Shellable complexes and topology of diagonal arrangements

Sangwook Kim

University of Minnesota
FPSAC 2006

Outline

(1) Simplicial complexes and diagonal arrangements
(2) Some known special cases

Outline

(1) Simplicial complexes and diagonal arrangements
(2) Some known special cases

Main theorem - Homotopy type of L_{Δ} for shellable Δ

Outline

(1) Simplicial complexes and diagonal arrangements
(2) Some known special cases
(3) Main theorem - Homotopy type of L_{Δ} for shellable Δ

Outline

(1) Simplicial complexes and diagonal arrangements
(2) Some known special cases
(3) Main theorem - Homotopy type of L_{Δ} for shellable Δ
(4) $K(\pi, 1)$ examples from matroids

Simplicial complexes and diagonal arrangements

Simplicial complexes and diagonal arrangements

A simplicial complex Δ on [n]

Simplicial complexes and diagonal arrangements

a diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces
A simplicial complex Δ on $[n] \Longleftrightarrow\left\{x_{i_{1}}=\cdots=x_{i_{k}}\right\}$ of \mathbb{R}^{n} for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ

Simplicial complexes and diagonal arrangements

a diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces
A simplicial complex Δ on $[n] \Longleftrightarrow\left\{x_{i_{1}}=\cdots=x_{i_{k}}\right\}$ of \mathbb{R}^{n}
for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ

Example

Simplicial complexes and diagonal arrangements

a diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces
A simplicial complex Δ on $[n] \Longleftrightarrow\left\{x_{i_{1}}=\cdots=x_{i_{k}}\right\}$ of \mathbb{R}^{n}
for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ

Example

$$
\left\{x_{4}=x_{5}\right\} \quad F_{1}
$$

Simplicial complexes and diagonal arrangements

a diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces
A simplicial complex Δ on $[n] \Longleftrightarrow\left\{x_{i_{1}}=\cdots=x_{i_{k}}\right\}$ of \mathbb{R}^{n}
for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ

Example

$$
\begin{array}{ll}
\left\{x_{4}=x_{5}\right\} & F_{1} \\
\left\{x_{1}=x_{5}\right\} & F_{2}
\end{array}
$$

Simplicial complexes and diagonal arrangements

a diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces
A simplicial complex Δ on $[n] \Longleftrightarrow\left\{x_{i_{1}}=\cdots=x_{i_{k}}\right\}$ of \mathbb{R}^{n}
for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ

Example

$$
\Longleftrightarrow \begin{array}{ll}
\left\{x_{4}=x_{5}\right\} & F_{1} \\
\left\{x_{1}=x_{5}\right\} & F_{2} \\
\left\{x_{1}=x_{2}=x_{4}\right\} & F_{3}
\end{array}
$$

Simplicial complexes and diagonal arrangements

a diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces
A simplicial complex Δ on $[n] \Longleftrightarrow\left\{x_{i_{1}}=\cdots=x_{i_{k}}\right\}$ of \mathbb{R}^{n}
for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ

Example

$$
\begin{array}{ll}
\left\{x_{4}=x_{5}\right\} & F_{1} \\
\left\{x_{1}=x_{5}\right\} & F_{2} \\
\left\{x_{1}=x_{2}=x_{4}\right\} & F_{3} \\
\left\{x_{1}=x_{2}=x_{3}\right\} & F_{4}
\end{array}
$$

Simplicial complexes and diagonal arrangements

Example

The Braid arrangement $\mathcal{B}_{n}=\bigcup_{i<j}\left\{x_{i}=x_{j}\right\}$

Simplicial complexes and diagonal arrangements

Example

The Braid arrangement $\mathcal{B}_{n}=\bigcup_{i<j}\left\{x_{i}=x_{j}\right\}$

$$
\Delta_{n, n-2}=\{\sigma \subset[n]:|\sigma| \leq n-2\}
$$

Simplicial complexes and diagonal arrangements

Example

The Braid arrangement $\mathcal{B}_{n}=\bigcup_{i<j}\left\{x_{i}=x_{j}\right\}$ \uparrow

$$
\Delta_{n, n-2}=\{\sigma \subset[n]:|\sigma| \leq n-2\}
$$

Example

The k-equal arrangement $\mathcal{A}_{n, k}=\bigcup_{i_{1}<\cdots<i_{k}}\left\{x_{i_{1}}=\cdots=x_{i_{k}}\right\}$

