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Simplicial complexes and diagonal arrangements

A simplicial complex ∆ on [n] ⇐⇒

a diagonal arrangement A∆ :
collection of diagonal subspaces
{xi1 = · · · = xik} of Rn

for all {i1, . . . , ik} complementary
to facets of ∆

Example
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⇐⇒

{x4 = x5}
{x1 = x5}
{x1 = x2 = x4}
{x1 = x2 = x3}

A∆

F1
F2
F3
F4
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Simplicial complexes and diagonal arrangements

Example

The Braid arrangement Bn =
⋃
i<j

{xi = xj}

m

∆n,n−2 = {σ ⊂ [n] : |σ| ≤ n − 2}

Example

The k -equal arrangement An,k =
⋃

i1<···<ik

{xi1 = · · · = xik}

m

∆n,n−k = {σ ⊂ [n] : |σ| ≤ n − k}
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Two important spaces associated with A

Definition
The complement of an arrangement A in Rn is

MA = Rn −
⋃

H∈A
H

The singularity link of a central arrangement A in Rn is

V◦A = Sn−1 ∩
⋃

H∈A
H

Fact
By Alexander duality,

H i(MA; F) = Hn−2−i(V◦A; F)
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Application in group cohomology

Definition
An Eilenberg-MacLane space (or a K (π, n) space) is a connected cell
complex with all homotopy groups except the n-th homotopy group
being trivial and the n-th homotopy group isomorphic to π.

Fact
If the CW complex X is a K (π, 1) space, then

TorZπ
n (Z, Z) = Hn(X ; Z) and ExtnZπ(Z, Z) = Hn(X ; Z).

Theorem (Fadell - Neuwirth, 1962)
Let Bn be the braid arrangement in Cn. Then MBn is a K (π, 1) space.

Theorem (Khovanov, 1996)
Let An,3 be the 3-equal arrangement in Rn. Then MAn,k is a K (π, 1)
space.
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What is the topology of MA and V◦A?

Definition
The intersection lattice LA of a subspace arrangement A is the
collection of all nonempty intersections of subspaces of A ordered by
reverse inclusion.

Theorem (Goresky - Macpherson, 1988)
Let A be a subspace arrangement in Rn. Then

H̃ i(MA) ∼=
⊕

x∈LA−{0̂}

H̃codim(x)−2−i(0̂, x).

Theorem (Ziegler - Živaljević, 1993)
For every central subspace arrangement A in Rn,

V◦A '
∨

x∈LA−{0̂}

(∆(0̂, x) ∗ Sdim(x)−1).

Sangwook Kim University of Minnesota FPSAC 2006 7 / 17



What is the topology of MA and V◦A?

Definition
The intersection lattice LA of a subspace arrangement A is the
collection of all nonempty intersections of subspaces of A ordered by
reverse inclusion.

Theorem (Goresky - Macpherson, 1988)
Let A be a subspace arrangement in Rn. Then

H̃ i(MA) ∼=
⊕

x∈LA−{0̂}

H̃codim(x)−2−i(0̂, x).

Theorem (Ziegler - Živaljević, 1993)
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What is a general sufficient condition for the
intersection lattice LA of a diagonal arrangement A to
be well-behaved?

Theorem (Björner - Welker, 1995)
The intersection lattice LAn,k for the k-equal arrangement An,k has the
homotopy type of a wedge of spheres.

An,k = A∆n,n−k , and ∆n,n−k is shellable.

Theorem (Kozlov, 1999)
Let ∆ be a simplicial complex on [n] that satisfies some conditions.
Then the intersection lattice for A∆ is EL-shellable, and hence has the
homotopy type of a wedge of spheres.

∆ in Kozlov’s theorem is shellable.

Sangwook Kim University of Minnesota FPSAC 2006 8 / 17
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Main theorem

Theorem (K.)
Let ∆ be a shellable simplicial complex with dim ∆ ≤ n − 3.
Then the intersection lattice L∆ of A∆ is homotopy equivalent to a
wedge of spheres.
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Main theorem (precise version)

Theorem (K.)
Let ∆ be a shellable simplicial complex on [n] with dim ∆ ≤ n − 3. Let
σ be the intersection of all facets and σ̄ its complement. Then the
intersection lattice L∆ is homotopy equivalent to a wedge of spheres,
consisting of (p − 1)! copies of spheres of dimension

δ(D) = p(2− n) +

p∑
j=1

|Fij |+ |σ̄| − 3

for each (unordered) shelling-trapped decomposition
D = {(σ̄1, Fi1), . . . , (σ̄p, Fip)} of σ̄.
Moreover, if one removes the δ(D)-simplex corresponding to a
saturated chain CD,ω for each shelling-trapped decomposition
D = {(σ̄1, Fi1), . . . , (σ̄p, Fip)} of σ̄ and a permutation ω of [p − 1], then
the remaining simplicial complex L̂∆ is contractible.

Sangwook Kim University of Minnesota FPSAC 2006 10 / 17
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Example

4
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shellable complex ∆ diagonal arrangement A∆
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The topology of V◦A∆

Corollary (K.)
Let ∆ be a shellable simplicial complex with dim ∆ ≤ n − 3. The
singularity link of A∆ has the homotopy type of a wedge of spheres,
consisting of p! spheres of dimension n + p(2− n) +

∑p
j=1 |Fij | − 2 for

each shelling-trapped decomposition {(σ̄1, Fi1), . . . , (σ̄p, Fip)} of [n].

