Flag arrangements and tilings of simplices.

Federico Ardila Sara Billey

FPSAC / SFCA / SFCA
San Diego, CA, USA
June 23, 2006

The plan to follow: (or not to follow)

1. Arrangements of d flags in \mathbb{C}^{n}.
2. Tilings in two and more dimensions.
3. Applications to the flag Schubert calculus.

1. Arrangements of d flags in \mathbb{C}^{n}.

A complete flag F_{\bullet} in \mathbb{C}^{n} is

$$
F_{\bullet}=\left\{\{0\} \subset \text { line } \subset \text { plane } \subset \cdots \subset \text { hyperplane } \subset \mathbb{C}^{n}\right\} .
$$

Let $E_{\bullet}^{1}, \ldots, E_{\bullet}^{d}$ be d generically chosen complete flags in \mathbb{C}^{n}. Write

$$
E_{\bullet}^{k}=\left\{\{0\}=E_{0}^{k} \subset E_{1}^{k} \subset \cdots \subset E_{n}^{k}=\mathbb{C}^{n}\right\},
$$

where E_{i}^{k} is a vector space of dimension i.

Let $E_{\bullet}^{1}, \ldots, E_{\bullet}^{d}$ be d generically chosen complete flags in \mathbb{C}^{n}.
Example. $d=3, n=4$: flags $E_{\bullet}, F_{\bullet}, G_{\bullet}$ in \mathbb{C}^{4} (projective picture)
Each flag is point \subset line \subset plane $\subset 3$-space.

Goal. Study the set $\mathbf{E}_{n, d}$ of one-dimensional intersections determined by the flags; that is, all lines of the form

$$
E_{a_{1}}^{1} \cap E_{a_{2}}^{2} \cap \cdots \cap E_{a_{d}}^{d}
$$

with $\sum\left(n-a_{i}\right)=n-1$; that is, $\sum a_{i}=n(d-1)+1$.

Example.

$\mathbf{E}_{4,3}$ consists of the ten lines:

$$
a b c=E_{a} \cap F_{b} \cap G_{c}
$$

for $a+b+c=9$

Question. In $\mathbf{E}_{n, d}$, which sets are dependent/independent? What is the matroid?

First an encoding:

$$
\begin{aligned}
\text { lines in } \mathbf{E}_{n, d} & \leftrightarrow \quad \text { dots in "simplicial" array } T_{n, d} \\
E_{a_{1}}^{1} \cap E_{a_{2}}^{2} \cap \cdots \cap E_{a_{d}}^{d} & \leftrightarrow \quad\left(n-a_{1}, \ldots, n-a_{d}\right)
\end{aligned}
$$

Some easy dependence relations:
A k-dim $E_{b_{1}}^{1} \cap E_{b_{2}}^{2} \cap \cdots \cap E_{b_{d}}^{d}$ contains line $E_{a_{1}}^{1} \cap E_{a_{2}}^{2} \cap \cdots \cap E_{a_{d}}^{d}$ when $a_{i} \leq b_{i}$. Therefore, those lines have rank at most k.

Combinatorial dependence relation.
Any $k+1$ dots in a simplex of size k are dependent.

Question. Are these the only dependence relations?

Answer. These are the only dependence relations.

Theorem. (Ardila, Billey, 2005.)
A set of dots in the array $T_{n, d}$ is independent if and only if no subarray $T_{k, d}$ of size k contains more than k dots.

The method of proof is constructive.

Goal:

How do we construct d "generic enough" flags in \mathbb{C}^{n} ?
Reduce to:
How do we construct $(n-1) d$ "generic enough" hyperplanes in \mathbb{C}^{n} ? (Get a flag from $n-1$ hyps.: $A \supset(A \cap B) \supset(A \cap B \cap C) \supset \cdots$.)

Reduce to:

How do we construct a "generic enough" n-plane P in $\mathbb{C}^{(n-1) d}$?
(Then intersect P with the $n d$ coordinate hyperplanes in $\mathbb{C}^{(n-1) d}$.)

