B-quasisymmetric polynomials and a Catalan tetrahedron

Jean-Christophe Aval

FPSAC06 - San Diego

Table of contents

I A Catalan tetrahedron

II B-quasisymmetric polynomials

Catalan triangle (1/3)

1

11
122
$\begin{array}{llll}1 & 3 & 5 & 5\end{array}$
$\begin{array}{lllll}1 & 4 & 9 & 14 & 14\end{array}$
$\begin{array}{llllll}1 & 5 & 14 & 28 & 42 & 42\end{array}$
$\begin{array}{lllllll}1 & 6 & 20 & 48 & 90 & 132 & 132\end{array}$

Catalan triangle (1/3)

- $\forall k \geqslant n, B(n, k)=0$
- $B(1,0)=1$
- $\forall n>1, k<n$,

$$
B(n, k)=\sum_{l=0}^{k} B(n-1, l)
$$

Catalan triangle (1/3)

```
1
1 1
1 2 2
1 3 5 5
1
1
1
```

- $\forall k \geqslant n, B(n, k)=0$
- $B(1,0)=1$
- $\forall n>1, k<n$, $B(n, k)=\sum_{l=0}^{k} B(n-1, l)$
$B(n, k)=$ number of Dyck paths of length $2 n$ with $n-k$ DOWN steps in the last sequence of DOWN steps

Catalan triangle (2/3)

$B(n, k)=$ number of Dyck paths of length $2 n$ with k DOWN steps (excluding the last sequence of DOWN steps)

Catalan triangle (2/3)

$B(n, k)=$ number of Dyck paths of length $2 n$ with k DOWN steps (excluding the last sequence of DOWN steps)

Catalan triangle (2/3)

$B(n, k)=$ number of Dyck paths of length $2 n$ with k DOWN steps (excluding the last sequence of DOWN steps)

Catalan triangle (2/3)

$B(n, k)=$ number of Dyck paths of length $2 n$ with k DOWN steps (excluding the last sequence of DOWN steps)

Example: $n=3 \quad 122$

Catalan triangle (2/3)

$B(n, k)=$ number of Dyck paths of length $2 n$ with k DOWN steps (excluding the last sequence of DOWN steps)

Example: $n=3 \quad 122$

$$
B(n, k)=\frac{n-k}{n+k}\binom{n+k}{n}
$$

Catalan triangle (2/3)

$B(n, k)=$ number of Dyck paths of length $2 n$ with k DOWN steps (excluding the last sequence of DOWN steps)

Example: $n=3 \quad 122$

$$
B(n, k)=\frac{n-k}{n+k}\binom{n+k}{n}
$$

$$
\sum_{k=0}^{n-1} B(n, k)=C(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

Catalan triangle (3/3)

$$
\sum_{k=0}^{n-1} B(n, k)=C(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

1	6	20	48	90	132	132	429

Catalan triangle (3/3)

$$
\sum_{k=0}^{n-1} B(n, k)=C(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

$\left.\begin{array}{ccccccc}1 & & & & & & \\ 1 & 1 & & & & & \\ 1 & 2 & \\ 1 & 2 & 2 & & & & \\ 1 & 3 & 5 & 5 & & & \\ 1 & 4 & 9 & 14 & 14 & & \\ 1 & 5 & 14 & 28 & 42 & 42 & \\ 142 & 132 \\ 1 & 6 & 20 & 48 & 90 & 132 & 132\end{array}\right) 429$

What happens if we let the same recurrence grow in dimension $3 ? \longrightarrow$ Catalan tetrahedron

Catalan tetrahedron (1/2)

$$
\left.\begin{array}{l}
1
\end{array}\right]\left[\begin{array}{ll}
1 & \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & & \\
2 & 3 & \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{cccc}
5 & & & \\
5 & 10 & & \\
3 & 8 & 10 & \\
1 & 3 & 5 & 5
\end{array}\right]\left[\begin{array}{ccccc}
{\left[\begin{array}{cccc}
14 & & & \\
14 & 35 & & \\
9 & 30 & 45 & \\
4 & 15 & 30 & 35
\end{array}\right.} \\
{\left[\begin{array}{cccc}
\\
1 & 4 & 9 & 14
\end{array}\right.} & 14
\end{array}\right]
$$