Theorem (K.)
Let ∆ be a shellable simplicial complex with dim ∆ ≤ n − 3. Then
dimF Hi(V◦A∆

; F) is the number of ordered shelling-trapped
decompositions ((σ̄1, Fi1), . . . , (σ̄p, Fip)) of [n] with
i = n + p(2− n) +

∑p
j=1 |Fij | − 2.
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; F) is the number of ordered shelling-trapped
decompositions ((σ̄1, Fi1), . . . , (σ̄p, Fip)) of [n] with
i = n + p(2− n) +

∑p
j=1 |Fij | − 2.
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Proof sketch of main theorem

Lemma
For the upper interval, there is a simplicial complex whose intersection
lattice is isomorphic to [Uσ̄, 1̂]. If F is the last facet in the shelling order,
the simplicial complex which corresponds to [UF , 1̂] is shellable.

Proof sketch of main theorem
If F is the last facet in the shelling of ∆, one can consider the following
decomposition of ∆̂(L):

∆̂(L) = ∆̂(L− {H}) ∪ ∆̂(L≥H),

where ∆̂(L− {H}) is obtained by removing all chains CD,ω not
containing H from L− {H} and ∆̂(L≥H) is obtained by removing CD,ω

and CD,ω − H from L≥H for all CD,ω containing H. Then one can show
that all three spaces ∆̂(L− {H}), ∆̂(L≥H) and their intersection are
contractible, and hence ∆̂(L) is also contractible.
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Diagonal arrangement A such that MA is K (π, 1)

Theorem (Davis, Januszkiewicz and Scott, 1998)
Let H be a simplicial real hyperplane arrangement in Rn. Let A be any
arrangement of codimension-2 intersection subspaces in H which
intersects every chamber in a codimension-2 subcomplex. Then MA
is K (π, 1).

Corollary (K.)
Let A be a subarrangement of 3-equal arrangement of Rn so that

A =
{
{xi = xj = xk} | {i , j , k} ∈ TA

}
,

for some collection TA of 3-element subsets of [n]. Then A satisfies
the hypothesis of DJS’s theorem (and hence MA is K (π, 1)) if and only
if every permutation ω in Sn has at least one triple in TA consecutive.
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DJS matroids

The matroid complexes ∆ = I(M) are a natural class of shellable
complexes.

Definition
Say a rank 3 matroid M on [n] is DJS if its bases B(M) satisfies the
condition of Corollary, i.e., every permutation ω in Sn has at least one
triple in B(M) consecutive.

Rank 3 matroids are not always DJS in general.

Proposition (K.)
Let M be a rank 3 matroid on the ground set [n] with no circuits of size
3. Let P1, . . . , Pk be distinct parallel classes which have more than one
element and let N be the set of all elements which are not parallel with
anything else. Then, M is DJS if and only if
b |P1|

2 c+ · · ·+ b |Pk |
2 c − k < |N| − 2.
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DJS matroids

Definition
A simplicial complex ∆ on [n] is shifted if, for any face of ∆,
replacing any vertex i by a vertex j(< i) gives another face in ∆.
The Gale ordering on all k element subsets of [n] is given by
{x1 < · · · < xk} is less than {y1 < · · · < yk} if
xi ≤ yi for all i and {x1, . . . , xk} 6= {y1, . . . , yk}.

Theorem (Klivans)
Let M be a matroid whose independent set complex is shifted. Then its
bases B(M) is the principal order ideal of Gale ordering.

Proposition (K.)
Let M be the rank 3 matroid on the ground set [n] corresponding to the
principal order ideal generated by {a, b, n}. Then, M is DJS if and only
if bn−b

2 c < a.
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Conjecture/Problem

Definition
A coordinate subspace arrangement Ac

∆ is a collection of coordinate
subspaces {xi1 = · · · = xik = 0} of Rn for all {i1, . . . , ik} complementary
to facets of ∆.

A singularity link of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)
A complement of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Problem
Characterize the rank 3 matroids which are DJS.

Sangwook Kim University of Minnesota FPSAC 2006 17 / 17



Conjecture/Problem

Definition
A coordinate subspace arrangement Ac

∆ is a collection of coordinate
subspaces {xi1 = · · · = xik = 0} of Rn for all {i1, . . . , ik} complementary
to facets of ∆.

A singularity link of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)
A complement of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Problem
Characterize the rank 3 matroids which are DJS.

Sangwook Kim University of Minnesota FPSAC 2006 17 / 17



Conjecture/Problem

Definition
A coordinate subspace arrangement Ac

∆ is a collection of coordinate
subspaces {xi1 = · · · = xik = 0} of Rn for all {i1, . . . , ik} complementary
to facets of ∆.

A singularity link of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)
A complement of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Problem
Characterize the rank 3 matroids which are DJS.

Sangwook Kim University of Minnesota FPSAC 2006 17 / 17



Conjecture/Problem

Definition
A coordinate subspace arrangement Ac

∆ is a collection of coordinate
subspaces {xi1 = · · · = xik = 0} of Rn for all {i1, . . . , ik} complementary
to facets of ∆.

A singularity link of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)
A complement of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Problem
Characterize the rank 3 matroids which are DJS.

Sangwook Kim University of Minnesota FPSAC 2006 17 / 17



Conjecture/Problem

Definition
A coordinate subspace arrangement Ac

∆ is a collection of coordinate
subspaces {xi1 = · · · = xik = 0} of Rn for all {i1, . . . , ik} complementary
to facets of ∆.

A singularity link of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)
A complement of a coordinate subspace arrangement for a shellable
complex is homotopy equivalent to a wedge of spheres.

Problem
Characterize the rank 3 matroids which are DJS.

Sangwook Kim University of Minnesota FPSAC 2006 17 / 17


	outline
	Simplicial complexes and diagonal arrangements
	Some known special cases
	Main theorem - Homotopy type of L for shellable 
	K(,1) examples from matroids