Simplicial complexes and diagonal arrangements

Example

The Braid arrangement $\mathcal{B}_{n}=\bigcup_{i<j}\left\{x_{i}=x_{j}\right\}$ \uparrow

$$
\Delta_{n, n-2}=\{\sigma \subset[n]:|\sigma| \leq n-2\}
$$

Example

The k-equal arrangement $\mathcal{A}_{n, k}=\bigcup_{i_{1}<\cdots<i_{k}}\left\{x_{i_{1}}=\cdots=x_{i_{k}}\right\}$ I

$$
\Delta_{n, n-k}=\{\sigma \subset[n]:|\sigma| \leq n-k\}
$$

Two important spaces associated with \mathcal{A}

Two important spaces associated with \mathcal{A}

Definition

- The complement of an arrangement \mathcal{A} in \mathbb{R}^{n} is

$$
\mathcal{M}_{\mathcal{A}}=\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H
$$

Two important spaces associated with \mathcal{A}

Definition

- The complement of an arrangement \mathcal{A} in \mathbb{R}^{n} is

$$
\mathcal{M}_{\mathcal{A}}=\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H
$$

- The singularity link of a central arrangement \mathcal{A} in \mathbb{R}^{n} is

$$
\mathcal{V}_{\mathcal{A}}^{\circ}=\mathbb{S}^{n-1} \cap \bigcup_{H \in \mathcal{A}} H
$$

Two important spaces associated with \mathcal{A}

Definition

- The complement of an arrangement \mathcal{A} in \mathbb{R}^{n} is

$$
\mathcal{M}_{\mathcal{A}}=\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H
$$

- The singularity link of a central arrangement \mathcal{A} in \mathbb{R}^{n} is

$$
\mathcal{V}_{\mathcal{A}}^{\circ}=\mathbb{S}^{n-1} \cap \bigcup_{H \in \mathcal{A}} H
$$

Fact

By Alexander duality,

$$
H^{i}\left(\mathcal{M}_{\mathcal{A}} ; \mathbb{F}\right)=H_{n-2-i}\left(\mathcal{V}_{\mathcal{A}}^{\circ} ; \mathbb{F}\right)
$$

Application in group cohomology

Definition complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Application in group cohomology

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Application in group cohomology

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Fact

If the CW complex X is a $K(\pi, 1)$ space, then

$$
\operatorname{Tor}_{n}^{\mathbb{Z} \pi}(\mathbb{Z}, \mathbb{Z})=H_{n}(X ; \mathbb{Z}) \text { and } \operatorname{Ext}_{\mathbb{Z} \pi}^{n}(\mathbb{Z}, \mathbb{Z})=H^{n}(X ; \mathbb{Z})
$$

\square
Let \mathcal{A}_{n} a be the 3-eaual arranaer ent in R? Then

Application in group cohomology

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Fact

If the CW complex X is a $K(\pi, 1)$ space, then

$$
\operatorname{Tor}_{n}^{\mathbb{Z} \pi}(\mathbb{Z}, \mathbb{Z})=H_{n}(X ; \mathbb{Z}) \text { and } \operatorname{Ext}_{\mathbb{Z} \pi}^{n}(\mathbb{Z}, \mathbb{Z})=H^{n}(X ; \mathbb{Z})
$$

Theorem (Fadell - Neuwirth, 1962)
Let \mathcal{B}_{n} be the braid arrangement in \mathbb{C}^{n}. Then $\mathcal{M}_{\mathcal{B}_{n}}$ is a $K(\pi, 1)$ space.
Theorem (Khovanov, 1996)
Let $\mathcal{A}_{n, 3}$ be the 3-equal arrangement in \mathbb{R}^{n}. Then $\mathcal{M}_{\mathcal{A}_{n, k}}$ is a $K(\pi, 1)$

Application in group cohomology

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Fact

If the CW complex X is a $K(\pi, 1)$ space, then

$$
\operatorname{Tor}_{n}^{\mathbb{Z} \pi}(\mathbb{Z}, \mathbb{Z})=H_{n}(X ; \mathbb{Z}) \text { and } \operatorname{Ext}_{\mathbb{Z} \pi}^{n}(\mathbb{Z}, \mathbb{Z})=H^{n}(X ; \mathbb{Z})
$$

Theorem (Fadell - Neuwirth, 1962)
Let \mathcal{B}_{n} be the braid arrangement in \mathbb{C}^{n}. Then $\mathcal{M}_{\mathcal{B}_{n}}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Let $\mathcal{A}_{n, 3}$ be the 3-equal arrangement in \mathbb{R}^{n}. Then $\mathcal{M}_{\mathcal{A}_{n, k}}$ is a $K(\pi, 1)$ space.