Catalan tetrahedron (1/2)

$$
\left.\begin{array}{l}
1
\end{array}\right]\left[\begin{array}{ll}
1 & \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & \\
2 & 3 & \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{cccc}
5 & & & \\
5 & 10 & & \\
3 & 8 & 10 & \\
1 & 3 & 5 & 5
\end{array}\right]\left[\begin{array}{ccccc}
14 & & & \\
14 & 35 & & & \\
9 & 30 & 45 & & \\
4 & 15 & 30 & 35 & \\
1 & 4 & 9 & 14 & 14
\end{array}\right]
$$

- $\forall k+l \geqslant n, B_{3}(n, k, l)=0$
- $B_{3}(1,0,0)=1$
- $\forall n>1, k+l<n, B_{3}(n, k, l)=\sum_{i \leqslant k, j \leqslant l} B_{3}(n-1, i, j)$

Catalan tetrahedron (1/2)

$\left.\begin{array}{l}1\end{array}\right]\left[\begin{array}{ll}1 & \\ 1 & 1\end{array}\right]\left[\begin{array}{lll}2 & \\ 2 & 3 & \\ 1 & 2 & 2\end{array}\right]\left[\begin{array}{cccc}5 & & & \\ 5 & 10 & & \\ 3 & 8 & 10 & \\ 1 & 3 & 5 & 5\end{array}\right]\left[\begin{array}{ccccc}14 & & & \\ 14 & 35 & & & \\ 9 & 30 & 45 & & \\ 4 & 15 & 30 & 35 & \\ 1 & 4 & 9 & 14 & 14\end{array}\right]$

- $\forall k+l \geqslant n, B_{3}(n, k, l)=0$
- $B_{3}(1,0,0)=1$
- $\forall n>1, k+l<n, B_{3}(n, k, l)=\sum_{i \leqslant k, j \leqslant l} B_{3}(n-1, i, j)$

$$
\sum_{k+l<n} B_{3}(n, k, l)=?
$$

Catalan tetrahedron (1/2)

$$
\left.\begin{array}{l}
1
\end{array}\right]\left[\begin{array}{ll}
1 & \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & \\
2 & 3 & \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{cccc}
5 & & & \\
5 & 10 & & \\
3 & 8 & 10 & \\
1 & 3 & 5 & 5
\end{array}\right]\left[\begin{array}{ccccc}
14 & & & \\
14 & 35 & & & \\
9 & 30 & 45 & & \\
4 & 15 & 30 & 35 & \\
1 & 4 & 9 & 14 & 14
\end{array}\right]
$$

- $\forall k+l \geqslant n, B_{3}(n, k, l)=0$
- $B_{3}(1,0,0)=1$
- $\forall n>1, k+l<n, B_{3}(n, k, l)=\sum_{i \leqslant k, j \leqslant l} B_{3}(n-1, i, j)$

$$
\sum_{k+l<n} B_{3}(n, k, l)=?
$$

Catalan tetrahedron (2/2)

$$
\sum_{k+l<n} B_{3}(n, k, l)=C_{3}(n)=\frac{1}{2 n+1}\binom{3 n}{n}
$$

Catalan tetrahedron (2/2)

$$
\sum_{k+l<n} B_{3}(n, k, l)=C_{3}(n)=\frac{1}{2 n+1}\binom{3 n}{n}
$$

$B_{3}(n, k, l)=$ number of 2-Dyck paths (steps (1,1) and (2,-2)) of length $4 n$ with k DOWN steps at even height and l DOWN steps at odd height (excluding the last DOWN sequence)

Catalan tetrahedron (2/2)

$$
\sum_{k+l<n} B_{3}(n, k, l)=C_{3}(n)=\frac{1}{2 n+1}\binom{3 n}{n}
$$

$B_{3}(n, k, l)=$ number of 2-Dyck paths (steps (1,1) and (2,-2)) of length $4 n$ with k DOWN steps at even height and l DOWN steps at odd height (excluding the last DOWN sequence)

Catalan tetrahedron (2/2)

$$
\sum_{k+l<n} B_{3}(n, k, l)=C_{3}(n)=\frac{1}{2 n+1}\binom{3 n}{n}
$$

$B_{3}(n, k, l)=$ number of 2-Dyck paths (steps (1,1) and (2,-2)) of length $4 n$ with k DOWN steps at even height and l DOWN steps at odd height (excluding the last DOWN sequence)

Catalan tetrahedron (2/2)

$$
\sum_{k+l<n} B_{3}(n, k, l)=C_{3}(n)=\frac{1}{2 n+1}\binom{3 n}{n}
$$

$B_{3}(n, k, l)=$ number of 2-Dyck paths (steps (1,1) and (2,-2)) of length $4 n$ with k DOWN steps at even height and l DOWN steps at odd height (excluding the last DOWN sequence)

