Bijections of trees arising from Voiculescu's free probability theory

Piotr Sniady (piotr.sniady@math.uni.wroc.pl) and Artur Jeż

University of Wroclaw

Quotient trees

Let a polygonal graph G with arbitrary orientations of the edges be fixed. Let σ be a pairing between the edges of G. We will always assume that σ is non-crossing and compatible We with the orientatations of edges (in each pair of connected edges one is oriented clockwise and the other counterclockwise)

Let us glue together each pair of edges connected by σ. The resulting graph T_{c} is a tree (called quotient tree) and each edge inherits the orientation from the orientations of the edges in the original graph G

Orders on quotient trees

The orientations of edges define a partial order \prec on the vertices of tree T_{σ} (convention: if $A \Longleftarrow B$ we write $A \prec B$), In the following we shall consider some total (linear) orders on the vertices of T_{σ}; we say that such an order $<$ is compatible with the orientations of edges if $<$ is an extension of the partial order \prec
Quotient trees considered above naturally have a structure of planar rooted trees with a root R. By \triangleleft we denote the order on the vertices given by pre-order. For example, in the above case we have $v_{1} \triangleleft v_{2} \triangleleft v_{3} \triangleleft v_{5} \triangleleft v_{8}$.

Regular polygonal graphs

For integers $l, m \geq 1$ we consider (l, m)-regular graph. It is the polygonal graph with $2 l m$ edges of the form below. It consists of $2 m$ groups of edges, each group consists of l edges with the same orientation, consecutive groups have opposite orientations.

Generalized parking functions

Let integers $l, m \geq 1$ be fixed. We say that $\left(a_{1}, \ldots, a_{l m+1}\right)$ is an (l, m)-parking function if

- $a_{1}, \ldots, a_{l m+1} \in\{1$, $, m\} ;$
- for each $1 \leq n<m$ in the sequence $\left(a_{1}, \ldots, a_{l m+1}\right)$ there are at most \ln elements which belong to $\{1, \ldots, n\}$. Raney lemma implies that the number of (l, m)-parking functions is equal to $m^{m l}$.

Main result: Bijection between ordered trees and parking functions

Theorem. Let $l, m \geq 1$ be fixed. The algorithm MainBi ject ion provides a bijection between

- the set of pairs $\left(T_{\sigma},<\right)$, where T_{σ} is a quotient tree
corresponding to the (l, m)-regular graph and $<$ is a total order on vertices of T_{σ} compatible with the orientations of edges;
- the set of (l, m)-parking functions.

Corollary: generalized Cauchy identities

$3^{3 l}=\sum_{p+q=l}\binom{3 p}{p, p, p}\binom{3 q}{q, q, q}+3 \sum_{\substack{p+q+=-1+\\ r^{\prime}+q^{\prime}=+++p^{\prime}+r^{\prime}=p+r+1}}\binom{2 p+p^{\prime}}{p, p, p^{\prime \prime}}\binom{2 q+q^{\prime}}{q, q, q^{\prime}}\binom{r+r^{\prime}+r^{\prime \prime}}{r, r^{\prime}, r^{\prime \prime}}$.

Auxiliary bijection between ordered trees

 Theorem. Let integers $i, l \geq 1$ be given. The algorithm SmallBi ject ion provides a bijection between- the set of quotient trees $\left(T_{\sigma},<\right)$ corresponding to a (l, i)-regular graph equipped with a total order <compatible with the orientation of the edges;
- the set of quotient trees $\left(T_{\sigma},<\right)$ corresponding to a (l, i)-regular graph equipped with a total order <on the vertices with the following two properties:
- on the set $\left\{x \in T_{\sigma}: x \succeq R\right\}$ the orders $<$ and \triangleleft coincide, where R denotes the root;
-for all pairs of vertices $v, w \in T_{\sigma}$ such that $R \npreceq v$ and $R \npreceq w$ we have $v \prec w \Longrightarrow v<w$.

Applications

In the limit $l \rightarrow \infty$ orders on trees can be interpreted as stochastic processes in \mathbb{R}^{m-1} (Brownian motions, Brownian bridges). Above bijections give rise to measure-preserving maps related to Pitman transform.

Where is Voiculescu's free probability theory? Please, ask me about it

Main bijection

Parking function can be equivalently described as a tuple $\left(B_{1}, \ldots, B_{m}\right)$ of disjoint sets such that
$B_{1} \cup \cdots \cup B_{m}=\{1, \ldots, m l+1\}$ and $\left|B_{1}\right|+\cdots+\left|B_{n}\right| \leq l n$ holds true for each $1 \leq n \leq m-1$

Function MainBijection (T)

label all vertices of T with numbers 1
$1, \ldots m$ $m l+1$ in such a way that each label appears exactly once and the order $<$ of vertices coincides with the order of the labels;
for $i=m$ downto 1 do
$T \leftarrow \operatorname{SmallBijection}(T)$;
$U \leftarrow$ tree $\{x \in T: x \succeq R\}$ (tree U is marked gray on example below);
$B_{i} \leftarrow$ (labels of the vertices of $\left.U\right) \cap\{1, \ldots, m l+1\} ;$

remove the labels of the vertices of U;
unglue all edges of tree U;

remove l edges at each side of the vertex R; change the orientation of all edges and reverse the order <;

create sufficiently many artifical labels (integer numbers all different from $1, \ldots, m l+1$) which are smaller than any label on tree T; glue the remaining edges of tree U in such a way that $R \preceq X$ for every $X \in U$;
label the unlabeled vertices with artificial labels in such a way that on tree U the orders $<$ and \triangleleft coincide

\qquad

Auxiliary bijection
 Function SmallBijection (T)

while orders $<$ and \triangleleft do not coincide on $\{x \in T: x \succeq R\}$ do $D \leftarrow$ the minimal element (with respect to $<$) such that $R \prec D$ and orders $<$ and \triangleleft do not coincide on
$\{x \in T: R \preceq x$ and $x \leq D\}$;
$U \leftarrow$ tree $\{x \in T: R \preceq x$ and $x \leq D\}$;
$C \leftarrow$ the successor of D in U with respect to \triangleleft;
$A \leftarrow$ father of C;
$B \leftarrow$ son of A in U which is to the left of C
labels \leftarrow set of labels carried by the vertices A, B, C, D

remove the labels from the vertices A, B, C, D unglue the edges $B A$ and $C A$;

reglue these edges in the other possible way; to unlabeled vertices give labels from labels in such a way that for each pair of newly labeled vertices $x<y$ iff $x \triangleleft y$;

end
return T;

References

[Śni04] Piotr Śniady. Generalized Cauchy identities, trees and multidimensional Brownian motions. Part I: bijective proof of generalized Cauchy identities. Preprint arXiv:math.CO/0412043,2004