What is the topology of $\mathcal{M}_{\mathcal{A}}$ and $\mathcal{V}_{\mathcal{A}}^{\circ}$?

Definition

The intersection lattice $L_{\mathcal{A}}$ of a subspace arrangement \mathcal{A} is the collection of all nonemptv intersections of subspaces of \mathcal{A} ordere by reverse inclusion.

Theorem (Goresky - Macpherson, 1988) Let \mathcal{A} be a subspace arranaement in \mathbb{R}^{n}. Then

What is the topology of $\mathcal{M}_{\mathcal{A}}$ and $\mathcal{V}_{\mathcal{A}}^{\circ}$?

Definition

The intersection lattice $L_{\mathcal{A}}$ of a subspace arrangement \mathcal{A} is the collection of all nonempty intersections of subspaces of \mathcal{A} ordered by reverse inclusion.

What is the topology of $\mathcal{M}_{\mathcal{A}}$ and $\mathcal{V}_{\mathcal{A}}^{\circ}$?

Definition

The intersection lattice $L_{\mathcal{A}}$ of a subspace arrangement \mathcal{A} is the collection of all nonempty intersections of subspaces of \mathcal{A} ordered by reverse inclusion.

Theorem (Goresky - Macpherson, 1988)
Let \mathcal{A} be a subspace arrangement in \mathbb{R}^{n}. Then

$$
\tilde{H}^{\prime}\left(\mathcal{M}_{\mathcal{A}}\right) \cong \bigoplus_{x \in L_{\mathcal{A}}-\{\hat{0}\}} \widetilde{H}_{\operatorname{codim}(x)-2-i}(\hat{0}, x) .
$$

For every central subspace arrangement \mathcal{A} in \mathbb{R}^{n}

What is the topology of $\mathcal{M}_{\mathcal{A}}$ and $\mathcal{V}_{\mathcal{A}}^{\circ}$?

Definition

The intersection lattice $L_{\mathcal{A}}$ of a subspace arrangement \mathcal{A} is the collection of all nonempty intersections of subspaces of \mathcal{A} ordered by reverse inclusion.

Theorem (Goresky - Macpherson, 1988)
Let \mathcal{A} be a subspace arrangement in \mathbb{R}^{n}. Then

$$
\widetilde{H}^{i}\left(\mathcal{M}_{\mathcal{A}}\right) \cong \bigoplus_{x \in L_{\mathcal{A}}-\{\hat{0}\}} \widetilde{H}_{\operatorname{codim}(x)-2-i}(\hat{0}, x) .
$$

Theorem (Ziegler - Živaljević, 1993)
For every central subspace arrangement \mathcal{A} in \mathbb{R}^{n},

$$
\mathcal{V}_{\mathcal{A}}^{\circ} \simeq \bigvee_{x \in L_{\mathcal{A}}-\{\hat{0}\}}\left(\Delta(\hat{0}, x) * \mathbb{S}^{\operatorname{dim}(x)-1}\right) .
$$

What is a general sufficient condition for the intersection lattice $L_{\mathcal{A}}$ of a diagonal arrangement \mathcal{A} to be well-behaved?

\square and $\Delta_{n, n-k}$ is shellable.

What is a general sufficient condition for the intersection lattice $L_{\mathcal{A}}$ of a diagonal arrangement \mathcal{A} to be well-behaved?

Theorem (Björner - Welker, 1995)
The intersection lattice $L_{\mathcal{A}_{n, k}}$ for the k-equal arrangement $\mathcal{A}_{n, k}$ has the homotopy type of a wedge of spheres.

