ,k,kn+y

Thus we have shown that our formula for Us
Υ,k,kn+j satisfies (4.4) as desired. �

Here is another formula for Us
Υ,k,kn+j . This one was obtained by iterating the recursions (4.3) and (4.4)

from the top down.

Theorem 4.4. For all y − k ≤ j ≤ y − 1 and all s ≤ n such that kn + j > 0, we have

Un−s
Υ,k,kn+j = ((k − 1)n + j)!

[

s
∑

r=0

(−1)s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

s− r

)

Ω(r, n)

]

(4.8)

where Ω(r, n) =

n−1
∏

i=0

(r + α + i(|Υ| − 1)).

Proof. We shall prove by induction, first on s and then on kn + j that our formulas hold. Theorem
4.2 proves our formulas hold when s = 0 for all n ≥ 0 and y − k ≤ j ≤ y − 1 such that kn + j > 0. Now
assume that our formulas for Un−s

Υ,k,kn+j satisfy the the recursions, (4.3) and (4.4), which we will verify later

in the proof. Then, we can complete our induction as follows. Assume that our formulas for Un−s
Υ,k,kn+j hold

at s for all n ≥ s and and y − k ≤ j ≤ y − 1 such that kn + j > 0. Then, the recursions can be rewritten as

(4.9) U
n−(s+1)
Υ,k,kn+j = (kn + j − n + s + 1)U

n−(s+1)
Υ,k,kn+j−1 + (n− s)Un−s

Υ,k,kn+j−1

for y − k + 1 ≤ j ≤ y − 1, and

(4.10) U
(n+1)−(s+1)
Υ,k,k(n+1)+y−k

= ((k − |Υ|)n + y − α + n− s)Un−s
Υ,k,kn+y−1) + (|Υ|+ α− n + s + 1)U

n−(s+1)
Υ,k,kn+y−1

It is easy to see that the recursions (4.10) and (4.10) will allow us to prove our formulas hold for U
n−(s+1)
Υ,k,kn+j ,

for all n ≥ s + 1 and y− k ≤ j ≤ y− 1 such that kn + j > 0, by induction on kn + j so long as we can prove
a base case. In the base case, we can prove the recursion

(4.11) U
(s+1)−(s+1)
Υ,k,k(n+1)+y−k

= (k − |Υ|)n + y − α + s− s)Us−s
Υ,k,kn+y−1 + (|Υ|+ α− s + s + 1)U

s−(s+1)
Υ,k,kn+y−1

if we interpret each term in the sense of the RHS of (4.8). The problem is that our formulas make sense
even in the case

(4.12) U
s−(s+1)
Υ,k,kn+y−1 = ((k − 1)n + y − 1)!

[

s+1
∑

r=0

(−1)s+1−r

(

(k − 1)n + r + y − 1

r

)(

kn + y

s + 1− r

)

Ω(r, s)

]

.

However, by our definitions, it must be the case that U
s−(s+1)
Υ,k,kn+y−1 = U−1

Υ,k,kn+y−1 = 0. Thus in order to

establish the base case, we need an independent proof that the RHS of (4.12) is 0. In fact, we can prove
much more. That is, we can give a direct combinatorial proof that

Un+1
Υ,k,kn+j = ((k − 1)n + j)!

[

n+1
∑

r=0

(−1)n+1−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

n + 1− r

)

Ω(r, n)

]

= 0
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for any y − k ≤ j ≤ y − 1. We will not give this combinatorial proof here due to lack of space.
Thus to complete our induction, we need only show that our formulas satisfy the recursions (4.3) and

(4.4). In order to simplify the algebra, we will again convert the form from (4.8) to the following

Us
Υ,k,kn+j =

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + j)!(kn + j + 1)!Ω(r, n)

((k − 1)n + j + s + r + 1)!r!(n − s− r)!

So, for y − k + 1 ≤ j ≤ y − 1 plugging in the above form into the RHS of (4.3) gives

(kn + j − s)

[

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + j − 1)!(kn + j)!Ω(r, n)

((k − 1)n + j + s + r)!r!(n − s− r)!

]

+(s + 1)

[

n−s−1
∑

r=0

(−1)n−s−r−1((k − 1)n + r + j − 1)!(kn + j)!Ω(r, n)

((k − 1)n + j + s + r + 1)!r!(n− s− r − 1)!

]

Removing the n− s term from the first summand, and combining the rest of the terms yields

n−s−1
∑

r=0

(−1)n−s−r((k − 1)n + r + j − 1)!(kn + j)!Ω(r, n) [(kn + j + 1)((k − 1)n + j + r)]

((k − 1)n + j + s + r + 1)!r!(n− s− r)!

+
(kn + j − s)!Ω(n− s, n)

(n− s)!

=

n−s−1
∑

r=0

(−1)n−s−r((k − 1)n + r + j)!(kn + j + 1)!Ω(r, n)

((k − 1)n + j + s + r + 1)!r!(n − s− r)!
+

(kn + j − s)!Ω(n− s, n)

(n− s)!

=

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + j)!(kn + j + 1)!Ω(r, n)

((k − 1)n + j + s + r + 1)!r!(n − s− r)!
= Us

Υ,k,kn+j

Thus we have shown that our formula for Us
Υ,k,kn+j satisfies (4.3) for y − k + 1 ≤ j ≤ y − 1. We will now

show that our formula satisfies (4.4). The RHS of (4.4) becomes

((k − |Υ|)n + s + y − α)

[

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + y − 1)!(kn + y)!Ω(r, n)

((k − 1)n + y + s + r)!r!(n − s− r)!

]

+(|Υ|n + α− s + 1)

[

n−s+1
∑

r=0

(−1)n−s−r+1((k − 1)n + r + y − 1)!(kn + y)!Ω(r, n)

((k − 1)n + y + s + r − 1)!r!(n− s− r + 1)!

]

Removing the n− s + 1 term from the second summand, and combining the rest of the terms yields

n−s
∑

r=0

(−1)n−s−r((k − 1)n + r + y − 1)!(kn + y)!Ω(r, n) [(−1)(α + r + n(|Υ| − 1))(kn + y + 1)]

((k − 1)n + y + s + r)!r!(n − s− r + 1)!

+
(|Υ|n + α− s + 1)(kn + y − s)!Ω(n− s + 1, n)

(n− s + 1)!
n−s+1
∑

r=0

(−1)n−s−r+1((k − 1)n + r + y − 1)!(kn + y + 1)!Ω(r, n)(α + r + n(|Υ| − 1))

((k − 1)n + y + s + r)!r!(n − s− r + 1)!

n−s+1
∑

r=0

(−1)n−s−r+1((k − 1)n + r + y − 1)!(kn + y + 1)!Ω(r, n + 1)

((k − 1)n + y + s + r)!r!(n − s− r + 1)!
= Us

Υ,k,kn+y

Thus we have shown that our formula for Us
Υ,k,kn+j satisfies (4.4) as desired. �

5. Conclusion and perspectives

This paper can be regarded as some initial results on the study of pattern matching in permutations
that include conditions on the equivalence class modulo k of the elements of the pattern. In particular, we
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studied the polynomials

Tτ,k,n(x) =
∑

σ∈Sn

xτ-k-emch(σ) =

n
∑

s=0

T s
τ,k,nxs and UΥ,k,n(x) =

∑

σ∈Sn

xΥ-k-emch(σ) =

n
∑

s=0

Us
Υ,k,nxs.

We developed a number of explicit formulas for these polynomials in the case where τ is a two-element
sequence or when Υ is a set of ascents of the form {(x1, y1), . . . , (xt, yt)} where for all i and j, yi ≡ yj

mod k or a set of descents of the form {(y1, x1), . . . , (yt, xt)} where for all i and j, yi ≡ yj mod k. Our
formulas for the coefficients of these polynomials lead to a number of interesting identities. For example, it
follows from Theorems 4.3 and 4.4 that we have Υ is set of ascents of the form {(x1, y1), . . . , (xt, yt)} where
for all i and j, yi ≡ yj mod k, y = min({y1, . . . , yk}), and α = |{xi : xi < y}|, then

[

s
∑

r=0

(−1)s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

s− r

)

Γ(r, j, n)

]

=

[

n−s
∑

r=0

(−1)n−s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

n− s− r

)

Ω(r, n)

]

where Γ(r, j, n) =
∏n−1

i=0 ((k − 1)n + r + j + 1 − α − i(|Υ| − 1)) and Ω(r, n) =
∏n−1

i=0 (r + α + i(|Υ| − 1)). It
would be nice to have a more general explanation as to how these types of identities arise.

Also the results of this paper give rise to a number of interesting bijective questions. For example, our
formulas show that many of the polynomials T(ab),n,kn+j(x) are identical for certain values of a, b, n and j.
One can ask to give a bijective proof of such facts. We have not been able to do this in all cases, but we
can give can a bijective proof that T(ab),k,kn+j(x) = T(cd),k,kn+j(x) where for all n and 1 ≤ j ≤ k whenever
n− χ(b > k) + χ(j ≥ b mod k) = n− χ(d > k) + χ(j ≥ d mod k).

There is still much work to be done on the structure of the polynomials Tτ,k,n(x) and UΥ,k,n(x). First
one can consider generalized Wilf equivalence questions, i.e., given k, for which patterns α and β do we have
Tα,k,n(x) = Tβ,k,n(x) for all n. We can also consider more complicated sets of patterns. We should note that
when we consider more complicated patterns, the problems get considerably harder. For example, consider
UΥ,k,kn+j(x) where k = 3 and Υ = {12, 23}. We can no longer get simple recursions for the coefficients
Us

Υ,k,kn+j since we need to keep track of more information than just the number of Υ-k-equivalence matches.
That is, let

An(x, y) =
∑

σ∈Sn

x(12)-3-emch(σ)y(23)-3-emch(σ) =
∑

r,s≥0

As,t
n xsyt.

Using the methods of this paper, we can derive simple recursions for the coefficients of Ar,s
n

As,t
3n+1 = (s + 1)As+1,t

3n + (t + 1)As,t+1
3n + (3n + 1− s− t)As,t

3n

As,t
3n+2 = (2 + n− s)As−1,t

3n+1 + (t + 1)As,t+1
3n+1 + (2n + 1 + s− t)As,t

3n+1

As,t
3n+3 = (s + 1)As+1,t

3n+2 + (2 + n− t)As,t−1
3n+2 + (2n + 2 + t− s)As,t

3n+2.

These recursions are more difficult to iterate, but we have found explicit formulas similar to the ones described
in this paper for the coefficients Ar,s

n when either r is the maximum power of x that appears in An(x, y) or
s is the maximum power of y that appears in An(x, y). Similarly, we can use extend the inclusion-exclusion
approach of section 3 to show that An(x, y) =

∑

k,l(n− k − l)!rk(B(12),n)rl(B(23),n).
Similar problems arise when we consider patterns of length ≥ 3. For example, if one is going to study

the number of (123)-k-equivalence matches, then to develop simple recursive formulas, one needs to also
keep track of the number of (12)-k-equivalence matches so that one ends up studying polynomials like

Bn(x, y) =
∑

σ∈Sn

x(12)-3-emch(σ)y(123)-3-emch(σ) =
∑

r,s≥0

Br,s
n xsyt.

Finally, we should note we have derived q-analogues of the results of this paper.
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Enumerating Bases of Self-Dual Matroids

Molly Maxwell

Abstract. We define involutively self-dual matroids and prove a relationship between the bases and self-
dual bases of these matroids. We use this relationship to prove an enumeration formula for the higher
dimensional spanning trees in a class of cell complexes. This gives a new proof of Tutte’s theorem that the
number of spanning trees of a central reflex is a perfect square and solves a problem posed by Kalai about
higher dimensional spanning trees in simplicial complexes. We also give a weighted version of the latter
result.

The critical group of a graph is a finite abelian group whose order is the number of spanning trees of
the graph. We prove that the critical group of a central reflex is a direct sum of two copies of an abelian
group. We conclude with an analogous result in Kalai’s setting.

Résumé. Nous définissons la notion de matroide auto-dual par involution et nous démontrons une relation
entre les bases et les bases auto-duales de ces matroides. Nous utilisons le relation pour démontrer une
formule d’énumération pour les arbres couvrants de dimension supérieure dans une classe de complexes de
cellules. Ceci mène à une nouvelle démonstration d’un théorème de Tutte – le nombre d’arbres couvrants
d’un central reflex est un carré parfait – et résoud un problème posé par Kalai concernant les arbres couvrants
de dimension supérieure à 1 de complexes simpliciaux. Nous donnons également une version pondérée de ce
dernier résultat.

Le groupe critique d’un graphe est un groupe abélien fini dont l’ordre est le nombre d’arbres couvrants
du graphe. Nous prouvons que le groupe critique d’un central reflex est la somme directe de deux copies
d’un groupe abéliens. Nous concluons avec un résultat analogue dans le cadre posé par Kalai.

1. Introduction

A matroid M is a finite set E along with a collection I of subsets of E called independent sets which
satisfy the following conditions:

(1) The empty set ∅ is in I.
(2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.
(3) If I1, I2 ∈ I and |I2| > |I1|, then there exists e ∈ I2\I1 such that I1 ∪ {e} ∈ I.

The bases B of a matroid M are the maximal independent sets. The bases satisfy the conditions:

(1) B is non-empty.
(2) If B1, B2 ∈ B and e ∈ B1\B2, then there exists e′ ∈ B2\B1 with

(B1\{e}) ∪ {e′} ∈ B.

For a matroid M, its dual matroid M⊥ has bases

B(M⊥) := {E\B : B ∈ B(M)}.

Definition 1.1. A matroid M is said to be involutively self-dual if it can be represented by an n× 2n
Z-valued matrix with columns indexed by E = {e1, . . . , en, ẽ1, . . . , ẽn} of the form

2000 Mathematics Subject Classification. Primary 05B35; Secondary 05C05.
Key words and phrases. matroid, Pfaffian, duality, regular cell complex, simplicial complex, simplicial matroid, central

reflex, critical group.
This work partially satisfies the requirements for the author’s doctoral dissertation at the University of Minnesota, under

the supervision of Professor Vic Reiner, and is partially supported by NSF grant DMS-0245379.
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e1 . . . en ẽ1 . . . ẽn

M =

[
N I

]
,

such that the matrix

e1 . . . en ẽ1 . . . ẽn

M⊥ :=

[
−I −N

]

satisfies Rowspace(M⊥) = Rowspace(M)⊥ (or equivalently NT = −N). In this case, the map φ : E → E
given by ei 7→ ẽi is a fixed-point free involution which induces a matroid isomorphism M → M⊥.

A basis B is said to be self-dual if it contains exactly one of ei and ẽi from each pair. Equivalently, B
is self-dual if φ(E\B) = B. From the matrix M , we see that B0 := {ẽ1, . . . , ẽn} is a self-dual basis of M.

In this paper, we use the method of Pfaffians to prove the following result.

Theorem 1.2. If M is an involutively self-dual matroid, then

∑

bases B of M

det(M |B)2 =




∑

self-dual
bases B of M

| det(M |B)|




2

.

A matrix is unimodular if all non-singular square submatrices have determinant ±1.

Corollary 1.3. If M is an involutively self-dual matroid and the associated matrix M is unimodular,
then the number of bases of M equals the square of the number of self-dual bases of M.

Theorem 1.4. Let M be an involutively self-dual matroid and let A be the concatenated matrix

A :=

[
M
M⊥

]
. Then

coker(MMT ) ∼= coker(A) ∼= H ⊕ H,

where H is an abelian group of order ∑

self-dual
bases B of M

| det(M |B)|.

In Section 3, we show that involutively self-dual matriods arise from cellular 2k-spheres for k odd that
are isomorphic to their duals via the antipodal map. These include the central reflexes studied by Tutte and
the boundaries of simplices studied by Kalai. We apply the matroid results above to prove Theorem 1.6,
Proposition 1.2 and Theorem 1.9 below.

For a p-dimensional regular cell complex X , the dual block complex D(X) of X is a partition of X into
disjoint blocks such that every i-cell σ of X is associated to a unique (p − i)-block D(σ) of D(X). If X is
self-dual, then D(X) is a regular cell complex and the blocks D(σ) are its cells.

Definition 1.5. Let k be an odd positive integer. An antipodally self-dual cell complex X is a regular
cell complex such that |X | = S2k and a(X) = D(X), where a : S2k → S2k is the antipodal map and D(X)
is the dual block complex of X .

For each k-cell σ of X , its dual block D(σ) is a k-cell in D(X) and its conjugate σ̃ is defined by
σ̃ := a(D(σ)). The cells σ and σ̃ are distinct k-cells of X , and when k is odd, X and D(X) can be oriented

in such a way that ˜̃σ = σ. It follows that the k-cells can be partitioned into n pairs {σ,σ̃}.
Let Tk(X) be the set of all k-dimensional subcomplexes T of X such that

(1) T contains the (k − 1)-skeleton of X ,

(2) Zk(T ) = H̃k(T ) = 0,

(3) H̃k−1(T ) is a finite group.

Complexes in Tk(X) will be called k-dimensional spanning trees of X . A k-dimensional spanning tree T is
said to be self-dual if it contains exactly one of σi and σ̃i from each pair.
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Proposition 1.1. Let k be an odd positive integer. If X is an antipodally self-dual cell complex which
contains an acyclic, self-dual spanning tree T0, then X gives rise to an involutively self-dual matroid.

We use Proposition 1.1, Theorem 1.2 and Lemma 3.2 to obtain the following result.

Theorem 1.6. Let k be an odd positive interger and let X be an antipodally self-dual cell complex which
contains an acyclic, self-dual spanning tree T0. Then

∑

T∈Tk(X)

|H̃k−1(T )|2 =




∑

self-dual
T∈Tk(X)

|H̃k−1(T )|




2

.

We next discuss how Theorem 1.6 implies a result of Tutte. A central reflex G is an embedding of a
connected, directed planar graph on the sphere S2 with the property that the antipodal map a sends G to
an embedding of its planar dual graph G∗ on S2. When k = 1, the antipodally self-dual cell complexes
are precisely the central reflexes with no loops and no isthmuses. We show that every central reflex G is
equivalent to a central reflex G′ with no loops and no isthmuses in the sense that G and G′ have the same
spanning tree numbers and the same critical groups. The dual block complex of a central reflex G is an
embedding of the planar dual graph G∗ on the sphere S2. For each edge e, its dual block D(e) is the edge
e∗ which crosses e in the dual graph and its conjugate ẽ is defined by ẽ := a(e∗). A self-dual spanning tree
is a spanning tree that contains exactly one of e and ẽ from each pair. We let D(G) denote the number of
self-dual spanning trees of G. In [12], Tutte uses the theory of electrical networks to prove the following
theorem.

Theorem 1.7. (Tutte) If G is a central reflex, then the spanning tree number κ(G) = D(G)2.

In Section 4.1, we show that every central reflex contains a self-dual tree. Theorem 1.6 then gives a new
proof of Tutte’s theorem.

The critical group of a graph is an abelian group whose order is the number of spanning trees of the
graph. We use Theorem 1.4 to prove the following result.

Proposition 1.2. The critical group of a central reflex G is of the form

K(G) ∼= H ⊕ H,

where H is an abelian group of order D(G).

Theorem 1.6 also resolves a question posed by Kalai, as we now discuss. Let T (n, k) be the set of all
simplicial complexes T on the vertex set {1, 2, . . . , n} = [n] such that

(1) T has a complete (k − 1)-skeleton,

(2) T has exactly
(
n−1

k

)
k-faces,

(3) Hk(T ) = 0.

Complexes in T (n, k) will be called k-dimensional spanning trees on the vertex set [n]. To each vertex i we

associate a variable xi. Let xdeg(T ) :=
∏n

i=1 x
degT (i)
i , m1 :=

(
n−2
k−1

)
, and m2 :=

(
n−2

k

)
. Kalai ([5, Theorem 1,

Theorem 3’]) proved the following analogues of Cayley’s Theorem and the Cayley-Prüfer Theorem for these
k-dimensional trees:

Theorem 1.8. (Kalai)
∑

T∈T (n,k)

|Hk−1(T, Z)|2 = n(n−2

k ),

and more generally

∑

T∈T (n,k)

|Hk−1(T, Z)|2 xdeg(T ) = (x1 + x2 + · · · + xn)m2

n∏

i=1

xm1

i .
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The blocker or Alexander dual of a simplicial complex C is defined by C∨ := {S ⊆ [2k + 2] : Sc /∈ C}.
A complex T ∈ T (2k + 2, k) is said to be self-dual if T∨ = T .

In Section 4.2 we show that when k is odd the complete 2k-dimensional simplicial complex on the vertex
set [2k + 2] can be embedded on the sphere S2k in such a way that it forms an antipodally self-dual cell
complex X . In this case, Tk(X) = T (2k + 2, k) and the two descriptions of self-dual trees given above agree.

In [5, Problem 3], Kalai posed a problem about the relationship between the trees and the self-dual trees
in these complexes. The next result gives a solution to this problem when k is odd. We apply Theorem 1.6
to prove the first assertion. In Section 4.2 we use the method of Pfaffians to prove the second assertion.

Theorem 1.9. If k is an odd positive integer, then



∑

self-dual
T∈T (2k+2,k)

|H̃k−1(T, Z)|




2

=
∑

T∈T (2k+2,k)

|H̃k−1(T, Z)|2,

and more generally

∑

self-dual
T∈T (2k+2,k)

|H̃k−1(T, Z)| xdeg(T ) = (x2
1 + x2

2 + · · · + x2
2k+2)

m2
2

2k+2∏

i=1

xm1

i ;

or in other words,




∑

self-dual
T∈T (2k+2,k)

|H̃k−1(T, Z)| xdeg(T )




2

=
∑

T∈T (2k+2,k)

|H̃k−1(T, Z)|2 xdeg(T )


xi→x2

i

.

Corollary 1.10. If k is an odd positive integer, then
∑

self-dual
T∈T (2k+2,k)

|H̃k−1(T, Z)| = (2k + 2)(
2k−1

k ).

2. Proofs of Theorems 1.2 and 1.4

Before we begin the proof of Theorem 1.2, we recall that for a skew-symmetric matrix A, the Pfaffian
of A, Pf(A), is a polynomial in the entries of A defined, up to a sign, by the formula

Pf(A)2 = det(A).

More information about the general theory of Pfaffians can be found in [7].
Sketch Proof of Theorem 1.2. Since NT = −N , the matrix

A :=

[
M
M⊥

]
=

[
N I
−I −N

]

is skew-symmetric, and hence Pf(A)2 = det(A). We prove that

(2.1) |Pf(A)| = | det(N + I)|

and that

(2.2) det(N + I) =
∑

self-dual
basesB of M

| det(M |B)|.

Then the result follows from the fact that
∑

bases B of M

det(M |B)2 = det(A),

which comes from generalized Laplace expansion along the first n rows of A, and the relation between
complementary minors of M and M⊥.
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Proof of (2.1): We begin by noting that

(2.3) PAQ =

[
I 0
0 N2 − I

]
,

where the matrices

P =

[
I 0

−N I

]
, Q =

[
0 −I
−I −N

]

both have determinant ±1. Since N is skew-symmetric, this implies that

± det(A) = det(N + I)(N − I) = ± det(N + I)2

where the last equality uses the fact that

N − I = −(NT + I) = −(N + I)T .

Since det(A) = Pf(A)2, it follows that

|Pf(A)| = | det(N + I)|.

Proof of (2.2): Now we set X = N and Y = I and use the general fact that if X and Y are n×n matrices,
then

det(X + Y ) =
∑

U⊆[n]

detXU ,

where XU denotes the matrix formed by replacing the columns in X indexed by U ⊆ [n] with the cor-
responding columns in Y . This formula can be proved using the multilinearity of the determinant and
induction.

�

In this paper, we’ll let Zd denote the cyclic group Z/dZ.
Proof of Theorem 1.4. In [6, Theorem 18], Kuperberg proves that for any skew-symmetric 2n× 2n

matrix A, there exists a matrix B ∈ GL2n(Z) such that BT AB is a direct sum of matrices of this form:

BT AB =

r⊕

i=1

[
0 ai

−ai 0

]
.

Hence

coker(A) ∼=

r⊕

i=1

coker

[
0 ai

−ai 0

]
∼=

r⊕

i=1

Z2
ai

∼= H ⊕ H,

where H :=
⊕r

i=1 Zai
.

We’ve shown that |coker(A)| = det(A) = |H |2. From the proof of Theorem 1.2, we have

det(A) =




∑

self-dual
bases B of M

| det(M |B)|




2

,

and it follows that
|H | =

∑

self-dual
bases B of M

| det(M |B)|.

�

As one might expect, the matrix N controls the behavior of coker(A). We make this more precise in the
next proposition. Let Sylp(G) denote the p-primary component of an abelian group G.

Proposition 2.1. If a matrix A has the form

A =

[
N I
−I −N

]

and is skew-symmetric, then for primes p 6= 2,

Sylp(coker(A)) ∼= Sylp(coker(N + I)) ⊕ Sylp(coker(N + I)).

Proof. From line (2.3) we have coker(A) = coker(N + I)(N − I). We note that (N + I)− (N − I) = 2I
and N − I = −(NT + I) = −(N + I)T . The result then follows from Lemma 2.1 below. �
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Lemma 2.1. ( [4, Lemma 16], [1, Proposition 3.1]) Let G be a finite abelian group, and let α, β be two
endomorphisms G → G satisfying β−α = m ·IG for some m ∈ Z. Then for any prime p that does not divide
m, we have

Sylp(coker(αβ)) ∼= Sylp(coker(α)) ⊕ Sylp(coker(β)).

Corollary 2.2. The group H in Theorem 1.4 is “almost” coker(N + I): for primes p 6= 2, one has

Sylp(H) ∼= Sylp(coker(N + I)).

Example 4.3 below shows that it is necessary to exclude p = 2 in the previous corollary.

3. Antipodally Self-Dual Regular Cell Complexes

We begin this section by briefly describing the dual block complex of a regular cell complex X . More
information on this topic can be found in [9]. The dual block complex D(X) of a p-dimensional regular cell
complex X is a partition of X into disjoint blocks. For an i-cell τ in X , its dual block D(τ) is a (p− i)-block
in D(X). When X is self-dual, D(X) is a regular cell complex and the dual blocks D(τ) are its cells.

Definition 3.1. Let k be an odd positive integer. An antipodally self-dual cell complex X is a regular
cell complex such that |X | = S2k and a(X) = D(X), where a : S2k → S2k is the antipodal map and D(X)
is the dual block complex of X .

For each k-cell σ of X , its dual block D(σ) is a k-cell in D(X) and its conjugate σ̃ is defined by
σ̃ := a(D(σ)). The cells σ and σ̃ are distinct k-cells of X . When k is odd, we use an inductive argument

similar to that in [9, Theorem 65.1] to orient X and D(X) in such a way that ˜̃σ = σ. It follows that the
k-cells can be partitioned into n pairs {σ,σ̃}.

Let Tk(X) be the set of all k-dimensional subcomplexes T of X such that

(1) T contains the (k − 1)-skeleton of X ,

(2) Zk(T ) = H̃k(T ) = 0,

(3) H̃k−1(T ) is a finite group.

Complexes in Tk(X) will be called k-dimensional spanning trees of X . A k-dimensional spanning tree T
is said to be self-dual if it contains exactly one of σi and σ̃i from each pair. Equivalently, T is self-dual if

X̃\T = {τ̃ : τ 6⊆ T } = T .
For a collection C of k-cells of X , the closure of C is the cell complex defined by C := C ∪ X(k−1),

where X(k−1) denotes the (k − 1)-skeleton of X . X gives rise to a matroid M by setting
• E = the set of all k-cells of X ,

• I = collections C of k-cells of X with Zk(C) = H̃k(C) = 0,
• B = collections C of k-cells of X with C ∈ Tk(X).
In the proof of the next proposition, we see that the boundary of each k-cell can be represented as a

vector. Then the elements of I correspond to collections of vectors that are independent over Z (and hence
over Q) and the elements of B correspond to Q-bases for the span of the vectors.

Proposition 3.1. Let k be an odd positive integer. If X is an antipodally self-dual cell complex which
contains an acyclic, self-dual spanning tree T0, then X gives rise to an involutively self-dual matroid.

Then we use Proposition 3.1, Theorem 1.2 and Lemma 3.2 to obtain Theorem 1.6.
Sketch Proof of Proposition 3.1: The kth incidence matrix Ik(X) is the matrix whose rows are

labeled by the (k − 1)-faces of X , whose columns are labeled by the k-faces of X , and whose entries are the
incidence numbers

ε(σ, τ) =





0 if σ * τ
1 if σ ⊆ τ and σ is oriented coherently with τ

−1 if σ ⊆ τ and σ has the opposite orientation of τ .

The columnns of Ik(X) represent the boundaries of the k-faces in X . We can order the columns of
Ik(X) so it has the form
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k-faces k-faces
not in T0 in T0

σ̃
1

. . . σ̃
n

    

σ
1

. . . σ
n

    

Ik(X) = -f
a
ce

s
(k

-1
)






τ1

...

τm




ε(τi, σ̃j) ε(τi, σj)




.

There is a one-to-one correspondence between the (k − 1)-cells and (k + 1)-cells of X given by τ 7→ τ̃ .
Thus the transpose of the (k + 1)st incidence matrix can be written as

k-faces k-faces
not in T0 in T0

σ̃
1

. . . σ̃
n

    

σ
1

. . . σ
n

    

Ik+1(X)T = -f
a
ce

s
(k

+
1
)






τ̃1

...

τ̃m




ε(σ̃j , τ̃i) ε(σj , τ̃i)




.

Again, using an inductive argument as in [9, Theorem 65.1], we orient X and D(X) in such a way that
ε(τi, σj) = ε(σ̃j , τ̃i) and ε(τi, σ̃j) = ε(σj , τ̃i). Thus the matrices Ik(X) and Ik+1(X)T are of the forms

(3.1)
Ik(X) = [ P | Q ],

Ik+1(X)T = [ Q | P ].

We show that there exists a matrix R ∈ Zn×m such that RIk+1(X)T = [ I | N ]. We define the reduced
incidence matrices Ik

r (X) := RIk(X) and Ik+1
r (X)T := RIk+1(X)T . These matrices are of the forms

Ik
r (X) = [ N | I ] =: M

Ik+1
r (X)T = [ I | N ] =: M⊥.

Since ∂k ∂k+1 = 0, we have Rowspace(M)⊥ = Rowspace(M⊥).
�

When k is even, we can form the matrices Ik(X) and Ik+1(X)T as above. However, our method of
orienting X and D(X) now yields ε(τi, σj) = ε(σ̃j , τ̃i) and ε(τi, σ̃j) = −ε(σj , τ̃i). Thus the matrices Ik(X)
and Ik+1(X)T have the forms

Ik(X) = [ P | Q ]
Ik+1(X)T = [ Q | −P ],

and the reduced incidence matrices Ik
r (X) and Ik+1

r (X)T have the forms

Ik
r (X) = [ N | I ] =: M

Ik+1
r (X)T = [ I | −N ] =: M⊥.

With this orientation, X does not give rise to an involutively self-dual matroid and the concatenated
matrix A =

[
M

M⊥

]
is symmetric rather than skew-symmetric, so the matroid results do not apply. Of course

this does not preclude the possibility that a different method of orienting X and D(X) could yield a version
of Theorem 1.6 for even k. However, the fact that certain trees had to be excluded to give a similar formula
for simplicial complexes when k = 2 makes it seem less promising (see [5, page 350]).

We conclude this section with the following analogue of Kalai’s Lemma 2 [5]. The ideas of this proof
are almost exactly the same as those in Kalai’s proof.
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Lemma 3.2. Let k ≥ 1 and let X be an antipodally self-dual cell complex, which contains an acyclic,
self-dual tree T0. Then for each collection C of k-cells of X we have

(1) det Ik
r (C) = 0 if and only if H̃k(C) 6= 0,

(2) If H̃k(C) = 0, then | det Ik
r (C)| = |H̃k−1(C)|.

Proof. The proof of (1) is exactly the same as Kalai’s proof of [5, Lemma 2]. For (2), we first consider

the case when k > 1. Since H̃k−1(X) = H̃k−1(S2k) = 0 and X(k−1) ⊆ C, we have Bk−1(X) = Zk−1(X) =
Zk−1(C). The columns of Ik(X) represent Bk−1(X), while the columns of Ik(C) represent Bk−1(C). Hence,

H̃k−1(C) = Ik(X)Z2n/Ik(C)Zn ∼= RIk(X)Z2n/RIk(C)Zn = Ik
r (X)Z2n/Ik

r (C)Zn ∼= Zn/Ik
r (C)Zn,

where the last congruence uses the fact that Ik
r (X) = [ N | I ] contains an n × n identity matrix.

When k = 1, we use part (1) along with the standard facts from graph theory and topology that for a
collection C of edges of a graph G

det I1
r (C) =

{
±1 if C is a tree

0 otherwise,

|H̃0(C)| =

{
1 if C is connected
∞ otherwise.

�

4. Applications and Further Results

In this section we first discuss a class of graphs called central reflexes. We apply the results from the
previous sections to show that their spanning tree numbers are perfect squares and that their critical groups
have a special form. Then we discuss a class of simplicial complexes and apply the previous results to solve
a problem that was posed by Kalai (see [5, problem 3]).

4.1. Spanning Trees and Critical Groups of Central Reflexes. Central reflexes are a special
class of directed, connected self-dual graphs on S2 for which the graph isomorphism sending G to G∗ is the
antipodal map a : S2 → S2. Some examples of central reflexes include odd wheels embedded on S2. Figure 1
shows a 5-wheel on S2 and a planar representation of a 5-wheel. Another interesting class of central reflexes
arises from squared rectangles and is described in [11].

When k = 1, the antipodally self-dual cell complexes are precisely the central reflexes with no loops
and no isthmuses. The dual block complex D(G) of a central reflex is just an embedding of the planar dual
graph G∗ on the sphere S2k. For each edge e, its dual block D(e) is the edge e∗ in G∗ which crosses e and
its conjugate ẽ is defined by ẽ := a(e∗). See Figure 1 for some examples of conjugate edges. Central reflexes

can be oriented in such a way that the property ˜̃e = e holds. For each conjugate pair {e, ẽ}, we arbitrarily
orient one edge e. Its dual edge e∗ is oriented so that it crosses e from right to left. Then, since ẽ = a(e∗),

the orientation of ẽ is determined. Tutte [12, (3.4)] proves that the property ˜̃e = e holds.
A self-dual spanning tree of a central reflex G is a spanning tree that contains exactly one edge from

each conjugate pair {e, ẽ}. Equivalently, a spanning tree T is self-dual if a((E(G)\T )∗) = {ẽ : e /∈ T } = T .
An example of a self-dual spanning tree is given in Figure 1. We let D(G) denote the number of self-dual
spanning trees of G.

An edge e is a loop in G if and only if e∗ is an isthmus in G∗. Since the antipodal map a is a
homeomorphism, it follows that e is a loop in G if and only if ẽ is an isthmus in G.

In this paper, we’ll let G\e denote deletion of e from G and G/e denote contraction of G on e. Deleting a
non-isthmus edge e in G corresponds to contracting its dual edge e∗ in G∗. Likewise, contracting a non-loop
edge e in G corresponds to deleting its dual edge e∗ in G∗. Also, the self-dual spanning trees in G\ẽ/e
correspond to the self-dual spanning trees in G that contain e, while the self-dual spanning trees in G\e/ẽ
correspond to the self-dual spanning trees in G that contain ẽ. Tutte uses these facts to prove the following
proposition [12, (4.4) and (4.5)].

Proposition 4.1. If G is a central reflex and e is an edge of G that is neither a loop nor an isthmus,
then G\ẽ/e and G\e/ẽ are central reflexes and

D(G) = D(G\ẽ/e) + D(G\e/ẽ).
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Figure 1. An example of a central reflex G on S2, a planar representation of G, and a
self-dual spanning tree T .

We use this proposition and induction on the number of conjugate pairs that are not loop-isthmus pairs
to prove the next lemma.

Lemma 4.1. If G is a central reflex, then G has at least one self-dual spanning tree.

In [12], Tutte allows loops and isthmuses in central reflexes. The antipodally self-dual cell complexes
are regular and hence cannot contain loops and isthmuses. However, every central reflex is equivalent to
a regular central reflex in the following sense. Given a central reflex G, let G′ be the graph that results
from deleting all of the loops and contracting all of the isthmuses. By [12, (4.3)], G′ is a central reflex. A
spanning tree of G contains no loops and contains every isthmus, hence κ(G) = κ(G′).

Since H̃0(T ) = 0 for any spanning tree T , Theorem 1.6 gives a new proof of Theorem 1.7.
The critical group K(G) of a connected graph G is an abelian group of order κ(G). The critical group

has several equivalent interpretations. In this paper, we use the form

(4.1) K(G) = Z|E(G)|/Z1(G) ⊕ B0(G).

The formula κ(G) = D(G)2 suggests that the critical group of a central reflex1 can be written as a direct
sum of two copies of a group of order D(G). Using line (4.1) and Theorem 1.4, we obtain Proposition 1.2.

Example 4.2. As noted above, n-wheels are central reflexes when n is odd. For an n-wheel G (with n
odd), Biggs [3, Theorem 9.2] uses a variation of the chip-firing game to prove that

K(G) = Z`n
⊕ Z`n

,

where `n is the nth Lucas number.

As we discussed in Section 2, the matrix N controls the behavior of the critical group K(G) = coker(A).
More specifically, Corollary 2.2 states that for p 6= 2,

Sylp(H) ∼= Sylp(coker(N + I)),

where Sylp(G) denote the p-primary component of an abelian group G. The next example demonstrates
that it is necessary to exclude p = 2 in this corollary.

Example 4.3. The double 5-wheel is a central reflex formed by attaching another pentagon to the
outside rim of the 5-wheel (see Figure 2). Computing the Smith normal forms of A and N + I gives

coker(A) = (Z4)
4 ⊕ (Z11)

2 and thus H = (Z4)
2 ⊕ Z11,

while
coker(N + I) = (Z2)

4 ⊕ Z11.

1Using the presentation of the critical group K(G) = cokerL(G), where L(G) denotes the reduced Laplacian matrix, we
see that K(G) = K(G′). This follows from the fact that deleting a loop has no effect on the Laplacian L(G), while contracting
an isthmus corresponds to performing elementary row and column operations on L(G).
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Figure 2. A double 5-wheel.

4.2. Simplicial Complexes. Let 4 denote the (2k + 1)-dimensional simplex on the vertex set V =
{v0, . . . , v2k+2}. We identify the boundary of 4 with the sphere S2k in the following way. We first identify
4 with the (2k + 1)-simplex in R2k+1 which has vertices

v0 = (0, 0, . . . , 0), v1 = (1, 0, . . . , 0), v2 = (0, 1, . . . , 0), . . . , v2k+2 = (0, 0, . . . , 1).

We translate 4 so that its barycenter 4̂ is at the origin, remove the interior of 4 and divide the points in
the boundary of 4 by their lengths. Then, for each face F of X , the antipodal map sends D(F ) to F c, i.e.

F̃ = F c when viewed as unoriented cells. When k is odd, X and D(X) can be oriented in such a way that
˜̃F = F and X is an antipodally self-dual cell complex.

Let T (n, k) be the set of all simplicial complexes T on the vertex set {1, 2, . . . , n} = [n] such that

(1) T contains the complete (k − 1)-skeleton,

(2) T has exactly
(
n−1

k

)
k-faces,

(3) Hk(T ) = 0.

Let X be the complete 2k-dimensional complex on the vertex set [2k+2] embedded on S2k. By [5, Proposition
2], we see that the definition of T (2k + 2, k) agrees with the definition of Tk(X). The blocker or Alexander
dual of a simplicial complex C is defined by C∨ := {S ⊆ V : Sc /∈ C}. A complex T ∈ T (2k + 2, k) is said
to be self-dual if T∨ = T . Since

X̃\T = {F̃ : F /∈ T } = {F c : F /∈ T } = {F : F c /∈ T } = T∨,

we see that this definition of self-dual complexes agrees with the definition of self-dual trees in Section 3.
Let C be the collection of all k-faces of X that contain vertex 1. We use the fact that vertex 1 is a cone

point of C to prove the next lemma.

Lemma 4.4. Let r :=
(
2k+1

k

)
=

(
2k+1
k+1

)
and let C := {F1, . . . , Fr} be all of the k-faces of X that contain

vertex 1. Then C is an acyclic, self-dual spanning tree in Tk(X).

Sketch Proof of Theorem 1.9. Combining Lemma 4.4 and Theorem 1.6 gives the proof of the first
assertion in Theorem 1.9. We now sketch a proof of the second assertion. Let C be the self-dual, acyclic
spanning tree from Lemma 4.4. Kalai [5, page 342] shows that the reduced incidence matrix Ik

r (X) can be
formed from Ik(X) by deleting the rows that correspond to (k − 1)-faces containing vertex 1. Then Ik

r (X)
has rows indexed by the (k − 1)-faces that don’t contain vertex 1 and columns indexed by the k-faces not
in C followed by the k-faces in C and is of the form [ N | I ]. Also, Ik+1

r (X)T has rows indexed by the
(k + 1)-faces that do contain 1 and columns indexed by the k-faces not in C followed by the k-faces in C
and is of the form [ I | N ].

Let A be the concatenated matrix

A =

[
Ik
r (X)

−Ik+1
r (X)T

]
=

[
N I
−I −N

]
.

Since ∂k ∂k+1 = 0, Rowspace(Ik+1
r (X)T ) = Rowspace(Ik

r (X))⊥. Thus N and hence A is skew-symmetric.
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Example 4.5. For k = 1, we have

−
3
4

+
2
4

−
2
3

+
1
2

+
1
3

+
1
4

A =

2
3
4

+134
−124
+123




−1 +1 +1
+1 −1 +1
−1 +1 +1
−1 +1 −1

−1 −1 +1
−1 +1 −1




.

We associate to each vertex i a weight xi, and we form a weighted version A(x) of our matrix A by setting

A(x)(τ, σ) = A(τ, σ) · xτ4σ.

Since Fj4(Fj\{1}) = ({1} ∪ F c
j )4F c

j = 1, the top right and bottom left blocks of A(x) are x1I and
−x1I respectively. If nij 6= 0, then Fi\{1} ⊆ F c

j and

(Fi\{1})4F c
j = (Fj\{1})4F c

i .

Thus

nij · x(Fi\{1})4F c
j

= −nji · x(Fj\{1})4F c
i

and it follows that A(x) is skew-symmetric.

Example 4.6. For k = 1, we have

−
3
4

+
2
4

−
2
3

+
1
2

+
1
3

+
1
4

A(x) =

2
3
4

+134
−124
+123




−x4 +x3 +x1

+x4 −x2 +x1

−x3 +x2 +x1

−x1 +x4 −x3

−x1 −x4 +x2

−x1 +x3 −x2




The ideas of the rest of the proof are very similar to those in Theorem 1.2.
�

In Section 4.1 we discussed the critical groups of graphs. For the complete graph Kn, the critical group
has the structure

K(Kn) ∼= (Zn)n−2

(see [3, Section 8]). The next proposition gives an analogous result for simplicial complexes.

Proposition 4.2. Let K be the complete k-dimensional simplicial complex on [n] and let A =
[

Ik
r (K)

−I
k+1
r (K)T

]
.

Then

coker(A) ∼= (Zn)(
n−2

k ).

The proof of this proposition is divided into three steps:

(1) Prove that coker(A) is all n-torsion.

(2) Prove that coker(A) has a generating set of cardinality
(
n−2

k

)
.

(3) Finish the proof by using Kalai’s result that det(A) = det
(
Ik
r (K)Ik

r (K)T
)

= n(n−2

k ).

We note that in the special case when n = 2k + 2, Theorem 1.4 takes on the form

coker(A) ∼= H ⊕ H,

where H = (Z2k+2)
(2k−1

k ).
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Counting unrooted hypermaps on closed orientable surface

Alexander Mednykh and Roman Nedela

Abstract. In this paper we derive an enumeration formula for the number of hypermaps of given genus g

and given number of darts n in terms of the numbers of rooted hypermaps of genus γ ≤ g with m darts ,
where m|n.

Résumé. Dans ce travail on denombre les hypergraphes d’un genus g donné, et un nombr e de fleches n,
selon le nombre de hyper cartes de genus γ ≤ g, et av ec m fleches, ou m|n.

1. Introduction

In this paper we derive an enumeration formula for the number of hypermaps of given genus g and given
number of darts n in terms of the numbers of rooted hypermaps of genus γ ≤ g with m darts , where m|n.
Explicit expressions for the number of rooted hypermaps of genus g with n darts were derived by Walsh [32]
for g = 0, and by Arques [2] for g = 1. We apply our general counting formula to derive explicit expressions
for the number of unrooted spherical and toroidal hypermaps with given number of darts.

Oriented map is 2-cell decomposition of a closed orientable surface with a fixed global orientation. Gen-
erally, maps can be described combinatorially via graph embeddings. Oriented hypermaps are generalisations
of oriented maps. While maps are 2-cell embeddings of graphs, hypermaps can be viewed as embeddings
of hypermaps into closed orientable surfaces. Such a model was investigated by Walsh in [32], where the
underlying hypergraph is described via the corresponding 2-coloured bipartite graph B, and the hypermap
itself is determined by a 2-cell embedding B → S.

Beginnings of the enumerative theory of maps are closely related with the enumeration of plane trees
considered in 60-th by Tutte [28], Harary, Prins and Tutte [6], see [7, 22] as well. Later a lot of other
distinguished classes of maps including triangulations, outerplanar, cubic, Eulerian, nonseparable, simple,
looples, two-face maps and others were considered. Enumeration of maps on surfaces has attracted a lot
of attention last decades [23]. Although there are more than 100 published papers on map enumeration
most of them deal with the enumeration of rooted maps of given property. In particular, there is a lack
of results on enumeration of unrooted maps of genus ≥ 1. Most of the results on map enumeration in the
unrooted case restrict to planar maps [17, 18, 33, 34, 20]. A recent paper [25] presents a breakthrough
in the enumeration problem for unrooted maps on closed oriented surface. In the presented paper we apply
the methods employed in [24] and [25] to solve an analogous problem for hypermaps.

2. Hypermaps on surfaces and orbifolds

Hypermaps on surfaces. An oriented combinatorial hypermap is a triple H = (D;R,L), where D is
a finite set of darts (called brins, blades, bits as well) and R, L are permutations of D such that 〈R,L〉 is
transitive on D. Orbits of R are called hypervertices, orbits of L are called hyperedges and orbits of RL are
called hyperfaces. The degree of a hypervertex (hyperedge, hyperface) is the size of the respective orbit.

Key words and phrases. Enumeration, Map, Surface, Orbifold, Rooted hypermap, Unrooted hypermap, Fuchsian group.
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Let |D| = n. Denote by v, e and f the numbers of hypervertices, hyperedges and hyperfaces. Then
genus g of H is given by Euler-Poincare formula as follows

v + e+ f − n = 2 − 2g.

Given hypermaps Hi = (Di;Ri, Li), i = 1, 2 a mapping ψ : D1 → D2 such that R2ψ = ψR1 and L2ψ = ψL1

is called a morphism (or a covering) H1 → H2. Note that each morphism between hypermaps is by definition
an epimorphism. If ψ : H1 → H2 is a bijection, ψ is an isomorphism. Isomorphisms H → H form a group
Aut(H) of automorphisms of H. It is easily seen that Aut(H) acts semiregularly on D, equivalently, the
stabiliser of a dart is trivial. A hypermap H is called rooted if one element x of D is chosen to be a root.
Morphisms between rooted hypermaps take roots onto roots. It follows that a rooted hypermap admits no
non-trivial automorphisms.

By a surface we mean a connected, orientable surface without boundary. A topological map is a 2-cell
decomposition of a surface. Standardly, maps on surfaces are described as 2-cell embeddings of graphs.
Oriented combinatorial maps are hypermaps (D;R,L) such that L is a fixed-point-free involution. Walsh
observed that oriented hypermaps can be viewed as particular maps. Namely, he proved a one-to-one
correspondence [32, Lemma 1] between hypermaps and the set of (oriented) 2-coloured bipartite maps.
That means that one of the two global orientations of the underlying surface is fixed, and moreover, we
assume that a colouring of vertices, say by black and white colours, is preserved by morphisms between
maps. The correspondence is given as follows. Let M 2-coloured bipartite map on an orientable surface S
with a fixed global orientation. We set D to be the set of edges of M. The orientation of S induces at each
black vertex v of M a cyclic permutation Rv of edges incident with v. This way a permutation R =

∏

Rv of
D is defined. Similarly, the orientation of S determines at each white vertex u a cyclic permutation Lu. Set
L =

∏

Lu. Hence we have a unique hypermap (D;R,L) corresponding to M. Conversely, given hypermap
(D;R,L) we first define a bipartite 2-colored graph X whose edges are elements of D, black vertices are
orbits of R and white vertices are orbits of L. An edge x ∈ D is incident to a (black or white) vertex u
if x ∈ u. The permutation R and L induce local rotations of arcs outgoing from black and white vertices,
respectively. It is well known (see Gross and Tucker [5, Section 3.2]) that the system of rotations determines
a 2-cell embedding of X into an orientable surface.

Similarly as above, an oriented 2-coloured bipartite map is called rooted if one of the edges is selected
to be a root. Morphisms between rooted 2-coloured bipartite maps take a root onto a root.

There is yet another way to describe hypermaps. Let H = (D;R,L) be a hypermap. Clearly, the
permutation group 〈R,L〉 is an epimorphic image of the free product ∆+ = C ∗ C ∼= 〈ρ〉 ∗ 〈λ〉 of two
infinite cyclic groups. The group ∆+ acts on D via epimorphism taking ρ 7→ R and λ 7→ L. Thus using
some standard considerations in permutation group theory each hypermap can be described by a subgroup
F ≤ ∆+ [13, 30, 31, 9]. The subgroup F , called a hypermap subgroup, can be identified with a stabiliser
of a dart in the action of ∆+ on D. Since the action of ∆+ on D is transitive, the number of darts |D| = n
coincides with index [∆+ : F ] of F in ∆+. Given F ≤ ∆+ the corresponding hypermap can be constructed
as an algebraic hypermap H(∆+/F ) = (D;R,L), where D = {xF |x ∈ ∆+} is the set of left cosets, and
the action of R, L on D is defined by R(xF ) = (ρx)F , L(xF ) = (λx)F . Note that the group ∆+ is
sometimes called a universal oriented triangle group. More precisely, ∆+ is identified with the triangle group
T (∞,∞,∞) =< x, y, z : x y z = 1 > acting on the hyperbolic plane H2 by orientation preserving isometries
(see G.Jones, D.Singerman [13]). In this case H2/∆+ is a trice punctured sphere and H2/F is a punctured
orientable surface, whose genus g coincides with the genus of the corresponding hypermap.

We summarise the above discussion in the following propositions.

Proposition 2.1. The following objects are in one-to-one correspondence:

(1) rooted 2-coloured bipartite maps of genus g with n edges,
(2) rooted hypermaps (D;R,L) of genus g with |D| = n,
(3) subgroups of the group ∆+ = T (∞,∞,∞) of index n and genus g .

Part (1) ⇔ (2) follows from Walsh [32]. Part (2) ⇔ (3) is in ([13, 4]).
By definition isomorphic hypermaps have conjugated hypermap subgroups. Hence isomorphism classes

of hypermaps correspond to conjugacy classes of subgroups.

Proposition 2.2. The following objects are in one-to-one correspondence:

(1) isomorphism classes of 2-coloured bipartite maps of genus g with n edges,
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(2) isomorphism classes of hypermaps (D;R,L) of genus g with |D| = n,
(3) conjugacy classes subgroups of index n and genus g of the group ∆+ = T (∞,∞,∞).

Regular coverings. Let ψ : H1 → H2 be a covering of hypermaps. The covering transformation group
consists of automorphisms α of H1 satisfying the condition ψ = ψ ◦ α. A covering ψ : H1 → H2 will be
called regular if the covering transformation group acts transitively on a fibre ψ−1(x) over a dart x of H2.
Regular coverings can be constructed by taking a subgroup G ≤ Aut(H1), H1 = (D;R,L), and setting D̄ to
be the set of orbits of G, R̄[x] = [Rx], L̄[x] = [Lx]. Then the natural projection x 7→ [x] defines a regular
covering M → N , where H2 = (D̄, R̄, L̄).

Maps and hypermaps on orbifolds. Given regular covering ψ : H → K, let be x be a hypervertex,
hyperface or a hyperedge of K. Let H be of genus g, K be of genus γ and let G ≤ Aut(H) be a covering
transformation group. The ratio of degrees b(x) = deg(x̃)/deg(x), where x̃ ∈ ψ−1(x) is a lift of x along ψ,
will be called a branch index of x. By transitivity of the action of the group of covering transformations a
branch index is a well-defined positive integer not depending on the choice of the lift x̃. Hence b is a well
defined integer function defined on the union V (K)∪E(K)∪F (K). Writing all the values b(x), b(x) ≥ 2 in a
non-decreasing order we get an integer sequence m1,m2, . . . ,mr. This way an orbifold Sg/G with signature
[γ;m1,m2, . . . ,mr] is defined.

For our purposes we define a topological 2-dimensional orbifold O = O[γ;m1, . . . ,mr] to be a closed
orientable surface of genus γ with a distinguished set of points B, called branch points, and an integer
function assigning to each x ∈ B an integer b(x) ≥ 2. A 2-coloured bipartite map of genus γ is a map on O
provided the following two conditions are satisfied:

(1) no branch point x ∈ B lies on an edge,
(2) each face contains at most one branch point x ∈ B.

The operation associating a 2-coloured bipartite map to a hypermap is functorial. In particular the signature
of an orbifold associated with a regular covering of hypermaps coincides with the signature of an orbifold
determined by the corresponding regular covering of Walsh 2-coloured bipartite maps. Note also that a
regular covering ψ : H → K, extends (uniquely) to a regular covering Sg → Sg/G, where g is genus of H and
G is the group of covering transformations.

Let O be an orbifold with signature [γ;m1,m2, . . . ,mr]. The orbifold fundamental group π1(O) is an
F-group

π1(M,σ) = F [γ;m1,m2, . . . ,mr] =

〈a1, b1, a2, b2, . . . , aγ , bγ , e1, . . . , er|

γ
∏

i=1

[ai, bi]

r
∏

j=1

ej = 1, em1
1 = . . . emr

r = 1〉. (2.1)

Let H → H/G = K be a regular covering between hypermaps with a covering transformation group
G, let H be finite. Let the the signarure of the orbifold K = H/G be [γ;m1,m2, . . . ,mr]. Then the Euler
characteristic of the underlying surface of H is given by the Riemann-Hurwitz equation:

χ = |G|
(

2 − 2γ −
r
∑

i=1

(1 −
1

mi
)
)

. (2.2)

3. General counting formula.

The following theorem is the main result of [24].

Theorem 3.1. Let Γ be a finitely generated group. Then the number of conjugacy classes of subgroups
of index n in the group Γ is given by the formula

NΓ(n) =
1

n

∑

`|n
`m=n

∑

K<Γ
[Γ:K]=m

Epi(K,Z`).

In fact, a little modification of the proof allows us to generalise the above statement to subsets of
subgroups of given index closed under conjugacy. Let P be a set of subgroups of a finitely generated group Γ
closed under conjugation. By EpiP(K,Z`) we denote the number of epimorphisms K → Z` with the kernel
in P .
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Hence we have the following

Theorem 3.2. Let Γ be a finitely generated group and P is a set of subgroups of Γ closed under conju-
gation. Then the number of conjugacy classes of subgroups of index n in P is given by the formula

NP
Γ (n) =

1

n

∑

`|n
`m=n

∑

K<Γ
[Γ:K]=m

EpiP(K,Z`).

A group epimorphism is called order preserving if it preserves the orders of elements of finite order.
Given closed orientable surface Sg of genus g and a cyclic orbifold O = Sg/Z` we denote by Epi0(π1(O), Z`)
the number of order preserving epimorphisms π1(O) → Z`.

The following result is the main tool to calculate the number of unrooted hypermaps on a closed oriented
surface.

Theorem 3.3. Let Sg be a closed orientable surface of genus g. Denote by hO(m) be the number of
rooted hypermaps with m darts on a cyclic orbifold O = Sg/Z`.

Then the number of unrooted hypermaps of genus g having n darts is

Hg(n) =
1

n

∑

`|n
`m=n

∑

O∈Orb(S/Z`)

hO(m)Epi0(π1(O), Z`),

where the second sum runs through all admissible cyclic orbifolds Sg/Z`.

Proof. Given S = Sg let P = Pg be the set subgroups of genus g of ∆+ = T (∞,∞,∞). By Proposi-
tions 2.1 and 2.2 rooted hypermaps on S correspond subgroups in P , and isomorphism classes of unrooted
hypermaps on S correspond to conjugacy classes of subgroups in P . Setting Γ = ∆+ in Theorem 3.2 we get

Hg(n) = NP
∆+(n) =

1

n

∑

`|n
`m=n

∑

K<∆+

[∆+:K]=m

EpiP(K,Z`).

Given epimorphism ψ : K → Z` with kernel H ∈ P determines a regular covering of algebraic hypermaps
ψ∗ : H(∆+/H) → H(∆+/K) induced by HEK with the group of covering transformations isomorphic to Z`.
Let σ be the signature of the orbifold O = O(σ) = Sg/Z` determined by the covering of hypermaps. Hence
the set of epimorphisms ψ : K → Z` with Ker(ψ) = H ∈ P split into classes characterised by the signatures
of the cyclic orbifolds O = S/Z`. Denote by Epiσ(K,Z`) the number of epimorphisms K → Z` with kernel
H ∈ P and quotient orbifold O = S/Z` with signature σ. We set Pσ = {K|K < ∆+, Epiσ(K,Z`) 6= 0}.

It is well known that the group ∆+ acts on the universal covering surface H2 as a discontinuous group
of conformal automorphisms. This allows us to introduce the structure of Riemann surface (as well as the
orbifold structure) on the hypermaps H(∆+/H), H(∆+/K), respectively. A regular covering of hypermaps
ψ : H(∆+/H) → H(∆+/K) extends to a branched regular covering S → O of the orbifold O = O(σ) by
the closed surface S. By the Riemann Extension Theorem there is a one-to-one correspondence between
coverings H2/H → H2/K and coverings of the compactified quotient spaces S = H2/H → O = H2/K (see
[12] for a more detailed explanation). We want to show Epiσ(K,Z`) = Epi0(Γ(σ), Z`). Given K ∈ Pσ

we calculate the number of regular Z`-coverings H2/H → H2/K with H E K and H ∈ P . By G. Jones
[11] there are Epiσ(K,Z`)/ϕ(`) such coverings. On the other hand, we have Epi0(Γ(σ), Z`)/ϕ(`) of regular

Z`-coverings S = H2/H → O = H2/K over the orbifold O = O(σ) with the signature σ [11]. By virtue
of the one-to-one correspondence these numbers coincide. Hence, we have Epiσ(K,Z`) = Epi0(Γ(σ), Z`) as
it was required. Given m, ` and σ denote by νσ(m) the number of subgroups K < ∆+ in P(σ) and by
Sign(Sg/Z`) the set of signatures of cyclic g-admissible orbifolds. We have

Hg(n) =
1

n

∑

`|n
`m=n

∑

K<∆+

[∆+:K]=m

EpiP(K,Z`) =
1

n

∑

`|n
`m=n

∑

σ∈Sign(Sg/Z`)

νσ(m)Epiσ(K,Z`) =

1

n

∑

`|n
`m=n

∑

σ∈Sign(Sg/Z`)

νσ(m)Epi0(Γ(σ), Z`).

Taking into the account the correspondence between groups in Pσ and rooted hypermaps on the orbifold
O = O(σ) we get νσ(m) = hO(m) and the proof is complete.
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In what follows we derive a formula enumerating numbers of rooted hypermaps on orbifolds in terms
of numbers of rooted hypermaps on surfaces. Let H be a rooted hypermap on an orbifold O such that
H = H̃/Z` = (D;R,L) is a quotient of an ordinary finite map H̃ on a surface Sg. Thus O = Sg/G where
G ∼= Z` is a cyclic group of orientation preserving symmetries of Sg of order `. It follows that each branch
index of the branched covering Sg → O is a divisor of ` and can write O = O[γ; 2q2 , . . . , `q` ], where qi ≥ 0
denotes the number of branch points of index i, for i = 2, . . . , `. In this case, genera γ and g are related by the

Riemann-Hurwitz equation 2− 2g = `(2− 2γ−
∑`

j=2 qj(1− 1/j)). We use the convention hγ(m) = ν[γ; ∅](m)
denoting the number of rooted hypermaps with m darts on a surface of genus g. Clearly, the exponential
notation O = O[γ; 2q2 , . . . , `q` ] can be used for any oriented orbifold (not necessarily cyclic) provided the
indexes of branch points are bounded by `.

Given integers x1, x2, . . . , xq and y ≥ x1 + x2 + · · · + xq we denote by
(

y

x1, x2, . . . , xq

)

=
y!

x1!x2! . . . xq!(y −
∑q

j=1 xj)!
,

the multinomial coefficient.
Now we are able to determine the number of rooted hypermaps on an arbitrary orbifold.

Proposition 3.4. The number of rooted hypermaps on an orbifold O = O[γ; 2q2 , . . . , `q` ] with m darts
is

hO(m) =

(

m+2−2γ

q2, q3, . . . , q`

)

hγ(m). (5.1)

Proof. Let H be a rooted hypermap on Sγ with v hypervetices, e hyperedges and f hyperfaces. Then
H gives rise to as many rooted hypermaps as is the number of partitions of the set V (H) ∪ E(H) ∪ F (H)
of cardinality v + e+ f = m+ 2 − 2γ into disjoint subsets of cardinalities q1, q2, . . . , q`. This is exactly the
number

(

m+ 2 − 2γ

q2, q3, . . . , q`

)

.

Combining Proposition 3.4 and Theorem 3.3 we get our main theorem.

Theorem 3.5. The number of unrooted hypermaps on a closed surface Sg of genus g with n darts is
given by

Hg(n) =
1

n

∑

`|n
`m=n

∑

O∈Orb(S/Z` )

O=O[γ;2q2 ,3q3 ,...,`q` ]

Epi0(π1(O), Z`)

(

m+2−2γ

q2, q3, . . . , q`

)

hγ(m),

where the second sum runs through all cyclic orbifolds Sg/Z`.

Note that the numbers Epi0(π1(O), Z`) were computed by the authors in [25] in terms of some standard
arithmetical functions. The following section surveys results on Epi0(π1(O), Z`).

4. Number of epimorphisms from an F-group onto a cyclic group

As one can see in Theorems 3.3 and 3.5 to derive an explicit formula for the number of unrooted
hypermaps with given genus and given number of darts one needs to deal with the numbers Epi0(π1(O), Z`)
of order preserving epimorphisms from an F -group Γ onto a cyclic group Z`. These numbers are counted
using some number theoretical machinery in [25]. In what follows we recall some relevant results used in
later computations.

Denote by µ(n), φ(n) and Φ(x, n) the Möbius, Euler and von Sterneck functions, respectively. The
relationship between them is given by the formula

Φ(x, n) =
φ(n)

φ( n
(x,n))

µ

(

n

(x, n)

)

,

where (x, n) is the greatest common divisor of x and n. It was shown by O. Hölder that Φ(x, n) coincides
with the Ramanujan sum

∑

1≤k≤n
(k, n)=1

exp(2 ikx
n ). For the proof, see Apolstol [1, p.164] and [26]. An arithmetic

function, called by Liskovets orbicyclic arithmetic function [21], is a multivariate integer function defined by
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E(m1,m2, . . . ,mr) =
1

m

m
∑

k=1

Φ(k, m1) · Φ(k, m2) . . .Φ(k, mr).

Recall that the Jordan multiplicative function φk(n) of order k can be defined as follows:

φk(n) =
∑

d|n

µ
(n

d

)

dk.

The following proposition is proved in [25].

Proposition 4.1. Let Γ = F [g;m1, . . . ,mr] be an F−group of signature [g;m1, . . . ,mr]. Denote by
m = lcm (m1, . . . ,mr) the least common multiple of m1, . . . ,mr and let m|`. Then the number of order-
preserving epimorphisms of the group Γ onto a cyclic group Z` is given by the formula

Epi0(Γ,Z`) = m2gφ2g(`/m)E(m1,m2, . . . ,mr).

In particular, if Γ = F [g; ∅] = F [g; 1] is a surface group of genus g we have

Epi0(Γ,Z`) = φ2g(`).

Let us note that the conditionm|` in the above proposition gives no principal restriction, sinceEpi0(Γ,Z`) =
0 by the definition providedm does not divide `. An orbifold O = O[g;m1, . . . ,mr] will be called γ-admissible
if it can be represented in the form O = Sγ/Z`, where Sγ is an orientable surface of genus γ surface and Z` is
a cyclic group of automorphisms of Sγ . There is an orbifold O = Sγ/Z` with signature [g;m1,m2, . . . ,mr] if
and only if there exists ` such that the number Epi0(π1(O), Z`) 6= 0 and the numbers γ, g, m1, . . . ,mr and
` are related by the Riemann-Hurwitz equation 2− 2γ = `(2− 2g −

∑r
i=1(1 − 1/mi)). The Wiman theorem

makes us sure that 1 ≤ ` ≤ 4γ + 2 for γ > 1.
Using Proposition 4.1 and result by Harvey [8]we derive the following lists of γ-admissible orbifolds, for

γ = 0, 1.

Corollary 4.2. 0-admissible orbifolds are O = O[0; `2], with Epi0(π1(O), Z`) = φ(`) for any positive
integer `.

Corollary 4.3. Let O = O[g;m1,m2, . . . ,mr] = S1/Z` be a 1-admissible orbifold. Then one of the
following cases happens:

O = O[1; ∅], with Epi0(π1(O), Z`) =
∑

k|`

µ(`/k)k2 = φ2(`) for any `,

` = 2 and O = O[0; 24], with Epi0(π1(O), Z`) = 1,
` = 3 and O = O[0; 33], with Epi0(π1(O), Z`) = 2,
` = 4 and O = O[0; 42, 2], with Epi0(π1(O), Z`) = 2,
` = 6 and O = O[0; 6, 3, 2], with Epi0(π1(O), Z`) = 2.

The lists of 2− and 3−admissible orbifolds can be found in [25].

5. Counting unrooted hypermaps on the sphere and torus

In this section we apply the above results to calculate the number of unrooted hypermaps with given
number of darts on the sphere and torus.

Theorem 5.1. The number of spherical unrooted hypermaps with n darts is given by the formula

H0(n) =
1

n

(

3 · 2n−1

(n+ 1)(n+ 2)

(

2n

n

)

+
∑

`|n, `>1
`m=n

3 · 2m−2

(

2m

m

)

φ(`)

)

Proof. For ` > 1 there is only one possible action of cyclic group Z` on the sphere S. The corresponding
orbifold O has a signature [0; `, `] and by Corollary 4.2 we have Epi0(π1(O), Z`) = φ(`). By Theorem 3.5 we
obtain

H0(n) =
1

n

(

h0(n) +
∑

`|n, `>1
`m=n

φ(`)

(

m+ 2

2

)

h0(m)
)

.
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To finish the proof we note that by T. Walsh [32]

h0(m) =
3 · 2m−1

(m+ 1)(m+ 2)

(

2m

m

)

. (5.1)

The numbers of rooted and unrooted spherical hypermaps up to 30 darts is given in Table 1.
Table 1. Numbers of rooted and unrooted hypermaps on the sphere with at most 30 darts
No. of darts, rooted hypermaps, unrooted hypermaps

01, 1, 1
02, 3, 3
03, 12, 6
04, 56, 20
05, 288, 60
06, 1584, 291
07, 9152, 1310
08, 54912, 6975
09, 339456, 37746
10, 2149888, 215602
11, 13891584, 1262874
12, 91287552, 7611156
13, 608583680, 46814132
14, 4107939840, 293447817
15, 28030648320, 1868710728
16, 193100021760, 12068905911
17, 1341536993280, 78913940784
18, 9390758952960, 521709872895
19, 66182491668480, 3483289035186
20, 469294031831040, 23464708686960
21, 3346270487838720, 159346213738020
22, 23981605162844160, 1090073011199451
23, 172667557172477952, 7507285094455566
24, 1248519259554840576, 52021636161126702
25, 9063324995286990848, 362532999811480604
26, 66032796394233790464, 2539722940697502966
27, 482722511571640123392, 17878611539691757938
28, 3539965084858694238208, 126427324476844560112
29, 26035872237025235042304, 897788697828456380772
30, 192014557748061108436992, 6400485258395785352796
We note that the numbers H0(n) was determined in terms of unrooted planar 2-constellations formed

by n polygons by M. Bosquet-Melon and G. Schaeffer [3].
Now we derive an explicit formula for counting unrooted maps on torus. Rooted toroidal maps were

enumerated by D. Arquès in [2]. He proved that

h1(n) =
1

3

n−3
∑

k=0

2k(4n−2−k − 1)

(

n+ k

k

)

. (5.2)

Theorem 5.2. The number of unrooted toroidal hypermaps H1(n) with n darts is equal to

1
n

(

(n
2 +2
4

)

h0

(

n
2

)

+ 2
(n

3 +2
3

)

h0

(

n
3

)

+ 6
(n

4 +2
3

)

h0

(

n
4

)

+ 12
(n

6 +2
3

)

h0

(

n
6

)

+
∑

`|n
`m=n

φ2(`)h1(m)
)

,

where φ2 is the Jordan function, and functions h0 and h1 are given by (5.1) and (5.2), respectively.

Proof. Following Theorem 3.5 and Corollary 4.3 we have

H1(n) =
1

n

(

h[0;24](n/2) + 2h[0;33](n/3) + 2h[0;2,42](n/4)+
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2h[0;2,3,6](n/6) +
∑

`|n
`m=n

∑

k|`

µ(`/k)k2h1(n/`)
)

. (5.3)

It remains to calculate the numbers of rooted hypermaps on orbifoldsO[0; 24], O[0; 33], 0[2; 42] andO[0; 2, 3, 6].

By Proposition 3.4 we obtain

h[0;24](m) =
(

m
4

)

h0(m), h[0;33](m) =
(

m+2
3

)

h0(m),

h[0;2,3,6](m) =
(

m+2
1,1,1

)

h0(m) = 6
(

m+2
3

)

h0(m),

h[0;2,42](m) =
(

m+2
1,2

)

h0(m) = 3
(

m+2
3

)

h0(m).

Inserting the above numbers into (5.3) we get the theorem.
The following list containing the numbers of rooted and oriented unrooted maps of genus 1 up to 30

edges follows.
Table 2. Numbers of rooted and unrooted hypermaps on the torus with at most 30 darts
No. of darts, rooted hypermaps, unrooted hypermaps

03, 1, 1
04, 15, 6
05, 165, 33
06, 1611, 285
07, 14805, 2115
08, 131307, 16533
09, 1138261, 126501
10, 9713835, 972441
11, 81968469, 7451679
12, 685888171, 57167260
13, 5702382933, 438644841
14, 47168678571, 3369276867
15, 388580070741, 25905339483
16, 3190523226795, 199408447446
17, 26124382262613, 1536728368389
18, 213415462218411, 11856420991413
19, 1740019150443861, 91579955286519
20, 14162920013474475, 708146055343668
21, 115112250539595093, 5481535740059577
22, 934419385591442091, 42473608898628639
23, 7576722323539318101, 329422709719100787
24, 61375749135369153195, 2557322884534185500
25, 496747833856061953365, 19869913354242478293
26, 4017349254284543961771, 154513432889706455145
27, 32467023775647069984085, 1202482362061007078175
28, 262225359776626483309227, 9365191420865873023026
29, 2116714406654571321840981, 72990151953605907649689
30, 17077642118698511054318251, 569254737292213025378571
The above tables were computed using MATHEMATICA, Ver. 5. The input numbers of rooted maps

come from [2].
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San Diego, California 2006

General Augmented Rook Boards & Product Formulas

Brian K. Miceli

Abstract. There are a number of so-called factorization theorems for rook polynomials that have appeared
in the literature. For example, Goldman, Joichi, and White [6] showed that for any Ferrers board B =
F (b1, b2, . . . , bn),

n
Y

i=1

(x + bi − (i − 1)) =
n

X

k=0

rk(B)(x) ↓(n−k)

where rk(B) is the k-th rook number of B and (x) ↓k= x(x− 1) · · · (x− (k − 1)) is the usual falling factorial
polynomial. Similar formulas where rk(B) is replaced by some appropriate generalization of rook numbers
and (x) ↓k is replaced by polynomials like (x) ↑k,j= x(x + j) · · · (x + j(k − 1)) or (x) ↓k,j= x(x− j) · · · (x −
j(k − 1)) can be found in the work of Goldman and Haglund [5], Remmel and Wachs [11], Haglund and
Remmel [7], and Briggs and Remmel [3]. We shall call such formulas generalized product formulas. The
main goal of this paper is to develop a new rook theory setting where we can give a uniform combinatorial
proof of a generalized product formula which includes all the cases referred to above. That is, given any
two sequences of non-negative integers, B = (b1, . . . , bn) and A = (a1, . . . , an), and two sign functions
sgn, sgn : {1, . . . , n} → {−1, 1}, we shall define a rook theory setting and appropriate generalization of rook
numbers rA

k
(B, sgn, sgn) such that

n
Y

i=1

(x + sgn(i)bi) =
n

X

k=0

rAk (B, sgn, sgn)

n−k
Y

j=1

(x + (

j
X

s=1

sgn(s)as)).

Thus, for example, we obtain a combinatorial interpretations of the connection coefficients between any two
bases of the polynomial ring Q[x] of the form {(x) ↓k,j}k≥0 or {(x) ↑k,j}k≥0. We also find q-analogues and
(p, q)-analogues of the above formulas.

Résumé.

Le but principal de cet article est de développer une nouvelle théorie rook dans laquelle nous pouvons
fournir des preuves combinatoires uniformes d’une formule de produit généralisée qui inclut toutes les cas
cités ci-dessus. C’est-à-dire, se donnant deux suites quelconques de nombres entiers positifs, B = (b1, . . . , bn)
et A = (a1, . . . , an), et deux fonctions de signes sgn, sgn : {1, . . . , n} → {−1, 1}, nous définissons une théorie
rook ainsi qu’une généralisation appropriée des nombres rook rA

k
(B, sgn, sgn) tel que

n
Y

i=1

(x + sgn(i)bi) =
n

X

k=0

rAk (B, sgn, sgn)

n−k
Y

j=1

(x + (

j
X

s=1

sgn(s)as)).

Donc, par exemple, nous obtenons une interprétation combinatoire des coefficients de connexion entre deux
bases de l’anneau des polynômes Q[x] de la forme {(x) ↓k,j}k≥0 ou {(x) ↑k,j}k≥0. Nous trouvons aussi des
q-analogues et des (p, q)-analogues de ces formules.

1. Introduction

Let N = {1, 2, 3, . . .} denote the set of natural numbers. For any positive integer a, we will set [a] :=
{1, 2, . . . , a}. We will say that Bn = [n] × [n] is an n by n array of squares (like a chess board), which we

2000 Mathematics Subject Classification. Primary 05A10; Secondary 05A15.
Key words and phrases. algebraic combinatorics, rook theory, enumeration, inverses.
This paper adapted from a section of the doctoral thesis of the author with thanks to the direction and assistance provided

by the thesis advisor, Jeffrey Remmel.
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call cells. The cells of Bn will be numbered from left to right and bottom to top with the numbers from
[n], and we will refer to the cell in the ith row and jth column of Bn as the (i, j) cell of Bn. Any subset
of Bn is called a rook board. If B is a board in Bn with column heights b1, b2, . . . , bn reading from left to
right, with 0 ≤ bi ≤ n for each i, then we will write B = F (b1, b2, . . . , bn) ⊆ Bn. In the special case that
0 ≤ b1 ≤ b2 ≤ · · · ≤ bn ≤ n, we will say that B = F (b1, b2, . . . , bn) is a Ferrers board.

Given a board B = F (b1, b2, . . . , bn), there are three sets of numbers we can associate with B, namely,
the rook, file, and hit numbers of B. The rook number, rk(B), is the number of placements of k rooks in
the board B so that no two rooks lie in the same row or column. The file number, fk(B), is the number of
placements of k rooks in the board B so that no two rooks lie in the same column but where we allow any
given row to contain more than one rook. Given a permutation σ = σ1σ2 . . . σn in the symmetric group Sn,
we shall identify σ with the placement Pσ = {(1, σ1), (2, σ2), . . . , (n, σn)}. Then the hit number, hk(B), is
the number of σ ∈ Sn such that the placement Pσ intersects the board in exactly k cells.

All of these numbers have been studied extensively by combinatorialists. Here are three fundamental
identities involving these numbers. Define (x) ↓m= x(x − 1) · · · (x − (m − 1)) and (x) ↑m= x(x + 1) · · · (x +
(m − 1)). Then

n∑

k=0

hk(B)xk =

n∑

k=0

rk(B)(n − k)!(x − 1)k,(1.1)

n∏

i=1

(x + bi − (i − 1)) =

n∑

k=0

rn−k(B)(x) ↓k, and(1.2)

n∏

i=1

(x + bi) =

n∑

k=0

fn−k(B)xk.(1.3)

Identity (1.1) is due to Kaplansky and Riordan [8] and holds for any board B ⊆ Bn. Identity (1.2) holds for
all Ferrers boards B = F (b1, . . . , bn) and is due to Goldman, Joichi, and White [6]. Identity (1.3) is due to
Garsia and Remmel [4] and holds for all boards of the form B = F (b1, . . . , bn). Formulas (1.2) and (1.3) are
examples of what we shall call product formulas in rook theory.

