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Quotient trees
Let a polygonal graph G with arbitrary orientations of the
edges be fixed. Let σ be a pairing between the edges of G.
We will always assume that σ is non-crossing and compatible
with the orientations of edges (in each pair of connected edges
one is oriented clockwise and the other counterclockwise).
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Let us glue together each pair of edges connected by σ. The
resulting graph Tσ is a tree (called quotient tree) and each
edge inherits the orientation from the orientations of the
edges in the original graph G.

Orders on quotient trees
The orientations of edges define a partial order ≺ on the
vertices of tree Tσ (convention: if A⇐= B we write A ≺ B).
In the following we shall consider some total (linear)
orders on the vertices of Tσ; we say that such an order < is
compatible with the orientations of edges if < is an extension of
the partial order ≺.
Quotient trees considered above naturally have a structure
of planar rooted trees with a root R. By � we denote the
order on the vertices given by pre-order. For example, in
the above case we have v1 � v2 � v3 � v5 � v8.

Regular polygonal graphs
For integers l, m ≥ 1 we consider (l, m)-regular graph. It is
the polygonal graph with 2lm edges of the form below. It
consists of 2m groups of edges, each group consists of l

edges with the same orientation, consecutive groups have
opposite orientations.
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Generalized parking functions
Let integers l, m ≥ 1 be fixed. We say that (a1, . . . , alm+1) is
an (l, m)-parking function if

• a1, . . . , alm+1 ∈ {1, . . . , m};

• for each 1 ≤ n < m in the sequence (a1, . . . , alm+1) there
are at most ln elements which belong to {1, . . . , n}.

Raney lemma implies that the number of (l, m)-parking
functions is equal to mml.

Main result: Bijection between ordered trees
and parking functions

Theorem. Let l, m ≥ 1 be fixed. The algorithm
MainBijection provides a bijection between

• the set of pairs (Tσ, <), where Tσ is a quotient tree
corresponding to the (l, m)-regular graph and < is a total order
on vertices of Tσ compatible with the orientations of edges;

• the set of (l, m)-parking functions.

Corollary: generalized Cauchy identities
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Auxiliary bijection between ordered trees

Theorem. Let integers i, l ≥ 1 be given. The algorithm
SmallBijection provides a bijection between

• the set of quotient trees (Tσ, <) corresponding to a (l, i)-regular
graph equipped with a total order < compatible with the
orientation of the edges;

• the set of quotient trees (Tσ, <) corresponding to a (l, i)-regular
graph equipped with a total order < on the vertices with the
following two properties:

– on the set {x ∈ Tσ : x � R} the orders < and � coincide,
where R denotes the root;

– for all pairs of vertices v, w ∈ Tσ such that R 6� v and R 6� w

we have v ≺ w =⇒ v < w.

Applications
In the limit l →∞ orders on trees can be interpreted as
stochastic processes in R

m−1 (Brownian motions, Brownian
bridges). Above bijections give rise to measure-preserving
maps related to Pitman transform.

Where is Voiculescu’s free probability theory?
Please, ask me about it!

Main bijection
Parking function can be equivalently described as a tuple
(B1, . . . , Bm) of disjoint sets such that
B1 ∪ · · · ∪Bm = {1, . . . , ml + 1} and |B1| + · · · + |Bn| ≤ ln

holds true for each 1 ≤ n ≤ m− 1.

Function MainBijection(T)

label all vertices of T with numbers 1, . . . ,ml + 1 in such a
way that each label appears exactly once and the order <

of vertices coincides with the order of the labels;
for i=m downto 1 do

T ← SmallBijection(T );
U ← tree {x ∈ T : x � R} (tree U is marked gray on
example below);
Bi← (labels of the vertices of U) ∩ {1, . . . , ml + 1} ;
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remove the labels of the vertices of U ;
unglue all edges of tree U ;
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remove l edges at each side of the vertex R;
change the orientation of all edges and reverse the
order <;
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create sufficiently many artifical labels (integer
numbers all different from 1, . . . ,ml + 1) which are
smaller than any label on tree T ;
glue the remaining edges of tree U in such a way that
R � X for every X ∈ U ;
label the unlabeled vertices with artificial labels in
such a way that on tree U the orders < and � coincide;
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end

return B1, . . . , Bm;

Auxiliary bijection
Function SmallBijection(T)

while orders < and � do not coincide on {x ∈ T : x � R} do
D ←the minimal element (with respect to <) such that
R ≺ D and orders < and � do not coincide on
{x ∈ T : R � x and x ≤ D} ;
U ← tree {x ∈ T : R � x and x ≤ D} ;
C ←the successor of D in U with respect to �;
A←father of C;
B ←son of A in U which is to the left of C;
labels←set of labels carried by the vertices A, B, C, D;
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remove the labels from the vertices A, B, C, D;
unglue the edges BA and CA;

R

reglue these edges in the other possible way;
to unlabeled vertices give labels from labels in such a
way that for each pair of newly labeled vertices x < y

iff x � y;
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end

return T ;
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