\square
Let \triangle be a simplicial comple on n that satisfies some conditions Then the intersection lattice for \mathcal{A}_{\triangle} is EL-shellable, and hence has the homotopy type of a wedge of spheres.

What is a general sufficient condition for the intersection lattice $L_{\mathcal{A}}$ of a diagonal arrangement \mathcal{A} to be well-behaved?

Theorem (Björner - Welker, 1995)
The intersection lattice $L_{\mathcal{A}_{n, k}}$ for the k-equal arrangement $\mathcal{A}_{n, k}$ has the homotopy type of a wedge of spheres.
$\mathcal{A}_{n, k}=\mathcal{A}_{\Delta_{n, n-k}}$, and $\Delta_{n, n-k}$ is shellable.

\square
Δ in Koziov's theorem is shellabie

What is a general sufficient condition for the intersection lattice $L_{\mathcal{A}}$ of a diagonal arrangement \mathcal{A} to be well-behaved?

Theorem (Björner - Welker, 1995)

The intersection lattice $L_{\mathcal{A}_{n, k}}$ for the k-equal arrangement $\mathcal{A}_{n, k}$ has the homotopy type of a wedge of spheres.
$\mathcal{A}_{n, k}=\mathcal{A}_{\Delta_{n, n-k}}$, and $\Delta_{n, n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on $[n$] that satisfies some conditions. Then the intersection lattice for \mathcal{A}_{Δ} is EL-shellable, and hence has the homotopy type of a wedge of spheres.

What is a general sufficient condition for the intersection lattice $L_{\mathcal{A}}$ of a diagonal arrangement \mathcal{A} to be well-behaved?

Theorem (Björner - Welker, 1995)

The intersection lattice $L_{\mathcal{A}_{n, k}}$ for the k-equal arrangement $\mathcal{A}_{n, k}$ has the homotopy type of a wedge of spheres.
$\mathcal{A}_{n, k}=\mathcal{A}_{\Delta_{n, n-k}}$, and $\Delta_{n, n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on $[n]$ that satisfies some conditions. Then the intersection lattice for \mathcal{A}_{Δ} is EL-shellable, and hence has the homotopy type of a wedge of spheres.
Δ in Kozlov's theorem is shellable.

Main theorem

Theorem (K.)

Let Δ be a shellable simplicial complex with $\operatorname{dim} \Delta \leq n-3$. Then the intersection lattice L_{Δ} of \mathcal{A}_{Δ} is homotopy equivalent to a wedge of spheres.

Main theorem (precise version)

Theorem (K.)

Let Δ be a shellable simplicial complex on $[n]$ with $\operatorname{dim} \Delta \leq n-3$. Let σ be the intersection of all facets and $\bar{\sigma}$ its complement. Then the intersection lattice L_{Δ} is homotopy equivalent to a wedge of spheres, consisting of $(p-1)$! copies of spheres of dimension

$$
\delta(D)=p(2-n)+\sum_{j=1}^{p}\left|F_{i_{j}}\right|+|\bar{\sigma}|-3
$$

for each (unordered) shelling-trapped decomposition $D=\left\{\left(\bar{\sigma}_{1}, F_{i_{1}}\right), \ldots,\left(\bar{\sigma}_{p}, F_{i_{p}}\right)\right\}$ of $\bar{\sigma}$.

Main theorem (precise version)

Theorem (K.)

Let Δ be a shellable simplicial complex on $[n]$ with $\operatorname{dim} \Delta \leq n-3$. Let σ be the intersection of all facets and $\bar{\sigma}$ its complement. Then the intersection lattice L_{Δ} is homotopy equivalent to a wedge of spheres, consisting of $(p-1)$! copies of spheres of dimension

$$
\delta(D)=p(2-n)+\sum_{j=1}^{p}\left|F_{i_{j}}\right|+|\bar{\sigma}|-3
$$

for each (unordered) shelling-trapped decomposition
$D=\left\{\left(\bar{\sigma}_{1}, F_{i_{1}}\right), \ldots,\left(\bar{\sigma}_{p}, F_{i_{p}}\right)\right\}$ of $\bar{\sigma}$.
Moreover, if one removes the $\delta(D)$-simplex corresponding to a saturated chain $\bar{C}_{D, \omega}$ for each shelling-trapped decomposition $D=\left\{\left(\bar{\sigma}_{1}, F_{i_{1}}\right), \ldots,\left(\bar{\sigma}_{p}, F_{i_{p}}\right)\right\}$ of $\bar{\sigma}$ and a permutation ω of $[p-1]$, then the remaining simplicial complex \widehat{L}_{Δ} is contractible.