We note that in the special case where B = Bn := F (0, 1, 2, . . . , n−1), Equations (1.2) and (1.3) become

xn =

n∑

k=0

rn−k(Bn)(x) ↓k and(1.4)

(x) ↑n=

n∑

k=0

fn−k(Bn)xk.(1.5)

This shows that rn−k(Bn) = Sn,k, where Sn,k is the Stirling number of the second kind, and (−1)n−kfn−k(Bn) =
sn,k, where sn,k is the Stirling number of the first kind, and thus, we obtain rook theory interpretations for
the Stirling numbers of the first and second kind.

There are natural q-analogues of formulas (1.1), (1.2), and (1.3). That is, define [n]q = 1+q+· · ·+qn−1 =
1 − qn

1 − q
. We then define q-analogues of the factorials and falling factorials by [n]q! = [n]q[n − 1]q · · · [2]q[1]q

and [x]q ↓m= [x]q [x − 1]q · · · [x − (m − 1)]q, Garsia and Remmel [4] defined q-analogues of the hit numbers,
hk(B, q), q-analogues of the rook numbers, rk(B, q), and q-analogues of file numbers, fk(B, q), for Ferrers
boards B so that the following hold:

n∑

k=0

hk(B, q)xn−k =

n∑

k=0

rn−k(B, q)[k]q!x
k(1 − xqk+1) · · · (1 − xqn),(1.6)

n∏

i=1

[x + bi − (i − 1)]q =
n∑

k=0

rn−k(B, q)[x]q ↓k, and(1.7)

n∏

i=1

[x + bi]q =

n∑

k=0

fn−k(B, q)([x]q)
k.(1.8)
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Finally, we should mention that there are also (p, q)-analogues of such formulas (see Wachs and White [12],
Briggs and Remmel [2], and Briggs [1]).

In recent years, a number of researchers have developed new rook theory models which give rise to new
classes of product formulas. For example, Haglund and Remmel [7] developed a rook theory model where the
analogue of the the rook number mk(B) counts partial matchings in the complete graph Kn. They defined

an analogue of a Ferrers board F̃ (a1, . . . a2n−1) where 2n− 1 ≥ a1 ≥ · · · ≥ a2n−1 ≥ 0 and where the nonzero
entries in (a1, . . . , a2n−1) are strictly decreasing, and, in their setting, they proved the following identity,

(1.9)

2n−1∏

i=1

(x + a2n−i − 2i + 2) =

2n−1∑

k=0

mk(F )x(x − 2)(x − 4) · · · (x − 2(n − (k − 1))).

Remmel and Wachs [11] defined a more restricted class of rook numbers, r̃
j
k(B), in their j-attacking rook

model and proved that for Ferrers boards B = F (b1, . . . , bn), where bi+1 − bi ≥ j − 1 if bi 6= 0,

(1.10)

n∏

i=1

(x + bi − j(i − 1)) =

n∑

k=0

r̃
j
n−k(B)x(x − j)(x − 2j) · · · (x − (k − 1)j).

Goldman and Haglund [5] developed an i-creation rook theory model and proved that for Ferrers boards one
has the following identity,

(1.11)

n∏

j=1

(x + bi + j(i − 1)) =

n∑

k=0

r
(i)
n−k(B)x(x + (i − 1)) · · · (x + (k − 1)(i − 1)).

In all of these new models, the authors proved q-analogues and or (p, q)-analogues of their product formulas.

2. A General Product Formula

Suppose we are given any two sequences of natural numbers: B = {bi}
n
i=1,A = {ai}

n
i=1 ∈ Nn. Define

Ai = a1 + a2 + · · · + ai, the ith partial sum of the ai’s, and let B = F (b1, b2, . . . , bn) be a rook board. We
will also define two functions, sgn and sgn, such that sgn, sgn : [n] → {−1, +1}. Our goal is to define a
rook theory model with an appropriate notion of the rook numbers rAk (B, sgn, sgn) such that the following
product formula holds:

(2.1)

n∏

i=1

(x + sgn(i)(bi)) =

n∑

k=0

rAk (B, sgn, sgn)

n−k∏

j=1

(x +
∑

s≤j

sgn(s)(as)).

We will refer to Equation (2.1) as the general product formula and the number rAk (B, sgn, sgn) as the kth

augmented rook number of B with respect to A, sgn, and sgn.

2.1. Special Cases of the General Product Formula. We first wish to consider the case where
sgn(i) = +1 and sgn(i) = −1 for every 1 ≤ i ≤ n. In this case we will set

rAk (B, sgn, sgn) = rAk (B).

Thus, we want to prove Equation (2.2):

(2.2)
n∏

i=1

(x + bi) =
n∑

k=o

rAk (B)(x − A1)(x − A2) · · · (x − An−k).

To do this, we first construct an augmented rook board, BA = F (b1 + A1, b2 + A2, . . . , bn + An). In BA,
the cells in the i-th column are (1, i), . . . , (bi + a1 + · · · + ai, i) reading from bottom to top. We shall refer
to the cells (1, i), . . . , (bi, i) as the bi part of column i, the cells (bi + 1, i), . . . , (bi + Ai, i) as the Ai part of
column i, and, for each s ≤ i, the cells (bi + a1 + · · ·as−1 + 1, i), . . . , (bi + a1 + · · · + as, i) as the as part of
column i where by convention a−1 = 0. We call the part of the board BA which corresponds to the Ai’s
the augmented part of BA. We now consider rook placements in BA with at most one rook in each column.
We define the following cancellation rule: a rook r placed in column j of BA will cancel, in each column
to its right, all of the cells which lie in the ai part of that column where i is the highest subscript j such
that the aj part of that column has not been canceled by a rook to the left of r. For example, in Figure 1,
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Figure 1. BA, with B = F (1, 2, 2, 4) and A = (2, 1, 2, 1), and a placement of two rook in BA.

where B = F (1, 2, 2, 4) and A = (2, 1, 2, 1), the rook in the first column cancels the cells in the a2 part of
the second column, the a3 part of the third column, and the a4 part of the fourth column (those cells which
contain a “•”). The rook in the third column cancels the cells in the a3 part the fourth column (those cells
which contain a “∗”). We then define rAk (B) to be the number of ways of placing k such rooks in BA so that
no rook lies in a cell which is canceled by a rook to its left.

We can now construct a general augmented rook board, BA
x , defined by the sequences B = {bi}

n
i=1 and

A = {ai}
n
i=1 and some nonnegative integer x. The board BA

x will be the board BA (the augmented part of
BA will here be referred to as the upper augmented part of BA

x ), with x rows appended below, called the
x-part and then a “mirror image” of the augmented part of BA below that, called the lower augmented part
of BA

x . In the lower augmented part, we number the cells in i-th column with (1, i), . . . , (bi + Ai, i) reading
from top to bottom and we define the as part of the i-th column of the lower augmented board to consist of
the cells (a1 + · · ·+as−1 +1, i), . . . , (a1 + · · ·+as, i). We say that the board BA is separated from the x-part
by the high bar and the x-part is separated from the lower augmented part by the low bar. An illustration of
this type of board with B = F (1, 2, 2, 4), A = (2, 1, 2, 1), and x = 4 can be seen in the left side of Figure 2.

In order to define a proper rook placement in the board BA
x , we make the rule that exactly one rook

must be placed in every column of BA
x . When placing rooks in BA

x , we will define the following cancellation
rules:

(1) A rook placed above the high bar in the jth column of BA
x will cancel all of the cells in columns

j + 1, j + 2, . . . , n , both in the upper and lower augmented parts, which belong to the ai part of
the column where i is largest j such that cells in the aj part of the column are not canceled by a
rook to their left.

(2) Rooks placed below the high bar do not cancel any cells.

An example of a rook placement in these boards can be seen in the right side of Figure 2. In this placement,
the rook placed in the first column is placed above the high bar, thus it cancels in the columns to its right
those cells contained in the ai part of highest subscript in both the upper and lower augmented parts (denoted
by a “•”). The rook placed in the second column is placed below the the high bar so that it cancels nothing.
The rook placed in the third column is again placed above the high bar so that it cancels as does the rook
placed in the first column (denoted by a “∗”), and the last rook may be placed in any available cell.

We will now prove two lemmas in order to prove Equation (2.2).

Lemma 2.1. If there are bj +Am cells to place a rook above the high bar in column j, then there are Am

cells below the low bar to place a rook in column j.

Proof: By how we define our cancellation, a block of cells from ai gets canceled above the high bar if and
only if a block of cells from ai gets canceled below the low bar.

Lemma 2.2. If k rooks are placed above the high bar in BA
x , then the column heights of the uncanceled

cells in the lower augmented part of BA
x , when read from left to right, are A1, A2, . . . , An−k.

Proof: Suppose the first rook above the high bar is placed in the jth column. The columns below the low
bar which lie to the left of column j have heights A1, A2, . . . , Aj−1. Now, the rook that was placed in the
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Figure 2. BA
x , with B = F (1, 2, 2, 4),A = (2, 1, 2, 1), and x = 4, and a placement of rooks

in BA
x .

the jth column will cancel all the cells in the aj+1 part of the (j + 1)st column, all the cells in the aj+2

part of the (j + 2)nd column, etc.. Thus after this cancellation, the heights of the columns below the low
bar into which a rook may be placed are A1, A2, . . . , Aj−1, Aj , . . . An−1. Now suppose that the leftmost
rook to the right to column j is in column k. Then the rook in column k will cancel all the cells in ak

part of the (k + 1)st column, all the cells in the ak+1 part of the (k + 2)nd column, etc.. Thus after this
second cancellation, the heights of the columns below the low bar into which a rook may be placed are
A1, A2, . . . , Aj−1, Aj , . . . Ak−1, Ak, . . . , An−2. We can continue this type of reasoning to show that if there
are k rooks are placed above the high bar in BA

x , then the column heights of the uncanceled cells in the
lower augmented part of BA

x , when read from left to right, are A1, A2, . . . , An−k.

We are now in position to prove (2.2). We shall show that (2.2) is the result of computing the sum S

of the weights of all placements of n rooks in BA
x in two different ways, where we define the weight of the

rooks placed above the low bar to be “+1”, the weight of the rooks placed below the low bar to be “−1”,
and the weight of any placement to be the product of the weights of the rooks in the placement.

If we first place the rooks starting with the leftmost column and working to the right, then we can see
that in the first column there are exactly x + b1 + 2a1 cells in which to place the first rook, where the “2a1”
corresponds to placing the rook in either the upper or lower augmented part of the 1st column. Since all
of the rooks above the high bar have weight “+1” and all the rooks placed below the low bar have weight
“−1”, it is easy to see that the possible placements of rooks in the first column contributes a factor of
x+ b1 +a1 +(−a1) = x+ b1 to S. When we consider the possible placements of a rook in the second column,
we have two cases.

Case I: Suppose the rook that the 1st column was placed below the high bar. Then nothing was canceled
in the second column so we can place a rook in any cell of the second column. Thus there are a total
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x + b2 + 2(a1 + a2) ways to place the rook in the second column in this case. However, given our weighting
of the rooks, we see that the possible placements of rooks in the second column contributes a factor of
x + b2 + (a1 + a2) + (−a1 − a2) = x + b2 to S.

Case II: If the rook in the first column was placed above the high bar, then the cells corresponding to a2

part in both the upper and lower augmented parts of the 2nd column are canceled. Thus in this case, there
are x+ b2 +2a1 cells left to place the rook in the second column. However, given our weighting of rooks, the
possible placements of rooks in the second column contributes a factor of x + b2 + (a1) +−a1 = x + b2 to S

in this case.
In general, suppose we are placing a rook in the jth column that does not have a rook above the high

bar reading from left to right. Assume that we have placed s rooks above the high bar and t rooks below
the high bar in the first j − 1 columns. Then by Lemma 2.1, we have, x + bj + 2(Aj−s) choices as to where
to place the rook in that column. Again, due to our weighting, it is easy to see that possible placement of
rooks contributes a factor of x + bj + Aj−s + (−Aj−s) = x + bj to S. It follows that S =

∏n
i=1(x + bi).

The second way of counting this sum of the weights of all the rook placements in BA
x is to organize

the placements by how many rooks lie above the high bar. Suppose that we place k rooks above the high
bar and then wish to extend that to a placement in the entire board. The number of ways of placing the
k rooks above the high bar is given by rAk (B). For any such placement of k rooks above the high bar, we
are left with n − k columns in which to place rooks below the high bar. We consider the placement of the
remaining rooks in these available columns starting with the leftmost one and working right. By Lemma 2.2,
the number of ways we can do this will be (x + A1)(x + A2) · · · (x + An−k)). However, these placements
come with a weighting of (x + (−A1)(x + (−A2) · · · (x + (−An−k)) since the cells below the low bar have
weight ′′ − 1′′. Thus the sum of the weights of the set of placements in BA

x with k rooks above the high bar
is rAk (B)(x − A1)(x − A2) · · · (x − An−k)). Summing over all possible k gives us the RHS of (2.2).

�

Now suppose we change the weights which are assigned to rooks in BA
x by declaring that the weight of

a rook placed in the upper augmented part is “−1” and all other rooks have weight “+1”. Again the weight
of the placement is the product of the weights of the rooks in the placement. This weighting corresponds to
the case where sgn(i) = +1 and sgn(i) = +1 for every 1 ≤ i ≤ n. We will define r̃Ak (B) to be the weighting
of all placements of k rooks in BA with this newly assigned weight, and this yields an equation which is
analogous to Equation (2.2), namely,

(2.3)
n∏

i=1

(x + bi) =
n∑

k=o

r̃Ak (B)(x + A1)(x + A2) · · · (x + An−k).

Proof of Equation (2.3): This proof follows exactly the proof of Equation (2.2) with the weights from the
upper and lower augmented parts switched.

�

We can see that these two special cases encapsulate all of the product formulas stated in the Introduction.
Next we sketch a proof for the general product formula (2.1).

2.2. The General Product Formula. We have now shown how to generate our general product
formula in the special cases where the functions sgn and sgn are certain constant functions; however, the
proofs of Equations (2.2) and (2.3) do not depend on sgn and sgn being constant. Rather, the proofs depend
only on the condition that, for each column j, if the cells corresponding to the ai part of the upper augmented
part in column j are weighted with ω(ai), then the cells corresponding to the ai part in the lower augmented
part in column j must be weighted with -ω(ai). Moreover, the proofs do not depend on the weighting of
rooks placed in the cells of the cells in the bi part of column i in BA. Thus, if we define rAk (B, sgn, sgn) to
be the weight of all placements of k rooks in the board BA, with each rook in the bi part of column i having
weight sgn(i) and each rook in the ai part of any column below the low bar having weight sgn(i), and the
weight of any placement to be the product of the rooks in that placement, then we can show that Equation
(2.1) is the result of computing the sum S of the weights of all placements of n rooks in BA

x exactly as in
the proofs of Equations (2.2) and (2.3).

583



GENERAL AUGMENTED ROOK BOARDS

3. Q-Analogues of General Product Formulas

In this section, we shall describe how one can derive q-analogues of some of the general product formulas
described in Section 2. We do this by q-counting rook placements considered in Section 2. To simplify
our notation, we shall use the convention that for any negative integer x, [x]q := −[|x|]q. If we set Ak =∑k

i=1 sgn(i)ai, then we can prove the following q-analogue of Equation 2.1:

(3.1)

n∏

i=1

([x]q + sgn(i)[bi]q) =

n∑

k=0

rAk (B, sgn, sgn, q)

n−k∏

s=1

([x]q + [As]q).

For each cell c in the board BA, we let belowBA(c) denote the number of cells that lie directly below
c in its part. That is, if c is a cell in the augmented part of BA, then belowBA(c) is the number of cells
below c in the augmented part of BA and if c is not in the augmented part of BA, then belowBA(c) is
just the number of cells below c in B. We may then extend this definition to the board BA

x by defining
belowBA

x
(c) to be the number of cells below a given cell c in BA

x in its part. To each cell c in the board

BA
x we will assign a q-weight, ωq(c). Given a placement P in BA

x , we will define the q-weight of that
placement to be ωq(P ) =

∏
r∈P ωq(r), where ωq(r) = ωq(c) if the rook r is in cell c. First, we define

ωq(c) = q
below

BA
x

(c)
if c is in the x-part of the board. Next we set ωq(c) = sgn(i)q

below
BA

x

(c)
if c is in the ith

column of the board B. For the lower augmented part of the board, the definition of ωq(c) is slightly more
involved. Suppose we are at the kth column of the lower augmented part of BA

x , which has column height
a1 + a2 + · · · + ak. Recall that we labeled the cells in k-th column of the lower augmented board from top
to bottom with the pairs (1, k), (2, k), . . . , (a1 + · · ·+ ak, k). Then, for i ≤ a1, we set ωq((i, k)) = sgn(1)qi−1.
Now, assume by induction that we have assigned weights to the cells (1, k), (2, k), . . . , (a1 + · · ·+ai, k) so that∑a1+···+ai

j=1 ωq((j, k)) = [Ai]q. Then we will label the cells (a1 + · · · + ai + 1, k), . . . , (a1 + · · · + ai + ai+1, k)
in the following manner:

(1) Case I: Ai ≥ 0
(a) If Ai ≤ Ai+1, then we assign the q-weight of the cells (a1 + · · ·+ ai + 1, k), . . . , (a1 + · · ·+ ai +

ai+1, k) to be qAi , qAi+1, . . . , qAi+1−1, respectively.
(b) If 0 ≤ Ai+1 ≤ Ai, then we assign the q-weight of the cells (a1 + · · ·+ ai + 1, k), . . . , (a1 + · · ·+

ai + ai+1, k) to be −qAi−1,−qAi−2, . . . ,−qAi+1 , respectively.
(c) If Ai+1 < 0, then we assign the q-weight of the cells (a1+· · ·+ai+1, k), . . . , (a1+· · ·+ai+ai+1, k)

to be −qAi−1,−qAi−2, . . . ,−1,−1,−q,−q2, . . . ,−q|Ai+1|−1, respectively.
(2) Case II: Ai < 0

(a) If Ai ≥ Ai+1, then we assign the q-weight of the cells (a1 + · · ·+ ai + 1, k), . . . , (a1 + · · ·+ ai +

ai+1, k) to be −q|Ai|,−q|Ai|+1, . . . ,−q|Ai+1|−1, respectively.
(b) If 0 ≥ Ai+1 ≥ Ai, then we assign the q-weight of the cells (a1 + · · ·+ ai + 1, k), . . . , (a1 + · · ·+

ai + ai+1, k) to be q|Ai|−1, q|Ai|−2, . . . ,−q|Ai+1|, respectively .
(c) If Ai+1 > 0, then we assign the q-weight of the cells (a1+· · ·+ai+1, k), . . . , (a1+· · ·+ai+ai+1, k)

to be q|Ai|−1, q|Ai|−2, . . . , 1, 1, q, q2, . . . , qAi+1−1, respectively.

Finally, in order to assign the q-weights to the kth column of the upper augmented part of BA
x , we will simply

take the weights that we assigned to the lower augmented part of the kth column, flip them upside down
and multiply them all by “-1”. An example of this weighting can be seen in Figure 3, where the q-number
displayed in each cell of the diagram corresponds to the q-weight a rook placed in that cell would be given.
For example, we can see that the q-weights assigned to the lower augmented part of the fourth column, read
from top to bottom are: 1, q,−q,−1,−1, 1. The weights in the upper augmented part of the same column
are, when read from bottom to top: −1,−q, q, 1, 1,−1, which is the previous sequence with every element
multiplied by “-1”.

Now we can prove Equation 3.1 similar to the way we proved Equation 2.1 in the previous section. That
is, Equation 3.1 results by computing the sum Sq of the q-weights of all placements of n rooks in BA

x in two
different ways.

3.1. Special Cases of the General Q-Analogue Formula. Now consider the special cases where
sgn and sgn are the constant functions −1 or +1. In this case, it is easy to see that
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Figure 3. A q-analogue of the rook placement in Figure 2 with sgn(i) = +1 for i = 1, 2, 3, 4
and sgn(i) = +1 for i = 1, 3, 4 sgn(i) = −1 for i = 2. Here each cell is labeled with the
q-weight that a rook placed in that cell would be given.

(i) if a rook in is the bi part of column i of BA, then its q-weight will be sgn(i)q
below

BA
x

(c)
,

(ii) if a rook in is the Ai part of column i of BA, then its q-weight will be −sgn(i)q
below

BA
x

(c)
,

(iii) if rook in is the x part of column i of BA, then its q-weight will be q
below

BA
x

(c)
, and

(iv) the q-weights of a cell in the lower augmented part of the board is just the q-weight of its mirror image
in the upper augmented part of the board multiplied by ′′ − 1′′.
In this case (3.1) becomes

(3.2)

n∏

i=1

([x]q + sgn(i)[bi]q) =

n∑

k=0

rAk (B, sgn, sgn, q)

n−k∏

s=1

([x]q + sgn(s)[As]q).

It turns out that by slightly modifying our q-counting of rook placements, we can prove analogues of
(3.2) where we replace [x] − [c] by [x − c] or [x] + [c] by [x + c].

3.1.1. Case I: sgn(i) = sgn(i) = −1. For x, c ∈ N with x > c, we have that [x]q − [c]q = qc[x− c]q. Thus
(3.2) becomes

(3.3)

n∏

i=1

qbi [x − bi]q =

n∑

k=0

rAk (B, sgn, sgn, q)

n−k∏

s=1

qAs [x − As].
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It is then easy to see that if we replace rAk (B, q) with r̂Ak (B, q) by

r̂Ak (B, q) := q(A1+A2+···+An−k)−(b1+···+bn)rAk (B, q),

we obtain the following form of Formula 3.2:

(3.4)

n∏

i=1

([x − bi]q) =

n∑

k=o

r̂Ak (B, q)([x − A1]q)([x − A2]q) · · · ([x − An−k]q).

3.1.2. Case II: sgn(i) = −1, sgn(i) = +1. For x, c ∈ N we have that [x]q + qx[c]q = [x + c]q. Thus if
we want to replace [x]q + [Ai]q by [x + Ai]q = [x]q + qx[Ai], then we should weight each rook that lies in
upper augmented part of BA by an extra factor of qx. This means that when we consider placements in
BA

x , then we must also weight each rook that lies in the lower augmented part of BA
x with an extra factor of

qx so that for any given column the weights of possible placements in the lower and upper augmented parts

cancel each other as in the proofs in Section 2. Thus we define ˆ̂rAk (B, q) to be the sum of the q-weight over
all placements of k rooks in BA where each rook placed in the augmented part receiving an extra factor of
qx. Then it is easy to see that (3.2) becomes

(3.5)

n∏

i=1

([x]q − [bi]q) =

n∑

k=0

ˆ̂rAk (B, q)[x + A1] · · · [x + An−k].

Finally we replace ˆ̂rAk (B, q) by a new q-rook number, ˜̃rAk (B, q) where ˜̃rAk (B, q) := q−(b1+···+bn)rAk (B, q). In
doing this, we obtain the following formula:

(3.6)

n∏

i=1

([x − bi]q) =

n∑

k=0

˜̃r
A

k (B, q)([x + A1]q)([x + A2]q) · · · ([x + An−k]q).

We can also use methods similar to the ones used in Cases I and II, to prove the following product formulas

for appropriate choices of rAk (B, q) and r
A
k (B, q).

3.1.3. Case III: sgn(i) = +1, sgn(i) = −1.

(3.7)

n∏

i=1

([x + bi]q) =

n∑

k=o

rAk (B, q)([x − A1]q)([x − A2]q) · · · ([x − An−k]q)

3.1.4. Case IV: sgn(i) = sgn(i) = +1.

(3.8)

n∏

i=1

([x + bi]q) =

n∑

k=o

r
A
k (B, q)([x + A1]q)([x + A2]q) · · · ([x + An−k]q)

4. (P, Q)-Analogues of General Product Formulas

For any n ∈ N we define [n]p,q = pn−1 +qpn−2+ · · ·+qn−2p+qn−1, and we again use the convention that
for a negative integer x, [x]p,q := −[|x|]p,q. Then we can give a combinatorial interpretation of the following
(p, q)-analogue formula:

(4.1)
n∏

i=1

([x]p,q + sgn(i)[bi]p,q) =
n∑

k=0

rAk (B, sgn, sgn, p, q)
n−k∏

s=1

([x]p,q + [As]p,q).

Again, we will assign a weight to each cell c of the board BA
x , which we will call the (p, q)-weight of c,

and this will be denoted by ωp,q(c). We will also define the statistic aboveBA
x

(c), for any cell c in the board

BA
x , to be the number of cells that lie above c in its part, that is, if c is in the x-part of the board, then

aboveBA
x

(c) is the number of cells that lie above c in the x-part. For a placement P of rooks in BA
x , we will

let the (p, q)-weight of P be ωp,q(P ) =
∏

r∈P ωp,q(r), where ωp,q(r) = ωp,q(c) if the rook r is placed in cell c.

Now, we can (p, q)-weight the cells of BA
x in the following manner:

(1) If c is in the x-part of the board, then ωp,q(c) = p
above

BA
x

(c)
q

below
BA

x

(c)
.

(2) If c is in the ith column of the board B, then ωp,q(c) = sgn(i)p
above

BA
x

(c)
q

below
BA

x

(c)
.

586



B. K. Miceli

(3) If c is in the kth column of the lower augmented part of the board, then we will set ω(1, k) = [A1]p,q.

We will then set ω(a1 + · · · + ai + 1, k) = [Ai+1]p,q − [Ai]p,q and ω(j, k) = 0 otherwise.
(4) If c is in the kth column of the upper augmented part of the board, then weights will be assigned,

from bottom to top, as they were in the lower augmented part, with all of the weights multiplied
by “-1”.

We note that this type of weighting is more complicated than our q-weighting since now a cell can receive
a (p, q)-weight which is a polynomial in p and q rather than just a plus or minus a power of q. Moreover,
there are many other choices we could make for the weights, but none of them reduce to the q-weight when
p = 1. However, in certain special cases, we can assign a more natural (p, q)-weight which is consistent
with some of the (p, q)-analogues of product formulas that have appeared in the literature, but we shall not
consider these types of results in this paper.
We can now prove Equation 4.1 in the exact same way that we proved Equation 3.1.

5. Conclusion and Perspectives

We have given a rook theory interpretation of the product formula

n∏

i=1

(x + sgn(i)bi) =

n∑

k=0

rAk (B, sgn, sgn)

n−k∏

j=1

(x + (

j∑

s=1

sgn(s)as)),

and this interpretation can be used to obtain identities studied by Goldman and Haglund [5], Remmel and
Wachs [11], Haglund and Remmel [7], and Briggs and Remmel [3]. We also have q- and (p, q)- analogues of
this general product formula.

One application of this new theory is in finding the inverses of connection coefficients for different
bases of Q[x] [9]. If we define the functions (x) ↑k,a= x(x + a)(x + 2a) · · · (x + (k − 1)a) and (x) ↓k,b=
x(x − b)(x − 2b) · · · (x − (k − 1)b), then for any a ∈ N, the sets {(x) ↑n,a}n≥0 and {(x) ↓n,a}n≥0 will both
form bases of Q[x]. Thus, there exist numbers Cn,k(b ↓, a ↑) and Cn,k(a ↑, b ↓) such that

(5.1) (x) ↓n,b=
n∑

k=0

Cn,k(b ↓, a ↑)(x) ↑k,a

and

(5.2) (x) ↑n,a=

n∑

k=0

Cn,k(a ↑, b ↓)(x) ↓k,b .

From linear algebra it is known that ||Cn,k(b ↓, a ↑)||−1 = ||Cn,k(a ↑, b ↓)||, that is to say,

(5.3)

n∑

j=k

Cn,j(a ↑, b ↓)Cj,k(b ↓, a ↑) = χ(n = k).

However, this result may be obtained from our rook theory model. Given the numbers a, b ∈ N we will define
B = (0, b, 2b, . . . , (n − 1)b) and A = (0, a, a, . . . , a). By now defining sgn(i) = −1 and sgn(i) = +1 we see
that Cn,k(b ↓, a ↑) = rAk (B, sgn, sgn) and Cn,k(a ↑, b ↓) = rBk (A, sgn, sgn). We can now write equations (5.1)
and (5.2) as

(5.4) (x) ↓n,b=

n∑

k=0

rAk (B, sgn, sgn)(x) ↑k,a

and

(5.5) (x) ↑n,a=

n∑

k=0

rBk (A, sgn, sgn)(x) ↓k,b .

In particular, we now have that
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(5.6)

n∑

j=k

rAn−k(B, sgn, sgn)rBj−k(A, sgn, sgn) = χ(n = k),

and we have a completely combinatorial proof of this fact based solely on involutions on rook placements in
an augmented rook board setting. We can give similar combinatorial proofs for all the possible choice of ↑
and ↓ in the coefficient Cn,k(b ↓, a ↑). For example, we can find combinatorial interpretations of the inverses
of the numbers Cn,k(a ↑, b ↑) and Cn,k(a ↓, b ↓) which satisfy the equations

(5.7) (x) ↑n,a=

n∑

k=0

Cn,k(a ↑, b ↑)(x) ↑k,b

and

(5.8) (x) ↓n,a=

n∑

k=0

Cn,k(a ↓, b ↓)(x) ↓k,b .

Another application of our rook theory model relates to the numbers S
p(x)
n,k defined in [10] by

(5.9) S
p(x)
n+1,k = S

p(x)
n,k−1 + p(k)S

p(x)
n,k ,

where p(x) is any polynomial with nonnegative integer coefficients and with initial conditions S
p(x)
0,0 = 1 and

S
p(x)
n,k = 0 whenever n < 0, k < 0, or n < k. We call such numbers poly-Stirling numbers of the second kind

[10]. Then, for example, in the special case where p(x) = xm, we can use an extension of the theory of
general augmented rook boards to give a combinatorial proof of the formula

(5.10) (xn)m =

n∑

k=0

Sxm

n,k

k∏

j−1

(xm − (j − 1)m).

Finally, we should note that a theory of hit numbers corresponding to the rook theory for our generalized
product formulas has yet to be developed.
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The Chromatic Symmetric Function of Symmetric Caterpillars and

Near-Symmetric Caterpillars

Matthew Morin

Abstract. For every proper coloring κ of a graph with vertex set {v1, v2, . . . , vn}, one obtains a monomial of
degree n defined by x

κ = xκ(v1)xκ(v2) . . . xκ(vn). Summing these monomial terms over all proper colorings of

a given graph G gives the chromatic symmetric function XG(x). Using Stanley’s expansion of the chromatic
symmetric function in the power sum basis {pλ(x)}λ`n of the space Λn of homogeneous symmetric functions
of degree n, we identify properties of our graph as various coefficients of the pλ(x) in this expansion for
XG(x).

We focus on caterpillars, that is, those trees which becomes a path when all of its vertices of degree
one, are deleted. This path is known as the spine of the caterpillar. A caterpillar C is said to be symmetric
if there is an isomorphism that exchanges the endpoints of the spine, and is called near-symmetric if the
caterpillar becomes symmetric upon shifting a single edge of C into the spine.

We use the coefficients of pλ(x) in the expansion of XC(x), for λ being a partition with two parts, to
show that the chromatic symmetric function distinguishes symmetric and near-symmetric caterpillars from
all other caterpillars. We also show that if two trees have a different number of leaves, then they also have
different chromatic symmetric functions.

Résumé. Nous sommes intéressés dans le problème de si la fonction symétrique chromatique XG(x) distingue
les arbres nonisomorphe. En utilisant l’expansion de Stanley de la fonction symétrique chromatique dans
la base {pλ(x)}λ`n de l’espace Λn des fonctions symétriques homogènes de degré n, nous identifions des
propriétés de notre graphique comme divers coefficients de pλ(x) dans cette expansion pour XG(x).

Nous concentrons sur chenilles, c’est-à-dire, ces arbres qui devient un chemin quand tous ses sommets
du degré un sont supprimés. Ce chemin est connu comme épine de la chenille. Une chenille C s’appelle
symétrique s’il y a un isomorphisme qui échange les sommets finaux de l’épine, et s’appelle proche-symétrique
si la chenille devient symétrique par l’insertion d’un arc de C en l’épine.

Nous employons les coefficients de pλ(x) dans l’expansion de XC(x), pour λ étant une cloison avec deux
parts, pour prouver que la fonction symétrique chromatique distingue les chenilles symétriques et chenilles
proche-symétriques de tous autres chenilles. Aussi, nous prouvons que la fonction symétrique chromatique
distingue les arbres qui ont un nombre différent de sommets du degré un.

1. Introduction

In this paper we shall only consider the case of simple graphs, that is, those with no loops or multiple
edges. Let x = x1, x2, . . . be a countable sequence of commutative inderterminates and G be a graph with
vertex set V and edge set E. Given a coloring κ of G, that is a map κ : V → N, we write xκ for the monomial
term of degree n = |V | defined by

xκ =
∏

v∈V

xκ(v).

The chromatic symmetric function XG(x) is then defined by taking

(1) XG(x) =
∑

κ

xκ,

2000 Mathematics Subject Classification. Primary 05C15; Secondary 05C05.
Key words and phrases. chromatic symmetric function, trees, caterpillars.
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where the sum is over all proper colorings κ, i.e. those colorings for which κ(u) 6= κ(v) for every edge uv of
the graph G.

Any coloring of a graph partitions the vertex set into a finite number of color classes, and given a proper
coloring of G, permuting these color classes yields another proper coloring of G. Thus XG(x) is symmetric
in the inderterminates x1, x2, x3, . . .. For convenience, we shall drop reference to the variables and write XG

in place of XG(x).
The chromatic polynomial χ(G, k) of a graph G gives the number of proper colorings using only k colors.

We note that XG(1k) = χ(G, k), where 1k denotes setting x1 = x2 = . . . = xk = 1 and xk+1 = xk+2 =
. . . = 0, since then a monomial survives if, and only if, it comes from a proper coloring using the colors
{1, 2, . . . , k}, in which case the contribution to the sum is 1. It is easy to see that the chromatic polynomial
of any n-vertex tree T is given by χ(T, k) = k(k − 1)n−1.

We are interested in the following question of Stanley [Stanley, 1995].

Problem 1.1. Does the chromatic symmetric function distinguish every pair of nonisomorphic trees?

That is, given trees T1 and T2, do we have XT1
= XT2

if, and only if, T1
∼= T2?

The rest of the paper is structured as follows. In the next section we derive some straightforward results
for graphs. In Section 3 we look at a labelling procedure for caterpillars, and discuss its relation to symmetric
caterpillars. Section 4 uses this labelling procedure to solve Problem 1.1 in the case of symmetric and near-
symmetric caterpillars. In Section 5 we turn to counting the number of n-vertex symmetric caterpillars.
Finally, in Section 6, we conclude by collecting our results, showing the existence of certain families of
graphs.

1.1. Acknowledgements. The author is extremely grateful to Stephanie van Willigenburg for direct-
ing us to Problem 1.1, for always having fresh suggestions, and for doing a thorough job of editing. In
addition, many thanks must go to Richard Stanley who not only inspired this work, but also passed com-
ments on it back our way. Particularly, the proposition in Section 6 came about from his suggestion to
combine our various results. Further thanks go out to Jeremy Martin for taking an interest in this problem,
and for spending some time reading my work and offering further suggestions.

2. Definitions and General Results

If {pλ(x)}λ`n = {pλ}λ`n is the power sum basis of Λn, the space of homogeneous symmetric functions
of degree n, then we have the following.

Theorem 2.1. [Stanley, 1995, Theorem 2.5] For an n-vertex graph G

XG =
∑

F⊆E

(−1)|F |pλ(F ),

where λ(F ) is the partition of n whose parts correspond to the sizes of the connected components in the

spanning subgraph of G with edge set F .

From its definition, it is clear that XG is homogeneous of degree n. Hence graphs with a different number
of vertices have different chromatic symmetric functions.

We shall use the notation [pλ]XG to denote the coefficient of pλ in the expansion of XG in terms of the
basis {pλ}λ`n of Λn. From Theorem 2.1 we have

(2) [pλ]XG =
∑

F ⊆ E
λ(F )=λ

(−1)|F |.

The only way to obtain the partition λ(F ) = (1n) is for F to include no edges of G, so the only
contribution to the coefficient of p(1n) comes from F = ∅. Hence, for each graph G,

(3) [p(1n)]XG = 1.

The only way to obtain the partition λ(F ) = (2, 1n−2) is for F to include a single edge of G. Hence the
only contributions to the coefficient of p(2,1n−2) is from the sets F with |F | = 1. Thus Equation 2 gives

(4) [p(2,1n−2)]XG = −|E|,
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for every graph with edge set E. Similarly

(5) [p(2k,1n−2k)]XG = (−1)kµk(G),

where µk(G) is the number of ways of selecting k vertex-disjoint edges in G, that is, the number of matchings

in G of size k.

In the interest of Problem 1.1, we turn to the case where our graph G is a tree T . We restrict to the
case of n ≥ 3 vertices. Then the partition λ(F ) = (k, 1n−k) arises precisely when the edge set F determines
a k-vertex subtree of T , requiring exactly k − 1 edges. Thus Equation 2 gives

(6) [p(k,1n−k)]XG = (−1)k−1Tk,

where Tk is the number of k-vertex subtrees of T . More generally, if λ = (λ1, λ2, . . . , λj), we can show that

(7) [pλ]XT = (−1)n−jTλ,

where Tλ is the number of partitions of T into disjoint subtrees of size λ1, λ2, . . . , λj .

Within the context of trees, it is common to refer to a vertex of degree one as a leaf. Vertices of degree
larger than one are called internal vertices. We say that an edge of a graph is internal if both of its endpoints
are internal. Otherwise at least one endpoint of the edge is a leaf, and we call the edge external.

Every edge that is removed from a tree T increases the number of connected components by one, so
to obtain a partition λ(F ) with two parts requires F to be of the form E − {e}, where e is an edge of T .
In the next few sections we inspect the partitions obtained by removing internal edges, and show how the
coefficients of these partitions in XT help attack Problem 1.1 in the case of caterpillars. Before moving in
that direction, we inspect the simpler case of partitions obtained by removing an external edge from a tree.

Proposition 2.2. If T is an n-vertex tree with n ≥ 3, then

[p(n−1,1)]XT = (−1)nL(T ),

where L(T ) is the number of leaves of T .

Thus the chromatic symmetric function distinguishes trees with a different number of leaves.

Proof. Every leaf is the endpoint of some external edge of T , and since there are at least three vertices
in T , no edge of T has a leaf as both of its endpoints. Thus the number of leaves in T is the same as the
number of external edges in T .

To obtain the partition λ(F ) = (n − 1, 1) in Equation 2, the edge subset F must isolate a single vertex
of T . This can be accomplished when the set F ⊆ E excludes a single external edge of T , and this is the
only way this partition can arise. Since there are n − 1 edges in T , these F have |F | = n − 2, and hence

(8) [p(n−1,1)]XT = (−1)n−2L(T ),

where L(T ) is the number of leaves of T .
�

3. Caterpillars, Spine Sets, and Symmetry

A caterpillar C is a tree which contains a path consisting of internal vertices of C such that every
vertex of C that is not on the path is adjacent to a vertex on the path. This path is called the spine of
the caterpillar. With our definitions, the spine of a caterpillar is the unique subgraph induced by the set
of internal vertices of the caterpillar. If we do not make the requirement that the vertices of the spine be
internal vertices of C, which may prove convenient in some instances, then the spine is no longer unique.

If the spine of a caterpillar consists of the path of vertices x1, x2, . . . , xk, then we call δ = (deg(x1), deg(x2), . . . , deg(xk))
a degree sequence of the spine; the other degree sequence being (deg(xk), deg(xk−1), . . . , deg(x1)). We call
the caterpillar symmetric if the degree sequence δ is palindromic, that is, when the two possible degree
sequences of the spine are equal. Equivalently, a caterpillar C is symmetric if there is an automorphism of
C that switches endpoints of the spine. Visually, suitably drawn, one half of the caterpillar is the mirror
image of the other.
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Example:
Here we see two symmetric caterpillars.
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δ = (3, 2, 4, 5, 4, 2, 3)

δ = (4, 4, 3, 3, 4, 4)

Given an n-vertex caterpillar, we shall create a labelling of its edges with the numbers 1, 2, 3, . . . , n − 1
as follows.

First take an endpoint of the spine and mark it. Now starting at the marked vertex, we iterate:

(1) Let u be the vertex of the spine which has just been marked.
(2) Label the unlabelled external edges incident to u with the smallest unused labels among 1, 2, 3, . . . n−

1.
(3) If there is an unlabelled internal edge incident with u, say e = uv, then label e with the smallest

unused label among 1, 2, 3, . . . n−1, mark vertex v, and proceed back to 1. If there is no unlabelled
internal edge incident to u, then the labelling is complete.

Collecting the labels of the internal edges of a caterpillar C gives rise to a set SC ⊆ {2, 3, . . . , n − 2}
called a spine set of C. Note that two spine sets of a given caterpillar are possible, since either endpoint of
the spine could have been chosen to be initially marked in the labelling procedure. If a degree sequence of
the spine is δ = (δ1, δ2, . . . , δk) with δ1 corresponding to the degree of vertex v, then the spine set of C one
obtains by initially marking v is

SC = {δ1, δ1 + δ2 − 1, δ1 + δ2 + δ3 − 2, . . . , δ1 + δ2 + . . . + δk−1 − k + 2}.

Conversely, given any set S ⊆ {2, 3, . . . , n − 2}, say S = {x1, x2, . . . , xk} where x1 < x2 < . . . < xk, we
can associate to S the n-vertex caterpillar CS that has spine set S by using the caterpillar whose spine has
the degree sequence given by

δ = (x1, x2 − x1 + 1, x3 − x2 + 1, . . . , xk − xk−1 + 1, n − xk).

Then for each n-vertex caterpillar C with k internal edges, we have

(9) CSC

∼= C.
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Example:
Below we see a caterpillar that has had its edges labelled as described by the above procedure, where

the vertex labelled v is the one that was initially marked. The spine of the caterpillar has been highlighted.
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From this we obtain the spine set SC = {4, 6, 7, 10, 15}.
Conversely, given the set S = {4, 6, 7, 10, 15}, we can construct the 17 vertex caterpillar CS with |S| = 5

internal edges by taking a caterpillar with spine degree sequence given by

δ = (4, 6 − 4 + 1, 7 − 6 + 1, 10 − 7 + 1, 15 − 10 + 1, 17 − 15)

= (4, 3, 2, 4, 6, 2).

This is exactly the caterpillar we began with.

Given a set S ⊆ {2, 3, . . . , n − 2}, we call the set S′ = {n − i| i ∈ A} the reflection of S. If the set S

satisfies S = S′ we shall call S a symmetric subset. The following result shows that the two spine sets one
can obtain from a caterpillar are reflections of one another.

Lemma 3.1. For each S ⊆ {2, 3, . . . , n − 2} we have SCS
∈ {S, S′}.

Proof. If S ⊆ {2, 3, . . . , n − 2}, then there are n vertices in C = CS and n − 1 edges. Suppose an
endpoint of the spine of C is chosen to be initially marked, and the labelling procedure has been completed,
producing a spine set T .

When the internal edge e of C was labelled k there must have been n−1−k edges left to label. Further,
starting the labelling procedure from the opposite endpoint of the spine, when we reach the point of labelling
e, these n − k − 1 edges are exactly the edges that have been labelled. Thus e will be labelled n − k, as
required. �

Since this result shows S ′
C is also a spine set for the caterpillar C, Equation 9 yields

(10) CS ′

C

∼= C.

Corollary 3.2. If C1 and C2 are n-vertex caterpillars, then C1
∼= C2 if, and only if, either SC1

= SC2

or SC1
= S

′
C2

.

Proof. If C1
∼= C2, then there is an isomorphism between the two which takes the spine of one

caterpillar onto the spine of the other. If we perform the labelling procedure on each caterpillar by starting
at the ends of the spine which correspond through the isomorphism, we will produce the same spine set for
each caterpillar; that is, SC1

= SC2
. If we had started the labelling procedure from the opposite end of

one of the spines, then the proof of Lemma 3.1 shows that we obtain the reflected spine set. In which case
SC1

= S ′
C2

.
Conversely, if either SC1

= SC2
or SC1

= S ′
C2

, then by using either Equation 9 or Equation 10 we
obtain C1

∼= C2, as desired. �

Proposition 3.3. An n-vertex caterpillar C is symmetric if, and only if, its spine set SC is a symmetric

subset of {2, 3, . . . , n − 2}.

Proof. If a caterpillar is symmetric, that is, the degree sequence of the spine is palindromic, then the
labelling procedure would produce the same spine set SC from either end. Since we know from the proof
of Lemma 3.1 that labelling from the opposite end should give the reflected spine set, this shows that if the
caterpillar C is symmetric, then so is its spine set SC .
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Conversely, if the degree sequence of the spine is not palindromic, we can easily check that the corre-
sponding spine set is not symmetric. Suppose the degree sequence for C is δ = (δ1, δ2, . . . , δk) where

(11) δ1 = δk, δ2 = δk−1, . . . , and δt = δk−t+1,

but

(12) δt+1 6= δk−t.

Then, labelling the caterpillar from the one end of the spine gives the spine set

{δ1, δ1 + δ2 − 1, . . . , δ1 + δ2 + . . . + δk−1 − k + 2}

while labelling the caterpillar from the opposite end of the spine gives the spine set

{δk, δk + δk−1 − 1, . . . , δk + δk−1 + . . . + δ2 − k + 2}.

The two spine sets above are written with elements shown in increasing order of size. Thus to check if they are
the same sets, we need only check that, in the order shown, the j-th element of one matches the j-th element
of the other, for each j. The first t elements of these sets (in the order shown) are the same by Equation 11,
but by using both Equations 11 and 12, we find that the t + 1-th elements, δ1 + δ2 + . . . + δt+1 − k + 2 and
δk + δk−1 + . . . + δk−t − k + 2 respectively, differ. �

Corollary 3.4. If C1 and C2 are n-vertex caterpillars and at least one of them is symmetric, then

C1
∼= C2 if, and only if, SC1

= SC2
.

Proof. Without loss of generality, let C2 be symmetric. Proposition 3.3 gives SC2
= S

′
C2

. Now
Corollary 3.2 gives the desired result. �

4. Results on XC

4.1. A Bound on Coefficients. For each i ∈ SC , i corresponds to some internal edge ei of C, and the
graph obtained by removing the edge ei from C consists of two disjoint caterpillars with i − 1 and n− i− 1
edges respectively. Hence the set F = E − {ei} induces the partition

(13) λ(F ) = (i, n − i).

Whenever λ is a partition with two parts and C is a caterpillar there is a straightforward bound on the
coefficient of pλ, namely

Proposition 4.1. Let C be an n-vertex caterpillar and λ have two parts. Then either

(1) (−1)n[pλ]XC = L(C), if λ = (n − 1, 1), or

(2) 0 ≤ (−1)n[pλ]XC ≤ 2 otherwise.

Proof. From Proposition 2.2, we have [pλ]XT = (−1)nL(T ) in the case of λ = (n − 1, 1). Any other
partition λ with two parts can only arise as λ(E − {ei}) for some i ∈ SC . We show that any such λ can
arise at most twice.

We are looking for occurrences of λ = (j, n − j), and λ can only arise from the edges, if there are any,
which would correspond to the potential elements j and n− j of SC . Thus the magnitude of the coefficient
of pλ could be at most 2, if both j, n − j ∈ SC . �

From the proof of Proposition 4.1, we have the following fact.

Corollary 4.2. If λ = (j, n − j), 1 < j < n, is a partition of n into two parts and C is a n-vertex

caterpillar, then [pλ]XC = (−1)n|{j, n − j} ∩ SC |.
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4.2. Symmetric and Near-Symmetric Caterpillars.

Theorem 4.3. The chromatic symmetric function distinguishes the symmetric caterpillars from the

nonsymmetric caterpillars. Further, it distinguishes among the symmetric caterpillars.

Proof. Let C be a symmetric caterpillar. We saw in Proposition 3.3 that a given n-vertex caterpillar
C was symmetric if, and only if, SC is symmetric. That is, n − j ∈ SC if, and only if, j ∈ SC .

In the case when n is even and j = n
2 we have j = n − j, but otherwise we have j 6= n − j. Thus, for a

symmetric caterpillar, Corollary 4.2 gives

(14) (−1)n[p(j,n−j)]XC = 0 if j 6∈ SC ,

(15) (−1)n[p(j,n−j)]XC = 2 if j ∈ SC and j 6=
n

2
,

and if n is even, then

(16) (−1)n[p( n

2
, n

2
)]XC = 1 if

n

2
∈ SC .

We have shown all symmetric caterpillars satisfy Equations 14, 15, and 16. Conversely, if a caterpillar
satisfies Equations 14, 15, and 16, we shall show it is symmetric. Let a caterpillar C satisfy Equations 14,
15, and 16 and let j be a member of SC . To show C is symmetric, we need only show that n − j ∈ SC . If
j = n

2 , then n− j = j, so immediately n− j ∈ SC . If j 6= n
2 , then by Equation 15 and Corollary 4.2 we find

n − j ∈ SC , as required.

Hence we can use the chromatic symmetric function to distinguish the symmetric caterpillars from those
that are nonsymmetric. Further, by Equations 14, 15, 16, and Corollary 4.2, the spine set of the caterpillar
can be determined from its chromatic symmetric function. From Equation 9 we know that the spine set
of a caterpillar determines the caterpillar. Thus chromatic symmetric function distinguishes the symmetric
caterpillars from one another.

�

We can now make a slight perturbation of Theorem 4.3. Towards this end, we shall say that a nonsym-
metric caterpillar C is near-symmetric if SC ∪{i} is a symmetric subset for some number i ∈ {2, 3, . . . n−2}.

Example: The caterpillar C with 11 vertices whose spine set is SC = {3, 4, 8} is near-symmetric, as
{3, 4, 7, 8} is a symmetric subset of {2, 3, . . . , 9}.

Theorem 4.4. The chromatic symmetric function distinguishes the near-symmetric caterpillars from

those caterpillars which are not near-symmetric. Further, it distinguishes among the near-symmetric cater-

pillars.

Proof. Let C be a near-symmertric caterpillar, say with SC ∪{n− i} being a symmetric subset. Then
necessarily i ∈ SC . Looking at the coefficients of pλ in XC for partitions into two parts gives

(17) (−1)n[p(j,n−j)]XC = 0 if j 6∈ SC ,

(18) (−1)n[p(j,n−j)]XC = 2 if j ∈ SC and j 6=
n

2
, i,

(19) (−1)n[p(i,n−i)]XC = 1,

and if n is even, then

(20) (−1)n[p(j,n−j)]XC = 1 if j =
n

2
∈ SC .

Conversely, any caterpillar C which satisfies Equations 17, 18, 19, and 20 for some value i is found to
be near-symmetric upon considering Corollary 4.2, as adding n − i to SC creates a symmetric subset.

As before, from Equations 17, 18, 19, and 20 and Corollary 4.2 we see that the chromatic symmetric
function of a near-symmetric caterpillar determines the spine set SC of the caterpillar. Then by Equation 9,
we can recover C from SC . �
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Combining Theorems 4.3 and 4.4 we obtain the following result.

Theorem 4.5. Let C be the set of caterpillars and S be the set of caterpillars that are either symmetric

or near-symmetric. Then if C1 ∈ C and C2 ∈ S, we have XC1
= XC2

if, and only if, C1
∼= C2.

5. Counting Symmetric Caterpillars

Proposition 5.1. Let S(n, k) denote the number of nonisomorphic n-vertex symmetric caterpillars

with k internal edges.

(1) If k is even, S(n, k) =

(

bn−3
2 c
k
2

)

.

(2) If k is odd, then

(a) S(n, k) =

(

n
2 − 2
k−1
2

)

when n is even, and

(b) S(n, k) = 0 when n is odd.

Proof. Suppose k, the number of edges in the spine, is even. Then visually the line of symmetry of C

crosses the spine at the vertex in the center of the spine.
If n is even, then n − 1, the number of edges, is odd. Hence one of the edges is forced to be along the

line of symmetry of C. Under our labelling procedure, and by redrawing if necessary, we can assume the
edge along the line of symmetry is labelled n

2 . For example:
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From the symmetry of the caterpillar, the rest of the caterpillar is determined once we know which k
2

of the first n
2 − 1 edges are internal edges. Thus we count the number of sets S ⊆ {2, 3, . . . , n

2 − 1} with k
2

elements, giving

(

n
2 − 2

k
2

)

=

(

n−4
2
k
2

)

=

(

bn−3
2 c
k
2

)

symmetric caterpillars.

If n is odd, then the number of edges is even and, by redrawing if necessary, n−1
2 of the n − 1 edges

lie on each side of the line of symmetry. Further, knowing which of the first n−1
2 edges are internal edges

determines the caterpillar. Thus we count sets of the form S ⊆ {2, 3, . . . , n−1
2 } containing k

2 elements,

obtaining

(

n−1
2 − 1

k
2

)

=

(

n−3
2
k
2

)

=

(

bn−3
2 c
k
2

)

symmetric caterpillars. This completes the proof of 1.

Now if k, the number of edges in the spine, is odd, then visually the line of symmetry of C bisects the
central edge of the spine. Apart from this edge, every other edge is paired with its reflection across the line
of symmetry. Thus the total number of edges is odd, forcing n to be even. This gives S(n, k) = 0 for odd n.

If we assume n is even and C is symmetric, then the central edge of the spine of C is labelled n
2 by our

labelling procedure, and, as before, knowing the internal edges of one side of the caterpillar determines the
other.

1

2 n − 2

n
2 n − 1

r

r

r

r

r

r r

r r

r r

r

r

r

r

r

Thus we seek to count all sets of the form S ⊆ {2, 3, . . . , n
2 − 1} containing k−1

2 elements. This gives
(

n
2 − 2
k−1
2

)

symmetric caterpillars in this final case. �

From this result, one can check that the total number of symmetric caterpillars with n vertices is 2b
n−2

2
c.

A more direct approach can be found in [Harary/ Schwenk, 1973], where it is also shown that the total

number of caterpillars with n vertices is 2n−4 + 2b
n−4

2
c.

6. Conclusions

In the majority of this paper we have remained within the context of caterpillars as opposed to trees in

general. As previously noted, there are 2n−4 +2b
n−4

2
c n-vertex caterpillars. We have proved the result in the

case of symmetric caterpillars, of which there are 2b
n−2

2
c, and also in the case of near-symmetric caterpillars

[Morin, 2005].
By collecting various results, we find that we have proved the following.

Proposition 6.1. There are collections Qn of n-vertex graphs such that:

(1) limn→∞ |Qn| = ∞,

(2) χ(G1, k) = χ(G2, k) for every pair of graphs G1, G2 ∈ Qn, and

(3) If G1, G2 ∈ Qn and XG1
= XG2

, then G1 = G2.
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Proof. We look at the collection Qn of symmetric caterpillars with n vertices. We have Property 1
by Proposition 5.1. Since all the caterpillars in Qn has n vertices, we have χ(G, k) = k(k − 1)n−1 for each
G ∈ Qn. Finally Theorem 4.3 gives Property 3. �

We note that Qn could have also been chosen to be the set of near-symmetric n-vertex caterpillars in
the above proof.
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Green polynomials at roots of unity and its application

Hideaki Morita

Abstract. We consider Green polynomials at roots of unity. We obtain a recursive formula for Green
polynomials at appropriate roots of unity, which is described in a combinatorial manner. The coefficients of
the recursive formula are realized by the number of permutations satisfying a certain condition, which leads
to interpretation of a combinatorial property of certain graded modules of the symmetric group in terms of
representation theory.

Résumé. Nous étudions les polynômes de Green évalués en les racines de l’unité. Nous obtenons une for-
mule récursive pour ces polynômes en certaines racines de l’unité, que nous décrivons combinatoirement. Les
coefficients de cette formule récursive énumèrent certaines permutations, ce qui permet d’interpréter une pro-
priété combinatoire de certains modules du groupe symétrique, en termes de la théorie de la représentation.

1. Introduction

The Green polynomials Qµ
ρ(q) at roots of unity are considered. We handle Green polynomials Qµ

ρ(q) of
type A for any partition µ, and consider the behavior of them at l-th roots of unity ζl, where l is not larger
than the maximum multiplicity Mµ of µ. We describe a certain recursive formula of Green polynomials
Qµ

ρ(q) at q = ζl for the partition ρ satisfying Qµ
ρ(ζl) 6= 0. The results of Lascoux-Leclerc-Thibon on Hall-

Littlewood functions at roots of unity play an important role in the argument. Our result includes the result
of Lascoux-Leclerc-Thibon on Green polynomials as a special case.

We also consider the recursive formula in terms of representation theory of the symmetric group Sn.
It is known that the Green polynomials give the graded characters of a family of graded representations of
the symmetric group, called the DeConcini-Procesi-Tanisaki algebras, which includes the coinvariant algebra
as a special case. The DeConcini-Procesi-Tanisaki algebra Rµ was first introduced by C. DeConcini and
C. Procesi [DP] as an algebraic model of the cohomology ring of a certain subvariety of the flag variety
parametrized by a partition µ, and T. Tanisaki [T] gives simple generators of the defining ideal of the
algebra, described by combinatorial information on the partition µ. The DeConcini-Procesi-Tanisaki algebra
Rµ has a structure of graded Sn-modules, and the Green polynomial Qµ

ρ (q) gives its graded character values
at the conjugacy class of which cycle type is ρ. The recursive formula is equivalent to some representation
theoretical interpretation of a certain combinatorial property on the Hilbert polynomial HilbRµ(q) of Rµ,

that is, HilbRµ(q) has l-th roots of unity ζj
l (j = 1, 2, . . . , l − 1) as its zeros for each positive integer l not

larger than the maximum multiplicity Mµ of µ. This property of the Hilbert polynomial is equivalent to
the fact that the direct sums Rµ(k; l) (k = 0, 1, . . . , l − 1) of the homogeneous components of Rµ of which
degrees are congruent to k modulo l, have the same dimension. The recursive formula shows that there exists
a subgroup Hµ(l) of Sn and Hµ(l)-modules Zµ(k; l) of equal dimension such that each Rµ(k; l) is induced
from the corresponding Hµ(l)-modules Zµ(k; l) for each k = 0, 1, . . . , l − 1, which could be regarded as a
representation theoretical interpretation of the property ‘coincidence of dimensions’. This work is a sequel
of [Mt, MN1, MN2].

2000 Mathematics Subject Classification. Primary 20C30; Secondary 05E05.
Key words and phrases. Symmetric group, Green polynomial, Hall-Littlewood function, root of unity, Springer

representation.
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2. Preliminaries

We follow [M] for fundamental notation. Let n be a positive integer and µ a partition of n. Define Mµ

to be the maximum multiplicity of the partition µ:

Mµ := max{m1(µ), m2(µ), · · · , mn(µ)},

where mi = mi(µ) denotes the multiplicity of i in the sequence µ. Let µ and ρ be partitions and let q be an
indeterminate. The Green polynomial Xµ

ρ (q) is defined to be the coefficients of the Hall-Littlewood function
Pµ(x; q) in the linear expansion

pρ(x) =
∑

µ

Xµ
ρ (q)Pµ(x; q),

where pρ(x) denotes the power-sum function corresponding to the partition ρ, and the sum is over partitions
µ of the same size as ρ. We also define the polynomial Qµ

ρ(q) for partitions µ and ρ of the same size by

Qµ
ρ(q) = qn(µ)Xµ

ρ (q−1),

where n(µ) =
∑

i≥1(i− 1)µi if µ = (µ1, µ2, . . . ). The polynomial Qµ
ρ (q) is also called the Green polynomial.

The Green polynomial Qµ
ρ (q) is a polynomial with integer coefficients whose degree is n(µ), which was

introduced by J. A. Green [Gr] to describe irreducible character values of the general linear group GLn(Fq)
over a finite field Fq.

Let ϕr(q) be the polynomial (1 − q)(1 − q2) · · · (1 − qr), and bµ(q) the polynomial

bµ(q) =
∏

i≥1

ϕmi(µ)(q),

where mi(µ) is the multiplicity of i in the partition µ. Define

Qµ(x; q) = bµ(q)Pµ(x; q),

which are referred to, as well as the Pµ, as Hall-Littlewood functions. If we replace the variables x =
(x1, x2, . . . ) of Qµ(x; q) by

x/(1 − q) = (x1, x2, . . . ; qx1, qx2, . . . ; q
2x1, q

2x2, . . . ),

then we obtain the modified Hall-Littlewood function, which is denoted by

Q′
µ(x; q)

(

= Qµ

(

x

1 − q
; q

))

.

Equivalently, it is also defined by replacing pk(x) by pk(x)/(1− tk) after expressing Qµ(x; t) as a polynomial
in {pk(x)|k ≥ 1}. It is known (see, e.g., [DLT]) that the Green polynomial Xµ

ρ (q) is obtained as the inner
product value

Xµ
ρ (x) = 〈Q′

µ(x; q), pρ(x)〉

of the modified Hall-Littlewood function Q′
µ(x; q) and the power-sum function pρ(x). The inner product

〈·, ·〉 of the ring Λ[q] is defined by 〈sλ, sµ〉 = δλµ, where sλ denotes the Schur function corresponding to the
partition λ, and δλµ the Kronecker delta.

In the rest of this section, we recall results on (modified) Hall-Littlewood functions at roots of unity due
to Lascoux-Leclerc-Thibon [LLT]. Let µ ` n be a partition, l an integer such that 2 ≤ l ≤ Mµ be fixed, and
mi(µ) = lqi + ri, 0 ≤ ri ≤ l − 1, for each i. Set q = q1 + 2q2 + · · · + nqn and r = r1 + 2r2 + · · · + nrn. Let
µ̃(l) and µ̄(l) be the partitions

µ̃(l) := (1lq12lq2 · · ·nlqn)

and

µ̄(l) := (1r12r2 · · ·nrn).

It is clear that the partition µ decomposes into the disjoint union µ = µ̃(l) ∪ µ̄(l). Also define

µ̃(l)1/l := (1q12q2 · · ·nqn),

which is a partition of q.

Example 2.1. If µ = (3, 3, 3, 2, 2, 1), then Mµ = 3. Let l = 2 be fixed. Then µ̃(l) = (3, 3, 2, 2),

µ̄(l) = (3, 1), and µ = (3, 3, 2, 2) ∪ (3, 1). Also the partition µ̃(l)1/l is (3, 2).
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Let µ be a partition, and l a positive integer such that l ≤ Mµ. The modified Hall-Littlewood function
Q′

µ(x; q) at q = ζl, a primitive l-th root of unity, is factorized in such a way that is consistent with the
decomposition of the partition µ = µ̃(l) ∪ µ̄(l).

Proposition 2.1 ([LLT, Theorem 2.1.]). Q′
µ(x; ζl) = Q′

µ̄(l)(x; ζl)
∏

i≥1

(

Q′
(il)(x; ζl)

)qi

.

Example 2.2. Let µ = (3, 3, 3, 2, 1, 1, 1, 1, 1) and l = 2. Then µ̄(l) = (3, 2, 1), and we have

Q′
(3,3,3,2,1,1,1,1,1)(x; ζ2) = Q′

(3,2,1)(x; ζ2)Q
′
(32)(x; ζ2)

(

Q′
(12)(x; ζ2)

)2

.

Proposition 2.2 ([LLT, Theorem 2.2.]). Q′
(il)(x; ζl) = (−1)(l−1)i(pl ◦ hi)(x), where (pl ◦ hi)(x) denotes

the plethysm.

Remark 2.3. Note that

(pl ◦ hi)(x) =
∑

λ`i

z−1
λ plλ(x), (2.1)

Thus we have for example Q′
(32)(x; ζ2) = (−1)(2−1)3(p2◦h3)(x) = −z−1

(3)p(6)(x)−z−1
(2,1)p(4,2)−z−1

(1,1,1)p(2,2,2)(x).

It follows from Proposition 2.1, Proposition 2.2 and (2.1) that the Green polynomial corresponding to
a rectangular partition µ = (rk) at a primitive k-th root of unity is described by a certain ‘smaller’ Green
polynomial.

Proposition 2.3 ([LLT, Theorem 3.2.]). Let µ = (rk) be a rectangular partition, ζk a primitive k-th
root of unity. If mi(µ) ≥ 1 for some i ≥ 1 divisible by k, then it holds that

Xµ
ρ (ζk) = (−1)(k−1)jkX

((r−j)k)
ρ\{i} (ζk), (2.2)

where i = jk.

If we rewrite the identity (2.2) in terms of the polynomial Qµ
ρ(x), then the sign (−1)(k−1)j is vanished and

we have [Mt, Lemma 7 or Proposition 5]

Qµ
ρ(ζk) = kQ

((r−j)k)
ρ\{i} (ζk).

Applying this identity repeatedly, we also have

Qµ
ρ(ζk) = kl(ρ),

if the partition ρ consists of multiples of k.

3. Roots of unity

Let µ be a partition of n l a positive integer such that 2 ≤ l ≤ Mµ be fixed, and mi(µ) = lqi + ri,
0 ≤ ri ≤ l − 1, for each i. Set q = q1 + 2q2 + · · · + nqn and r = r1 + 2r2 + · · · + nrn. Let µ̃(l), µ̄(l), and
µ̃(l)1/l be as in the previous section. We define ‘partitions of a partition’as follows. Let ν = (ν1, ν2, . . . , νd)
be a partition of n. A partition of the partition ν is by definition a sequence of partitions

λ = (λ(1), λ(2), . . . , λ(d))

such that λ(i) ` νi for each i = 1, 2, . . . , d, which is denoted by λ ` ν. We distinguish any nontrivial
permutation of λ = (λ(1), λ(2), . . . , λ(d)) from the original one. For example, we consider that the following
two partitions ((2), (1, 1)), ((1, 1), (2)) are different as partitions of (2, 2). The length l(λ) of λ ` ν is defined
by

l(λ) =

d
∑

i=1

l(λ(i)),

and the size |λ| is defined by the sum of sizes of the components λ(i) of λ, which is equal to n = |ν|. Also
define

zλ :=
∏

i≥1

zλ(i) ,
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where zπ is defined by

zπ = 1m1m1!2
m2m2! · · ·n

mnmn!

for a partition π = (1m12m2 · · ·nmn) ` n of a positive integer as usual. Let ν = (νi) be a partition of n and
λ = (λ(i)) a partition of ν. Let

mk(λ) :=

d
∑

i=1

mk(λ(i))

for each possible k ≥ 1. Then define

mλ :=
∏

k≥1

(

mk(λ)

mk(λ(1)), mk(λ(2)), . . . , mk(λ(d))

)

.

Also, for each positive integer l, let lλ denotes the partition whose components are those of λ multiplied by
l.

Example 3.1. Let ν = (4, 2). Then the partitions λ of ν are ((4), (2)), ((3, 1), (2)), ((2, 2), (1, 1)),
((2, 1, 1), (1, 1)) and so on. Suppose that λ = ((2, 1, 1), (2)) ` ν. Then mλ is computed as follows:

m((2,1,1),(2)) =
( m1(λ)

m1(λ(1)),m1(λ(2))

)( m2(λ)

m2(λ(1)),m2(λ(2))

)

=
(

2
2,0

)(

2
1,1

)

= 2. For the same λ, if l = 2 for example,

the partition lλ = 2λ is (4, 4, 2, 2).

Let ρ be a partition and ν a subpartition of ρ, i.e., mi(ν) ≤ mi(ρ) for each possible i ≥ 1. Then we
define the binomial coefficient

(

ρ
ν

)

by
(

ρ

ν

)

:=
∏

i≥1

(

mi(ρ)

mi(ν)

)

.

Let µ be a partition, and l an integer such that 2 ≤ l ≤ Mµ be fixed. For a partition ν of |µ̃(l)|, define

C(ν, µ; l) :=
∑

π`µ̃(l)1/l

lπ=ν

mπ.

If there exists no π ` µ̃(l)1/l such that lπ = ν, then C(ν, µ; l) = 0.

Example 3.2. Let µ = (5, 4, 4, 2, 2, 1), and l such that 2 ≤ l ≤ Mµ fixed, say l = 2. Then µ̃(l) =

(4, 4, 2, 2) and µ̃(l)1/2 = (4, 2). Suppose that ν = (4, 4, 4) ` |µ̃(l)|. Then there exists only one π ` µ̃(l)1/2

such that 2π = ν, i.e., π = ((2, 2), (2)). Hence C(ν, µ; 2) = m((2,2),(2)) =
(

3
2,1

)

= 3. On the other hand, if

ν = (4, 4, 2, 2), then there exist two π ` (4, 2) such that 2π = ν, i.e., π = ((2, 2), (1, 1)), ((2, 1, 1), (2)). Hence
we have C(ν, µ; 2) = m((2,2),(1,1)) + m((2,1,1),(2)) =

(

2
0,2

)(

2
2,0

)

+
(

2
2,0

)(

2
1,1

)

= 1 + 2 = 3. On the other hand,

in the case where µ̃(l) is given by (4, 4) for l = 2 and ν = (4, 2, 2), the partitions π ` µ̃(l)1/l satisfying
lπ = ν are π = ((2), (1, 1)), ((1, 1)(2)). Since we distinguish these two partitions, C(ν, µ; l) is obtained by
m((2),(1,1)) + m((1,1),(2)) = 1 + 1 = 2.

Now we can state our main result, which retrieves LLT’s result, Proposition 2.3, if we consider the case
where µ is a rectangle and l = Mµ. Proposition 2.1 and Proposition 2.2 play a crucial role in the proof.

Theorem 3.3. Let µ = (1m12m2 · · ·nmn) be a partition of n, a positive integer l = 1, 2, . . . , Mµ fixed,
and ζl an l-th primitive root of unity. Let mi = lqi + ri, 0 ≤ ri ≤ l − 1, for each i = 1, 2, . . . , n. Let
r = r1 + 2r2 + · · · + nrn, and µ̄(l) = (iri) ` r.

Then we have:

(1) Qµ
ρ(ζl) 6= 0 =⇒ ρ = lρ̃ ∪ ρ̄ for some ρ̃ ` µ̃(l)1/l and ρ̄ ` r.

(2) For such a partition ρ = lρ̃ ∪ ρ̄, it holds that:

Qµ
ρ(ζl) =

∑

ν`|µ̃(l)|
ν⊂ρ

(

ρ

ν

)

C(ν, µ; l)ll(ν)Q
µ̄(l)
ρ\ν (ζl).

Example 3.4. Let µ = (5, 4, 4, 2, 2, 1) ` 18 and l = 2. In this case, we have ˜µ(2) = (4, 4, 2, 2)

and ˜µ(2)
1/2

= (4, 2). Suppose that ρ = (4, 4, 2, 2) ∪ (4, 2) = (4, 4, 4, 2, 2, 2). Then subpartitions ν of ρ

which satisfy ν ` | ˜µ(2)| = 12 are ν = (4, 4, 4), (4, 4, 2, 2). Consider the case where ν = (4, 4, 4). Then
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(

ρ
ν

)

=
(

3
0

)(

3
3

)

= 1. There exists only one λ ` ˜µ(2)
1/2

= (4, 2) such that 2λ = (4, 4, 4), i.e., λ = ((2, 2), (2)),

and we have mλ =
(

2+1
2,1

)

= 3. Thus C(ν, µ; 2) = 3. If ν = (4, 4, 2, 2), then
(

ρ
ν

)

=
(

3
2

)(

3
2

)

= 9. The cor-

responding λ’s satisfying 2λ = ν are λ = ((2, 2), (1, 1)), ((2, 1, 1), (2)), and m((2,2),(1,1)) =
(

2
0,2

)(

2
2,0

)

= 1,

m((2,1,1),(2)) =
(

2
2,0

)(

2
1,1

)

= 2. Hence we have C(ν, µ; 2) = 3 in this case. Thus we have Q
(5,4,4,2,2,1)
(4,4,4,2,2,2)(ζ2) =

(

ρ
(4,4,4)

)

C((4, 4, 4), µ; 2)2l(4,4,4)Q
µ̄(l)
ρ\(4,4,4)(ζ2) +

(

ρ
(4,4,2,2)

)

C((4, 4, 2, 2), µ; 2)2l(4,4,2,2)Q
µ̄(l)
ρ\(4,4,2,2)(ζ2) = 1 × 3 ×

8Q
(5,1)
(2,2,2)(ζ2) + 9 × 3 × 16Q

(5,1)
(4,2)(ζ2).

4. Permutation enumeration

In this section, we shall give a combinatorial characterization of the coefficients
(

ρ

ν

)

C(ν, µ; l)ll(ν),

in the preceding formula. Let µ be a partition of a positive integer n, and an integer l ∈ {2, 3, . . . , Mµ} fixed.
We define a product of cyclic permutations a = aµ(l) corresponding to µ and l as follows. To avoid abuse of
notation, we shall see the definition by the following example. It is clear from the definition that the element
aµ(l) has the order l.

Example 4.1 (Definition of aµ(l)). Let µ = (3, 3, 2, 2, 2, 1) and l = 2(≤ Mµ = 3). We fix the numbering
of the Young diagram of µ as follows:

1 2 3
4 5 6
7 8
9 10
11 12
13 .

Corresponding to the number l = 2, we extract subtableaux

1 2 3
4 5 6

,
7 8
9 10

Then the cyclic permutation product aµ(2) is defined by using the letters corresponding to µ̃(l) as follows:

aµ(2) =

(

1 2 3 4 5 6
4 5 6 1 2 3

) (

7 8 9 10
9 10 7 8

)

�

Let n = ql + r, 0 ≤ r ≤ l − 1. Recall that µ̃(l) is a partition of n − r. Let Sµ̃(l) be the Young subgroup
which permutes the letters corresponding to µ̃(l) in the preceding tableau, and let Sr be the subgroups which
permutes the remaining letters. It is obvious that elements of these groups commute with each other. In the
preceding definition (Example 11), these groups are the following:

Sµ̃(l) = S{1,2,3} × S{4,5,6} × S{7,8} × S{9,10},

Sr = S{11,12,13},

where µ̃(l) = (3, 3, 2, 2), r = 3 and S{i,j,...,k} denotes the symmetric group of the letters {i, j, . . . , k}. Consider
the subgroup of Sn

Hµ(l) :=
(

Sµ̃(l) × Sr

)

o 〈aµ(l)〉 =
(

Sµ̃(l) o 〈aµ(l)〉
)

× Sr.

The following lemma is proved by straightforward computation.

Lemma 4.2. The cycle types ρ of elements of the subgroup Hµ(l) are of the form

ρ = lρ̃ ∪ ρ̄,

where ρ̃ ` µ̃(l)1/l and ρ̄ ` r. Conversely, if ρ is a partition of such a form, then there exists an element of
Hµ(l) whose cycle type is ρ.
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Example 4.3. Consider the case µ = (3, 3, 2, 2, 2, 1) and l = 2. Then the corresponding cyclic permu-
tation product is aµ(2) = (1, 4)(2, 5)(3, 6)(7, 9)(8, 10). If we consider w = (1, 2)(7, 8)aµ(2)(11, 13) ∈ Hµ(2),
then w = (1, 4, 2, 5)(3, 6)(7, 9, 8, 10)(11, 13) and its cycle type is (4, 4, 2, 2, 1), which is the union of (4, 4, 2) and
(2, 1). The partition (4, 4, 2) is written in the form (4, 4, 2) = 2((2, 1), (2)) for ((2, 1), (2)) ` (3, 2) = µ̃(l)1/2.
Conversely, if we consider ρ = 2((2, 1), (1, 1)) ∪ (3) = (4, 3, 2, 2, 2), then choose τ1 = (1, 2) ∈ Sµ̃(l) and
τ2 = (11, 12, 13) ∈ Sr for example. It is easy to see that the cycle type of w = τ1τ2aµ(2) coincides with ρ.

�

A direct but a little complicated enumeration shows the following proposition. Remark that l(λ) = l(kλ)
for any partition λ and any positive integer k.

Proposition 4.1. Let µ ` n be a partition, l = 2, 3, . . . , Mµ fixed, and a = aµ(l) the cyclic permutation

product corresponding to µ and l. Let ρ ` n be a partition of the form ρ = lρ̃∪ ρ̄ where ρ̃ ` µ̃(l)1/l and ρ̄ ` r.
Suppose that w ∈ Sn be a permutation whose cycle type is ρ. Then it follows that

(

ρ

lρ̃

)

C(lρ̃, µ; l)ll(ρ̃) = ]{σ ∈ Sn/Sµ̃(l) × Sr|wσa−1 ≡ σ mod Sµ̃(l) × Sr}.

Example 4.4. Let µ = (2, 2, 2, 2, 2, 1) and l = 2, . . . , Mµ(= 5) be fixed, say l = 2. Then the corre-
sponding product of cyclic permutations is a = (13)(24)(57)(68). The subgroups Sµ̃(l) and Sr = S3 are
S{1,2} × S{3,4} × S{5,6} × S{7,8} and S{9,10,11} respectively. Let us consider the case w = (12)a(9, 10) =
(1324)(57)(68)(9, 10) (τ1 = (12), τ2 = (9, 10)). The cycle type ρ of w is ρ = (4, 2, 2, 2, 1). If we let
ρ̃ = ((2), (1, 1)) ` µ̃(l)1/2 = (2, 2) and ρ̄ = (2, 1) ` r = 3, we have ρ = 2ρ̃ ∪ ρ̄. Then it follows that

∑

λ`µ̃(l)1/2=(2,2)
2λ=(4,2,2)

mλ = m((2),(1,1)) + m((1,1),(2)) = 2,

and
(

ρ
lρ̃

)

=
(

2+1
2

)

= 3. Thus we have

]{σ ∈ S11/S(24) × S3|wσa−1 ≡ σ mod S(24) × S3} =

(

3

2

)

(

m((2),(1,1)) + m((1,1),(2))

)

23 = 48.

5. Representation theory of the symmetric group

In this final section, we understand the main result in terms of representation theory of the symmetric
group.

It is known that the Green polynomial Qµ
ρ(q) gives the graded character value of a certain graded Sn-

module, called the DeConcini-Procesi-Tanisaki algebra [DP]. The DeConcini-Procesi-Tanisaki algebras Rµ

are defined for each partition µ of n, and afford a family of graded representations of Sn. We denote by

Rµ =
⊕

d≥0

Rd
µ

its grading. Geometrically, the algebra Rµ is isomorphic to the cohomology ring

H∗(Xµ,C)

of the fixed point subvariety Xµ of the flag variety, corresponding to the partition µ. In this point of view,
the representation of Sn afforded by Rµ is called the Springer representation [S, L]. As an Sn-module, Rµ is

isomorphic to the induced representation IndSn

Sµ
1.

