Quotient trees

Let integers $l, m \ge 1$ be fixed. We say that (a_1, \ldots, a_{lm+1}) is Let a polygonal graph G with arbitrary orientations of the edges be fixed. Let σ be a pairing between the edges of G. an (l, m)-parking function if We will always assume that σ is *non-crossing* and *compatible* • $a_1, \ldots, a_{lm+1} \in \{1, \ldots, m\};$ with the orientations of edges (in each pair of connected edges • for each $1 \le n < m$ in the sequence (a_1, \ldots, a_{lm+1}) there one is oriented clockwise and the other counterclockwise).

Let us glue together each pair of edges connected by σ . The resulting graph T_{σ} is a tree (called *quotient tree*) and each edge inherits the orientation from the orientations of the edges in the original graph G.

Orders on quotient trees

The orientations of edges define a partial order \prec on the vertices of tree T_{σ} (convention: if $A \iff B$ we write $A \prec B$). In the following we shall consider some total (linear) orders on the vertices of T_{σ} ; we say that such an order < is *compatible with the orientations of edges* if *<* is an extension of the partial order \prec .

Quotient trees considered above naturally have a structure of planar rooted trees with a root *R*. By \triangleleft we denote the order on the vertices given by pre-order. For example, in the above case we have $v_1 \triangleleft v_2 \triangleleft v_3 \triangleleft v_5 \triangleleft v_8$.

Regular polygonal graphs

For integers $l, m \ge 1$ we consider (l, m)-regular graph. It is the polygonal graph with 2lm edges of the form below. It consists of 2*m* groups of edges, each group consists of *l* edges with the same orientation, consecutive groups have opposite orientations.

Bijections of trees arising from Voiculescu's free probability theory

Piotr Śniady (piotr.sniady@math.uni.wroc.pl) and Artur Jeż

University of Wroclaw

Generalized parking functions

- are at most ln elements which belong to $\{1, \ldots, n\}$.

Raney lemma implies that the number of (l, m)-parking functions is equal to m^{ml} .

Main result: Bijection between ordered trees and parking functions

Theorem. Let $l, m \ge 1$ be fixed. The algorithm MainBijection provides a bijection between

- the set of pairs $(T_{\sigma}, <)$, where T_{σ} is a quotient tree corresponding to the (l, m)-regular graph and < is a total order on vertices of T_{σ} compatible with the orientations of edges;
- the set of (l, m)-parking functions.

Corollary: generalized Cauchy identities

$$2^{2l} = \sum_{p+q=l} \binom{2p}{p} \binom{2q}{q}.$$

$$3^{3l} = \sum_{p+q=l} \binom{3p}{p,p,p} \binom{3q}{q,q,q} + 3 \sum_{\substack{p+q+r=l-1\\r'+q'=r+q+1\\p''+r''=p+r+1}} \binom{2p+p''}{p,p,p''} \binom{2q+q'}{q,q,q'} \binom{r+r'+r''}{r,r',r''}.$$

Auxiliary bijection between ordered trees

Theorem. Let integers $i, l \ge 1$ be given. The algorithm SmallBijection provides a bijection between

- the set of quotient trees $(T_{\sigma}, <)$ corresponding to a (l, i)-regular graph equipped with a total order < compatible with the orientation of the edges;
- the set of quotient trees $(T_{\sigma}, <)$ corresponding to a (l, i)-regular graph equipped with a total order < on the vertices with the following two properties:
- -on the set $\{x \in T_{\sigma} : x \succeq R\}$ the orders < and \lhd coincide, where *R* denotes the root;
- -for all pairs of vertices $v, w \in T_{\sigma}$ such that $R \not\preceq v$ and $R \not\preceq w$ we have $v \prec w \implies v < w$.

Applications

In the limit $l \to \infty$ orders on trees can be interpreted as stochastic processes in \mathbb{R}^{m-1} (Brownian motions, Brownian bridges). Above bijections give rise to measure-preserving maps related to Pitman transform.

Where is Voiculescu's free probability theory? Please, ask me about it!

label all vertices of T with numbers $1, \ldots, ml + 1$ in such a way that each label appears exactly once and the order <of vertices coincides with the order of the labels; for *i=m* downto 1 do $T \leftarrow \text{SmallBijection}(T);$ $U \leftarrow \text{tree } \{x \in T : x \succeq R\}$ (tree *U* is marked gray on

remove *l* edges at each side of the vertex *R*; change the orientation of all edges and reverse the order <;

create sufficiently many artifical labels (integer numbers all different from $1, \ldots, ml + 1$) which are smaller than any label on tree *T*; glue the remaining edges of tree U in such a way that $R \preceq X$ for every $X \in U$; label the unlabeled vertices with artificial labels in such a way that on tree *U* the orders < and \triangleleft coincide;

end

Main bijection

Parking function can be equivalently described as a tuple (B_1, \ldots, B_m) of disjoint sets such that

 $B_1 \cup \cdots \cup B_m = \{1, \dots, ml+1\} \text{ and } |B_1| + \cdots + |B_n| \le ln$ holds true for each $1 \le n \le m - 1$.

Function MainBijection(*T*)

example below);

 $B_i \leftarrow (\text{labels of the vertices of } U) \cap \{1, \dots, ml+1\};$

remove the labels of the vertices of *U*; unglue all edges of tree U;

return B_1, \ldots, B_m ;

Auxiliary bijection

Function SmallBijection(*T*)

while orders

$$D \leftarrow \text{the n}$$

 $R \prec D$ and
 $\{x \in T : R$
 $U \leftarrow \text{tree}$
 $C \leftarrow \text{the single}$

reglue these edges in the other possible way; to unlabeled vertices give labels from labels in such a way that for each pair of newly labeled vertices x < yiff $x \triangleleft y$;

end return T;

References

[Śni04] Piotr Śniady. Generalized Cauchy identities, trees and multidimensional Brownian motions. Part I: bijective proof of generalized Cauchy identities. Preprint arXiv:math.CO/0412043,2004.

 $x < and \lhd do not coincide on \{x \in T : x \succeq R\}$ **do** minimal element (with respect to <) such that nd orders < and \triangleleft do not coincide on

- $R \preceq x \text{ and } x \leq D\};$
- $\{x \in T : R \leq x \text{ and } x \leq D\};$
- successor of *D* in *U* with respect to \triangleleft ; $A \leftarrow \text{father of } C;$
- $B \leftarrow \text{son of } A \text{ in } U \text{ which is to the left of } C;$

labels \leftarrow set of labels carried by the vertices A, B, C, D;

remove the labels from the vertices A, B, C, D; unglue the edges BA and CA;