Example

intersection lattice L_{Δ} of \mathcal{A}_{Δ}

Example

shellable complex Δ

$$
\begin{aligned}
& \left\{x_{4}=x_{5}\right\} \\
& \left\{x_{1}=x_{5}\right\} \\
& \left\{x_{1}=x_{2}=x_{4}\right\} \\
& \left\{x_{1}=x_{2}=x_{3}\right\}
\end{aligned}
$$

diagonal arrangement \mathcal{A}_{Δ}

Example

shellable complex Δ

$$
\begin{aligned}
& \left\{x_{4}=x_{5}\right\} \\
& \left\{x_{1}=x_{5}\right\} \\
& \left\{x_{1}=x_{2}=x_{4}\right\} \\
& \left\{x_{1}=x_{2}=x_{3}\right\}
\end{aligned}
$$

diagonal arrangement \mathcal{A}_{Δ}

intersection lattice L_{Δ} of \mathcal{A}_{Δ}

Example

shellable complex Δ

intersection lattice L_{Δ} of \mathcal{A}_{Δ}

$$
\begin{aligned}
& \left\{x_{4}=x_{5}\right\} \\
& \left\{x_{1}=x_{5}\right\} \\
& \left\{x_{1}=x_{2}=x_{4}\right\} \\
& \left\{x_{1}=x_{2}=x_{3}\right\}
\end{aligned}
$$

diagonal arrangement \mathcal{A}_{Δ}

order complex of \bar{L}_{Δ}

Example

shellable complex Δ

intersection lattice L_{Δ} of \mathcal{A}_{Δ}

$$
\begin{aligned}
& \left\{x_{4}=x_{5}\right\} \\
& \left\{x_{1}=x_{5}\right\} \\
& \left\{x_{1}=x_{2}=x_{4}\right\} \\
& \left\{x_{1}=x_{2}=x_{3}\right\}
\end{aligned}
$$

diagonal arrangement \mathcal{A}_{Δ}

order complex of \bar{L}_{Δ}

Example

shellable complex Δ

intersection lattice L_{Δ} of \mathcal{A}_{Δ}

$$
\begin{aligned}
& \left\{x_{4}=x_{5}\right\} \\
& \left\{x_{1}=x_{5}\right\} \\
& \left\{x_{1}=x_{2}=x_{4}\right\} \\
& \left\{x_{1}=x_{2}=x_{3}\right\}
\end{aligned}
$$

diagonal arrangement \mathcal{A}_{Δ}

order complex of \bar{L}_{Δ}

The topology of $\mathcal{V}_{\mathcal{A}_{\Delta}}^{\circ}$

Corollary (K.)

Let Δ be a shella ble simplicial complex with dim $\Delta<n-3$. The singularity link of \mathcal{A}_{Δ} has the homotopy type of a wedge of spheres, consisting of p ! spheres of dimension $n+p(2-n)+\sum_{j=1}^{p}\left|F_{i_{j}}\right|-2$ for each shelling-trapped decomposition $\left\{\left(\bar{\sigma}_{1}, F_{i_{1}}\right), \ldots,\left(\bar{\sigma}_{p}, F_{i_{p}}\right)\right\}$ of $[n]$

Theorem (K.)

Let Δ be a shella ble simplicial complex with dim $\Delta \leq n-3$. Then
$\operatorname{dim}_{\mathbb{F}} H_{i}\left(\mathcal{V}_{\mathcal{A}}^{\circ} ; \mathbb{F}\right)$ is the number of ordered shelling-trapped
decompositions $\left(\left(\bar{\sigma}_{1}, F_{i_{1}}\right), \ldots,\left(\bar{\sigma}_{p}, F_{i_{p}}\right)\right)$ of $[n]$ with

The topology of $\mathcal{V}_{\mathcal{A}_{\Delta}}^{\circ}$

Corollary (K.)