The graded character charqRµ of the graded module Rµ, evaluated on the conjugacy class corresponding
to ρ ` n, is by definition a polynomial in q

charqRµ(ρ) =
∑

d≥0

qdcharRd
µ(ρ)

with integer coefficients. It is known that it coincides with the Green polynomial

Qµ
ρ(q) = charqRµ(ρ)

for each ρ ` n.
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The aim of this section is to rephrase the recursive formula of the Green polynomials Qµ
ρ(q) in the main

theorem, in terms of the graded algebra Rµ. The formula gives a representation theoretical interpretation
of a certain combinatorial property of the algebra Rµ. By considering behavior of the Hilbert polynomial

Hilbµ(q) =
∑

d≥0

qd dim Rd
µ

of the graded module Rµ at roots of unity, we can show that Rµ has the following property. Let Mµ be the
maximum multiplicity of µ, and let an integer l ∈ {2, 3, . . . , Mµ} be fixed. For each k = 0, 1, . . . , l− 1, define

Rµ(k; l) :=
⊕

d≡k mod l

Rd
µ.

It is clear that these Rµ(k; l)’s are Sn-submodules of Rµ. Then it follows that

Proposition 5.1. The dimensions of the submodules Rµ(k; l) (k = 0, 1, . . . , l − 1) coincides with each
other.

This is a consequence of the fact that the Hilbert polynomial Hilbµ(q) has the roots of unity ζj
l for each

j = 1, 2, . . . , l − 1 as its zeros.
Our problem is to give an interpretation to this property “coincidence of dimensions” in terms of repre-

sentation theory, that is, constructing a subgroup H(l) and its modules Z(k; l) (k = 0, 1, . . . , l − 1) of equal
dimension such that

Rµ(k; l) ∼=Sn IndSn

H(l)Z(k; l), k = 0, 1, . . . , l − 1.

Since the dimension of the induced representation IndSn

H(l)Z(k; l) is dimZ(k; l)|Sn|/|H(l)|, we can convince

ourselves that these isomorphisms are representation theoretical interpretation of the coincidence of di-
mensions. Let µ ` n be a partition, l ∈ {2, 3, . . . , Mµ} fixed, a = aµ(l) the cyclic permutation product
corresponding to µ and l, and Cl = 〈a〉 the cyclic subgroup of Sn generated by a. Recall that the subgroup
Hµ(l) is defined by Hµ(l) =

(

Sµ̃(l) o Cl

)

× Sr. Consider, for each k = 0, 1, . . . , l − 1, Hµ(l)-modules Zµ(k; l)
defined as follows:

Zµ(k; l) =

n(µ̄(l))
⊕

d=1

ϕ
(k−d)
l ⊗ Rd

µ̄(l),

where ϕ
(r)
l is the irreducible representation of the cyclic group Cl = 〈a〉 such that a 7−→ ζr

l . The Young

subgroup Sµ̃(l) acts trivially on Zµ(k; l). Since ϕ
(r)
l ’s are one dimensional, the dimension of Zµ(k; l) is equal

to dim Rµ̄(l) for each k. We shall show that

Rµ(k; l) ∼=Sn IndSn

Hµ(l)Zµ(k; l), k = 0, 1, . . . , l − 1.

Actually, we shall show a certain Sn × Cl-module isomorphism between Rµ and IndSn

Sµ̃(l)×Sr
Rµ̄(l), originally

suggested by T. Shoji, which is equivalent to those isomorphisms.
We define Sn×Cl-modules structures on Rµ and IndSn

Sµ̃(l)×Sr
Rµ̄(l) as follows. In both cases, the Sn-actions

are natural ones. The action of Cl on Rµ is defined by

a.x = ζd
l x, x ∈ Rd

µ.

Recall that the induced modules IndSn

Sµ̃(l)×Sr
Rµ̄(l) has the following realization:

IndSn

Sµ̃(l)×Sr
Rµ̄(l) =

⊕

σ∈Sn/Sµ̃(l)×Sr

σ ⊗ Rµ̄(l).

Then the Cl-action is defined by

a.σ ⊗ x = σa−1 ⊗ a.x, σ ∈ Sn/Sµ̃(l) × Sr, x ∈ Rµ̄(l).

It is easy to see that the Sn-action and the Cl-action commute on each module. These two Sn ×Cl-modules
are isomorphic, which is proved by comparing the characters of these modules.
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Theorem 5.1. Let µ be a partition of a positive integer n, and l an integer such that 2 ≤ l ≤ Mµ fixed.
Suppose that n = ql + r, 0 ≤ r ≤ l − 1, and let Cl be the cyclic group generated by the element a = aµ(l).
Then there exists an isomorphism of Sn × Cl-modules

Rµ
∼= IndSn

Sµ̃(l)×Sr
Rµ̄(l). (5.1)

If we consider the eigenspace decomposition of the action of a in the Sn×Cl-isomorphism (5.1), then we
obtain a representation theoretical interpretation of the property, coincidence of dimension, of the algebra
Rµ.

Proposition 5.2. Let µ ` n be partition and an integer l ∈ {2, 3, . . . , Mµ} fixed. Then there exist
Hµ(l)-modules Zµ(k; l) (k = 0, 1, . . . , l − 1) of equal dimension such that

Rµ(k; l) ∼=Sn IndSn

Hµ(l)Zµ(k; l)

for each k = 0, 1, . . . , l − 1.

Example 5.2. Let µ = (5, 4, 4, 2, 2, 1) and l = 2. Then µ̃(2) = (4, 4, 2, 2), µ̄(l) = (5, 1), and

a = aµ(2) =

(

6 7 8 9 10 11 12 13
10 11 12 13 6 7 8 9

) (

14 15 16 17
16 17 14 15

)

.

The dimensions of Rµ(k; 2), k = 0, 1, equals dimRµ/2 =
(

18
5,4,4,2,2,1

)

/2 = 18!/5!4!4!2!2!1!2. The subgroup

Hµ(2) is defined by Hµ(2) = Sµ(2) o 〈a〉×S6, where Sµ(2) = S{6,7,8,9}×S{10,11,12,13}×S{14,15}×S{16,17} and

Sr = S{1,2,3,4,5,18} (r = 3). Define Hµ(2)-modules Zµ(k; l) (k = 0, 1) by Zµ(k; 2) :=
⊕

d≡k mod 2 ϕ
(k−d)
2 ⊗

Rd
µ̄(l). These spaces are considered as Hµ(2)-modules, where S ˜µ(2) acts on them trivially. The dimension

of these modules are both equal to dimRµ̄(l) =
(

6
5,1

)

= 6!/5!1!. Then, for each k = 0, 1, we have an

isomorphism of S18-modules Rµ(k; 2) ∼= IndS18

(S(4,4,2,2)oC2)×S6
Zµ(k; 2). The induced modules are of dimension

18!/4!4!2!2!6!2× 6!/5!1! = 18!/5!4!4!2!2!1!2 = dimRµ(k; 2) for each k = 0, 1.

Remark 5.3. Recently, the author was informed by T. Shoji that the problem considered in this section
is given an affirmative answer in a largely generalized setting [Sh].
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Algebraic shifting of cyclic polytopes and stacked polytopes

Satoshi Murai

Abstract. Gil Kalai introduced the shifting-theoretic upper bound relation to characterize the f -vectors of
Gorenstein* complexes (or homology spheres) by using algebraic shifting. In the present paper, we study the
shifting-theoretic upper bound relation. First, we will study the relation between exterior algebraic shifting
and combinatorial shifting. Second, by using the relation above, we will prove that the boundary complex
of cyclic polytopes satisfies the shifting theoretic upper bound relation. We also prove that the boundary
complex of stacked polytopes satisfies the shifting-theoretic upper bound relation.

Résumé. Gil Kalai a défini une relation ”shifting-theoretic upper bound” pour caractériser les f -vecteurs des
complexes de Gorenstein (sphères d’homologie) en termes de décalages algébriques. Dans cet article, nous
étudions cette relation. Premièrement, nous étudions la relation entre le décalage algébrique exterieur et le

décalage combinatoire. Ensuite, en utilisant cette relation, nous démontrons que le complexe des frontières
des polytopes cycliques satisfait la relation ”shifting-theoretic upper bound”.

1. Introduction

Let Γ be a simplicial complex on [n] = {1, . . . , n}. Thus Γ is a collection of subsets of [n] such that (i)
{j} ∈ Γ for all j ∈ [n] and (ii) if σ ⊂ [n] and τ ∈ Γ with σ ⊂ τ , then σ ∈ Γ. A k-face of Γ is an element
σ ∈ Γ with |σ| = k + 1. The k-skeleton of Γ is a family of (k + 1)-subset Γk = {σ ∈ Γ : |σ| = k + 1}.
Let fk(Γ) = |Γk| the numbers of k-faces of Γ. The vector f(Γ) = (f0(Γ), f1(Γ), . . . ) is called the f -vector
of Γ. If σ = {s1, s2, . . . , sr} and τ = {t1, t2, . . . , tr} are r-subsets of [n] with sj < sj+1 and tj < tj+1 for
j = 1, 2, . . . , r − 1, write σ ≺p τ if sj ≤ tj for all 1 ≤ j ≤ r. A simplicial complex Γ is called shifted if τ ∈ Γ
and σ ≺p τ implies σ ∈ Γ.

The g-theorem gives a complete characterization of the f -vectors of boundary complexes of simplicial
polytopes. (see [10, pp 75–78].) It has been conjectured that the characterization of g-theorem holds for
all Gorenstein* complexes. In the present paper, we call this conjecture the g-conjecture. In [5], Kalai
introduced the shifting-theoretic upper bound relation to solve the g-conjecture by using algebraic shifting.
We recall shifting-theoretic upper bound relation.

Algebraic shifting is an operation which associates with each simplicial complex Γ another shifted sim-
plicial complex ∆(Γ). There are two types of algebraic shifting, i.e., exterior algebraic shifting Γ → ∆e(Γ)
and symmetric algebraic shifting Γ → ∆s(Γ).

For positive integers i < j, we write [i, j] = {i, i + 1, . . . , j − 1, j} and [i] = {1, 2, . . . , i}. A d-subset
σ is called admissible if j 6∈ σ implies [j + 1, d − j + 2] ⊂ σ. Let C(n, d) be the boundary complex of the
cyclic d-polytope with n vertices. Kalai [4] proved that ∆s(C(n, d)) is pure and ∆s(C(n, d))d−1 consists of

2000 Mathematics Subject Classification. Primary 13F55 ; Secondary 05E99.
Key words and phrases. exterior shifting, combinatorial shifting, cyclic polytope, stacked polytope.
The author is supported by JSPS Research Fellowships for Young Scientists.
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all admissible d-subsets of [n], in other words,

∆s(C(n, d))d−1 = {[1, b
d + 1

2
c] ∪ σ : σ ⊂ [b

d + 1

2
c + 1, n], |σ| = d − b

d + 1

2
c}

⋃

1≤j≤b d+1

2
c

{([1, d − j + 2] \ {j}) ∪ σ : σ ⊂ [d − j + 3, n], |σ| = j − 1},

where bd+1
2 c means the integer part of d+1

2 . Furthermore, Kalai proved that the boundary complex P of
every simplicial d-polytope with n vertices satisfies ∆s(P ) ⊂ ∆s(C(n, d)) by using the Lefschetz property
of P (see §1.2 for the Lefschetz property). Furthermore, Kalai noticed that if Γ is a (d − 1)-dimensional
Gorenstein* complex Γ on [n] then the relation ∆s(Γ) ⊂ ∆s(C(n, d)) is equivalent to the Lefschetz property
of Γ.

It is not hard to see that if every (d − 1)-dimensional Gorenstein* complex Γ on [n] satisfies ∆e(Γ) ⊂
∆s(C(n, d)) then the g-conjecture is true. We say that a (d − 1)-dimensional complex Γ on [n] satisfies the
shifting-theoretic upper bound relation if Γ satisfies ∆e(Γ) ⊂ ∆s(C(n, d)). Kalai and Sarkaria conjectured that
if Γ is a simplicial complex on [n] whose geometric realization can be embedded in Sd−1 then Γ satisfies the
shifting-theoretic upper bound relation. However, it is not known whether Γ satisfies the shifting-theoretic
upper bound relation even if Gamma is the boundary complex of a simplicial polytope. In the present paper,
we will show that C(n, d) and the boundary complex of stacked polytopes satisfies the shifting-theoretic upper
bound relation.

In general, the computation of exterior algebraic shifting is rather difficult. First, we will show that
we can use combinatorial shifting to study shifting theoretic upper bound relation. Combinatorial shifting,
which was introduced by Erdös, Ko and Rado [3], is also an operation which associates with each simplicial
complex Γ another shifted simplicial complex ∆c(Γ). Although combinatorial shifting may not be uniquely
determined, it is easily computed by a simple combinatorial method. Regarding the relation between exterior
algebraic shifting and combinatorial shifting, we have the following result.

Theorem 1.6. Let Γ be a (d− 1)-dimensional Cohen-Macaulay complex on [n] with hd(Γ) 6= 0 and with
hi(Γ) = hd−i(Γ) for i = 0, 1, . . . , bd

2c.

(i) If ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, then this ∆c(Γ) is pure.
(ii) If there is a combinatorial shifted complex ∆c(Γ) of Γ with ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, then one

has ∆e(Γ) ⊂ ∆s(C(n, d)).

Thus, we can use combinatorial shifting for the shifting-theoretic upper bound relation. Also, since
combinatorial shifting is entirely a combinatorial operation, proving ∆c(P ) ⊂ ∆s(C(n, d)) for the boundary
complex P of a simplicial d-polytope without using the Lefschetz property would be interesting. By using
Theorem 1.6, we compute the exterior algebraic shifted complex of the boundary complex of the cyclic
d-polytope.

Theorem 2.1. Let C(n, d) be the boundary complex of the cyclic d-polytope with n vertices. Then there
is a combinatorial shifted complex ∆c(C(n, d)) such that ∆c(C(n, d)) = ∆s(C(n, d)). Thus, in particular,
one has ∆e(C(n, d)) = ∆s(C(n, d)).

We also compute algebraic shifting of the boundary complex of a stacked d-polytope with n vertices.

Theorem 2.2. Let L(n, d) be the pure (d − 1)-dimensional simplicial complex spanned by

{{2, . . . , d + 1}} ∪ {({1, . . . , d} \ {i}) ∪ {j} : 1 < i ≤ d, j > d or j = i}.

Let P (n, d) be the boundary complex of a stacked d-polytope with n vertices. Then

(i) One has ∆e(P (n, d)) = ∆s(P (n, d)) = L(n, d).
(ii) If Γ is the boundary complex of a simplicial d-polytope with n vertices, then one has

∆s(P (n, d)) ⊂ ∆s(Γ).

Note that ∆s(P (n, d)) = L(n, d) and (ii) easily follows from the relation ∆s(P (n, d)) ⊂ ∆s(C(n, d)). To
prove ∆e(P (n, d)) = L(n, d), we use the fact that the 1-skeleton of P (n, d) is a chordal graph. However,
we are not sure that L(n, d) can be obtained by applying combinatorial shifting to P (n, d), the boundary
complex of an arbitrary stacked d-polytopes with n vertices.
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1.1. algebraic shifting and combinatorial shifting. To define algebraic shifting, we need the theory
of generic initial ideals in the exterior algebra.

Let K be an infinite field, V a vector space over K of dimension n with basis e1, . . . , en and E =
⊕n

d=0

∧d
(V ) the exterior algebra of V . In other words, E is a K-algebra which satisfies

(i) Each
∧d

(V ) is a
(

n
d

)

dimensional K-vector space with the canonical K-basis
{es1

∧ es2
∧ · · · ∧ esd

: 1 ≤ s1 < s2 < · · · < sd ≤ n}.
(ii) For any integers i, j ∈ [n], one has ei ∧ ej = −ej ∧ ei.

For σ = {s1, . . . , sd} ⊂ [n] with s1 < · · · < sd, we call eσ = es1
∧· · ·∧esd

∈
∧d

(V ) a monomial of E of degree

d. Fix a term order <. For every homogeneous element f =
∑

|σ|=d ασeσ ∈
∧d

(V ) with each ασ ∈ K, the

monomial in<(f) = max<{eσ : ασ 6= 0} is called the initial monomial of f . Also, for every homogeneous
ideal J ⊂ E, The initial ideal of J is the monomial ideal generated by {in<(f) : f ∈ J}. A monomial ideal
J ⊂ E is called strongly stable if eτ ∈ J and τ ≺p σ means eσ ∈ J .

Let GLn(K) denote the general linear group with coefficients in K. Any ϕ = (aij) ∈ GLn(K) induce
an automorphism of graded K-algebra E as follows:

ϕ(f(e1, . . . , en)) = f(
n

∑

i=1

ai1ei, . . . ,
n

∑

i=1

ainei) for all f ∈ E.

If J ⊂ E is a homogeneous ideal, then each ϕ ∈ GLn(K) gives another homogeneous ideal ϕ(J) = {ϕ(f) :
f ∈ J}. Now, we recall the fundamental theorem of generic initial ideals.

Lemma 1.1 ([1, Theorem 1.6]). Let K be an infinite field. Fix a term order < with e1 < · · · < en.
Then, for each homogeneous ideal J ⊂ E, there exists a nonempty Zariski open subset U ⊂ GLn(K) such
that in<(ϕ(J)) = in<(ϕ′(J)) for all ϕ, ϕ′ ∈ U and this in<(ϕ(J)) is strongly stable.

This monomial ideal in<(ϕ(J)) is called the generic initial ideal of J ⊂ E with respect to the term order
< and will be denoted Gin<(J). In particular, we write Gin(J) = Gin<rev

(J), where <rev is the degree
reverse lexicographic order with e1 < e2 < · · · < en. In other words, for σ ⊂ [n] and τ ⊂ [n] with σ 6= τ ,
define eσ <rev eτ if (i) |σ| < |τ | or (ii) |σ| = |τ | and the minimal integer in symmetric difference (σ\τ)∪(τ \σ)
belongs to σ. Also, we define σ <rev τ by the same way.

A shifting operation on [n] is an operator which associates with each simplicial complex Γ on [n] a
simplicial complex ∆(Γ) on [n] and which satisfies the following conditions:

(S1) ∆(Γ) is shifted;
(S2) ∆(Γ) = Γ if Γ is shifted;
(S3) f(Γ) = f(∆(Γ));
(S4) ∆(Γ′) ⊂ ∆(Γ) if Γ′ ⊂ Γ.

(Exterior algebraic shifting) Let Γ be a simplicial complex on [n]. The exterior face ideal of Γ is a
monomial ideal of E generated by all monomials eσ ∈ E with σ 6∈ Γ. The exterior algebraic shifted complex
of Γ is the simplicial complex ∆e(Γ) defined by

J∆e(Γ) = Gin(JΓ).

The shifting operation Γ 7→ ∆e(Γ) which is in fact a shifting operation ([6, Proposition 8.8]), is called exterior
algebraic shifting.

(Combinatorial shifting) Erdös, Ko and Rado [3] introduced combinatorial shifting. Let Γ be a collection
of r-subsets of [n], where r ≤ n. For 1 ≤ i < j ≤ n, write Shiftij(Γ) for the collection of r-subsets of [n]
whose elements are Cij(σ) ⊂ [n], where σ ∈ Γ and where

Cij(σ) =

{

(σ \ {j})
⋃

{i}, if j ∈ σ, i 6∈ σ and (σ \ {j})
⋃

{i} 6∈ Γ,
σ, otherwise.

We can define Shiftij(Γ) for a simplicial complex Γ by the same way. It follows from, e.g., [6, Corollary 8.6]
that there exists a finite sequence of pairs of integers (i1, j1), (i2, j2), . . . , (iq, jq) with each 1 ≤ ik < jk ≤ n
such that

Shiftiqjq
(Shiftiq−1jq−1

(· · · (Shifti1j1(Γ)) · · · ))
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is shifted. Such a shifted complex is called a combinatorial shifted complex of Γ and will be denoted by
∆c(Γ). A combinatorial shifted complex ∆c(Γ) of Γ is, however, not necessarily unique. The shifting
operation Γ 7→ ∆c(Γ), which is in fact a shifting operation ([6, Lemma 8.4]), is called combinatorial shifting.

Algebraic shifting behaves nicely. For example, algebraic shifting preserves the Cohen-Macaulay property
and preserves the dimension of reduced homology groups. On the other hand, combinatorial shifting does
not behave nicely. However, the advantage of combinatorial shifting is that we can easily compute them by
purely combinatorial methods. Hence the following problem naturally occurs.

Problem (Kalai [5, Problem 24]). What are the relations between combinatorial shifting and algebraic
shifting?

We will remark a relation between combinatorial shifting and exterior algebraic shifting. For every
σ ⊂ [n] and for every shifted simplicial complex Γ on [n], define

m≤σ(Γ) = |{τ ∈ Γ : τ ≤rev σ and |τ | = |σ|}|.

Then we have the following relation between ∆c(Γ) and ∆e(Γ).

Lemma 1.2. Let Γ be a simplicial complex on [n]. Then, for any combinatorial shifted complex ∆c(Γ)
and for any subset σ ⊂ [n], one has

m≤σ(∆e(Γ)) ≥ m≤σ(∆c(Γ)).

Proof. It is not hard to see that (see [6, Lemma 8.3]), for all integers 1 ≤ i < j ≤ n, there is
ϕij ∈ GLn(K) such that in<rev

(ϕij(IΓ)) = IShiftij(Γ). For each ϕ ∈ GLn(K), define a simplicial complex
∆ϕ(Γ) by

I∆ϕ(Γ) = in<rev
(ϕ(IΓ)).

Then, it follows from [8, Theorem 3.1] that, for every σ ⊂ [n], one has

m≤σ(∆e(Γ)) ≥ m≤σ(∆e(∆ϕ(Γ))).(1.1)

By the definition of combinatorial shifting, there exists a finite sequence of pairs of integers (i1, j1), (i2, j2), . . . , (iq, jq)
such that ∆c(Γ) = ∆ϕiqjq

(∆ϕiq−1jq−1
(· · · (∆ϕi1j1

(Γ)) · · · )). Also, since ∆c(Γ) is shifted, the conditions of

shifting operation say ∆e(∆c(Γ)) = ∆c(Γ). Then, by (1.1), we have

m≤σ(∆e(Γ)) ≥ m≤σ(∆e(∆ϕiqjq
(∆ϕiq−1jq−1

(· · · (∆ϕi1j1
(Γ)) · · · ))))

= m≤σ(∆e(∆c(Γ)))

= m≤σ(∆c(Γ)),

for every σ ⊂ [n], as desired. �

Note that Lemma 1.2 induces some other relations between combinatorial shifting and exterior algebraic
shifting. For example, it was used in [9] to compare the graded Betti numbers of the Stanley-Reisner ideal
of ∆e(Γ) and ∆c(Γ).

1.2. The shifting-theoretic upper bound relation. The shifting-theoretic upper bound relation
was considered from the viewpoint of symmetric algebraic shifting. Thus, first, we recall symmetric algebraic
shifting which was introduced in [4]. We refer the reader to [10] for the definition of Cohen-Macaulay
complexes and Gorenstein∗ complexes.

(Symmetric algebraic shifting) Let K be a field of characteristic 0 and R = K[x1, . . . , xn] the polynomial
ring. Let Γ be a simplicial complex on [n]. The Stanley-Reisner ideal IΓ of Γ is a monomial ideal generated
by all squarefree monomials xi1xi2 · · ·xir

with {i1, i2, . . . , ir} 6∈ Γ and {i1, i2, . . . , ir} ⊂ [n]. The ring R(Γ) =
R/IΓ is called the face ring of Γ.

Let y1, y2, . . . , yn be generic linear forms in x1, x2, . . . , xn and M the set of monomials in y1, y2, . . . , yn.
For every monomial m in M , denote its image in R(Γ) by m̃. Define

GIN(Γ) = {m ∈ M : m̃ 6∈ span{l̃ : deg(l) = deg(m), l <rev m}}.
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For every monomial m ∈ GIN(Γ) with deg(m) = r ≤ n which does not involve y1, y2, . . . , yr−1, write
m = yi1yi2 · · · yir

with i1 ≤ i2 ≤ · · · ≤ ir, and define

S(m) = {i1 − r + 1, i2 − r + 2, . . . , ir−1 − 1, ir}.

The symmetric algebraic shifted complex ∆s(Γ) of Γ is defined by

∆s(Γ) = {S(m) : m ∈ GIN(Γ), deg(m) = r ≤ n and yi does not divides m for i ≤ r − 1}.

The shifting operation Γ → ∆s(Γ) which is in fact a shifting operation ([6, §8]), is called symmetric algebraic
shifting.

Second, we recall h-vectors. Let Γ be a (d − 1)-dimensional simplicial complex and (f0, f1, . . . , fd−1)
f -vectors of Γ. The h-vector of Γ is defined by the relation

d
∑

i=0

hi(Γ)xd−i =

d
∑

i=0

fi−1(x − 1)d−i,

where we let f−1 = 1. This is equivalent to

hi(Γ) =

i
∑

j=0

(−1)i−j

(

d − j

d − i

)

fj−1 and fi−1 =

i
∑

j=0

(

d − j

d − i

)

hi(Γ).

(The Lefschetz property) Let Γ be a (d − 1)-dimensional Cohen-Macaulay simplicial complex and
ϑ1, ϑ2, . . . , ϑd generic linear forms. Then ϑ1, ϑ2, . . . , ϑd is a system of parameters of R(Γ). Let

d
⊕

i=0

Hi(Γ) = R(Γ)/ < ϑ1, ϑ2, . . . , ϑd >,

where Hi(Γ) is the i-th homogeneous component of R(Γ)/ < ϑ1, ϑ2, . . . , ϑd >. It is well known [10, pp.
53–58] that

hi(Γ) = dimK Hi(Γ).

Let ϑd+1 be an additional general linear form and s = max{k : hk(Γ) 6= 0}. A (d − 1)-dimensional Cohen-
Macaulay simplicial complex Γ is called (strongly) Lefschetz if, for 0 ≤ i ≤ b s

2c, the multiplication

ϑs−2i
d+1 : Hi(Γ) → Hs−i(Γ)

is an isomorphism. Note that the boundary complex of every simplicial polytope is Lefschetz. The important
aspect of Lefschetz property is that proving the Lefschetz property for all Gorenstein* complexes implies the
g-conjecture. See [10, pp75–78] for the detail.

Next, we recall some basic property of algebraic shifting.

Lemma 1.3 ([6, Lemma 8.]). Let Γ be a simplicial complex. The followings are equivalent:

(i) Γ is Cohen-Macaulay;
(ii) ∆e(Γ) is Cohen-Macaulay;
(iii) ∆e(Γ) is pure.

Lemma 1.3 is also true for symmetric algebraic shifting ∆s. Also, if Γ is Cohen-Macaulay, then h-vectors
of Γ appears in ∆e(Γ) and ∆s(Γ) by the following way.

Lemma 1.4 (Kalai [4, Lemma 7.1]). Let Γ be a pure shifted (d− 1)-dimensional simplicial complex. Let
Wi(Γ) = {σ ∈ Γ : |σ| = d, [d − i] ⊂ σ and d − i + 1 6∈ σ}. Then hi(Γ) = |Wi(Γ)|.

Proof. For every monomial m ∈ K[y1, . . . , yn] with deg(u) = i, denote its image in R(Γ)/ < y1, y2, . . . , yd >
by [m]. Let

Li(Γ) = {m ∈ GIN(Γ) : deg(m) = i and m ∈ K[yd+1, . . . , yn]}.

First, we will show that dimK Hi(Γ) = |Li(Γ)|. If m is a monomial in K[yd+1, . . . , yn] with deg(m) = i

and l is a monomial in < y1, . . . , yd > with deg(l) = i, then l <rev m. Since GIN(Γ) = {m ∈ M : m̃ 6∈ span{l̃ :
l <rev m}}, it follows that the set of monomials m̃ with m ∈ GIN(Γ)i∩ < y1, . . . , yd >= {GIN(Γ)i \ Li(Γ)}
is a K-basis of {R(Γ)∩ < y1, . . . , yd >}i. Thus {[m] : m ∈ Li(Γ)} is a K-basis of {R(Γ)/ < y1, . . . , yd >}i.
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On the other hand, since y1, y2, . . . , yn are generic linear forms, it follows that y1, . . . , yd are generic system
of parameters. Thus Hi(Γ) = {R(Γ)/ < y1, . . . , yd >}i and, therefore, dimK Hi(Γ) = |Li(Γ)|.

Second, we will show that if ∆s(Γ) is pure and shifted, then, for all 0 ≤ i ≤ d, we have

Wi(∆
s(Γ)) = {[d − i] ∪ S(m) : m ∈ Li(Γ)}.(1.2)

For any m ∈ Li(Γ), we have min(S(m)) ≥ d− i+2 and |S(m)| = i. Since ∆s(Γ) is pure and shifted, we have
[d− i]∪ S(m) ∈ Wi(∆

s(Γ)). Conversely, if [d− i]∪ σ ∈ Wi(∆
s(Γ)), then σ ∈ ∆s(Γ) and min(σ) ≥ d− i + 2.

Hence there is m ∈ Li(Γ) with S(m) = σ.
Since Γ is shifted, we have ∆s(Γ) = Γ. Then the relation (1.2) says |Wi(Γ)| = |Li(Γ)| = dimK Hi(Γ) =

hi(Γ). �

Lemma 1.5 (Kalai). Let Γ be a (d − 1)-dimensional Cohen-Macaulay simplicial complex on [n] with
hd(Γ) 6= 0. The followings are equivalent:

(i) Γ is Lefschetz;
(ii) ∆s(Γ) ⊂ ∆s(C(n, d)) and hi(Γ) = hd−i(Γ) for all 0 ≤ i ≤ d.

Proof. ((i) ⇒ (ii)) The relation hi(Γ) = hd−i(Γ) immediately follows from the definition of Lefschetz

property. Note that ∆s(Γ)d−1 =
⋃d

j=0 Wi(∆
s(Γ)). We will show Wi(∆

s(Γ)) ⊂ Wi(∆
s(C(n, d))) for all

0 ≤ i ≤ d. For 0 ≤ i ≤ d
2 , the inclusion Wi(Σ) ⊂ Wi(∆

s(C(n, d))) is true for an arbitrary simplicial complex
Σ. Since y1, y2, . . . , yn are generic linear forms, it follows that y1, . . . , yd are generic system of parameters and
yd+1 is an additional generic linear form. Then, by assumption, the multiplication yd−2i

d+1 : Li(Γ) → Ld−i(Γ)

is a bijection. Then, for 0 ≤ i ≤ d
2 , Ld−i(Γ) is of the form Ld−i(Γ) = {yd−2i

d+1 m : m ∈ Li(Γ)}. Also, for every

m ∈ Li(Γ) with 0 ≤ i ≤ d
2 , we have

S(yd−2i
d+1 m) = {i + 2, . . . , d − i + 1} ∪ S(m)(1.3)

Thus, for 0 ≤ i ≤ d
2 , relation (1.2) says that Wd−i(∆

s(Γ)) is of the form

Wd−i(∆
s(Γ)) = {[i] ∪ {i + 2, . . . , d − i + 1} ∪ S(m) : m ∈ Li(Γ)} ⊂ Wd−i(∆

s(C(n, d))).

((ii) ⇒ (i)) If ∆s(Γ) ⊂ ∆s(C(n, d)), then, for 0 ≤ i ≤ d
2 , each Wd−i(∆

s(Γ)) is of the form

Wd−i(Γ) = {[i] ∪ {i + 2, . . . , d − i + 1} ∪ σ ∈ Γ : |σ| = i}.

Since ∆s(Γ) is shifted, there is a natural injection form Wd−i(Γ) to Wi(Γ) as follows:

[i] ∪ {i + 2, . . . , d − i + 1} ∪ σ 7→ [d − i] ∪ σ.(1.4)

Since hi(Γ) = hd−i(Γ), Lemma 1.4 says this injection is a bijection. Then (1.2) and (1.3) implies that the

multiplication yd−2i
d+1 : Li(Γ) → Ld−i(Γ) is a bijection. �

Let Γ be a (d − 1)-dimensional Gorenstein* complex on [n]. Since ∆s(∆e(Γ)) = ∆e(Γ), Lemma 1.5
says that ∆e(Γ) is Lefschetz if and only if ∆e(Γ) ⊂ ∆s(C(n, d)) and hi(Γ) = hd−i(Γ) for i = 0, 1, . . . , bd

2c.

Since hi(Γ) = hd−i(Γ), where 0 ≤ i ≤ bd
2c, are true for arbitrary Gorenstein* complex, if we can prove

the relation ∆e(Γ) ⊂ ∆s(C(n, d)) for arbitrary (d − 1)-dimensional Gorenstein* complex Γ on [n], then we
can prove the g-conjecture. However, the relation ∆e(Γ) ⊂ ∆s(C(n, d)) is unknown even for the boundary
complex of simplicial polytopes. We say that a (d − 1)-dimensional simplicial complex Γ on [n] satisfies the
shifting-theoretic upper bound relation if Γ satisfies ∆e(Γ) ⊂ ∆e(C(n, d)).

We will show that if ∆c(Γ) is Lefschetz, then ∆e(Γ) is also Lefschetz by using Lemma 1.2.

Theorem 1.6. Let Γ be a (d− 1)-dimensional Cohen-Macaulay complex on [n] with hd(Γ) 6= 0 and with
hi(Γ) = hd−i(Γ) for i = 0, 1, . . . , bd

2c.

(i) If ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, then this ∆c(Γ) is pure.
(ii) If there is a combinatorial shifted complex ∆c(Γ) of Γ with ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, then one

has ∆e(Γ) ⊂ ∆s(C(n, d)).
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Proof. (i) Fix a combinatorial shifted complex ∆c(Γ) which satisfies the assumption ∆c(Γ)d−1 ⊂
∆s(C(n, d))d−1. We will show |Wi(∆

c(Γ))| = hi(Γ) for all 0 ≤ i ≤ d.
Let σ(i, n) = [d − i] ∪ {n− i + 1, . . . , n}. Then, for every σ ⊂ [n] with |σ| = d, we have σ ≤rev σ(i, n) if

and only if [d − i] ⊂ σ. This implies that, for every (d − 1)-dimensional pure shifted simplicial complex Σ,
we have

m≤σ(i,n)(Σ) =

i
∑

j=0

|Wi(Σ)|.

Then Lemma 1.2 says that , for 0 ≤ i ≤ d
2 , we have

i
∑

j=0

|Wj(∆
e(Γ))| ≥

i
∑

j=0

|Wj(∆
c(Γ))| and

i
∑

j=0

|Wd−j(∆
e(Γ))| ≤

i
∑

j=0

|Wd−j(∆
c(Γ))|.(1.5)

On the other hand, since ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, the injection (1.4) says |Wi(∆
c(Γ))| ≥ |Wd−i(∆

c(Γ))|
for 0 ≤ i ≤ d

2 . In particular, we have

i
∑

j=0

|Wj(∆
c(Γ))| ≥

i
∑

j=0

|Wd−j(∆
c(Γ))|.(1.6)

Since Γ is Cohen-Macaulay and hi(Γ) = hd−i(Γ), Lemmas 1.3 and 1.4 say |Wi(∆
e(Γ))| = |Wd−i(∆

e(Γ))| =
hi(Γ). Thus these inequalities (1.5) and (1.6) are all equal. Inductively, we have |Wi(∆

c(Γ))| = |Wi(∆
e(Γ))| =

hi(Γ) for all 0 ≤ i ≤ d.
Let L be the pure simplicial complex generated by ∆c(Γ)d−1. Then Lemma 1.4 says L and Γ have the

same h-vector, that is, they have the same f -vector. Since ∆c(Γ) ⊃ L, we have ∆c(Γ) = L. Thus this ∆c(Γ)
is pure.

(ii) We will show Wi(∆
e(Γ)) ⊂ Wi(∆

s(C(n, d))) for all 0 ≤ i ≤ d. Let σ0(i) = max<rev
{Wi(∆

s(C(n, d)))},
σc(i) = max<rev

{Wi(∆
c(Γ))} and σe(i) = max<rev

{Wi(∆
e(Γ))}.

Since ∆c(Γ) ⊂ ∆s(C(n, d)), we have σ0(i) ≥rev σc(i) for all i. On the other hand, since |Wi(∆
c(Γ))| = hi,

we have

m≤σc(i)(∆
c(Γ)) =

i
∑

k=0

|Wk(∆c(Γ))| =

i
∑

k=0

hk(Γ)

and

m≤σe(i)(∆
e(Γ)) =

i
∑

k=0

|Wk(∆e(Γ))| =

i
∑

k=0

hk(Γ).

Then Lemma 1.2 says σc(i) ≥rev σe(i). Thus we have σ0(i) ≥rev σe(i) for all i.
On the other hand, Wi(∆

s(C(n, d))) is the set of smallest hi(Γ) elements w.r.t. <rev which contain
{1, . . . , d − i} and which do not contain {d − i + 1}, that is,

Wi(∆
s(C(n, d))) = {σ ⊂ [n] : [d − i] ⊂ σ, d − i + 1 6∈ σ and σ ≤rev σ0(i)}.

Thus we have ∆e(Γ) ⊂ ∆s(C(n, d)). �

2. Exterior algebraic shifting of Cyclic polytopes and stacked polytopes

2.1. Cyclic polytopes. We recall the definition of cyclic polytopes. We refer the reader to [2] for the
basic theory of convex polytopes.

Let R denote the set of real numbers. For any subset M of the d-dimensional Euclidean space R
d, there

is a smallest convex set containing M . This convex set is called convex hull of M and will be denoted by
conv(M). For d ≥ 2, the moment curve in R

d is the curve parameterized by

t → x(t) = (t, t2, . . . , td) ∈ R
d.

The cyclic d-polytope with n vertices is the convex hull P of the form

P = conv({x(t1), x(t2), . . . , x(tn)}),

where t1, t2, . . . , tn are distinct real numbers.
The main result of this section is the following.
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Theorem 2.1. Let C(n, d) be the boundary complex of the cyclic d-polytope with n vertices. Then there
is a combinatorial shifted complex ∆c(C(n, d)) such that ∆c(C(n, d)) = ∆s(C(n, d)). Thus, in particular,
one has ∆e(C(n, d)) = ∆s(C(n, d)).

Proof. (sketch) By virtue of Theorem 1.6, what we have to do is finding a combinatorial shifted complex
∆c(C(n, d)) which satisfies ∆c(C(n, d)) = ∆s(C(n, d)).

Also, by Gale’s evenness condition ( [2, Theorem 13.6]), we know that C(n, d)d−1 is the collection of
d-subsets σ of [n] which satisfies, for every i < j with i, j 6∈ σ, the number |{i, i + 1, . . . , j} ∩ σ| is even.

Define

Shiftn↓i(Γ) = Shiftii+1(· · · (Shiftin−1(Shiftin(Γ))) · · · )

and

Shiftn↑i(Γ) = Shiftin(· · · (Shiftii+2(Shiftii+1(Γ))) · · · ).

(i) In case of d is even, then

Shiftn−1↓n(Shiftn−2↓n(· · · (Shift1↓n(C(n, d)) · · · )) = ∆s(C(n, d)).

(ii) In case of d is odd, then

Shiftn−1↑n(Shiftn−2↑n(· · · (Shift1↑n(C(n, d)) · · · )) = ∆s(C(n, d)).

Since computations of (i) and (ii) are complicated, we omit the proof. �

2.2. Stacked polytopes. We recall the construction of stacked polytopes. Starting with a d-simplex,
one can add new vertices by building a shallow pyramids over facets to obtain a simplicial convex d-polytope
with n vertices. Such convex polytopes are called stacked d-polytopes. Let P (n, d) be the boundary complex
of a stacked d-polytope with n vertices. Note that the combinatorial type of P (n, d) is not unique. Then we
have the following result for algebraic shifting of stacked polytopes.

Theorem 2.2. Let L(n, d) be the pure (d − 1)-dimensional simplicial complex generated by

{{2, . . . , d + 1}} ∪ {({1, . . . , d} \ {i}) ∪ {j} : 1 < i ≤ d, j > d or j = i}.

Let P (n, d) be the boundary complex of a stacked d-polytope with n vertices. Then

(i) One has ∆e(P (n, d)) = ∆s(P (n, d)) = L(n, d).
(ii) If Γ is the boundary complex of a simplicial d-polytope with n vertices, then one has

∆s(P (n, d)) ⊂ ∆s(Γ).

Proof. (sketch) The equality ∆s(P (n, d)) = L(n, d) and (ii) easily follows from the Lefschetz property
of the boundary complex of simplicial polytopes.

We will show ∆e(P (n, d)) = ∆s(P (n, d)). The case d = 2 is easy. In case of d ≥ 3, by using Lemma
1.4, it is not hard to show that if ∆e(P (n, d)) 6= L(n, d) then {d + 1, d + 2} ∈ ∆e(P (n, d)). Note that
{d + 1, d + 2} 6∈ ∆s(P (n, d)). On the other hand, it is known that 1-skeleton of P (n, d) is a chordal graph if
d ≥ 3. It follows from [7, Theorem 4.8] that if G is a chordal graph then ∆e(G) = ∆s(G). This says that
{d + 1, d + 2} 6∈ ∆e(P (n, d)) and ∆e(P (n, d)) = ∆s(P (n, d)) = L(n, d). �
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2 Q I MEO DECPD MN J RMSCN TNMEC DCE SQ IOMUO DEJVE WVXY EOC XVMRMNZFE XEOCVI MDC NCSCV OME EOC OJKW[KMNC
H = {(k, 0), k 6 0} \ ]OCDC ^_`ab cd ef g b`he i `_dg OJSC VCUCMSCG DXY CJEECNEMXN EOCDC KJDE WCI HCJVD Q DMNUC MN PJVEMUFKJV EOCMV CNFY CVJEMXN KCJGD EX DMYPKC UKXDCG WXVYFKJD j ZFE XNKHXNC ZMk CUEMXN OJD Z CCN WXFNG DX WJV Q MN EOC UJDC XW EOC DlFJVC KJEEMUC Q EOJE CmPKJMND DFUO WXVYFKJD \nCE

p = p(S)
Z C EOC DY JKKCDE PXDDMZ KC JZDUMDDJ

x
DFUO EOJE EOCVC MD J IJKL XN EOC DKME PKJNC CNGMNRJE

(x, 0) \ oFPP XDC EOJE |j| 6 1
WXV CJUO DECP

(i, j) ∈ S\ ]OC Y JMN VCDFKE XW EO MD PJPCV MD EOC UXNDEVFUEMXNXW J KCNREO PVCDCVS MNR ZMk CUEMXN Z CEICCN
S
[IJKLD XN EOC DKME P KJNC I MEO J Y JVLCG DECP CNGMNR JE

(p, 0) QJNG J UCVEJMN UKJDD XW IJKLD XN EOC PKJNC IOXDC CNFY CVJEMXN MD YFUO DMYPKCV \ ]OMD JKKXI D FD EX MNECVPVCEUXYZMNJEXVMJKKH PVCSMXFDKH LNXIN CNFYCVJEMXND Q JNG EX RMSC Y JNH NCI XNCD \
pq<rsq A tXFD uEFGMXND GCD UOCY MND GJND KC PKJN

Z
2 Q GXNE KCD PJD JPPJVEMCNNCNE v FN CNDCYZKC S

GXNNu QlFM PJVECNE GC K wXVMRMNC Y JMD lFM DMNXN uS MECNE KJ GCY M[GVXMEC
H = {(k, 0), k 6 0} \ xCD yfgz hdb b{| `g i `_dhdyhb} XNE uSCMKKu FN UCVEJMN MNEuV~E UCD GCVNM�VCD JNNuCD Q NXEJYYCNE CN VJMDXN G wuNFY uVJEMXND Y CNJNE v GCDWXVYFKCD UKXDCD DMYPKCD j UCP CNGJNE FNC DCFKC ZMk CUEMXN J kFDlF wMUM uEu EVXFSuC Q GJND KC UJD GF VuDCJF UJVVu QPXFV CmPKMlFCV GC ECKKCD WXVYFKCD \oXME p = p(S)

KJ P KFD P CEMEC JZDUMDDC
x
ECKKC lF wMK Cm MDEC FN UOCY MN DFV KC PKJN MNUMDu ECVY MNJNE CN

(p, 0) \�N DFPPXDC lFC
|j| 6 1

PXFV EXFE PJD
(i, j) ∈ S\ nC VuDFKEJE PVMNUMPJK GC UCE JVEMUKC CDE KJ UXNDEVFUEMXN G wFNCZMk CUEMXN Q PVuDCVSJNE KJ KXNRFCFV Q CNEVC KCD S

[UOCY MND GJND KC PKJN MNUMDu JSCU FN PJD Y JVlFu ECVY MNJNECN
(p, 0) Q CE FNC UCVEJMNC UKJDDC GC UOCY MND GF PKJN GXNE K wuNFY uVJEMXN CDE PKFD JMDuC \ xCKJ NXFD PCVY CEGC GXNNCV GCD MNECVPVuEJEMXND UXYZMNJEXMVCD GC VuDFKEJED G wuNFY uVJEMXN Guk v UXNNFD Q CE G wCN GXNNCV GCNXYZVCFm JFEVCD \
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����� �� ��� ���� � ���� ���� ���������� �� ���   ¡ �¢�� � £���� ��� �¤ �����

S ⊂ Z
2 ¥ ���¦ ��� ��£���

�� ����� �� ��� �����
Z

2 ���� ����� ��
S

���� ����� �� ��� ���§ ��
O ¥ ��� ������ ��� �¢��� ��� ���¤¨����

H = {(k, 0), k 6 0}   ©� ��� ����� ��� ��� ��� ¤����� ��§ ����� �ª� ¥ ��� §��� ��� �� §�¢� ������ ¤��« � ¤�� ¢������§��������§ ¤�������� ������� �� ����� ����� ¥ ��� ����¦ ���� ���� §��������§ ¤�������� ���� ��§�¬����  �� �¤ ��� « ��� ������� �¤ �ª� �� ���� ¥ �� ��� ���� ����� ��� ���« ����
(i, j)

�¤
S

¢���¤¦ |j| 6 1 ®S ��
���� �� ��¢� ��� ¯° ±² ² ³ ´µ¶³ · ¸±¹µ±·µº» ¼ ¹º¼ ´¹·½ ¾ ¥ ���� ��� §��������§ ¤�������� S(x, y, t), Sj(x, t), Si,j(t)

���
��§�¬���� ¥ ����� ������ ���« ������§ ��������¢��¦ ����� ��������§ �� ���§�� ��� �������� ¥ ����� �����§ �����§��

j
��������§ �� ���§�� ��� £��� �¬������ ¥ ��� ����� �����§ �� (i, j)

��������§ �� ���§��  
¿�� �� ���£� �����

S
¥ ��� ������ ¤��« �¤ ��� §��������§ ¤�������� ����� � �� ¤��� �� �¬���� �À��������� ¤��

��� ��«¬�� �¤ ����� �¤ ���§��
n
�����§ �� ������� ������

(i, j)
  ¿�� �������� ¥ ¤��

S = {(±1, 0), (0,±1)} ®����Á���� �������¾ ��
S = {(±1,±1)} ®��� ���§���� �������¾ ¥ ������ ¤��«���� ��� ���¢�� �� ��� ��� �Â� ¤�� ¢���������������   Ã���� �� � �� ���£� �������� ¤�� ����� ������ ¤��«���� ��� �¤��� �¬������ Ä �� ��

(p, 0) ¥ �����
p = p(S)

�� ��� �« ������ �����¬�� �¬������
x
���� ���� ����� �� � ���� �� ��� ���� ����� �����§ ��

(x, 0) Å ¤���������� ¥ p �Á����
1
¤�� ��� �Á���� ������� ���

2
¤�� ��� ���§���� �������  

©� ���� ����� ¥ �� ��������� ¬�Æ ������� ���� � ��� �À����� ����� ������ ¤��«���� ¤�� ��� �������� (p, 0)
  ¿ ����

�� � ��� ��£�� � ¬ �Æ ������ ����� �� ¢���� ¤�� ����
S
���� �« ��� ¢��������� ��� ���� ��� �¦««����� � ��� ���� ���
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� � ������

�� ���
x
¨�À �� Å ��� « ��� ���� ¤�� ��� ������������ ��« �� ¤��« ��� ����� ��� ¥ ����� �� ��� ���� �� ���«���������� ����� �� ��� �Á���� �������   Ã��� �� � ��� « ���¤¦ ���� ¬�Æ ������ �� ��� ���� �¤ ����

S
���� ��� ���

����������¦ �¦««����� Å �� � ��� ���� ¬� �¬�� �� ¬�Æ ����¢��¦ ���¢� ¥ ¤�� �������� ¥ ���� �¤ S = {(±1, 1), (0,−1)}���� ����� ���
42n+1

(
2n+1

n

)
/(4n + 2)

����� �¤ ���§��
4n + 2

�� ��� ���� ����� ���� ��� ��
(1, 0)

 
� � � ��	�
 �������

©� ���� ������� �� � ��� ��£�� �������� ������� ���������§ ����� �� ��� �������
Z

2 ¥ ��� §�¢� �� ���£ �
��£������� ¤�� ��� ���� �¤ ����� �� ��� ���� �����  

¿�� ��� ���� �¤ ���� ������� ¥ �� ���
S
¬� � £���� ��¬��� �¤

Z
2  

� ��� �	�� � � � ±²� ���� ����� ��
S
�� � £���� ��Á�����

w = (w0, w1, . . . , wn)
�¤ ������ �¤

Z
2 ���� ����

w0 = (0, 0)
���

wi − wi−1 ∈ S
¤��

1 6 i 6 n
  �� ����� ���� ��¦ ����

w
�� �

S
¨����   ���� ���� ��� �����

��� ����¦� ����«�� �� ����� �� ��� ���§��   Ã�� ��«¬�� �¤ �����
n
�� ��� ²´»¶ ·³ �¤

w
  Ã�� ´»�¼ ºµ»· �¤

w
��

wn
¥ ��� �� �� ������� end(w)

  �� ���� ������ ��� ®£���¾ ���§�� ��� �¬������ �¤ w
¬¦

y(w)
���

x(w) ¥ ���� ��
end(w) = (x(w), y(w))

  � ���� � ��� � ° ±¹� ´� ¯·´¼ �� ��� ���� �¤ � ����
w = (w0, w1, . . . , wn)

��§����� � ���
�� ����§��

i ∈ [[0, n − 1]] ¥ �� � ���� wi+1 − wi

�� ������§������ ®�� «��� ��������¦¥ �� � ��������� �¤ ���� ������
w
¾   ¿�� ��� £§���� �¤ ���� ����� ¥ « ����� ����� � ��� ¬ � ������§� ����� ¬¦ � �� ����� ����  
� �� � �	�� ��� ����� � � ���� �� ������������� ¬¦ � £���� ��Á����� �¤ ����� �¤

S
  ����� ¥ �� � ��� ¬ ����¢�� ���� �� �������� ����� �� ����� �� ��� �����¬��

S
  Ã�� ��� �¤ �����

S
∗ �� �Á������ � ��� ��� ������������������ ������� Å �� � ���� ¥ ε ������� ��� �«��¦ ����  ��¦ ����

w
�¤

S
∗ ���� ���� ¬ � ����§�� �¤ �� � ���� �������§ ¤��« (0, 0) ¥ ��� �� � ��� �� ¤��� « ��� ��

����������� ¬������ ��� ���� ��� ��� ���� Ä ¤�� �������� ¥ �¤ w1
���

w2
��� ��� ����� ¥ ���� w1w2

�� ��� ����
w1

¤������� ¬¦ ��� ����
w2 ®����� �� �������� �� ��� �������� �¤ w1

¾   ���� ����
end

�� ���� � «������«
¤��« ��� «�����

S
∗ ��

Z
2 ¥ ����� ���«���� �¤

Z
2 ��� ����� ��«������� ���   Ã��� �� ¥ ���� w1

���
w2

���
��� ����� ¥ ���� �� ��¢� end(w1w2) = end(w1) + end(w2).� �ª � �	�� �� ��� �	�� �	��� � �� � ��� ��� ��� ���« �����§¦ ���������� �� �� � ª�   �� ��¦ ���� ���
����

w
�¢���� ��� ���¤¨���� H = {(k, 0), k 6 0} �¤ ���� �¤ ��� ¢������� w1, . . . , wn

¬����§ �� H   �� ���� ����
w
� � ±²� º» ·³ ´ ¯²µ· ¼ ²±» ´  ¿��

(i, j) 6= (0, 0) ¥ �� ������ ¬¦ Si,j(n)
��� ��� �¤ �����

w
�� ��� ���� ����� �¤

���§��
n
��� ���� ����

end(w) = (i, j)
  �� ���� ������ ��� ����������¦ �¤ ���� ��� ¬¦

Si,j(n)
  ©� ���� ����� ¥�� � ��� �������� Sp,0(n) ¥ ����� p = p(S)

�� ��� « ���«�« ������¢� ����§��
x
���� ���� ����� �� �

S
¨����

�����§ ��
(x, 0) Å �� ����� ����¦� ����« � ���� �� ���� � ��� ���� S

���� ����
p
�� ���� ��£���  

©¤
s = (x, y) ∈ Z

2 ¥ �� ���� s̃ = (x,−y)
��� �¦««����� � ��� ������� �� ���

x
¨�À ��   �� �À���� ���� ��£������

�� ����� Ä �¤
w = s1s2 · · · sn ∈ S

∗ ¥ ���� w̃ = s̃1s̃2 · · · s̃n

  ¡��« ��������¦¥ w̃
�� ��� ���� �¦««����� �¤

w
����

������� �� ���
x
¨�À ��  

�� ��� ��£�� ��� ���������� �¤ ���� �¤ ����� ¥ ����������� �� ¿�§��� � Ä
������� � � !  �� "��

S
¬� � ��� �¤ ���� �  

• S
�� ¯½°° ´·¹µ# ®� ��� ���� ��� �� ��� x

¨�À ��¾ �¤ ¤�� ���
s ∈ S

¥ ���� s̃ ∈ S
 

• Ã�� ���
S
�� ���� �� ��¢� ¯° ±² ² ³ ´µ¶³ · ¸±¹µ±·µº»¯ �¤ ¥ ¤�� ��� (i, j) ∈ S

¥ |j| 6 1
 

$
$
$
$
$
$
$
$
$
$
$

% �&�'� (� ¿��« ��¤� �� ��§�� Ä � ���
S
����� �� ������� �¦««����� ��� � ��� �« ��� ¢��������� ¥� �¦««����� ��� ¥ ��� � ��� � ��� �« ��� ¢���������  
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ª � ��� 
� �� ������
 �
�� �������� �� ���� ������� ® ��� �� ��� ���� �¤ ��� ����� ¾ � £���� ��� S ⊂ Z

2 �¤ ¯·´¼ ¯ ����� ��� ���
¯° ±² ² ³ ´µ¶³ · ¸±¹µ±·µº»¯ �������¦  "��

w = (w0, . . . , wn)
¬� �� ���« ��� �¤ Sp,0(n) ¥ �  �   � ���� �� ��� ���� ������¤ ���§��

n
���� ���� ��

(p, 0)
  "�� ����

i ∈ [[0, n − 1]]
 

¿ ���� ������� ���� ¥ �� �������� ¥
S
�� ¯½°° ´·¹µ#  Ã��� ��£��

Ψ(w, i) = (W0, W1, . . . , Wn)
�� ��� ����

• ����� ¬�§�����§
(W0, W1, . . . , Wn−i)

�� �¬������ ¬¦ ��	�����§
(wi, . . . , wn)

�
 ���
x
¨�À�� ��� �����¨

�����§ �� �� ����
W0 = O Å

• ��� ����� �����§ �� �¬������ ¬¦ ��������§
w = (w0, . . . , wi)

��
(W0, W1, . . . , Wn−i)

�����§� ���
����������� �¤ ¢�����

Wn−i − w0��� ¿�§��� ! ¤�� �� ������������ �¤ �� �� ������������   ©¤
w
�� ���������� �� � ���� ��

S
∗ ®��� ������� !¾ ¥��� ������ �¤

i
����������� �� � ¤������������

w = uv
��

S
∗ ���� v 6= ε

  Ã��� ��� ��� ��«��¦
Ψ(w, i) = ṽu

 
�� ��� ��� ����� ��� £��� ������« Ä
��� '� �  �� �³ ´ #º»¯·¹�#·µº»

Ψ
µ¯ ± �µ� ´#·µº» �´·� ´´» ·³ ´ � º² ²º� µ»¶ ·� º ¯´·¯ �

���
S�� ±²�¯ º» ·³ ´ ¯²µ· ¼ ²±» ´ º� ²´»¶ ·³ n

´»�µ»¶ ±·
(p, 0)

� µ·³ ± ° ±¹� ´� ¯·´¼ �
���

S�� ±²�¯ º» ·³ ´ ¼ ²±»´ º� ²´»¶ ·³ n
´»�µ»¶ ±·

(p, 2k)
� º¹ ± #´¹·±µ»

k ∈ Z
�

� � �� �««������ ��������¦¥ �� ��¢� Ä
� ' ���'� �  �� �´·

Sp,0(n)
�´ ·³ ´ »�° �´¹ º� � ±²�¯ º» ·³ ´ ¯²µ· ¼ ²±»´ ·³ ±· ´»� ±·

(p, 0)
� �´· ±²¯º

Wp,even(n)
�´ ·³ ´ »�° �´¹ º� � ±²�¯ º» ·³ ´ ¼ ²±»´ ·³ ±· ´»� ±·

(p, 2k)
� º¹ ± #´¹·±µ» µ»·´¶ ´¹

k
�

�³ ´» � ´ ³ ±¸´ ·³ ´ µ�´»·µ·½
n · Sp,0(n) = Wp,even(n)�� ��� §��������� ���� ¬ �Æ ������ �� ��� ���� �����

S
�� ��� ����« �� �� ¬� �¦««����� ®¬�� ����� ��� ����«��� ���§�� ¢�������� �������¦¾   ���� ���� ��� ������������ �¤ ��� ���¢���� ������« ������ ¤������� ��

���� ¥ ¬ ������ ¥ �¤��� ��	������ ¥ ��« � �¤ ��� ����� «�¦ ��� ¬ � ���« ���� �¤
S
 

"�� � � �����
Ssym

¤�� ��� ��� �¤ ����� ����� ���« ���� ��� ��� �¦««����� �¤ ����� �¤
S
�
 ���

x
¨�À �� Å ������� �����

Ssym

�Á����
S̃
  Ã��� �� ��£��

S = S∪Ssym

  �� ���� ���� �� ��£��
S

δ = {s ∈ S | y(s) = δ}¤��
δ ∈ {−1, 0, 1} ¥ ��� ��« �����¦ S1

���
S−1

  �� ��� ��� ����� ��� ������ ������« Ä
��� '� �  ! � �´·

S
�´ ± ¯´· º� ¯·´¼ ¯ � µ·³ ¯° ±² ² ¸±¹µ±·µº»¯� ±»�

n
�´ ± ¼ º¯µ·µ¸´ µ»·´¶ ´¹ �  ¯¯�°´ ·³ ±·

·³ ´¹´ µ¯ ±
S�� ±²� ´»�µ»¶ º» ·³ ´ ¼ º¯µ·µ¸´

x�±! µ¯� ±»� ²´· p = p(S)
�´ ·³ ´ ¯° ±² ²´¯· ¼ º¯µ·µ¸´ ±�¯#µ¯¯± ·³ ±· #±»

�´ ¹´±#³ ´� � �³ ´» � ´ ³ ±¸´ ± �µ� ´#·µº» �´·� ´´» ·³ ´ � º² ²º� µ»¶ ¯´·¯ �
��� "±²�¯ º» ·³ ´ ¯²µ· ¼ ²±»´ º� ²´»¶ ·³

n
� µ·³ ¯·´¼ ¯ µ»

S
·³ ±· ´»� ±·

(p, 0)
�

��� "±²�¯ º� ²´»¶ ·³
n

� µ·³ ¯·´¼ ¯ µ»
S
� ´»�µ»¶ ±· ±�¯#µ¯¯±

p
� � µ·³ ±» ´¸´» »�° �´¹

2m
º� ¯·´¼ ¯ µ»

S1∪S−1
� ¯�#³ ·³ ±·� ±° º»¶ ·³ ´¯´ ¯·´¼ ¯� ·³ ´ # ¹¯·

m
º»´¯ ±¹´ µ»

S1
±»� ·³ ´ ²±¯·

m
º»´¯ ±¹´ µ»

S−1

������ ���� �¤
S
�� �¦««����� ���� ��� ����� �� �  �

(2)
��� �  !

(2)
�������� Å �� ¤��� ��� ¬ �Æ ������� � ��� ¬ ���������� �� ���� ����  

$ � � ��� % � % ������
 ª ��
�� �������� ���� � ���

S
�¤ ����� ���� �� �¦««����� ��� ��� ��� �« ��� ���§�� ¢�������� �������¦  ��

���� ��� ��������� �¤ ������� � ������� ��§ Ã�����« �  � Å �� ���������� (u, v)
�� ��� ¤������������ �¤

w
�
�����

¬¦ ��� « ����� ����   ���� £��� ���� ��� ����� �¤
Ψ(w, i)

��� ��
S
¥ ����� �� ����« �� ����

S
�� �¦««�����  

�� �À�«��� �¤
Ψ(w, i)

�� ����� �� ¿�§��� !  
Ã�� ����¤ � ��� ��� ���� �� ¤� ���� � Ä £��� �� ���� ����

Ψ
�� ���� ��£���   Ã��� �� ��������� � ¤�������

Γ¤��« Wp,even(n)
�� Sp,0(n) × [[0, n− 1]]

  ¿ �����¦¥ �� ���¢� ���� Ψ
���

Γ
��� �������¦ ��¢���� �� ��� �������  

Ψ
µ¯ � ´² ²��´# »´� � �� ��¢� �� ���� ����

Ψ(w, i)
�� � ���� � ��� �������� �� �¬������

p
��� �¢�� ��������  

Ã��� �� �¬¢���� ¤��« ��� §��«����� ������������ ¥ ��� ¤����� � ¤��« � ��«��� ��«��������   & �£��
(h, k)

¬¦
end(u) = (h, k)

  � ����
end(w) = (p, 0) ¥ �� ¤����� � ���� end(v) = end(w) − end(u) = (p − h,−k) ¥ ��� ���¨

��Á�����¦
end(ṽ) = (p − h, k)

  ¿ �����¦¥ �� ��¢� Ψ(w, i) = ṽu ¥ �� end(Ψ(w, i)) = end(ṽ) + end(u) = (p, 2k) ¥����� ���� � ���� ������
Ψ(w, i)

�� �� ���«��� �¤ Wp,even(n)
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3

Ψ

%�&�'� > � �À�«��� �¤ ��� ¬ �Æ ������
Ψ
�� ��� ���� �¤ ��� ���§���� �������   ����

n = 16 ¥
i = 7 ¥ ��� ����� ��� ��«¬���� �� ��� ������ ���� ¤�� ������ ������������§  

? ´# »µ·µº» º� ·³ ´ µ»¸´¹¯´ � "�� �� ��� ��£�� � ¤�������
Γ
¤��« Wp,even(n)

�� Sp,0(n) × [[0, n − 1]]
  "��

W = s1s2 · · · sn

¬� �
S
¨���� ���� ���� ��

(p, 2l)
����

l ∈ Z
  � ����

S
��� ��� �«��� ���§�� ¢�������� �������¦¥����� ��� ������ ��

W
���� ��������

l
  �«��§ ���� ������ ¥ ��� (m, l)

¬� ��� ��� � ��� « ���« �� �¬������   "��
£����¦

i ∈ [[1, n]]
¬� «�À�« �� ���� ����

si

�� � ���� �������§ ¤��«
(m, l)

  ���� ���� ���� � ���� ����¦� �À ����
¬ ������

(m, l)
������ ¬� ��� �������� �¤

W
  ©����� ¥ ���� �� ����� �¤ l 6= 0 Å ��� �� ��� ���� l = 0 ¥ �� ��¢�

m 6 0
¬������

W
������ ¤��«

O ¥ ������� ��� ���� W
���� ��

(p, 0)
����

p > 0
 

"�� �� ��£��
W1 = s1 · · · si−1

���
W2 = si · · · sn Å �� ���� ���

Γ(W ) = (W2W̃1, n − i + 1)
�¤

i > 1

= (W2, 0)
�¤

i = 1
��� ¿�§��� � ¤�� �� �À�«���  

Γ

%�&�'� @ � �À�«��� �¤ ��� ��¢���� ¬�Æ ������
Γ
����

S = {(2, 0), (−1, 1), (−1,−1)}   ������ ��¢�
n = 16 ¥ (m, l) = (1,−3)

���
i = 12

 
"�� �� �������� ��� ���������� �¤

W1
�� ��� ���§��§� �¤ ����� Å �� � ��� ����� �� �� �� � ��««� ¤�� ��������¤������ Ä

A�� B  �� �´·
U
�´ ± ¼ ¹´# ! º�

W
¯�#³ ·³ ±·

end(U) = (k, l)
� �³ ´» � ´ ³ ±¸´

k > m
� ±»� ·³ ´ µ»´C�±²µ·½

µ¯ ¯·¹µ#· µ�
U
µ¯ ± ¼ ¹´# ! ¯·¹µ#·²½ ²º»¶ ´¹ ·³ ±»

W1
�

�� ����« ���� ��� ���� ���� �¬������ �� �� ���«��� �¤ Sp,0(n) Å ¬¦ �¬��� �¤ �������� ¥ �� � ��� � ���� Γ(W )¤��
W2W̃1

  ¿ �����¦¥ �� ��¢� end(W1) = (m, l) ¥ �� ���� end(W̃1) = (m,−l) ¥ ��� end(W2) = (p− m, l)
  �� ����¢�

end(Γ(W )) = (p, 0)
����� ���� � ����

Γ(W )
��� ��� §��� ��������  
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��� �� ��¢� �� ���¢� ���� ¤�� �¢��¦ ����«��¦ ���£À
w1

�¤
Γ(W )

���� ����
end(w1) = (x, 0) ¥ ���� x�� � ������¢� ����§��   "��

w1
¬� ���� � ���£À Ä ����� ��� ��� ����� �� �������� ¥ ��� �����§ �� ������� w1

��
� ������� ���£À ����

W2
�� ���   ©¤

w1 · u = W2
¥ ���� W1w1

�� � ���£À �¤
W

�������¦ ���§�� ����
W1

���
��� �������� ��

(m + x, l)
  �¦ "�««� B  � ¥ �� ��¢� ������ x > 0

  ©¤
W2 · u = w1

¥ ���� u
�� � ���£À �¤

W̃1
¥�� ����

ũ
�� � ���£À �¤

W1
  ���

end(ũ) = end(w̃1) − end(W̃2) = (m − p + x, l)
  �¦ "�««� B  � ¥ �� ��¢�

x − p > 0 ¥ ����� �«����� �§��� x > 0
¬������

p > 0
 

Ã��� ��«������ ��� ����¤ ����
Γ
�� � ����¨��£��� ¤������� ¤��« Wp,even(n)

�� Sp,0(n)
 

�»� º� ·³ ´ ¼ ¹ºº� º� �³ ´º¹´° � �� � �� £����¦ ��¢� �� ���� ����
Γ
�� ��� ��¢���� �¤

Ψ
  ©� �� ����� ����

Ψ(Γ(W )) = W ¥ �� ���� �� ���� �� ���¢� ���� Γ(Ψ(w, i)) = (w, i)
  Ã��� �� ������¦ �Á��¢����� �� ���� ��§ ����

ṽ
�� �Á��� �� ��� ���£À

W1
�¤

Ψ(w, i)
��£��� �� ��� ������������ �¤

Γ
  ©¤

end(u) = (h, k) ¥ �� ��¢� ������¦��«����� ����
end(ṽ) = (p − h, k)

���
end(Ψ(w, i)) = end(ṽu) = (p, 2k)

  �� ���� �� ��¢� �� ���� �� ����
(1) p − h = m ¥ ����� m

�� ��£��� �� �� ��� ������������ �¤
Γ ¥ ��� ���� (2)

�¤
U
�� � ���£À �¤

Ψ(w, i) = ṽu ¥���§�� ����
ṽ ¥ ��� ����� �������� �Á���� (x, k)

¤�� � �������
x ¥ ���� x > m

 
������� ����

p − h > m
  � ���«� £��� ����

ṽ
�� � ������ ���£À �¤

W1
¥ �� ���� ����� �À���� u0 6= ε

����
����

W1 = ṽu0
¥ ��� end(u0) = (x, 0)

�����
x = m− (p−h) < 0

  � ����
W1W2 = ṽu ¥ �� �� �«����� u = u0W2

¥����� �� �¬���� �����
u0

�� � ���£À �¤
w
������§ ��� ¤��¬����� ���¤¨����   �� ��¢� � ������������� ¥ �� ṽ

��
� ��� À �¤

W1
¥ �� ¥ �Á��¢������¦¥ W̃1

�� � ���£À �¤
v
Ä ����� ¤� ���� � ����

uW̃1
�� � ���£À �¤

w
���� ��������

(m + h, 0)
  ��� �� �������� ����

m + h < p ¥ �� ���� ����������� ��� ��£������ �¤ p
  ®���� ���� ���� �� ����� �¦ � ���� ����� ��� ��£������ �¤

p
�� ���� �� ��� ����¤ ¾   ¿ �����¦

p − h 6 m ¥ ��� ��� ��£������ �¤ m
¤�����

p − h > m ¥ �� (1)
�� ���¢��  

��� ���
U
¬� � ���£À �¤

ṽu ¥ � ��� end(U) = (x, k) ¥ ���� ����
U = ṽu0

����
u0 6= ε

  Ã���
u0

�� �
����«��¦ ���£À �¤

u
����

end(u) = (x + h− p, 0) = (x−m, 0)
  � ����

w = uv
�� � ���� �� ��� ���� � ���� ¥ ��«��� ��¢�

x − m > 0 ¥ ����� ���¢�� (2) ¥ ��� ��«������ ��� ����¤ �¤ Ã�����« �  �  
���'� B  ! � Ã��� ������������ �� � §������������� �¤ ��� ��� �� ���   ©����� ¥ �� ��� �� ����� ���� �¤ ����Á���� ������� ¥ ���� ���¦ ��� �� « �����§ � �� ���£� ���� �� ���� ���� ¥ ��« ��¦ ��� ���� ��� � ��� ���§ �� �� ����«������ �����¬�� �¬������   ©¤ ���� �� ��� « ����� ���� �� ��� ¬�Æ ������ ¥ ���� �� ������� �� ������  
� �����§ � ���Á�� ���� �� ���� ¤������ �� ��� ����¦� ¤����¬�� ¥ ¬�� �� �� � ����¬�� ¤�� � ������� ����§��¦ �¤����
S
  �� ����� ���� � ��������¦¥ ��� �� �� � ������ §������������� �¤ ��� ������������ �¤ ��� Ä

� ' ���'� B  �� �´·
n
�´ ± ¼ º¯µ·µ¸´ µ»·´¶ ´¹�

S
�´ ± ¯½°° ´·¹µ# ¯´· º� ¯·´¼ ¯ � µ·³ ¯° ±² ² ¸±¹µ±·µº»¯� �³ µ#³

#º»·±µ»¯ º»²½ º»´ ¯·´¼ � µ·³ ¼ º¯µ·µ¸´ ±�¯#µ¯¯±� »±° ´²½
(1, 0)

� �³ ´» ·³ ´¹´ µ¯ ± �µ� ´#·µº» �´·� ´´» S1,0(n)
±»�

� ±²�¯ º� ²´»¶ ·³
n − 1

·³ ±· ´»� ±·
(0, 2k)

� º¹ ± #´¹·±µ»
k ∈ Z

±»� ¯·±½ µ» ·³ ´ ¹µ¶³ · ³ ±²� �¼ ²±»´ x > 0
�

���'� B  � � Ã�� ������������
Ψ
�� �����¦ ���� �� ��« ��� ��Æ ����¢� ����

S
�� ��� �¦««����� ®��� �¢������

S
��� � ���§� ¢����������¾   "�� �� ������¬ � ��� �« �§� �¤

Ψ
�� �� �� ���� ¥ �� �� � ��� ��� �� �� ��� ��À�

������� Ä
�' � 	�� � � B  �� �´·

S
³ ±¸´ ·³ ´ ¯° ±² ² ³ ´µ¶ ·³ ¸±¹µ±·µº» ¼ ¹º¼ ´¹·½� ±»�

n
�´ ± ¼ º¯µ·µ¸´ µ»·´¶ ´¹ � �³ ´»

Ψµ¯ ± �µ� ´#·µº» �´·� ´´» �
���

S�� ±²�¯ º» ·³ ´ ¯²µ· ¼ ²±» ´ º� ²´»¶ ·³ n
´»�µ»¶ ±·

(p, 0)
� µ·³ ± ° ±¹� ´� ¯·´¼ �

���
S�� ±²�¯ º» ·³ ´ ¼ ²±»´ º� ²´»¶ ·³ n

´»�µ»¶ ±·
(p, 2k)

� º¹ ± #´¹·±µ»
k ∈ Z

� ¯�#³ ·³ ±· µ�
W1

±»�
W2

±¹´
¯�#³ ±¯ �´# »´� µ» ·³ ´ #º»¯·¹�#·µº» º�

Γ
� ·³ ´»

W1
³ ±¯ µ·¯ ¯·´¼ ¯ µ»

S
sym ±»�

W2
³ ±¯ µ·¯ ¯·´¼ ¯ µ»

S
�

���� ���� ���� ����������� �� ��� ���� �� §������ �¤
S
���� ��� ��¢� �« ��� ¢��������� ¥ ¬������ �� ���� ��������� « �¦ ¬� ����� � ��� ����� ��

S
���� ��� ��

(p, 2k)
���� �� ��� ��¢� ��¦ ����� �� ���§��

k ¥ �� ���� W1���
W2

��� ��� ����¨��£���  

 � � ��� % � % ������
 ª ��

�� � ��� ���� �� ��� ���� ������� � ��� � ��� �¤ �����
S
���� ��� �« ��� ���§�� ¢�������� �������¦  �� ����

����� ����« � ����
p(S)

�� ���� ��£��� ¥ ���� �� ¥ ����� �À���� �
S
¨���� ���� ���� �� ��� ������¢� �À ��  

Ã�� ¬�Æ ������ ��������� �� Ã�����« �  ! ���� ¬ � ��£��� ¬¦ £��� ����������§ ��« � �����«������ �¬Æ ����  
Ã�� ������ �� ��¢���� �� ��¢� � ���� �� ¿�§��� B ¤�� �� ������������ �¤ ��� ��
����� ������������� �¤ ���� �������  
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£¤
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°̄

± ±² ²

L+ = (−2, 1, 1, 1, 1,−2)

L− = (0, 0, 0, 0, 0, 1)

S S
0

S1 S−1

Ψ

%�&�'� ³ � ©����������� �¤ ��� ��
����� ����� �¤ ��� ¬�Æ ������ �¤ Ã�����« �  !   ������������
� �� ��¢��¢�� �� "�««� ´  � ¥ ������������ � �� ��� ¬�Æ ������ �¤ Ã�����« ´  B ¥ ��� ������������
� �� �À������� �� ��� ��� �¤ ������� ´  

"��
M

¬� ��� ��� �¤ ���� � {(1, 1), (1, 0), (1,−1)} Å ��� ������ M
������ ¤�� � ������ ¥ ����� M

¨����� ����
��� �� ���

x
¨�À �� ��� ��« ��� �� ��� ����� ���¤ ����� ��� ��� ¤�«��� µ º·¶� µ» ¼ ±·³¯¥ ��� ¤�� �� ������ �
� ¤��« ��� ��¤��« �����  

������� � � ´  � � "��
n
¬� � ������¢� ����§�� ¥ ��� M = m1 · · ·mn

¬� �
M
¨���� �¤ ���§��

n
  � ²±�´²µ»¶

�¤
M

�� � ¤�������
l
¤��«

[[1, n]]
��

Z
  �� ���� ���� ����� �� � ��¬ ����§

l
��� ¤�������

l̂
��£��� ¬¦

l̂(i) =
l(1) + · · · + l(i)

¤��
i ∈ [[0, n]]

 
�� ������ �� ��� �¤

l
�� ¬ ���§ ���� ������ �� ��� ����������� �¤ ��� ����� �¤

M ¥ ��� l̂
�� ���� ������ ��

��� ����� �¤ �¬������
i
��

M
  ��� ¤��

δ ∈ {−1, 0, 1} ¥ �� ��£�� Sδ ⊂ Z
�� ��� �¬������� �¤ ��� ����� ��

S
δ
 

������� � � ´  ! � "��
M = m1 · · ·mn

¬� ��
M
¨���� �¤ ���§��

n
�����§ �� ���§��

2k ®k ∈ Z
¾ ¥ ��§������ ��� � ��¬ ����§

l
  �������� ��� ����§���

i
���� ����

(i, k)
�� � ����� �¤

M ¥ ��� �������� �«��§ ���« �����
� ���

l̂(i)
« ���« �� Å ������ imax = imax(M, l)

��� « �À�« �� ����§�� � ��� ���� ���� ���¦ 
Ã���

M
�� � ´² ²

S�²±�´²´� ¬¦ l ®�� l
�� � ¶ ºº�

S�²±�´²µ»¶ �¤ M
¾ �¤ ��� ¤����� ��§ ���������� ��� ¢���£�� Ä

− ¤�� ���
i 6 imax

���
δ ∈ {−1, 0, 1} ¥ l(i) ∈ Sδ

�

mi = (1,−δ) Å

− ¤�� ���
i > imax

���
δ ∈ {−1, 0, 1} ¥ l(i) ∈ Sδ

�

mi = (1, δ) Å
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Ã��� ���« ��§�¦ ����£���� ��£������ �� �À������� ¬¦ ��� ¤����� ��§ ��««� Ä
A�� ´  � � �³ ´¹´ µ¯ ± �µ� ´#·µº» �´·� ´´»
���

S�� ±²�¯ º» ·³ ´ ¯²µ· ¼ ²±» ´ º� ²´»¶ ·³ n
´»�µ»¶ ±·

(p, 0)��� #º�¼ ²´¯
(M, l)

�³ ´¹´
M

µ¯ ±»
M�� ±²� º� ²´»¶ ·³

n
´»�µ»¶ ±· ´¸´» ³ ´µ¶³ ·� � ´² ²

S�²±�´²´� �½
l
� ±»�

¸´¹µ� ½µ»¶
l̂(n) = p

�
�'  � � ¿���� ����¦ � ����������

4.1
  Ã��� �����¤��« � ����

w = s1 · · · sn

���� �¬������ �� ��� ¤� ���� ��§
��¦ Ä ¤�� �¢��¦

i ∈ [[1, n]] ¥ ��£�� mi = (1, y(si))
���

l(i) = x(si)
  Ã�� ��������§ ����

M = m1 · · ·mn

���� ���
¤�������

l
§�¢� ���� ��� ������� ¬ �Æ ������ ¥ �� �� �����¦ ���� Ä ������ ���� ��� ���§�� �¤ W1

�� ��� �����« ������
���� �� �Á��� �� ��� ����§��

imax

�� ��� ��£������ �¤ � §��� ��¬����§  
�

�� ���� ��� ����� ��� «��� ���� �¤ ��� ¬�Æ ������ Ä
��� '� ´  B � �´·

M = m1 · · ·mn

�´ ±»
M�¼ ±·³ º� ²´»¶ ·³ n

´»�µ»¶ ±· ´¸´» ³ ´µ¶³ · � �³ ´¹´ µ¯ ± �µ� ´#·µº»
�´·� ´´» �

��� ¶ ºº�
S�²±�´²µ»¶ ¯ l

º�
M

� µ·³
l̂(n) = p

�
���

3��¼ ²´¯ (L+, L−, l0)
¯�#³ ·³ ±·

l0
µ¯ ± � �»#·µº» � ¹º° {i ∈ [[1, n]] | mi = (1, 0)} ·º

S0 � ±»� L+
�¹´¯¼ ´#·µ¸´²½

L−� µ¯ ± ¯´C�´»#´ º�
m

´²´° ´»·¯ º�
S+

�¹´¯¼ �
S−� �³ ´¹´ 2m

µ¯ �´# »´� ±¯ ·³ ´ »�° �´¹
º�

i
¯�#³ ·³ ±·

mi ∈ {(1, 1), (1,−1)} �
������  � ��� �'  � � "�� �� ��£�� ���� ¬�Æ ������   ¿ ���� ¥ l0(i) �� ��«��¦ ��£��� �� l(i)

Ä ��� ��¬��� ¤��
���������� ����� ��« ��� ������§��   Ã� ��£��

L+(i)
���

L−(i) ¥ ������ ��� ��£������ �¤
imax

§�¢�� �� ´  !  
¿��

i
���������§ ¥ L+ �������� £��� �¤ ��� ��¬���

l(i)
�¤ �����

mi = (1,−1)
¤��

i 6 imax
¥ ¤������� ¬¦ ��� ��¬����¤ �����

mi = (1, 1)
¤��

i > imax

  � �« �����¦¥ L− �������� �¤ ��� ��¬���
l(i)

�¤ �����
mi = (1, 1)

¤��
i 6 imax¤������� ¬¦ ��� ��¬��� �¤ �����

mi = (1,−1)
¤��

i > imax

  �� ������ �����¦ ���� �� �� �� ���� ��£���  
Ã�� « ��� ���¬��« �� �� ��¢���� ���� ������������ ¥ ��� ¤�� ���� �� «��� �����« ��� ��� �¬������ imax

¥ ������ �� ��� ¬� ������� ���� �� �¬���� � ¶ ºº� ²±�´²µ»¶   ©����� ¥ ��� �� ��¦ �� ��£�� ��� ¤������� l
§�¢�� ¬¦

L+, L− ���
l0
  ¤ ������ �� ��¢� �� ���

l(i) = l0(i)
¤�� ���

i
���� ����

mi

�� ����������   Ã���� �� ������¦ ���¦
��� ��¦ �� ��£�� ��¬��� ¤�� ��� £��� �¬�������

i ¥ �� ����� �� ��� �� �¬������
i0
����� ������������§ �����

mi0

�� �� ���§��
k ®����� k

�� ��£��� ¬¦
y(M) = 2k

¾ Ä �� ��¢� �� ��� ®�� ����� ���§ ���� �����¾ ��� ���« �����¤
L+ �� ��¬ �� ����� �¤ ��� ¤��«

(1,−1) ¥ ��� ���« ���� �¤ L− �� ��¬�� ����� �¤ ��� ¤��«
(1, 1)

  ��� �� ��¢�
�� ���� �������

imax

�� �Á��� ��
i0
�� ��� ¥ �� ����� �� ���� �¤ �� ��¢� �� �� ���� ��� ����� �¤

L+ ���
L−  

� �����¦¥ �¤ ����� �� ���¦ ��� ��¦ �� ��£�� imax
¥ ���� �� ��¢� ¤���� ��� �� �¦ �����¬�� ��¢���� ������������  

���� �� ��� ��¦ �� �� �� Ä �¤ ����� �� �� ����� ����� �¤ ���§��
k ¥ ���� ������¦ imax = i0

  ©¤ ��� ¥ ��� i1, . . . , it¬� ��� ����� �¬������� ����� ������������§ ������
mi

��� �� ���§��
k
  Ã�� ��¦ ����� �� ���� ¥ ¤�� �¢��¦ j ¥

l̂(ij)
���� ��� ��� ��� �� ������� �� ��¢� ������¦ ������� ®����������¦¾ �� �� ���� ��� ����� �¤ L+ ���

L−�¤��� � �������
il
�� ���   ©����� ¥ ��� ¢���£�� ���� �� ��¢� �� ��� ��� ��«� ���« ���� �¤ ¬��� ����� L+ ���

L−�����¢�� ��� ������ Ä ���� �� � ������ �����Á����� �¤ ��� ¤��� ���� ¬ ������ ��� ������
mil

¥ ����� ��� �� « ��¦����� �� ��� ���� ����� ��� ����� ������ ��� �� ��� ��« � ���§��
k
  �� ¥ ��� ���� �� ���� ��� ¢����� �¤

l̂
¤��

��� �¬�������
il
¥ ����� �� ���¦ ��� ��¦ �� ��£�� imax

¥ ��� �� ��� ��������� ��� ��¬ ����§ l
 

©� �� ����� ���� ����� ������������� ��� ��¢���� �� ��� ������� Å ���� �� ��« ���� �� ����� ���� �����
������������� ��� ���� ��£��� �� ��«����� ��� ����¤   Ã��� �� ���¦ ��� � ��� ¬� �« ����� �� ���� �¬������  

�

¿�����¦¥ ��� �� ���� ���� ���� ������« �«����� Ã�����« �  !   "��
M

���
(L+, L−, l0)

¬� �� �� ��� �¬�¢�
������« ¥ ��� �� � ��� ¬ �Æ ����¢��¦ ���� ����� �� ���� ���� �

S
¨���� ���� �� ������¬ �� �� Ã�����« �  !