Explicit formula (proved using the cycle lemma):

$$
B_{3}(n, k, l)=\binom{n+k-1}{k}\binom{n+l-1}{l} \frac{n-k-l}{n}
$$

Table of contents

I A Catalan tetrahedron

II B-quasisymmetric polynomials

Symmetric polynomials

Alphabet $X_{n}=x_{1}, \ldots, x_{n}$

Symmetric polynomials

Alphabet $X_{n}=x_{1}, \ldots, x_{n}$

$$
\begin{aligned}
h_{1}\left(X_{3}\right)= & x_{1}+x_{2}+x_{3} \\
h_{2}\left(X_{3}\right)= & x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
h_{3}\left(X_{3}\right)= & x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2} \\
& +x_{2}^{3}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+x_{3}^{3}
\end{aligned}
$$

Symmetric polynomials

Alphabet $X_{n}=x_{1}, \ldots, x_{n}$

$$
\begin{aligned}
h_{1}\left(X_{3}\right)= & x_{1}+x_{2}+x_{3} \\
h_{2}\left(X_{3}\right)= & x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
h_{3}\left(X_{3}\right)= & x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2} \\
& +x_{2}^{3}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+x_{3}^{3}
\end{aligned}
$$

Space Sym $_{n}=\mathbb{Q}\left[h_{k}\left(X_{n}\right), k \geqslant 0\right]$
Ideal $\left\langle S y m_{n}^{+}\right\rangle=\left\langle h_{k}\left(X_{n}\right), k>0\right\rangle$

Symmetric polynomials

Alphabet $X_{n}=x_{1}, \ldots, x_{n}$

$$
\begin{aligned}
h_{1}\left(X_{3}\right)= & x_{1}+x_{2}+x_{3} \\
h_{2}\left(X_{3}\right)= & x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
h_{3}\left(X_{3}\right)= & x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2} \\
& \quad+x_{2}^{3}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+x_{3}^{3}
\end{aligned}
$$

Space Sym $_{n}=\mathbb{Q}\left[h_{k}\left(X_{n}\right), k \geqslant 0\right]$
Ideal $\left\langle\operatorname{Sym}_{n}^{+}\right\rangle=\left\langle h_{k}\left(X_{n}\right), k>0\right\rangle$
Theorem (Artin - 1944)

$$
\operatorname{dim} \mathbb{Q}\left[X_{n}\right] /\left\langle S y m_{n}^{+}\right\rangle=n!
$$

Quasisymmetric polynomials

Basis F_{c} indexed by compositions: Definition-example:

$$
\begin{gathered}
F_{(2,1,3)}\left(X_{n}\right)=\sum_{1 \leqslant i_{1} \leqslant i_{2}<i_{3}<i_{4} \leqslant i_{5} \leqslant i_{6} \leqslant n} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} x_{i_{5}} x_{i_{6}} \\
F_{(1,2)}\left(X_{3}\right)=\sum_{1 \leqslant i<j \leqslant k \leqslant 3} x_{i} x_{j} x_{k}=x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}
\end{gathered}
$$

Quasisymmetric polynomials

Basis F_{c} indexed by compositions: Definition-example:

$$
\begin{gathered}
F_{(2,1,3)}\left(X_{n}\right)=\sum_{1 \leqslant i_{1} \leqslant i_{2}<i_{3}<i_{4} \leqslant i_{5} \leqslant i_{6} \leqslant n} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} x_{i_{5}} x_{i_{6}} \\
F_{(1,2)}\left(X_{3}\right)=\sum_{1 \leqslant i<j \leqslant k \leqslant 3} x_{i} x_{j} x_{k}=x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}
\end{gathered}
$$

Space $Q \operatorname{Sym}_{n}=\operatorname{Span}\left(F_{c}\left(X_{n}\right),|c| \geqslant 0\right)$
Ideal $\left\langle Q \operatorname{Sym}_{n}^{+}\right\rangle=\left\langle F_{c}\left(X_{n}\right),\right| c|>0\rangle$

Quasisymmetric polynomials

Basis F_{c} indexed by compositions: Definition-example:

$$
\begin{gathered}
F_{(2,1,3)}\left(X_{n}\right)=\sum_{1 \leqslant i_{1} \leqslant i_{2}<i_{3}<i_{4} \leqslant i_{5} \leqslant i_{6} \leqslant n} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} x_{i_{5}} x_{i_{6}} \\
F_{(1,2)}\left(X_{3}\right)=\sum_{1 \leqslant i<j \leqslant k \leqslant 3} x_{i} x_{j} x_{k}=x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}
\end{gathered}
$$