Let Δ be a shellable simplicial complex with $\operatorname{dim} \Delta \leq n-3$. The singularity link of \mathcal{A}_{Δ} has the homotopy type of a wedge of spheres, consisting of p ! spheres of dimension $n+p(2-n)+\sum_{j=1}^{p}\left|F_{i_{j}}\right|-2$ for each shelling-trapped decomposition $\left\{\left(\bar{\sigma}_{1}, F_{i_{1}}\right), \ldots,\left(\bar{\sigma}_{p}, F_{i_{p}}\right)\right\}$ of $[n]$.

The topology of $\mathcal{V}_{\mathcal{A}_{\Delta}}^{\circ}$

Corollary (K.)

Let Δ be a shellable simplicial complex with $\operatorname{dim} \Delta \leq n-3$. The singularity link of \mathcal{A}_{Δ} has the homotopy type of a wedge of spheres, consisting of p ! spheres of dimension $n+p(2-n)+\sum_{j=1}^{p}\left|F_{i_{j}}\right|-2$ for each shelling-trapped decomposition $\left\{\left(\bar{\sigma}_{1}, F_{i_{1}}\right), \ldots,\left(\bar{\sigma}_{p}, F_{i_{p}}\right)\right\}$ of $[n]$.

Theorem (K.)

Let Δ be a shellable simplicial complex with $\operatorname{dim} \Delta \leq n-3$. Then $\operatorname{dim}_{\mathbb{F}} H_{i}\left(\mathcal{V}_{\mathcal{A}_{\Delta}}^{\circ} ; \mathbb{F}\right)$ is the number of ordered shelling-trapped decompositions $\left(\left(\bar{\sigma}_{1}, F_{i_{1}}\right), \ldots,\left(\bar{\sigma}_{p}, F_{i_{p}}\right)\right)$ of $[n]$ with $i=n+p(2-n)+\sum_{j=1}^{p}\left|F_{i_{j}}\right|-2$.

Proof sketch of main theorem

Lemma

For the upper interval, there is a simplicial complex whose intersection lattice is isomorphic to $\left[U_{\bar{\sigma}}, \hat{1}\right]$. If F is the last facet in the shelling order, the simplicial complex which corresponds to $\left[U_{\bar{F}}, \hat{1}\right]$ is shellable.

Proof sketch of main theorem

If F is the last facet in the shelling of Δ, one can consider the following decomposition of $\Delta(\bar{L})$

where $\widehat{\Delta}(\bar{L}-\{H\})$ is obtained by removing all chains $\bar{C}_{D, \omega}$ not containing H from $\bar{L}-\{H\}$ and $\widehat{\Delta}\left(\bar{L}_{>H}\right)$ is obtained bv removina C_{D} and $\bar{C}_{D, \omega}-H$ from $\bar{L}_{\geq H}$ for all $\bar{C}_{D, \omega}$ containing H. Then one can show that all three spaces $\widehat{\triangle}(\bar{L}-\{H\}), \widehat{\Delta}\left(\bar{L}_{\geq H}\right)$ and their intersection are contractible, and hence $\widehat{\Delta}(\bar{L})$ is also contractible.

Proof sketch of main theorem

Lemma

For the upper interval, there is a simplicial complex whose intersection lattice is isomorphic to $\left[U_{\bar{\sigma}}, \hat{1}\right]$. If F is the last facet in the shelling order, the simplicial complex which corresponds to $\left[U_{\bar{F}}, \hat{1}\right]$ is shellable.

Proof sketch of main theorem

Lemma

For the upper interval, there is a simplicial complex whose intersection lattice is isomorphic to $\left[U_{\bar{\sigma}}, \hat{1}\right]$. If F is the last facet in the shelling order, the simplicial complex which corresponds to $\left[U_{\bar{F}}, \hat{1}\right]$ is shellable.