(2)
  Ã��

������������ �� ��«��� Ä ���
i1 < . . . < im < j1 < . . . < j2m

¬� ��� �������
i
���� ����

mi ∈ {(1, 1), (1,−1)}  Ã��� ��£�� �
S
¨����

w = s1 · · · sn

¬¦
si = (l0(i), 0)

����
mi = (1, 0) ¥ sit

= (L+(t), y(mit
))
���

sjt
=

(L−(t), y(mjt
))
¤��

t ∈ [[1, m]] ®��� ¿�§��� B ¾   ©� �� �����§��¤������ �� ���� ���� ���� ������������ �� ����
��£��� ��� ¬�Æ ����¢�   �¦ "�««� ´  � ¥ �� �� ��«������ ��� ����¤ �¤ Ã�����« �  !  

���'� ´  ´ � �� ���� Á�����¦ �À� ���� �À����� ����� ��� ���� ¤�� ��� ����� ������¬ �� �� Ã�����« �  !
(2)��« �� ¤��«   "��

Aδ(x) =
∑

i∈Sδ xi
¤��

δ ∈ {−1, 0, 1}   � ������� ����Á���¨� � ��� �ª� ���¢�� ��� ¤� ���� ��§ Ä
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� � ������

��� '� ´  � ®�ª�¾ � �´· ∆(x; t)
�´ ·³ ´ � º² ²º� µ»¶ ¼ º²½»º° µ±² µ»

x, x−1 ±»�
t
�

∆(x; t) = (1 − tA0(x))2 − 4t2A1(x)A−1(x)
�³ ´» ·³ ´ ¶ ´»´¹±·µ»¶ � �» #·µº» � º¹ � ±²�¯ º» ·³ ´ ¯²µ· ¼ ²±»´ ´»�µ»¶ ±·

(p, 0)
µ¯

∞∑

n=1

Sp,0(n)tn = [xp] log

(
1√

∆(x; t)

)

¿��
i ∈ Z

¥ ��£�� ai = |{(j, k) / (j, 1), (k,−1) ∈ S
���

i = j + k}|   Ã��� �� ¥ ai

�� �Á��� �� ��� ��«¬��
�¤ �������

(s+, s−) ∈ S
+ × S

− ���� ����
end(s+s−) = (i, 0)

  Ã��� �� ��¢� �����¦
A1(x)A−1(x) =

∑
i aix

i ¥���
(A1A−1)

m = (
∑

i

aix
i)m =

∑

m1,...,mk
P

i
mi=m

(
m

m1, . . . , mk

)(∏

i

ami

i

)
x

P

i
imi

Ã��� ��« � �������� ����� ������� ����§ Ã�����« ´  � ���� �� �� �À�������� �¤
Sp,0(n) = [xptn] log

(
1√

∆(x;t)

) ¥
���� ��� ��������¦ ¬ � ����������� �� �� Ã�����« �  !

(2)
 

Â � ��� 	��������
Â ��� ���
� 	�� � �� � ��� ����¦ ¬��� ������« � �� ���������� ���� �¤ ����� ¤�� ����� ������ ¤��«���� �À ���  
¿ ���� ¥ ��� �� ���� � ��� ��� ���§���� ������� ®¤�� ����� p = 2

¾   "��
Cn =

(
2n
n

)
/(n + 1)

¬� ���
n
�� �������

��«¬��  
�' � 	�� � � �  � ®�ª�¾ � �´· n

�´ ± ¼ º¯µ·µ¸´ µ»·´¶ ´¹ � �³ ´¹´ ±¹´
4nCn/2

� ±²�¯ º» ·³ ´ ¯²µ· ¼ ²±» ´ � µ·³ ¯·´¼ ¯
µ» {(±1,±1)} º� ²´»¶ ·³

2n
·³ ±· ´»� µ»

(2, 0)
�

�'  � � "��
Dn

¬� �� �� ��«¬��   �¦ Ã�����« �  � ¥ �� ��¢� �� ���«����� ����� �¤ ���§�� 2n
���� ���

��
(2, 2l)

�����
l ∈ Z

  ©� ¤��� ��� ��������� ���� ����� ��� �� �� �¢�� �������� �� �����	���� ¬ ������ ���
����� ��� �¤ �¢�� ���§�� ¥ �� �� ��¢� �� ���«����� ����� ���� ��� �� �¬������ 2

 
"�� � � £��� ������ ��� � ���������� �¤ ���� � � ��� ������¢� �¬������

(1, 1)
���

(1,−1) Å ��� �� ��� ����� ����� �¬������
(2, 0) ¥ ����� ��� n + 1

� ���������� ¥ �� ���� ����� ��� ( 2n
n+1

) �������   Ã� ��£�� � ���� ��«������¦¥�� ��«���� �� ������ �¤ ��� ����� §� �� �� ���� ¥ ��� ����� ��� ������¦ 22n = 4n
��¦� �� �� ����  

¿ �����¦¥ ¬¦ Ã�����« �  � ¥ �� ��¢�
2nDn = 4n

(
2n

n + 1

)
,

����� �� �Á� �¢����� �� ��� ������� ¤��«���  
�

�' � 	�� � � �  ! ®�$ �¾ � �´· n
�´ ± ¼ º¯µ·µ¸´ µ» ·´¶ ´¹ � �³ ´¹´ ±¹´

4n
(
3n
n

)
/(n + 1)

� ±²�¯ º» ·³ ´ ¯²µ· ¼ ²±»´
� µ·³ ¯·´¼ ¯ µ» {(2, 0), (−1, 1), (−1,−1)} º� ²´»¶ ·³

3n + 1
·³ ±· ´»� µ»

(2, 0)
�

�'  � � "��
Kn

¬� �� �� ��«¬��   �� ��¢� �� ���«����� ����� �¤ ���§��
3n+1

���� �������� �� �¬������
2
��� �� �� �¢�� ��������   "��

a
¬� ��� ��«¬�� �¤ �����

(2, 0)
�� ���� � ����   �¦ ¤� �����§ �� �¬������� ��

��¢�
2a − (3n + 1 − a) = 2 ¥ �� ���� a = n + 1

  �������§ ��� � ���������� �¤ ����� ����� �� ���� ������� ¬¦
(
3n+1
n+1

) ¥ ��� ���� �� ��« ���� �� ������ ¤�� ��� ��« �����§ 2n
����� ¬ ������

(−1, 1)
���

(−1,−1)
  ���� ����

���� �§��� ��� ��������� ���� ��� �������� ��� �� �¢�� �������� �� ��� ��	����   �� £����¦ �¬����

(3n + 1)Kn = 4n

(
3n + 1

n + 1

)
,

����� §�¢�� �� ��� ������� ���«�������  
�

"�� �� §�¢� �� �À�«��� �¤ ����������� �¤ Ã�����« �  !  
�' � 	�� � � �  � � �´·

n
�´ ± ¼ º¯µ·µ¸´ µ»·´¶ ´¹ � �³ ´¹´ ±¹´

42n+1
(
2n+1

n

)
/(4n + 2)

� ±²�¯ º» ·³ ´ ¯²µ· ¼ ²±»´
� µ·³ ¯·´¼ ¯ µ» {(0,−1), (−1, 1), (1, 1)} º� ²´»¶ ·³

4n + 2
·³ ±· ´»� µ»

(1, 0)
�
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�'  � � "��
Mn

¬� ���� ��«¬��   �¦ Ã�����« �  ! ¥ �¤��� ��¢��§ « ����� � ���� ¥ �� ��¢� �� ���«���������� �¤ ���§��
4n + 2

�����
2n + 1

£��� ����� ��� ���« ���� �¤ {(±1,±1)} ��� 2n + 1
���� ����� ��� ���« ����

�¤ {(0,±1} ¥ ��� �����§ �� �¬������ 1
  Ã� ������ ��� ��������� �� ��� �¬������ ¥ ����� ��� �� ¬� n + 1

�����
�� {(1,±1)}   �� ���� �����¦ �¬���� � ��� ¤� ���� ��§ �������¦

(4n + 2)Mn = 22n+1

(
2n + 1

n

)
· 22n+1,

����� ��������� ��� ����¤  
�

©� ¤��� ¥ � º¹ ±² ² ¼ º¯¯µ�²´ ¯´·¯
S

º�
3
¯·´¼ ¯� »º· ±² ² º� ·³ ´° ³ º¹µ¶º»·±²¥ �� ��� £�� ��� ���¢� ¬�Æ ����¢��¦

������ ¤��«���� ¤��
Sp,0(n)

  �������¦¥ ¤�� ���� ���� ��� ��«¬�� �¤ � ���������� �¤ ���� ���� ¤�� w ∈ Sp,0(n)
��

�����« ���� ¬¦ ��� ���§��
n ¥ ��� ��� ���«������� �¤ ��� ������������§ ����� �����§� ��� ¬�Æ ������ ¬���« �����¦  �� ���� ����¦� �¬����� ������ ¤��«���� ¤�� ���� �¤ ����������¦ B �¤ ��� ¤��« {(a,±1), (−b,±1)} �����

a
���

b
��� �����§���¢� ����§���  

Â �� � � ��� ��
� �� � % ������� �� � � ���� �������� � Ã���� �� �� �¬¢���� ��£��«��� �¤ ��� ¬�Æ ��������¤ Ã�����« � �  � ��� �  ! Ä ��� ����� �� ��� ���� ����� « ����� �� ���§��
k
��� ���� �� ����� ���� ��� �� ���§��

2k
  �� ���� ���� ��� ����

k = 0
�� � �����Á����� �¤ ��� ��¦���� ��««�� ������ �� ���  

Ã��� ��� ¬� ������� �� ������ ��� ¤����� ��§ Á������� Ä § �¢��
S
���

n ¥ ����« � ���¤��« ������¬����� ��
��� ����� �¤ Sp,0(n) ¥ ��� «��¦ ��« �� �� �¢���§� �� ����� ����� ��� ��� ���§��

j� "��
Hn

j

¬� ��� �����«
¢����¬�� ��£��� �� Sp,0(n) ®� ��� ���¤��« ������¬����� ¾ ¬¦ Ä

Hn
j (w) = |{i > 0 | y(wi) = j}   Ã�� ¤����� ��§����������� ¥ ����� ����¤ �� �««������ ¥ §�¢�� � ������� ������ Ä

�' � 	�� � � �  B � �´·
S

�´ ¯½°° ´·¹µ# � µ·³ ¯° ±² ² ³ ´µ¶³ · ¸±¹µ±·µº»¯�
n
�´ ± ¼ º¯µ·µ¸´ µ»·´¶ ´¹� ±»�

j
±»

µ»·´¶ ´¹ � �³ ´» ·³ ´ ´!¼ ´#·±·µº»
E(Hn

j )
µ¯ ´C�±² ·º

n
·µ° ´¯ ·³ ´ C�º·µ´»· º� ·³ ´ »�° �´¹ º� � ±²�¯ º� ²´»¶ ·³

n´»�µ»¶ ±· º¹�µ» ±·´
2j

�½ ·³ ´ »�° �´¹ º� � ±²�¯ º� ²´»¶ ·³
n
´»�µ»¶ ±· ´¸´» º¹�µ» ±·´�

� §������������� ��� ¬� ������ ¤�� ��� �¦««�����
S
  ¿��« ���� ����������� ¥ ��� ��� �¬���� ������

¤��«���� ¤�� � §���� ��«¬�� �¤ ����
S
  ¿�� �������� ¥ �� ��� �Á���� ������� ��� ��� §��� Ä

E(H2n+1
j ) =

(2n + 2)
(

2n+1
n+j+1

)(
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Abstract. Kostka numbers and Littlewood-Richardson coefficients appear in combinatorics and represen-
tation theory. Interest in their computation stems from the fact that they are present in quantum mechanical
computations since Wigner ([17]). In recent times, there have been a number of algorithms proposed to

perform this task ([1], [13], [14], [2], [3]). The issue of their computational complexity was explicitly asked
by E. Rassart ([13]). We prove that the computation of either quantity is #P -complete. This, implies
that unless P = NP , which is widely disbelieved, there do not exist efficient algorithms that compute these
numbers.

Résumé. Les nombres de Kostka et les coefficients de Littlewood-Richardson apparaissent en combinatoire
et en théorie de la représentation. Il est intéressant de les calculer car ils apparaissent dans certains calculs
en mécanique quantique depuis Wigner ([17]). Récemment, plusieurs algorithmes ont été proposés pour
les calculer ([1], [13], [14], [2], [3]). Le problème de la complexité de ce calcul a été posé par E. Rassart
([13]). Nous démontrons que le calcul des nombres de Kotska et des coefficients de Littlewood-Richardson
est #P-complet. Cela implique que, à moins que P=NP, il n’existe pas d’algorithme efficace pour calculer
ces nombres.

1. Introduction

Let N = {1, 2, . . .} be the set of positive integers and Z≥0 = N ∪ {0}. Let λ = (λ1, . . . , λs) ∈ Ns,
λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 1, µ = (µ1, . . . , µt) ∈ Zt

≥0, ν = (ν1, . . . , νu) ∈ Zu
≥0 and α = (α1, . . . , αv) ∈ Nv,

α1 ≥ · · · ≥ αv ≥ 1. The Kostka number Kλµ and the Littlewood-Richardson coefficient cν
λα play an essential

role in the representation theory of the symmetric groups and the special linear groups. Their combinatorial
definitions can be found in Section 2. These have been present in quantum mechanical computations since
the time of Wigner ([17]). Recently, in [13], E. Rassart asked whether there exist fast (polynomial time)
algorithms to compute Kostka numbers and Littlewood Richardson coefficients (Question 1, page 99). We
prove that the two quantities are #P -complete (see Theorems 1, 2). It is known that if a #P -complete
quantity were computable in polynomial time, P = NP . An explanation of this fact is sketched in Section 2.
Thus, under the widely believed hypothesis that P 6= NP , there do not exist efficient (polynomial time)
algorithms to compute Kostka numbers and Littlewood-Richardson coefficients.

In [1], Barvinok and Fomin show how the set of all non-zero Kλµ for a given µ can be produced in
time that is polynomial in the total size of the input and output. They also give a probabilistic algorithm
running in time, polynomial in the total size of input and output, that computes the set of all non-zero
Littlewood-Richardson coefficients cν

λµ given λ and µ. In [3], methods for the explicit computation of
the Kostka numbers and Littlewood-Richardson coefficients using vector partition functions are discussed.
Practical implementations of Littlewood-Richardson calculators have been developed by Anders Buch and
J. Stembridge.

Kλµ is the multiplicity of the weight µ in the representation Vλ of the lie algebra slr+1(C) of the special
linear group having highest weight λ and cν

λα is the multiplicity of Vν in the tensor product Vλ ⊗C Vα. They

2000 Mathematics Subject Classification. Primary 05E10.
Key words and phrases. Complexity, Kostka numbers, LR coefficients, polynomial time.
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also appear in the representation theory of the symmetric groups (see chapter 7, [6]). Schur polynomials
form a linear basis of the ring of symmetric functions, and the Littlewood-Richardson coefficients appear in
the multiplication rule,

sλ · sµ =
∑

ν

cν
λµsν .

They also appear in the linear expansion of a skew Schur functionin terms of the Schur function basis,

sν/λ =
∑

µ

cν
λµsµ.

While there are formulas for Kλµ and cν
λα due to Kostant and Steinberg respectively ([3], [2]), the number of

terms is, in general, exponential in the bit-length of the input. These numbers have interesting propoerties
such as, for fixed λ, µ, α, ν, KNλNµ and cNν

NλNµ are polynomials in N . These facts were established by Kirillov

[7] and Derksen-Weyman [4] respectively.
Whether Kλµ > 0 can be answered in polynomial time (see Proposition 1), and so can the question of

whether cν
λα > 0, though the latter is a non-trivial fact established by K. Mulmuley and M. Sohoni [10], and

uses the proof of the Saturation Conjecture by Knutson and Tao [9]. This fact plays an important role in
the approach to the P vs NP question [11] due to K. Mulmuley and M. Sohoni.

We reduce the #P -complete problem of finding the number |I(a,b)| of 2× k contingency tables to that
of finding some Kostka number Kλµ. Kostka numbers are known to be also Littlewood-Richardson (LR)
coefficients. Thus, their computation reduces to computing some LR coefficient cν

λα, where λ, µ, α and ν can
be computed in time polynomial in the size of (a,b). The main tool used in the reduction to finding Kostka
numbers is the R-S-K correspondence ([6] pages 40-41) between the set I(a,b) of contingency tables and
pairs of tableaux having contents a and b respectively.

2. Preliminaries and Notation

NP is the class of decision problems, e : ∪n∈N{0, 1}n → {0, 1}, for which there exists a polynomial
time Turing machine M and a polynomial p such that (∀n ∈ N), (∀x ∈ {0, 1}n), e(x) = 1 if and only if
∃y, y ∈ {0, 1}p(n) such that M accepts (x, y)}.

The class #P is the class of functions f : ∪n∈N{0, 1}n → Z≥0, for which there exists a polyno-
mial time Turing machine M and a polynomial p such that (∀n ∈ N), (∀x ∈ {0, 1}n), f(x) = |{y ∈
{0, 1}p(n) such that M accepts (x, y)}|. Valiant defined the counting class #P in his seminal paper [15].
Many counting problems are naturally in #P . For example, counting the number of integer points in a
polytope, membership queries to which can be answered in polynomial time is a problem in #P .

A problem W ∈ NP is NP -complete, if given a black box that solves instances of W in polynomial
time, any problem in NP can be solved in polynomial time. Similarly, a counting problem X ∈ #P is
#P -complete if given a black box that provides solutions to instances of X in polynomial time, any problem
in the class #P can be solved in polynomial time. Note that by definition, counting the number of solutions
to any problem in NP is in #P . Thus if a #P -complete counting problem could be solved in polynomial
time, we could find the number of solutions to any problem in NP efficiently (in polynomial time.) and
thereby solve it, by checking if the number of solutions is ≥ 1.

The following problem of computing the number of 2×k contingency tables is known to be #P -complete.
Let a = (a1, a2) ∈ Z2

≥0, a1 ≥ a2 and b = (b1, . . . bk) ∈ Zk
≥0. We denote by I(a, b) the set of 2 × k arrays

of nonnegative integers whose row sums are a1 and a2 respectively and whose column sums are b1, . . . , bk.
Geometrically, I(a, b) can be viewed as the set of integer points in the intersection of the multidimensional
rectangular block defined by the column sums, and the diagonal hyperplane given by the first row sum.
Counting I(a, b) was proved to be #P -complete by R. Kannan, M. Dyer and J. Mount in [5].

A Young diagram ([6], page 1) is a collection of boxes, arranged in left justified rows, such that from
top to bottom, the number of boxes in a row is monotonically (weakly) decreasing. The first two shapes
in Figure 1 are Young diagrams. A filling is a numbering of the boxes of a Young diagram with positive
integers, that are not necessarily distinct. A Young tableau or simply tableau is a filling such that the
entries are

(1) weakly increasing from left to right across each row, and
(2) strictly increasing from top to bottom, down each column.
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* =

Figure 1. Left to right, the shapes λ, α and the skew shape λ ∗ α.

P and Q, in Figure 2, are Young tableaux. A skew diagram is the diagram obtained from removing a
smaller Young diagram out of a larger one. The third shape in Figure 1 is a skew shape. A skew tableau is
a filling of the boxes of a skew diagram with positive integers, non-decreasing in rows, and strictly increasing
in columns (see Figure 5). Let λ := (λ1, . . . , λs). If the number of boxes in the ith row of a tableau, for
1 ≤ i ≤ s is λi, the tableau is said to have shape λ. If the tableau houses µj copies of j for j ≤ t and
µ := (µ1, . . . , µt), it is said to have content µ. Thus, in Figure 2, P and Q have the same shape (5, 2), but
contents (3, 2, 2) and (4, 3) respectively.

Given two shapes λ and α, λ ∗ α is defined to be the skew-shape obtained by attaching the lower left
corner of α to the upper right corner of λ as in Figure 1 (see [6], page 60). size(λ, µ) denotes the number
of bits used in the description of this tuple of vectors. For λ := (λ1, . . . , λs), let |λ| =

∑s
i=1 λi. For vectors

λ, µ, we say that λ D µ if |λ| = |µ| and ∀i,
∑

j≤i λj ≥
∑

j≤i µj . In addition, if λ 6= µ, we say λ B µ. This
ordering is called the dominance ordering.

We call a tableau Littlewood-Richardson or LR, if, when its entries are read right to left, top to
bottom, at any moment, the number of copies of i encountered is greater than or equal to the number of
copies of i + 1 encountered ([6], page 63). We denote the set of all (possibly skew) tableaux of shape λ
and content µ by T(λ, µ), and its subset consisting of all LR (possibly skew) tableaux by LRT(λ, µ). The
Kostka number Kλµ is the number of tableaux of shape λ and content µ, i.e |T(λ, µ)| ([6], page 25). The
Littlewood-Richardson coefficient cν

λα is the number of LR skew tableaux of shape λ ∗ α of content ν,
i.e |LRT(λ ∗ α, ν)| (this follows from Corollary 2, (v), page 62 and Lemma 1, page 65 of [6]).

3. The problems are in #P

The particular representation of partitions used above seems to be the most reasonable in the context of
computing Kostka numbers and Littlewood-Richardson coefficients. The answer to whether or not a problem
is in #P depends on the format in which the input is specified. If for example, we store partitions by their
transposes, then these problems are no longer in the class #P . This can be seen by considering the Kostka
number equal to the number of standard tableaux on a n×2 rectangular array. By the hook length formula,
the number of such tableaux is the Catalan number

(

2n
n

)

/(n + 1) which is exponential in n. However if
the shape and content were represented as the transposes of the corresponding partitions, they occupy only
O(log n) space. And so the Kostka number is doubly exponential in the size of the input. It is not hard to
see that this is impossible for counting problems in the class #P . On the other hand, if the partitions were
represented in unary, it is not clear what the complexity of computing Kostka numbers and LR coefficients
is. In unary, the partition (3, 2, 1) would be represented as (111, 11, 1). Thus unlike in the binary case, one
cannot represent partitions with very large parts efficiently. It is clear that the problems are in #P for the
unary case, but it is not clear whether they are #P -complete.

The tableau shapes λ, α and contents µ, ν are described by vectors with integer coefficients. The
Littlewood-Richardson coefficient number cν

λα counts the number of integer points of a polytope of dimen-
sion O(size(λ, µ)2), given by the intersection of O(size(λ, µ)2) halfspaces. The defining coefficients of these
halfspaces have size O(size(λ, µ)). This follows from the encoding of relevant skew tableaux in the form of
Littlewood-Richardson triangles (see [12].) Therefore the computation of Littlewood-Richardson coefficients
is in #P . The Kostka number Kλµ is known to correspond to Littlewood-Richardson coefficients in param-
eters whose sizes are polynomial in size(λ, µ). For the sake of completeness, an explicit correspondence has
been established in Lemma 2. It follows that the problem of computing the Kostka number Kλµ is in #P .

Proposition 1. Given λ and µ, whether or not Kλµ > 0 can be answered in polynomial time.
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Figure 2. An instance of the correspondence between I(a,b) and ∪λ̌T(λ̌, a) × T(λ̌,b) for
a = (4, 3), b = (3, 2, 2).
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Figure 3. An instance of the correspondence between ∪λ̌T(λ̌, a)×T(λ̌,b) and ∪λ̌Da
T(λ̌,b)

for a = (4, 3) and b = (3, 2, 2).

Proof:

Let λ, µ be defined as in section 1. For any permutation σ of the set {1, . . . , t}, let σ(µ) be the vector
(µσ(1), . . . , µσ(t)). It is a known fact that Kλµ = Kλσ(µ) (see [6], page 26). Let σ be a permutation such
that ∀i ≤ t − 1, µσ(i) ≥ µσ(i+1). For any µ̌, whose components are arranged in non-increasing order, it is
known that Kλµ̌ > 0 if and only if λ D µ̌ (see [6], page 26). Whether λ D σ(µ) can be checked in time that
is O(size(λ, µ)). Thus, whether or not Kλµ > 0 can be answered in time O(size(λ, µ) ln(size(λ, µ)), which
is the time it takes to find a permutation σ that arranges the components of µ in non-increasing order.
�

4. Hardness Results

Lemma 1. Given a = (a1, a2) ∈ Z2
≥0, a1 ≥ a2, and b = (b1, . . . , bk) ∈ Zk

≥0, let λ = (a1 + a2, a2) and

µ = (b1, . . . , bk, a2). Then, |I(a,b)| = Kλµ.

Proof:

The R-S-K (Robinson-Schensted-Knuth) correspondence ([6] pages 40-41) gives a bijection between
I(a,b), the set of 2 × k contingency tables with row sums a and column sums b, and pairs of tableaux
(T1, T2) having a common shape but contents a and b respectively. In other words, we have a bijection
between I(a,b) and ∪λ̌T(λ̌, a) × T(λ̌,b). A sample correspondence is shown in Figure 2.

Claim 1. For every shape λ̌ = (λ̌1, λ̌2), such that that λ̌ D a, there is exactly one tableau having shape

λ̌ and content a. For any other shape λ̌ there is no tableau having shape λ̌ and content a.

It follows from the proof of Proposition 1 that the existence of a tableau with shape λ̌ and content a is
equivalent to the condition λ̌ D a. Any tableau with content a = (a1, a2) can have at most two rows, since
the entries in a single column are all distinct. The filling in which the first a1 boxes of the top row contain
1 and all others contain 2 is a tableau (see Q in Figure 3). Since all the copies of 1 must be in the first row
and must be in a contiguous stretch including the leftmost box, this is the only tableau in T(λ, a). Hence
the claim is proved.

Thus there is a bijection between ∪λ̌T(λ̌, a) × T(λ̌,b) and the set of tableaux of content b having some

shape λ̌ D a. i.e, there is a bijection between ∪λ̌T(λ̌, a) × T(λ̌,b) and ∪λ̌Da
T(λ̌,b). An example of this is

provided in Figure 3. Let us now consider the set ∪λ̌Da
T(λ̌,b).

Claim 2. Any tableau in ∪λ̌Da
T(λ̌,b) can be extended to a tableau of the shape λ = (a1 + a2, a2) by

filling the boxes that are in λ but not λ̌, with k + 1. This extension is a bijection between ∪λ̌Da
T(λ̌,b) and

T(λ, µ).
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1 1 1 2 3

Truncate

Extend

P 4 4

3 42

2 3111

2 3

Figure 4. An instance of the correspondence between ∪λ̌Da
T(λ̌,b) and T(λ, µ), where

a = (4, 3), b = (3, 2, 2), λ = (7, 3) and µ = (3, 2, 2, 3).

2

1

3

1 1 2 3 4 4

4

1 1 1 2 3

2 3

4 4

4

3 3 3

2 2 2 2 2
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Figure 5. An instance of the correspondence between T(λ, µ) and LRT(λ ∗ α, ν) for λ =
(7, 3) and µ = (3, 2, 2, 3), α = (7, 5, 3) and ν = (10, 7, 5, 3).

If there is a tableau of shape λ̌ and content a, λ̌1 ≤ a1 + a2, and λ̌2 ≤ a2. λ̌ D a =⇒ λ̌1 ≥ a2 = λ2.
Therefore no two of the boxes in λ which are not in λ̌ belong to the same column. Those of these boxes,
that are present in a given row, occupy a contiguous stretch that includes the rightmost box. Therefore by
filling them with k + 1 we get a tableau in T(λ, µ). Conversely, given a tableau T in T(λ, µ), deleting all
boxes of T filled with k + 1 gives a tableau in ∪λ̌Da

T (λ̌,b). These two maps are inverses of each other and

hence provide a bijection between ∪λ̌Da
T (λ̌,b) and T(λ, µ). Hence the claim is proved.

An example of this correspondence has been illustrated in Figure 4. Therefore, |I(a,b)| = | ∪λ̌ T(λ̌, a)×

T(λ̌,b)| = | ∪λ̌Da
T(λ̌,b)| = |T(λ, µ)| = Kλµ.

�

Theorem 1. The problem of computing Kλµ, even when λ has only 2 rows, is #P -complete.

Proof:

Computing Kλµ is in #P as shown in Section 3. Now the result follows from Lemma 1 because the compu-
tation of |I(a,b)| is known to be #P -complete ([5]).
�

Lemma 2. Given λ = (λ1, λ2) ∈ Z2
≥0, λ1 ≥ λ2, and µ = (µ1, . . . , µ`) ∈ Z`

≥0, let α = (α1, . . . , α`−1)

where (∀i)αi =
∑

j>i µi, and ν = (ν1, . . . , ν`), where ∀i ≤ `− 1, νi = αi +µi, and ν` = µ`. Then Kλµ = cν
λα.

Proof:

cν
λα is, by definition, |LRT(λ ∗α, ν)|, which is the number of LR tableaux on the skew shape λ ∗α that have

content ν. The skew shape λ ∗ α consists of a copy of λ and a copy of α, as in Figures 1 and 5. For any
skew tableau S of shape λ ∗ α, we shall denote by S|α, the restriction of S to the copy of α and by S|λ, the
restriction of S to the copy of λ. Thus, S|α is a tableau of shape α and S|λ is a tableau of shape λ.

Let S ∈ LRT(λ ∗ α, ν). For i ≤ ` − 1, it follows from the LR and tableau constraints that the ith row of
S|α must consist entirely of copies of i.

Consequently, S|λ must have content ν − α = µ. In other words, S|λ ∈ T(λ, µ). Conversely, given any
tableau T ∈ T(λ, µ), let S(T ) be the skew tableau of shape λ ∗ α in which S(T )|λ = T and the ith row of
S(T )|α consists entirely of copies of i. It is not difficult to see that S(T ) ∈ LRT(λ ∗ α, ν). S(T )|λ = T , thus
we have a bijection between LRT(λ ∗α, ν), the set of LR skew tableaux of shape λ ∗α having content ν and
T(λ, µ), the set of tableaux of shape λ having content µ. Hence Kλµ = |T(λ, µ)| = |LRT(λ ∗ α, ν)| = cν

λα as
claimed.
�

Theorem 2. The problem of computing cν
λα, even when λ has only 2 rows is #P -complete.
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Proof:

By the explanation in Section 3, computing cν
λα is in #P . We have already proved in Theorem 1, that the

computation of Kλµ is #P -complete. The result now follows from Lemma 2.
�

5. Conclusion

We proved that the computation of Kostka numbers and Littlewood-Richardson coefficients is #P -
complete. The reduction to computing Kostka numbers was from the #P -complete problem [5] of computing
the number of contingency tables having given row and column sums. The problem of computing Kostka
numbers was then reduced to that of computing Littlewood-Richardson coefficients. FPRAS (Fully Polyno-
mial Randomized Approximation Schemes) are known to exist for contingency tables with two rows. Thus
we obtain FPRAS for a restricted class of Kostka numbers from the correspondence in Lemma 1. It would
be of interest to know if such schemes exist for Kostka numbers and Littlewood-Richardson coefficients with
general parameters.
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Dual Graded Graphs and Fomin’s r-correspondences associated to the Hopf
Algebras of Planar Binary Trees, Quasi-symmetric Functions and

Noncommutative Symmetric Functions
(EXTENDED ABSTRACT)

Janvier Nzeutchap

Abstract. Fomin (1994) introduced a notion of duality between two graded graphs on the same set of
vertices. By a construction similar to the plactic monoid, Hivert, Novelli and Thibon (2001) introduced
a monoid structure on the set of binary search trees, the Robinson-Schensted insertion algorithm being
replaced by the binary search tree insertion algorithm. Using this monoid they gave a new construction
of the algebra of Planar Binary Trees of Loday-Ronco. In this construction, one can build pairs of graded
graphs of which we study the duality as in Fomin’s setting. We observe that the sylvester congruence
defining this algebra is in fact an r-correspondence as defined by Fomin. We also observe graph duality in
the algebras of noncommutative symmetric functions, and quasi symmetric functions, and we identify an
r-correspondence of two graded graphs built in these algebras, with the hypoplactic congruence introduced
by Krob and Thibon (1997). We also present a combinatorial description of the Schensted-Fomin algorithm
for dual graded graphs and we use this description to give a proof of a bijection between pairs of paths in
any pair of dual graded graphs and permutations of the symmetric group. We conclude with the statement
of a possible connection between graded graphs duality and the construction of dual Hopf algebras.

Résumé. Fomin (1994) a introduit une notion de dualité entre graphes gradués. D’autre part, par une
construction analogue à celle définissant le monöıde plaxique, Hivert, Novelli et Thibon (2001) introduisent
une structure de monöıde sur l’ensemble des arbres binaires de recherche, la congruence plaxique étant
remplacée dans cette construction par l’algorithme d’insertion dans un arbre binaire de recherche, encore
appelé congruence sylvestre par ces auteurs. Cette construction donne lieu à une nouvelle réalisation de
l’algèbre de Hopf des arbres binaires de Loday-Ronco. Dans cette algèbre, il est possible de construire des
paires de graphes gradués dont nous étudions la dualité au moyen d’un isomorphisme avec des graphes
définis par Fomin. Nous identifions par la suite la congruence sylvestre à une r-correspondance que nous
définissons dans ces graphes. La congruence hypoplaxique introduite par Krob et Thibon (1997) est quant
à elle identifiée à une r-correspondance définie sur des graphes en dualité dans les algèbres des fonctions
symétriques non commutatives et des fonctions quasi-symétriques. Nous donnons aussi une description
combinatoire de l’algorithme de Schensted-Fomin pour les graphes gradués en dualité, et nous l’utilisons
pour faire une preuve d’une bijection entre paires de chemins dans de tels graphes, et les permutations du
groupe symétrique. Compte tenu du mode de construction des graphes étudiés, nous concluons par une
possible relation entre graphes gradués en dualité et construction d’algèbres de Hopf duales.

1. Introduction and preliminary definitions

The Young lattice is defined on the set of partitions of integers, with covering relations given by the
natural inclusion order. This lattice is associated to the operation of multiplication of Schur functions [6] sλ

by s1, where there is an edge connecting λ and µ if sµ appears with a nonzero coefficient in the expansion of
s1sλ. The distributive lattice nature of this graph was generalized by S. Fomin (1994) with the introduction
of graph duality [7]. With this extension he introduced a generalization of the classical Robinson-Schensted
algorithm, giving a general scheme for establishing bijective correspondences between pairs of paths in dual

2000 Mathematics Subject Classification. Primary 05-06; Secondary 05E99.
Key words and phrases. graded graph, duality, Schensted-Fomin algorithm, Hopf algebra.
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graded graphs both starting at a vertex of rank 0 and having a common end point of rank n, on the one
hand, and permutations of the symmetric group Sn on the other hand.

Later, Krob and Thibon (1997), Hivert, Novelli and Thibon (2001) showed that using two congruence
relations on words, namely the hypoplactic congruence [2] and the binary search tree insertion algorithm
[1, 3], one can realize as polynomials (commutative or not), two pairs of dual Hopf algebras. The first pair
of algebras is the dual pair formed by the algebra of quasi-symmetric functions (QSym) and the algebra
of noncommutative symmetric functions (Sym). The second is made of the algebra of planar binary trees
(PBT) of Loday-Ronco [5] and its dual (PBT∗) which is isomorphic to itself. In those algebras one builds
pairs of graded graphs analogue to the Young lattice, and associated to the operations of multiplication. One
aim of this paper is first to prove the duality of these pairs of graphs, next to find natural r-correspondences
[7] associated to those graphs, and last to show that these correspondences convert the Schensted-Fomin
algorithm for dual graded graphs into a parallel version of the hypoplactic insertion algorithm and sylvester
insertion algorithm respectively.

The paper is organized as follows: we first recall definitions related to graph duality, and then we examine
the case of PBT in the second section, Sym and QSym are treated in the next section. In the fourth section
we present a combinatorial description of the Schensted-Fomin algorithm for dual graded graphs. We also use
this algorithmic description to give a proof of the bijection between pairs of paths in dual graded graphs and
permutations of the symmetric group. Last we apply this algorithm to the graphs of the previous sections.
Now let us introduce graph duality.

Definition 1.1. A graded graph [7] is a triple G = (P, ρ, E) where P is a discrete set of vertices,
ρ : P → Z is a rank function and E is a multi-set of edges (x, y) satisfying ρ (y) = ρ (x) + 1.

Let G1 = (P, ρ, E1) and G2 = (P, ρ, E2) be a pair of graded graphs with a common set of vertices and a
common rank function.

Definition 1.2. An oriented graded graph [7] G = (P, ρ, E1, E 2) is defined by directing the G1-edges,
E1 up (in the direction of increasing rank) and the G2-edges, E2 down (in the direction of decreasing rank).

Let G = (P, ρ, E1, E2) be an oriented graded graph and K a field of characteristic zero, define KP as
the vector space formed by linear combinations of vertices of P . One can now define two linear operators U
(Up) and D (Down) acting on KP as follows:

(1.1) U x =
∑

(x,y) ∈ E1

m1(x, y) y ; D y =
∑

(x,y) ∈ E2

m2(x, y) x

where mi(x, y) is the multiplicity or the weight of the edge (x, y) in Ei.

Definition 1.3. G1 and G2 are said to be dual [7] if U and D satisfy the commutation relation:

(1.2) Dn+1 Un = Un−1 Dn + In

where Un (resp. Dn) denote the restriction of the operator U (resp. D) to the nth level of the graph, and
In the identical operator at the same level.

Generalizations of this definition are also found in [7], notably the case of an r-duality with r > 1 where
the commutation relation generalizes to:

(1.3) Dn+1 Un = Un−1 Dn + r In and Dn+1 Un = Un−1 Dn + rn In

A well-known example of a graded graph is the Young lattice of partitions of integers, which describes the
multiplication of Schur functions sλ by s1 (Fig. 1). This is a first and natural example of graph duality
in relation with the operation of multiplication in two dual Hopf algebras. In fact, the Young lattice is a
self-dual graded graph or distributive lattice. Its duality expresses the fact that for any partition λ, there
is one more partition obtained by adding a single part to λ than by deleting a single part from λ, and
for two partitions λ and µ there are as many partitions simultaneously contained by λ and µ than those
simultaneously containing λ and µ. On the other hand, the collection of Schur functions span a self-dual
Hopf algebra, that is the algebra of symmetric functions [6]. So the self-dual Hopf algebra of symmetric
functions is described by the Young lattice which is a self-dual graded graph.
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s11111 s2111 s221 s311 s32 s41 s5

s1111 s211 s22 s31 s4

s111 s21 s3

s11 s2

s1

s0

Figure 1. The Young graph: multiplication of Schur functions sλ by s1

2. Dual graded graphs in PBT

This section is devoted to PBT, the Hopf algebra of planar binary trees, for which Loday and Ronco [5]
gave an explicit embedding as a subalgebra of the convolution algebra of permutations, via the construction
of the decreasing tree of a permutation. After recalling the construction of this algebra, we will describe a
second example of graph duality in relation with the operation of multiplication in two dual Hopf algebras. In
all that follows, we will be considering only words on a totally ordered alphabet, for instance A = {1, 2, 3, · · · }.

2.1. Definitions.

Definition 2.1. A decreasing tree T is a labeled binary tree such that the label of each internal node
is greater than the labels of all the nodes in its subtrees.

Let w be a word with no repetition of letters. Its decreasing tree T (w) is obtained as follows: its root
is labeled with the greatest letter n of w, and if w = u n v, where u and v are words with no repetition of
letters, then the left subtree of T (w) is T (u) and its right subtree is T (v). Another tree associated to a
word w is its right strict binary search tree, this is a labeled binary tree labeled with w’s letters such that
for each internal node, its label is greater or equal to the labels of the nodes in its left subtree and strictly
smaller than the labels of the nodes in it’s right subtree. The binary search tree associated to a word w will
be denoted P (w). It is obtained by applying the well-known binary search tree insertion algorithm [1] to w,
but reading w from right to left. During this insertion process one can use a second tree denoted Q(w) to
record the positions in w of the letters inserted at each step. Q(w) coincides with T (std(w)−1) where std(w)
is the standardized word of w. The user not familiar with the standardization process may consult [3] for
definitions. For example let us consider the two words w1 = 25481376 and w2 = 28567324, then we have:

T (w1) =

8

5 7

2 4 3 6

1

; P(w2) =

4

2 7

2 3 6 8

5

; Q(w2) =

8

7 5

1 6 4 2

3

The map w 7→ (P(w),Q(w)) is known as the sylvester correspondence and is associated to a congruence,
the sylvester congruence, defined on words on the alphabet A by: u ≡syv v ⇔ P(u) = P(v). See [3] for
a plactic-like characterization on words. The sylvester canonical permutation associated to an unlabeled
binary tree T is the right-to-left postfix reading of the only binary search tree that is the left-to-right infix
labeling of T . The sylvester canonical permutation of a permutation σ is the right-to-left postfix reading of
P(σ). For example let us consider:

T = ; the labeling is

3

1 5

2 4 6

and the sylvester canonical permutation is σT = 645213.
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645213 is also the sylvester canonical permutation of the permutation 465213. Now let us recall the definition
of the algebra of free quasi-symmetric functions. This definition is needed to introduce PBT.

Definition 2.2. Let σ be a permutation. The Free Quasi-Ribbon Fσ is the noncommutative polynomial

Fσ =
∑

w : std (w) = σ −1

w

where std(w) denotes the standardized word of w, and w runs over the words on the alphabet A. The
free quasi-ribbons span a subalgebra of the free associative algebra. This subalgebra is the algebra of free
quasi-symmetric functions (FQSym), and its multiplication rule is the following:

Fα Fβ =
∑

σ ∈ ( α β [|α|] )

Fσ

where α β [|α|] is the shifted shuffle of the two permutations α and β. The user not familiar with the
standardization process and shuffles may consult [3] for definitions. The dual basis of the Fσ are the Gσ

defined by:

Gσ = Fσ−1 =
∑

w : std (w) = σ

w

An embedding of PBT in FQSym is given as the linear span of the (PT ) defined [3] by:

(2.1) PT =
∑

w : shape (T (std(w))) = T

w =
∑

σ : shape (P(σ)) = T

Fσ

where T is an unlabeled binary tree, σ a permutation, the shape of a labeled tree being the corresponding
unlabeled tree. For example:

P = P52134 = F21354 + F21534 + F25134 + F52134

The multiplication rule in PBT is given by:

(2.2) PT1
PT2

=
∑

T ∈ shuffle (T1,T2)

PT

where shuffle(T1, T2) is the set of unlabeled binary trees whose canonical sylvester permutations appear in
σ1 σ2 [|σ1|], σi being the canonical sylvester permutations associated to Ti. For example:

12 21[2] = 12 43 = (1243 + 1423 + 4123) + (1432 + 4132 + 4312)

so we will have:

P P = P + P ; and one can also check that P• P = P + P + P

The dual basis of the (PT ) are the (QT ) defined by QT = π (GσT
) where π : C〈A〉 −→ C〈A〉/ ≡sylv is

the canonical projection sending a sum of permutations to the sum of the corresponding sylvester canonical
permutations. The multiplication rule in PBT∗ is given by:

QT1
QT2

=
∑

T ∈ Conv (T1,T2)

QT

where Conv (T1, T2) is defined as follows: let σi be the canonical sylvester permutation associated to Ti,
then Conv (T1, T2) is the set of unlabeled binary trees whose canonical sylvester permutations appear in the
convolution product Gσ1

Gσ2
. For example,

G1G12 = G123 + G213 + G312, so one will have Q•Q = Q + Q + Q

Using the multiplication rules in PBT and PBT∗, it is possible to build a pair of graded graphs (Fig.
2 and Fig. 3) whose set of vertices of degree n are the binary trees of size n. In those graphs, there is an
edge between T and T ′ if T ′ appears in the product P• PT (resp. Q • QT ), where • is the tree of size 1. All
edges are weighted 1 since there are no multiplicities in the products in PBT and PBT∗. A second pair of
graphs describes the right multiplication by P• and Q • respectively. See [3] for related figures.
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∅

Figure 2. Γ left
Q•

: left multiplication by Q • in PBT

∅

Figure 3. Γ left
P•

: left multiplication by P• in PBT

2.2. Graph’s duality.

It was already stated in [3], but without proof, that the graphs Γ left
Q•

and Γ left
P•

above could be in duality.

We prove this using the fact that they are isomorphic to two dual graded graphs studied by Fomin [7] and
known as the lattice of binary trees and the bracket tree (Fig. 4 and Fig. 5). The lattice of binary trees is
defined as follows: it’s vertices of rank n are the syntactically correct formulae defining different versions of
calculation of a non-associative product of n+1 entries. So any vertex of rank n is a valid sequence of n−1
opening and n − 1 closing brackets inserted into x1 . x2 · · ·xn. In the bracket tree, two vertices are linked if
one results from the other by deleting the first entry, and then removing subsequent unnecessary brackets,
and renumbering the new expression.

x1(x2(x3x4)) x1((x2x3)x4) (x1x2)(x3x4) (x1(x2x3))x4 ((x1x2)x3)x4

x1(x2x3) (x1x2)x3

x1x2

x1

Figure 4. The lattice of binary trees

Remark 2.3. There is a one-to-one correspondence between unlabeled binary trees and bracketed ex-
pressions. In this correspondence, an unlabeled binary tree is identified with the expression obtained by
completing the tree, adding one leaf to any node having a single child-node, and two leaves to any childless
node. Then label the leaves of the resulting complete unlabeled binary tree according to the left-to-right infix
order. If the final tree is empty then the expression is x1, or else the expression is obtained by recursively
reading its left and right subtrees in that order.
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x1(x2(x3x4)) x1((x2x3)x4) (x1x2)(x3x4) (x1(x2x3))x4 ((x1x2)x3)x4

x1(x2x3) (x1x2)x3

x1x2

x1

Figure 5. The bracket tree, dual of the lattice of binary trees

An example to illustrate the correspondence described in remark 2.3 is the following:

T = ; the labeling is

x1
x2x3

x4 x5

and the expression: (x1(x2x3))(x4x5)

Proposition 2.1. Γ left
Q•

and Γ left
P•

are respectively isomorphic to the lattice of binary trees and it’s dual,

the bracket tree.

The proof of Proposition 2.1 is made using a combinatorial description of the covering relations in
the lattice of binary trees and in the bracket tree, identifying each bracketed expression with an unlabeled
binary tree as described in Remark 2.3. These relations are:

(1) In the lattice of binary trees, a tree T is covered by the set of trees obtained from it by addition of
a single node, in all possible ways.

(2) In the bracket tree, a tree T ′ covers a single tree T obtained from T ′ by deleting it’s left-most node
if any, or its root otherwise, and replacing the deleted node by its own right subtree if any.

It can then be shown that performing Q •QT and P•PT respectively corresponds exactly to applying
the above operations to T . Hence from Fomin’s statement that the lattice of binary trees is dual to the
bracket tree, we have:

Corollary 2.1. Γ left
Q•

and Γ left
P•

are dual as defined by Fomin.

3. Dual graded graphs in Sym and QSym

In the same way as in PBT, one can build two graded graphs in the algebras of noncommutative
symmetric functions (Sym), and of quasi symmetric functions (QSym). They are associated to the operation
of multiplication of ribbon Schur functions (resp., of quasi-ribbon functions) by R1 (resp., F1), see [2] for
definitions. This gives us a third example of graph duality arising from multiplications in two dual Hopf
algebras. The graphs are illustrated below (Fig. 6 and Fig. 7).

R4 R31 R22 R211 R13 R121 R112 R1111

R3 R21 R12 R111

R2 R11

R1

R0

Figure 6. Γ right
R1

: right multiplication by R1 in Sym

Investigating the duality of the two graphs defined above, we found that they are isomorphic to two dual
graded graphs studied by Fomin [7] and known as the lifted binary tree and Binword (Fig. 8 and Fig. 9).
Their vertices are words on the alphabet {0, 1}. In the first graph, a word w is covered by the two words
w.0 and w.1 (where . denotes the usual concatenation of words), except 0 which is only covered by 1. In
Binword, there exists an edge from u to v if u is obtained by deleting a single letter (but not the first) from
v, and in addition, there is an edge from 0 to 1.
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F4 F31 F22 F211 F13 F121 F112 F1111

F3 F21 F12 F111

F2 F11

F1

F0

Figure 7. ΓF1
: multiplication by F1 in QSym

1000 1001 1010 1011 1100 1101 1110 1111

100 101 110 111

10 11

1

0

Figure 8. The lifted binary tree

1000 1001 1010 1011 1100 1101 1110 1111

100 101 110 111

10 11

1

0

Figure 9. Binword, a dual of the lifted binary tree

Remark 3.1. There is a one-to-one correspondence between compositions of an integer n and the vertices
of rank n in the lifted binary tree. A composition I is identified with the word wI obtained by filling its
ribbon diagram from left to right and from top to bottom, with 1 in the first box and in any box following
a descent, 0 elsewhere.

I = (3, 2, 1) = ; wI =

1 0 0

1 0

1

= 100101

Proposition 3.1. Γ right
R1

and ΓF1
are isomorphic to the lifted binary tree and it’s dual binword, respec-

tively.

Corollary 3.1. Γ right
R1

and ΓF1
are dual as defined by Fomin.

4. Schensted-Fomin algorithm for dual graded graphs

In all that follows and unless otherwise stated, G1 and G2 will denote two graded graphs in r-duality,
with a zero denoted 0̂.

4.1. r-correspondences.

As introduced in [8], r-correspondences are bijective realizations of equation (1.2) and its generalizations
(1.3). Let φ be a bijective map associating pairs (b1, b2) to triples (a1, a2, α) where a1 and b1 are edges in
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G1, a2 and b2 are edges in G2 such that start (a1) = start (a2), end (b1) = end (b2), and α ∈ {0, 1, ..., r}.
The map φ is said to be an r-correspondence if the following conditions are satisfied:

(i) if φ(b1, b2) = (a1, a2, α) then end(a1) = start(b2) and end(a2) = start(b1)
(ii) if b1 and b2 are degenerated (b1 = b2 = (x0, x0)) then φ(b1, b2) = (b1, b2, 0)

An important lemma is the following:

Lemma 4.1. There exists an r-correspondence between two graded graphs G1 and G2 if and only if G1

and G2 are in r-duality [7].

One goal of Fomin’s construction is to use r-correspondences to establish bijective maps between pairs
of paths in G1 and G2 both starting at 0̂ and having a common end point of rank n, and permutations of the
symmetric group Sn. In this section we define two natural r-correspondences associated to the pairs of dual
graded graphs of section 2 and 3. Using the Schensted-Fomin algorithm for dual graded graphs, we will later
see that these r-correspondences are parallel versions of the hypoplactic and sylvester insertion algorithms.
A combinatorial description of this algorithm is given in section 4.2.

4.1.1. A natural r-correspondence in PBT ’s graphs.

The following is an algorithm to find a1 = (t, x), a2 = (t, y) and α, when b1 = (y, z) and b2 = (x, z) are
given, r = 1 in this case.

Function getAr :

Inputs: x, y, z;
Outputs: t, α;
Begin

If x = z then t = y and α = 0
Else if y = z then t = x and α = 0
Else if x 6= y then

t = (y without its left-most node, replaced by its own right subtree if any) and (α = 0) ; (1)

Else if z = x ′ : =
x

(that is x + one node added to the left of its left-most node) then (2)

(t = x) and (α = 1) ; (3)

Else

t = (y without its left-most node) and (α = 0) ; (4)

End if

End.

(1): for this correspondence to be well defined, one should prove that t is covered by x in Γ left
Q•

. Indeed, (b1, b2) is in

this case a DU -path from y to x and it is the only DU -path from y to x since Γ left
P•

is a tree. And since Γ left
Q•

and

Γ left
P•

are dual graphs (corollary 2.1), there is a single UD-path from y to x, necessary having t as middle point.

(2): this serves to define x ′.
(4): (b1, b2) is the 2nd DU -loop of the form (x, x); it will match the unique UD-loop (x, x). The first is processed in (3).

Of course this algorithm is invertible.

Proposition 4.1. The previous algorithm defines an r-correspondence in Γ left
Q•

and Γ left
P•

.

Now a few examples to illustrate this correspondence.

y x z t α comments

1. 0 (x 6= y) ⇒ (t = y without its left-most node)

2. 1 (x = y and z = x ′) ⇒ (t = x)

3. 0 (x = y and z 6= x ′) ⇒ (t = y without its left-most node)
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We can do the same for the two graphs Γ right
R1

and ΓF1
that we have defined in Sym and QSym. In this

case, we observe that the natural choice of an r-correspondence in Γ right
R1

and ΓF1
converts the Schensted-

Fomin algorithm for dual graded graphs (applied to those graphs) into a parallel version of the hypoplactic
insertion algorithm. The construction is the following.

4.1.2. A natural r-correspondence in Sym ’s and QSym ’s graphs.

The following algorithm is an adaptation of the one described in [8] for the lattice of binary trees and
the bracket tree, using our Proposition 3.1. Of course this algorithm is invertible.

Function getAr :

Inputs: x, y, z ;
Outputs: t, α ;
Begin

If x = z then t = y and α = 0
Else if y = z then t = x and α = 0
Else if (x 6= y) or (the last box of z does not follow a descent) then (1)

t = (x without its last box) and (α = 0);

Else /* x = y and the last box of z follows a descent */ (2)

(t = x) and (α = 1) ;
End if

End.

(1): that is wz ends with 0.
(2): that is wz ends with 1. wz is defined in Proposition 3.1.

Proposition 4.2. The previous algorithm defines an r-correspondence in Γ right
R1

and ΓF1
.

Now a few examples to illustrate this correspondence.

(i): Two cases where (x 6= y) or (the last box of z does not follow a descent)

y = = 21 ; x = = 3 ; z = = 22 ; t = = 2 ; α = 0

y = = 2 ; x = = 2 ; z = = 2 ; t = = 2 ; α = 0

(ii): A case where (x = y) and (the last box of z follows a descent)

y = = 2 ; x = = 2 ; z = = 21 ; t = = 2 ; α = 1

4.2. Schensted-Fomin algorithm for dual graded graphs.

This algorithm was introduced in [8]. Given an r-correspondence φ, the algorithm establishes a bijective

correspondence between pairs of paths in G1 and G2 starting at 0̂ and having a common end point of rank
n, and permutations of Sn. We describe a combinatorial version of this algorithm and apply it to the two

pairs of graded graphs whose duality has been studied in the previous sections. We also use this description

to give a simpler proof of a bijection between permutations and pairs of paths in dual graded graphs, for

the case r = 1. The two paths (inputs) are given as two sequences of vertices v = (v0, v1, · · · , vn) and
w = (w0, w1, · · · , wn = vn). We’ll be using a double entry matrix Mφ, σ initialized with v on its last column
and w on its last line. In this matrix, lines and columns of odd indices will form an (n + 1)× (n + 1) matrix
Mφ representing a correspondence table for φ, while those of even indices will form an n × n matrix Mσ

representing the permutation σ generated from the two paths v and w.
Given (k, l), evaluating σ(k, l) requires the values of Mφ(k, l − 1) and Mφ(k − 1, l), and will inform us

of the value of Mφ(k − 1, l − 1). To do this, we set z = Mφ(k, l), x = Mφ(k, l − 1), y = Mφ(k − 1, l) and
define t to be equal to Mφ(k− 1, l− 1). So x, y, and z are known values, and t is being searched for. Setting
b1 = (y, z) and b2 = (x, z), one can evaluate φ(b1, b2) which can be expressed as [a1 := (t, x), a2 := (t, y), α].
Now t is known and it only remains to set σ(k, l) = α and we are done. This is illustrated below:
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Mφ, σ =





.
...

t = ? y · · · vk

σk,l = ? .
x z · · · vk+1

...
... .

...
w0 w1 · · · wl wl+1 · · · vn





Mφ (M in short) and σ will be filled from their (n, n)th component to the (0, 0)th for Mφ, or (1, 1)th for σ,
following diagonals:

Step 1: use x = wn−1, y = vn−1 and z = vn = wn to compute Mn−1,n−1 = t and σn,n = α,
satisfying (a1, a2, α) = φ(b1, b2) with b1 = (y, z), b2 = (x, z), a1 = (t, x) and a2 = (t, y).

Mφ, σ =





v0

v1

v2

...
vn−2

Mn−1, n−1 vn−1

σn,n

w0 w1 · · · wn−2 wn−1 vn





Step 2: Mn−1, n−2, σn,n−1, Mn−2, n−1 and σn−1,n are computed.

Step 2n-1: Mφ and σ are completely filled. The number 2n−1 of steps is determined by the total
number of diagonals in Mφ which is an (n + 1) × (n + 1) matrix.

Below is a computer implementable description of the algorithm:

Function permutation from paths :

Inputs: v, w, φ

Outputs: σ

Temporary variables: Mφ, b1, b2, a1, a2, α, L, L0, k, l ;
Begin

n = length(v) − 1; /* length(v): number of consecutive points defining v,
that is 1 more than the number of edges in the path represented by v*/

For all k from 0 to n do

Mφ(k, n) = v(k) and Mφ(n, k) = w(k) ;
End loop.

KL = { (n, n) } ; /* first pair of indices to process */
While L 6= { } do

L0 = { } ; /* the empty set */
For all (k, l) in L do

x = Mφ(k, l − 1) and y = Mφ(k − 1, l) and z = Mφ(k, l) ;
b1 = (y, z) and b2 = (x, z) ;
(a1, a2, α) = φ(b1, b2) ;
Mφ(k − 1, l − 1) = t ; /* common origin to the edges a1 and a2 */
σ(k, l) = α ;
If k > 1 then L0 = L0 ∪ { (k − 1, l) } ;
If l > 1 then L0 = L0 ∪ { (k, l − 1) } ;

End loop.

L = L0 ; /* next pairs of indices to process */
End loop.

End.
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It seems not obvious from this description that Mσ is indeed a permutation matrix. Below is a simple
proof in the case of a simple duality (r = 1), together with the proof of the bijection between permutations
and pairs of paths. The reasoning remains valid only for r = 1.

Proof. Let M ′
φ stands for Mφ where each vertex is replaced by its rank in the graph. One first observes

that M ′
φ is an (n+1)× (n+1) matrix satisfying the following conditions: the first line and the first column

are initialized with 0 while the last ones are initialized with integer entries increasing from 0 to n ; entries
increase at most by 1 on lines and columns ; and for any 2× 2 sub-matrix the difference of the sums on the
first and second diagonals is 0 or 1. This is formally equivalent to:

(4.1)






m(i, n) = i ; m(n, j) = j i, j = 0, · · · , n
m(i, j + 1) − m(i, j) ∈ {0, 1}
m(i + 1, j) − m(i, j) ∈ {0, 1}
m(i + 1, j + 1) + m(i, j) − m(i + 1, j) − m(i, j + 1) ∈ {0, 1}

Next one uses the definition and properties of φ to see that:

(4.2) Mσ(i, j) = M ′
φ(i + 1, j + 1) + M ′

φ(i, j) − M ′
φ(i + 1, j) − M ′

φ(i, j + 1)

Finally, one establishes a bijective map between matrices satisfying (4.1) on the one hand, and permutations
of the symmetric group Sn on the other hand, using (4.2) to determine the permutation matrix associated
to any matrix satisfying (4.1). So the described algorithm (permutation from paths) sends a pair of paths to
a permutation.

As for the proof of the bijection between permutations and pairs of paths, first notice that the above algorithm
is naturally invertible. Given a permutation σ, initialize the first line and the first column of Mφ, σ with the
common zero of the two graphs. Then fill the permutation matrix Mσ with 1’s and 0’s, and starting from the
upper left corner, fill Mφ using φ−1. Hence establishing a bijective correspondence between pairs of paths

in G1 and G2 starting at 0̂ and having a common end point of rank n, on the one hand, and permutations
of Sn, on the other hand. �

Now let us apply this algorithm to the graphs and r-correspondences we studied in the previous sections.

4.2.1. Schensted-Fomin algorithm applied to PBT’s graphs.

We identify any permutation α ∈ Sn with two natural paths vα and wα, the first in Γ left
Q•

and the second

in Γ left
P•

. These two paths are both paths from the empty tree ∅ to Tα = shape(P(α)). The path in Γ left
Q•

is the sequence of shapes of partial binary search trees corresponding to inserting the last k letters of α, for

k = 0 .. n. As for the path in Γ left
P•

, the shapes defining it correspond to selecting in α only letters greater
than k, for k = n .. 0. For example, let us consider α = 645213, applying the sylvester correspondence to α
leads to:

P(α) =

3

1 5

2 4 6

; Q(α) = T (α−1) =

6

5 3

4 2 1

The two natural paths are then:

vα = ∅ → → → → → →

wα = ∅ → → → → → →
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Now let us choose a smaller example to which we will apply the Schensted-Fomin algorithm for dual graded
graphs, say γ = 4213. Below are Mφ, σ ; γ and σ:





∅ ∅ ∅ ∅ ∅
0 1 0 0

∅ ∅
0 0 0 1

∅ ∅
0 0 1 0

∅ ∅
1 0 0 0

∅





;





0 0 1 0

0 1 0 0
0 0 0 1
1 0 0 0



 ;





0 1 0 0

0 0 0 1
0 0 1 0
1 0 0 0





γ = 4213 and σ = 4132, so the permutation produced by the Schensted-Fomin algorithm in PBT using
our natural r-correspondence (see 4.1.1), differs from the initial permutation. But one observation can be
made on the relation between the two permutations: one is obtained from the other by reflexion on the

second diagonal. It is known [8] that a natural choice of an r-correspondence in the Young lattice converts
the Schensted-Fomin algorithm for dual graded graphs into a parallel version of the Robinson-Schensted
algorithm.

Proposition 4.3. Our natural choice of r-correspondence in Γ left
Q•

and Γ left
P•

converts the Schensted-

Fomin algorithm for dual graded graphs into a parallel version of the sylvester insertion algorithm.

4.2.2. Schensted-Fomin algorithm applied to Sym’s and QSym’s graphs.

We identify any permutation α ∈ Sn with two natural paths vα and wα, the first in Γ right
R1

and the

second in ΓF1
. These two paths are both paths from the empty composition ∅ to the recoil composition of

α. The paths in Γ right
R1

is the sequence of recoil compositions of restrictions of α to [1..k], for k = 0 .. n. As

for the path in ΓF1
, it is made of descent compositions of restrictions of α−1 to [k..n], for k = (n + 1) .. 1.

For example, consider α = 215436, applying the hypoplactic insertion algorithm [4] leads to the following
quasi-ribbon and ribbon diagrams:

Qr(α) =

1

2 3

4

5 6

; R(α) = Qr(α
−1) =

2

1 5

4

3 6

The two natural paths are then:

vα = ∅ → → → → → →

wα = ∅ → → → → → →

Now let us choose a smaller example to which we will apply the Schensted-Fomin algorithm for dual
graded graphs, say γ = 1243. Below are Mφ, σ ; γ and σ:
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∅ ∅ ∅ ∅ ∅
0 0 0 1

∅ ∅ ∅ ∅ 1
0 0 1 0

∅ ∅ ∅ 1 2
1 0 0 0

∅ 1 1 2 3
0 1 0 0

∅ 1 11 21 31





;





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 ;





0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0





γ = 1243 and σ = 3421, so the permutation produced by the Schensted-Fomin algorithm in Sym and QSym

using the adaptation (see 4.1.2) of Fomin’s natural r-correspondence, differs from the initial permutation.
Once more, an observation can be made on the relation between them: one is obtained from the other by

reflexion in a central vertical line.

Proposition 4.4. The natural choice of an r-correspondence in Γ right
R1

and ΓF1
converts the Schensted-

Fomin algorithm for dual graded graphs into a parallel version of the hypoplactic insertion algorithm.

5. Conclusion

As suggested by the three examples studied in this paper, which are not isolated cases since numerous
other examples can be found in some other algebras, there seems to be a strong connection between dual
graded graphs and the construction of some dual Hopf algebras. For more examples, in the Hopf algebra
of free quasi-symmetric functions (FQSym) we’ve consider the two pairs of graded graphs describing the
operations F1Fσ and GσG1 for the first pair, FσF1 and GσG1 for the second pair. From explicit computations
on finite realizations of those graphs, we believe that they are also examples of graph duality arising from
multiplication in dual Hopf algebras. Finally, another interesting example is the algebra of free symmetric
functions denoted FSym, providing a realization of the algebra of tableaux introduced by Poirier and
Reutenauer [9] as a subalgebra of the free associative algebra. In this case, the Hopf algebra duality may be
identified with the duality of two graphs the duality of which is established in [7]: the Schensted graph and
the SYT-Tree. Their vertices are Young tableaux.

So dual graded graphs could be viewed as the description of the multiplication rules for products of basis
elements by the ones of rank 1, in two dual Hopf algebras constructed by means of a congruence relation
on words. The congruence itself could be obtained by the Schensted-Fomin algorithm using a certain r-
correspondence in those graphs. This is clearly observed in the construction of the algebra of symmetric
functions (Sym), the algebra of noncommutative symmetric functions (Sym), the algebra of quasi-symmetric
functions (QSym) and the algebra of planar binary trees (PBT), using the plactic, hypoplactic and syslvester
congruences respectively.
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Pieri’s Formula for Generalized Schur Polynomials

NUMATA, Yasuhide

Abstract. We define a generalization of Schur polynomials as a expansion coefficient of generalized Schur
operators. We generalize the Pieri’s formula to the generalized Schur polynomials.

Résumé. Nous définissons une généralisation de polynômes de Schur comme un coefficient de l’expansion
d’opérateurs de Schur généralisés. Nous généralisons la formule du Pieri aux polynômes de Schur généralisés.

1. Introduction

Young’s lattice is a prototypical example of differential posets defined by Stanley [9]. Young’s lattice
has so called the Robinson correspondence, the correspondence between permutations and pairs of standard
tableaux whose shapes are the same Young diagram. This correspondence is generalized for differential
posets or dual graphs (that is a generalization of differential posets) by Fomin [3].

Young’s lattice also has the Robinson-Schensted-Knuth correspondence, the correspondence between
certain matrices and pairs of semi-standard tableaux. Fomin generalizes the method of the Robinson cor-
respondence to that of the Robinson-Schensted-Knuth correspondence in his paper [4]. The operators in
Fomin [4] are called generalized Schur operators. We can define a generalization of Schur polynomials by
generalized Schur operators.

A complete symmetric polynomial is a Schur polynomial associated with a Young diagram consisting of
only one row. Schur polynomials satisfy the Pieri’s formula, the formula describing products of a complete
symmetric polynomial and a Schur polynomial as sums of Schur polynomials like the following;

hi(t1, . . . , tn)sλ(t1, . . . , tn) =
∑

µ

sµ(t1, . . . , tn),

where the sum is over all µ’s that are obtained from λ by adding i boxes, with no two in the same column,
hi is the i-th complete symmetric polynomial and sλ is the Schur polynomial associated with λ.

We generalize the Pieri’s formula to generalized Schur polynomials (Theorem 3.2 and Proposition 3.3).

2. Definition

We introduce two types of polynomials in this section. One of them is a generalization of Schur poly-
nomials. The other is a generalization of complete symmetric polynomials. We will show Pieri’s formula for
these polynomials in Section 3.

2.1. Schur Operators. First we recall generalized Schur operators defined by Fomin [4]. We define a
generalization of Schur function as expansion coefficients of generalized Schur operators.

Let K be a field of characteristic zero that contains all formal power series of variables t, t′, t1, t2, . . ..
Let Vi be finite dimensional K-vector spaces for all i ∈ Z. Fix a basis Yi of each Vi so that Vi = KYi and

2000 Mathematics Subject Classification. Primary 05E10; Secondary 05C78.
Key words and phrases. Generalized Schur operators; Pieri’s formula; Dual graded graph; Differential poset; Symmetric

functions; Binary trees.
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V = KY where Y =
⋃

i Yi. The rank function on V which maps λ ∈ Vi to i is denoted by ρ. We say that V
has the minimum ∅ if Yi = ∅ for i < 0 and Y0 = {∅}.

For a sequence {Ai} and a formal variable x, we write A(x) for the generating function
∑

i≥0 Aix
i.

Hereafter, for i > 0, let Di and Ui be linear operators on V satisfying ρ(Uiλ) = ρ(λ) + i and ρ(Diλ) =
ρ(λ) − i for λ ∈ Y . In other words, the images Dj(Vi) and Uj(Vi) of Vi by Dj and Uj are contained in
Vi−j and Vi+j for i ∈ Z and j ∈ N respectively. We call Di or D(t) and Ui or U(t) down operators and up
operators.

Definition 2.1. Let {ai} be a sequence of elements of K. Down and up operators D(t1) · · ·D(tn) and
U(tn) · · ·U(t1) are said to be generalized Schur operators if the equation D(t′)U(t) = a(tt′)U(t)D(t′) holds.

We write ∗ for the conjugation with respect to the natural pairing 〈 , 〉 in KY . For all i, U∗
i and D∗

i

act as down and up operators, respectively. By definition, U∗(t′)D∗(t) = a(tt′)D∗(t)U∗(t′) if D(t′)U(t) =
U(t)D(t′)a(tt′). Hence down and up operators U∗(tn) · · ·U∗(t1) and D∗(t1) · · ·D∗(tn) are also generalized
Schur operators when D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur operators.

Let down and up operators D(t) and U(t) be generalized Schur operators with {ai} where a0 6= 0. Since
a0 6= 0, there exists {bi} such that a(t)b(t) = 1. Hence the equation D(t′)U(t) = a(tt′)U(t)D(t′) implies

U(t)D(t′) = b(tt′)D(t′)U(t)(2.1)

and

D∗(t′)U∗(t) = b(tt′)U∗(t)D∗(t′).(2.2)

Let ρ′ be −ρ. We take ρ′ as rank function for the same vertex set V . For this rank function ρ′ and the vector
space V , D∗

i and U∗
i act as down and up operators, respectively. Since they satisfy the equation (2.2), down

and up operators D∗(t) and U∗(t) are generalized Schur operators with {bi}. Similarly, it follows from the
equation (2.1) that down and up operators U(t) and D(t) are also generalized Schur operators with {bi} for
ρ′ and V .

Definition 2.2. Let D(t1) · · ·D(tn) and U(tn) · · ·U(t1) be generalized Schur operators. For λ ∈ V

and µ ∈ Y , we write sD
λ,µ(t1, . . . , tn) and sµ,λ

U (t1, . . . , tn) for the coefficient of µ in D(t1) · · ·D(tn)λ and

U(tn) · · ·U(t1)λ, respectively. We call these polynomials sD
λ,µ(t1, . . . , tn) and sµ,λ

U (t1, . . . , tn) generalized

Schur polynomials.