We do this using the theory of Dilworth truncations.

2. Tilings in two and more dimensions.

To tile the equilateral triangle $T(n)$ of size n with unit rhombi,

we first need to make $n=\binom{n+1}{2}-\binom{n}{2}$ holes.

Where can we put those holes?

Question. Given n holes in $T(n)$, is there a simple criterion to determine whether the resulting holey triangle can be tiled with unit rhombi?

Question. Given n holes in $T(n)$, is there a simple criterion to determine whether the resulting holey triangle can be tiled with unit rhombi?

A necessary condition. If a holey triangle can be tiled with unit rhombi, then no $T(k)$ inside $T(n)$ can contain more than k holes.

Proof. Count.

Theorem. (Ardila, Billey, 2005)
Consider a set of n holes in $T(n)$. The resulting holey triangle can be tiled with unit rhombi if and only if no $T(k)$ inside $T(n)$ contains more than k holes.

The possible locations of the holes are precisely the bases of $\mathcal{T}_{n, 3}$!
The method of proof is constructive. Given a set of holes which is "not too crowded", we construct a tiling T with those holes. We start with a base tiling T_{0}, and arrive to T via local moves.

Generalization.

$$
\begin{array}{lll}
\text { (geometry of } 3 \text { flags) } & \leftrightarrow & \text { (rhombus tilings of holey triangles) } \\
\text { (geometry of } d \text { flags) } & \leftrightarrow & \text { (fine mixed subdivisions of } n \Delta_{d-1} \text {) }
\end{array}
$$

A fine mixed subdivision of the simplex $n \Delta_{d-1}$ has tiles:
(d -1)-dimensional products of faces of Δ_{d-1}

(See also: Babson-Billera, Diaconis-Sturmfels, Postnikov, Santos ...)

3. Applications to the flag Schubert calculus.

(Very) quick review of Schubert calculus of the flag manifold:

The relative position of two flags E_{\bullet} and F_{\bullet} in \mathbb{C}^{n} is given by the $n \times n$ rank table whose (i, j) entry is $P[i, j]=\operatorname{dim}\left(E_{i} \cap F_{j}\right)$.

An example rank table:

$$
P=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 2 \\
0 & 1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4 & 4 \\
1 & 2 & 3 & 4 & 5
\end{array}\right]
$$

Each rank table comes from a permutation matrix:

$$
P=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 2 \\
0 & 1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4 & 4 \\
1 & 2 & 3 & 4 & 5
\end{array}\right] \leftarrow\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

If E_{\bullet} and F_{\bullet} have rank table P, their relative position is $w=53124$.

For fixed E_{\bullet}, divide all flags according to position with respect to E_{\bullet} :
The Schubert cell and Schubert variety be

$$
\begin{aligned}
& X_{w}^{\circ}\left(E_{\bullet}\right)=\left\{F_{\bullet} \mid E_{\bullet} \text { and } F_{\bullet} \text { have relative position } w\right\} \\
& X_{w}\left(E_{\bullet}\right)=\overline{X_{w}^{\circ}\left(E_{\bullet}\right)}
\end{aligned}
$$

Schubert problem. Given generic flags $E_{\bullet}^{1}, E_{\bullet}^{2}, E_{\bullet}^{3}$ in \mathbb{C}^{n} and permutations u, v, w in S_{n}, how many flags F_{\bullet} have relative positions u, v, w with respect to $E_{\bullet}^{1}, E_{\bullet}^{2}, E_{\bullet}^{3}$?

The answer, $c_{u v w}$, is independent of $E_{\bullet}^{1}, E_{\bullet}^{2}, E_{\bullet}^{3}$. The numbers $c_{u v w}$ are very important. They are the multiplicative structure constants for the cohomology ring of the flag manifold.

Open problem. Given three permutations u, v, w, can we compute $c_{\text {uvw }}$ combinatorially?

