Flag arrangements and tilings of simplices.

Federico Ardila Sara Billey

FPSAC / SFCA / SFCA San Diego, CA, USA June 23, 2006

The plan to follow: (or not to follow)

- 1. Arrangements of d flags in \mathbb{C}^n .
- 2. Tilings in two and more dimensions.
- 3. Applications to the flag Schubert calculus.

1. Arrangements of d flags in \mathbb{C}^n .

A complete flag F_{\bullet} in \mathbb{C}^n is

 $F_{\bullet} = \{\{0\} \subset \text{line} \subset \text{plane} \subset \cdots \subset \text{hyperplane} \subset \mathbb{C}^n\}.$

Let $E^1_{\bullet}, \ldots, E^d_{\bullet}$ be d generically chosen complete flags in \mathbb{C}^n . Write $E^k_{\bullet} = \{\{0\} = E^k_0 \subset E^k_1 \subset \cdots \subset E^k_n = \mathbb{C}^n\},$

where E_i^k is a vector space of dimension *i*.

Goal. Study the set $\mathbf{E}_{n,d}$ of one-dimensional intersections determined by the flags; that is, all lines of the form

 $E_{a_1}^1 \cap E_{a_2}^2 \cap \dots \cap E_{a_d}^d,$

with $\sum (n - a_i) = n - 1$; that is, $\sum a_i = n(d - 1) + 1$.

Example.

 $\mathbf{E}_{4,3}$ consists of the ten lines:

 $abc = E_a \cap F_b \cap G_c$

for a + b + c = 9

Federico Ardila

Some easy dependence relations:

A k-dim $E_{b_1}^1 \cap E_{b_2}^2 \cap \cdots \cap E_{b_d}^d$ contains line $E_{a_1}^1 \cap E_{a_2}^2 \cap \cdots \cap E_{a_d}^d$ when $a_i \leq b_i$. Therefore, those lines have rank at most k.

Combinatorial dependence relation.

Any k + 1 dots in a simplex of size k are dependent.

The method of proof is constructive.

Goal:

How do we construct d "generic enough" flags in \mathbb{C}^n ?

Reduce to:

How do we construct (n-1)d "generic enough" hyperplanes in \mathbb{C}^n ? (Get a flag from n-1 hyps.: $A \supset (A \cap B) \supset (A \cap B \cap C) \supset \cdots$.)

Reduce to:

How do we construct a "generic enough" *n*-plane P in $\mathbb{C}^{(n-1)d}$? (Then intersect P with the nd coordinate hyperplanes in $\mathbb{C}^{(n-1)d}$.)

We do this using the theory of Dilworth truncations.

To tile the equilateral triangle T(n) of size n with unit rhombi,

Question. Given n holes in T(n), is there a simple criterion to determine whether the resulting holey triangle can be tiled with unit rhombi?

Question. Given n holes in T(n), is there a simple criterion to determine whether the resulting holey triangle can be tiled with unit rhombi?

A necessary condition. If a holey triangle can be tiled with unit rhombi, then no T(k) inside T(n) can contain more than k holes. **Proof.** Count. Theorem. (Ardila, Billey, 2005)

Consider a set of n holes in T(n). The resulting holey triangle can be tiled with unit rhombi if and only if no T(k) inside T(n)contains more than k holes.

The possible locations of the holes are precisely the bases of $\mathcal{T}_{n,3}$! The method of proof is constructive. Given a set of holes which is "not too crowded", we construct a tiling T with those holes. We start with a base tiling T_0 , and arrive to T via local moves.

Federico Ardila

3. Applications to the flag Schubert calculus.

(Very) quick review of Schubert calculus of the flag manifold:

The relative position of two flags E_{\bullet} and F_{\bullet} in \mathbb{C}^n is given by the $n \times n$ rank table whose (i, j) entry is $P[i, j] = \dim(E_i \cap F_j)$.

An example rank table:

$$P = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

Each rank table comes from a permutation matrix:

$$P = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

If E_{\bullet} and F_{\bullet} have rank table P, their relative position is w = 53124.