Generalized Schur polynomials sD
λ,µ(t1, . . . , tn) are symmetric in the case when D(t)D(t′) = D(t′)D(t)

but not symmetric in general. It follows by definition that

sD
λ,µ(t1, . . . , tn) = 〈D(t1) · · ·D(tn)λ, µ〉

= 〈λ, D∗(tn) · · ·D∗(t1)µ〉

= sλ,µ
D∗ (t1, . . . , tn)

for λ, µ ∈ Y .

Example 2.3. Our prototypical example is Young’s lattice Y that consists of all Young diagrams. Let a
basis Y , K-vector space V and rank function ρ be Young lattice Y, the K-vector space KY and the ordinal
rank function ρ which maps Young diagram λ to the number of boxes in λ. Young’s lattice Y has the
minimum ∅ the Young diagram with no boxes. Define Ui and Di by Ui(µ) =

∑

λ λ, where the sum is over
all λ’s that are obtained from µ by adding i boxes, with no two in the same column; and by Di(λ) =

∑

µ µ,
where the sum is over all µ’s that are obtained from λ by removing i boxes, with no two in the same column.
Then the operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur operators with {ai = 1}. In

this case, both sD
λ,µ(t1, . . . , tn) and sλ,µ

U (t1, . . . , tn) are equal to the skew Schur polynomial sλ/µ(t1, . . . , tn)
for λ and µ ∈ Y.

2.2. Weighted Complete Symmetric Polynomials. Next we introduce a generalization of complete
symmetric polynomials. We define weighted symmetric polynomials inductively.
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Definition 2.4. Let {am} be a sequence of elements of K. We define the i-th weighted complete

symmetric polynomial h
{am}
i (t1, . . . , tn) by

h{an}
m (t1, . . . , tn) =

{

∑i
j=0 h

{am}
j (t1, . . . , tn−1)h

{am}
i−j (tn), (for n > 1)

h
{am}
i (t1) = ait

i
1 (for n = 1).

(2.3)

By definition, the i-th weighted complete symmetric polynomial h
{am}
i (t1, . . . , tn) is a homogeneous

symmetric polynomial of degree i.

Example 2.5. When ai equal 1 for all i, h
{1,1,...}
j (t1, . . . , tn) equals the complete symmetric polynomial

hj(t1, . . . , tn). In this case, the formal power series
∑

i hi(t) equals the generating function a(t) =
∑

i ti =
1

1−t .

Example 2.6. When ai equal 1
i! for all i, h

{ 1
m!

}
j (t1, . . . , tn) = 1

i! (t1 + · · · + tn)i and
∑

j h
{ 1

m!
}

j (t) =

exp(t) = a(t).

In general, the formal power series
∑

i h
{am}
i (t) equals the generating function a(t) =

∑

ait
i by the

definition of weighted complete symmetric polynomials. It follows from the equation (2.3) that a(t1)a(t2) =
∑

i h
{am}
i (t1)

∑

j h
{am}
j (t2) =

∑

j h
{am}
j (t1, t2). Since the weighted complete symmetric polynomials satisfy

the equation (2.3),

a(t1) · · · a(tn−1)a(tn) =
∑

i

h
{am}
i (t1, . . . , tn−1)

∑

j

h
{am}
j (tn)

=
∑

i

i
∑

k=0

h
{am}
i−k (t1, . . . , tn−1)h

{am}
k (tn)

=
∑

i

h
{am}
i (t1, . . . , tn)

if a(t1) · · · a(tn−1) =
∑

h
{am}
i (t1, . . . , tn−1). Hence

a(t1) · · · a(tn) =
∑

i

h
{am}
i (t1, . . . , tn)

as in the case when ai = 1 for all i. It follows from this relation that h
{am}
0 (t1, . . . , tn) = an

0 .

3. Main Theorem

We show some properties of generalized Schur polynomials and weighted complete symmetric polynomials
in this section. We show Pieri’s formula (Theorem 3.2 and Proposition 3.3) generalized to our polynomials,
the main results in this paper.

First we describe the commuting relation of Ui and D(t1) · · ·D(tn). This relation implies Pieri’s formula
for our polynomials. It also follows from this relation that the weighted complete symmetric polynomials
are written as linear combinations of generalized Schur polynomials when V has the minimum.

Proposition 3.1. Generalized Schur operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1) with {ai} satisfy

D(t1) · · ·D(tn)Ui =

i
∑

j=0

h
{am}
i−j (t1, . . . , tn)UjD(t1) · · ·D(tn).

In the case when the K-vector space V has the minimum ∅, weighted complete symmetric polynomials
are written as linear combinations of generalized Schur polynomials.

Proposition 3.2. For generalized Schur operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1) with {ai} on V
with the minimum ∅, the following equations hold for all i ≥ 0;

sD
Ui∅,∅(t1, . . . , tn) = h

{am}
i (t1, . . . , tn)dn

0 u0,

where u0 and d0 ∈ K satisfy D0∅ = d0∅ and U0∅ = u0∅.
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Example 3.1. In the prototypical example Y, Proposition 3.2 means that the Schur polynomial s(i)

corresponding to Young diagram with only one row equals the complete symmetric polynomial hi.

Next we consider the case when Y may not have a minimum. It follows from Proposition 3.1 that

〈D(t1) · · ·D(tn)Uiλ, µ〉 = 〈
i

∑

j=0

h
{am}
i−j (t1, . . . , tn)UjD(t1) · · ·D(tn)λ, µ〉

for λ ∈ V and µ ∈ Y . This equation implies Theorem 3.2, the main result in this paper.

Theorem 3.2 (Pieri’s formula). For any µ ∈ Yk and any λ ∈ V , generalized Schur operators satisfy

sD
Uiλ,µ(t1, . . . , tn) =

i
∑

j=0

h
{am}
i−j (t1, . . . , tn)

∑

ν(∈Yk−j)

〈Ujν, µ〉sD
λ,ν(t1, . . . , tn).

If Y has the minimum ∅, this theorem implies the following proposition.

Proposition 3.3. For all λ ∈ V , the following equations hold;

sD
Uiλ,∅(t1, . . . , tn) = h

{am}
i (t1, . . . , tn)u0s

D
λ,∅(t1, . . . , tn)

= sD
Ui∅,∅(t1, . . . , tn)u0s

D
λ,∅(t1, . . . , tn),

where U0∅ = u0∅.

Example 3.3. In the prototypical example Y, for any λ ∈ Y, Uiλ means the sum of all Young diagrams
obtained from λ by adding i boxes, with no two in the same column. Thus Proposition 3.3 is nothing but the
classical Pieri’s formula. Theorem 3.2 means Pieri’s formula for skew Schur polynomials; for a skew Young
diagram λ/µ and i ∈ N,

∑

κ

sκ/µ(t1, . . . , tn) =

i
∑

j=0

∑

ν

hi−j(t1, . . . , tn)sλ/ν(t1, . . . , tn),

where the first sum is over all κ’s that are obtained from λ by adding i boxes, with no two in the same
column; the last sum is over all ν’s that are obtained from µ by removing j boxes, with no two in the same
column.

4. More Examples

In this section, we see some examples of generalized Schur operators.

4.1. Shifted Shapes. This example is the same as Fomin [4, Example 2.1].
Let Y be the set of all shifted shapes. (i.e., Y = {{(i, j)|i ≤ j < λi + i}|λ = (λ1 > λ2 > · · · ), λi ∈ N}.)
Down operators Di are defined for λ ∈ Y by

Diλ =
∑

ν

2cc0(λ\ν)ν,

where cc0(λ \ ν) is the number of connected components of λ \ ν which do not intersect the main diagonal;
and the sum is over all ν’s that are satisfying ν ⊂ λ, ρ(ν) = ρ(λ) − i and λ \ ν contains at most one box on
each diagonal.

Up operators Ui are defined for λ ∈ Y by

Uiλ =
∑

µ

2cc(µ\λ)µ,

where cc(λ\µ) is the number of connected components of λ\ν; and the sum is over all µ’s that are satisfying
λ ⊂ µ, ρ(µ) = ρ(λ) + i and λ \ µ contains at most one box on each diagonal.

In this case, since down and up operators D(t) and U(t) satisfy

D(t′)U(t) =
1 + tt′

1 − tt′
U(t)D(t′),
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down and up operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur operators with a0 = 1,

ai = 2 for i ≥ 1. In this case, for λ, µ ∈ Y , generalized Schur polynomials sD
λ,µ and sλ,µ

U are respectively

Qλ/µ(t1, . . . , tn) and Pλ/µ(t1, . . . , tn), where P · · · and Q · · · are the shifted skew Schur polynomials.
In this case, Proposition 3.2 means

h
{1,2,2,2,...}
i (t1, . . . , tn) =

{

2Q(i)(t1, . . . , tn) i > 0

Q∅(t1, . . . , tn) i = 0
.

It also follows that

h
{1,2,2,2,...}
i (t1, . . . , tn) = P(i)(t1, . . . , tn).

Proposition 3.3 means

h
{1,2,2,2,...}
i Qλ(t1, . . . , tn) =

∑

κ

2cc(λ\µ)Qκ(t1, . . . , tn),

where cc(λ\µ) is the number of connected components of λ\ν; and the sum is over all µ’s that are satisfying
λ ⊂ µ, ρ(µ) = ρ(λ) + i and λ \ µ contains at most one box on each diagonal.

4.2. Young’s Lattice: Dual Identities. This example is the same as Fomin [4, Example 2.4]. We
take Young’s lattice Y for Y. Up operators Ui are the same as in the prototypical example, (i.e., Uiλ =

∑

µ µ,

where the sum is over all µ’s that are obtained from λ by adding i boxes, with no two in the same column.)
Down operators D′

i are defined by D′
i =

∑

µ µ, where the sum is over all µ’s that are obtained from λ by

adding i boxes, with no two in the same row. (In other words, down operators D′
i remove a vertical strip,

while up operators Ui add a horizontal strip.)
In this case, since down and up operators D′(t) and U(t) satisfy

D′(t′)U(t) = (1 + tt′)U(t)D′(t′),

down and up operators D′(t1) · · ·D′(tn) and U(tn) · · ·U(t1) are generalized Schur operators with a0 = a1 = 1

ai = 0 for i ≥ 2. In this case, for λ, µ ∈ Y , generalized Schur polynomials sD′

λ,µ equal sλ′/µ′(t1, . . . , tn), where

λ′ and µ′ are the transposes of λ and µ, sλ′/µ′(t1, . . . , tn) are the shifted Schur polynomials.
In this case, Proposition 3.2 means

h
{1,1,0,0,0,...}
i (t1, . . . , tn) = s(1i)(t1, . . . , tn) = ei(t1, . . . , tn),

where ei(t1, . . . , tn) stands for the i-th elementally symmetric polynomials.
Proposition 3.3 means

ei(t1, . . . , tn)sλ(t1, . . . , tn) =
∑

µ

sµ(t1, . . . , tn),

where the sum is over all µ’s that are obtained from λ by adding i boxes, with no two in the same row.
For a skew Young diagram λ/µ and i ∈ N, Theorem 3.2 means

∑

κ

sκ/µ(t1, . . . , tn) =

i
∑

j=0

∑

ν

hi−j(t1, . . . , tn)sλ/ν(t1, . . . , tn),

where the first sum is over all κ’s that are obtained from λ by adding i boxes, with no two in the same row;
the last sum is over all ν’s that are obtained from µ by removing j boxes, with no two in the same row.

4.3. Planar Binary Trees. Let F be the monoid of words generated by the alphabet {1, 2} and 0
denotes the word of length 0. We identify F with a poset by v ≤ vw for v, w ∈ F . We call an ideal of poset F
a planar binary tree or shortly a tree. An element of a tree is called a node of the tree. We write T for the set
of trees and Ti for the set of trees of i nodes. For T ∈ T and v ∈ F , we define Tv by Tv := {w ∈ T |v ≤ w}.

Definition 4.1. Let T be a tree and m a positive integer. We call a map ϕ : T → {1, . . . , m} a
left-strictly-increasing labeling if

• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) ≤ ϕ(v) for w ∈ T and v ∈ Tw2.

We call a map ϕ : T → {1, . . . , m} a right-strictly-increasing labeling if
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• ϕ(w) ≤ ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw2.

We call a map ϕ : T → {1, . . . , m} a binary-searching labeling if

• ϕ(w) ≥ ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw2.

First we consider a presentation of increasing labelings as sequences of trees. For a tree T ∈ T, we
call a node w ∈ T an l-node in T if Tw ⊂ {w1n|n ∈ N}. A node w ∈ T is called an r-node in T if Tw ⊂
{w2n|n ∈ N}. By the definition of increasing labelings ϕ, the inverse image ϕ−1({1, . . . , n}) is a tree for each
n. For a right-strictly-increasing labeling ϕ, ϕ−1({1, . . . , n+1})\ϕ−1({1, . . . , n}) consists of some l-nodes in
ϕ−1({1, . . . , n+1}). Conversely, for a left-strictly-increasing labeling ϕ, ϕ−1({1, . . . , n+1})\ϕ−1({1, . . . , n})
consists of some r-nodes in ϕ−1({1, . . . , n + 1}). Hence we respectively identify right-strictly-increasing and
left-strictly-increasing labelings ϕ with sequences (∅ = T 0, T 1, . . . , T m) of m + 1 trees such that T i+1 \ T i

consists of some l-nodes and r-nodes in T i+1 for all i.
We define linear operators D and D′ on KT by

DT :=
∑

T ′ ⊂ T ; T \ T ′ consists of some l-nodes

T ′,

D′T :=
∑

T ′ ⊂ T ; T \ T ′ consists of some r-nodes

T ′.

Next we consider binary-searching trees. For T ∈ T, let sT be {w ∈ T | If w = v1w′ then v2 6∈ T .
w2 6∈ T.}. The set sT is a chain. We define ST by the set of ideals of sT . For s ∈ ST , we define T 	 s by

T 	 s :=

{

T (s = ∅)

(T − max(s)) 	 (s \ {max(s)}) (s 6= ∅),

where

T − w = (T \ Tw) ∪ {wv|w1v ∈ Tw}

for w ∈ T such that w2 6∈ T . There exists the natural inclusion ν from T − w to T defined by

ν(v′) =

{

w1v v′ = wv ∈ Tw

v′ v′ 6∈ Tw.

This inclusion induces the inclusion ν : T 	 s → T . For a binary-searching labeling ϕ from T ∈ T to
{1, . . . , m}, by the definition of binary-searching labeling, the inverse image ϕ−1({m}) is in ST . The map
ϕ ◦ ν induced from ϕ by the natural inclusion ν : T 	 ϕ−1({m}) → T is a binary-searching labeling
from T 	 ϕ−1({m}) to {1, . . . , m − 1}. Hence we identify binary-searching labelings ϕ with sequences
(∅ = T 0, T 1, . . . , T m) of m + 1 trees such that there exists s ∈ ST i+1 satisfying T i = T i+1 	 s for each i.

We define linear operators U on KT by

UT :=
∑

s∈ST

T 	 s.

These operators D(t′), D′(t′) and U(t) satisfy the following equations;

D(t′)U(t) =
1

1 − tt′
U(t)D(t′),

D′(t′)U(t) = (1 + tt′)U(t)D′(t′).

Hence the generalized Schur polynomials for these operators satisfy the same Pieri’s formula as in the case
of the classical Young’s lattice and its dual construction.

In this case, generalized Schur polynomials are not symmetric in general. For example, since

U∗(t1)U
∗(t2){0, 1, 12}

= U∗(t1)({0, 1, 12}+ t2{0, 2} + t22{0})

= ({0, 1, 12}+ t1{0, 2}+ t21{0}) + t2({0, 2} + t1{0}) + t22({0} + t1∅),
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sU∗

{0,1,12},∅(t1, t2) = s
{0,1,12},∅
U (t1, t2) = t1t

2
2 is not symmetric.

For a labeling ϕ from T to {1, . . . , m}, we define tϕ =
∏

w∈T tϕ(w). For a tree T , it follows that

sT,∅
U (t1, . . . , tn) =

∑

ϕ; a binary-searching labeling

tϕ,

sD
T,∅(t1, . . . , tn) =

∑

ϕ; a right-strictly-increasing labeling

tϕ,

sD′

T,∅(t1, . . . , tn) =
∑

ϕ; a left-strictly-increasing labeling

tϕ.

These generalized Schur polynomials sT,∅
U (t1, . . . , tn) in this case are the commutativizations of the basis

elements PT of PBT in Hivert-Novelli-Thibon [7].
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Pattern avoiding doubly alternating permutations

Erik Ouchterlony

Abstract. We study pattern avoiding doubly alternating (DA) permutations, i.e., alternating (or zigzag)
permutations whose inverse is also alternating. We exhibit a bijection between the 1234-avoiding permuta-
tions and the 1234-avoiding DA permutations of twice the size using the Robinson-Schensted correspondence.
Further, we present a bijection between the 1234- and 2134-avoiding DA permutations and we prove that
the 2413-avoiding DA permutations are counted by the Catalan numbers.

Résumé. Nous étudions les permutations qui évitent les motifs double-alternant (DA), c’est à dire, les
permutations alternantes dont l’inverse est alternante. Nous montrons, en utilisant le correspondance de
Robinson-Schensted, une bijection entre les permutations de longueur n évitant 1234 et les permutations
DA de longueur 2n évitant 1234. Nous montrons aussi, une bijection entre les permutations DA évitant 1234
et celles évitant 2134, et que les permutations DA évitant 2413 sont dénombrées par les nombres de Catalan.

1. Introduction

A permutation σ ∈ Sn is said to contain the pattern τ ∈ Sm if there is a subsequence of (the word
representation of) σ which is order equivalent to (the word representation of) τ . To distinguish between
patterns and other permutations, we will use slightly different notation. For example, the permutation
(1, 3, 2, 4) will be written as 1324 if it is used as a pattern. We will often use the matrix representation of
σ, which is the n× n 0-1-matrix having ones in the positions with matrix coordinates (i, σ(i)). It can also
be written as (Jσ(i) = jK)n

i,j=1, using Iverson’s bracket notation [9] for the characteristic function, JSK = 1
if S is true and 0 otherwise. In the figures we will use dots instead of ones and leave the zeroes empty, as in
Figure 1, to make the picture clearer. In this notation σ contains the pattern τ if some submatrix of (the
matrix representation of) σ is equal to (the matrix representation of) τ . The permutations not containing τ
are called τ-avoiding, and we write

Sn(τ1, τ2, . . . , τt) = {σ ∈ Sn : σ is τi-avoiding for all i = 1, . . . , t}.

A word, e.g., a permutation, w = (wi)
n
i=1, is (up-down)-alternating if w2i−1 < w2i and w2i > w2i+1 for

all applicable i. This means that the word alternates between rises and descents, beginning with a rise. If
it instead starts with a descent, it is called down-up-alternating.

A permutation σ is doubly alternating (DA) if both σ and σ−1 are alternating. The set of pattern
avoiding doubly alternating permutations is denoted by

DAn(τ1, . . . , τt) = {σ ∈ Sn(τ1, . . . , τt) : σ is doubly alternating }.

Pattern avoiding permutations have been subject to much attention since the pioneering work by
Knuth’s [10], where he used them for studying stack sortable permutations. For a thorough summary
of the current status of research, see Bóna’s book [4]. Alternating permutations have a long history, they
were studied already in the 19th century by André [1], and it is well know that they are counted by the tan-
gent and secant numbers, also known as Euler numbers, Ek, and thus, their exponential generating function

2000 Mathematics Subject Classification. Primary: 05A05.
Key words and phrases. permutations, pattern avoidance, doubly alternating.
The author was supported by the European Commission’s IHRP Programme, grant HPRN-CT-2001-00272, “Algebraic

Combinatorics in Europe”.
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Figure 1. The permutation (7, 9, 3, 8, 1, 10, 5, 6, 2, 4) ∈ DA(1234) contains the pattern 3214,
but avoids 1234.

is tan(x)+ sec(x). Alternating permutation avoiding patterns have been studied by Mansour [11], but there
are still many open questions remaining.

The doubly alternating permutations were first counted by Foulkes [6], up to n = 10, using a result
which we state as Theorem 5.1. The only formula known is due to Stanley [13]:

∑

n odd

DAn xn =
∑

k odd

E2
k((log(1 + x)/(1 − x))/2)k/k!,

∑

n even

DAn xn = (1− x2)−1/2
∑

k even

E2
k((log(1 + x)/(1− x))/2)k/k!,

from which we get that the first few numbers for DAn, n > 1, are

1, 1, 1, 2, 3, 8, 19, 64, 880, 3717, 18288, 92935, . . .

The motivation for studying doubly alternating permutations came from work by Guibert and Linusson [8]
who showed that doubly alternating Baxter permutations are counted by the Catalan numbers. It was a
natural step to study other restrictions to see whether interesting results could be found.

Using computer enumerations Guibert came up with several conjectures that indicated there are sur-
prising connections between doubly alternating permutations and ordinary permutations. Some of these are
proved in this paper, see proposition 4.1 and Theorems 5.2 and 6.2, whereas others still remain unproved
and are listed in conjecture 7.1.

In this paper we study doubly alternating permutations avoiding patterns of lengths three and four. The
patterns of length three are covered in Section 3. In Section 4, we show that doubly alternating permutations
avoiding 2413 are counted by Catalan numbers, and are closely related to the doubly alternating Baxter
permutations. Section 5 contains a bijection between DA2n(1234) and Sn(1234) and in Section 6 we use a
result by Babson and West [2] to construct a bijection between DAn(12τ) and DAn(21τ), where τ is any
permutation of {3, 4, . . . , m}, m > 3. In Section 7 other patterns giving the same sequence are investigated
and in the final section some remarks on a few DA permutations avoiding two patterns of length four are
given.

I like to thank Olivier Guibert for introducing me to the problem and for interesting discussions. Thanks
also to Svante Linusson, Bruce Sagan and Mark Dukes for numerous comments and suggestions.

2. Notation and basic facts

First we define the reverse, the complement and the rotation of a permutation σ,

σr = (σ(n + 1− i))n
i=1

σc = (n + 1− σ(i))n
i=1

σ# = (σc)r = (σr)c = (n + 1− σ(n + 1− i))n
i=1

In terms of matrices, the first two correspond to flipping the matrix vertically and horizontally, respec-
tively, whereas the last operation rotates the matrix 180 degrees. However, these bijections do not in general
preserve the doubly alternating property, which means that we lose some symmetry compare with ordinary
permutations, so that more genuinely different patterns need to be examined. However, it is obvious from
the definition that inverting and, if n is even, rotating a permutation does preserve the property of being
doubly alternating.

Lemma 2.1.
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(a) σ ∈ DAn ⇐⇒ σ−1 ∈ DAn

(b) σ ∈ DA2n ⇐⇒ σ# ∈ DA2n

Another simple, but very useful, property that follows from the DA condition is that some areas on the
border of the matrix can never have a dot, see Figure 2.

Lemma 2.2.

(a) Let σ ∈ DA2n, then
(i) σ(1) is odd,
(ii) σ(2) ∈ {3, 5, 7, . . . , 2n− 1, 2n},
(iii) σ(2) = 2n iff σ(1) = 2n− 1,
(iv) σ(2n) is even,
(v) σ(2n− 1) ∈ {1, 2, 4, 6, . . . , 2n− 2},
(vi) σ(2n− 1) = 1 iff σ(2n) = 2.

(b) Let σ ∈ DA2n+1, then
(i) σ(1) is odd and less than 2n + 1,
(ii) σ(2) is odd and greater than 1,
(iii) σ(2n + 1) is even,
(iv) σ(2n) ∈ {4, 6, 8, . . . , 2n, 2n + 1},
(v) σ(2n) = 2n + 1 iff σ(2n + 1) = 2n.

Proof. First for the case a(i), if σ(1) = k > 1, then σ−1(k) = 1, so σ−1(k − 1) > 1, which implies
that k is odd, since σ ∈ DA. For a(ii), assume σ(2) = m < 2n, m > σ(1) > 1. Then σ−1(m − 1) > 2
or σ−1(m + 1) > 2, so m is odd. The equivalence a(iii) is a direct consequence of the definition of doubly
alternating, since σ(2) > σ(1) and σ−1(2n− 1) < σ−1(2n). The other cases are similar. �

Figure 2. Illustration of Lemma 2.2. Shaded areas are forbidden.

Note that this lemma could be applied to σ−1 as well, because of Lemma 2.1. From the two lemmas it is
clear that there is a difference between odd and even sizes, so they require separate treatment in many of the
proofs. This disparity is also reflected in the fact that DAn(τ1, τ2, . . . , τt) is not an increasing function of n for
all patterns. Some counterexamples are, DA4(321) = 2 > 1 = DA5(321), DA6(2431) = 6 > 5 = DA7(2431)
and, if Conjecture 8.1 is true, DA27(1234, 2134) = 2681223 > 2674440 = DA28(1234, 2134).

3. Patterns of length three

For normal permutations, patterns of length three are the first non-trivial cases; they are all counted by
the Catalan numbers. However, for the doubly alternating permutations, it turns out that all the patterns
of length three are (more or less) trivial.

Proposition 3.1.

(i) |DAn(123)| = |DAn(213)| = |DAn(231)| = |DAn(312)| = 1
(ii) |DAn(132)| = Jn even or n = 1K
(iii) |DAn(321)| = 1 + Jn even and n > 4K

Proof. Omitted in the extended abstract. �
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4. 2413-avoiding doubly alternating permutations

The doubly alternating 2413-avoiding permutations were conjectured by Guibert to be counted by the
Catalan numbers. We prove this by showing them to possess a fairly simple block structure. First we need
a technical lemma.

Lemma 4.1. Let σ ∈ DAn(2413), then

(i) n odd =⇒ σ(1) = 1
(ii) n even =⇒ σ(1) = 1 and σ(n) = n or there is a k, 2 < k 6 n− 1, such

that σ(i) > σ(j) for all i < k 6 j.

Proof. We can assume that n > 3, the smaller cases are trivial. Let a = σ(1), and assume σ(1) 6= 1.
By Lemma 2.2, a must be odd. Now let b = σ(β), where β is the smallest number such that σ(β) < a. Note
that β > 3, since σ(2) > a. Also, β is odd since σ(β − 1) > σ(β).

Let c be the largest number such that γ = σ−1(c) < β, see Figure 3. Thus c > a and c must be odd or
c = n, since σ−1(c + 1) > β > σ−1(c) = γ if c < n.

If κ > β, then σ(κ) < a or σ(κ) > c, otherwise we get the 2413 pattern. Therefore the rectangle, with
NW corner (2, a + 1) and SE corner (β − 1, c) contains exactly one dot in each row and column, so it is
square, and hence c = a+β− 2 is even and thus c = n is the only possibility. This proves the first assertion.

If n is even, σ(1) = 1 implies σ(n), by rotational symmetry, so the second assertion follows from
i < β 6 j ⇒ σ(j) < a 6 σ(i). �

β

γ

1
b a c

Figure 3. Illustration of Lemma 4.1, the shaded areas are empty.

As a direct consequence, we get the following corollary, which gives a very explicit description of what
the DA 2413-avoiding permutations look like.

Corollary 4.2.

(i) σ ∈ DA2n+1(2413) iff σ = (1, σ̃), where (σ̃r)−1 ∈ DA2n(2413).
(ii) σ ∈ DA2n(2413) iff the permutation matrix of σ is a block matrix, where all but the anti-diagonal

blocks are empty. Any non-empty block ν has even size, 2k, and can be written ν = (1, ν̃, 2k), where
(ν̃r)−1 ∈ DA2k−2(2413).

Figure 4. Example of the block structure of 2413-avoiding DA permutations.

The block structure condition in the corollary is in fact invariant under taking inverses, even though
the pattern 2413 is not, therefore we get the following, slightly surprising result: DAn(2413) and DAn(3142)
are not only the same size, but are actually the same sets. Therefore also DAn(2413, 3142) is the same set.
They are all counted by the Catalan numbers.
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Proposition 4.1. |DAn(2413)| = Cbn/2c.

Proof. First if n is odd, we have as a direct consequence of Corollary 4.2(i) that |DAn(2413)| =
|DAn−1(2413)|. If n is even, then Corollary 4.2(ii) tells us that σ ∈ DAn(2413) can be factored into blocks
σ1, σ2, . . . , σm, where σi = (1, σ̃i, |σi|) and σ̃r

i ∈ DA(2413).
Let D(x) be the generating function D(x) =

∑

k |DA2k(2413)|xk. Then

D(x) =

∞
∑

i=0

(xD(x))i =
1

1− xD(x)

which implies xD(x)2−D(x)+1 = 0, i.e., the well know equation for the generating function of the Catalan
numbers. Since D(0) = 1, we get |DA2k(2413)| = Ck. �

Another way to prove this is to construct a bijection with Dyck paths. We define Θ : DA2n(2413) ↔
{Dyck paths of length 2n} recursively, by using Corollary 4.2.

(i) Θ(∅) = ∅
(ii) If σ consists of a single block, so that σ = (1, σ̃, 2n), then Θ(σ) is the Dyck path starting with a

rise, ending with a descent and having the Dyck path Θ(σ̃r) as the middle part.
(iii) If σ can be factored into k blocks, σ1, . . . , σk (starting with the leftmost block), then Θ(σ) is the

concatenation of the Dyck paths Θ(σ1), . . . , Θ(σk).

The inverse is similarly defined, using recursion.

Θ
−→

Figure 5. Example of the bijection between DA2n(2413) and Dyck paths.

4.1. Doubly alternating Baxter permutations. A Baxter permutation is defined to be a permuta-
tion, σ = (σi)

n
i=1, such that for all 1 6 i < j < k < l 6 n,

σi + 1 = σl and σj > σl =⇒ σk > σl and

σl + 1 = σi and σk > σi =⇒ σj > σi.

It is clear from this definition that if σ avoids both 2413 and 3142 then it is a Baxter permutation, so we
have

DAn(2413, 3142)⊂ {σ ∈ DAn : σ is Baxter}.

However, in [8], Guibert and Linusson showed that the doubly alternating Baxter permutations are counted
by the Catalan numbers, so the sets must in fact be the same:

Corollary 4.3.

{σ ∈ DAn : σ is Baxter} = DAn(2413, 3142) = DAn(2413) = DAn(3142).

It is also possible to prove this directly, without referring to the result by Guibert and Linusson.

Lemma 4.4. {σ ∈ DAn : σ is Baxter} ⊂ DAn(2413).

Proof. Assume σ is Baxter, but not 2413-avoiding, and d1, d2, d3, d4, with dk = (ik, jk), constitute a
2413 pattern, such that j4 − j1 is as small as possible and given j1 and j4, i3 − i2 is as small as possible , as
in Figure 6. The four areas shaded in the figure are empty, otherwise we would use one of those dots for the
2413-pattern. Now, let ν be the permutation having as permutation matrix the submatrix of σ, consisting
of the rows i2 + 1, i2 + 2, . . . , i3 − 1 and columns j1 + 1, j1 + 2, . . . , j4 − 1. Since σ is Baxter, ν cannot be
empty. The DA condition implies that ν is up-down-alternating, ν−1 is down-up-alternating and |ν| is even.
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Also ν is 2413-avoiding, since otherwise this occurrence of 2413 would have been used instead of d1, . . . , d4,
and ν(1) 6= 1, since ν−1 is down-up-alternating.

Rehashing the argument for Lemma 4.1, we can see that in fact no such permutation ν can exist. Defining
a, b, c, β and γ in the same way as in the proof of Lemma 4.1 we get once again Figure 3. The difference is
that now a and c must be even, whereas β is still odd. But then c = a + β − 2 is odd, a contradiction. �

i1

i2

i3

i4

j3 j1 j4 j2

ν

d1
d2

d3
d4

Figure 6. Illustration of Lemma 4.4. The shaded areas do not contain any dots.

5. 1234-avoiding doubly alternating permutations

In this section we construct a bijection between the doubly alternating 1234-avoiding permutations of size
2n and the ordinary 1234-avoiding permutations of size n by using the Robinson-Schensted correspondence.
Let λ be a Young diagram, and denote by SYT(λ) the set of standard Young tableaux of shape λ. For a
standard Young tableaux, T , let rowk(T ) (colk(T )) denote the number of the row (column) for the entry k,
counting from the top row (leftmost column), which is given the number one. The vector row(T ) (col(T )) is
called the row (column) reading of T .

We define the set of alternating standard tableaux as

Alt(λ) ={T ∈ SYT(λ) : col(T ) is up-down-alternating}

={T ∈ SYT(λ) : row(T ) is down-up-alternating},

where the second equality is a consequence of the relative positions of two consecutive entries in a standard
tableau, as shown in Figure 7.

k

Figure 7. The shaded area denotes the possible positions for the entry k + 1, relative to
the entry k, in a standard Young tableau.

The Robinson-Schensted correspondence, RSK, is a well known bijection between a permutation and a
pair of standard Young tableaux of the same shape, see for example the book by Fulton [7]. An interesting
fact is that doubly alternating permutations can be recognised by their RSK tableaux: They are both
alternating if and only if the permutation is DA. In fact, Foulkes [5] proved a more general theorem, in
which he counts the number of permutations with any given sequences of ups and downs for the permutation
and its inverse. The following lemma is the key for proving Foulkes theorem.

Lemma 5.1. Let σ ∈ Sn, RSK(σ) = (P, Q) and 1 6 k < n, then

k comes before k + 1 in σ ⇐⇒ rowk(P ) > rowk+1(P ).
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Proof. First assume k is inserted before k + 1 in the RSK bumping process. This means that k + 1
can never end up below k, since whenever they are in the same row only k can be bumped down.

For the converse, assume k + 1 is inserted before k. Then k will always be strictly above k + 1, since if
k is in the row exactly above k + 1 and is being bumped down (or k + 1 is in the first row and k is about to
be inserted), k has to bump down k + 1 in the next step and thus stay above. �

Let the signature of a word, w = w1w2 . . . wn, be a sequence of +’s and −’s which has a + in position i
iff wi < wi+1. For example, signature(4, 1, 5, 5, 6, 2, 2) = (−, +,−, +,−,−). We now get Foulkes theorem as
a consequence of Lemma 5.1 and the fact that RSK(σ) = (P, Q) iff RSK(σ−1) = (Q, P ):

theorem 5.1 (Foulkes). Let σ ∈ Sn and RSK(σ) = (P, Q). Then

signature(σ−1) = signature(col(P )) = − signature(row(P )),

signature(σ) = signature(col(Q)) = − signature(row(Q)).

The doubly alternating permutations are a special case:

Corollary 5.2. Let σ ∈ Sn and RSK(σ) = (P, Q). Then

σ ∈ DAn ⇐⇒ P, Q ∈ Alt(λ).

Let T be an alternating standard tableau with 2n entries and at most three columns. We define the pair
column reading colpair(T ) = (wi)

n
i=1, where wi = col2i−1(T ) + col2i(T ) − 2, i.e, (1, 2) 7→ 1, (1, 3) 7→ 2 and

(2, 3) 7→ 3, since Lemma 5.1 tells us that the only possibilities for the pairs are (1, 2), (1, 3) and (2, 3).

Let w = (wi)
l
i=1 be a word, and weight(w)

def
= (|{i : wi = k}|)k>1 be the weight vector of w. We call w

Yamanouchi (or a ballot sequence) if the weight of each prefix of w is a partition, i.e., it is weakly decreasing.

Lemma 5.3. colpair is a bijection between alternating standard tableaux with 2n elements and at most
three columns and Yamanouchi words of length n on three letters.

Proof. Let T be an alternating standard tableaux, with at most three columns. Then colpair(T ) =
(wi)

n
i=1 is, as noted above, a word on the letters 1,2 and 3, so we need to show that colpair(T ) is Yamanouchi

iff col(T ) is an alternating Yamanouchi word.
First assume colpair(T ) is Yamanouchi and let v = (wi)

k
i=1 be an arbitrary prefix of colpair(T ). Then

weight(v) = (a, b, c), is a partition, i.e., a > b > c. Hence weight((colj(T )2k
j=1) = (a + b, a + c, b + c) is also

a partition. Since col(T ) is alternating and weight((coli(T ))2k+1
i=1 ) is a partition if weight((coli(T ))2k+2

i=1 ) is, it
follows that col(T ) is an alternating Yamanouchi word.

For the converse, assume col(T ) is an alternating Yamanouchi word and let u = (coli(T ))2k
i=1 be a prefix

of col(T ). Then weight(u) = (d, e, f) is a partition, so weight((colpairi(T ))k
i=1) = 1

2 (d+e−f, d+f−e, e+f−d)
is a partition, which proves that colpair(T ) is Yamanouchi. �

Now we are ready to combine the bijections to get the bijection Φ : Sn(1234)→ DA2n(1234), defined by

Φ(σ) = RSK−1(colpair−1(col(P )), colpair−1(col(Q)),

where RSK(σ) = (P, Q). See Figure 8 for an illustrative example.

theorem 5.2. Φ is a bijection, hence

|DA2n(1234)| = | Sn(1234)|.

Proof. Let σ ∈ Sn(1234) and RSK(σ) = (P, Q). RSK is a bijection between permutations and pairs
of standard tableaux of the same shape such that if the permutation is 1234-avoiding iff the shape does not
have more than three columns. From the definitions we know that col(P ) and col(Q) are Yamanouchi words,
so, by Lemma 5.3, colpair−1(col(P )) and colpair−1(col(Q)) are alternating standard tableaux with at most
three columns. Their shapes are the same since the weights of col(P ) and col(Q) are the same, which is a
consequence of P and Q having the same shape. Applying the inverse of RSK and using Corollary 5.2, we
get that Φ(σ) ∈ DA2n(1234).

The converse is similar. �
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R
SK
←
→

1 2 3

4 5 7

6

1 2 5

3 4 6

7

←
→ col

←
→ col

1231213 1212331

←
→ colpair

←
→ colpair

1 2 4

3 5 6

7 8 10

9 12 14

11 13

1 2 4

3 6 8

5 9 10

7 11 12

13 14

RSK

←→

Figure 8. Example of the bijection Φ : Sn(1234)→ DA2n(1234).

6. 21τ -avoiding doubly alternating permutations

The goal of this section is to find a bijection between DAn(12τ) and DAn(21τ), where τ is any permu-
tation of {3, 4, . . . , m}, m > 3, by using a well known bijection due to Babson and West [2]. The problem is
that it is far from obvious that it will preserve the property of being doubly alternating. To show this we
need a few definitions. During this section we assume τ to be fixed.

A dot, d, is called active if d is the 1 or 2 in any 12τ or 21τ pattern in σ and other dots are called
inactive. Also the pair of dots, (d1, d2), is called an active pair if d1d2 is the 12 in a 12τ -pattern or the 21
in a 21τ -pattern.

Lemma 6.1. Assume σ ∈ DAn(12τ) ∪DAn(21τ) and d = (i, j) is any active dot. Then i and j are odd.

Proof. First assume σ ∈ DAn(12τ) and that σ has a 21τ -pattern, otherwise there are no active dots.
By inversion symmetry, we can assume that d is the 1 in a 21τ pattern. If j = 1, i.e. σ−1(1) = j, then j is
odd by Lemma 2.2, and if j > 1, then σ−1(j − 1) > σ−1(j), since a dots to the north-west of d would give a
12τ pattern. Hence j is odd. Also, to avoid the 12τ , σ(i− 1) > σ(i), so i is odd as well.

Now assume instead σ ∈ DAn(21τ). Let d1, d2, . . . , dm, be the dots in a 12τ pattern, with dk = (ik, jk).
If i1 is even then there is a descent from i1 to i1 + 1 and so the corresponding points along with tau will
make the forbidden pattern. So i1 is odd and the same argument applies to i2, j1, and j2. �

Figure 9. Illustration of the proof for Lemma 6.1, with τ = (3, 4). Shaded areas are forbidden.

We now define a Young diagram, λσ, consisting of the part of the board which contains the active dots.
For a pair of dots, d1, d2, let Rd1,d2

to be the smallest rectangle with top left coordinates (1, 1), such that

659



PATTERN AVOIDING DOUBLY ALTERNATING PERMUTATIONS

d1, d2 ∈ Rd1,d2
. Define

λσ
def
=

⋃

Rd1,d2
,

where the union is over all active pairs (d1, d2). It is clear from the definition that λσ is indeed a Young
diagram (see Figure 10).

A rook placement (also known as traversal or transversal) of a Young diagram, λ, is a placement of dots,
such that all rows and columns contain exactly one dot. If some of the rows or columns are empty we call
it a partial rook placement. Furthermore, we say that a rook placement on λ avoids the pattern τ if no
rectangle, R ⊂ λ, contain τ .

The definition of λσ implies the following useful fact:

Lemma 6.2. Let σ ∈ DAn and rp(λσ) be the partial rook placement on λσ induced by σ. Then

σ ∈ DAn(12τ) ⇐⇒ rp(λσ) is 12-avoiding,

σ ∈ DAn(21τ) ⇐⇒ rp(λσ) is 21-avoiding.

Figure 10. Example of λσ for σ = (1, 11, 7, 9, 5, 12, 8, 10, 3, 4, 2, 6) and τ = (3, 4).

The bijection we will use is due to Babson and West [2], which built on work by Simion and Schmidt [12]
and West [14]. But we give here the more general result by Backelin, West, and Xin [3].

theorem 6.1 (Backelin, West, Xin). Let τ be any permutation of {t + 1, t + 2, . . . , m}. Then for every
Young diagram λ, the number of (t, t − 1, . . . , 1, τ)-avoiding rook placements on λ equals the number of
(1, 2, . . . , t, τ)-avoiding rook placements on λ.

We call two permutations of the same size a-equivalent if all the inactive dots are the same, and write
σ1∼aσ2. We shall see in Lemma 6.4 that this implies λσ1

= λσ2
.

Lemma 6.3. If σ ∈ DAn(12τ) ∪DAn(21τ) and ν∼aσ, then ν is doubly alternating.

Proof. Let d = (i, j) ∈ ν be a dot in an odd row, so that, by Lemma 6.1, both the dots in row
i − 1 and row i + 1 are inactive (if they exists). If d is inactive then all three dots also belong to σ so
ν(i−1) > ν(i) < ν(i+1). If d is active there is a τ -pattern to the SE of d, so if either of the dots in row i−1
or row i + 1 are to the left of d, then this dot is active, since it creates either a 12τ or 21τ pattern together
with d and the τ pattern, giving a contradiction, so again ν(i− 1) > ν(i) < ν(i + 1). The same applies, by
symmetry, to dots in odd columns. �

Lemma 6.4. If σ, ν ∈ DAn, then

σ∼aν =⇒ λσ = λν .

Proof. Let σ∼aν be two arbitrary a-equivalent DA permutations and assume s = (i, j) is a SE corner
of λσ. We need to show that s ∈ λν , so that λσ ⊆ λν and thus, since ∼a is reflexive, λν = λσ.

Let Rd1,d2
⊂ λσ be a rectangle, such that s ∈ Rd1,d2

. Such a rectangle must exist, otherwise could not s
belong to λσ . Hence there is a τ -pattern to the SE of s and one of the dk is in row i and one (possibly the
same one) is in column j. But, as ν∼aσ, they have the same inactive dots, so there must also exist a dot
d′1 ∈ λν in row i and a dot d′2 ∈ λν in column j. If d′1 is east of s or if d′2 is south of s then s ∈ λν . Hence
we can assume d′1 and d′2 to be weakly NW of s. If d′1 6= d′2, then s ∈ Rd′

1
,d′

2
⊂ λν , since the τ -pattern is still

SE of s, and if d′1 = d′2 = s then clearly s ∈ λν . �
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Now we are ready to construct a bijection Ψ : DAn(12τ) → DAn(21τ). Let σ ∈ DAn(12τ), so that the
restriction of σ to λσ is a partial 12-avoiding rook placement. By Theorem 6.1 (ignoring the empty rows and
columns) and Lemma 6.4, there exists a unique 21-avoiding (partial) rook placement on λσ, with the same
rows and columns empty, which we combine with the inactive dots of σ to get Ψ(σ). By Lemma 6.3, Ψ(σ) is
DA, and Lemma 6.2 says that it avoids 21τ . It is also clear from Theorem 6.1 that it is indeed a bijection.
We have thus bijectively shown:

theorem 6.2. Let τ be any permutation of {3, 4, . . . , m}, m > 3. Then

|DAn(21τ)| = |DAn(12τ)|.

As a special case we have

Corollary 6.5. |DAn(2134)| = |DAn(1234)|.

7. Other patterns with the same number sequence as Sn(1234)

By examining all the patterns of length four with computer, Guibert found 15 different cases that all
seem to give rise to the same sequence, | Sn(1234)|. Using Theorems 5.2 and 6.2, inversion, rotation and
Proposition 7.1 below, we get altogether ten bijections, see Figure 11. However, to prove that all of them are
indeed the same we would need five more bijections. In fact, we conjecture that the number of permutations
are the same in all the cases given below.

Conjecture 7.1 (Guibert).

|DA2n(1234)| = |DA2n+1(1243)|

= |DA2n(1432)|

= |DA2n+1(1432)|

= |DA2n(2341)|

= |DA2n(3421)|

One can note that many of the patterns in the conjecture are of the same type as treated in Theorem 6.1,
but the proof does not work here, except for 2134, since the bijections destroy the DA property.

Proposition 7.1. |DA2n(2143)| = |DA2n+1(3412)| = |DA2n+2(3412)|.

Proof. Let σ ∈ DAn(3412), with n > 4. If σ(1) > 1, we get the forbidden pattern on the rows 1, 2,
σ−1(1), σ−1(2), so σ(1) = 1. Let σ̃ be the permutation with the first row and column of σ removed. It is
clear that if n is odd then σ̃c ∈ DAn−1(2143) iff σ ∈ DAn(3412), and if n is even then σ̃# ∈ DAn−1(3412)
iff σ ∈ DAn(3412). �

Sn(1234)
Th. 5.2
←→ DA2n(1234)

Th. 6.2
←→ DA2n(2134)

#
←→ DA2n(1243)

Th. 6.2
←→ DA2n(2143)

Pr. 7.1
←→ DA2n+1(3412)

Pr. 7.1
←→ DA2n+2(3412)

DA2n+1(1243)
Th. 6.2
←→ DA2n+1(2143)

DA2n(1432)
#
←→ DA2n(3214)

DA2n(2341)
−1
←→ DA2n(4123)

DA2n(3421)
#
←→ DA2n(4312)

DA2n+1(1432)

Figure 11. Known bijections between the sequences conjectured to be | Sn(1234)|.
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8. Avoiding pairs of patterns of length four

When we have two patterns of length four, there are a huge number of cases. We have not yet studied
many of these, but would like to give a flavour of what can happen by presenting one result and two
conjectures. Combining the results in Sections 4 and 5 we get

Proposition 8.1.

|DAn(1234, 2413)|=











Fn/2, if n is even,

2, if n = 5,

1, otherwise,

where the Fn are the Fibonacci numbers.

Proof. Let σ ∈ DA2n(1234, 2413). By Corollary 4.2, σ can be factored into blocks, σ1, σ2, . . . σk. As σ
avoids 1234 must each block be either 12 or 1324, since each of them have a dot in the NW corner and the
SE corner. Hence

|DA2n(1234, 2413)| = |DA2n−2(1234, 2413)|+ |DA2n−4(1234, 2413)|,

and since |DA0(1234, 2413)|= |DA2(1234, 2413)|= 1, we get the Fibonacci numbers.
If σ ∈ DA2n+1(1234, 2413), then σ(1) = 1. Let σ̃ = (2n + 1− σ(i))2n+1

i=2 be the permutation constructed
from σ by removing the first row and column and then flipping horizontally. Then σ̃ ∈ DA2n(321, 2413),
which by Proposition 3.1(iii) gives two possibilities if 2n > 4, namely (1, 3, 2, 5, 4, . . . , 2n− 1, 2n− 2, 2n) and
(3, 5, 1, 7, 2, 9, 4, . . . , n, n − 4, n − 2). However, only the former avoids 2413 if n > 6, so we get the desired
result. �

The following two conjectures have been verified by computer calculations up to n = 23.

Conjecture 8.1.

|DAn(1234, 3214)|=











Fn−1, if n is even,

1, if n = 1 or n = 3,

Fn−1 − Fn−7, otherwise.

Conjecture 8.2.

|DAn(1234, 2134)| =











Cn/2, if n is even,

1, if n = 1 or n = 3,

C
(4)
(n−5)/2, otherwise.

Here C
(4)
n is the fourth difference of the Catalan numbers, defined recursively by C

(0)
n = Cn and C

(i+1)
n =

C
(i)
n+1 − C

(i)
n . By collecting the terms and simplifying we get

C(4)
n = Cn+4 − 4Cn+3 + 6Cn+2 − 4Cn+1 + Cn

= 9Cn
9n4 + 54n3 + 135n2 + 122n + 40

(n + 2)(n + 3)(n + 4)(n + 5)
.
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[4] M. Bóna. Combinatorics of Permutations. CRC Press, 2004.

[5] H. O. Foulkes. Enumeration of permutations with prescribed up-down and inversion sequences. Discrete Math., 15:235–252,
1976.

[6] H. O. Foulkes. Tangent and secant numbers and representations of symmetric groups. Discrete Math., 15:311–324, 1976.
[7] W. Fulton. Young Tableaux, volume 35 of L.M.S. Student Texts. Cambridge University Press, 1997.
[8] O. Guibert and S. Linusson. Doubly alternating Baxter permutations are Catalan. Discrete Math., 217:157–166, 2000.
[9] K. E. Iverson. A Programming Language. Wiley, 1962.

[10] D. Knuth. The art of computer programming. Vol 3: Sorting and searching. Addison-Wesley, 1973.

662



E. Ouchterlony

[11] T. Mansour. Restricted 132-alternating permutations and Chebyshev polynomials. Annals of Combinatorics., 7:2:201–227,
2003.

[12] R. Simion and F. W. Schmidt. Restricted permutations. European J. Combin., 6:383–406, 1985.
[13] R. Stanley. private communications, December 2005.
[14] J. West. Permutations with restricted subsequences and stack-sortable permutations. Ph. D. thesis, MIT, 1990.
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Enriched P -partitions and peak algebras of types A and B

T. Kyle Petersen

Abstract. We generalize Stembridge’s enriched P -partitions and use this theory to outline the structure
of peak algebras for the symmetric group and the hyperoctahedral group. Whereas Stembridge’s enriched
P -partitions are related to quasisymmetric functions (the coalgebra dual to Solomon’s type A descent alge-
bra), our generalized enriched P -partitions are related to type B quasisymmetric functions (the coalgebra
dual to Solomon’s type B descent algebra). Using these functions, we explore three different peak algebras:
the “interior” and “left” peak algebras of type A, and a new type B peak algebra. Our results specialize to
results for commutative peak algebras as well.

Résumé. Nous généralisons les P -partitions enrichies de Stembridge et employons cette théorie pour décrire la

structure des algèbres de pics du groupe symétrique et du groupe hyperoctaédral. Tandis que les P -partitions
enrichies sont liés aux fonctions quasisymmetriques (la coalgèbre duale de l’algèbre des descentes du type
A de Solomon), nos généralisations des P -partitons enrichies sont liés aux fonctions quasisymmetriques de
type B (la coalgèbre duale de l’algèbre des descentes de type B de Solomon). En utilisant ces fonctions,
nous présentons trois différentes algèbres de pics : les algébres de pics “intérieures” et “gauches” de type
A, et une nouvelle algèbre du pics du type B. Nous en déduisons des résultats reliés à des algèbres de pics
commutatives.

1. Introduction

Much attention has been given to the so-called descent algebras ; see [3, 4, 5, 10, 11, 12, 14, 15,

18, 19, 21, 25]. Here we add a chapter to the story of the more recently introduced peak algebras. Our
approach expands on the one taken in [13, 16] and [21], where descents were studied using Richard Stanley’s
P -partitions, or modified versions thereof. This paper is a condensed version of [22], which contains several
results not mentioned here, as well as any omitted proofs.

Generically, a peak of a permutation π ∈ Sn is a position i such that π(i − 1) < π(i) > π(i + 1). The
only difference between the various types of peak sets we will study is the values of i that we allow. The
interior peak set and the left peak set are, respectively:

Pk(π) := {i ∈ [2, n− 1] |π(i− 1) < π(i) > π(i + 1)}

Pk(`)(π) := {i ∈ [1, n− 1] |π(i− 1) < π(i) > π(i + 1)},

where we take π(0) = 0. For example, the permutation π = (2, 1, 4, 3, 5) has Pk(π) = {3}, Pk(`)(π) = {1, 3}.
We will also study the peak set of signed permutations π ∈ Bn, defined by

PkB(π) := {i ∈ [0, n− 1] |π(i− 1) < π(i) > π(i + 1)},

where π(0) = 0 and we say there is a peak in position 0 if π(1) < 0. For example, if π = (−2, 3, 4,−5, 1),
then PkB(π) = {0, 3}. One can study the suitably defined right and exterior peaks as well, but the algebraic
implications are more limited. See sections 5 and 6, and also [22].

The study of algebras related to peaks began with John Stembridge’s paper [26] on enriched P -partitions,
followed by others, including [1, 2, 6, 7, 8, 9, 17, 24]. While [26] explores “the algebra of peaks” related

1991 Mathematics Subject Classification. Primary 05E99; Secondary 20C05.
Key words and phrases. peak algebra, enriched P -partition, quasisymmetric function, peak function.
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to quasisymmetric functions, it does not use enriched P -partitions for the study of subalgebras of the group
algebra Z[Sn] as we will here, and the only notion of peak that it uses is that of an interior peak. Kathryn
Nyman [20] built on [26] to show that there is a subalgebra of the group algebra of the symmetric group,
akin to Solomon’s descent algebra [25], formed by the linear span of

vI :=
∑

π∈Sn

Pk(π)=I

π,

which we call the interior peak algebra, denoted Pn. Later, without the use of enriched P -partitions, Marcelo
Aguiar, Nantel Bergeron, and Nyman [1] showed that left peaks also give a subalgebra in this sense. We will

denote by P
(`)
n the linear span of sums of permutations with the same set of left peaks. In [1], the authors

also examined commutative subalgebras of the peak algebras—the “Eulerian” peak algebras formed by sums
of permutations with the same number of peaks. One goal of this work is to derive some of the results of [1]
as a natural application of enriched P -partitions. In doing so, we are led to the type B enriched P -partitions
and to the type B peak algebra, PB,n.

The link between peak algebras and enriched P -partitions is through quasisymmetric generating func-
tions. Let Qsym :=

⊕

n≥0 Qsymn denote the space of quasisymmetric functions, where Qsymn denotes the

quasisymmetric functions homogeneous of degree n. Ira Gessel [16] showed how generating functions for
ordinary P -partitions give a natural basis for Qsym, and moreover, he defined a coproduct on Qsymn that
makes it the coalgebra dual to Solomon’s descent algebra for the Coxeter group of type An−1. Stembridge
[26] defined generating functions for enriched P -partitions that form a subring of the ring of quasisymmetric
functions, called the peak functions. Let Π :=

⊕

n≥0 Πn denote the space of peak functions, with Πn the
n-th graded component. We will use an approach similar to Gessel’s to give a coproduct on Πn that makes
it dual to Nyman’s interior peak algebra.

Just as Stembridge’s enriched P -partitions connect with quasisymmetric functions (the coalgebra dual
to Solomon’s type A descent algebra), the new types of enriched P -partitions we present here connect to
the type B quasisymmetric functions, BQsym :=

⊕

n≥0 BQsymn (the coalgebra dual to Solomon’s type B

descent algebra), as defined by Chak-On Chow [13] using type B P -partitions. We will define the type B peak

functions ΠB :=
⊕

n≥0 ΠB,n and the left peak functions Π(`) :=
⊕

n≥0 Π
(`)
n , and give a natural coproduct

that makes Π
(`)
n dual to P

(`)
n and ΠB,n dual to PB,n.

Remark 1.1. It is known that the quasisymmetric functions form a Hopf algebra, and Stembridge’s peak
functions are a Hopf subalgebra [8]. A natural question is whether the type B quasisymmetric functions
form a Hopf algebra, and they do. As of this writing, it is known that the left peak functions do not form
a Hopf subalgebra, but an unresolved question is whether type B peak functions form a Hopf subalgebra.
This topic is part of ongoing work.

2. Enriched P -partitions

The “P” in P -partition stands for a partially ordered set, or poset. For our purposes, we assume that all
posets P , with partial order <P , are finite. And unless otherwise noted, if |P | = n, then the elements of P
are labeled distinctly with the numbers 1, 2, . . . , n. We will sometimes describe a poset by its Hasse diagram,
as in Figure 1. We can think of any permutation π ∈ Sn as a poset with the total order π(s) <π π(s + 1).

P : L(P ):

3

2

1

3

1

2

3

1 2

Figure 1. Linear extensions of a poset P .
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For a poset P with n elements, let L(P ) denote its Jordan-Hölder set: the set of all permutations of [n]
which extend P to a total order. This set is also called the set of “linear extensions” of P . For example let
P be the poset defined by 1 >P 3 <P 2. In linearizing P we form a total order by retaining all the relations
of P but introducing new relations so that any element is comparable to any other. In this case, 1 and 2 are
not comparable, so we have exactly two ways of linearizing P : 3 < 2 < 1 or 3 < 1 < 2. These correspond to
the permutations (3, 2, 1) and (3, 1, 2). Let us make the following observation.

Observation 2.1. A permutation π is in L(P ) if and only if i <P j implies π−1(i) < π−1(j).

In other words, if i is “below” j in the Hasse diagram of the poset P , it must be below j in any linear
extension of the poset.

We now introduce the basic theory of enriched P -partitions, building on Stembridge’s work [26]. To
begin, Stembridge defines P′ to be the set of nonzero integers with the following total order:

−1 < 1 < −2 < 2 < −3 < 3 < · · ·

We will have use for this set, but we view it as a subset of a similar set. Define P(`) to be the integers with
the following total order:

0 < −1 < 1 < −2 < 2 < −3 < 3 < · · ·

Then P′ is simply the set of all i ∈ P(`), i > 0. In general, for any countable totally ordered set S = {s1, s2, . . .}
we define S(`) to be the set

{s0,−s1, s1,−s2, s2, . . .},

with total order

s0 < −s1 < s1 < −s2 < s2 < · · ·

(so we can think of S(`) as two interwoven copies of S along with a zero element) and define S′ to be the set
{s ∈ S(`) | s > s0}. For any si ∈ {s0} ∪ S, we say si is nonnegative. On the other hand, if i 6= 0 we say −si

is negative. The absolute value removes any minus signs: | ± s| = s for any s ∈ {s0} ∪ S.
For s and t in S(`), we write s ≤+ t to mean either s < t in S(`), or s = t ≥ 0. Similarly we define s ≤− t

to mean either s < t in S(`), or s = t < 0. For example, on P(`), we have {s | s ≤+ 3} = { 0,±1,±2,±3 },
{ s | s ≤− 3 } = { 0,±1,±2,−3 } = { s | s ≤− −3 }, { s | 0 ≤+ s ≤+ 2 } = { 0,±1,±2 } and { s | 0 ≤− s ≤+

2 } = {±1,±2 }.

Definition 2.2 (Enriched P -partition). An enriched P -partition (resp. left enriched P -partition) is an
order-preserving map f : P → S′ (resp. S(`)) such that for all i <P j in P ,

(1) f(i) ≤+ f(j) only if i < j in N,
(2) f(i) ≤− f(j) only if i > j in N.

It is helpful to remember that Stembridge’s enriched P -partitions are the nonzero left enriched P -
partitions, i.e., those for which f(i) 6= s0 for any i. We let E(P ; S) denote the set of all enriched P -partitions
f : P → S′; E(`)(P ; S) denotes the set of left enriched P -partitions f : P → S(`). If S is irrelevant or
understood, we simply write E(P ) or E(`)(P ). For example, if our poset is 1 >P 3 <P 2, then

E(`)(P ) = {f : P → S(`) | f(1) ≥− f(3) ≤− f(2)},

which we can see actually splits into the two following disjoint subsets:

{f(3) ≤− f(1) ≤+ f(2)} t {f(3) ≤− f(2) ≤− f(1)} = E(`)(312) t E(`)(321).

This example leads us to the following, which, by analogy with a similar result for ordinary P -partitions,
is referred to as the fundamental lemma of enriched P -partitions. It follows by induction on the number of
incomparable pairs of elements in the poset.

Lemma 2.3. For any poset P , the set of all (left) enriched P -partitions is the disjoint union of all (left)
enriched π-partitions for linear extensions π of P . Equivalently,

E(P ) =
∐

π∈L(P )

E(π),

E(`)(P ) =
∐

π∈L(P )

E(`)(π).
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Therefore when studying enriched P -partitions it is enough to consider the case where P is a totally
ordered chain, i.e., a permutation π. It is easy to describe the set of all enriched π-partitions in terms of
descent sets. For any π ∈ Sn we have

(2.1)

E(π) = { f : [n]→ S′ | f(π(1)) ≤ f(π(2)) ≤ · · · ≤ f(π(n)),

i /∈ Des(π)⇒ f(π(i)) ≤+ f(π(i + 1))

i ∈ Des(π)⇒ f(π(i)) ≤− f(π(i + 1)) },

and the analogous description for E(`)(π) where we replace S′ with S(`).
From (2.1) it is clear that enriched π-partitions depend on the descent set of π. The connection to peaks

is less obvious. In section 3 we will establish this link, and also show how left enriched π-partitions are
related to left peaks. First, we present our main theorem.

Let S and T be any two countable totally ordered sets, and let S′ × T ′ = {(s, t) | s ∈ S′, t ∈ T ′} be the
cartesian product of S′ and T ′ with the up-down order defined as follows: (s, t) < (u, v) if and only if

(1) s < u, or
(2) s = u > 0 and t < v, or
(3) s = u < 0 and t > v.

In other words, we read up the nonnegative columns, down the negative ones. Here we write (s, t) ≤+ (u, v)
in one of three cases: if s < u, or if s = u > 0 and t ≤+ v, or if s = u < 0 and t ≥− v. Similarly,
(s, t) ≤− (u, v) if s < u, or if s = u > 0 and t ≤− v, or if s = u < 0 and t ≥+ v. We define S(`) × T (`) in the
same way. See Figure 2.

Figure 2. The up-down order for P(`) × P(`).

Theorem 2.4. We have the following bijections:

E(π; S × T )←→
∐

στ=π

E(τ ; S)× E(σ; T )(2.2)

E(`)(π; S × T )←→
∐

στ=π

E(`)(τ ; S)× E(σ; T )(2.3)

Proof. We will provide proof for (2.2) and remark that the proof of (2.3) is nearly identical.
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For π ∈ Sn, we can write the set of all enriched π-partitions f : π → S′ × T ′ as follows:

(2.4)

E(π) = {F = ((s1, t1), . . . , (sn, tn)) ∈ (S′ × T ′)n | (s1, t1) ≤ (s2, t2) ≤ · · · ≤ (sn, tn),

i /∈ Des(π)⇒ (si, ti) ≤
+ (si+1, ti+1)

i ∈ Des(π)⇒ (si, ti) ≤
− (si+1, ti+1) }.

We will now sort the points F into distinct cases. For any i = 1, 2, . . . , n − 1, if π(i) < π(i + 1), then
(si, ti) ≤

+ (si+1, ti+1), which falls into one of two mutually exclusive cases:

si ≤
+ si+1 and ti ≤

+ ti+1, or(2.5)

si ≤
− si+1 and ti ≥

− ti+1.(2.6)

If π(i) > π(i + 1), then (si, ti) ≤
− (si+1, ti+1), which we split as:

si ≤
+ si+1 and ti ≤

− ti+1, or(2.7)

si ≤
− si+1 and ti ≥

+ ti+1,(2.8)

also mutually exclusive. Define IF to be the set of all i such that either (2.6) or (2.8) holds for F . Notice
that in both cases, si ≤

− si+1. Now for any I ⊂ [n − 1], let AI be the set of all F satisfying IF = I. We
have E(π; S × T ) =

∐

I⊂[n−1] AI .

For any particular I ⊂ [n−1], form the poset PI of the elements 1, 2, . . . , n by π(s) <PI
π(s+1) if s /∈ I,

π(s) >PI
π(s + 1) if s ∈ I. We form a “zig-zag” poset (see Figure 3) of n elements labeled consecutively by

π(1), π(2), . . . , π(n) with downward zigs corresponding to the elements of I.

PI :

π(1)

π(2)

π(3)

π(4)

π(5)

Figure 3. The zig-zag poset PI for I = {2, 3} ⊂ [5].

For any F in AI , let f : [n] → T ′ be defined by f(π(i)) = ti. It is straightforward to verify that f
is an enriched PI -partition. Conversely, any enriched PI -partition f gives a point F in AI since by cases
(2.5)–(2.8) above, if ti = f(π(i)), then

((s1, t1), . . . , (sn, tn)) ∈ AI

if and only if s1 ≤ · · · ≤ sn and si ≤
− si+1 for all i ∈ I, si ≤

+ si+1 for i /∈ I. We can therefore turn our
attention to enriched PI -partitions.

Let σ ∈ L(PI). Recall by Observation 2.1 that σ−1π(i) < σ−1π(i + 1) if π(i) <PI
π(i + 1), i.e., if i /∈ I.

If π(i) >PI
π(i + 1) then σ−1π(i) > σ−1π(i + 1) and i ∈ I. We get that Des(σ−1π) = I if and only if

σ ∈ L(PI). Set τ = σ−1π. We have

E(τ ; S) = {s1 ≤ · · · ≤ sn | si ≤
− si+1 if i ∈ Des(τ), si ≤

+ si+1 otherwise},

and since Des(τ) = I, we can write AI as
∐

σ∈L(PI)
στ=π

{F ∈ (S′ × T ′)n | (s1, . . . , sn) ∈ E(τ ; S), (tπ−1σ(1), . . . , tπ−1σ(n)) ∈ E(σ; T )}.

Running over all subsets I ⊂ [n− 1], we obtain

E(π; S × T ) =
∐

στ=π

{F ∈ (S′ × T ′)n | (s1, . . . , sn) ∈ E(τ ; S), (tπ−1σ(1), . . . , tπ−1σ(n)) ∈ E(σ; T )}.
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(Note that π−1σ = τ−1.) Now we can see the obvious bijection
∐

στ=π E(τ ; S)×E(σ; T )→ E(π; S×T ) given
by

((s1, . . . , sn), (t1, . . . , tn)) 7→ ((s1, tτ(1)), . . . , (sn, tτ(n))).

�

Now we present the type B enriched P -partitions. When working with signed permutations, we need to
change our notion of a poset slightly. See Chow [13]; this definition is a simpler version of the notion due to
Vic Reiner [23].

Definition 2.5. A type B poset, or Bn poset, is a poset P whose elements are 0,±1,±2, . . . ,±n such
that if i <P j then −j <P −i.

Note that if we are given a poset with n + 1 elements labeled by 0, a1, . . . , an where ai = i or −i, then
we can extend it to a Bn poset of 2n + 1 elements. For example, the P in Figure 4 could be specified by
the relations 0 >P 1 <P −2. In the same way, any signed permutation π ∈ Bn is a Bn poset under the
total order π(s) <π π(s + 1), 0 ≤ s ≤ n − 1. If P is a type B poset, let LB(P ) denote the set of linear
extensions of P that are themselves type B posets. Then LB(P ) is naturally identified with some set of
signed permutations. See Figure 4.

2

−1

0

1

−2

P : LB(P ):

2

1

0

-1

-2

1

-2

0

2

-1

1

2

0

-2

-1

Figure 4. A B2 poset and its linear extensions.

We will present some alternate notation for the set S′ introduced above. Let S = {s1, s2, . . .} be any
countable totally ordered set. Then we define the set S′ to be the set

{s−1
1 , s1, s

−1
2 , s2, . . .},

with total order

s−1
1 < s1 < s−1

2 < s2 < · · ·

We introduce this new notation because we want to avoid confusion in defining the set

Z′ = {. . . ,−2,−2−1,−1,−1−1, 0, 1−1, 1, 2−1, 2, . . .},

with the total order

· · · − 2 < −2−1 < −1 < −1−1 < 0 < 1−1 < 1 < 2−1 < 2 < · · ·

In general, if we define ±S = {. . . ,−s2,−s1, s0, s1, s2, . . .}, we have the total order on ±S′ given by

· · · − s2 < −s−1
2 < −s1 < −s−1

1 < s0 < s−1
1 < s1 < s−1

2 < s2 < · · ·

For any s in ±S′, let ε(s) be the exponent on s, and let |s| be a map ±S′ → S that forgets signs and
exponents. For example, if s = −s−1

i , then ε(s) = −1 < 0 and |s| = si, while if s = si, then ε(s) = 1 > 0
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and |s| = si. For i = 0, we require ε(s0) = 1 > 0, |s0| = s0, and −s0 = s0. Let s ≤+ t mean that s < t in
±S′ or s = t and ε(s) > 0. Similarly define s ≤− t to mean that s < t in ±S′ or s = t and ε(s) < 0.

Definition 2.6 (Type B enriched P -partition). For any Bn poset P , an enriched P -partition of type B
is an order-preserving map f : ±[n]→ ±S′ such that for every i <P j in P ,

(1) f(i) ≤+ f(j) only if i < j in Z,
(2) f(i) ≤− f(j) only if i > j in Z,
(3) f(−i) = −f(i).

This definition differs from type A enriched P -partitions only in the last condition. It forces f(0) = s0,
and if we know where to map a1, a2, . . . , an, where ai = i or −i, then it tells us where to map everything
else. Let EB(P ; S) denote the set of all type B enriched P -partitions f : P → ±S′. There is a fundamental
lemma for type B.

Lemma 2.7. We have,

EB(P ) =
∐

π∈LB(P )

EB(π).

We can easily characterize the type B enriched π-partitions in terms of descent sets, keeping in mind
that if we know where to map i, then we know where to map −i by the symmetry property: f(−i) = −f(i).
For any signed permutation π ∈ Bn we have

(2.9)

EB(π) = { f : [n]→ ±S′ | s0 ≤ f(π(1)) ≤ f(π(2)) ≤ · · · ≤ f(π(n))

i /∈ DesB(π)⇒ f(π(i)) ≤+ f(π(i + 1)),

i ∈ DesB(π)⇒ f(π(i)) ≤− f(π(i + 1)) }.

Notice that since ε(s0) = 1, then s0 ≤
− f(π(1)) is the same as saying s0 < f(π(1)), and s0 ≤

+ f(π(1)) is
the same as s0 ≤ f(π(1)). We will show that the set of type B enriched P -partitions relates to the set of
type B peaks. First, we present the main theorem for type B enriched P -partitions. Its proof varies only
slightly from that of Theorem 2.4 and is omitted. Let EB(P ; S×T ) denote the set of all enriched P -partitions
f : P → ±S′ ×±T ′ with the up-down order.

Theorem 2.8. We have the following bijection:

(2.10) EB(π; S × T )←→
∐

στ=π

EB(τ ; S)× EB(σ; T )

3. Generating functions

Recall that a quasisymmetric function is a formal series

Q(x1, x2, . . .) ∈ Z[[x1, x2, . . .]]

of bounded degree such that for any composition α = (α1, α2, . . . , αk), the coefficient of xα1
1 xα2

2 · · ·x
αk

k is the
same as the coefficient of xα1

i1
xα2

i2
· · ·xαk

ik
for all i1 < i2 < · · · < ik. Recall that a composition of n, written

α |= n, is an ordered tuple of positive integers α = (α1, α2, . . . , αk) such that |α| = α1 + α2 + · · ·+ αk = n.
In this case we say that α has k parts, or l(α) = k. We can put a partial order on the set of all compositions
of n by refinement. The covering relations are of the form

(α1, . . . , αi + αi+1, . . . , αk) ≺ (α1, . . . , αi, αi+1, . . . , αk).

Let Qsymn denote the set of all quasisymmetric functions homogeneous of degree n. Then Qsym :=
⊕

n≥0 Qsymn denotes the graded ring of all quasisymmetric functions, where Qsym0 = Z.
The most obvious basis for Qsymn is the set of monomial quasisymmetric functions, defined for any

composition α = (α1, α2, . . . , αk) |= n,

Mα :=
∑

i1<i2<···<ik

xα1

i1
xα2

i2
· · ·xαk

ik
.
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There are 2n−1 compositions of n, and hence, the graded component Qsymn has dimension 2n−1 as a vector
space. We can form another natural basis with the fundamental quasisymmetric functions, also indexed by
compositions,

Fα :=
∑

α≤β

Mβ,

since, by inclusion-exclusion we can express the Mα in terms of the Fα:

Mα =
∑

α≤β

(−1)l(β)−l(α)Fβ .

There is a well-known bijection between compositions of n and subsets of [n− 1] given by

α 7→ I(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1},

and so we can also write Mα = MI(α) or Fα = FI(α) when convenient.
Define the generating function for enriched P -partitions f : P → P′ by

Λ(P ) =
∑

f∈E(P )

n∏

i=1

z|f(i)|.

Then clearly Λ(P ) is a quasisymmetric function. By the fundamental Lemma 2.3, we have that

Λ(P ) =
∑

π∈L(P )

Λ(π).

For any subset of the integers I, define the set I + 1 = {i + 1 | i ∈ I}. From [26] we see that the
generating function for enriched π-partitions depends only on the peak set of π.

Theorem 3.1 (Stembridge [26], Proposition 2.2). For π ∈ Sn, we have the following equality:

Λ(π) =
∑

E⊂[n−1]
Pk(π)⊂E∪(E+1)

2|E|+1ME .

For any sets I and J , let I M J = (I∪J)\(I∩J) denote the symmetric difference of sets. The generating
functions are also F -positive.

Theorem 3.2 (Stembridge [26], Proposition 3.5). For π ∈ Sn, we have the following equality:

(3.1) Λ(π) = 2|Pk(π)|+1
∑

D⊂[n−1]
Pk(π)⊂DM(D+1)

FD.

For interior peak sets I, let KI be the quasisymmetric function defined by

KI := Λ(π),

where π is any permutation such that Pk(π) = I. Let Πn denote the space of quasisymmetric functions
spanned by the KI , where I runs over all interior peak sets of [n − 1]. Stembridge then defines the set of
peak functions Π :=

⊕

n≥0 Πn, which is a graded subring of Qsym. He proved that the functions KI are
linearly independent, and so the rank of Πn is the the number of distinct interior peak sets, which happens
to be the Fibonacci number fn−1, defined by f0 = f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2.

Before discussing generating functions for left enriched P -partitions and type B enriched P -partitions,
we need to introduce Chow’s type B quasisymmetric functions [13]. Define a pseudo-composition of n,
written α  n, to be an ordered tuple of nonnegative integers (α1, α2, . . . , αk) whose sum |α| = α1 + · · ·+αk

is n, where α1 ≥ 0, αi > 0 for i > 1. In other words, given any ordinary composition α |= n, we have
two corresponding pseudo-compositions: α and 0α = (0, α1, . . . , αk). The partial order on the set of all
pseudo-compositions of n is again by refinement.

Now we can define a type B quasisymmetric function to be a formal series

Q(x0, x1, x2, . . .) ∈ Z[[x0, x1, x2, . . .]]

of bounded degree such that for any pseudo-composition α = (α1, α2, . . . , αk), the coefficient of xα1
0 xα2

1 · · ·x
αk

k−1

is the same as the coefficient of xα1
0 xα2

i2
· · ·xαk

ik
for all 0 < i2 < · · · < ik. Let BQsymn denote the set of all

quasisymmetric functions homogeneous of degree n. Then BQsym :=
⊕

n≥0 BQsymn is the ring of type
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B quasisymmetric functions. As before we have a monomial and fundamental basis for BQsymn. For any
pseudo-composition α = (α1, α2, . . . , αk)  n, the monomial functions are

MB,α :=
∑

i2<···<ik

xα1
0 xα2

i2
· · ·xαk

ik
.

There are 2n pseudo-compositions of n, so the dimension of BQsymn is 2n. The fundamental basis is

FB,α :=
∑

α≤β

MB,β.

There is a bijection between pseudo-compositions of n and subsets of [0, n− 1] given by the same map

α 7→ I(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1},

and so we can also write MB,α = MB,I(α) or FB,α = FB,I(α) when convenient.

Define the generating functions for left enriched P -partitions f : P → P(`), and type B enriched P -
partitions f : P → Z′,

Λ(`)(P ) =
∑

f∈E(`)(P )

n∏

i=1

z|f(i)|,

ΛB(P ) =
∑

f∈EB(P )

n∏

i=1

z|f(i)|.

The fundamental lemma gives that

Λ(`)(P ) =
∑

π∈L(P )

Λ(`)(π),

ΛB(P ) =
∑

π∈LB(P )

ΛB(π).

We can relate Λ(`)(π) and ΛB(π) to the monomial and fundamental quasisymmetric functions of type B.
Notice that for a permutation π ∈ Sn ⊂ Bn, left peaks coincide with the type B peaks. Therefore we
can view left enriched P -partitions as a special case of type B enriched P -partitions. Furthermore, since
Stembridge’s enriched P -partitions are simply those left enriched P -partitions that are nonzero, we have

Λ(P )(z1, z2, . . .) = Λ(`)(P )(0, z1, z2, . . .),

so the results for Λ(P ) can be obtained from our results for Λ(`)(P ) by setting z0 = 0.

Theorem 3.3. For π ∈ Bn, we have the following equations:

ΛB(π) =
∑

E⊂[0,n−1]
PkB(π)⊂E∪(E+1)

2|E|MB,E ,

= 2|PkB(π)|
∑

D⊂[0,n−1]
PkB(π)⊂DM(D+1)

FB,D.

We omit the proof of this theorem, but remark that it follows the same lines of reasoning as in Stem-
bridge’s proofs of Theorems 3.1 and 3.2.

Corollary 3.4. For π ∈ Sn, we have the following equations:

Λ(`)(π) =
∑

E⊂[0,n−1]

Pk(`)(π)⊂E∪(E+1)

2|E|MB,E,

= 2|Pk(`)(π)|
∑

D⊂[0,n−1]

Pk(`)(π)⊂DM(D+1)

FB,D.