This question seems very difficult; the following may be easier:
Open problem. Can we describe the permutations u, v, w for which $c_{u v w}=0$?
3.1. A vanishing criterion for $c_{u v w}$.

Proposition.(Billey-Vakil) If we know the relative positions u, v, w of F_{\bullet} with respect to generic $E_{\bullet}^{1}, E_{\bullet}^{2}, E_{\bullet}^{3}$, then we know its relative position with respect to $E_{\bullet}^{1} \cap E_{\bullet}^{2} \cap E_{\bullet}^{3}$.

More concretely, if we know, for all a, b, c, j :

$$
\operatorname{dim}\left(E_{a}^{1} \cap F_{j}\right), \quad \operatorname{dim}\left(E_{b}^{2} \cap F_{j}\right), \quad \operatorname{dim}\left(E_{c}^{3} \cap F_{j}\right)
$$

then we can compute, for all a, b, c, j,

$$
\operatorname{dim}\left(E_{a}^{1} \cap E_{b}^{2} \cap E_{c}^{3} \cap F_{j}\right)
$$

and in particular, for $a+b+c=2 n+1$,

$$
\operatorname{dim}\left(a b c \cap F_{j}\right)
$$

So we know the set $L(u, v, w)_{j}$ of lines $a b c$ which are in each F_{j}.

The relative positions u, v, w of F_{\bullet} with respect to $E_{\bullet}^{1}, E_{\bullet}^{2}, E_{\bullet}^{3}$ determine the set $L(u, v, w)_{j}$ of lines $a b c$ which are in each F_{j}.

Observation. The matroid $\mathcal{T}_{n, 3}$ tells us rank $\left(L(u, v, w)_{j}\right)$.
If that rank is greater than j, then $c_{u v w}=0$.
This method already characterizes vanishing for $n \leq 5$; but this is just the easiest possible observation along these lines.
Example. $u=231645, v=231645, w=326154$

Since F_{4} would have to contain 5 independent vectors, $c_{u v w}=0$.
(Doesn't follow from Knutson's descent cycling method. Compare with other methods: Lascoux-Schutzenberger, Purbhoo.)
3.2. Computing $c_{u v w}$.

Proposition. (Billey-Vakil) Given the permutations u, v, w, we can compute $\operatorname{dim}\left(E_{a}^{1} \cap E_{b}^{2} \cap E_{c}^{3} \cap F_{j}\right)$. We can use these numbers to write down a simple and explicit set of equations cutting out

$$
X=X_{u}\left(E_{\bullet}^{1}\right) \cap X_{v}\left(E_{\bullet}^{2}\right) \cap X_{w}\left(E_{\bullet}^{3}\right)
$$

and just count the number $c_{u v w}$ of flags in X.
The equations are written in terms of the vectors

$$
a b c=E_{a}^{1} \cap E_{b}^{2} \cap E_{c}^{3},
$$

so it would be very useful to have a nice choice of $a b c$.
Ultimately, we want a nice representation of the matroid $\mathcal{T}_{n, 3}$.

We get this from $\mathcal{T}_{n, 3}$ being a cotransversal matroid (via tilings!).

Assign weights to the edges. For each dot D, let $v_{D, i}$ be the sum of the weights of all paths from dot D to dot i on the bottom row.

For example, $v_{t o p}=(a c g, a c h+a d i+b e i, a d j+b e j+b f k, b f l)$.
Theorem. (Ardila-Billey, 2005) Vectors $v_{D}=\left(v_{D, 1}, \ldots, v_{D, n}\right)$ are a geometric representation of the matroid $\mathcal{T}_{n, 3}$.

Result. (Billey-Vakil, 2004, Ardila-Billey, 2005) We get a method for computing $c_{u v w}$ without reference to a fixed set of flags.

Thank you for your attention.

Preprint available at: math.CD/0605598 math.sfsu.edu/federico