Proof sketch of main theorem

If F is the last facet in the shelling of Δ, one can consider the following decomposition of $\widehat{\Delta}(\bar{L})$:

$$
\widehat{\Delta}(\bar{L})=\widehat{\Delta}(\bar{L}-\{H\}) \cup \widehat{\Delta}\left(\bar{L}_{\geq H}\right),
$$

where $\widehat{\Delta}(\bar{L}-\{H\})$ is obtained by removing all chains $\bar{C}_{D, \omega}$ not containing H from $\bar{L}-\{H\}$ and $\widehat{\Delta}\left(\bar{L}_{\geq H}\right)$ is obtained by removing $\bar{C}_{D, \omega}$ and $\bar{C}_{D, \omega}-H$ from $\bar{L}_{\geq H}$ for all $\bar{C}_{D, \omega}$ containing H. Then one can show that all three spaces $\hat{\Delta}(\bar{L}-\{H\}), \widehat{\Delta}\left(\bar{L}_{\geq H}\right)$ and their intersection are contractible, and hence $\widehat{\Delta}(\bar{L})$ is also contractible.

Diagonal arrangement \mathcal{A} such that $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)
I ef \mathcal{H} he a simnlicial real hynernlane arrancement in \mathbb{R}^{\prime} ! . Let A be any
arrangement of codimension-2 intersection subspaces in \mathcal{H} which
intersects every chamber in a codimension-2 subcomplex. Then
is $K(\pi, 1)$
Corollary (K.)
Let \mathcal{A} be a subar rangement of 3-equal arrangement of \mathbb{R}^{n} so that
for some collection $T_{\mathcal{A}}$ of 3-element subsets of $[n]$. Then \mathcal{A} satisfies
the hvoothesis of DJS's theorem (and hence
f every permutation ω in \mathscr{S}_{n} has at least one triple in $T_{\mathcal{A}}$ consecutive.

Diagonal arrangement \mathcal{A} such that $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let \mathcal{H} be a simplicial real hyperplane arrangement in \mathbb{R}^{n}. Let \mathcal{A} be any arrangement of codimension-2 intersection subspaces in \mathcal{H} which intersects every chamber in a codimension-2 subcomplex. Then $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$.

Diagonal arrangement \mathcal{A} such that $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let \mathcal{H} be a simplicial real hyperplane arrangement in \mathbb{R}^{n}. Let \mathcal{A} be any arrangement of codimension-2 intersection subspaces in \mathcal{H} which intersects every chamber in a codimension-2 subcomplex. Then $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$.

Corollary (K.)

Let \mathcal{A} be a subarrangement of 3-equal arrangement of \mathbb{R}^{n} so that

$$
\mathcal{A}=\left\{\left\{x_{i}=x_{j}=x_{k}\right\} \mid\{i, j, k\} \in T_{\mathcal{A}}\right\},
$$

for some collection $T_{\mathcal{A}}$ of 3-element subsets of $[n]$. Then \mathcal{A} satisfies the hypothesis of DJS's theorem (and hence $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$) if and only if every permutation ω in \mathfrak{S}_{n} has at least one triple in $T_{\mathcal{A}}$ consecutive.

DJS matroids

The matroid complexes $\Delta=\mathcal{I}(M)$ are a natural class of shellable complexes.

Say a rank 3 matroid M on $[n]$ is DJS if its bases $\mathcal{B}(M)$ satisfies the condition of Corollary, i.e., every permutation ω in S_{n} has at least one trible in $\mathcal{B}(M)$ consecutive. Rank 3 matroids are not always DJS in general.

DJS matroids

The matroid complexes $\Delta=\mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on $[n]$ is DJS if its bases $\mathcal{B}(M)$ satisfies the condition of Corollary, i.e., every permutation ω in \mathfrak{S}_{n} has at least one triple in $\mathcal{B}(M)$ consecutive.

Rank 3 matroids are not always DJS in general.

DJS matroids

The matroid complexes $\Delta=\mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on $[n]$ is DJS if its bases $\mathcal{B}(M)$ satisfies the condition of Corollary, i.e., every permutation ω in \mathfrak{S}_{n} has at least one triple in $\mathcal{B}(M)$ consecutive.

Rank 3 matroids are not always DJS in general.

DJS matroids

The matroid complexes $\Delta=\mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on $[n]$ is DJS if its bases $\mathcal{B}(M)$ satisfies the condition of Corollary, i.e., every permutation ω in \mathfrak{S}_{n} has at least one triple in $\mathcal{B}(M)$ consecutive.

Rank 3 matroids are not always DJS in general.

Proposition (K.)