Corollary 3.5. The function ΛB(π) depends only on the type B peak set of π ∈ Bn, the function

Λ(`)(π) depends only on the left peak set of π ∈ Sn.
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We define the functions KB,I by

KB,I := ΛB(π),

where π is any permutation such that PkB(π) = I. Note that for a permutation π ∈ Sn, if Λ(`)(π) = KB,I

then 0 /∈ I.
Let ΠB,n denote the span of the KB,I , where I ranges over all type B peak sets of [0, n− 1]. It is not

hard to see that the KB,I are linearly independent, and so by counting the number of type B peak sets we
see ΠB,n has rank fn+1. If we define the type B peak functions, ΠB :=

⊕

n≥0 ΠB,n, then we can see it is a

subring of BQsym, as an argument identical to that of [26] Theorem 3.1 shows.

Similarly, let Π
(`)
n denote the span of all KB,I , where I ranges over the left peak sets in [1, n− 1]. Then

Π
(`)
n has rank fn and the left peak functions, Π(`) :=

⊕

n≥0 Π
(`)
n , form a subring of ΠB.

4. Duality

Let X = {x1, x2, . . .} and Y = {y1, y2, . . .} be two sets of commuting indeterminates. Define the set
XY = {xy : x ∈ X, y ∈ Y }. Then we define the bipartite generating function,

Λ(P )(XY ) =
∑

F∈E(P ;P×P)

xs1 · · ·xsn
yt1 · · · ytn

.

The functions Λ(`)(P )(XY ) and ΛB(P )(XY ) are defined similarly. Then the following are consequences of
Theorem 2.4 and Theorem 2.8.

Theorem 4.1. For any π ∈ Sn, we have the following equations:

Λ(π)(XY ) =
∑

στ=π

Λ(τ)(X) Λ(σ)(Y ),(4.1)

Λ(`)(π)(XY ) =
∑

στ=π

Λ(`)(τ)(X) Λ(`)(σ)(Y ).(4.2)

Theorem 4.2. For any π ∈ Bn, we have the following equation:

(4.3) ΛB(π)(XY ) =
∑

στ=π

ΛB(τ)(X) ΛB(σ)(Y ).

The formulas above imply duality between Πn and Pn, Π
(`)
n and P

(`)
n , and ΠB,n and PB,n. Moreover,

they give an explicit combinatorial description for the structure constants of the algebras. We will show how
this works for the case of interior peaks. The steps of the construction are the same for the other cases.

First, notice that equation (4.1) implies that

KC(XY ) =
∑

A,B

cC
A,BKA(X)KB(Y ),

where the sum is over all pairs of interior peak subsets A and B of [2, n − 1], and if π ∈ Sn is any
permutation with Pk(π) = C, then the integer cC

A,B is the number of pairs of permutations σ, τ such that

Pk(σ) = B, Pk(τ) = A, and στ = π. We now use this formula to define Πn as a coalgebra with coproduct
∆ : Πn → Πn ⊗Πn defined as

∆(KC) =
∑

A,B

cC
A,BKA ⊗KB.

We can define a coalgebra Z[Sn]∗ dual to the group algebra with coproduct defined as

∆(π) =
∑

στ=π

τ ⊗ σ.

Define the map ϕ∗ : Z[Sn]∗ → Πn by ϕ∗(π) = KPk(π), which, by (4.1), is a surjective homomorphism of
coalgebras. Now we dualize.

Let Π∗
n be the algebra dual to Πn, with basis elements K∗

I . By definition, multiplication in this basis is

K∗
AK∗

B =
∑

C

cC
A,BK∗

C ,
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where the sum is over all interior peak subsets C. The dual of ϕ∗ is now an injective homomorphism of
algebras, ϕ : Π∗

n → Z[Sn] defined by

ϕ(K∗
I ) =

∑

Pk(π)=I

π = vI .

Thus the interior peak algebra can be defined as the image of ϕ, and the structure constants carry through:

vAvB =
∑

C

cC
A,BvC .

We describe the structure constants for the left and type B peak algebras:

• Let dC
A,B, over triples of left peak sets A, B, C, be the structure constants for P

(`)
n . Then for any

π ∈ Sn such that Pk(`)(π) = C, the integer dC
A,B is the number of pairs of permutations σ, τ such

that Pk(`)(σ) = B, Pk(`)(τ) = A, and στ = π.
• Let eC

A,B, over triples of type B peak sets A, B, C, be the structure constants for PB,n. Then for

any π ∈ Bn such that PkB(π) = C, the integer eC
A,B is the number of pairs of permutations σ, τ

such that PkB(σ) = B, PkB(τ) = A, and στ = π.

The type B peak algebra is something new, defined as the linear span of sums of signed permutations
in Bn with common type B peak set.

Theorem 4.3. The space PB,n is a subalgebra of Z[Bn] of dimension fn+1. (In fact it is a subalgebra
of Solomon’s descent algebra for type Bn.)

Remark 4.4. While P
(`)
n was introduced in [1], the authors had no combinatorial description for its

structure constants (see [1], Remark 4.4), and neither were the structure constants for Pn known. Indepen-
dently, Nantel Bergeron and Christophe Hohlweg [7] recently gave the same description we give here.

Remark 4.5. Theorem 2.4 can be modified to combine left enriched P -partitions and interior enriched

P -partitions. When translated to generating functions, it implies that Πn is a two-sided ideal in Π
(`)
n , and

hence Pn is an ideal in P
(`)
n .

5. Specializations

Define the polynomial Ω(P ; x), called the enriched order polynomial, over all positive integers k by

Ω(P ; k) := Λ(P )(1, 1, . . . , 1
︸ ︷︷ ︸

k

, 0, 0, . . .),

meaning we set zi = 1 for i = 1, . . . , k, and zi = 0 for i > k. It turns out that for π ∈ Sn, Ω(π; x) is an even
or odd polynomial of degree n that only depends on the number of interior peaks of π (see [22], Proposition
4.4). We can use order polynomials to study commutative peak algebras, spanned by sums of permutations
with the same number of peaks. We sketch the idea for the interior peaks case.

Let Ei be the sum of all permutations with i interior peaks, and let Ω(i; x) denote the order polynomial
for any such permutation. Now we define:

(5.1) ρ(x) :=
∑

π∈Sn

Ω(π; x/2)π =

bn+1
2 c

∑

i=1

Ω(i; x/2)Ei =







n/2
∑

i=1

eix
2i if n is even,

(n+1)/2
∑

i=1

eix
2i−1 if n is odd.

The function ρ(x) is a polynomial in x with coefficients in the group algebra Q[Sn] (we now need to work
over the rational numbers). From Theorem 2.4 we can obtain the following.

Theorem 5.1. As polynomials in x and y with coefficients in the group algebra Q[Sn], we have:

ρ(x)ρ(y) = ρ(xy).
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(δije
∗
i e

∗
j ) ej ej e

(`)
j e

(r)
j
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ei ei ei ei ei
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(`)
i ei ei e

(`)
i e

(r)
i

e
(r)
i ei ei e

(r)
i e

(`)
i

Table 1. Multiplication table for type A coefficients.

What the theorem tells us is that the coefficients ei as defined by (5.1) are mutually orthogonal idem-
potents. With a little more work, we see that the span of the Ei is the same as the span of the ei, so that
the sums of permutations with common peak numbers span a commutative bn+1

2 c-dimensional subalgebra
of the group algebra. This algebra and its left peak variant were introduced in [1].

We can use the same approach to get similar results for other commutative peak algebras, given by the
span of sums of permutations with the same number of right peaks, exterior peaks, and type B peaks. Table

1 summarizes how the different type A peak idempotents interact (though e
(r)
i is not technically idempotent).

We remark that while the number of right peaks does not give a basis on its own, its multiplicative closure
is still a proper subalgebra.

6. Negative results

Before anything was proved, the type B peak algebra was found experimentally, and along the road to its
discovery there were several dead-end definitions. To save others the trouble of these detours, we finish with
a list of some subalgebras that do not exist in general. For the symmetric group, the sums of permutations
with the same set of right peaks do not form an algebra, nor do the sums of permutations with the same set
of exterior peaks. For the hyperoctahedral group, we do not get a proper subalgebra by taking the sums of
permutations with the same: interior peak set (i.e., ignoring peaks at 0), number of interior peaks, exterior
peak set, or exterior peak number.
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A new construction of the Loday-Ronco algebra

Maxime Rey

Abstract. We provide a new construction of the Loday-Ronco algebra by realizing it in terms of non-
commutative polynomials in infinitely many variables. This construction relies on a bijection between words
and labeled binary trees which can be regarded as a kind of degenerate Robinson-Schensted correspondence
and leads to a new Knuth type correspondence involving binary trees.

Résumé. Nous donnons une nouvelle construction de l’algèbre de Loday et Ronco en termes de polynômes
non-commutatifs en une infinité de variables. Cette construction repose sur une bijection entre les mots et
les arbres binaires étiquetés qui permet de définir une correspondence de type Robinson-Schensted dégénérée
et aboutit à la construction d’une nouvelle correspondence de type Knuth mettant en jeu les arbres binaires.

1. Introduction

We give a new construction of the Loday-Ronco algebra of the plane binary trees, also known as the
free dendriform dialgebra on one generator (see [8]). We first use, in Section 3, the argument given in [9]
on dendriform trialgebras in order to prove that the algebra of non-commutative polynomials in infinitely
variables can be endowed with the structure of a dendriform dialgebra. We then state that the sub-dialgebra
generated by the sum of the letters is free as a dendriform dialgebra. To prove this statement, we introduce in
Section 4 a bijection between words and labeled binary trees, which leads to a degenerate kind of Robinson-
Schensted correspondence, reminiscent of the degenerate correspondence with ribbons and quasi-ribbon
diagrams in [5], and dual to the Sylvester Schensted Algorithm of [2] as explained in Section 5. This leads,
in Section 6, to a new Knuth type correspondence between integer matrices and some pairs of labeled binary
trees. In Section 7 we define a family of elements indexed by binary trees that permits to prove that our
dendriform dialgebra on one generator is free, using a bijection between binary trees and its elements.

2. Preliminaries and Notations

In this paper, K stands for a field of any characteristic. Let A = {a1, a2, ...} be a totally ordered (infinite)
alphabet and denote by A∗ the free monoid on A. The map max : A∗ → A maps a word w to its greatest
letter, according to the total order of the alphabet A. We denote by Std(w) the standardized word of w ∈ A∗

defined as follows.

Definition 2.1. Let w = w1 · · ·wn ∈ A∗ and Std(w) = w′
1 · · ·w

′
n. Then, ∀i, j ∈ [1, n] with i 6= j:

• if wi > wj then w′
i > w′

j ,
• if wi = wj with i > j, then w′

i > w′
j ,

such that Std(w) is a permutation.

For example Std(abcadbcaa) = 157296834. For a word w ∈ A∗ and a subset B of A, w|B stands for the
subword of w obtained by erasing the letters which are not in B. The evaluation of a word w is the vector
ev(w) = (|w|a1

, |w|a2
, ...) .

2000 Mathematics Subject Classification. Primary 05-06; Secondary 05E99.
Key words and phrases. Algebraic combinatorics, Robinson-Schensted correspondence, Knuth correspondence, words,

dendriform dialgebras.
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We will denote by BT the set of all plane binary trees and LBT stands for the set of labeled plane
binary trees. We denote by Shape the map that for a labeled binary tree forgets its labels and returns a
binary tree of the same shape.

Let w be an element of A∗ without repetition. Its decreasing tree T (w) is an element of LBT obtained
as follows: the root is labeled by the greatest letter, n of w, and if w = unv, where u and v are words without
repetition, the left subtree is T (u) and the right subtree is T (v). Moreover, we associate the empty tree to
the empty word.

Let w be an element of A∗, we will denote by B(w) its associated binary search tree. It is obtained by
reading w from right-to-left, each letter being inserted into a binary search tree in the following way: if the
tree is empty, one creates a node labeled by the letter; otherwise, this letter is recursively inserted into the
left (resp. right) subtree if it is smaller or equal than (resp. greater than) the root. Exemples will be given
further.

A biletter on A is a pair (a, b) ∈ A×A which we will write

[
a

b

]

for convenience. A biword

[
u

v

]

on A∗ is a

concatenation of biletters

[
u

v

]

=

[
u1

v1

][
u2

v2

]

...

[
un

vn

]

.We denote by

[
u′

v′

]

the nondecreasing rearrangement of
[
u

v

]

for the lexicographic order with priority on the top row, and by

[
u′′

v′′

]

the nondecreasing rearrangement

for the lexicographic order with priority on the bottom row. Let 〈〉 denote the linear map from K[[A,B]] to

K〈〈A〉〉 ⊗ K〈〈B〉〉, defined by 〈

(
u

v

)

〉 = u′′ ⊗ v′ , with u ∈ A and v ∈ B.

3. The free dendriform dialgebra embedded in words

Following a suggestion of [9], we define the following operations on words.

Definition 3.1. For all u, v ∈ A+,

(3.1) u ↼ v :=

{
uv if max(u) > max(v)
0 otherwise.

(3.2) u ⇁ v :=

{
uv if max(u) ≤ max(v)
0 otherwise.

Clearly, the usual operation of concatenation · on A∗ can be written this way:

(3.3) · = ↼ + ⇁ .

Proposition 3.1. (
⊕

n≥0 K[A],↼,⇁) is a dendriform dialgebra, in the sense of [7].

Proof – Since (3.3) holds by definition, we only have to check the following three relations:

(3.4)







(u ↼ v) ↼ w = u ↼ (v · w) , (i)
(u ⇁ v) ↼ w = u ⇁ (v ↼ w) , (ii)
(u · v) ⇁ w = u ⇁ (v ⇁ w) , (iii)

whith u, v, w ∈ A+. Notice first that for all these relations, there are only two possible values for each side,
which are 0 and uvw.

(i) We first prove that

(3.5) (u ↼ v) ↼ w = uvw ⇐⇒ u ↼ (v · w) = uvw .

By definition, we have (u ↼ v) ↼ w = uvw if and only if max(u) > max(v) and max(uv) > max(w). Since
if max(u) > max(v) then max(uv) = max(u), we have a necessary and sufficient condition

(3.6) max(u) > max(v) ∧ max(u) > max(w) .

On the right-hand side, we have u ↼ (v · w) = uvw if and only if

(3.7) max(u) > max(vw) .
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Since (3.6) and (3.7) are clearly equivalent, we have proved assertion (3.5).

(ii) We have (u ⇁ v) ↼ w = uvw if and only if

(3.8) max(u) ≤ max(v) ∧ max(w) < max(uv) .

But since max(u) ≤ max(v), assertion (3.8) is equivalent to

(3.9) max(u) ≤ max(v) ∧ max(w) < max(v) .

Moreover, u ⇁ (v ↼ w) = uvw if and only if

max(w) < max(v) ∧ max(u) ≤ max(vw) ,

which can be rewritten as

(3.10) max(w) < max(v) ∧ max(u) ≤ max(v) ,

due to max(w) < max(v). It results that (u ⇁ v) ↼ w = uvw if and only if u ⇁ (v ↼ w) = uvw , by
equivalence of assertions (3.9) and (3.10).

(iii) We have u ⇁ (v ⇁ w) = uvw if and only if

max(u) ≤ max(vw) ∧ max(v) ≤ max(w) ,

which can immediately be rewritten as

(3.11) max(u) ≤ max(w) ∧ max(v) ≤ max(w) ,

due to max(v) ≤ max(w). Moreover, we have (u · v) ⇁ w = uvw if and only if max(uv) ≤ max(w) , which
is equivalent to (3.11). Hence it results (u · v) ⇁ w = uvw if and only if u ⇁ (v ⇁ w) = uvw .

Consider now the sub-dialgebra D of (
⊕

n≥0 K[A],↼,⇁) generated by

P• :=
∑

a∈A

a .

There are two basis elements in the homogeneous component of degree 2 of D:

P• ↼ P• =
∑

a<b

ba ,

P• ⇁ P• =
∑

a≤b

ab .

There are only five independent basis elements in the homogeneous component of degree 3 of D:

(3.12) P• ↼ (P• ↼ P•) =
∑

a<b<c

cba ,

(3.13) P• ⇁ (P• ↼ P•) =
∑

a<b; a′≤b

a′ba ,

(3.14) P• ↼ (P• ⇁ P•) =
∑

a≤b<c

cab ,

(3.15) (P• ↼ P•) ⇁ P• =
∑

a<b≤c

bac ,

(3.16) (P• ⇁ P•) ⇁ P• =
∑

a≤b≤c

abc ,

since following equalities hold:

(P• ↼ P•) ↼ P• =
∑

a<b; a′<b

baa′ = (3.12) + (3.14) ,
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(P• ⇁ P•) ↼ P• =
∑

a≤b; a′<b

aba′ = (3.13) ,

P• ⇁ (P• ⇁ P•) =
∑

a≤b; a′≤b

a′ab = (3.15) + (3.16) ,

which are exactly relations (3.4). We can now state our main result.

Theorem 3.2. D is the free dendriform dialgebra on one generator.

The remainder of this article will provide appropriate tools to prove this statement and exhibit some inter-
esting remarks about them.

4. Algorithm Ψ

We first describe an algorithm Ψ that associates with a word a labelled plane binary tree. Then it will
be possible to associate a plane binary tree with a word by considering only the shape of the labelled tree
produced by algorithm Ψ. To this purpose we introduce a map

Γ : LBT ×A −→ LBT ,

which can be recursively defined as follows:

(4.1)

Γ(
y

α β
, x) =







x

y

α β
if x ≥ y

y

α Γ(β, x)

if x < y

,

Γ(◦, x) = x ,

where ◦ stands for the empty tree and α, β ∈ LBT .

Definition 4.1. Consider the following function Ψ:

(4.2)
Ψ : A∗ −→ LBT ,

w = w1w2...wn 7−→

{
Γ(Ψ(w1...wn−1), wn) if n ≥ 2 ,
Γ(◦, w1) if not .

For example, using the alphabet N>0 with the natural order on integers, we apply Ψ to the word 25313 as
follows:

1 2 3 4 5

2

5

2

5

2 3

5

2 3

1

5

2 3

3

1

= Γ(...(Γ
︸ ︷︷ ︸

5

(◦, 2), 5), 3), 1), 4) ,

starting with Γ(◦, 2) .

Proposition 4.1. Let w ∈ A∗. Then, Shape(Ψ(w)) = Shape(Ψ(Std(w))).
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Proof – We proceed by induction. The initial case, considering a word of size 1, is obvious since there is only
one tree of size 1. Assuming that this property is satisfied for words of length n− 1, we check that it is true
for words of length n due to Definition 2.1 and the inductive definition (4.1).

We recall that T stands for the decreasing tree algorithm which associates to a permutation its decreasing
tree.

Proposition 4.2. ∀σ ∈ S,Ψ(σ) = T (σ).

Proof – We proceed by induction. This property is obvious for the permutation of size 1. Assume that this
property is satisfied for permutations of all sizes smaller than n and σ = σ1 ·max(σ) · σ2 is a permutation of
size n. By the inductive Definition 4.1 it is clear that the root of Ψ(σ) is labeled by max(σ), and that the
left subtree of the root of Ψ(σ) will be T (σ1) by the inductive hypothesis, and similarly the right subtree of
the root of Ψ(σ) will be T (σ2).

Hence algorithm Ψ is clearly a generalization on words of the well-known decreasing tree algorithm for
permutations. From Propositions 4.2 and 4.1 the following result is immediate.

Proposition 4.3. The algorithm Ψ is injective.

Let w ∈ A∗, we now consider the labeled binary tree having the same shape as Ψ(w) and for which the
label of each node is the step of its insertion in the tree Ψ(w). We will denote it by ψ(w). From the previous
calculation of Ψ(25313) we get the following tree:

2

1 5

3

4

.

We notice that ψ(25313) is the binary search tree of Std(25313)−1 = 41352. We develop a new Schensted-like
correspondence and a new Schensted-Knuth-like correspondence from this consideration.

5. The Co-Sylvester Schensted Algorithm (CSSA)

The Sylvester Schensted Algorithm (SSA) has been introduced in [2]. From Algorithms Ψ and ψ we
give a dual correspondence of SSA.

Definition 5.1. We note CSSA the Co-Sylvester Schensted Algorithm which sends a word w ∈ A∗ to
the pair

(Ψ(w), ψ(w)) .

Algorithm CSSB sends this pair to the word obtained by reading the labels of Ψ(w) in the order of the
corresponding labels in ψ(w).

We know that

Lemma 5.2 ([2]). Let w be a word and σ = Std(w). Then

Shape(B(w)) = Shape(B(σ)) = Shape(T (σ−1)) .

We generalize this result in terms of biwords.

Lemma 5.3. For any biword

[
u

v

]

, Shape(Ψ(v′)) = Shape(B(u′′)).

Proof – Using notations of Section 2, the standardization being compatible under transposition of two letters
it follows that Std(v)′ = Std(v′) and Std(u)′′ = Std(u′′). It is well-known that the inverse of a permutation
[
Id

σ

]

is the biword

[
σ−1

σ↑ = Id

]

where w↑ denotes the nondecreasing rearrangement of a word w. Then, since

Std(v)′ = (Std(u)′′)−1, we have
Std(v′) = (Std(u′′))−1 .
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Hence, using Lemma 5.2 and Proposition 4.1 we obtain these equivalences:

Shape(Ψ(v′)) = Shape(T (Std(v′))) = Shape(B((Std(v′))−1)) = Shape(B(u′′)) .

This allows us to state an analogous of the Schützenberger Theorem on tableaux for binary trees.

Theorem 5.4. ∀σ ∈ S, ψ(σ) = B(σ−1).

Proof – By definition of ψ, ψ(σ) have the same shape as Ψ(σ) = T (σ). Moreover, by induction it is also clear
that ψ(σ) is a binary search tree. Indeed, assuming the inductive hypothesis for trees with k − 1 nodes, the
k-th node is, by definition of the algorithm ψ, labeled by k whereas the k − 1 remaining nodes are labeled
by elements of [1, (k − 1)]. Moreover, by recursive definition (4.1) two cases arise:

• The k-th node is inserted at the root and then it is still a binary search tree since the k−1 remaining
nodes are in its left subtree.

• The k-th node is inserted somewhere in the right subtree, and so it is still a binary search tree since
it is greater than the root, and by inductive hypothesis.

Nevertheless, in general there is not a single permutation σ′ such that B(σ′) = T , with T a given binary
search tree (see [2] for the exact description of such sets of permutations). But it is clear, by definition of ψ,
that at each step k of the insertion algorithm CSSA, Ψ(σ1σ2...σk) and ψ(σ1σ2...σk) have the same shape.
Moreover setting

[
u(k)′

v(k)′

]

=

[
1 2 · · · k

σ1 σ2 · · · σk

]

and

[
u(k)′′

v(k)′′

]

=

[
σ−1|[1,k]

1 2 · · · k

]

,

from Lemma 5.3 we have that at each step of the insertion algorithm, Ψ(σ1σ2 · · ·σk) and B(σ−1|[1,k]) have

the same shape. Hence, at the last step, ψ(σ) = B(σ−1).

Proposition 5.1. ∀w ∈ A∗, ψ(w) = ψ(Std(w)).

Proof – From Definition 2.1 and Proposition 4.1, it is immediate since at each step k, Ψ(w1 · · ·wk) and
Ψ(Std(w1 · · ·wk)) have the same shape.

Hence from Theorem 5.4 and Proposition 5.1 we immediately obtain the following result on words.

Corollary 5.5. ∀w ∈ A∗, ψ(w) = B(Std(w)−1).

From Theorem 5.4 and Proprosition 4.2 it is straightforward that CSSA is the dual Schensted-like
correspondence of SSA of [2] in the following sense.

Proposition 5.2. ∀σ ∈ S,

CSSA(σ) = (Ψ(σ),B(σ−1)) ⇐⇒ SSA(σ−1) = (B(σ−1),Ψ(σ)) .

It is interesting to notice that these two correspondences look quite similar to the two Robinson-Schensted
type correspondences on ribbons and quasi-ribbons, introduced in [5].

6. The Sylvester Schensted-Knuth correspondence

We first recall that there is an easy bijection between integer matrices and commutative biwords on A∗

which consists to repeat mij times the biletter

(
i
j

)

for a matrix M = (mij)(i,j)∈[1,n]×[1,m] of dimensions

n×m. For example commutative biwords

(
1111222333
1113123133

)

and

(
1112321233
1111123333

)

(which are equal) have the

same corresponding matrix which is :




3 0 1
1 1 1
1 0 2



 .
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Definition 6.1. Let

(
u

v

)

be a commutative biword and

[
u′

v′

]

,

[
u′′

v′′

]

be the two biwords associated

with

[
u

v

]

as explained in Section 2 . We note κS the Sylvester Schensted-Knuth correspondence defined as

follows:

κS

(
u

v

)

:= (Ψ(v′),B(u′′)) .

This definition holds since for any biletter permutation of

[
u

v

]

, v′ and u′′ remain the same. Moreover

by Lemma 5.3 the following Proposition is straightforward.

Proposition 6.1. For any commutative biword

(
u

v

)

, Shape(Ψ(v′)) = Shape(B(u′′)) .

We notice that CSSA is recovered by encoding a word w by

(
1 2 · · · m

w1 w2 · · · wm

)

.

In order to prove that κS is a bijection, we proceed as Lascoux, Leclerc and Thibon did in [6] for the
usual Knuth correspondence [4].

Theorem 6.2. The algorithm κS is a bijection.

Proof – Using again arguments of the proof of Lemma 5.3 we obtain B(Std(u′′)) = B(Std(v′)−1) . Then,
applying Theorem 5.4 we have that B(Std(v′)−1) = ψ(Std(v′)) and from Corollary 5.5 we get:

B(Std(u′′)) = ψ(v′) .

This means that B(u′′) is the unique binary search tree of evaluation ev(u′′) such that B(Std(u′′)) = ψ(v′).

An easy remark is the following:

κS

(
u

v

)

= (Ψ(v′),B(u′′)) ⇐⇒ κS

(
v

u

)

= (Ψ(u′′),B(v′)) ,

which generalizes results of Section 5. Nevertheless the symmetry of the usual Knuth correspondence is
broken for P and Q symbols. At last, we give a full example of our construction.

[
u

v

]

=

[
2 1 3 3 5 4 2 4
1 3 6 5 2 4 1 4

]

,

[
u′

v′

]

=

[
1 2 2 3 3 4 4 5
3 1 1 5 6 4 4 2

] [
u′′

v′′

]

=

[
2 2 5 1 4 4 3 3
1 1 2 3 4 4 5 6

]

,

(Ψ(v′),B(u′′)) =

(

6

5

3

1

1

4

4 2
,

3

3

1

2

2

4

4 5
)

(Ψ(u′′),B(v′)) =

(

5

2

2

4

4

1

3

3
,

2

1

1

4

4

3

6

5

)

Since Std(22514433) = 23816745, we can check that ψ(v′) = B(Std(u′′)):

ψ(31156442) = B(23816745) =

5

4

1

3

2

7

6 8 .
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This bijection leads to a Cauchy formula type for binary trees.

Proposition 6.2. Let A and B be two non-commutative alphabets, such that A and B are commuting
one with the other and words on alphabet B are quotiented by the sylvester congruence (see [2]). Then,

〈 ~∏

a∈A, b∈B

1

1 − ab

〉
=

∑

T∈BT

PT (A) ⊗QT (B) ,

where (PT )T∈BT comes from Definition 7.1 and (QT )T∈BT is its dual basis introduced in [2].

Proof – We recall that the sylvester monoid introduced in [2] is the monoid such that two words having the
same shape through algorithm B are equal. This proof needs the Free Cauchy identity mentionned in [3]
and to be fully introduced in [1]:

(6.1)
〈 ~∏

a∈A, b∈B

1

1 − ab

〉
=

∑

Std(v)=Std(u)−1

u⊗ v .

Since v is an element of the sylvester monoid and by definition of (QT )T∈BT (see [2]), by Theorem 6.2 and
by Proposition 6.1, right-hand side of Equation (6.1) can be rewritten as

∑

T∈BT

(
∑

Shape(Ψ(w))=T

w

)

⊗QT .

Using Definition 7.1 we obtain the desired equality.

7. Back to dendriform structure

Definition 7.1. Let T ∈ BT . We define

(7.1) PT :=
∑

w; Shape(Ψ(w))=T

w .

As a special case we recover:

(7.2) P• =
∑

a∈A

a .

We now provide an algorithm that associates a plane binary tree to an element of the dendriform algebra
D.

Definition 7.2. We consider

Φ : BT −→ (K[A],↼,⇁) ,

whose recursive definition is the following:

(7.3)







Φ(
•

α β
) = (Φ(α) ⇁ (P• ↼ Φ(β))) , (i)

Φ(
•

α
) = (Φ(α) ⇁ P•) , (ii)

Φ(
•

β
) = (P• ↼ Φ(β)) , (iii)

Φ(•) = P• , (iv)

where α, β ∈ BT .

For example:

Φ(
•

• •

•

•

) = (P• ⇁ (P• ↼ ((P• ↼ P•) ⇁ P•))) .
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Lemma 7.3. Let T ∈ BT . Then, PT = Φ(T ) .

Proof – We proceed by induction. The initial case is immediate by (iv) of Definition 7.2. Assume that this
property is satisfied for trees of size n− 1. We consider a tree T of size n, with n ≥ 2. Three kinds of trees
are possible, according to wether their roots have only a non-empty right subtree or only a non-empty left
subtree or finally have both left and right subtrees are non-empty. These cases correspond to (i), (ii) and
(iii) of (7.2).

(i) By Definition 7.1 this means that for all words appearing in the sum PT , the |α|+ 1 letter is greater
or equal than its |α| first letters and greater to its |β| last letters. This is the exact meaning of the right-
hand side of (i) using (3.1), (3.2), remembering relation (ii) (associativity) of (3.4) and assuming inductive
hypothesis.

(ii) By Definition 7.1 this means that for all words appearing in the sum PT , their last letter is greater
or equal than all others letters appearing in it. Then, by (3.2) and by induction hypothesis we have proved
this case.

(iii) By Definition 7.1 this means that for all words appearing in the sum PT , their first letter is greater
than all others letters appearing in it. Hence by (3.1) and by induction hypothesis we have proved this case.

We now are able to provide the proof of Theorem 3.2:

Proof of Theorem 3.2 − Since the Loday-Ronco algebra of plane binary trees is the free dendriform algebra
on one generator, we only have to check that the Hilbert serie of this subalgebra D generated by P• is
counted by Catalan numbers. To this purpose we consider the familly of (PT )T∈BT . By Lemma 7.3 they
are clearly elements of D. Moreover the intersection of any pairs of them is always empty, by construction.
Then (PT )T∈BT are linearly independent.
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Kazhdan-Lusztig immanants and products of matrix minors, II

Brendon Rhoades and Mark Skandera

Abstract. We show that for each permutation w containing no decreasing subsequence of length k, the
Kazhdan-Lusztig immanant Immw(x) vanishes on all matrices having k equal columns. We also construct
new and simple inequalities satisfied by the minors of totally nonnegative matrices.

Résumé. Nous démontrons que pour chaque permutation w qui ne contient aucune sous-suite décroissante
de longeur k, l’immanant de Kazhdan-Lusztig Immw(x) s’annule sur toutes les matrices avec k colonnes
identiques. Nous introduisons par ailleurs des inégalités simples et nouvelles satisfaites par les mineurs des
matrices complètement non-negatives.

1. Introduction and Preliminaries

The Kazhdan-Lusztig basis {C′
w(q) | w ∈ Sn} of the Hecke algebra Hn(q), originally introduced in

[10], has seen several applications in combinatorics and positivity. In [14] Rhoades and Skandera define the
Kazhdan-Lusztig immanants via the Kazhdan-Lusztig basis and obtain various positivity results concerning
linear combinations of products of matrix minors. Lam, Postnikov, and Pylyavskyy, in turn, use these results
in [11] to resolve several conjectures in Schur positivity. In this paper, we further develop algebraic properties
of the Kazhdan-Lusztig immanants and apply these immanants to obtain additional positivity results.

Fix n ∈ N and let x = (xij)1≤i,j≤n be a matrix of n2 variables. For a pair of subsets I, J ⊆ [n], with
|I| = |J |, define the (I, J)-minor of x, denoted ∆I,J(x), to be the determinant of the submatrix of x indexed
by rows in I and columns in J . We adopt the convention that the empty minor ∆∅,∅(x) is equal to 1. An
n × n matrix A is said to be totally nonnegative (TNN) if every minor of A is a nonnegative real number.
A polynomial p(x) in n2 variables is called totally nonnegative if whenever A = (ai,j)1≤i,j≤n is a totally
nonnegative matrix, p(A) =

def
p(a1,1, . . . , an,n) is a nonnegative real number. [2], [3], [9], [13], [12], [19] give

a graph theoretic characterization of totally nonnegative matrices which is used by Rhoades and Skandera
in [15] and [14] to construct several examples of totally nonnegative polynomials.

Let H denote the infinite array (hj−i)i,j≥1, where hi denotes the complete homogeneous symmetric
function of degree i. (see, for example, [18]) Here we use the convention that hi = 0 whenever i < 0. A
polynomial p(x) in n2 variables is called Schur nonnegative (SNN) if whenever K is an n × n submatrix
of H , the symmetric function p(K) is a nonnegative linear combination of Schur functions. By the Jacobi
identity, the determinant is a trivial example of a SNN polynomial.

For i ∈ [n− 1], let si denote the adjacent transposition in Sn which is written (i, i+1) in cycle notation.
For a fixed w ∈ Sn, call an expression si1 · · · si`

representing w reduced if ` is minimal. In this case, define
the length of w, denoted `(w), to be `.

For q a formal indeterminate, define the Hecke algebra Hn(q) to be the C[q1/2, q−1/2]-algebra with
generators Ts1

, . . . , Tsn−1
subject to the relations

T 2
si

= (q − 1)Tsi
+ q, for i = 1, . . . , n − 1,

Tsi
Tsj

Tsi
= Tsj

Tsi
Tsj

, if |i − j| = 1,

Tsi
Tsj

= Tsj
Tsi

, if |i − j| ≥ 2.
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For w ∈ Sn, define the Hecke algebra element Tw by

Tw = Tsi1
· · ·Tsi`

,

where si1 · · · si`
is any reduced expression for w. Specializing at q = 1, the map Tsi

7→ si induces an
isomorphism between Hn(1) and the symmetric group algebra C[Sn].

The elements {C′
v(q) | v ∈ Sn} of the Kazhdan-Lusztig basis of Hn(q) have the form

(1.1) C′
v(q) =

∑

w≤v

Pw,v(q)q
−`(v)/2Tw,

where

{Pw,v(q) |w, v ∈ Sn}

are polynomials in N[q] called the Kazhdan-Lusztig polynomials. We recall a couple of elementary properties
of the Kazhdan-Lusztig polynomials.

Lemma 1.1. For w, v ∈ Sn, Pw,v(q) ≡ 0 if and only if w � v, where ≤ is (strong) Bruhat ordering.
Also, Pw,w(q) ≡ 1.

A polynomial p(x) in n2 variables is called an immanant if it belongs to the C-linear span of {x1,w(1) · · ·xn,w(n) | w ∈
Sn}. Following [14], for w ∈ Sn, define the w-Kazhdan-Lusztig immanant by

(1.2) Immw(x) =
def

∑

v∈Sn

(−1)`(w)−`(v)Pw0v,w0w(1)x1,v(1) · · ·xn,v(n),

where wo denotes the long element of Sn, written n(n − 1) . . . 1 in one-line notation. Specializing at w = 1,
we have that Imm1(x) = det(x).

It follows from Lemma 1.1 that the expression (−1)`(w)−`(v)Pw0v,w0w(1) is nonzero if and only if w ≤ v
in the Bruhat order and that Pw0w,w0w(1) = 1. Therefore, the set {Immw(x) | w ∈ Sn} forms a basis for the
vector space of immanants. The Kazhdan-Lusztig immanants are both TNN and SNN and various examples
of TNN and SNN polynomials can be constructed by studying the cone generated by the Kazhdan-Lusztig
immanants [14]. Moreover, when w is 321-avoiding, the Kazhdan-Lusztig immanant Immw(x) is satisfies a
natural generalization of Lindström’s Lemma [15].

2. Main

For 1 ≤ k ≤ n, let Γn,k denote the subset of C[x1,1, . . . , xn,n] consisting of all products of the form
∆I1,J1

(x) · · ·∆Ik,Jk
(x), where I1, J1, . . . , Ik, Jk ⊆ [n], I1 ] · · · ] Ik = J1 ] · · · ] Jk = [n], and |Ij | = |Jj | for all

j ∈ [k]. Here ] denotes disjoint union. Elements of Γn,k are sometimes called complementary products of
minors. In [15], Kazhdan-Lusztig immanants are used to find that the dimension of span(Γn,2) is equal to
the nth Catalan number Cn. In this paper we shall relate the dimension of span(Γn,k) to pattern avoidence
in Sn for arbitrary k.

For k ∈ N, let Sn,k denote the set of permutations in Sn which do not have a decreasing subsequence of
length k + 1. For example, in one-line notation, S3,2 = {123, 213, 132, 312, 231}. Notice that Sn,k = Sn for
all k ≥ n. We start by examining the image of Sn,k under the Robinson-Schensted correspondence.

Let ≤LR be the preorder on Sn defined in [10] and let s[1,k] be the longest element in the subgroup of
Sn generated by s1, . . . , sk−1.

Lemma 2.1. Suppose v 6∈ Sn,k−1. Then we have v ≤LR s[1,k].

Proof. Given any permutation w, define the pair of tableaux (P ′(w), Q′(w)) to be the image of w
under the Robinson-Schensted column insertion correspondence. Let λ′(w) be the shape of these tableaux.

A well-known property of the Robinson-Schensted correspondence implies that λ′(v) ≥ λ′(s[1,k]) in the
dominance order. This dominance relation in turn is known to be equivalent to the partial order on Kazhdan-
Lusztig cells induced by the preorder ≤LR. Thus in the preorder ≤LR, every permutation in the cell of v
precedes every permutation in the cell of s[1,k]. (See [1], [6, Sec. 1], [8, Appendix].) �

Proposition 2.2. Suppose A ∈ Matn(C) has k equal rows and let v ∈ Sn,k−1. Then, Immv(A) = 0.

This result generalizes Proposition 3.14 of Rhoades and Skandera [15], which together with [14] implies
that Proposition 2.2 holds when k = 2.

687



KAZHDAN-LUSZTIG IMMANANTS

Proof. Define the element [A] of C[Sn] by

[A] =
∑

w∈Sn

a1,w(1) · · ·an,w(n)w.

Let i1 < · · · < ik be the indices of k rows in A which are equal and let U be the subgroup of Sn which fixes
all indices not contained in the set {i1, . . . , ik}. Then

∑

u∈U

u

factors as wz[1,k]w
′ for some elements w, w′ of Sn. It follows that [A] factors as

[A] =

(

∑

u∈U

u

)

f(A)

= (wz[1,k]w
′)f(A)

for some group algebra element f(A).
Let I be the two-sided ideal of C[Sn] spanned by {C′

u(1) |u ≤LR s[1,k]} and let θ : C[Sn] → C[Sn]/I be
the canonical homomorphism. Clearly we have θ([A]) = 0.

On the other hand, we have

θ([A]) = θ

(

∑

w∈Sn

Immw(A)C′
w(1)

)

=
∑

w∈Sn

Immw(A)θ(C′
w(1)).

Since θ(C′
w(1)) = 0 for all permutations w ≤LR s[1,k], we have

0 =
∑

w

Immw(A)θ(C′
w(1)),

where the sum is over all permutations w 6≤LR s[1,k], i.e., those permutations having no decreasing sub-
sequence of length k. Since the elements θ(C′

w(1)) in this sum are linearly independent, we must have
Immw(A) = 0 for each permutation w having no decreasing subsequence of length k. �

Proposition 2.3. Suppose ∆I1,J1
(x) · · ·∆Ik,Jk

(x) ∈ Γn,k. Then, there exist dw ∈ C such that ∆I1,J1
(x) · · ·∆Ik,Jk

(x) =
∑

w∈Sn,k
dwImmw(x).

Proof. The Kazhdan-Lusztig immanants form a basis for the vector space of immanants, so we may
write

(2.1) ∆I1,J1
(x) · · ·∆Ik,Jk

(x) =
∑

w∈Sn

dwImmw(x),

for some dw ∈ C. If k ≥ n the claim is trivial, so we assume that k < n. We show that dw = 0 whenever
w /∈ Sn,k.

Suppose that C ∈ Matn(C) has k + 1 equal rows. Then, by the pigeonhole principle, there exist two
equal rows of C indexed by integers lying in one of I1, . . . , Ik. Hence, ∆I1,J1

(C) · · ·∆Ik,Jk
(C) = 0.

Now let B = (bij) ∈ Matn(C) be defined by bij = 1 for all i and j. By Proposition 2.2, since k <
n we have that Immw(B) = 0 for every w 6= wo. Also, Immwo

(B) = 1. By the above paragraph,
∆I1,J1

(B) · · ·∆Ik,Jk
(B) = 0. Therefore, applying both sides of (2.1) to B, we get that dwo

= 0.
For l ∈ N, define Tn,l to be the set difference Sn,l rSn,l−1. Suppose that k < m < n and suppose that for

all p satisfying m < p ≤ n we have that dw = 0 for every w ∈ Tn,p. Give the elements of Tn,m a total order
which is an extension of their Bruhat ordering and write Tn,m = {w1 < w2 < · · · < wh}. Let t ∈ [h] and
suppose by induction that dw = 0 for w ∈ {wt+1, . . . , wh}. Since wt ∈ Tn,m, there exist i1 < i2 < · · · < im
such that wt(i1) > wt(i2) > · · · > wt(im). Let D ∈ Matn(C) be the matrix obtained by replacing the rows
i1, . . . , im in the permutation matrix for wt by rows of 1’s. By Proposition 2.2, Immw(D) = 0 for every
w ∈ Sn,m−1. By (1.1) we also have that Immw(D) = 0 for every w � wt in the Bruhat order. Since k < m,
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we have that ∆I1,J1
(D) · · ·∆Ik,Jk

(D) = 0. Thus, applying both sides of (2.1) to D, we get that dwt
= 0 and

the Proposition follows by induction.
�

If k = 2 in Proposition 2.3, results in [15] and [14] imply that the dw must be nonnegative. For k
arbitrary, Skandera [16] has given an elementary proof that whenever w avoids the patterns 3412 and 4231,
(i.e., when the Schubert variety Γw corresponding to w is smooth), the coefficient dw is also nonnegative.
Using deeper properties of the dual canonical basis of OSLnC, it is possible to show that the coefficients dw

are nonnegative for general k and w.

Proposition 2.4. dim(spanC(Γn,k)) = |Sn,k|.

Specializing at k = 2, Sn,2 is the set of 321-avoiding permutations, so we have that |Sn,2| = Cn, the nth

Catalan number. Thus, this result is a generalization of Proposition 4.7 of [15].

Proof. By Proposition 2.3 we have that dim(spanC(Γn,k)) ≤ |Sn,k|.
For each collection of sets I1, J1, . . . , Ik, Jk ⊆ [n] with [n] = I1 ] · · · ] Ik = J1 ] · · · ] Jk and |Ij | = |Jj |

for each j ∈ k, let min(I1, J1, . . . , Ik, Jk) denote the unique minimal permutation in the Bruhat order which
maps Ii into Ji for each i ∈ [k]. For example, if we set n = 6, I1 = {1, 3, 6}, I2 = {2, 4}, I3 = {5}, J1 =
{3, 4, 6}, J2 = {1, 5}, J3 = {2}, we have that min(I1, J1, I2, J2, I3, J3) = 314526 in one-line notation.

For ∆I1,J1
(x) · · ·∆Ik,Jk

(x) ∈ Γn,k it is easy to see that there exist dw ∈ C such that

∆I1,J1
(x) · · ·∆Ik,Jk

(x) =
∑

w≥min(I1,J1,...,Ik,Jk)

dwx1,w(1) · · ·xn,w(n),

where dmin(I1,J1,...,Ik,Jk) = 1. In light of this, it suffices to show that for every permutation w ∈ Sn,k, there
exists a collection of sets I1, J1, . . . , Ik, Jk ⊆ [n] such that [n] = I1 ] · · · ] Ik = J1 ] · · · ] Jk and |Ij | = |Jj |
for each j ∈ k and w = min(I1, J1, . . . , Ik, Jk). For then, we have that dim(spanC(Γn,k)) ≥ |Sn,k|.

Let w ∈ Sn,k. Define a partial order on the set P = {(i, w(i))|i ∈ [n]} by setting (i, w(i)) < (j, w(j))
if i < j and w(i) < w(j). Now {(i1, w(i1)), . . . , (im, w(im))} ⊆ P with i1 < · · · < im is an antichain in
P if and only if (w(i1), . . . , w(im)) is an decreasing subsequence of w. Hence, width(P ) < k + 1 (see [17]
for definitions). By Dilworth’s Theorem, there exist k disjoint (possibly empty) chains C1, . . . , Ck which
partition P . Now, for each j ∈ [k], write Cj = {(i1, w(i1)), . . . , (imj

, w(imj
)}, with i1 < · · · < imj

. Since
Cj is a chain in P , (w(i1), . . . , w(imj

)) is an increasing subsequence of w. Define Ij = {i1, . . . imj
} and

Jj = {w(i1), . . . w(imj
)}. It is now easy to check that w = min(I1, J1, . . . , Ik, Jk) and we are done.

�

The numbers |Sn,k| were studied by Gessel [7] who found an expression involving Bessel functions
for the generating function

∑

n≥1 |Sn,k|t
n. The authors do not know of a simple form of the polynomial

∑n
k=1 |Sn,k|t

k.

Corollary 2.5. Suppose that I1 ] I2 = J1 ] J2 = [n], |I1| = |J1| = n1, |I2| = |J2| = n2, w1 ∈ Sn1,k1
,

and w2 ∈ Sn2,k2
. For i = 1, 2 let xi be the submatrix of x with row set Ii and column set Ji. Then, there

exist dv ∈ C such that Immw1
(x1)Immw2

(x2) =
∑

v dvImmv(x), where the sum is over v in Sn,k1+k2
.

Specializing at w1 = w2 = 1, we have that the coefficients dv in the Corollary are in fact nonnegative
real numbers. (see [15], [14]) Again, one may use the properties of the dual canonical basis of OSLnC to
show that {dw |w ∈ Sn} are nonnegative real numbers.

Proof. For i = 1, 2, by Propositions 2.3 and 2.4 there exist pi,j(xi) ∈ Γni,ki
and dj ∈ C such that

Immwi
(x) =

∑

j djpi,j(xi). Since x1 and x2 are complementary submatrices of x, for any p1(x1) ∈ Γn1,k1
and

p2(x2) ∈ Γn2,k2
, the product p1(x1)p2(x2) is contained in Γn,k1+k2

. So, the product Immw1
(x1)Immw2

(x2)
is a linear combination of elements in Γn,k1+k2

. The result now follows from Proposition 2.3.
�

Taken together, Propositions 2.3 and 2.4 imply that for w ∈ Sn,k, there exist pi(x) ∈ Γn,k and di ∈ C
such that Immw(x) =

∑m
i=1 dipi(x). Results in [15] and [14] show that, for k = 2, we may in fact assume

that the pi(x) are contained in a subset of Γn,2 which is in a natural bijective correspondence with the set
of Dyck paths of length 2n. It would be interesting to see if an analogous result holds for general k.
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We now investigate when polynomials in span(Γn,k) are TNN or SNN. For any integers n and k satisfying
1 ≤ k ≤ n, define the poset Pn,k on Γn,k by
∆I1,J1

(x) · · ·∆Ik,Jk
(x) ≤ ∆I′

1
,J′

1
(x) · · ·∆I′

k
,J′

k
(x) if and only if the difference

∆I′

1
,J′

1
(x) · · ·∆I′

k
,J′

k
(x)−∆I1,J1

(x) · · ·∆Ik,Jk
(x) is TNN. In [15] the authors develop necessary and sufficient

combinatorial conditions for polynomials p(x) ∈ span(Γn,2) to be TNN. For all positive integers n, Pn,2

has a unique maximal element given by ∆I,I(x)∆J,J (x), where I = {1, 3, 5, . . .} and J = {2, 4, 6, . . .}.
Also, the determinant ∆[n],[n](x)∆∅,∅(x) is always a minimal element of Pn,2. In [14] the authors show
that the combinatorial tests in [15] constitute sufficient conditions for polynomial in span(Γn,2) to be SNN.
Therefore, whenever ∆I,J(x)∆I′,J′(x) ≤ ∆K,L(x)∆K′,L′(x) in Pn,2 we also have that ∆K,L(x)∆K′,L′(x) −
∆I,J(x)∆I′,J′(x) is SNN. It is unknown whether the converse of the last sentence is true.

In [4], [5], and [14] the positivity properties of differences of the form x1,w(1) · · ·xn,w(n)−x1,u(1) · · ·xn,u(n)

for w, u ∈ Sn are studied. The authors prove the following about the subposet Pn,n consisting of products
of n nonempty minors.

Theorem 2.6. Let w, u ∈ Sn. Then, the following statements are equivalent.
1. w ≤ u in the Bruhat order.
2. The difference x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n) is TNN.
3. The difference x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n) is SNN.
4. Whenever the difference x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n) is applied to a Jacobi-Trudi matrix, the

result is a nonnegative linear combination of monomial symmetric functions.
5. The difference x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n) is a nonnegative linear combination of Kazhdan-

Lusztig immanants.

With the above results as motivation, we show that Pn,k has a unique maximal element for arbitrary k
and that certain comparable elements in Pn,k have differences which are SNN as well as TNN.

Lemma 2.7. Let (I1, . . . , Ip) and (I ′1, . . . , I
′
p) be seqences of sets satisfying

I1 ] · · · ] Ip = I ′1 ] · · · ] I ′p,
|Ii| = |I ′i| for all i.

Fix indices k < ` and define increasing sequences (α1, . . . , αp) and (α′
1, . . . , α

′
p) by

Ik ∪ I` = {α1, . . . , αp},

I ′k ∪ I ′` = {α′
1, . . . , α

′
p}.

Define the sequences of sets (J1, . . . , Jp) and (J ′
1, . . . , J

′
p) by

Ji =











{α1, α3, . . . , } if i = k,

{α2, α4, . . . , } if i = `,

Ii otherwise.

J ′
i =











{α′
1, α

′
3, . . . , } if i = k,

{α′
2, α

′
4, . . . , } if i = `,

I ′i otherwise.

Then the immanant

∆J1,J′

1
(x) · · ·∆Jp,J′

p
(x) − ∆I1,I′

1
(x) · · ·∆Ip,I′

p
(x)

is totally nonnegative and Schur nonnegative.

Proof. This difference is

∆J1,J′

1
(x) · · ·∆Jp,J′

p
(x)

∆Jk,J′

k
(x)∆J`,J′

`
(x)

(∆Jk,J′

k
(x)∆J`,J′

`
(x) − ∆Ik,I′

k
(x)∆I` ,I′

`
(x)),

which is totally nonnegative and Schur nonnegative by [15, Prop. 4.6] and [14, Thm. 5.2]. �

Our next result implies that the poset Pn,k has a maximal element for any n and k.

690



Brendon Rhoades and Mark Skandera

Theorem 2.8. Let (I1, . . . , Ip) and (I ′1, . . . , I
′
p) be two sequences of sets satisfying

I1 ] · · · ] Ip = I ′1 ] · · · ] I ′p = [n],

|I1| = |I ′i | for all i

and define sets J1, . . . , Jp by
Ji = {i ∈ [n] | i ≡ j mod p}.

Then the immanant
∆J1,J1

(x) · · ·∆Jp,Jp
(x) − ∆I1,I′

1
(x) · · ·∆Ip,I′

p
(x)

is totally nonnegative and Schur nonnegative.

Proof. Applying several iterations of Lemma 2.7 to the sets I1, . . . , Ip, I
′
1, . . . I

′
p, we obtain the desired

result. �

Corollary 2.9. Let k < ` and define the sequences of sets (I1, . . . , Ik) and (J1, . . . , J`) by

Ij = {i ∈ [n] | i ≡ j mod k},

Jj = {i ∈ [n] | i ≡ j mod `}.

Then the immanant
∆J1,J1

(x) · · ·∆Jp,Jp
(x) − ∆I1,I′

1
(x) · · ·∆Ip,I′

p
(x)

is totally nonnegative and Schur nonnegative.

Not much is known about the posets Pn,k in general. Obviously we have that Pn,1 ⊂ Pn,2 ⊂ · · · ⊂ Pn,n.
By Theorem 2.6 Pn,n contains a subposet isomorphic to (the dual of) the Bruhat order on Sn. Also, it is
possible to show that any element of span(Γ3,3) is TNN or SNN if and only if it may be expressed as a
nonnegative linear combination of Kazhdan-Lusztig immanants. In particular, this allows one to construct
the poset P3,3 and see that it coincides with the analogous poset constructed by considering SNN differences.
It would be interesting to see what Pn,k looks like in general.
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Some Expansions of the Dual Basis of Zλ

Amanda Riehl

Abstract.

A zigzag or ribbon is a connected skew diagram that contains no 2 × 2 boxes. Given a composition

β = (β1, . . . βk), we let Zβ denote the skew Schur function corresponding to the zigzag shape whose row
lengths are β1, . . . βk reading from top to bottom. For each n, the set {Zλ}λ`n is a basis for Λn, the space of
homogeneous symmetric functions of degree n. In this paper, we investigate some characteristics of the dual
basis of {Zλ}λ`n relative to the Hall inner product which we denote by {DZλ}λ`n. We give a combinatorial
interpretation for the coefficients in the expansion of DZλ in terms of the monomial symmetric functions
{mµ}µ`n as a certain signed sum of paths in the partition lattice under refinement. We shall show that
in many cases, we can give an explicit formulas for the coefficients aµ,λ = DZλ |mµ . In addition, we give
explicit formulas for the coefficients that arise in the expansion of DZλ in terms of Schur functions for
several special cases. As an application, we obtain combinatorial interpretations for the coefficients in the
expansion of Schur functions and general ribbon Schur functions in terms of ribbon Schur functions indexed
by partitions.

Résumé. Un zigzag ou un ruban est un diagramme connexe oblique qui ne contient aucune boıite 2 × 2.
Soit une composition β = (β1, . . . βk), notons Zβ la fonction oblique de Schur correspondant la forme de
zigzag dont les longueurs des lignes sont β1, . . . βk lu de haut en bas. Pour chaque n, l’ensemble {Zλ}λ`n

est une base Λn, de l’éspace des fonctions symétriques homogène de degré n. Dans cet article, nous étudions
certaines caractéristiques de la base duale de {Zλ}λ`n relativement au produit intérieur de Hall que nous
dénotons par {DZλ}λ`n. Nous donnons une interprétation combinatoire des coefficients dans l’expansion
de DZλ en termes des fonctions symétriques monômiales {mµ}µ`n comme une somme signée de chemin
dans le treillis des partages (l’ordre est le raffinement). Nous montrerons que, dans beaucoup de cas, nous
pouvons donner des formules explicites pour les coefficients aµ,λ = DZλ |mµ . De plus, nous donnons dans
plusieurs cas des formules explicites pour les coefficients dans l’expansion de DZλ en termes de fonctions
de Schur. Comme application, nous obtenons des interprétations combinatoires pour les coefficients dans
l’expansion des fonctions de Schur et des fonctions Schur de ruban en termes de fonctions de Schur ruban
indexées par les partages.

1. Introduction

Zigzag (or ribbon) Schur functions are the skew Schur functions with a ribbon shape and indexed by
compositions. A composition β = (β1, . . . , βk) of n, denoted β |= n, is a sequence of positive integers such
that β1 + β2 + . . . + βk = n. We define a zigzag shape to be a connected skew shape that contains no 2 x 2
array of boxes. Given a composition β = (β1, . . . βk), we let Zβ denote the skew Schur function corresponding
to the zigzag shape whose row lengths are β1, . . . βk reading from top to bottom. For example Figure 1 shows
the zigzag shape corresponding to the composition (2, 3, 1, 4). As pointed out in [2], zigzag Schur functions
arise in many contexts. For example, the scalar product of any two zigzags gives the number of permutations
σ such that σ and σ−1 have the associated pair of descent sets [9]. Zigzags can also be used to compute
the number of permutations with a given descent set and cycle structure [5]. MacMahon [8] showed their
coefficients in terms of the monomial symmetric functions count descents in permutations with repeated
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Figure 1. The ribbon shape corresponding to the composition (2, 3, 1, 4), so that
s(7,4,4,2)/(3,3,1) = Z(2,3,1,4).

elements. They also show up as sln-characters of the irreducible components of the Yangian representation

in level 1 modules of ŝln[6].
The zigzag Schur functions corresponding to partitions of n form a basis of Λn, the space of homogeneous

symmetric functions of degree n, and therefore they have a dual basis relative to the Hall inner product which
we denote by {DZλ}λ`n. We shall call DZλ the dual zigzag symmetric function corresponding to λ. The
basis {DZλ}λ`n has not been extensively studied. Let {mλ}λ`n denote the set of monomial symmetric
functions, {hλ}λ`n denote the set of homogeneous symmetric functions, and {sλ}λ`n denote the set of Schur
functions. The main result of this paper is to give a combinatorial interpretation to coefficients that arise in
the expansion of DZλ in terms of the monomial symmetric functions. That is, we shall give a combinatorial
interpretation to aµ,λ where

(1.1) DZλ =
∑

µ

aµ,λmµ.

Our main result will show that aµ,λ is a signed sum over the weights of certain paths in the lattice of
partitions under refinement. In general such a signed sum is complicated, but we will show that in many
special cases, we can explicitly evaluate this sum. For example, we will show that aµ,(n) = 1 for all µ so that

DZ(n) =
∑

µ

mµ = s(n)

where s(n) is the Schur function associated to the partition with only one part.
Once we have found our combinatorial interpretation for aµ,λ, we can obtain combinatorial interpreta-

tions for the expansion of DZλ in terms of any other basis by using the combinatorial interpretations of
the transition matrices between bases of symmetric functions found in [1]. In particular, we shall use this
method to find explicit values for bµ,λ where

(1.2) DZλ =
∑

µ

bµ,λsµ

for certain special cases.
We now give brief explanations of the concepts to state our main result. There is a natural correspondence

between a composition β of n and subsets of [n− 1]. That is, given a composition β = (β1, . . . , βk) of n, we
define a subset of [n − 1] by

(1.3) Set(β) = {β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + . . . + βk−1}.
We also let λ(β) denote the partition that arises from β by arranging its parts in decreasing order and `(β)
denote the number of parts of β. For example, if β = (2, 3, 1, 2), then Set(β) = {2, 5, 6} and λ(β) = (3, 2, 2, 1).
Given a subset S = {a1 < a2 < · · · < ar} ⊆ [n − 1], we define a composition of n by

(1.4) βn(S) = (a1, a2 − a1, . . . , ar − ar−1, n − ar).

For example, if S = {2, 4, 8}, then β10(S) = (2, 2, 4, 2). We also define shapen(S) = λ(βn(S)). Given two
compositions β and γ, we say that β is a refinement of γ, denoted β ≤r γ, if by adding together adjacent
components of β, we can obtain γ. For two partitions µ and λ with µ ≤r λ, we define Path(µ, λ) to be the
set of all P = (µ0, µ1, . . . , µk), such that µ = µ0 <r µ1 <r . . . <r µk = λ. If P = (µ0, µ1, . . . , µk) is such a
path, we let `(P ) = k denote the length of P . Finally, µ and λ are partitions of n, then we define

[µ → λ] = |{S ⊆ Set(µ) : shapen(S) = λ}|
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For example, if µ = (2, 2, 2, 1) and λ = (4, 2, 1), then [µ → λ] = 2, since Set(µ) = {2, 4, 6} and λ(β7({2, 6})) =
λ(β7({4, 6})) = (4, 2, 1).

This given, our main result is to give a combinatorial interpretation of for the coefficients aµ,λ that arise
in (1.1).

Theorem 1.1. If λ and µ are partitions of n, then

aµ,λ = (−1)l(µ)−l(λ)
∑

P∈Path(µ,λ)

[P ](−1)l(P )

where P = (µ0, µ1, . . . , µk), µ = µ0 <r µ1 <r . . . <r µk = λ and [P ] = [µ0 → µ1][µ1 → µ2] . . . [µk−1 → µk].

As one application of our main result, we can give a combinatorial interpretation of the expansion of Zα

in terms of Zλ’s, where α is a composition of n, and λ is a partition of n. It is known, see [4], that

Zα =
∑

T⊆Set(α)

(−1)|Set(α)−T |hλ(β(T )).

Thus if Zα =
∑

µ`n fµ,αZµ, then

(1.5) fµ,α = 〈Zα, DZµ〉 =
∑

T⊆Set(α)

(−1)|Set(α)−T |aλ(β(T )),µ.

In principle, (1.5) gives rise to a combinatorial algorithm to compute the coefficients fµ,α. However, such an
algorithm is not necessarily the most efficient way to compute these coefficients.

The outline of this paper is as follows. In Section 2, we shall review the necessary background for
symmetric functions and the combinatorial interpretation of the entries of the transition matrices between
various bases of symmetric functions that we shall need. In particular, we shall use the Jacobi-Trudi identity
to give a combinatorial interpretation of the coefficients Zλ |hµ

. In Section 3, we outline the proof of our
main theorem and give some examples of the computations involved in computing the coefficients aµ,λ. In
Section 4, we give closed forms for several of the coefficients, independent of the size of the composition. In
Section 5, we give the expansion of several dual zigzags in terms of Schur functions which are independent
of the size of the partition. In Section 6, we give a brief explanation of two applications of our main result.

2. Background Information

We say that λ = (λ1 ≥ · · · ≥ λk) is a partition of n, written λ ` n if λ1 + . . . + λk = n = |λ|. We
`(λ) denote the number of parts of λ. We let Fλ denote the Ferrers diagram of λ. If µ = (µ1, . . . , µm) is a
partition where m ≤ k and λi ≥ µi for all i ≤ m, we let Fλ/µ denote the skew shape that results by removing
the cells of Fµ from Fλ.

Figure 2. The skew Ferrers diagram of (3, 3, 2, 1)/(2, 1).

A column-strict tableau T of shape λ is any filling of Fλ with natural numbers such that entries in each
row are weakly increasing from left to right, and entries in each column are strictly increasing from bottom
to top. We define the content of T to be c(T ) = (α1, α2, . . . , ) where αi is the number of times that i occurs
in T . If λ is a partition denoted by λ = (λ1, . . . , λl) = (1m1 , 2m2 , . . . , nmn), where mi is the number of parts
of λ equal to i, then we define zλ = 1m12m2 · · ·nmnm1!m2! . . . mn!.

There are six standard bases of the space of homogeneous symmetric functions of degree n, Λn(x),
which are generally notated as: {mλ}λ`n (the monomial symmetric functions), {hλ}λ`n (the complete
homogeneous symmetric function), {eλ}λ`n (the elementary symmetric functions), {pλ}λan (the power sum
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1 1 2

2 3

4 4

5

Figure 3. A column strict tableau of shape (3, 2, 2, 1) and content (2, 2, 1, 2, 1).

symmetric functions), {fλ}λ`n (the forgotten symmetric functions) and {sλ}λ`n (the Schur functions), where
λ is a partition of n.

The Hall inner product is a standard scalar product on the space of homogeneous symmetric functions
Λn(x), which is defined by:

〈mλ, hµ〉 = δλ,µ

where

δλ,µ =

{

1 if λ = µ,
0 otherwise.

Under this scalar product, {sλ}λ`n and {pλ/
√

zλ}λ`n are known to be self-dual, and {eλ}λ`n and {fλ}λ`n

are dual [1].
When given two bases of Λn(x), {aλ}λ`n and {bλ}λ`n, we first fix some ordering of the partitions of n,

e.g. the lexicographic order, and then we may think of the bases as row vectors, 〈aλ〉λ`n and 〈bλ〉λ`n. We
can define the transition matrix M(a, b) that transforms the basis 〈aλ〉λ`n into the basis 〈bλ〉λ`n by

〈bλ〉λ`n = 〈aλ〉λ`nM(a, b).

The (λ, µ) entry of M(a, b) is given by the equation

bλ =
∑

µ`n

aµM(a, b)µ,λ.

The main goal of this paper is to find a combinatorial interpretation of the entries of M(m, DZ). That
is, we want find a combinatorial interpretation for the aµ,λ where

DZλ =
∑

µ

aµ,λmµ.

In addition, we shall also be interested in finding a combinatorial interpretation for the entries of M(s, DZ).
That is, we want to find a combinatorial interpretation for bµ,λ where

DZλ =
∑

µ

bµ,λsµ.
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We now give examples of the expansion of {DZλ}λ`n when n = 6. We first give the expansion of DZλ in
terms of the monomial symmetric functions, when λ ` 6.

DZ(6) = m6 + m5,1 + m4,2 + m4,1,1 + m3,3 + m3,2,1 + m3,1,1,1

+m2,2,2 + m2,2,1,1 + m2,1,1,1,1 + m1,1,1,1,1,1

DZ(5,1) = m5,1 + m4,1,1 + m3,2,1 + 2m3,1,1,1 + m2,2,1,1 + m2,1,1,1,1 − 2m1,1,1,1,1,1

DZ(4,2) = m4,2 + m4,1,1 + 2m2,2,2 + m2,2,1,1 + 2m2,1,1,1,1 + 7m1,1,1,1,1,1

DZ(4,1,1) = m4,1,1 + m3,1,1,1 + m2,2,1,1 + 3m2,1,1,1,1 + 8m1,1,1,1,1,1

DZ(3,3) = m3,3 + m3,2,1 + m3,1,1,1 + m2,2,1,1 + m2,1,1,1,1

DZ(3,2,1) = m3,2,1 + 2m3,1,1,1 + m2,2,1,1 + m2,1,1,1,1 − 3m1,1,1,1,1,1

DZ(3,1,1,1) = m3,1,1,1 + m2,1,1,1,1 + m1,1,1,1,1,1

DZ(2,2,2) = m2,2,2 + m2,2,1,1 + 2m2,1,1,1,1 + 5m1,1,1,1,1,1

DZ(2,2,1,1) = m2,2,1,1 + 3m2,1,1,1,1 + 9m1,1,1,1,1,1

DZ(2,1,1,1,1) = m2,1,1,1,1 + 5m1,1,1,1,1,1

DZ(1,1,1,1,1,1) = m1,1,1,1,1,1.

We note that we can get an indirect combinatorial interpretation of the coefficients bµ,γ by using the
combinatorial interpretation of the entries of the transition matrix M(s, m) given in [3]. That is,

M(s, m)λµ = K−1
µ,λ,

where ||K−1
µ,λ|| is the inverse Kostka matrix which will be described below. Thus

(2.1) DZλ =
∑

µ≤rλ

aµ,λ

∑

γ

sγK−1
µ,γ =

∑

γ

sγ

∑

µ≤rλ

aµ,λK−1
µ,γ .

Hence

(2.2) bµ,γ =
∑

µ≤rλ

aµ,λK−1
µ,γ .

The expansion of DZλ in terms of the Schur functions, when λ ` 6, is given below.

DZ(6) = s6 DZ(3,1,1,1) = s3,1,1,1 − s2,2,1,1

DZ(5,1) = s5,1 − s4,2 + s3,2,1 − s2,2,2 − s2,2,1,1 DZ(2,2,2) = s2,2,2

DZ(4,2) = s4,2 − s3,3 − s3,2,1 + 2s2,2,2 + s2,2,1,1 DZ(2,2,1,1) = s2,2,1,1

DZ(4,1,1) = s4,1,1 − s3,2,1 + s2,2,2 + s2,2,1,1 DZ(2,1,1,1,1) = s2,1,1,1,1

DZ(3,3) = s3,3 − s2,2,2 DZ(1,1,1,1,1,1) = s1,1,1,1,1,1

DZ(3,2,1) = s3,2,1 − 2s2,2,2 − s2,2,1,1.

Next we shall describe the combinatorial interpretation of the coefficients that arise in expanding a skew
Schur function in terms of the homogeneous symmetric functions. In particular, we will need to use the
expansion of skew-Schur functions in terms of hλ. To do so, we introduce rim hooks, special rim hooks
and special rim hook tabloids. More detail is given in [3] where they are used to give a combinatorial
interpretation of the inverse Kostka matrix.

For a partition λ, consider the Ferrers diagram Fλ. A rim hook of λ is a sequence of cells, h, along the
northeast boundary of Fλ such that any two consecutive cells in h share an edge and if we remove h from
Fλ, we are left with the Ferrers diagram of another partition. More generally, h is a rim hook of a skew
shape λ/µ if h is a rim hook of λ which does not intersect µ.

A rim hook tableau of shape λ/ν and type µ, T , is a sequence of partitions

T = (ν = λ(0) ⊂ λ(1) ⊂ · · ·λ(k) = λ),

such that for each 1 ≤ i ≤ k, λ(i)/λ(i−1) is a rim hook of λ(i) of size µi. We define the sign of a rim hook
hi = λ(i)/λ(i−1) to be

sgn(hi) = (−1)r(hi)−1,
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where r(hi) is the number of rows that hi occupies. The sign of a rim hook tableau T is

sgn(T ) = Πk
i=1sgn(hi).

Given two partitions λ(i−1) ⊂ λ(i), we say that λ(i)/λ(i−1) is a special rim hook if λ(i)/λ(i−1) is a rim
hook of λ(i) and λ(i)/λ(i−1) contains a cell from the first column of λ. A special rim hook tabloid (SRHT)
T of shape λ/µ is a sequence of partitions

T = (µ = λ(0) ⊂ λ(1) ⊂ · · ·λ(k) = λ),

such that for each 1 ≤ i ≤ k, λ(i)/λ(i−1) is a special rim hook of λ(i). We have a partition determined by
the integers |λ(i)/λ(i−1)| which is the type of the special rim hook tabloid T . Notice that we have used the
word tabloid instead of tableau in order to highlight there is no implicit order in the size of each successive
special rim hook, unlike rim hook tableau.

The sign of a special rim hook, hi = λ(i)/λ(i−1), and the sign of a special rim hook tabloid T , are defined
as we did for rim hooks and rim hook tableaux. We show an example of a special rim hook tabloid of type
(6, 5, 4, 2) and shape (5, 4, 4, 3, 1) in Fig 4. For |λ/ν| = |µ|, Eğecioğlu and Remmel [3] show that

Figure 4. A special rim hook tabloid of shape (5,4,4,3,1) and type (6,5,4,2).

sλ/ν =
∑

µ

K−1
µ,λ/νhµ(2.3)

where
K−1

µ,λ/ν =
∑

T is a SRHT of shape λ/ν and type µ

sgn(T ).

Hence we obtain a combinatorial description of

M(s, m)λ,µ = K−1
µ,λ.

Recall that we defined a composition β of n, denoted β |= n, as a list of positive integers (β1, β2, . . . , βk)
such that β1 + β2 + . . . + βk = n. We call βi a component of β, and we say that β has length l(β) = k
and size |β| = n. From this definition, we can see that β is a partition if each of its components are
weakly decreasing. For any composition β, we define the partition determined by β, λ(β), which we obtain
by reordering the components of β in weakly decreasing order, e.g. λ(2, 8, 9, 4) = (9, 8, 4, 2). Notice that
two compositions β, γ can determine the same partition, e.g. if β = (2, 8, 9, 4) and γ = (2, 9, 8, 4), then
λ(2, 8, 9, 4) = (9, 8, 4, 2) = λ(2, 9, 8, 4).

There is a natural correspondence between a composition β |= n and a subset Set(β) ⊆ [n − 1] =
{1, 2, . . . , n − 1} where

Set(β) = {β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + . . . + βk−1}.
We can also reverse this process so that for any subset S = {j1, j2, . . . , jk−1} ⊆ [n − 1], we can find the
composition βn(S) |= n where

βn(S) = (j1, j2 − j1, . . . , n − jk−1).

For example, the composition β = (2, 9, 8, 4) has Set(β) = {2, 11, 19} ⊆ [22]. We also define shapen(S) =
λ(βn(S)). For example if S = {2, 5, 6, 10} and n = 11, then β11(S) = (2, 3, 1, 4, 1), and shape11(S) =
(4, 3, 2, 1, 1).

Given two partitions λ and µ of n, we say that λ is a refinement of µ, written λ ≤r µ, if λ can be created
from µ by splitting some of the parts of µ into pieces. For example, (4, 2, 1, 1, 1, 1) ≤r (5, 3, 2) since we can
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split 5 into 4 + 1 and 3 into 1 + 1 + 1 to obtain λ. The cover relations in the lattice of partitions of n under
refinement arise by starting with a partition λ and combining two of the parts of λ to get µ. Similarly, given
two compositions β and γ, we say that β is a refinement of γ, denoted β ≤r γ, if by adding together adjacent
components of β, we can obtain γ. For example, 421131 ≤r 4314, meaning γ = 421131 is a refinement of
β = 4314. If we only add together a single pair of adjacent components of a partition β to get γ, then we
will say that γ covers β.

The refinement ordering restricted to the set of partitions forms a lattice which we call the lattice of
partitions under refinement, or more briefly, the refinement lattice. For two partitions µ and λ, with µ ≤r λ
we define Path(µ, λ) to be the set of all P = (µ0, µ1, . . . , µk), such that µ = µ0 <r µ1 <r . . . <r µk = λ. We
define the length of P , l(P ) = k.

Given two partitions of λ and µ of n such that µ ≤r λ, we define

[µ → λ] = |{S ⊆ Set(µ) : shapen(S) = λ}|.

As an example, let’s calculate [(2, 14) → (4, 2)]. Note that Set(2, 14) = {2, 3, 4, 5}. We want to find
|{S ⊆ {2, 3, 4, 5} : shape6(S) = (4, 2)|. The only two subsets of {2, 3, 4, 5} that have the appropriate shape
are {2} and {4}, so [(2, 14) → (4, 2)] = 2.

3. A sketch of the proof of Theorem 1.1

Before proceeding with the proof of Theorem 1.1, we shall demonstrate how it can be used to calculate
aµ,λ in the case where µ = (16) and λ = (3, 2, 1). Since our theorem says we sum over all paths in the
refinement lattice, we give the relevant portion of the refinement lattice in Fig. 5. First we give several

Figure 5. The refinement lattice from (1,1,1,1,1,1) to (3,2,1).

examples of how to calculate [α → β]. Recall that Set(λ) = {λ1, λ1 + λ2, . . . , λ1 + · · · + λk−1}. We first
calculate [(16) → (2, 14)], which is equal to |{S ⊂ Set(16) : shape6(S) = (2, 14)}|. Set(16) = {1, 2, 3, 4, 5},
and the subsets {2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, and {1, 2, 3, 4} all have shape equal to (2, 14).
Therefore [(16) → (2, 14)] = 5. Similarly [(16) → (3, 2, 1)] = 6 since {3, 4}, {3, 5}, {2, 5}, {2, 3}, {1, 3}, {1, 4}
are the only subsets T of Set(16) = {1, 2, 3, 4, 5} such that shape6(T ) = (3, 2, 1). Finally we calculate
[(2, 14) → (3, 13)]. In this case, Set(2, 14) = {2, 3, 4, 5} and the only subset T of Set(2, 14) such that
shape6(T ) = (3, 13) is {3, 4, 5}. Thus [(2, 14) → (3, 13)] = 1.

From these three examples we see that a considerable amount of work goes into calculating [α → β] for
every possibility in our refinement lattice. In Table 1, we give the values needed to calculate [α → β] for all
pairs in the refinement lattice from (16) to (3, 2, 1).

Once we have calculated those values, we can easily calculate the weights of each possible path in our
refinement lattice. These paths and weights are listed in Table 2. The length of the path will be used in our
calculation of aµ,λ.

698



A. Riehl

[16 → 2, 14] = 5 [2, 14 → 3, 13] = 1 [3, 13 → 3, 2, 1] = 2
[16 → 3, 13] = 4 [2, 14 → 22, 11] = 3 [22, 12 → 3, 2, 1] = 1
[16 → 22, 12] = 6 [2, 14 → 3, 2, 1] = 4
[16 → 3, 2, 1] = 6

Table 1. Values for [α → β] for pairs in the refinement lattice from (16) to (3, 2, 1).

Possible Paths Length of Path Weight of Path
[(16) → (3, 2, 1)] 1 6
[(16) → (3, 13)][(3, 13) → (3, 2, 1)] 2 8
[(16) → (22, 12)][(22, 12) → (3, 2, 1)] 2 6
[(16) → (2, 14)][(2, 14) → (3, 2, 1)] 2 20
[(16) → (2, 14)][(2, 14) → (3, 13)][(3, 13 → (3, 2, 1)] 3 10
[(16) → (2, 14)][(2, 14) → (22, 12)][(22, 12 → (3, 2, 1)] 3 15

Table 2. The weight of each possible path in the refinement lattice from (16) to (3, 2, 1).

Finally, we combine this information:

a(16),(3,2,1) = (−1)6−3
∑

P∈Path((16),(3,2,1))

−1l(P )[P ]

= −13(−11(6) + −12(8 + 6 + 20) + −13(10 + 15))

= −(−6 + 34 − 25)

= −3.

We should note that although this first example required many calculations, we have now done almost
all of the work for several other coefficients for n = 6 since our the set of paths that we considered also
arise in the computation of aα,β for other pairs of partitions. In addition, we will see later that the same
calculations allow us to evaluate an infinite number of coefficients aα,β where α and β are partitions of n > 6.

Outline of proof of Theorem 1.1:

We start by expanding the zigzag Schur functions in terms of the homogeneous symmetric functions
{hλ}λ`n derived from the Jacobi-Trudi by Egecioglu and Remmel [3],

sλ/µ = det(hλi−µj−i+j) =
∑

ν

K−1
ν,λ/µhµ

where h0 = 1 and hk = 0 if k < 0. Applying it specifically to zigzag Schur functions and using compositions
as subscripts, we can show that for any α |= n,

Zα = (−1)l(α)
∑

β≤rα

(−1)l(β)hλ(β).