For fixed E_{\bullet} , divide all flags according to position with respect to E_{\bullet} : The Schubert cell and Schubert variety be

 $X_w^{\circ}(E_{\bullet}) = \{F_{\bullet} | E_{\bullet} \text{ and } F_{\bullet} \text{ have relative position } w\}$ $X_w(E_{\bullet}) = \overline{X_w^{\circ}(E_{\bullet})}$

Federico Ardila

Schubert problem. Given generic flags $E^1_{\bullet}, E^2_{\bullet}, E^3_{\bullet}$ in \mathbb{C}^n and permutations u, v, w in S_n , how many flags F_{\bullet} have relative positions u, v, w with respect to $E^1_{\bullet}, E^2_{\bullet}, E^3_{\bullet}$?

The answer, c_{uvw} , is independent of $E^1_{\bullet}, E^2_{\bullet}, E^3_{\bullet}$. The numbers c_{uvw} are very important. They are the multiplicative structure constants for the cohomology ring of the flag manifold.

Open problem. Given three permutations u, v, w, can we compute c_{uvw} combinatorially?

This question seems very difficult; the following may be easier:

Open problem. Can we describe the permutations u, v, w for which $c_{uvw} = 0$?

3.1. A vanishing criterion for c_{uvw} .

Proposition.(Billey-Vakil) If we know the relative positions u, v, w of F_{\bullet} with respect to generic $E_{\bullet}^1, E_{\bullet}^2, E_{\bullet}^3$, then we know its relative position with respect to $E_{\bullet}^1 \cap E_{\bullet}^2 \cap E_{\bullet}^3$.

More concretely, if we know, for all a, b, c, j:

 $\dim(E_a^1 \cap F_j), \qquad \dim(E_b^2 \cap F_j), \qquad \dim(E_c^3 \cap F_j),$

then we can compute, for all a, b, c, j,

 $\dim(E_a^1 \cap E_b^2 \cap E_c^3 \cap F_j)$

and in particular, for a + b + c = 2n + 1,

 $\dim(abc \cap F_j).$

So we know the set $L(u, v, w)_j$ of lines *abc* which are in each F_j .

The relative positions u, v, w of F_{\bullet} with respect to $E_{\bullet}^1, E_{\bullet}^2, E_{\bullet}^3$ determine the set $L(u, v, w)_j$ of lines *abc* which are in each F_j .

Observation. The matroid $\mathcal{T}_{n,3}$ tells us $\operatorname{rank}(L(u, v, w)_j)$. If that rank is greater than j, then $c_{uvw} = 0$.

This method already characterizes vanishing for $n \leq 5$; but this is just the easiest possible observation along these lines.

Example. u = 231645, v = 231645, w = 326154

5		
4		

5

					e
				5	
			5	4	
1	6]

6					
					6
5				6	(5
4			6	5	4
2		6	(5)	4	3
1	6	5	4	3	2

6

6

6

Since F_4 would have to contain 5 independent vectors, $c_{uvw} = 0$.

 $\mathbf{5}$

5 4

(Doesn't follow from Knutson's descent cycling method. Compare with other methods: Lascoux-Schutzenberger, Purbhoo.)

3.2. Computing c_{uvw} .

Proposition. (Billey-Vakil) Given the permutations u, v, w, we can compute $\dim(E_a^1 \cap E_b^2 \cap E_c^3 \cap F_j)$. We can use these numbers to write down a simple and explicit set of equations cutting out

 $X = X_u(E^1_{\bullet}) \cap X_v(E^2_{\bullet}) \cap X_w(E^3_{\bullet})$

and just count the number c_{uvw} of flags in X.

The equations are written in terms of the vectors

 $abc = E_a^1 \cap E_b^2 \cap E_c^3,$

so it would be very useful to have a nice choice of abc.

Ultimately, we want a nice representation of the matroid $\mathcal{T}_{n,3}$.

We get this from $\mathcal{T}_{n,3}$ being a cotransversal matroid (via tilings!).

Assign weights to the edges. For each dot D, let $v_{D,i}$ be the sum of the weights of all paths from dot D to dot i on the bottom row. For example, $v_{top} = (acg, ach + adi + bei, adj + bej + bfk, bfl).$

Theorem. (Ardila-Billey, 2005) Vectors $v_D = (v_{D,1}, \ldots, v_{D,n})$ are a geometric representation of the matroid $\mathcal{T}_{n,3}$.

Result. (Billey-Vakil, 2004, Ardila-Billey, 2005) We get a method for computing c_{uvw} without reference to a fixed set of flags.

Thank you for your attention.

Preprint available at:

math.CO/0605598

math.sfsu.edu/federico