Space $Q \operatorname{Sym}_{n}=\operatorname{Span}\left(F_{c}\left(X_{n}\right),|c| \geqslant 0\right)$
Ideal $\left\langle Q\right.$ Sym $\left._{n}^{+}\right\rangle=\left\langle F_{c}\left(X_{n}\right),\right| c|>0\rangle$
Theorem (Aval, Bergeron, Bergeron - 2002)

$$
\operatorname{dim} \mathbb{Q}\left[X_{n}\right] /\left\langle Q S y m_{n}^{+}\right\rangle=C(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

B-quasisymmetric polynomials (1/2)

Alphabet $X_{n}, Y_{n}=x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ Definitions on examples:

B-quasisymmetric polynomials (1/2)

Alphabet $X_{n}, Y_{n}=x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$
Definitions on examples:
Bi-composition 42021031 (patterns 00 and 00 forbidden)

B-quasisymmetric polynomials (1/2)

Alphabet $X_{n}, Y_{n}=x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$
Definitions on examples:
Bi-composition 42021031 (patterns 00 and 00 forbidden)

$$
F_{12,01,20}\left(X_{n}, Y_{n}\right)=\sum_{i_{1} \leqslant i_{2} \leqslant i_{3}<i_{4}<i_{5} \leqslant i_{6}} x_{i_{1}} y_{i_{2}} y_{i_{3}} y_{i_{4}} x_{i_{5}} x_{i_{6}}
$$

B-quasisymmetric polynomials (1/2)

Alphabet $X_{n}, Y_{n}=x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$
Definitions on examples:
Bi-composition 42021031 (patterns 00 and 00 forbidden)

$$
F_{12,01,20}\left(X_{n}, Y_{n}\right)=\sum_{i_{1} \leqslant i_{2} \leqslant i_{3}<i_{4}<i_{5} \leqslant i_{6}} x_{i_{1}} y_{i_{2}} y_{i_{3}} y_{i_{4}} x_{i_{5}} x_{i_{6}}
$$

[defined by Poirier, studied by Baumann-Hohlweg]

B-quasisymmetric polynomials (1/2)

Alphabet $X_{n}, Y_{n}=x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$
Definitions on examples:
Bi-composition 42021031 (patterns 00 and 00 forbidden)

$$
F_{12,01,20}\left(X_{n}, Y_{n}\right)=\sum_{i_{1} \leqslant i_{2} \leqslant i_{3}<i_{4}<i_{5} \leqslant i_{6}} x_{i_{1}} y_{i_{2}} y_{i_{3}} y_{i_{4}} x_{i_{5}} x_{i_{6}}
$$

[defined by Poirier, studied by Baumann-Hohlweg]

Space $B Q \operatorname{Sym}_{n}=\operatorname{Span}\left(F_{c}\left(X_{n}, Y_{n}\right),|c| \geqslant 0\right)$ Ideal $\left\langle B Q\right.$ Sym $\left._{n}^{+}\right\rangle=\left\langle F_{c}\left(X_{n}, Y_{n}\right),\right| c|>0\rangle$

B-quasi-symmetric polynomials (2/2)

Theorem (Aval)
The quotient space $\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle$

B-quasi-symmetric polynomials (2/2)

Theorem (Aval)
The quotient space $\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle$

- has dimension $\frac{1}{2 n+1}\binom{3 n}{n}$ (number of ternary trees)

B-quasi-symmetric polynomials (2/2)

Theorem (Aval)
The quotient space $\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle$

- has dimension $\frac{1}{2 n+1}\binom{3 n}{n}$ (number of ternary trees)
- is bi-graded, and its Hilbert series is

$$
H_{n}(q, t)=\sum_{0 \leqslant k+l \leqslant n}\binom{n+k-1}{k}\binom{n+l-1}{l} \frac{n-k-l}{n} q^{k} t^{l}
$$

B-quasi-symmetric polynomials (2/2)

Theorem (Aval)
The quotient space $\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle$

- has dimension $\frac{1}{2 n+1}\binom{3 n}{n}$ (number of ternary trees)
- is bi-graded, and its Hilbert series is

$$
H_{n}(q, t)=\sum_{0 \leqslant k+l \leqslant n}\binom{n+k-1}{k}\binom{n+l-1}{l} \frac{n-k-l}{n} q^{k} t^{l}
$$

- has a basis naturally indexed by paths

B-quasi-symmetric polynomials (2/2)

Theorem (Aval)
The quotient space $\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle$

- has dimension $\frac{1}{2 n+1}\binom{3 n}{n}$ (number of ternary trees)
- is bi-graded, and its Hilbert series is

$$
H_{n}(q, t)=\sum_{0 \leqslant k+l \leqslant n}\binom{n+k-1}{k}\binom{n+l-1}{l} \frac{n-k-l}{n} q^{k} t^{l}
$$

- has a basis naturally indexed by paths

Moreover, there is an effective explicit description of a Gröbner basis for the ideal.