Alternatively,

Zα = hλ(β(α)) +
∑

T⊂Set(α)

(−1)|Set(α)−T |hλ(β(α)).(3.1)

The result in 3.1 is well-known and can be proved by inclusion-exclusion [4]. Recall that [µ → λ] = |{S ⊆
Set(µ) : shapen(S) = λ}|. So

Zλ = hλ +
∑

λ≤rα

(−1)l(λ)−l(α)[λ → α]hα.

Since {Zλ}λ`n and {DZλ}λ`n are dual bases, it follows that
∑

γ

Zγ(x)DZγ(y) =
∑

γ

hγ(x)mγ(y)
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or, equivalently,
∑

γ

Zγ(x)DZγ(y)|hλ(x)mµ(y) = δλ,µ.

Given our expansion of Zλ(x) in terms of hλ(x)’s and the fact that 〈hλ(x), mµ(x)〉 = δλ,µ, we can then
show that

∑

γ

Zγ(x)DZγ(y)|hλ(x) =
∑

α≤rλ

(−1)l(α)−l(λ)[α → λ]mα(y)

and
∑

γ

Zγ(x)DZγ(y)|hλ(x)mµ(y) =
∑

µ≤rα≤rλ

(−1)l(α)−l(λ)[α → λ]aµ,α

=
∑

µ≤rα≤rλ

∑

P∈Path(µ,α)

[P ][α → λ]

=
∑

Q∈Paths(µ,λ)

sgn(Q)[Q]

Thus we need only show that
∑

Q∈Path(µ,λ) sgn(Q)[Q] = δλ,µ. This can be done by defining a weight

preserving involution on the set of paths in the lattice of partitions under refinement but we do not have the
space to give the argument in this paper.

4. Special Cases of the aµ,λ’s

We saw in our example calculating a(16),(3,2,1) how difficult and time-consuming it can be to find these
coefficients. However, in a number of special cases, we can actually compute a closed form for the sum
aµ,λ = (−1)l(µ)−l(λ)

∑

P∈Path(µ,λ)[P ](−1)l(P ). For example, if µ <r λ is a cover relation in the refinement

lattice, then there is only one path and the formula for the coefficient aµ,λ consists of a single term. In fact,
we can prove the following.

1. If λ and µ are a cover relation in the refinement lattice, then aµ,λ = [µ → λ].
2. Similarly, we can show that aµ,µ = 1 for all µ.
3. For any µ such that µ ` n, aµ,(n) = 1, so that we find DZ(n) =

∑

µ mµ = s(n).
We outline a proof of 3 by induction on the length of the refinement.

aµ,(n) = (−1)l(µ)−1
∑

P∈Path(µ,(n))

(−1)l(P )[P ]

= (−1)l(µ)−1
∑

µ<rα<r(n)

(−1)[µ → α]
∑

P∈Path(α,(n))

(−1)l(P )[P ]

+(−1)l(µ)−1(−1)[µ → (n)]

Our inductive assumption that aα,(n) = 1 gives that
∑

P∈Path(α,(n)) (−1)l(P )[P ] = (−1)l(α)−1. Thus Note

that

aµ,(n) = (−1)l(µ)−1(
∑

µ<rα<r(n)

(−1)[µ → α](−1)l(α)−1) + (−1)l(µ)−1(−1)[µ → (n)].

But if we think about the definition of [µ → α], now we are summing over all possibilities of ways to remove
at least one element from Set(µ) so

aµ,(n) = (−1)l(µ)−1
∑

∅(S⊆Set(µ)

(−1)|Set(µ)|−|S|

= (−1)l(µ)−1((
∑

∅⊆S⊆Set(µ)

(−1)|Set(µ)|−|S|) − (−1)|Set(µ)|)

But
∑

S⊆Set(µ)(−1)|S| = 0. So

aµ,(n) = (−1)l(µ)(0 − (−1)|Set(µ)|) = (−1)l(µ)((−1)|Set(µ)|+1)

But |Set(µ)| + 1 = l(µ), so aµ,(n) = 1.
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Other results can be found using careful examination of the lattice of refinement. The proofs of some
of the below items are very straightforward. For example, the proof of item 4 is plain because the relevant
portion of the refinement lattice contains only two shapes. Moreover, Set(1k) = {1, 2, . . . , k − 1} and when
we remove any element from Set(1k), one ends up with a set that has shape (2, 1k−2). Since there are k − 1
ways to remove one element from Set(1k), it follows that a(1k),(2,1k−2) = k − 1. The proofs of other items
are more involved.

Results with µ = (1k) and λ = (b, 1k−b) for b = 1, 2, . . . , 7:

4. a(1k),(2,1k−2) = k − 1
5. a(1k),(3,1k−3) = 1

6. a(1k),(4,1k−4) =

(

k − 1
2

)

− 2

7. a(1k),(5,1k−5) = − 1
2 (k − 1)(k − 4) + 3

8. a(1k),(6,1k−6) = 1
6 (k3 − 3k2 − 16k − 6)

9. a(1k),(7,1k−7) = − 1
3 (k)(k + 1)(k − 7) + 1

Here are some other results which are useful for the computation of the coefficients bµ,λ of (??):

10. a(1k),(32,1k−6) = 0
11. a(1k),(3,2,1k−5) = − 1

2k(k − 5)
12. a(2,1k−2),(4,1k−4) = k − 3
13. a(2,1k−2),(3,2,1k−5) = 1

Theorem 4.1. If d 6= 1,

a(2c,1b),(2c+d,1b−2d) =
b(b − 1) · · · (b − d + 2)

d!
(b − 2d + 1)

Note that if d = 1, the product on the right is not defined, so that Theorem 4.1 would not make sense.
However the case where d = 1 and c = 0 is a special case of one our previous formulas.

Finding the value of one coefficient also tells us the value of an infinite number of other coefficients. Let
µ = (µ1, . . . , µj). That is, define kµ to be the partition obtained when each part of µ is multiplied by k so
that kµ = (kµ1, . . . , kµj). Then we can prove the following result.

Theorem 4.2. For all k ∈ N,

aµ,λ = akµ,kλ.

In particular, if we apply Theorem 4.2 to Theorem 4.1, we obtain infinite number of cases where we have
explicit formulas for aµ,λ. The proof of Theorem 4.2 follows from an obvious bijection between paths in the
refinement lattice of (µ, λ) to paths in the refinement lattice of (kµ, kλ).

Here is another result of the same sort.

Theorem 4.3. Let µ = (µ1, . . . , µs) and λ = (λ1, . . . , λt). Then for any j such that 1 ≤ j < min(µs, λt),

aµ,λ = a(µ1,...,µs,j),(λ1,...,λt,j).

The proof of Theorem 4.3 follows from examining the compositions and noticing that we must always
have the last element of the composition in our subsets S in order for shapen(S) to match (λ1, . . . , λt, k).
This theorem works in ”both directions”, so to speak. Knowledge of the coefficients aµ,λ where µ ` n and
λ ` n both with smallest part larger than 1 allows us to compute values of aα,β for certain partitions α
and β of size larger than n. Conversely, knowledge of coefficients aµ,λ where µ and λ have identical unique
smallest part allows us to compute values of aα,β where α and β are partitions of size smaller than n by
removing that smallest part from both µ and λ.

Thus the combination of Theorem 4.2 and Theorem 4.3 enables us to calculate the value aα,β for infinitely
many α and β starting with a single value of aµ,λ. That is, starting with aµ,λ, we can first multiply each
part by k, then add smaller parts on the end, and so on.

5. Special Cases of the bµ,λ’s

Our method of expansion in terms of Schur functions in section 2 is useful not only in calculating
particular expansions, but can also be used to make general statements independent of the size of λ.
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T (−1)|Set(α)−T | λ(β(T ))
∅ -1 (10)
{2} 1 (8,2)
{4} 1 (6,4)
{8} 1 (8,2)
{2, 4} -1 (6,2,2)
{2, 8} -1 (6,2,2)
{4, 8} -1 (4,4,2)
{2, 4, 8} 1 (4,2,2,2)

Table 3. Values for (−1)|Set(α)−T | and λ(β(T )) for each possible T ⊆ Set(2, 2, 4, 2).

µ (4, 2, 2, 2) (4, 4, 2) (6, 2, 2) (6, 4) (8, 2) (10)
a(4,2,2,2),µ 1 2 1 1 2 1
−a(4,4,2),µ 0 -1 0 -1 -1 -1
−2a(6,2,2),µ 0 0 -2 -2 -2 -2
a(6,4),µ 0 0 0 1 0 1
2a(8,2),µ 0 0 0 0 2 2
−a(10),µ 0 0 0 0 0 -1
Sum for each µ 1 1 -1 -1 1 0

Table 4. Values for aγ,µ used to compute Z(2,2,4,2) =
∑

µ`n fµ,(2,2,4,2)Zµ.

We can use the fact that bµ,λ can be expressed as aµ,λ to prove further results, in particular that
1. DZ(n) = s(n)

2. DZ(1n) = s1n

3. DZ(2k,1n−2k) = s(2k,1n−2k) ∀ k
4. DZ(3k,1n−3k) = s(3,1n−3) − s(22,1n−4) ∀ k
5. DZ(3,2,1n−5) = s(3,2,1n−5) − 2s(23,1n−6) − s(22,1n−4)

6. DZ(4,1n−4) = s(4,1n−4) − s(3,2,1n−5) + s(22,1n−4) + s(23,1n−6)

The proof of 1 was given above. The proofs of the others involve using the combinatorial interpretation
of the coefficients that arise in (2.1) and defining some appropriate involutions to simplify the sum.

6. Applications of Our Main Result

As noted in the introduction, one application of our main result is to give a combinatorial interpretation
of the expansion of Zα in terms of Zλ’s, where α is a composition of n and λ is a partition of n. We noted
that if Zα =

∑

µ`n fµ,αZµ, then

fµ,α = 〈Zα, DZµ〉 =
∑

T⊆Set(α)

(−1)|Set(α)−T |aλ(β(T )),µ.

We now present an example of this fact; we will expand Z(2,2,4,2) as a sum of Zλ’s indexed by partitions of
10.

Table 3 tells us that

fµ,(2,2,4,2) = a(4,2,2,2),µ − a(4,4,2),µ − 2a(6,2,2),µ + a(6,4),µ + 2a(8,2),µ − a(10),µ.

Then Table 4 gives that Z(2,2,4,2) = Z(4,2,2,2) + Z(4,4,2) − Z(6,2,2) − Z(6,4) + Z(8,2).
As another application of our results is that we can give a combinatorial interpretation of the coefficients

that arise in the expansion of a Schur function sγ in terms of the Zλ’s where , γ, λ ` n. That is, we can give
a combinatorial interpretation of eµ,γ where sγ =

∑

µ`n eµ,γZµ.

Note that by 2.3, sγ =
∑

µ K−1
µ,γhµ, so that
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λ (3, 2, 1) (4, 1, 1) (3, 3) (4, 2) (5, 1) (6)
a(3,2,1),λ 1 0 1 0 1 1
−a(4,1,1),λ 0 -1 0 -1 -1 -1
−a(3,3),λ 0 0 -1 0 0 -1
a(5,1),λ 0 0 0 0 1 1
Sum for each λ 1 -1 0 -1 1 0

Table 5. Values for aγ,λ used to compute s(3,2,1) =
∑

µ`n eµ,(3,2,1)Zµ.

eλ,γ = 〈sγ , DZλ〉
= 〈

∑

µ

K−1
µ,γhµ,

∑

β≤rλ

aβ,λmβ〉

=
∑

β≤rλ

K−1
β,γaβ,λ.

We now present an example by expanding s(3,2,1) as a sum of ribbon Schur functions indexed by parti-
tions. We can easily see that s(3,2,1) = h1h2h3 − h1h1h4 − h3h3 + h1h5 by writing down all the special rim
hook tabloids of shape (3, 2, 1). Then

〈s(3,2,1), DZλ〉 = a(3,2,1),λ − a(4,1,1),λ − a(3,3),λ + a(5,1),λ).

In Table 5, we present the relevant values of aµ,λ.
Thus

s(3,2,1) = Z(3,2,1) − Z(4,1,1) − Z(4,2) + Z(5,1).

This may not be the most efficient algorithm in all cases, for example another approach is to use a result
of Lascoux and Pragacz [7] which gives the expansion of a Schur function as a product of ribbon Schur
functions using a determinantal formula. Any product ribbon Schur functions can be simplified to a sum
of ribbon Schur functions. However the ribbon Schur functions that result from such an expansion are just
arbitrary Zα where α is a composition. Thus one would need to expand Zα =

∑

λ`n fλ,αZλ, where α is a
composition of n and λ is a partition of n, as we did above. In special cases, such as when γ is a double
hook, this method may be more efficient. However this method does not give a combinatorial interpretation
of the coefficients of the Zλ’s that arise in the expansion.

7. Conclusions and Further Research

In this paper we have given combinatorial interpretations of the coefficients in the expansion of DZλ in
terms of the monomial symmetric functions. We also found more indirect combinatorial interpretations of
the expansion DZλ in terms of the Schur functions by using the inverse Kostka matrix. Moreover, we have
given explicit formulas for such coefficients in many special cases.

There are many unanswered questions in this area. Of particular interest is what happens when we
apply the ω transformation to DZλ. That is, recall the ω : Λn → Λn is defined by the fact for all λ ` n,
ω(hλ) = eλ. Then the question is: can we give a combinatorial interpretation of ω(DZλ) in terms of {Zλ}λ`n

or {DZλ}λ`n? We can clearly give a combinatorial interpretations of ω(DZλ) in terms of {fλ}λ`n, since we
can already expand DZ in terms of {mλ}λ`n and ω(mλ) = fλ.

We also examined the coefficients in the expansion in terms of the power and elementary symmetric
functions. Again the coefficients that arise in such expansions are not all positive. Thus another unanswered
question is to find good combinatorial interpretations for the coefficients in the expansion of DZλ in terms
of the other standard bases for the space of symmetric functions.
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A Labelling of the Faces in the Shi Arrangement

Felipe Rincón

Abstract. Let Fn be the face poset of the n-dimensional Shi arrangement, and let Pn be the poset of
parking functions of length n with the order defined by (a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) if ai ≤ bi for all i.
Pak and Stanley constructed a labelling of the regions in Fn by elements of Pn. We extend this in a natural
way to a labelling of all faces in Fn by closed intervals of Pn, and explore some interesting and unexpected
properties of this bijection. We give some results that contribute to characterize the intervals that appear
as labels and consequently to a better comprehension of Fn.

Résumé. Soit Fn l’ensemble partiellement ordonné des faces de l’arrangement de Shi en dimension n, et
soit Pn l’ensemble partiellement ordonné des fonctions de parking de longueur n dont l’ordre est défini par
(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) si ai ≤ bi pout tout i. Pak et Stanley ont construit un étiquetage des
regions de Fn avec des éléments de Pn. On généralise cette étude de manière naturelle à un étiquetage
à toutes les faces de Fn en utilisant des intervalles fermés de Pn et on éxamine quelques curieuses et
inattendues propriétés de cette bijection. On donne des resultats qui contribuent à caractériser les intervalles
qui apparaissent comme étiquèttes et ainsi une meilleure compréhension de Fn.

1. Preliminaries

1.1. The Shi arrangement. A n-dimensional (real) hyperplane arrangement is a finite collection of
affine hyperplanes in Rn. Any hyperplane arrangement A cuts Rn into open regions that are polyhedra (called
the regions of A), so they have faces. More specifically, faces of A are nonempty intersections between the
closure of a region and some or none hyperplanes in A. The poset consisting of all these faces ordered by
inclusion is called the face poset of A.

The n-dimensional Shi arrangement Sn consists of the n(n − 1) hyperplanes

Sn : xi − xj = 0, 1 for 1 ≤ i < j ≤ n.

Let Fn be the face poset of Sn, and let Rn be the set of n-dimensional faces in Fn. Then Rn is the set of
closures of the regions of Sn. However we will identify the regions of Sn with their closure, so we will make
no distinction between the elements of Rn and the regions of Sn. This arrangement was first considered by
Shi [4], who showed that |Rn| = (n + 1)n−1.

Faces of any hyperplane arrangement A can be described by specifying for every H ∈ A, which side of
H contains the face. That is, for any H ∈ A define H+ and H− as the two closed halfspaces determined by
H (the choice of which one is H+ is arbitrary), and let H0 = H . Then the elements in the face poset of A

are precisely the nonempty intersections of the form

F =
⋂

H∈A

HσH

where σH ∈ {+,−, 0}. So every face F is encoded by its sign sequence (σH)H∈A, where σH 6= 0 if and only
if F ⊆ HσH and F * H .

2000 Mathematics Subject Classification. Primary 52C35; Secondary 06A07.
Key words and phrases. hyperplane arrangements, Shi arrangement, parking functions, face poset.
These results will be part of the author’s undergraduate thesis in mathematics in Universidad de los Andes under the

direction of Federico Ardila. The author is very grateful for all his help and suggestions.
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For the Shi arrangement it is useful to represent this sequence as a matrix. We will assume as convention
that for i < j if H : xi = xj then H− : xi ≥ xj , and if H : xi = xj + 1 then H− : xi ≤ xj + 1. First define
Mn as the set of all n×n matrices whose entries belong to {+,−, 0}. Then for any F ∈ Fn consider its sign
sequence (σH)H∈Sn

, and define its associated matrix MF ∈ Mn as follows:

(MF )i,j =











σH if j < i, where H : xj = xi

σH if i < j, where H : xi = xj + 1

0 if i = j.

For example, the matrix associated to the region defined by xn ≤ xn−1 ≤ . . . ≤ x1 ≤ xn + 1 has all entries
equal to −, except for diagonal ones which are 0. In general, if F ∈ Fn then F is a region if and only if all
non-diagonal entries of MF are different from zero. And if F, G ∈ Fn then F ⊆ G if and only if MG has the
same entries as MF except for some non-diagonal zero entries of MF which become − or + in MG.

However, there is another way of representing a face that will be very useful for us. For notation
simplicity, if n is a positive integer let [n] = {1, 2, . . . , n}. Now, if F ∈ Fn, we will say a function X : [n] → R
is an interval representation of F if the point

(

X(1), X(2), . . . , X(n)
)

∈ Rn belongs to F and not to any
other face properly contained in F . We will denote by Xn the set of all functions from [n] to R. Two
interval representations X, X ′ ∈ Xn will be called equivalent if they represent the same face. We can imagine
these interval representations as ways in which n numbered intervals of length 1 can be placed on the real
line: any X ∈ Xn can be thought as the collection of the n intervals [X(i), X(i) + 1] for i ∈ [n]. Interval
[X(i), X(i) + 1] will be refered as the i-th interval of X . So the face represented by X is determined only by
the relative position of the endpoints of the intervals of X .

1.2. Parking functions. A parking function of length n is a sequence P = (P1, P2, . . . , Pn) ∈ [n]
n

such that if Q1 ≤ Q2 ≤ . . . ≤ Qn is the increasing rearrangement of the terms of P , then Qi ≤ i. Parking
functions were first considered by Konheim and Weiss [3] under a slightly different definition, but equivalent
to ours. Let Pn be the poset of the parking functions of length n with the order defined by (P1, P2, . . . , Pn) ≤
(Q1, Q2, . . . , Qn) if Pi ≤ Qi for all i ∈ [n].

Pak and Stanley constructed a bijection between Rn and the parking functions of length n as follows
[5]: Let R0 ∈ Rn be the region defined by xn ≤ xn−1 ≤ . . . ≤ x1 ≤ xn + 1, and define its label λ(R0) =
(1, 1, . . . , 1) ∈ Zn. Suppose that R, R′ ∈ Rn, R is labelled and R′ is unlabelled, R and R′ are only separated
by the hyperplane H : xi = xj (i < j), and R0 and R are on the same side of H ; then define λ(R′) = λ(R)+ei

(ei ∈ Zn is the i-th vector of the canonical basis). If under the same hypothesis R and R′ are only separated by
the hyperplane H : xi = xj+1 (i < j) and R0 and R are on the same side of H ; then define λ(R′) = λ(R)+ej .

Figure 1 shows the projection of the arrangement S3 on the plane defined by x + y + z = 0, and the
labelling of the regions in a simplified notation.

x−z=1

x−z=0

y−z=0 y−z=1x−y=0x−y=1

112

111

121 211

213

212

311 312
321

221231

131

122 113

123

132

Figure 1. Arrangement S3 and the labelling λ
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Notice that in our convention, if R ∈ Rn then we have that λ(R) = (a1 + 1, a2 + 1, . . . , an + 1) where
ai is the number of + entries in the i-th column of MR. Stanley showed that this labelling was in fact a
bijection between Rn and the elements of Pn, that is, he showed that all these labels were parking functions,
each appearing once.

2. The labelling of Fn

We will now extend this labelling to all faces in Fn. First we prove a lemma that allows us to define the
labelling.

Lemma 2.1. Let F ∈ Fn. Then there exist two unique regions F−, F+ ∈ Rn such that F ⊆ F−, F ⊆ F+

and for any region R ∈ Rn, if F ⊆ R then λ(F−) ≤ λ(R) ≤ λ(F+) in Pn. Moreover, F− ∩ F+ = F .

Proof. Consider an interval representation X ∈ Xn of F . Clearly the lemma is true if F ∈ Rn, that
is, if there are no equalities in X of the form X(i) = X(j) or X(i) = X(j) + 1 with i < j, because in this
case F− = F+ = F . In other case, let r be the maximum X(i) for which there exists a j > i such that
X(i) = X(j) or X(i) = X(j) + 1. Take k as the maximum i such that X(i) = r. Define a new interval
representation X ′ ∈ Xn by

X ′(i) =

{

X(i) if i 6= k

X(i) + ε if i = k

where ε is a sufficiently small positive real number so that for all j, if X(k) < X(j) then X(k) + ε < X(j),
and if X(k) < X(j) + 1 then X(k) + ε < X(j) + 1. So X ′ is the same interval representation as X , but its
k-th interval is moved a little bit to the right. Let F ′ ∈ Fn be the face represented by X ′.

By the definition of X ′ it is clear that inequalities in X remain unchanged in X ′, and also equalities
that do not involve X(k). That is, if X(i) < X(j) then X ′(i) < X ′(j), if X(i) < X(j) + 1 with i < j
then X ′(i) < X ′(j) + 1, and if X(i) > X(j) + 1 with i < j then X ′(i) > X ′(j) + 1. Also if X(i) = X(j)
and i, j 6= k then X ′(i) = X ′(j), and if X(i) = X(j) + 1 with i < j and i, j 6= k then X ′(i) = X ′(j) + 1.
Notice as well that there are no equalities in X of the form X(i) = X(k) + 1 with i < k because it imply
be a contradiction with the maximality of r, neither equalities of the form X(k) = X(i) with k < i because
they contradict the choice of k. So all equalities in X involving X(k) must be of the form X(k) = X(i) + 1
with k < i, or X(i) = X(k) with i < k. In the first case we have that X ′(k) > X(i) + 1 = X ′(i) + 1, so
(MF ′)k,i = +. In the second case X ′(i) = X(i) < X ′(k), so (MF ′)k,i = +. All this shows that MF ′ has the
same entries as MF except for the non-diagonal zero entries in the k-th row and k-th column of MF , which
become + in MF ′ .

If we repeat this construction starting with the face F ′ we obtain a face F ′′, satisfying that MF ′′ has
the same entries as MF ′ except for some non-diagonal zero entries in MF ′ that become + in MF ′′ . And
continuing with this process we finally get a face F+, such that MF+ is the same matrix as MF but replacing
all its non-diagonal zero entries by +.

Consider now the same construction, but defining X ′ by moving the k-th interval of X a little bit to
the left. The non-diagonal zero entries in the k-th row and k-th column of MF become now − in MF ′ , so
repeating the process we finally get a face F− such that MF− is the same matrix as MF but replacing all
its non-diagonal zero entries by −.

By this description of their associated matrices, it is easy to see that F+ ∩ F− = F . Now, let R ∈ Rn

be any region containing F . Remember that MR must be the same matrix as MF , but changing the non-
diagonal zero entries in MF by − or +. Then for every i ∈ [n] the number of + entries in the i-th column of
MR must be at least the number of + entries in the i-th column of MF− , and at most the number of + entries
in the i-th column of MF+ . Hence λ(R) ∈ Pn must satisfy the relation

(

λ(F−)
)

i
≤

(

λ(R)
)

i
≤

(

λ(F+)
)

i
for

all i, that is, λ(F−) ≤ λ(R) ≤ λ(F+) in Pn. This property implies easily the uniqueness of F− and F+, so
the proof is complete. �

This lemma is interesting by itself, as the following result shows.

Corollary 2.2. Let R1, R2, . . . , Rk ∈ Rn, and define P i = (P i
1 , P

i
2, . . . , P

i
n) = λ(Ri) for 1 ≤ i ≤ k. If

Q =
(

max
i

P i
1, max

i
P i

2 , . . . , max
i

P i
n

)

is not a parking function then
⋂k

i=1 Ri = ∅.
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Proof. If F =
⋂k

i=1 Ri 6= ∅ then F ∈ Fn. Hence by the Lemma we have that P i ≤ λ(F+) for all i, but
this implies that Q is a parking function. �

We now define the labelling of the faces in Fn. Denote by Int(Pn) the set of all closed intervals of Pn.

Definition 2.3. The labelling λ : Fn → Int(Pn) is defined by λ(F ) =
[

λ(F−), λ(F+)
]

.

We will use λ also for this labelling because it can be considered as an extension of the labelling we had
for regions (by identifying λ(R) with

{

λ(R)
}

).
Notice that different faces have different labels, because F− ∩ F+ = F for all F ∈ Fn. Unfortunately,

not all closed intervals of Pn appear as labels of some face.

3. Properties of the labelling

Clearly the main property of this labelling is stated in the following surprising theorem.

Theorem 3.1. Let F ∈ Fn. Then λ(F ) =
{

λ(R) | R ∈ Rn and F ⊆ R
}

.

Proof. Let I(F ) =
{

λ(R) | R ∈ Rn and F ⊆ R
}

. Lemma 2.1 tells us that I(F ) ⊆ λ(F ). Now, notice
that

∣

∣

∣
λ(F )

∣

∣

∣
=

n
∏

i=1

(

(

λ(F+)
)

i
−

(

λ(F−)
)

i
+ 1

)

because P = (P1, P2, . . . , Pn) is a parking function in λ(F ) if and only if
(

λ(F−)
)

i
≤ Pi ≤

(

λ(F+)
)

i
for all i.

Now let X ∈ Xn be an interval representation of F , and define A(F, i) =
{

j ∈ [n] | j > i and X(i) = X(j)
}

and B(F, i) =
{

j ∈ [n] | j < i and X(j) = X(i)+1
}

. Then c(F, i) = |Ai|+|Bi| is the number of non-diagonal
zero entries in the i-th column of MF . So c(F, i) is the difference between the number of + entries in the i-th
column of MF+ and the number of + entries in the i-th column of MF− . Hence c(F, i) =

(

λ(F+)
)

i
−

(

λ(F−)
)

i
,

and
∣

∣

∣
λ(F )

∣

∣

∣
=

n
∏

i=1

(

c(F, i) + 1
)

.

We will then prove that
∣

∣I(F )
∣

∣ ≥
∏n

i=1

(

c(F, i) + 1
)

, which is equivalent to the equality between I(F ) and

λ(F ) by a cardinality argument. Notice that
∣

∣I(F )
∣

∣ is the number of regions that contain F as a face. Then
∣

∣I(F )
∣

∣ is the number of ways (up to equivalence) in which the intervals of X can be moved a little bit,
changing all equalities in X of the form X(i) = X(j) or X(i) = X(j) + 1 (1 ≤ i < j ≤ n) to inequalities. So
we will prove there are at least

∏n

i=1

(

c(F, i) + 1
)

different ways of doing this.
The proof is by induction on n. If n = 2 there are 5 faces in F2, and it is easy to check that for each one

of them the equality holds. Now assume the assertion is true for n− 1. Consider F ∈ Fn and let X ∈ Xn be
an interval representation of F . Let r be the minimum X(i), and let k be the minimum i such that X(i) = r.
By the choice of k there is no i such that i < k and X(i) = X(k), or i > k and X(k) = X(i) + 1. That
is, for all i 6= k we have that k /∈ A(F, i) and k /∈ B(F, i). Then, ignoring the k-th interval, by induction
hypothesis there are at least

∏

i6=k

(

c(F, i) + 1
)

different ways of moving (as explained before) all intervals of
X except the k-th interval. Consider one of these ways in which these intervals can be moved, and for i 6= k
let X ′(i) be the new position of the i-th interval. We can assume without loss of generality that the intervals
were moved very little, so that there exists an open interval U around X(k) + 1 such that X ′(i) + 1 ∈ U if
and only if X(k) + 1 = X(i) + 1, and X ′(i) ∈ U if and only if X(i) = X(k) + 1. Then the c(F, k) points of
{

X ′(i)+ 1 | i ∈ A(F, k)
}

∪
{

X ′(i) | i ∈ B(F, k)
}

separate the interval U in c(F, k)+ 1 disjoint open intervals
U0, U1, . . . , Uc(F,k). For every j such that 0 ≤ j ≤ c(F, k) let zj be some point inside interval Uj , and define
Yj ∈ Xn as follows:

Yj(i) =

{

X ′(i) i 6= k

zj if i = k.

So Yj is an interval representation obtained by moving all intervals of X a little bit (as explained before).
Because U was chosen sufficiently small, Yj represents a region in Rn that contains F . Moreover, if i 6= j
then Yi and Yj represent different regions, because Yi(k) ∈ Ui and Yj(k) ∈ Uj . So we have proved that for
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every way of moving all intervals of X except the k-th interval there are at least c(F, k) + 1 different regions
in Rn that contain F . Hence

∣

∣I(F )
∣

∣ ≥
(

c(F, k) + 1
)

∏

i6=k

(

c(F, i) + 1
)

=

n
∏

i=1

(

c(F, i) + 1
)

as we wanted, so the proof is complete. �

This Theorem can also be stated as follows.

Corollary 3.2. Let R1, R2, . . . , Rk ∈ Rn such that F ⊆
⋂k

i=1 Ri 6= ∅, and define P i = (P i
1 , P

i
2, . . . , P

i
n) =

λ(Ri) for 1 ≤ i ≤ k. If R ∈ Rn is such that
(

min
i

P i
1, min

i
P i

2, . . . , min
i

P i
n

)

≤ λ(R) ≤
(

max
i

P i
1, max

i
P i

2 , . . . , max
i

P i
n

)

then F ⊆ R.

Another important consequence is stated in the next corollary.

Corollary 3.3. Let F, G ∈ Fn. Then F ⊆ G if and only if λ(F ) ⊇ λ(G).

So if we define In as the poset of all intervals of Pn appearing as labels, ordered by reverse inclusion,
then λ is an isomorphism between Fn and In. This means that the characterization of all intervals in In will
give us a complete combinatorial description of Fn. We already know that all intervals of Pn consisting of
exactly one element appear in In as labels of some region.

Now, every F ∈ Fn has a dimension, which determines the rank of F in the poset Fn. To see how this
dimension is represented in In we need the following definition.

Let X ∈ Xn. A chain of X is a k-tuple (a1, a2, . . . , ak) ∈ [n]
k

constructed as follows:

• Choose a1 so that there is no i < a1 such that X(i) = X(a1) + 1, neither i > a1 such that
X(a1) = X(i).

• Once aj has been chosen, if there exists some i < aj such that X(i) = X(aj) then aj+1 = max
{

i <

aj | X(i) = X(aj)
}

. If this i does not exist, but there exists some l > aj such that X(aj) = X(l)+1,

then aj+1 = max
{

l > aj | X(aj) = X(l) + 1
}

.
• The chain ends when there are no such i nor l as in the last step.

X can have several different chains, but the definition implies that all of them must be disjoint, and every
i ∈ [n] must belong to some chain of X . It is easy to see that chains represent sets of intervals that are binded
one to another in X . That is, if we move a little bit the j-th interval to obtain a new interval representation
X ′ ∈ Xn, then for all i in the same chain as j we must also move the i-th interval in the same way if we
want X ′ to represent the same face as X . Hence, the number of chains of X is the dimension of the face
represented by X .

Proposition 3.1. Let F ∈ Fn, and λ(F ) = [P, Q]. Then dim(F ) =
∣

∣{i ∈ [n] | Pi = Qi}
∣

∣.

Proof. Let X ∈ Xn be an interval representation of F . Remember the definitions of A(F, i), B(F, i)

and c(F, i) given in the proof of Theorem 3.1. Notice that if H = (a1, a2, . . . , ak) ∈ [n]
k

is a chain of X then
c(F, aj) = 0 if and only if j = 1, because aj ∈ A(F, aj+1) ∪ B(F, aj+1). So the number of chains of X is
equal to the number of i ∈ [n] such that c(F, i) = 0. But we had seen that c(F, i) = Qi − Pi, so the proof is
complete. �

Continuing with the same ideas we can prove the following proposition.

Proposition 3.2. Let F ∈ Fn, and λ(F ) = [P, Q]. Then

{Q1 − P1, Q2 − P2, . . . , Qn − Pn} = {0, 1, 2, . . . , m}

for some m ∈ N.

Proof. Let X ∈ Xn be an interval representation of F . Notice that if H = (a1, a2, . . . , ak) ∈ [n]k is
a chain of X then A(F, aj+1) ∪ B(F, aj+1) ⊆ A(F, aj) ∪ B(F, aj) ∪ {aj}for all j, so c(F, aj+1) ≤ c(F, aj) +
1. Then Qaj+1

− Paj+1
≤ Qaj

− Paj
+ 1 for all j. Remembering that Qa1

− Pa1
= 0 we have that

{Qa1
− Pa1

, Qa2
− Pa2

, . . . , Qak
− Pak

} = {0, 1, . . . , mH} for some mH ∈ N. Therefore, by taking the union
over all chains of X , the proof is finished. �
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Last proposition restricts a lot the possible intervals appearing as labels, and makes a step toward the
characterization of the elements of In.

We now characterize the possible sizes of the intervals that appear as labels of faces of a fixed dimension.

Proposition 3.3. The set
{

|λ(F )|
∣

∣F ∈ Fn and dim(F ) = k
}

is the set of all positive numbers d such

that d = 2a13a2 . . . (m + 1)am for some m ∈ N, where ai > 0 for all i ≤ m, and a1 + a2 + . . . + am = n − k.

Proof. Let F ∈ Fn be a face such that dim(F ) = k, and let λ(F ) = [P, Q]. Define ai =
∣

∣{j | Qj − Pj = i}
∣

∣. Proposition 3.2 tells us there exists m ∈ N such that ai > 0 if and only if i ≤ m.
Then

∣

∣λ(F )
∣

∣ =
∣

∣[P, Q]
∣

∣ =

n
∏

i=1

(Qi − Pi + 1) = 2a13a2 . . . (m + 1)am .

It is clear that a0 + a1 + . . . + am = n, so by Proposition 3.1 we have that a1 + a2 + . . . + am = n − k.
On the other hand, if we take a0, a1, . . . , am such that ai > 0 for all i ≤ m and a0 + a1 + . . . + am = n

then it is easy to construct an interval representation X of a face F ∈ Fn satisfying ai =
∣

∣{j | c(F, j) = i}
∣

∣.
Therefore, remembering that if λ(F ) = [P, Q] then c(F, j) = Qj − Pj , the proposition follows. �

Remember that if F ∈ Fn then
∣

∣λ(F )
∣

∣ =
∣

∣{R ∈ Rn | F ⊆ R}
∣

∣, so this proposition is also giving some
geometrical information about the Shi arrangement.

Finally, we characterize the intervals appearing as labels of 1-dimensional faces.

Proposition 3.4. Let I = [P, Q] be an interval of Pn. Then I is the label of a 1-dimensional face if

and only if the following statements hold:

• Q is a permutation of [n].
• P is determined by Q in the following way. Denote

(

a1, a2, . . . , an

)

=
(

Q−1(1), Q−1(2), . . . , Q−1(n)
)

,

and let 0 = i0 < i1 < i2 < . . . < ik = n be the numbers such that

{i1, i2, . . . , ik−1} = {j ∈ [n] | aj < aj+1} .

Then for all r ∈ [n], if j is such that ij < r ≤ ij+1 we have that

Par
= ij−1 +

∣

∣{l ∈ [n] | ij−1 < l ≤ ij and al > ar}
∣

∣ + 1,

where i−1 = 0.

Proof. To see that the conditions are necessary, let F ∈ Fn be a 1-dimensional face such that λ(F ) =
[P, Q], and let X ∈ Xn be an interval representation of F . Then X consists only of one chain H =
(b1, b2, . . . , bn). Remember that Qi − 1 is the number of non-diagonal + or 0 entries in the i-th column of
MF , that is,

Qi =
∣

∣{j ∈ [n] | j > i and X(j) ≥ X(i)}
∣

∣ +
∣

∣{j ∈ [n] | j < i and X(j) ≥ X(i) + 1}
∣

∣ + 1.

But all intervals of X are on the same chain, so we have that for all i

{j ∈ [n] | j > bi and X(j) ≥ X(bi)} ∪ {j ∈ [n] | j < bi and X(j) ≥ X(bi) + 1} = {b1, b2, . . . , bi−1} ,

hence Qbi
= i. This shows that Q is a permutation of [n], and that ai = bi for all i.

Notice that the numbers i0, i1, . . . , ik satisfy that for all m, ij < m ≤ ij+1 if and only if X(am) =
X(a1)− j. Then ij =

∣

∣{l ∈ [n] | X(l) > X(a1) − j}
∣

∣. Remember also that Pi − 1 is the number of + entries
in the i-th column of MF , that is,

Pi =
∣

∣{j ∈ [n] | j > i and X(j) > X(i)}
∣

∣ +
∣

∣{j ∈ [n] | j < i and X(j) > X(i) + 1}
∣

∣ + 1.

Let r ∈ [n] and j such that ij < r ≤ ij+1, so X(ar) = X(a1) − j. Therefore, because X consists only of the
chain H ,

Par
=

∣

∣

{

l | l > ar and X(l) > X(ar)
}∣

∣ +
∣

∣

{

l | l < ar and X(l) > X(ar) + 1
}∣

∣ + 1

=
∣

∣

{

l | l > ar and X(l) = X(ar) + 1
}∣

∣ +
∣

∣

{

l | X(l) > X(ar) + 1
}∣

∣ + 1

=
∣

∣

{

l | l > ar and X(l) = X(a1) − (j − 1)
}
∣

∣ +
∣

∣

{

l | X(l) > X(a1) − (j − 1)
}
∣

∣ + 1

=
∣

∣

{

m | am > ar and ij−1 < m ≤ ij
}∣

∣ + ij−1 + 1,

as we wanted.
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On the other hand, it is easy to see that if [P, Q] is an interval of Pn satisfying the previous conditions,
then it appears as the label of a 1-dimensional face. In fact, the function X ∈ Xn defined by

X
(

Q−1(i)
)

= −
∣

∣

{

l ∈ [n] | l < i and Q−1(l) < Q−1(l + 1)
}
∣

∣

represents a 1-dimensional face F such that λ(F ) = [P, Q]. �

This characterization has an interesting corollary.

Corollary 3.4. Each region R ∈ Rn such that λ(R) is a permutation of [n] contains a unique 1-
dimensional face F ∈ Fn. Moreover, each 1-dimensional face F ∈ Fn is contained in a unique region

R ∈ Rn such that λ(R) is a permutation of [n].

Proof. Suppose R is a region such that λ(R) is a permutation of [n]. By the last characterization we
know that there exists a unique P ∈ Pn such that [P, Q] is the label of a 1-dimensional face F . Theorem 3.1
implies that F ⊆ R. Moreover, if F ′ is a one dimensional face contained in R then Q ∈ λ(F ′), and because Q
is a maximal element of Pn we have that λ(F ′) = [P ′, Q] for some P ′ ∈ Pn. Therefore P = P ′ and F = F ′,
so the face F is unique.

Now, if F is a 1-dimensional face then by the characterization λ(F ) = [P, Q], with Q a permutation of
[n]. By Theorem 3.1, if R is the region such that λ(R) = Q then F ⊆ R. Moreover, if R′ is a region that
contains F then Q′ = λ(R′) ∈ [P, Q]. Therefore, if Q′ is a permutation of [n] then Q′ = Q, because Q′ is a
maximal element of Pn. So R = R′, proving that the region R is unique. �

Corollary 3.5. The number of 1-dimensional faces of Sn is n!.

This is a particular example of a general result first stated by Athanasiadis [1]. However, this bijective
proof allows a better comprehension of the geometrical organization of these faces.

4. Perspectives

After developing these results, it seems clear that there are still many aspects to understand about this
labelling. We are now working on three main problems. In first place, we are trying to achieve a total
and simple characterization of the intervals of In. This would give a complete combinatorial description of
the poset Fn, thus a better comprehension of the geometry of the Shi arrangement. We are also trying to
generalize to higher dimensions the way in which 1-dimensional faces were counted, obtaining this way a
similar result to the one given by Athanasiadis [1]. Finally, we want to apply all these results to the theory
of random walks on hyperplane arrangements, as defined by Brown and Diaconis in [2].
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“Elliptic” enumeration of nonintersecting lattice paths

Michael Schlosser

Abstract. We enumerate lattice paths in Z
2 consisting of unit vertical and horizontal steps in the positive

direction using elliptic weights, composed of appropriately chosen products of theta functions. The “elliptic”
generating function of paths from a given starting point to a given end point evaluates, by virtue of Riemann’s
addition formula for theta functions and induction, to an elliptic generalization of the binomial coefficient.
Convolution gives an identity equivalent to Frenkel and Turaev’s 10V9 summation. (This appears to be the
first combinatorial proof of the latter, and at the same time of some important degenerate cases including
Jackson’s 8φ7 and Dougall’s 7F6 summation.) We then turn to nonintersecting lattice paths in Z

2 where,
using the Lindström–Gessel–Viennot theory combined with an elliptic determinant evaluation by Warnaar,
we compute the elliptic generating function of selected families of paths with given starting points and end
points. Here convolution gives a multivariate extension of the 10V9 summation which turns out to be a
special case of an identity originally conjectured by Warnaar, later proved by Rosengren. We conclude with
discussing some future perspectives.

Résumé. On énumère les chemins dans le réseau Z
2, dont chaque pas unitaire est vertical ou horizontal

dans le sens positif, par rapport à un poids elliptique, qui est produit choisis de façon apropriée de fonctions
théta. L’évaluation de la fonction génératrice ”elliptique” des chemins d’un point de départ donné à un point
d’arrivée donné, à l’aide de la formule d’addition de Riemann pour fonctions theta et récurrence, donne lieu
à une généralization du coefficient binomial. La formule de convolution donne une identitée équivalente à la
formule sommatoire 10V9 de Frenkel and Turaev. (Il semble que c’est la première preuve combinatoire de la
dernière, et en même temps de certains cas importants dégénérés comprenant les formules sommatoires 8φ7

de Jackson et 7F6 de Dougall.) On tourne ensuite vers les chemins non intersectant dans Z
2. En utilisant la

théorie de Lindström–Gessel–Viennot couplée avec l’évaluation d’un déterminant elliptique de Warnaar, on
calcule la fonction génératrice elliptique de certaines familles choisies de chemins avec les points de départs
et d’arrivées donnés. Dans ce cas la formule de convolution donne une extension multivariée de la formule
sommatoire 10V9 qui s’est avéré un cas particulier d’une identité originalement conjecturée par Warnaar, et
puis démontrée par Rosengren. On conclut avec quelques discussions sur la perspective d’avenir.

1. Preliminaries

1.1. Lattice paths in Z
2. We consider lattice paths in the plane integer lattice Z

2 consisting of unit
horizontal and vertical steps in the positive direction. Given points u and v, we denote the set of all lattice
paths from u to v by P(u → v). If u = (u1, . . . , ur) and v = (v1, . . . , vr) are vectors of points, we denote the
set of all r-tuples (P1, . . . , Pr) of paths where Pi runs from ui to vi, i = 1, . . . , r, by P(u → v). A set of paths
is nonintersecting if no two paths have a point in common. The set of all nonintersecting paths from u to v

is denoted P+(u → v). Let w be a function which assigns to each horizontal edge e in Z
2 a weight w(e). The

weight w(P ) of a path P is defined to be the product of the weights of all its horizontal steps. The weight
w(P) of an r-tuple P = (P1, . . . , Pr) of paths is defined to be the product

∏r
i=1 w(Pi) of the weights of all

2000 Mathematics Subject Classification. Primary 05A15; Secondary 05A17, 05A19, 05E10, 11B65, 33D15, 33E20.
Key words and phrases. nonintersecting lattice paths, elliptic weights, elliptic hypergeometric series, Frenkel and Turaev’s

10V9 summation, elliptic determinant evaluations.
Partly supported by FWF Austrian Science Fund grants P17563-N13 and S9607 (the second is part of the Austrian National

Research Network ”Analytic Combinatorics and Probabilistic Number Theory”).
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the paths in the r-tuple. For any weight function w defined on a set M , we write w(M; w) :=
∑

x∈M w(x)
for the generating function of the set M with respect to the weight w.

For u = (u1, . . . , ur) and a permutation σ ∈ Sr we denote uσ = (uσ(1), . . . , uσ(r)). We say that u is
compatible to v if no families (P1, . . . , Pr) of nonintersecting paths from uσ to v exist unless σ = ε, the
identity permutation.

We need the following theorem which is a special case (sufficient for the purposes of the present exposi-
tion) of the Lindström–Gessel–Viennot theorem of nonintersecting lattice paths (cf. [12] and [10]).

Theorem 1.1. Let u,v ∈ (Z2)r. If u is compatible to v, then

(1.1) w(P+(u → v); w) = det
1≤i,j≤r

w(P(uj → vi)).

1.2. Ordinary, basic and elliptic hypergeometric series. For the following material, we refer to
Gasper and Rahman’s texts [8]. For motivation, we first define (ordinary) hypergeometric series and basic
hypergeometric series, and only then elliptic hypergeometric series, although we will mainly be interested in
the latter type of series (being the most general of the three).

For any (complex) parameter a and nonnegative integer k, the shifted factorial is defined as

(a)k := a(a + 1) · · · (a + k − 1).

(This definition can also be extended to the case where k is a negative integer.) It is convenient to use the
compact notation

(a1, . . . , am)k := (a1)k · · · (am)k,

for products of shifted factorials.
We call a series

∑

ck a hypergeometric series if g(k) = ck+1/ck is a rational function of k. Without loss
of generality, we may assume that

ck+1

ck
=

(a1 + k)(a2 + k) . . . (ar + k)

(1 + k)(b1 + k) . . . (bs + k)
z.

The general form of a hypergeometric series is thus

rFs

[

a1, . . . , ar

b1, . . . , bs
; z

]

:=

∞
∑

k=0

(a1, a2, . . . , ar)k

(1, b1 . . . , bs)k
zk,

where a1, . . . , ar are the upper parameters, b1, . . . , bs the lower parameters, and z is the argument of the
series. Several important summation theorems for hypergeometric series include the binomial theorem,
the Chu–Vandermonde summation, the Gauß summation, the Pfaff–Saalschütz summation and Dougall’s
very-well-poised 7F6 summation, to name a few.

Now consider q to be a complex parameter, called the “base”, usually with 0 < |q| < 1. For a nonnegative
integer k, the q-shifted factorial is defined as

(a; q)k := (1 − a)(1 − aq) · · · (1 − aqk−1).

(This definition can also be extended to the case where k is a negative integer.) It is convenient to use the
compact notation

(a1, . . . , am; q)k := (a1; q)k · · · (am; q)k,

for products of q-shifted factorials. Note that

lim
q→1−

(qa; q)k

(1 − q)k
= (a)k.

In this sense the q-shifted factorials generalize the (ordinary) shifted factorials.
We call a series

∑

ck a q-hypergeometric or basic hypergeometric series if g(k) = ck+1/ck is a rational
function of qk. Without loss of generality, we may assume that

ck+1

ck
=

(1 − a1q
k)(1 − a2q

k) . . . (1 − arq
k)

(1 − qk)(1 − b1qk) . . . (1 − bsqk)
(−qk)1+s−rz.

The general form of a basic hypergeometric series is thus

rφs

[

a1, . . . , ar

b1, . . . , bs
; q, z

]

:=

∞
∑

k=0

(a1, a2, . . . , ar; q)k

(q, b1 . . . , bs; q)k

(

(−1)kq(
k

2)
)1+s−r

zk,
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where a1, . . . , ar are the upper parameters, b1, . . . , bs the lower parameters, q is the base, and z is the
argument of the series. Several important summation theorems for basic hypergeometric series include the
q-binomial theorem, the q-Chu–Vandermonde summation, the q-Gauß summation, the q-Pfaff–Saalschütz
summation and Jackson’s very-well-poised 8φ7 summation, to name a few.

For the elliptic case, define a modified Jacobi theta function with argument x and nome p by

(1.2) θ(x; p) = (x, p/x; p)∞ = (x; p)∞(p/x; p)∞ , θ(x1, . . . , xm; p) = θ(x1; p) . . . θ(xm; p),

where x, x1, . . . , xm 6= 0, |p| < 1, and (x; p)∞ =
∏∞

k=0(1 − xpk). We note the following useful properties of
theta functions:

(1.3) θ(x; p) = −x θ(1/x; p), θ(px; p) = −
1

x
θ(x; p),

and Riemann’s addition formula

(1.4) θ(xy, x/y, uv, u/v; p) − θ(xv, x/v, uy, u/y; p) =
u

y
θ(yv, y/v, xu, x/u; p)

(cf. [24, p. 451, Example 5]).
Further, define a theta shifted factorial analogue of the q-shifted factorial by

(1.5) (a; q, p)n =











∏n−1
k=0 θ(aqk; p), n = 1, 2, . . . ,

1, n = 0,

1/
∏−n−1

k=0 θ(aqn+k; p), n = −1,−2, . . . ,

and let

(a1, a2, . . . , am; q, p)n = (a1; q, p)n . . . (am; q, p)n,

where a, a1, . . . , am 6= 0. Notice that θ(x; 0) = 1 − x and, hence, (a; q, 0)n = (a; q)n is a q-shifted factorial
in base q. The parameters q and p in (a; q, p)n are called the base and nome, respectively, and (a; q, p)n is
called the q, p-shifted factorial. Observe that

(1.6) (pa; q, p)n = (−1)na−nq−(n

2) (a; q, p)n,

which follows from (1.3). A list of other useful identities for manipulating the q, p-shifted factorials is given
in [8, Sec. 11.2].

We call a series
∑

ck an elliptic hypergeometric series if g(k) = ck+1/ck is an elliptic function of k with
k considered as a complex variable; i.e., the function g(x) is a doubly periodic meromorphic function of the
complex variable x. Without loss of generality, by the theory of theta functions, we may assume that

g(x) =
θ(a1q

x, a2q
x, . . . , as+1q

x; p)

θ(q1+x, b1qx, . . . , bsqx; p)
z,

where the elliptic balancing condition, namely

a1a2 · · · as+1 = qb1b2 · · · bs,

holds. If we write q = e2πiσ, p = e2πiτ , with complex σ, τ , then g(x) is indeed periodic in x with periods
σ−1 and τσ−1.

The general form of an elliptic hypergeometric series is thus

s+1Es

[

a1, . . . , as+1

b1, . . . , bs
; q, p; z

]

:=

∞
∑

k=0

(a1, a2, . . . , as+1; q, p)k

(q, b1 . . . , bs; q, p)k
zk,

provided a1a2 · · · as+1 = qb1b2 · · · bs. Here a1, . . . , ar are the upper parameters, b1, . . . , bs the lower param-
eters, q is the base, p the nome, and z is the argument of the series. For convergence reasons, one usually
requires as+1 = q−n (n being a nonnegative integer), so that the sum is in fact finite.

Very-well-poised elliptic hypergeometric series are defined as

s+1Vs(a1; a6, . . . , as+1; q, p; z) := s+1Es

[

a1, qa
1
2
1
,−qa

1
2
1
, qa

1
2
1

/p
1
2 ,−qa

1
2
1

p
1
2 , a6, . . . , as+1

a
1
2
1
,−a

1
2
1
, a

1
2
1

p
1
2 ,−a

1
2
1

/p
1
2 , a1q/a6, . . . , a1q/as+1

; q, p;−z

]

=

∞
∑

k=0

θ(a1q
2k; p)

θ(a1; p)

(a1, a6, . . . , as+1; q, p)k

(q, a1q/a6, . . . , a1q/as+1; q, p)k
(qz)k,(1.7)
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where

q2a2
6a

2
7 · · ·a

2
s+1 = (a1q)

s−5.

It is convenient to abbreviate

s+1Vs(a1; a6, . . . , as+1; q, p) := s+1Vs(a1; a6, . . . , as+1; q, p; 1).

Note that in (1.7) we have used

θ(aq2k; p)

θ(a; p)
=

(qa
1
2 ,−qa

1
2 , qa

1
2 /p

1
2 ,−qa

1
2 p

1
2 ; q, p)k

(a
1
2 ,−a

1
2 , a

1
2 p

1
2 ,−a

1
2 /p

1
2 ; q, p)k

(−q)−k,

which shows that in the elliptic case the number of pairs of numerator and denominator paramters involved
in the construction of the very-well-poised term is four (whereas in the basic case this number is two, in the
ordinary case only one).

The above definitions for s+1Es and s+1Vs series are due to Spiridonov [20], see [8, Ch. 11].
In their study of elliptic 6j symbols (which are elliptic solutions of the Yang–Baxter equation found by

Baxter [2] and Date et al. [6]), Frenkel and Turaev [7] came across the following 12V11 transformation:

(1.8) 12V11(a; b, c, d, e, f, λaqn+1/ef, q−n; q, p)

=
(aq, aq/ef, λq/e, λq/f ; q, p)n

(aq/e, aq/f, λq/ef, λq; q, p)n
12V11(λ; λb/a, λc/a, λd/a, e, f, λaqn+1/ef, q−n; q, p),

where λ = a2q/bcd. This is an extension of Bailey’s very-well-poised 10φ9 transformation [8, Eq. (2.9.1)], to
which it reduces when p = 0.

The 12V11 transformation in (1.8) appeared as a consequence of the tetrahedral symmetry of the elliptic
6j symbols. Frenkel and Turaev’s transformation contains as a special case the following summation formula,

(1.9) 10V9(a; b, c, d, e, q−n; q, p) =
(aq, aq/bc, aq/bd, aq/cd; q, p)n

(aq/b, aq/c, aq/d, aq/bcd; q, p)n
,

where a2qn+1 = bcde, see also (2.14). The 10V9 summation is an elliptic analogue of Jackson’s 8φ7 summation
formula [8, Eq. (2.6.2)] (or of Dougall’s 7F6 summation formula [8, Eq. (2.1.6)]). A striking feature of elliptic
hypergeometric series is that already the simplest identities involve many parameters. The fundamental
identity at the “bottom” of the hierarchy of identities for elliptic hypergeometric series is the 10V9 summation.
When keeping the nome p arbitrary (while |p| < 1) there is no way to specialize (for the sake of obtaining
lower order identities) any of the free parameters of an elliptic hypergeometric series in form of a limit tending
to zero or infinity, due to the issue of convergence. For the same reason, elliptic hypergeometric series are
only well-defined as complex functions if they are terminating (i.e., the sums are finite). See Gasper and
Rahman’s texts [8, Ch. 11] for more details.

2. Elliptic enumeration of lattice paths

The identity responsible for q-calculus to “work” is the simple factorization

(2.1) qk − qk+1 = (1 − q)qk.

This (almost embarrassingly simple) identity underlies not only q-integration (cf. [1, Eq. (2.12)]), but also
the recursion(s) for the q-binomial coefficient (see (2.8) at the end of this section). As q-binomial coefficients
can be combinatorially interpreted as generating functions of lattice paths in Z

2 (from a given starting point
to a given end point), one may wonder whether any suitable generalization of (2.1) would give rise to a
corresponding extension of q-binomial coefficients with meaningful combinatorial interpretation. Indeed, by
using the much more general identity (1.4), rather than (2.1), as the underlying three term relation, we
obtain such an extension. In particular, we shall be considering elliptic binomial coefficients, resulting from
the enumeration of lattice paths with respect to elliptic weights. The expressions and series occurring in our
study belong to the world of elliptic hypergeometric series, which we just introduced in the previous section.

The most important ingredient for this analysis to work out is the particular “clever” choice of weight
function in (2.2). This choice was made, on one hand, by matching the general indefinite sum (2.9) with the
known indefinite sum in (2.11), such that induction can be applied (with appeal to the three term relation
(1.4), actually a special case of (2.11)). One the other hand, factorization of the elliptic binomial coefficient
w(P((l, k) → (n, m))) was sought in general, in particular also when (l, k) 6= (0, 0). Once the right choice
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of weight function is made, everything becomes easy and a matter of pure verification. Nevertheless, at
the conceptual level things remain interesting. For instance, the elliptic binomial coefficient w(P((l, k) →
(n, m))) indeed depends on l, k, n, m (besides other parameters), and is not a mere multiple of w(P((0, 0) →
(n − l, m− k))), contrary to the basic (“q”) or classical case.

Let a, b, q, p be arbitrary (complex) parameters with a, b, q 6= 0 and |p| < 1. We define the (“standard”)
elliptic weight function on horizontal edges (n − 1, m) → (n, m) of Z

2 as follows.

(2.2) w(n, m) = w(n, m; a, b; q, p) :=
θ(aqn+2m, bq2n, bq2n−1, aq1−n/b, aq−n/b; p)

θ(aqn, bq2n+m, bq2n+m−1, aq1+m−n/b, aqm−n/b; p)
qm.

Our terminology is perfectly justified as the weight function defined in (2.2) is indeed elliptic (i.e., doubly
periodic meromorphic), even independently in each logq a, logq b, n and m (viewed as complex parameters).

If we write q = e2πiσ, p = e2πiτ , a = qα and b = qβ with complex σ, τ , α and β, then the weight w(n, m)
is clearly periodic in α with period σ−1. A simple calculation involving (1.6) further shows that w(n, m) is
also periodic in α with period τσ−1 (the latter means that w(n, m) is invariant with respect to a 7→ pa).
The same applies to w(n, m) viewed as a function in β (or n or m) with the same two periods σ−1 and
τσ−1. Spiridonov [20] calls expressions such as (2.2) where all free parameters have equal periods of double
periodicity totally elliptic. In this respect we can also refer to (2.2) as a totally elliptic weight.

For p = 0 (2.2) reduces to

(2.3) w(n, m; a, b; q, 0) =
(1 − aqn+2m)(1 − bq2n)(1 − bq2n−1)(1 − aq1−n/b)(1 − aq−n/b)

(1 − aqn)(1 − bq2n+m)(1 − bq2n+m−1)(1 − aq1+m−n/b)(1 − aqm−n/b)
qm.

If we further let a → 0 and then b → 0 (in this order; or take b → 0 and then a → ∞) this reduces to the
standard q-weight qm (counting the height of, or the area below, the horizontal edge (n − 1, m) → (n, m)).

By an elliptic generating function we mean, of course, a generating function with respect to an elliptic
weight function (and in particular, we shall always take the weight defined in (2.2) unless stated otherwise).
It is clear that an elliptic generating function is elliptic as a function in its free parameters.

The particular choice of our elliptic weight in (2.2) is justified by the following nice result.

Theorem 2.1. Let l, k, n, m be four integers with n− l + m− k ≥ 0. The elliptic generating function of
paths running from (l, k) to (n, m) is

w(P((l, k) → (n, m))) =
(q1+n−l, aq1+n+2k, bq1+n+k+l, aq1+k−n/b; q, p)m−k

(q, aq1+l+2k, bq1+2n+k, aq1+k−l/b; q, p)m−k
(2.4)

×
(aq1+l+2k, aq1−n/b, aq−n/b; q, p)n−l

(aq1+l, aq1+k−n/b, aqk−n/b; q, p)n−l

(bq1+2l; q, p)2n−2l

(bq1+k+2l; q, p)2n−2l
q(n−l)k.

Proof. First, if k > m (there is no path in this case), the expression in (2.4) vanishes due to the factor
(q; q, p)−1

m−k. On the other hand, if m ≥ k but l > n (again there is no path) the expression vanishes due to

the factor (q1+n−l; q, p)m−k since n − l + m − k ≥ 0. We may therefore assume, besides n − l + m − k ≥ 0,
that n ≥ l and m ≥ k. The statement is now readily proved by induction on n− l+m−k. For n = l one has
w(P((l, k) → (l, m))) = 1 as desired. For m = k one readily verifies w(P((l, k) → (n, k))) =

∏n
i=l+1 w(i, k).

(In both cases there is just one path.) Next assume n > l and m > k. We are done if we can verify the
recursion

(2.5) w(P((l, k) → (n, m))) = w(P((l, k) → (n, m − 1))) + w(P((l, k) → (n − 1, m)))w(n, m).

(The final step of a path is either vertical or horizontal.) However, this reduces to the addition formula
(1.4). �

Aside from the recursion (2.5), we also (automatically) have

(2.6) w(P((l, k) → (n, m))) = w(P((l, k + 1) → (n, m))) + w(l + 1, k)w(P((l + 1, k) → (n, m))).

(The first step of a path is either vertical or horizontal.) In the limit p → 0, a → 0, b → 0 (in this order),
the recursions (2.5) and (2.6) reduce to

[

n − l + m − k
n − l

]

q

q(n−l)k =

[

n − l + m − k − 1
n − l

]

q

q(n−l)k +

[

n − l + m − k − 1
n − l − 1

]

q

q(n−l−1)k+m
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and
[

n − l + m − k
n − l

]

q

q(n−l)k =

[

n − l + m − k − 1
n − l

]

q

q(n−l)(k+1) +

[

n − l + m − k − 1
n − l − 1

]

q

q(n−l−1)k+k,

respectively, where

(2.7)

[

n
k

]

q

:=
(q; q)n

(q; q)k(q; q)n−k

is the q-binomial coefficient, defined for nonnegative integers n, k with n ≥ k. This pair of recursions is of
course equivalent to the well-known pair

(2.8)

[

n
k

]

q

=

[

n − 1
k

]

q

+

[

n − 1
k − 1

]

q

qn−k,

[

n
k

]

q

=

[

n − 1
k

]

q

qk +

[

n − 1
k − 1

]

q

.

We may therefore refer to the factored expression in (2.4) as an elliptic binomial coefficient (which should
not be confused with the much simpler definition given in [8, Eq. (11.2.61)] which is a straightforward theta
shifted factorial extension of (2.7) but actually not elliptic). In fact, it is not difficult to see that the
expression in (2.4) is totally elliptic, i.e. elliptic in each logq a, logq b, l, k, n and m (viewed as complex
parameters) which again fully justifies the notion “elliptic”.

2.1. Immediate consequences. Let us consider the elliptic generating function of lattice paths in Z
2

from (0, 0) to (n, m). (In what follows, there is in fact no loss of generality in choosing the starting point to
be the origin.) We may distinguish paths by the height of their last step. This gives the simple identity

(2.9) w(P((0, 0) → (n, m))) =
m

∑

k=0

w(P((0, 0) → (n − 1, k)))w(n, k).

In explicit terms, this is

(q1+n, aq1+n, bq1+n, aq1−n/b; q, p)m

(q, aq, bq1+2n, aq/b; q, p)m

=
m

∑

k=0

(qn, aqn, bqn, aq2−n/b; q, p)k

(q, aq, bq2n−1, aq/b; q, p)k

θ(aqn+2k, bq2n, bq2n−1, aq1−n/b, aq−n/b; p)

θ(aqn, bq2n+k, bq2n+k−1, aq1+k−n/b, aqk−n/b; p)
qk,

which, after simplifying the summand, is

(2.10)
(q1+n, aq1+n, bq1+n, aq1−n/b; q, p)m

(q, aq, bq1+2n, aq/b; q, p)m
=

m
∑

k=0

θ(aqn+2k; p)(aqn, qn, bqn, aq−n/b; q, p)k

θ(aqn; p)(q, aq, aq/b, bq1+2n; q, p)k
qk.

By analytic continuation to replace qn by an arbitrary complex parameter ((2.10) is true for all n ≥ 0, etc.;
see Warnaar [23, Proof of Thms. 4.7–4.9] for a typical application of the identity theorem in the elliptic
case) and substitution of variables, one gets the indefinite summation

(2.11)
(aq, bq, cq, aq/bc; q, p)m

(q, aq/b, aq/c, bcq; q, p)m
=

m
∑

k=0

θ(aq2k; p)(a, b, c, a/bc; q, p)k

θ(a; p)(q, aq/b, aq/c, bcq; q, p)k
qk

(cf. [8, Eq. (11.4.10)]).
More generally, for a fixed l, 1 ≤ l ≤ n, we may distinguish paths running from (0, 0) to (n, m) by the

height k they have when they first reach a point on the vertical line x = l (right after the horizontal step
(l − 1, k) → (l, k)). This refined enumeration reads, in terms of elliptic generating functions,

(2.12) w(P((0, 0) → (n, m))) =

m
∑

k=0

w(P((0, 0) → (l − 1, k)))w(l, k)w(P((l, k) → (n, m))).

Explicitly, this is (after some simplifictions)

(2.13)
(q1+n, aq1+l, bq1+n, aq1−l/b; q, p)m

(q1+n−l, aq, bq1+n+l, aq/b; q, p)m
=

m
∑

k=0

θ(aql+2k; p)(aql, bql, ql, aq−n/b, aq1+n+m, q−m; q, p)k

θ(aql; p)(q, aq/b, aq, bq1+n+l, ql−n−m, aq1+l+m; q, p)k
qk,
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which after analytic continuation (first to replace qn, then ql, by complex parameters) and substitution of
variables becomes

(2.14)
(aq, aq/bc, aq/bd, aq/cd; q, p)m

(aq/b, aq/c, aq/d, aq/bcd; q, p)m
=

m
∑

k=0

θ(aq2k; p)(a, b, c, d, a2q1+m/bcd, q−m; q, p)k

θ(a; p)(q, aq/b, aq/c, aq/d, bcdq−m/a, aq1+m; q, p)k
qk,

The result is Frenkel and Turaev’s 10V9 summation ([7]; cf. [8, Eq. (11.4.1)]), the elliptic extension of
Jackson’s very-well-poised balanced 8φ7 summation (cf. [8, Eq. (2.6.2)]), the latter of which is a q-analogue
of Dougall’s 7F6 summation theorem.

We briefly sketch two other ways how to obtain the 10V9 sum from Theorem 2.1 by convolution (and
analytic continuation). For a fixed k, 1 ≤ k ≤ m, we may distinguish paths running from (0, 0) to (n, m) by
the abscissa l they have when they first reach a point on the horizontal line y = k (right after the vertical
step (l, k − 1) → (l, k)). This refined enumeration reads, in terms of elliptic generating functions,

(2.15) w(P((0, 0) → (n, m))) =

m
∑

l=0

w(P((0, 0) → (l, k − 1)))w(P((l, k) → (n, m))).

On the other hand, we may also fix an antidiagonal running through (k, 0) and (0, k), 0 < k < n + m. We
can then distinguish paths running from (0, 0) to (n, m) by where they cut the antidiagonal. This refined
enumeration reads, in terms of elliptic generating functions,

(2.16) w(P((0, 0) → (n, m))) =

min(k,n)
∑

l=0

w(P((0, 0) → (l, k − l)))w(P((l, k − l) → (n, m))).

The last two identities both constitute, when written out explicitly using Theorem 2.1, variants of Frenkel
and Turaev’s 10V9 summation (like (2.12)) both of which can be extended to (2.14) by analytic continuation.

2.2. Determinant evaluations and elliptic generating functions for nonintersecting lattice

paths. For obtaining explicit results the following determinant evaluation from [23, Cor. 5.4] is crucial.

Lemma 2.2 (Warnaar). Let A, B, C, and X1, . . . , Xr be indeterminate. Then there holds

det
1≤i,j≤r

(

(AXi, AC/Xi; q, p)r−j

(BXi, BC/Xi; q, p)r−j

)

= A(r

2)q(
r

3)
∏

1≤i<j≤r

Xj θ(Xi/Xj, C/XiXj; p)

r
∏

i=1

(B/A, ABCq2r−2i; q, p)i−1

(BXi, BC/Xi; q, p)r−1
.

As a consequence of Theorem 1.1 and Lemma 2.2, we have the following explicit formulae which generalize
Theorem 2.1:

Proposition 2.1. (a) Let l, k, n, m1, . . . , mr be integers such that m1 ≥ m2 ≥ · · · ≥ mr and n − l +
mi − k ≥ 0 for all i = 1, . . . , r. Then the elliptic generating function for nonintersecting lattice paths with
starting points (l + i, k − i) and end points (n, mi), i = 1, . . . , r, is

(2.17) det
1≤i,j,≤r

(

w(P((l + j, k − j) → (n, mi)))
)

= q3(r+1

3 )+(r+2

3 )+r(n−l)k−(n−l)(r+1

2 )−r2k+
P

r
i=1

(i−1)mi

∏

1≤i<j≤r

θ(qmi−mj , aq1+n+mi+mj ; p)

×

r
∏

i=1

(q1+n−l−i; q, p)mi−k+i(aq1+n+2k−r−i; q, p)mi−k+i(aq1+l+2k−i; q, p)n−l−r

(q; q, p)mi−k+r(aq1+l+2k−i; q, p)mi−k+i(aq1+l+i; q, p)n−l−i

×

r
∏

i=1

(bq2+n+k+l−i; q, p)mi−k+i(bq
1+2l+2i; q, p)2n−2l−2i

(bq1+2n+k−i; q, p)mi−k+i(bq1+2l+k+i; q, p)2n−2l−2i

×

r
∏

i=1

(aq1+k−n−i/b; q, p)mi−k+i(aq1−n/b, aq−n/b; q, p)n−l−i

(aqk−l−i/b; q, p)mi−k+i(aq1+k−n−i/b, aqk−n−i/b; q, p)n−l−i
.

(b) Let l, k, m, n1, . . . , nr, be integers such that n1 ≤ n2 ≤ · · · ≤ nr and ni − l + m − k ≥ 0 for
all i = 1, . . . , r. Then the elliptic generating function for nonintersecting lattice paths with starting points
(l + i, k − i) and end points (ni, m), i = 1, . . . , r, is
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(2.18) det
1≤i,j,≤r

(

w(P((l + j, k − j) → (ni, m)))
)

= q2(r+1

3 )+(l−k+1)(r+1

2 )−rlk+
P

r
i=1

(k−i)ni

×
r

∏

i=1

(qni−l; q, p)m−k+1(aqni+2k−i; q, p)m−k+1−r+i(aql+2k; q, p)ni−l−i

(q; q, p)m−k+i(aql+2k; q, p)m−k+1−r+i(aq1+l+i; q, p)ni−l−i

×
∏

1≤i<j≤r

θ(qnj−ni , bq1+m+ni+nj ; p)

r
∏

i=1

(bq1+ni+k+l; q, p)m−k+1(bq
1+2l+2i; q, p)2ni−2l−2i

(bq1+2ni+k−i; q, p)m−k+i(bq1+2l+k+i; q, p)2ni−2l−2i

×

r
∏

i=1

(aqk−ni/b; q, p)m−k+1(aq1−ni/b, aq−ni/b; q, p)ni−l−i

(aqk−l−i/b; q, p)m−k+1(aqk−ni/b; q, p)ni−l+1−2i(aqk−r−ni/b; q, p)ni−l+r−2i
.

(c) Let l, k, m, n1, . . . , nr be integers such that n1 ≤ n2 ≤ · · · ≤ nr and m − l − k ≥ 0. Then the
elliptic generating function for nonintersecting lattice paths with starting points (l + i, k − i) and end points
(ni, m − ni), i = 1, . . . , r, is

(2.19) det
1≤i,j,≤r

(

w(P((l + j, k − j) → (ni, m − ni)))
)

= q2(r+1

3 )+(l−k+1)(r+1

2 )−rlk+
P

r
i=1

(k−i)ni

×

r
∏

i=1

(qni−l; q, p)m−ni−k+i(aqni+2k−i; q, p)m−ni−k+1(aql+2k; q, p)ni−l−i

(q; q, p)m−ni−k+r(aql+2k; q, p)m−ni−k+1(aq1+l+i; q, p)ni−l−i

×
∏

1≤i<j≤r

θ(qnj−ni , aqm−ni−nj /b; p)

r
∏

i=1

(bq1+ni+k+l; q, p)m−ni−k+i(bq
1+2l+2i; q, p)2ni−2l−2i

(bq1+2ni+k−i; q, p)m−ni−k+i(bq1+2l+k+i; q, p)2ni−2l−2i

×

r
∏

i=1

(aq1+k−ni−i/b; q, p)m−ni−k+i(aq1−ni/b, aq−ni/b; q, p)ni−l−i

(aqk−l−i/b; q, p)m−ni−k+i(aq1+k−ni−i/b; q, p)ni−l−i(aqk−r−ni/b; q, p)ni−l+r−2i
.

(d) Let l, n, m, k1, . . . , kr be integers such that k1 ≥ k2 ≥ · · · ≥ kr and n − l + m − ki ≥ 0 for all
i = 1, . . . , r. Then the elliptic generating function for nonintersecting lattice paths with starting points (l, ki)
and end points (n + i, m − i), i = 1, . . . , r, is

(2.20) det
1≤i,j,≤r

(

w(P((l, kj) → (n + i, m − i)))
)

= q
Pr

i=1
(n−l+i)ki

∏

1≤i<j≤r

θ(qki−kj , aql+ki+kj ; p)

×

r
∏

i=1

(q1+n+i−l; q, p)m−ki−i(aq1+n+2ki ; q, p)m−ki
(aq1+l+2ki ; q, p)n−l

(q; q, p)m−ki−1(aq1+l+2ki ; q, p)m−ki−1(aq1+l; q, p)n−l+i

×
r

∏

i=1

(bq1+n+ki+l+r; q, p)m−ki−r−1+i(bq
1+2l; q, p)2n−2l+2i

(bq1+2n+ki ; q, p)m−ki+i(bq1+2l+ki ; q, p)2n−2l

×

r
∏

i=1

(aq1+ki−n/b; q, p)m−ki−i−1(aq1−n−i/b, aq−n−i/b; q, p)n−l+i

(aq1+ki−l/b; q, p)m−k−i(aq1+ki−n/b; q, p)n−l(aqki−r−n/b; q, p)n−l+r
.

(e) Let k, n, m, l1, . . . , lr be integers such that l1 ≤ l2 ≤ · · · ≤ lr and n − li + m − k ≥ 0 for all
i = 1, . . . , r. Then the elliptic generating function for nonintersecting lattice paths with starting points (li, k)
and end points (n + i, m − i), i = 1, . . . , r, is

(2.21) det
1≤i,j,≤r

(

w(P((lj , k) → (n + i, m − i)))
)

= q(n+r+k)(r

2)+(n+1)rk−
Pr

i=1
(k+i−1)li

×

r
∏

i=1

(q1+n+r−li ; q, p)m−k−r(aq1+n+2k+i; q, p)m−k−1(aq1+li+2k; q, p)n+i−li

(q; q, p)m−k−i(aq1+li+2k; q, p)m−k−1(aq1+li ; q, p)n+i−li

×
∏

1≤i<j≤r

θ(qlj−li , bqk+li+lj ; p)
r

∏

i=1

(bq1+n+k+r+li ; q, p)m−k−r(bq
1+2li ; q, p)2n+2i−2li

(bq1+2n+k+2i ; q, p)m−k−i(bq1+k+2li ; q, p)2n+2i−2li

×

r
∏

i=1

(aq1+k−n−i/b; q, p)m−k−1(aq1−n−i/b, aq−n−i/b; q, p)n+i−li

(aq1+k−li/b; q, p)m−k−1(aq1+k−n−i/b, aqk−n−i/b; q, p)n+i−li

.
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(f) Let k, n, m, l1, . . . , lr be integers such that l1 ≤ l2 ≤ · · · ≤ lr and n + m − k ≥ 0. Then the elliptic
generating function for nonintersecting lattice paths with starting points (li, k−li) and end points (n+i, m−i),
i = 1, . . . , r, is

(2.22) det
1≤i,j,≤r

(

w(P((lj , k − lj) → (n + i, m − i)))
)

= qk(r+1

2 )+rnk−
Pr

i=1
(n+k+i−li)li

×

r
∏

i=1

(q1+n+r−li ; q, p)m−k−r+li+i−1(aq1+n+2k−2li ; q, p)m−k+li(aq1+2k−li ; q, p)n−li

(q; q, p)m−k+li−1(aq1+2k−li ; q, p)m−k+li−i(aq1+li ; q, p)n+i−li

×
∏

1≤i<j≤r

θ(qlj−li , aqk−li−lj /b; p)

r
∏

i=1

(bq1+n+k+i; q, p)m−k+li−i(bq
1+2li ; q, p)2n+2i−2li

(bq1+2n+k−li ; q, p)m−k+li+i(bq1+k+li ; q, p)2n−2li

×
r

∏

i=1

(aq1+k−n−li/b; q, p)m−k+li−i−1(aq1−n−i/b, aq−n−i/b; q, p)n+i−li

(aq1+k−2li/b; q, p)m−k+li−1(aq1+k−n−li/b; q, p)n−li(aqk−n−r−li/b; q, p)n+r−li

.