Let M be a rank 3 matroid on the ground set [n] with no circuits of size 3. Let P_{1}, \ldots, P_{k} be distinct parallel classes which have more than one element and let N be the set of all elements which are not parallel with anything else. Then, M is DJS if and only if
$\left\lfloor\frac{\left|P_{1}\right|}{2}\right\rfloor+\cdots+\left\lfloor\frac{\left|P_{k}\right|}{2}\right\rfloor-k<|N|-2$.

DJS matroids

Definition

- A simplicial complex Δ on $[n]$ is shifted if, for any face of Δ, replacing any vertex i by a vertex $j(<i)$ gives another face in Δ.

DJS matroids

Definition

- A simplicial complex Δ on $[n]$ is shifted if, for any face of Δ, replacing any vertex i by a vertex $j(<i)$ gives another face in Δ.
- The Gale ordering on all k element subsets of $[n]$ is given by $\left\{x_{1}<\cdots<x_{k}\right\}$ is less than $\left\{y_{1}<\cdots<y_{k}\right\}$ if $x_{i} \leq y_{i}$ for all i and $\left\{x_{1}, \ldots, x_{k}\right\} \neq\left\{y_{1}, \ldots, y_{k}\right\}$.

DJS matroids

Definition

- A simplicial complex Δ on $[n]$ is shifted if, for any face of Δ, replacing any vertex i by a vertex $j(<i)$ gives another face in Δ.
- The Gale ordering on all k element subsets of $[n]$ is given by $\left\{x_{1}<\cdots<x_{k}\right\}$ is less than $\left\{y_{1}<\cdots<y_{k}\right\}$ if $x_{i} \leq y_{i}$ for all i and $\left\{x_{1}, \ldots, x_{k}\right\} \neq\left\{y_{1}, \ldots, y_{k}\right\}$.

Theorem (Klivans)

Let M be a matroid whose independent set complex is shifted. Then its bases $\mathcal{B}(M)$ is the principal order ideal of Gale ordering.

DJS matroids

Definition

- A simplicial complex Δ on $[n]$ is shifted if, for any face of Δ, replacing any vertex i by a vertex $j(<i)$ gives another face in Δ.
- The Gale ordering on all k element subsets of $[n]$ is given by $\left\{x_{1}<\cdots<x_{k}\right\}$ is less than $\left\{y_{1}<\cdots<y_{k}\right\}$ if $x_{i} \leq y_{i}$ for all i and $\left\{x_{1}, \ldots, x_{k}\right\} \neq\left\{y_{1}, \ldots, y_{k}\right\}$.

Theorem (Klivans)

Let M be a matroid whose independent set complex is shifted. Then its bases $\mathcal{B}(M)$ is the principal order ideal of Gale ordering.

Proposition (K.)

Let M be the rank 3 matroid on the ground set [n] corresponding to the principal order ideal generated by $\{a, b, n\}$. Then, M is DJS if and only if $\left\lfloor\frac{n-b}{2}\right\rfloor<a$.

Conjecture/Problem

Definition A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture/Problem

Definition

A coordinate subspace arrangement \mathcal{A}_{Δ}^{c} is a collection of coordinate subspaces $\left\{x_{i_{1}}=\cdots=x_{i_{k}}=0\right\}$ of \mathbb{R}^{n} for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ.

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres. Coniecture (W/alker) A complement of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture/Problem

Definition
 A coordinate subspace arrangement \mathcal{A}_{Δ}^{c} is a collection of coordinate subspaces $\left\{x_{i_{1}}=\cdots=x_{i_{k}}=0\right\}$ of \mathbb{R}^{n} for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ.

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture/Problem

Definition

A coordinate subspace arrangement \mathcal{A}_{Δ}^{c} is a collection of coordinate subspaces $\left\{x_{i_{1}}=\cdots=x_{i_{k}}=0\right\}$ of \mathbb{R}^{n} for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ.

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)

A complement of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture/Problem

Definition

A coordinate subspace arrangement \mathcal{A}_{Δ}^{c} is a collection of coordinate subspaces $\left\{x_{i_{1}}=\cdots=x_{i_{k}}=0\right\}$ of \mathbb{R}^{n} for all $\left\{i_{1}, \ldots, i_{k}\right\}$ complementary to facets of Δ.

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)

A complement of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Problem

Characterize the rank 3 matroids which are DJS.