Proof (1/3)

Bijection monomials \longleftrightarrow paths:

$n=5$
$x_{1}^{2} y_{1} x_{3} \longleftrightarrow$

Proof (1/3)

Bijection monomials \longleftrightarrow paths: $n=5$

 transdiagonal path

 transdiagonal path}
Proof (1/3)

Bijection monomials \longleftrightarrow paths:

$n=5$

transdiagonal path

2-Dyck path

Proof (2/3)

Theorem (Aval)

$$
\operatorname{dim} \mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q \text { Sym }_{n}^{+}\right\rangle=\frac{1}{2 n+1}\binom{3 n}{n}
$$

Proof (2/3)

Theorem (Aval)

$$
\operatorname{dim} \mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q \text { Sym }_{n}^{+}\right\rangle=\frac{1}{2 n+1}\binom{3 n}{n}
$$

Proof

Explicit construction of a Gröbner basis for the ideal $\left\langle B Q S y m_{n}^{+}\right\rangle$ whose leading monomials (for the lexicographic order) are the monomials associated to transdiagonal paths.

Proof (2/3)

Theorem (Aval)

$$
\operatorname{dim} \mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q \text { Sym }_{n}^{+}\right\rangle=\frac{1}{2 n+1}\binom{3 n}{n}
$$

Proof
Explicit construction of a Gröbner basis for the ideal $\left\langle B Q S y m_{n}^{+}\right\rangle$ whose leading monomials (for the lexicographic order) are the monomials associated to transdiagonal paths.
Consequence
A monomial basis for the quotient

$$
\operatorname{dim} \mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle
$$

is given by the monomials associated to 2-Dyck paths.

Proof (3/3)

Consequence

A monomial basis for the quotient $\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle$is given by the monomials associated to 2-Dyck paths.

Proof (3/3)

Consequence

A monomial basis for the quotient $\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle$is given by the monomials associated to 2-Dyck paths.
$Q_{n, k, l}=\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q\right.$ Sym $\left._{n}^{+}\right\rangle \cap \mathbb{Q}\left[X_{n}, Y_{n}\right]_{k, l}$ (polynomials of degree k in $\left(x_{1}, \ldots, x_{n}\right)$ and l in $\left.\left(y_{1}, \ldots, y_{n}\right)\right)$

$$
\operatorname{dim} Q_{n, k, l}=\binom{n+k-1}{k}\binom{n+l-1}{l} \frac{n-k-l}{n}=B_{3}(n, k, l)
$$

Proof (3/3)

Consequence
A monomial basis for the quotient $\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle$is given by the monomials associated to 2-Dyck paths.
$Q_{n, k, l}=\mathbb{Q}\left[X_{n}, Y_{n}\right] /\left\langle B Q S y m_{n}^{+}\right\rangle \cap \mathbb{Q}\left[X_{n}, Y_{n}\right]_{k, l}$ (polynomials of degree k in $\left(x_{1}, \ldots, x_{n}\right)$ and l in $\left.\left(y_{1}, \ldots, y_{n}\right)\right)$

$$
\operatorname{dim} Q_{n, k, l}=\binom{n+k-1}{k}\binom{n+l-1}{l} \frac{n-k-l}{n}=B_{3}(n, k, l)
$$

Proof
$x_{2} y_{3} y_{4}$

2-Dyck path
$(k, l)=(1,2) \longleftrightarrow$ East steps: 1 at even height, 2 at odd height

Extensions and open questions

Extensions and open questions

- it is easy to extend the combinatorial part to a ($p+1$)-dimensional recurrence, as well as the agebraic part to polynomials in p alphabets of n variables...

Extensions and open questions

- it is easy to extend the combinatorial part to a ($p+1$)-dimensional recurrence, as well as the agebraic part to polynomials in p alphabets of n variables...
- open question: find a description of B-quasisymmetric polynomials as invariants