Remark 2.3. In Proposition 2.1 we are considering generating functions for families of nonintersecting
lattice paths where the set of starting points or end points are consecutive points on an antidiagonal parallel
to x + y = c, for an integer c, such as (l + i, c− l − i). What happens if, say, the starting points are instead
considered to be consecutive points on a horizontal (resp. vertical) line, such as (l + i, k) (resp. (l, k − i)),
i = 1, . . . , r? The answer is that the computation of the generating function is then readily reduced to the
previous case where the starting points are consecutive points on an antidiagonal, namely (l + i, k + r − i)
(resp. (l + i− 1, k− i)), i = 1, . . . , r. (We thank Christian Krattenthaler for reminding us of this simple fact;
during the preparations of this paper, we had namely computed these other determinants separately and
were originally planning to include them explicitly in the above list). In fact, it is easy to see that in this
case the second rightmost (resp. second highest) path must start with a vertical (resp. horizontal) step, the
third rightmost (resp. third highest) path with two vertical (resp. horizontal) steps, and the leftmost (resp.
lowest) path with r − 1 vertical (resp. horizontal) steps. Explicitly, we have

(2.23) det
1≤i,j,≤r

(

w(P((l + j, k) → (ni, mi)))
)

= det
1≤i,j,≤r

(

w(P((l + j, k + r − j) → (ni, mi)))
)

,

and
(2.24)

det
1≤i,j,≤r

(

w(P((l, k − j) → (ni, mi)))
)

=
∏

1≤i<j≤r

w(l + i, k − j) det
1≤i,j,≤r

(

w(P((l + j − 1, k − j) → (ni, mi)))
)

.

An analogous fact holds if one considers the end points instead of the starting points to be consecutive on a
horizontal (resp. vertical) line.

3. Identities for multiple elliptic hypergeometric series

It is straightforward to extend the convolution formulae in (2.12), (2.15), and (2.16), to the multivariate
setting using the interpretation of nonintersecting lattice paths. We have the following identities:

Proposition 3.1. Let l, k, n, m be integers such that n − l + m − k ≥ 0.
(a) Fix an integer ν such that l + r + 1 ≤ ν ≤ n + 1. Then we have

(3.1) det
1≤i,j,≤r

(

w(P((l + j, k − j) → (n + i, m− i)))
)

=
∑

t1>t2>···>tr
t1≤m−1,tr≥k−r

det
1≤i,j,≤r

(

w(P((l+j, k−j) → (ν−1, ti)))
)

r
∏

s=1

w(ν, ts) det
1≤i,j,≤r

(

w(P((ν, tj) → (n+i, m−i)))
)

.

(b) Fix an integer ν such that k ≤ ν ≤ m − r. Then we have

(3.2) det
1≤i,j,≤r

(

w(P((l + j, k − j) → (n + i, m− i)))
)

=
∑

t1<t2<···<tr
t1≥l+1,tr≤n+r

det
1≤i,j,≤r

(

w(P((l + j, k − j) → (ti, ν − 1)))
)

det
1≤i,j,≤r

(

w(P((tj , ν) → (n + i, m− i)))
)

.
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(c) Fix an integer ν such that l + k ≤ ν ≤ n + m. Then we have

(3.3) det
1≤i,j,≤r

(

w(P((l + j, k − j) → (n + i, m− i)))
)

=
∑

t1<t2<···<tr
t1≥l+1,tr≤n+r

det
1≤i,j,≤r

(

w(P((l + j, k − j) → (ti, ν − ti)))
)

det
1≤i,j,≤r

(

w(P((tj , ν − tj) → (n + i, m− i)))
)

.

We could also have formulated more general versions of convolutions where the respective starting
and/or end points of the total paths are not consecutive on antidiagonals (in the above cases these points
are (l + i, k− i) and (n + i, m− i), i = 1, . . . , r). However, the advantage of our specific choice is that all the
determinants involved in Proposition 3.1 factor into closed form, by virtue of the determinant evaluations
in Proposition 2.1. We thus obtain, writing out the identities (3.1), (3.2), and (3.3) explicitly, summations
which are particularly attractive since both the summands and the product sides are completely factored.
Each of the above three cases leads, after suitable substitution of variables, simplification, and analytic
continuation, to the same result. It is a special case of a multivariate 10V9 summation formula conjectured
by Warnaar (let x = q in [23, Cor. 6.2]) which has subsequently been proved by Rosengren [16].

Theorem 3.1 (A multivariate extension of Frenkel and Turaev’s 10V9 summation formula). Let a, b, c, d
be indeterminates, let m be a nonnegative integer, and r ≥ 1. Then we have

(3.4)
∑

0≤k1<k2<···<kr≤m

q
Pr

i=1
(2i−1)λi

∏

1≤i<j≤r

θ(qki−kj , aqki+kj ; p)2

×

r
∏

i=1

θ(aq2ki ; p)(a, b, c, d, a2q3−2r+m/bcd, q−m; q, p)ki

θ(a; p)(q, aq/b, aq/c, aq/d, bcdq2r−2−m/a, aq1+m; q, p)ki

= q−4(r

3)
(

a

bcdq

)(r

2) r
∏

i=1

(q, b, c, d, a2q3−2r+m/bcd; q, p)i−1

×

r
∏

i=1

(q, aq; q, p)m(aq2−i/bc, aq2−i/bd, aq2−i/cd; q, p)m+1−r

(q, aq/b, aq/c, aq/d, aq2−2r+i/bcd; q, p)m+1−i
.

Note that the Vandermonde determinant-like factor appearing in the summand of (3.4) is squared.
This distinctive feature is reminiscent of certain Schur function and multiple q-series identities with similar
property (which can also be proved by the machinery of nonintersecting lattice paths), see e.g. [11, Thms. 5
and 6] and [3, Thms. 27–29].

The following result is the natural generalization of Theorem 3.1 to the higher level of transformations.
It is a special case of a multivariate 12V11 transformation formula conjectured by Warnaar (let x = q in [23,
Conj. 6.1]) which has subsequently been proved (in more generality) by Rains [15] and, independently, by
Coskun and Gustafson [5].

Theorem 3.2 (A multivariate extension of Frenkel and Turaev’s 12V11 transformation formula). Let
a, b, c, d, e, f be indeterminates, let m be a nonnegative integer, and r ≥ 1. Then we have

(3.5)
∑

0≤k1<k2<···<kr≤m

q
P

r
i=1

(2i−1)ki

∏

1≤i<j≤r

θ(qki−kj , aqki+kj ; p)2

×
r

∏

i=1

θ(aq2ki ; p)(a, b, c, d, e, f, λaq2−r+m/ef, q−m; q, p)ki

θ(a; p)(q, aq/b, aq/c, aq/d, aq/e, aq/f, efqr−1−m/λ, aq1+m; q, p)ki

=

r
∏

i=1

(b, c, d, ef/a; q, p)i−1(aq; q, p)m(aq/ef ; q, p)m+1−r(λq/e, λq/f ; q, p)m+1−i

(λb/a, λc/a, λd/a, ef/λ; q, p)i−1(λq; q, p)m(λq/ef ; q, p)m+1−r(aq/e, aq/f ; q, p)m+1−i

×
∑

0≤k1<k2<···<kr≤m

q
Pr

i=1
(2i−1)ki

∏

1≤i<j≤r

θ(qki−kj , λqki+kj ; p)2

×

r
∏

i=1

θ(λq2ki ; p)(λ, λb/a, λc/a, λd/a, e, f, λaq2−r+m/ef, q−m; q, p)ki

θ(λ; p)(q, aq/b, aq/c, aq/d, λq/e, λq/f, efqr−1−m/λ, λq1+m; q, p)ki

,

where λ = a2q2−r/bcd.
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The r = 1 case of Theorem 3.2 is Frenkel and Turaev’s 12V11 transformation theorem [7], an ellip-
tic extension of Bailey’s 10φ9 transformation [8, Eq. (2.9.1)]. Again, the Vandermonde determinant-like
factor appearing in the summand of (3.5) is squared. (Similar identities but with a simple Vandermonde
determinant-like factor appearing in the summand have been derived in [17].) Due to symmetry the range of
summations on both sides of (3.5) can also be taken over all integers 0 ≤ k1, . . . , kr ≤ m. If we let c = aq/b in
(3.5), the left-hand side reduces to a multivariate 10V9 series. On the right-hand side, since λd/a = q1−r, the
sum boils down to just a single term, with the indices ki = i− 1, 1 ≤ i ≤ r. The result, after simplifications,
is of course Theorem 3.1.

It would be particularly interesting to find a combinatorial proof of (3.5) involving nonintersecting lattice
paths. Even for r = 1 we so far failed to find a lattice path proof.

4. Future perspectives

4.1. Tableaux and plane partitions. It is quite clear how one can enumerate objects such as tableaux
or (various classes of) plane partitions with respect to elliptic weights. First, one has to translate the
respective combinatorial objects via a standard bijection into a set of nonintersecting lattice paths (see [10]
or [21]). The translation back, in order to obtain an explicit definition for the weight of the corresponding
combinatorial object, is not difficult. In the simplest cases the elliptic generating function is then expressed,
by Theorem 1.1, as a determinant which may be computed by Proposition 2.1. If the starting and/or end
points of the lattice paths are not fixed, one applies instead of Theorem 1.1 a result by Okada [14] (see also
Stembridge [21]), which expresses the generating function as a Pfaffian. Since the square of a Pfaffian is a
determinant of a skew symmetric matrix, this again involves the computation of a determinant. It needs to
be explored which of the classical results can be extended to the elliptic setting. Some elliptic determinant
evaluations, other than Warnaar’s in Lemma 2.2, which might be useful in this context have been provided
by Rosengren and present author [18].

4.2. Elliptic Schur functions. One can replace (2.2) by the more general weight

(4.1) w(x; n, m) :=
θ(ax2

mqn, bq2n, bq2n−1, aq1−n/b, aq−n/b; p)

θ(aqn, bxmq2n, bxmq2n−1, axmq1−n/b, axmq−n/b; p)
xm

(defined on horizontal steps (n − 1, m) → (n, m) of Z
2), and enumerate nonintersecting lattice paths, corre-

sponding to tableaux, with respect to (4.1). The result is an elliptic extension of Schur functions (which may
no longer be orthogonal) which, when “principally specialized” (xi 7→ qi, i ≥ 0) factors into closed form in
view of Proposition 2.1. On one hand it should be investigated whether these elliptic Schur functions have
other nice properties (as they do have in the classical case, see [13]). It appears that they are not related to
any of the BC-symmetric functions considered in [5] or [15].

4.3. Other weight functions. We were able to disguise Frenkel and Turaev’s 10V9 summation for-
mula as a convolution identity of elliptic binomial coefficients (see also Rains [15, Sec. 4] and Coskun and
Gustafson [5]). In our case this involved lattice paths with respect to elliptic weights. Similarly, it should
also be feasible to reproduce other known convolution formulae (such as Abel’s generalization of the bino-
mial theorem or the Hagen–Rothe summation, cf. [19], or others) using lattice paths with appropriately
chosen weights. The three types of convolutions, displayed in (2.12), (2.15), and (2.16), still hold, but may
then lead to mutually different identities. One can also try to work with bibasic weights (either elliptic or
non-elliptic), in order to recover some of the identities in [8, Secs. 3.6 and 3.8] and in [23]. It seems likely
that in the non-elliptic case (here we mean that there is no nome p, or p = 0) Bill Gosper used exactly
this method to first derive his “strange evaluations” (which were later subsumed/generalized in [8, Secs. 3.6
and 3.8]). Of course, whatever identities or other results one obtains by lattice path interpretation, one can
check for possible related determinant evaluations. Also the other direction should be investigated, e.g. does
Warnaar’s quadratic elliptic determinant in [23, Thm. 4.17] correspond to a specific set of nonintersecting
lattice paths with quadratic elliptic weight function?

4.4. “Elliptic” combinatorics. We believe that the results presented in this paper do not stand alone,
i.e., that elliptic enumeration is not necessarily restricted to lattice paths. In the same way as the generating
functions for various classes of combinatorial objects (most notably, of partitions, which correspond to paths)
can be expressed in terms of q-series, closed form elliptic generating functions for several of these classes

722



Michael Schlosser

should exist as well. The main idea would be to replace q-weights by suitable elliptic weights (and then
make the further analysis works out). There are certainly restrictions to the elliptic approach (besides that
the objects counted should be finite). Already when considering paths in Z

2, techniques involving André’s
reflection principle (cf. [4, p. 22]) or shifting paths (as in [9, Prop. 1]) are not applicable as they are not
anymore weight invariant. A good area where to look for elliptic extensions would be a general combinatorial
theory such as Viennot’s theory of heaps [22].
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Octahedrons with equally many lattice points and generalizations

Thomas Stoll and Robert F. Tichy

Abstract. While counting lattice points in octahedra of different dimensions n and m, it is an interest-
ing question to ask, how many octahedra exist containing equally many such points. This gives rise to
the Diophantine equation Pn(x) = Pm(y) in rational integers x, y, where {Pk(x)} denote special Meixner

polynomials {M
(β,c)
k

(x)} with β = 1, c = −1. We join the purely algebraic criterion of Y. Bilu and
R. F. Tichy (The Diophantine equation f(x) = g(y), Acta Arith. 95 (2000), no. 3, 261–288) with a famous
result of P. Erdös and J. L. Selfridge (The product of consecutive integers is never a power, Illinois J.
Math. 19 (1975), 292–301) and prove that

M
(β,c1)
n (x) = M

(β,c2)
m (y)

with m, n ≥ 3, β ∈ Z \ {0,−1,−2,−max(n, m) + 1} and c1, c2 ∈ Q \ {0, 1} only admits a finite number of
integral solutions x, y. Some more results on polynomial families in three-term recurrences are presented.

Résumé. Dans l’étude du dénombrement de sommets d’octaèdres de dimensions n et m se pose la question
intéressante de connâıtre combien d’octaèdres existent possédant le même nombre de sommets. Ce problème
se traduit par l’équation diophantienne Pn(x) = Pm(y), avec x, y entiers relatifs et où {Pk(x)} sont les
polynômes spéciaux de Meixner avec β = 1, c = −1. Nous joignons au critère purement algébrique de
Y. Bilu et R. F. Tichy (The Diophantine equation f(x) = g(y), Acta Arith. 95 (2000), no. 3, 261–288)
un fameux résultat dû à P. Erdös et J. L. Selfridge (The product of consecutive integers is never a power,
Illinois J. Math. 19 (1975), 292–301) et prouvons que

M
(β,c1)
n (x) = M

(β,c2)
m (y)

avec m, n ≥ 3, β ∈ Z \ {0,−1,−2,−max(n, m) + 1} et c1, c2 ∈ Q \ {0, 1} n’admet qu’un nombre fini de
solutions entières x, y. De plus, nous présentons quelques résultats portant sur des familles polynômiales
avec triple récurrence.

1. Introduction

An n-dimensional octahedron of radius r is the convex body in Rn defined by |x1| + · · · + |xn| ≤ r. In
this talk we investigate the following problem and some algebraic generalizations:

Problem: Given distinct positive integers n, m, how often can two octahedrons of dimensions n and
m, respectively, contain equally many integral points?

Obviously, it is sufficient to consider octahedrons of integral radius r. Also, any positive odd number can
occur as the number of integers in the “one-dimensional octahedron” [−r, r]. Hence, it is natural to assume
that n, m ≥ 2.

Denote by Pn(r) the number of integral points (x1, . . . , xn) ∈ Zn satisfying |x1| + · · · + |xn| ≤ r. In
1967, Erhardt [5] proved that Pn(r) is a polynomial in r of degree n indeed for any general lattice polytope
described by

|x1|

a1
+

|x2|

a2
+ · · · +

|xn|

an
≤ r,

2000 Mathematics Subject Classification. Primary 11D41; Secondary 11D45, 33C05.
Key words and phrases. counting lattice points, Diophantine equations, Meixner polynomials, orthogonal polynomials.
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where a1, . . . , an are positive integers. In general, the Ehrhart polynomial is difficult to access and its
coefficients involve Dedekind sums and their higher analogues [1]. However, in the special case of symmetric
octahedra, which we are dealing with here, Kirschenhofer, Pethö and Tichy [10] could show that Pn(r) can
be made explicit, namely

(1.1) Pn(r) =
n

∑

i=0

2i

(

n

i

)(

r

i

)

= 2F1

[

−n,−r
1

; 2

]

,

where

2F1

[

a, b
c

; z

]

=

∞
∑

k=0

(a)k(b)k

(c)k
zk

is the Gauss hypergeometric function with (a)0 = 1 and (a)k = a(a+1) . . . (a+k−1) the Pochhammer symbol.
Thus, the original combinatorial counting problem can be restated by means of a polynomial Diophantine
equation:

Problem, restated: How many solutions x, y ∈ Z can the equation Pn(x) = Pm(y) have?

According to the modern Askey-scheme [14] and (1.1), we note that

(1.2) Pk(x) = M
(1,−1)
k (x),

where

M
(β,c)
k (x) = 2F1

[

−k,−x
β

; 1 −
1

c

]

denote the well-known Meixner polynomials.

2. Historical remarks

Hajdu [7, 8] studied the problem for small n and m. For the cases

(n, m) ∈ {(3, 2), (4, 2), (6, 2), (4, 3), (6, 4)}

he completely determined all integral solutions of Pn(x) = Pm(y). He also conjectured that the equation
has finitely many solutions when n > m = 2. This was confirmed by Kirschenhofer, Pethő and Tichy [10],
who reduced it to the Siegel–Baker theorem about the hyperelliptic equation y2 = f(x) in order to give a
computable bound for integral solutions x, y of the equation Pn(x) = P2(y). Moreover, finiteness is also
shown in the following three cases: m = 4; 2 ≤ m < n ≤ 103; n 6≡ m mod 2. The two latter results are
no longer effective (i.e., no upper bound for x, y can be retrieved from the proof), because they depend on
the non-effective Davenport–Lewis–Schinzel [4] theorem about the Diophantine equation f(x) = g(y). The
general answer to the problem has been obtained in [2]:

Theorem 2.1 (Bilu-Stoll-Tichy, 2000). Let n and m be distinct integers satisfying m, n ≥ 2. Then the
equation

Pn(x) = Pm(y)

has only finitely many solutions in rational integers x, y.

In other words, sufficiently large octahedra of distinct dimensions n, m cannot have equally many lattice
points. The proof of Theorem 2.1 is based on a non-effective result of Bilu and Tichy [3], thus, we cannot
make “sufficiently large” more explicit.

3. Generalizations

Several new questions arise in this context. For instance, it is well-known that the general family

{M
(β,c)
k (x)} defines a discrete orthogonal polynomial family if and only if β > 0 and 0 < c < 1. Since the

original case β = 1, c = −1 (see (1.2)) does not fit in, we are interested in a more general statement, which
handles both the original and the orthogonal case.

Question 1: Is it possible to derive a similar result to Theorem 2.1 for more general β and c, including
the orthogonal case?
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Furthermore, one may also ask, whether it is possible to replace the family of Meixner polyomials by
some other polynomial family {pk(x)}. Since orthogonal polynomials are closely related to polynomials in
three-term recurrences by Favard’s theorem, the following question seems of interest.

Question 2: Let {pk(x)} be a sequence of polynomials defined by

p0(x) = 1(3.1)

p1(x) = x − c0

pk+1(x) = (x − ck)pn(x) − dkpk−1(x), k = 1, 2, . . . ,

where ck and dk are parameters depending only on k. For which ck, dk the equation pn(x) = pm(y) only has
finitely many integral solutions x, y?

Note again, that by the Askey scheme, the Meixner polynomials satisfy a normalized recurrence relation
with ck = (k + (k + β)c)/(c − 1) and dk = (k(k + β − 1)c)/(c − 1)2.

Diophantine equations of the form pm(x) = pn(y) with polynomials in three-term recurrences have been
studied recently by Kirschenhofer and Pfeiffer [11, 12]. They point out several striking connections to
enumeration problems (for instance, to permutations with coloured cycles).

4. Main results

4.1. Concerning ’Question 1’. Question 1 is settled by the following result [17]:

Theorem 4.1. Let n and m be distinct integers satisfying m, n ≥ 3, further let c1, c2 ∈ Q \ {0, 1} and
β ∈ Z \ {0,−1,−2,−max(n, m) + 1}. Then the equation

M (β,c1)
n (x) = M (β,c2)

m (y)

has only finitely many solutions in integers x, y.

Denote by K
(p,N)
n (x) the two-parametric Krawtchouk polynomials given in [14]:

K(p,N)
n (x) = 2F1

[

−n,−x
−N

;
1

p

]

n = 0, 1, 2, . . . , N.

Since
K(p,N)

n (x) = M (−N,p/(p−1))
n (x),

we also have

Theorem 4.2. Let n and m be distinct integers satisfying m, n ≥ 3, further let N ≥ max(m, n) and
p1, p2 ∈ Q \ {0, 1}. Then the equation

(4.1) K(p1,N)
n (x) = K(p2,N)

m (y)

has only finitely many solutions in integers x, y.

4.2. Concerning ’Question 2’. We obtain sufficient conditions on ck and dk in order to state an
again more general finiteness theorem [18]:

Theorem 4.3. Let {pk(x)} be a polynomial sequence satisfying (3.1). Assume one of the following
conditions (A, B, C ∈ Q)

(1) c0 = A, ck = A, dk = B with A 6= 0 and B > 0,
(2) c0 = A + B, ck = A, dk = B2 with B 6= 0,
(3) c0 = A, ck = Bk + A, dk = 1

4B2k2 + Ck with C > − 1
4B2.

Then the Diophantine equation
Apm(x) + Bpn(y) = C

with m > n ≥ 4, A,B, C ∈ Q, AB 6= 0 has at most finitely many solutions in rational integers x, y.

Note that, for instance, in case (3) there are the six rational parameters A,B, C, A, B, C involved, thus,
the generality of Theorem 4.3 should well fit specific combinatorial applications. Furthermore, well-known
orthogonal families are covered by the statement. So, for example, in the first case of Theorem 4.3 we
deal with (shifted) Jacobi polynomials, while the third case corresponds to modified Hermite and Laguerre
polynomials.
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5. Methods and tools

5.1. The Bilu-Tichy method. The proofs of Theorem 4.1, Theorem 4.2 and Theorem 4.3 are basically
algebraic, as they are based on an explicit algorithmic criterion of Bilu and Tichy [3], which only involves
knowledge of the coefficients of the polynomials under consideration. In order to state that result, we have
to introduce some more notation.

Let γ, δ ∈ Q\{0}, q, s, t ∈ Z>0, r ∈ Z≥0 and v(x) ∈ Q[x] a non-zero polynomial (which may be constant).
Further let Ds(x, γ) denote the Dickson polynomials which can be defined via

Ds(x, γ) =

bs/2c
∑

i=0

ds,ix
s−2i with ds,i =

s

s − i

(

s − i

i

)

(−γ)i.

The pair (f(x), g(x)) or viceversa (g(x), f(x)) is called a standard pair over Q if it can be represented by an
explicit form listed below. In such a case we call (f, g) a standard pair of the first, second, third, fourth, fifth
kind, respectively.

kind explicit form of (f, g) resp. (g, f) parameter restrictions
first (xq , γxrv(x)q) with 0 ≤ r < q, (r, q) = 1, r + deg v > 0
second (x2, (γx2 + δ)v(x)2) –
third (Ds(x, γt), Dt(x, γs)) with (s, t) = 1
fourth

(

γ−s/2Ds(x, γ),−δ−t/2Dt(x, δ)
)

with (s, t) = 2
fifth

(

(γx2 − 1)3, 3x4 − 4x3
)

–

These standard pairs are important in view of the following characterization result [3].

Theorem 5.1 (Bilu-Tichy, 2000). Let p(x), q(x) ∈ Q[x] be non-constant polynomials. Then the following
two assertions are equivalent:

(a) The equation p(x) = q(y) has infinitely many rational solutions with a bounded denominator.
(b) We can express p ◦ κ1 = φ ◦ f and q ◦ κ2 = φ ◦ g where κ1, κ2 ∈ Q[x] are linear, φ(x) ∈ Q[x], and

(f, g) is a standard pair over Q.

If we are able to get contradictions for decompositions of p and q as demanded in (b) of Theorem 5.1 then
finiteness of number of integral solutions x, y of the original Diophantine equation p(x) = q(y) is guaranteed.
Note that this approach is basically an algebraic one and does involve an accurate comparison of coefficients.

5.2. Erdös-Selfrdige tool. As an additional tool, we restate a well-known result obtained by Erdös
and Selfridge [6]:

Theorem 5.2 (Erdös-Selfridge, 1975). The equation

x(x + 1) · · · (x + k − 1) = yl

has no solution in rational integers x > 0, k > 1, l > 1, y > 1.

Interestingly, simple comparison of the leading coefficients of the Meixner polynomials gives an equation
very similar to that of Theorem 5.2. Therefore, there are no parameters that satisfy such a coefficient
equation. In other words, we can easily derive a contradiction if we suppose a higher degree polynomial
representation in Theorem 5.1.

5.3. Lesky tool. There is a close connection beween three-term recurrences and Sturm-Liouville dif-
ferential equations [13]:

Theorem 5.3 (Koepf-Schmersau, 2002). The following conditions are equivalent:

(1) The second-order Sturm-Liouville differential equation (k ≥ 0)

(5.1) σ(x)p′′k(x) + τ(x)p′k(x) − k((k − 1)a + d)pk(x) = 0,

with σ(x) = ax2 + bx + c 6≡ 0, τ = dx + e, a, b, c, d, e ∈ R, d 6= −ta for all t ∈ Z≥0 has a (up to a
factor depending on k) unique infinite polynomial family solution {pk(x)}of exact degree k.
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(2) The family {pk(x)} satifies a three-term recurrence of type (3.1) with

c0 = −

e

d
,

ck = −

2kb((k − 1)a + d) − e(2a − d)

(2ka + d)((2k − 2)a + d)
,

dk =
k((k − 2)a + d)

((2k − 1)a + d)((2k − 3)a + d)

„

−c +
((k − 1)b + e)(((k − 1)a + d)b − ae)

((2k − 2)a + d)2

«

.

The properties of Theorem 5.3 are shared by all classical orthogonal polynomials (Jacobi, Laguerre,
Hermite). On the other hand, one has by Favard’s Theorem (see for instance [19]), that all polynomial
families defined by a three-term recurrence of shape (3.1) are orthogonal with respect to some moment
functional. If one demands orthogonality with respect to a positive definite moment functional (in order to
use all known facts about zeros of orthogonal polynomials etc.), then one exactly gets only Jacobi, Laguerre
and Hermite up to a linear transformation x 7→ ν1x + ν2 with ν1, ν2 ∈ R (see the results of Lesky in [15]).
Hence, one can completely characterize all positive definite orthogonal solutions of (5.1) just by looking at
the coefficients a, b, c, d, e (see [9]). This can be translated into conditions on ck and dk for the general
equation

Apm(x) + Bpn(y) = C.
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Hankel Determinants for Some Common Lattice Paths

Robert A. Sulanke and Guoce Xin

Abstract. For a single value of `, let f(n, `) denote the number of lattice paths that use the steps (1, 1),
(1,−1), and (`, 0), that run from (0, 0) to (n, 0), and that never run below the horizontal axis. Equivalently,
f(n, `) satisfies the quadratic functional equation F (x) =

P

n≥0
f(n, `)xn = 1 + x`F (x) + x2F (x)2. Let Hn

denote the n by n Hankel matrix, defined so that [Hn]i,j = f(i + j − 2, `). Here we investigate the values of
such determinants where ` = 0, 1, 2, 3. For ` = 0, 1, 2 we are able to employ the Gessel-Viennot-Lindström
method. For the case ` = 3, the sequence of determinants forms a sequence of period 14, namely,

(det(Hn))n≥1 = (1, 1, 0, 0,−1,−1,−1,−1,−1, 0, 0, 1, 1, 1, 1, 1, 0, 0,−1,−1,−1, . . .)

For this case we are able to use the continued fractions method recently introduced by Gessel and Xin. We
also apply this technique to evaluate Hankel determinants for other generating functions satisfying a certain
type of quadratic functional equation.

Résumé. Pour une seule valeur de `, soit f(n, `) le nombre des chemins treillis que utilise les pas (1, 1), (1,−1),

et (`, 0), vient de (0, 0) á (n, 0), et que ne vient jamais dessous l’axis horizontale. Équivalentement, le f(n, `)
satisfié l’équation fonctionnelle quadratique F (x) =

P

n≥0
f(n, `)xn = 1 + x`F (x) + x2F (x)2. Soit Hn le n

par n matrice de Hankel, définit pour que [Hn]i,j = f(i + j − 2, `). Nous examinons de tels déterminants oú
` = 0, 1, 2, 3. Pour ` = 0, 1, 2 nous pouvons employer la méthode de Gessel-Viennot-Lindström. Pour le cas
` = 3, ls séquence de déterminants forme une séquence de période 14, á savoir

(det(Hn))n≥1 = (1, 1, 0, 0,−1,−1,−1,−1,−1, 0, 0, 1, 1, 1, 1, 1, 0, 0,−1,−1,−1, . . .)

Pour ce cas que nous pouvons utiliser la méthode de fractions continuée récemment introduit par Gessel et
Xin. Nous appliquons aussi cette technique pour évaluer les déterminants de Hankel pour l’autres fonctions
generatrices quie satisfait un certain type d’équation fonctionnelle qudratique.

1. Introduction

We will consider lattice paths that use the following three steps: U = (1, 1), the up diagonal step;
H = (`, 0), the horizontal step of length `, where ` is a single nonnegative integer; and D = (1,−1), the
down diagonal step. Further, each H step will be weighted by t, and the others by 1. The weight of a path
is the product of the weights of its steps. The weight of a path set is the sum of the weights of its paths.

Let f(n, t, `) denote the weight of the path set of paths running from (0, 0) to (n, 0) that never run below
the x-axis. When t = 1, weight becomes cardinality. For example,

- f(n, 0, 0), equivalently f(n, 0, `), is the weight of a set of Dyck paths, counted by the aerated
Catalan numbers:
(f(0, 0, 0), f(1, 0, 0), f(2, 0, 0), . . .) = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, . . .).

- f(n, t, 1) is the weight of a set of Motzkin paths, counted by the Motzkin numbers:
(f(0, 1, 1), f(1, 1, 1), f(2, 1, 1), . . .) = (1, 1, 2, 4, 9, 21, 51, 127, 323, 835 . . .).

- f(n, t, 2) is the weight of a set of large Schröder paths, counted by the aerated large Schröder
numbers:
(f(0, 1, 2), f(1, 1, 2), f(2, 1, 2), . . .) = (1, 0, 2, 0, 6, 0, 22, 0, 90, 0, 394, 0, ).

- (f(0, 1, 3), f(1, 1, 3), f(2, 1, 3), . . .) = (1, 0, 1, 1, 2, 3, 6, 10, 20, 36, 72, 136, 273, 532, . . .)

2000 Mathematics Subject Classification. Primary 05A15; Secondary 15A36.
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Previously, Pergola, et al [9] and Sulanke [11] have considered such generalized Motzkin paths for various
values of ` and have given additional references. Letting

F (x) =
∑

n≥0

f(n, t, `)xn

denote the generating function for f(n, t, `), we find by a common combinatorial decomposition that F (x)
satisfies the functional equation

F (x) = 1 + tx`F (x) + x2F (x)2.

Any sequence A = (a0, a1, a2 . . .) defines a sequence of Hankel matrices, H1, H2, H3 . . . , where Hn is an
n by n matrix with entries (Hn)i,j = ai+j−2. For instance, the sequence (f(n, 1, 3))n≥0 yields

H1 =
[

1
]

, H2 =

[

1 0
0 1

]

, H3 =





1 0 1
0 1 1
1 1 2



 , H4 =









1 0 1 1
0 1 1 2
1 1 2 3
1 2 3 6









Our interest is to consider, for nonnegative integer `, the corresponding sequence of determinants det(Hn)
where each matrix Hn has entries

(Hn)i,j = f(i + j − 2, t, `).

The following propositions constitute our main results:

Proposition 1.1. For n ≥ 0, ` = 1, and arbitrary t (including t = 0, yielding the Dyck path case)

det(Hn) = 1.

Proposition 1.2. For n ≥ 0, ` = 2, and arbitrary t (including t = 0, yielding the Dyck path case),

det(Hn) =

{

(1 + t)n2/4 if n is even
(1 + t)(n−1)(n+1)/4 if n is odd

Proposition 1.3. For t = 1 and ` = 3,

(det(Hn))14n≥1 = (1, 1, 0, 0,−1,−1,−1,−1,−1, 0, 0, 1, 1, 1).

Moreover, if m, n ≥ 0 with n − m = 0 mod 14 then det(Hm) = det(Hn).

In Section 2, using the well-known combinatorial method of Gessel-Viennot-Lindström [3] [5] [13], we
will prove Propositions 1.1 and 1.2. Our proof of Propositions 1.1 is essentially that of Viennot [13] who also
used the method to calculate various other Hankel determinants relating to Motzkin paths. Aigner [1] also
studied such determinants. We note that earlier Shapiro [10] demonstrated that the Hankel determinants
for the usual Catalan numbers is 1. For the large Schröder numbers (r(n))n≥0 = 1, 2, 6, 22, 90, 394, . . . whose
generating function satisfies

R(x) =
∑

k≥0

r(k)xk = 1 + xR(x) + xR(x)2,

we show that the n-order Hankel determinant is 2n(n−1)/2, as stated in Proposition 2.1.
We remark that the problem of evaluating Hankel determinants corresponding to a generating function

has received significant attention as considered by Wall [14]. One of the basic tools for such evaluation is
the method of continued fractions, either by J-fractions in Krattenthaler [8] or Wall [14] or by S-fractions in
Jones and Thron [7, Theorem 7.2]. However, both of these methods need the condition that the determinant
can never be zero, a condition not always present in our study. Recently, Brualdi and Kirkland [4] used the
J-fraction expansion to calculate Hankel determinants for various sequences related to the Schröder numbers.
A slight modification of their proof of [4, Lemma 4.7] proves our Proposition 2.1 for t = 1.

In Section 3 we establish the periodicity of 14 for the case ` = 3 of Proposition 1.3, by the continued
fraction method recently developed by Gessel and Xin [6]. In the final section, we review their technique
more generally: it yields a transformation for generating functions, satisfying a certain quadratic functional
equation, that also transforms the associated Hankel determinants in a simple manner. We apply this trans-
formation to evaluate the Hankel determinants for the cases ` = 1, 2 (again) and for other path enumeration
sequences related to ` = 3.
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(0,0) (3,0)

Figure 1. Some of the 4-tuples of paths for ` = 1 and for i-t-config with
[(0, 0), (−1, 0), (−2, 0), (−3, 0)] and [(0, 0), (1, 0), (2, 0), (3, 0)]. In each of these 4-tuples there
is a point path (a path of zero length) at (0, 0). The first 4-tuple is the only nonintersect-
ing 4-tuple for this case. The second and third 4-tuples are intersecting only at the point

(0, 1). The second 4-tuple corresponds to the permutation

(

1 2 3 4
1 2 4 3

)

, having sign of -1,

while the third corresponds to the permutation

(

1 2 3 4
1 3 4 2

)

, having sign of 1. These two

4-tuples cancel one another under the Gessel-Viennot-Lindström method.

2. Employing the Gessel-Viennot-Lindström method

Assuming a rudimentary knowledge of the Gessel-Viennot-Lindström method, we reformulate it to our
needs. All lattice paths use the three steps as previously defined. Given an n-tuple of lattice paths on the
Z × Z plane, we say that it is nonintersecting if no steps from different paths share a common end point.
Thus an nonintersecting n-tuple may have paths crossing or touching at points other than a common step
end point.

Let [(x1, y1), (x2, y2), . . . , (xn, yn)] and [(x′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
n, y′

n)] denote two lists of distinct lattice
points such that

xk+1 ≤ xk ≤ 0 and 0 ≤ yk ≤ yk+1

and

0 ≤ x′
k ≤ x′

k+1 and 0 ≤ y′
k ≤ y′

k+1.

We will refer to such a pair of lists as an “i-t-config” of order n as their points will be the initial and
terminal points for each n-tuple of paths being considered.

Let Pi,j denote the set of all paths running from (xi, yi) to (x′
j , y

′
j) that never run below the x-axis, with

|Pi,j | denoting the sum of the weights of its paths. Let Sn denote the set of permutations on {1, 2, 3, . . . , n}.
For any permutation σ ∈ Sn, let Pσ denote the set of all n-tuples of paths (p1, p2, . . . , pn), where pi ∈ Pi,σ(i)

for 1 ≤ i ≤ n. The signed weight of (p1, p2, . . . , pn) ∈ Pσ is defined to be sgn(σ) times the product of the
weights of the n paths. See Figures 1 and 2.

For our purpose the Gessel-Viennot-Lindström method is formulated in a form similar to that in Vien-
not’s notes [13]:

Lemma 2.1. Given an i-t-config of order n, the sum of the signed weights of the nonintersecting
n-tuples in ∪σ∈Sn

Pσ is equal to det( (|Pi,j |)1≤i,j≤n ).

Proof of Proposition 1.1. (A similar proof appears in [13].) By Lemma 2.1 det(Hn) is equal
to the sum of the signed weights of the nonintersecting n-tuples in ∪σ∈Sn

Pσ for the i-t-config where
(xi, yi) = (−i + 1, 0) and (x′

i, y
′
i) = (i − 1, 0), for 1 ≤ i ≤ n. Thus, for this i-t-config, we seek the

nonintersecting n-tuples. First, the 1-tuple P1,1 contains just the point path beginning and ending at (0, 0).
Next, any nonintersecting path from (−i + 1, 0), for 1 < i ≤ n, must begin with an U step, while any
nonintersecting path to (j − 1, 0), for 1 < j ≤ n, must end with an D step. Repeating this analysis at
each integer-ordinate level k, shows the nonintersecting path from (−i + 1, 0), 1 ≤ i ≤ k, is forced to be a
sequence of U steps followed by a sequence of D steps; moreover, it shows that any nonintersecting path
from (−i + 1, 0) to (j − 1, 0), k < i, j, must start with k U steps and end with k D steps. Inductively, each
nonintersecting path is a sequence of U steps followed by a sequence of D steps. The n-tuple of such paths
is the only nonintersecting n-tuple of ∪σ∈Sn

Pσ, and it has weight equal 1. �
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We will use the following in proving Proposition 1.2:

Lemma 2.2. For the lattice paths that use the steps U , H = (2, 0) , and D, that never run below the
x-axis, and that have the i-t-config,

(xi, yi) = (−2i + 2, 0) and (x′
i, y

′
i) = (2i − 2, 0)

for 1 ≤ i ≤ n, the sum of the signed weights of the nonintersecting n-tuples in ∪σ∈Sn
Pσ equals (1+t)n(n−1)/2.

Proof. For (p1, p2, . . . , pn) ∈ (P1,σ(1), P2,σ(2), . . . , Pn,σ(n)), suppose that (p1, p2, . . . , pn) is a noninter-
secting n-tuple of paths for some permutation σ. Since the points in the i-t-config are spaced two units
apart, the horizontal distance at any integer ordinate between any two paths of (P1,σ(1), P2,σ(2), . . . , Pn,σ(n))
must be even. It follows inductively that, for 1 ≤ i ≤ n, any path of the path set Pi,σ(i) must begin with a
sequence of i− 1 U -steps and finish with a sequence of σ(i)− 1 D-steps. Thus, computing the weight of the
nonintersecting n-tuples is equivalent to computing the weight of the nonintersecting n-tuples for the new
(“V” shaped) initial-terminal configuration, denoted by i-t-config-new, defined by

(xi, yi) = (−i + 1, i − 1) and (x′
i, y

′
i) = (i − 1, i − 1)

for 1 ≤ i ≤ n.
Before continuing, we notice, for example when t = 1 and n = 4, that the matrix M(0) define by

(M(0)i,j)1≤i,j≤4 = (|P ′
i,j |)1≤i,j≤4 for i-t-config-new is an array of Delannoy numbers. (See [2], [12].)

When t = 0, M(0) is the initial array from Pascal’s triangle. In the following array for t = 1, the entries
count the ways a chess king can move from the north-west corner if it uses only east, south, or south-east
steps. Momentarily we will see the role of the argument 0 in M(0).

M(0) =









1 1 1 1
1 3 5 7
1 5 13 25
1 7 25 63









Now for arbitrary t and n, let M(0) be the n by n matrix defined recursively by

M(0)i,j = M(0)i−1,j + tM(0)i−1,j−1 + M(0)i,j−1

for 1 < i and 1 < j with M(0)1,j = 1 and M(0)i,1 = 1 for 1 ≤ i and 1 ≤ j. By Lemma 2.1 M(0) =
(|Pij |)1≤i,j≤n for i-t-configNew. Thus det(M(0)) is equal to the weight of the nonintersecting n-tuples
for i-t-config. The proof is completed once we show

det(M(0)) = (1 + t)n(n−1)/2.

Given M(0), we recursively define a sequence of n by n matrices

M(0), M(1), M(2), . . . , M(n − 1)

where, for 1 ≤ k ≤ n − 1,

M(k)ij =

{

M(k − 1)i,j for 1 ≤ i ≤ k
M(k − 1)i,j − M(k − 1)i−1,j for k + 1 ≤ i ≤ n

With claim(k) denoting the claim that

M(k)i,j = M(k)i−1,j + tM(k)i−1,j−1 + M(k)i,j−1 for i, j > k,

M(k)i,i = (1 + t)i−1 for i ≤ k,

M(k)i,j = 0 for i > j and j ≤ k,

M(k)i,k+1 = (1 + t)k for i ≥ k + 1,

one can establish claim(k) for 1 ≤ k ≤ n − 1 by induction. Since M(n − 1) is upper triangular, we observe
that

det(M(n − 1)) = (1 + t)n(n−1)/2.

By the type of row operations used to obtain the sequence M(0), M(1), M(2), . . . , M(n − 1), their determi-
nants are equal. �
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Since, by the i-t-config of Lemma 2.2, (H)i,j = |Pi,j | counts the large Schröder paths from (0, 0) to
(2i+2j− 2, 0), immediately we have the the following corollary for the Hankel determinants of the weighted
non-aerated Schröder numbers:

Proposition 2.1. Let fn denote the weight of the path set of paths from (0, 0) to (2n, 0) which never
run beneath the x-axis and where H = (2, 0) is weighted by t. Equivalently, let fn satisfy

F (x) =
∑

n≥0

fnxn = 1 + txF (x) + xF (x)2.

Then the determinant of the n-th order Hankel matrix equals (1 + t)n(n−1)/2.

As a second corollary to Lemma 2.2, we have

Lemma 2.3. For the lattice paths that use the steps U , H = (2, 0), and D, that never run below the
x-axis, and that have the i-t-config with

(xi, yi) = (−2i + 1, 0) and (x′
i, y

′
i) = (2i − 1, 0)

for 1 ≤ i ≤ n, the sum of the signed weights for the nonintersecting n-tuples in ∪σ∈Sn
Pσ is (1 + t)n(n+1)/2.

Proof of Lemma 2.3. We first translate all paths upwards one unit and then prepend a U -step and
append a D-step to every path. Next we add the point path at (0, 0). The sum of the signed weights of the
nonintersecting n-tuples in the original configuration equals that of the nonintersecting n + 1-tuples in this
new configuration, which in turn is given by Lemma 2.2. �

Proof of Proposition 1.2. Suppose that n is even; the proof when n is odd is similar. Here the
Hankel matrix (|Pi,j |)1≤i,j≤n corresponds to the i-t-config with

(xi, yi) = (−i + 1, 0) and (x′
i, y

′
i) = (i − 1, 0) for 1 ≤ i ≤ n.

Since ` = 2, no endpoint of a step on a path that originates from an oddly indexed initial point (i.e., a point
(−i + 1, 0) for odd i) will intersect an endpoint of a step on a path that originates from an evenly indexed
initial point. Moreover, for any permutation σ corresponding to a nonintersecting n-tuple, σ(i) − i must be
even for each i, and hence sgn(σ) = 1. Thus the weight of the nonintersecting n-tuples is the product of
the weight of those originating from oddly indexed initial points times the weight of those originating from
evenly indexed initial points.

Hence, with m = n/2, let i-t-configA have

(xi, yi) = (−2i + 2, 0) and (x′
i, y

′
i) = (2i − 2, 0) for 1 ≤ i ≤ m,

and let i-t-configB have

(xi, yi) = (−2i + 1, 0) and (x′
i, y

′
i) = (2i − 1, 0) for 1 ≤ i ≤ m.

Applying Lemmas 2.2 and 2.3 to these configurations yields the weight of nonintersecting n-tuples of the
original configuration as

(1 + t)m(m−1)/2(1 + t)m(m+1)/2 = (1 + t)m2

= (1 + t)n2/4.

�

Next we consider Hankel determinants for sequences of path weights that ignore the initial term. For
the sequence f(1, t, `), f(2, t, `), . . . , we will let H1

n denote the matrix where the entries satisfy (H1
n)i,j =

f(i + j − 1, t, `). See Figure 2.

Proposition 2.2. For ` = 1 (Motzkin case again), the sequence of determinants satisfies the recurrence

det(H1
n) = t det(H1

n−1) − det(H1
n−2)

subject to det(H1
1 ) = t and det(H1

2 ) = (t − 1)(t + 1).
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(0,0) (3,0)

Figure 2. Three of the 4-tuples of paths for ` = 1 and for i-t-config with
[(0, 0), (−1, 0), (−2, 0), (−3, 0)] and [(1, 0), (2, 0), (3, 0), (4, 0)]. The first and second 4-tuples
are both nonintersecting. The first has a signed weight of t4 while the second has a signed
weight of −t2. The third is intersecting only at the point (0, 1).

Proof. Aigner [1] considered the case for t = 1. For arbitrary t, our proof considers how the partic-
ular paths must look in the nonintersecting case. Observe that det(H1

n) is the sum of the weights of the
nonintersecting n-tuples for the i-t-config(n) taken as

[(0, 0), (−1, 0), . . . , (n − 1, 0)] and [(1, 0), (2, 0), . . . , (n, 0)].

Each of these nonintersecting n-tuples belongs to one of two types: (1) those containing the path from (0, 0)
to (1, 0) with all other paths forced to begin with U , end with D, and have ordinate at least one elsewhere;
(2) those containing the path UD from (0, 0) to (2, 0) and the path UD (−1, 0) to (1, 0) with all other paths
forced to begin with UU , end with DD, and have ordinate at least two elsewhere. The set of the first type
has a total weight t times the sum of the weights of the nonintersecting (n−1)-tuples on the i-t-config(n-1),
which is t det(H1

n−1). Since each n-tuple of the second type has the defined crossing of the path from (0, 0)
with that from (−1, 0), the set has total weight is the sign of the corresponding permutation times the sum
of the weights of the nonintersecting (n − 2)-tuples on the i-t-config(n-2), which is − det(H1

n−2). �

For ` = 2, we will indicate how Lemma 2.3 proves

Proposition 2.3. For n ≥ 0, ` = 2, and arbitrary t, the sequence of determinants satisfies

det(H1
n) =

{

0 if n is odd
(−1)n/2(1 + t)n(n+2)/4 if n is even

Proof. Here the Hankel matrix can correspond to i-t-config with

(xi, yi) = (−i + 1, 0) and (x′
i, y

′
i) = (i, 0) for 1 ≤ i ≤ n.

Since ` = 2, if there is a path from (xi, yi) to (x′
j , y

′
j), then i − j is odd. It follows that, if n is odd, there

can be no n-tuples of paths for the configuration. If n is even and m = n/2, the sign of any permutation
for an nonintersecting n-tuples can be shown to be (−1)m. Thus the weight of the nonintersecting n-tuples
is (−1)m times the weight of those originating from oddly indexed initial points times the weight of those
originating from evenly indexed initial points. The proof is completed by applying 2.3 to i-t-configA with

(xi, yi) = (−2i + 2, 0) and (x′
i, y

′
i) = (2i, 0) for 1 ≤ i ≤ m,

and to i-t-configB with

(xi, yi) = (−2i + 1, 0) and (x′
i, y

′
i) = (2i − 1, 0) for 1 ≤ i ≤ m.

�

3. Periodicity fourteen and continued fractions

Here we will repeated apply the “continued fractions method” recently developed by Gessel and Xin [6] to
determine the periodicity of the sequence of Hankel determinants for ` = 3 and t = 1. This method, presented
more formally in the next section, transforms both generating functions and corresponding determinants. In
this section we will concentrate on the specific generating function F (x) satisfying

F (x) = 1 + x3F (x) + x2F (x)2.

From this functional equation, or from the related recurrence for its coefficients, there appears to be no clue
why the associated sequence of Hankel determinants should have a period of 14.
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For an arbitrary generating function D(x, y) =
∑∞

i,j=0 di,jx
iyj , let [D(x, y)]n denote the n by n deter-

minant det((di,j)0≤i,j≤n−1). For any A(x) =
∑

n≥0 anxn, define the Hankel matrix for A of order n, n ≥ 1,

by Hn(A) = (ai+j−2)1≤i,j≤n. It is straight forward to show that the Hankel determinant det(Hn(A)) can be
expressed as

det(Hn(A)) =

[

xA(x) − yA(y)

x − y

]

n

.

We will use an easily-proven “product rule” of [6] for transforming the generating functions: If u(x) is
a formal power series with u(0) = 1, then

[u(x)D(x, y)]n = [D(x, y)]n = [u(y)D(x, y)]n.

We will make five transformations showing, for n ≥ 8,

det(Hn(F )) = det



diag



[1], [1],





0 0 1
0 1 0
1 0 −2



 , [1], [1], Hn−7(F )







 ,

where the right side is the determinant of a block-diagonal matrix consisting of six blocks along the diagonal,
four of which are 1 by 1 identity matrices, and having entry 0 elsewhere. It then follows that det(Hn(F )) =
− det(Hn−7(F )). This implies that the period for det(Hn(F )) is 14, and Proposition 1.3 will be proved.

We start with F0(x) = F (x), and define Fi(x) from Fi−1(x) according to a transformation where each
Hankel determinant for Fi(x) are derived from one for Fi−1(x) with the aid of the product rule, which is not
always mentioned. In the following, Fi(x) will always satisfy a quadratic functional equation

a(x)Fi(x)2 + b(x)Fi(x) + c(x) = 0,

which is equivalent to the continued fraction

Fi(x) =
−c(x)

b(x) + a(x)Fi(x)
.

In particular, for ` = 3,

F0(x) =
1

1 − x3 − x2F0(x)
.

Transformation 1: Using this continued fraction of F0, substitution, and simplification we obtain

det(Hn(F )) =

[

xF0(x) − yF0(y)

x − y

]

n

=

[

−xy2F0(y) + yx2F0(x) + (x − y)
(

yx2 + xy2 + 1
)

(1 − x3 − x2F0(x))(1 − y3 − y2F0(y))(x − y)

]

n

.

Multiplying by (1 − x3 − x2F0(x))(1 − y3 − y2F0(y)), which will not affect the value of the determinant by
the product rule, we can write the determinant as

[

1 + xy
xF1(x) − yF1(y)

x − y

]

n

where

(3.1) F1(x) = F0(x) + x.

The associated matrix is block-diagonal with two blocks: the matrix [1] and the Hankel matrix for F1(x).
Certainly,

det(Hn(F0)) = det(Hn−1(F1)).

From (3.1) and the functional equation for F0(x), we obtain the functional equation

F1(x) =
1 + x

1 + x3 − x2F1(x)
.

Transformation 2: Using this continued fraction for F1, substituting in
xF1(x) − yF1(y)

x − y
, and multi-

plying by (1 + x3 − x2F1(x))(1 + y3 − y2F1(y)) yields
[

xF1(x) − yF1(y)

x − y

]

n

=

[

−xy2 (x + 1)F1(y) + yx2 (y + 1)F1(x) − (y + 1) (x + 1) (xy − 1) (x − y)

x − y

]

n

.
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Upon multiplying by (1 + x)−1(1 + y)−1, the determinant is equal to
[

1 + xy
xF2(x) − yF2(y)

x − y

]

n

,

where

(3.2) F2(x) = F1(x)/(1 + x) − 1.

The associated matrix being block diagonal shows

det(Hn−1(F1)) = det(Hn−2(F2)).

From (3.2) and the functional equation for F1(x), we obtain

F2(x) =
x2

1 − 2x2 − x3 − (x3 + x2)F2(x)
.

Transformation 3: Substituting for F2 with the above fraction, simplifying, and multiplying by (1 +

x)(1−x−x2−x2F2(x))(1+y)(1−y−y2−y2F2(y)) shows that the determinant

[

xF2(x) − yF2(y)

x − y

]

n

equals

[

y2x3 (y + 1)F2(y) − x2y3 (x + 1)F2(x) − (x − y)
(

2 y2x2 − x2 − xy − y2
)

x − y

]

n

which can be rewritten as
[

x2 + xy + y2 − 2x2y2 + x3y3 xF3(x) − yF3(y)

x − y

]

n

,

where F3(x) is indeed a power series satisfying

(3.3) F3(x) = (x + 1)F2(x)/x2.

This time the corresponding matrix is a block-diagonal matrix with the block





0 0 1
0 1 0
1 0 −2



 followed by

the Hankel matrix for F3(x). Hence

det(Hn−2(F2)) = − det(Hn−5(F3)).

From (3.3) and the functional equation for F2(x), we obtain

F3(x) =
1 + x

1 − 2x2 − x3 − x4F3(x)
.

Transformation 4: Substituting for F3 with the fraction, simplifying, and multiplying by (1 − 2x2 −

x3 − x4F3(x))((1 − 2y2 − y3 − y4F3(y)) the determinant

[

xF3(x) − yF3(y)

x − y

]

n

equals

[

−xy4 (x + 1)F3(y) + yx4 (y + 1)F3(x) + (y + 1) (x + 1) (xy + 1) (x − y)

x − y

]

n

.

By multiplying the generating function by (1 + x)−1(1 + y)−1, this determinant becomes
[

1 + xy
xF4(x) − yF4(y)

x − y

]

n

,

where

(3.4) F4(x) = 1 + x2F3(x)/(1 + x).

Therefore,

det(Hn−5(F3)) = det(Hn−6(F4)).

From (3.4) and the functional equation for F3(x), we obtain

F4(x) =
1

1 + x3 − (x3 + x2)F4(x)
.
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Transformation 5: Substituting for F4 with the above fraction, simplifying, and multiplying by (1 −

x2F4(x))(1 − y2F4(y)) the determinant

[

xF4(x) − yF4(y)

x − y

]

n

equals

[

−xy2 (y + 1)F4(y) + x2y (x + 1)F4(x) − (x − y)
(

yx2 + xy2 − 1
)

x − y

]

n

=

[

1 + xy
xF5(x) − yF5(y)

x − y

]

n

,

where F5(x) = (1 + x)F4(x) − x. Hence, det(Hn−6(F4)) = det(Hn−7(F5)).
Finally, it is routinely checked that F5(x) = F0(x).

4. The quadratic transformation for Hankel determinants

One can use the method introduced in the previous section to evaluate the Hankel determinants for
generating functions satisfying a certain type of quadratic functional equation. The generating functions
F (x) in this section are the unique solution of a quadratic functional equation satisfying

(4.1) F (x) =
xd

u(x) + xkv(x)F (x)
,

where u(x) and v(x) are rational power series with nonzero constants, d is a nonnegative integer, and k is a
positive integer. Note that if k = 0, F (x) is not unique. Our task now is to derive a transformation T so
that det(Hn(F )) = a det(Hn−d−1(T (F ))) for some value a and nonnegative integer d. In addition to Hankel
matrices for the power series A =

∑

n≥0 aix
i, we will consider shifted Hankel matrices : Hk

n(A) denotes the

matrix (ai+j+k−2)1≤i,j≤n. Shifted matrices have appeared in Proposition 2.2 and 2.3.
The first proposition is elementary:

Proposition 4.1. If F satisfies (4.1), then G = u(0)F satisfies

det(Hn(G)) = u(0)n det(Hn(F )), and G(x) =
xd

u(0)−1u(x) + xku(0)−2v(x)G(x)
.

Proposition 4.2. Suppose F satisfies (4.1) with u(0) = 1. We separate u(x) uniquely as u(x) =
uL(x) + xd+2uH(x), where uL(x) is a polynomial of degree at most d + 1 and uH(x) is a power series.

(i) If k = 1, then there is a unique G such that

G(x) =
−v(x) − xuL(x)uH(x)

uL(x) − xd+2uH(x) − xd+1G(x)
,

Moreover,

G(x) = −xuH(x) − x−dv(x)F (x)

and a shifted matrices appears with

det(H1
n−d−1(G(x))) = (−1)d(d+1)/2 det(Hn(F (x))).

(ii) If k ≥ 2, then there is a unique G such that

G(x) =
−xk−2v(x) − uL(x)uH(x)

uL(x) − xd+2uH(x) − xd+2G(x)
,

Moreover,

G(x) = −uH(x) − xk−d−2v(x)F (x)

and

det(Hn−d−1(G(x))) = (−1)d(d+1)/2 det(Hn(F (x))).

Proof. We prove only part (ii) as part (i) is similar. The generating function for Hn(F ) is given by

xF (x) − yF (y)

x − y
=

1

x − y

(

xd+1

u(x) + xkv(x)F (x)
−

yd+1

u(y) + ykv(y)F (y)

)

=
−yd+1u(x) − yd+1xkv(x)F (x) + xd+1u(y) + xd+1ykv(y)F (y)

(u(x) + xkv(x)F (x)) (u(y) + ykv(y)F (y)) (x − y)
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We can multiply by (u(x)+xkv(x)F (x)) and by (u(y)+ykv(y)F (y)) without changing the above determinant
by the product rule. Next we observe that xd divides F (x), and write u(x) = uL(x) + xd+2uH(x) as in the
proposition. The resulting generating function can be written as

−yd+1uL(x) + xd+1uL(y)

x − y
+ (xy)d+1−x(uH(x) − xk−d−2v(x)F (x)) + y(uH(y) + yk−d−2v(y)F (y))

x − y
.

We now set G(x) = −uH(x) − xk−d−2v(x)F (x), which can be straightforwardly shown to agree with

the defining functional equations. Suppose that uL(x) = 1 + a1x + · · · ad+1x
d+1, then

[

xF (x) − yF (y)

x − y

]

n

is

equal to the determinant of the block-diagonal matrix

diag

























0 · · · 0 1
...

...
...

...

0 1
... ad−1

1 a1 · · · ad













, H(G(x))













.

The determinant of the first block is easily seen to be (−1)d(d+1)/2. �

Given these propositions and that H1(A) = H(x−1(A(x) − A(0))) for any series A, we can now define
our transformation T (F ): For F satisfying (4.1),

• if u(0) 6= 1, then T (F ) = G, as given in Proposition 4.1.
• if u(0) = 1 and k = 1, then T (F ) = x−1(G(x) − G(0)), with G given in Proposition 4.2(i).
• if u(0) = 1 and k ≥ 2, then T (F ) = G, as given in Proposition 4.2(ii).

Moreover, the relation between det(Hn(F )) and det(Hn(T (F ))) is given in Propositions 4.1 and 4.2.

Example 1: Other proofs of Propositions 1.1 and 2.2. For Motzkin paths with arbitrary t, the
generating function F (x) satisfies

F (x) =
1

1 − tx − x2F (x)
.

Applying Proposition 4.2 so F1 = T (F ) gives

det(Hn−1(F1)) = det(Hn(F )) where F1(x) =
1

1 − tx − x2F1(x)
.

Hence, F (x) = F1(x), and consequently det(Hn(F (x))) = 1 for all n.
Whereas the Gessel-Viennot-Lindström method leads to a proof in the shifted case for arbitrary t, as in

Proposition 2.2, we have been able to use the continued fractions technique only for t = 1 and t = 2.
For t = 1 we will show that (det(H1

n(F )))n≥1 = (1, 0,−1,−1, 0, 1, 1, . . .), continuing with period 6. Let
G1(x) = (F (x) − 1)/x, so that det(H1

n(F )) = det(Hn(G1)). Let G2 = T (G1) and G3 = T (G2), both under
Proposition 4.2(ii). Since

G1(x) =
1 + x

1 − x − 2x2 − x3G1(x)

with d = 0, k = 3, u(x) = uL(x) = 1 − 2x, uH = 0, and v(x) = −(1 + x)−1, we find that

G2(x) =
x

1 − x − 2x2 − x2(1 + x)G2(x)

with d = 1, k = 2, u(x) = uL(x) = 1 − x − 2x2, uH = 0, and v(x) = −(1 + x). Applying Proposition 4.2(ii)
shows

G3(x) = −x−1(−(1 + x))G2(x)

= −x−1(−(1 + x))(−x(−(1 + x)−1))G1(x)

= G1(x)

and det(Hn−3(G3)) = − det(Hn−1(G2)) = − det(Hn(G1)), which yields the periodicity of the sequence of
determinants.
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For t = 2 we will show that det(H1
n(F )) = n + 1 for n ≥ 1. Define, G1 to satisfy,

G1(x) =
2 + x

1 − 2x − 2x2 − x3G1(x)
.

One can easily see that G1(x) = (F (x) − 1)/x with G1(0) = u1(0)−1 = det(H1(G1)) = det(H1
1 (F )) = 2. For

n ≥ 2, define, Gn to satisfy,

Gn(x) =
(n − 1)2(n2 + n + x)

(n2 − n)(n2 − 2n2x − 2x2) − n2(n2 − n + x)x2Gn(x)
.

By induction one can show that Gn = T ◦ T (Gn−1) (under Prop. 4.1 then under Prop. 4.2), and that
Gn(0) = un(0)−1 = (n − 1)(n + 1)/n2. Also by induction and Proposition 4.1, for n ≥ 2,

det(Hn(G1)) =

[

2n
n−1
∏

i=2

(

(i − 1)(i + 1)

i2

)n+1−i
]

det(H1(Gn))

= 2n
n

∏

i=2

(

(i − 1)(i + 1)

i2

)n+1−i

which simplifies to det(Hn(G1)) = n + 1.

Example 2: Another proof of Proposition 1.2. For large Schröder paths arbitrary t, we have

F (x) =
1

1 − tx2 − x2F (x)
.

Applying T gives

det(Hn−1(F1)) = det(Hn(F )), where F1(x) =
1 + t

1 + tx2 − x2F1(x)
.

Applying T again, we obtain

(1 + t)n det(Hn−1(F2)) = det(Hn(F1)), where F2(x) =
1

1 − tx2 − x2F2(x)
.

This implies F2 = F , and hence the recurrence det(Hn(F )) = (1+ t)n−1 det(Hn−2(F )), with initial condition
det(H1(F )) = 1, and det(H2(F )) = 1 + t.

Example 3: Another proof of Proposition 2.1. Consider the continued fraction

F (x) =
1

1 − tx − xF (x)
,

where F (x) is the generating function for the Catalan numbers for t = 0 and the large Schröder numbers for
t = 1.

Under Proposition 4.2(i) we have a unique G1 such that G1(x) = F (x) and det(H1
n−1(G1)) = det(Hn(F )).

Taking G2 = (G1(x) − 1)/x = (F (x) − 1)/x, we have

G2(x) =
(1 + t)

1 − (2 + t)x − x2G2(x)

where det(Hn−1(G2)) = det(H1
n−1(F )) and u(x) = (1 − (2 + t)x)/(1 + t).

Under Proposition 4.1 we have a unique G3

G3(x) =
1

1 − (2 + t)x − (1 + t)x2G3(x)
,

with G3(x) = G2/(1 + t) and det(Hn−1(G3)) = (1 + t)−(n−1) det(Hn−1(G2)).
Under Proposition 4.2(ii) we have a unique G4 such that G4(x) = (1 + t)G3(x) and det(Hn−2(G4)) =

det(Hn−1(G3)).
We see that G4(x) = G2(x); thus det(Hn−1(G2)) = (1+ t)n−1 det(Hn−2(G2)) with det(H1(G2)) = 1+ t.

Hence det(Hn(F )) = det(Hn−1(G2)) = (1 + t)n(n−1)/2.
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Example 4: Another proof of Proposition 2.3. To compute det(H1
n(F )), first we consider

H1
n(F ) = Hn(F1), where F1 =

(t + 1)x

1 − (2 + t)x2 − x3F1
.

Applying T shows that det(Hn(F1)) = −(1 + t)n det(Hn−2(F1)).

Example 5: For ` = 3, recall the functional equation

F0(x) =
1

1 − tx3 − x2F0(x)
.

For arbitrary t, our transformation gives more and more complicated expressions. This is not surprising
since the Hankel determinants do not factor nicely. However, for t = 1 and for k = 1, 2, 3, the transformation
gives nice results similar to that of Proposition 1.3: indeed, sequences of det(Hk

n(F0)) also have period 14.
For k = 4 there is an interesting result.

Subexample 5i: The sequence for det(H1
n(F0)) starts with 0,−1, 0, 1, 1, 0,−1, 0, 1, 0,−1,−1, 0, 1. If we

define F1 so that F0(x) = 1 + xF1(x), then

det(Hn(F1)) = det(H1
n(F0)), with F1 =

x(x + 1)

1 − 2x2 − x3 − x3F1
and d = 1.

Then applying T repeatedly so T (Fi) = Fi+1, we obtain

det(Hn−2(F2)) = − det(Hn(F1)), where F2 =
x

(x + 1)(1 − x − x2 − x3F2)
and d = 1;

det(Hn−2(F3)) = − det(Hn(F2)), where F3 =
1 + x − x2

1 − 2x2 + x3 − x3F3
and d = 0;

det(Hn−1(F4)) = det(Hn(F3)), where F3 =
x

(1 + x − x2)(1 − x − x2F3)
and d = 1;

det(Hn−2(F5)) = − det(Hn(F4)), where F5 =
x(x + 1)

1 − 2x2 − x3 − x3F5
.

The periodicity is established by noticing that F5 = F1 and det(Hn−7(F5)) = − det(Hn(F1)).

Subexample 5ii: The sequence for det(H2
n(F0)) starts with 1, 1, 1, 1, 0, 0,−1,−1,−1,−1,−1, 0, 0, 1,. If

we define G0 so that F0(x) = 1 + x2G0(x), then det(Hn(G0)) = det(H2
n(F0)),

G0 =
1 + x

1 − 2x2 − x3 − x4G0
.

One can establish the periodicity using Proposition 4.2. However, this generating function has appeared in
Transformation 3 of section 3, where one can see that

(4.2) det(Hn(G0)) = − det(Hn+5(F0)).

Subexample 5iii: The sequence for det(H3
n(F0)) starts with 1,−1,−1, 0, 0, 0,−1,−1, 1, 1, 0, 0, 0, 1 and

continues with period 14. The verification for this case uses Proposition 4.2(ii) occasionally interspersed with
Proposition 4.1. Here we will only sketch the verification. By defining F1 so that F0(x) = 1 + x2 + x3F1(x),
one finds that

F1 =
1 + 2x + x2 + x3

1 − 2x2 − x3 − 2x4 − x5F1
.

For the first transformation, with F2 = T F1, we find

F2 =
1 − 2x + x3

−1 + 4x2 + x3 + 2x4 − x2(1 + 2x + x2 + x3)F2
,

in which u(x) = (−1+ 4x2 + x3 + 2x4)/(1− 2x+x3). Now, since u(0) = −1, one needs to apply Proposition
4.1 for the next transformation. One proceeds until a generating function equal to F1 appears to establish
the periodicity. We remark that d = 0 for each transformation until the final one which uses Proposition
4.2(ii) with d = 3 (This corresponds to a fourth order block).
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Subexample 5iv: The sequence for det(H4
n(F0)) begins with

2, 3, 4, 0, 0,−4,−5,−6,−7,−8, 0, 0, 8, 9, 10, 11, 12, 0, 0,−12,−13,−14,−15,−16, 0, 0, 16, . . . .

For n ≥ 8, an essence of periodicity can be gleaned from the recurrence

det(H4
n(F0)) = 4 det(Hn−1(F0)) − det(H4

n−7(F0)),

for which we sketch a proof, often omitting the functional equations.
We will be applying the transformation T eight times, alternating its definition to be first under

Proposition 4.1 and then under Proposition 4.2(ii). Let F1 satisfy F0 = 1 + x2 + x3 + x4F1. Hence,
det(Hn(F1)) = det(H4

n(F0)), and

F1 =
2 + 3x + 2x2 + 2x3 + x4

1 − 2x2 − x3 − 2x4 − 2x5 − x6F1
.

Here u(0) = 1
2 , where u(x) is for F1. Thus, with F2 = T F1, det(Hn(F2)) = (1

2 )n det(Hn(F1)). Now
d = 0, where d is for F2. With F3 = T F2, det(Hn−1(F3)) = det(Hn(F2)).

Here u(0) = 4
3 , where u(x) is for F3. Thus, with F4 = T F3, det(Hn−1(F4)) = (4

3 )n−1 det(Hn−1(F3)).
Now d = 0, where d is for F4. With F5 = T F4, det(Hn−2(F5)) = det(Hn−1(F4)).

Here u(0) = 9
8 , where u(x) is for F5. Thus, with F6 = T F5, det(Hn−2(F6)) = (9

8 )n−2 det(Hn−2(F5)).
Now d = 0, where d is for F6. With F7 = T F6, det(Hn−3(F7)) = det(Hn−2(F6)).

Here u(0) = 4
3 , where u(x) is for F7. Thus, with F8 = T F7, det(Hn−3(F8)) = (4

3 )n−3 det(Hn−3(F7)).
Now d = 2, where d is for F8. With F9 = T F8, det(Hn−6(F9)) = − det((Hn−3(F8)) =

(5
4 , 6

4 , 7
4 , 8

4 , 0, 0,− 8
4 ,− 9

4 ,− 10
4 , . . .).

Thus, (surprisingly)

det(Hn−6(F9)) = −(
1

2
)n(

4

3
)n−1(

9

8
)n−2(

4

3
)n−3 det(H4

n(F0))

= −
1

4
det(H4

n(F0))(4.3)

Moreover,

F9 =
20 + 16x − 8x2 − 4x3 + x4

8(2 − 4x2 − 2x3 + x4) − 16x4F9
=

5

4
+ x + 2x2 + 3x3 + 6x4 + 10x5 + · · ·

It is easily verified that F9(x) and 1
4 +G0(x), where G0 appears in Subexample 5ii, satisfy the same functional

equation, and hence are equal. Therefore,

det(Hn−6(F9)) =

[

xF9(x) − yF9(y)

x − y

]

n−6

=

[

1

4
+

xG0(x) − yG0(y)

x − y

]

n−6

=
1

4
det(H4

n−7(F0)) + det(Hn−6(G0))

where 1
4 det(H4

n−7(F0)) is 1
4 times the determinant of the 1,1-minor of Hn−6(G0), equivalently of H2

n−6(F0).
Combining this with identity (4.3) and noting det(Hn(G0)) = − det(Hn+5(F0)) from (4.2) proves the initial
recurrence of this subexample.
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Mu-PAD Combinat

Nicolas M. Thiéry

MuPAD-Combinat is an open-source algebraic combinatorics package for the computer algebra system
MuPAD. Its main purpose is to provide an extensible toolbox for computer exploration, and to foster code
sharing between researchers in this area.

http://mupad-combinat.sf.net http://www.mupad.de
The development of MuPAD-Combinat started in 2001, and it is part of the standard distribution of

MuPAD since 2003. It played a central role in 15+ publications with more than a dozen contributors. You
are more than welcome to join the team!

During FPSAC 2006, several of the contributors will demonstrate, as part of their research talks, their
own use of MuPAD-Combinat (F. Hivert, N. Thiry, J.C. Novelli, F. Descouens, J. Nzeutchap, M. Rey, ...).
We will also present a more formal software demonstration with an overview presentation and discussions
about the design and development model. It will be followed by an on-computer tutorial for those who would
like to get a first hand experience.

The software will be included in the proceedings CD-Rom along with its full online documentation
(600 pages), which includes a step by step introductory tutorial and design notes. It requires the MuPAD
computer algebra system, a demonstration version of which we will try to include as well.

MuPAD-Combinat est une bibliothèque de combinatoire algébrique pour le système de calcul formel
MuPAD, développée sous licence libre (LGPL). Son objectif est de fournir un cadre de développement qui
permette aux chercheurs du domaine de mettre en commun les routines qu’ils sont amenés à développer dans
le cadre de leur recherche.

http://mupad-combinat.sf.net http://www.mupad.de
Le développement de MuPAD-Combinat a commencé en 2001, et est partie intégrante de la distribution

standard de MuPAD depuis 2003. Il a joué un rôle central dans plus de quinze publications, avec plus d’une
douzaine de contributeurs. Vous-êtes les bienvenus dans l’équipe!

Durant FPSAC 2006, certains des contributeurs présenterons succinctement, à l’occasion de leur exposé
de recherche, leur propre utilisation dans la pratique de MuPAD-Combinat (F. Hivert, N. Thiéry, J.C.
Novelli, F. Descouens, J. Nzeutchap, M. Rey, ...). Nous proposerons aussi une démonstration logicielle plus
formelle, où nous décrirons la structure générale de cette bibliothèque, tout en expliquant sa conception et
son modèle de développement. Cette démonstration sera suivi par un tutoriel sur ordinateur, pour ceux qui
souhaiteront se faire leur propre idée.

Le logiciel sera inclus dans le CD-Rom des comptes-rendus, avec sa documentation complète (600 pages)
qui inclue entre autres un tutoriel pas-à-pas, ainsi que des notes sur la conception. Le système de calcul
formel MuPAD est requis; nous essaierons d’en fournir une version de démonstration.

Laboratoire de Mathématiques, Université Paris Sud, B<E2>t 425, 91405 Orsay Cedex, FRANCE

E-mail address: nthiery@users.sf.net
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A user manual for CrystalView

Philip Sternberg

Abstract. A description of CrystalView, a software package for visualizing crystal bases and carrying out
calculations on them.

Résumé. Une description de CrystalView, un progiciel pour visualizer les bases cristallines et mise en oeuvre
des calculs sur eux.

1. Overview

CrystalView is a software package for visualizing crystals for irreducible highest weight modules of simple
Lie algebras. Based on user input, the program will produce an image file with the requested crystal graph.
The program will automatically produce an .epsf file, which can be included directly in a LATEX file. Using
the web interface, the user can see the tableau associated a vertex of the crystal by moving the mouse pointer
over it.

When running this program locally (as opposed to via the web), the program produces a list of all
tableaux in the specified crystal. This can be used to carry out calculations on crystals, including searches
for tableaux with specified properties. Additionaly, Kashiwara operators may be applied to the tableaux.

All calculations on tableaux are carried out using python. Image files are automatically generated
PostScript. The web interface uses html, javascript, and css.

2. Requirements

CrystalView may be run using a web interface or from source code. The web interface can, in principle,
be used from any browser that supports form input (any “modern” browser). However, some aspects of the
interface will only work with a browser that complies with standard html, javascript, and css. In particular,
Internet Explorer is known to have issues with some dynamic aspects of the web interface. Firefox is a
recommended alternative.

To run the software from source code, the user must have Python 2.4 installed on their local machine.
Other versions of Python (both older and newer) may not run CrystalView properly. See http://www.python.org
for further information regarding python. Python is available free of charge for all major operating systems,
and is included pre-installed on many modern computers, including almost all distributions of Unix/Linux.

If used to generate image files locally, the user is advised that for large crystals, these images can get
quite large. See section 7.

3. User input

The user may specify the following Lie theoretic data:

• symmetry type of the algebra being represented;
• rank of the algebra being represented;

2000 Mathematics Subject Classification. Primary 17B37; Secondary 05C75.
Key words and phrases. crystal bases, Lie algebras, software.
Supported in part by NSF grants DMS-0135345, DMS-0200774, and DMS-0501101.
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• highest weight of the representation.

Additionally, the user may specify how the edges of the crystal graph will be drawn. There are two
default settings, color and grayscale, as well as an option for custom settings. If the custom option is
selected, the user may specify the following:

• red/green/blue values for each edge color on a scale from 0 to 1 (Default = 1),
• line width on a scale from 1 to 5 (Default = 5),
• dash pattern; none, short, long (Default = none).

There are numerous resources on the web and preinstalled on many computers to assist the user in finding
red/green/blue values for their desired colors.

The user may also choose to have the output converted to .pdf, .jpg, .gif, and/or .tiff formats.

4. Limitations

Currently, only types A and B (i.e., sln and so2n+1) are supported. Furthermore, in the case of type B,
only even multiples of the highest fundamental weight (corresponding to the short root) may be specified.
These limitations are due to the current stage of the development cycle; future versions of the software will
add support for types C and D and all dominant weights.

The rank of the algebra is currently restricted by the web interface to be no larger than 5. This is an
artificial limitation; any rank of algebra may be specified when running CrystalView from source.

The web interface only allows crystals with as many as 4,000 vertices to be calculated to prevent excessive
strain on the server. Considering the resolution at which these images can be viewed/printed, it is unlikely
that producing crystals larger than this would be useful to most users. However, this limitation is artificial;
when running the program on a local machine, the user is limited only by their own patience and hard disk
space.

5. How it works

The web interface for CrystalView is written in dhtml; i.e., html enhanced by javascript and css. The
Weyl dimension formula is used to calculate the number of vertices in the currently specified crystal.

The tableaux are produced by generating the list of all column tableaux for the column lengths appearing
in the shape specified by the dominant weight. To determine what constitutes a legal tableaux, the criteria
of [1] are used. The columns are then compared pairwise in order of decreasing length to build the set of all
legal tableaux. In the case of type B crystals, the “split form” criterion of [2] is used to determine which
columns can be adjacent in a legal tableau.

The graph is ensured to have a reasonable number of edge crossings by ordering the vertices of the graph
as follows, starting from the top and going down the rows, and proceeding through each row from left to
right. First, the tableaux are collected into rows according to content. There is only one tableau in the first
row (the highest weight tableau), so the first row is in order. Now, given that row n is in order, row n + 1 is
put in the following order. The leftmost vertices in row n + 1 will be the non-zero images of the Kashiwara
operators fi on the leftmost vertex in row n, taken in order from f1 up through fr, where r is the rank of
the algebra. The next leftmost vertices in row n + 1 are those tableaux that result from applying fi to the
next vertex from row n, excluding those that have been placed to the left already. This process continues
until all vertices have been placed in their final position.

6. How to get the software

This software can be accessed at the following url:
http://www.math.ucdavis.edu/ sternberg/crystalview/

The source code is available upon request from the author.

7. Legal disclaimer

This software is provided without warranty; use is at the user’s sole risk. Under no circumstances will
any user hold the author of this software liable for any damages that may result from the use of this software.
Use of the software implies that the user agrees to these terms.
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