Shellable complexes and topology of diagonal arrangements

Sangwook Kim

University of Minnesota

FPSAC 2006

Sangwook Kim

University of Minnesota

FPSAC 2006 1 / 17

< D > < A > < B >

2 Some known special cases

3 Main theorem - Homotopy type of L_Δ for shellable Δ

4 $K(\pi, 1)$ examples from matroids

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 Main theorem - Homotopy type of L_{Δ} for shellable Δ

4 $K(\pi, 1)$ examples from matroids

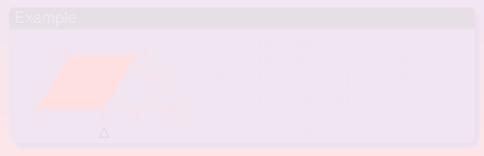
A (1) > A (2) > A

- 2 Some known special cases
- ${\color{black} 3}$ Main theorem Homotopy type of L_Δ for shellable Δ
- (4) $K(\pi, 1)$ examples from matroids

< 🗇 > < 🖻 > <

- 2 Some known special cases
- 3 Main theorem Homotopy type of L_{Δ} for shellable Δ
- 4 $K(\pi, 1)$ examples from matroids

a diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces A simplicial complex Δ on $[n] \iff \{x_{i_1} = \cdots = x_{i_k}\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ



wook	

A simplicial complex Δ on [n]

a diagonal arrangement A_{Δ} : collection of diagonal subspaces $\{x_{i_1} = \cdots = x_{i_k}\}$ of \mathbb{R}^n for all $\{i_1, \dots, i_k\}$ complementary to facets of Δ

< D > < P > < E > < E</p>

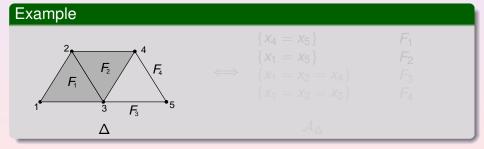
a diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces A simplicial complex Δ on $[n] \iff \{x_{i_1} = \cdots = x_{i_k}\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ

Sand	wook	Kim

< ロ > < 同 > < 三 >

A simplicial complex Δ on [*n*]

a diagonal arrangement
$$\mathcal{A}_{\Delta}$$
:
collection of diagonal subspaces
] $\iff \{x_{i_1} = \cdots = x_{i_k}\}$ of \mathbb{R}^n
for all $\{i_1, \dots, i_k\}$ complementary
to facets of Δ

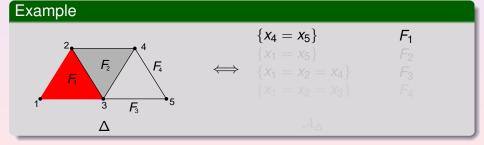


Sangwook Kim

1

A simplicial complex Δ on [n]

a diagonal arrangement
$$\mathcal{A}_{\Delta}$$
:
collection of diagonal subspaces
 $[n] \iff \{x_{i_1} = \cdots = x_{i_k}\} \text{ of } \mathbb{R}^n$
for all $\{i_1, \ldots, i_k\}$ complementary
to facets of Δ



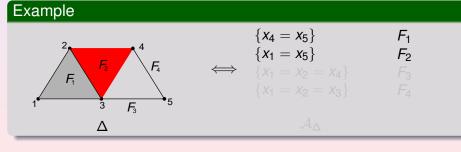
Sangwook Kim

University of Minnesota

1

A simplicial complex Δ on [n]

a diagonal arrangement
$$\mathcal{A}_{\Delta}$$
:
collection of diagonal subspaces
 $[x_{i_1} = \cdots = x_{i_k}]$ of \mathbb{R}^n
for all $\{i_1, \dots, i_k\}$ complementary
to facets of Δ



0		1/1
Sand	wook	ĸim

A simplicial complex Δ on [n]

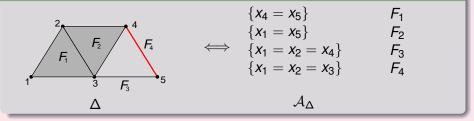
a diagonal arrangement
$$\mathcal{A}_{\Delta}$$
:
collection of diagonal subspaces
 $x_{i_1} = \cdots = x_{i_k}$ of \mathbb{R}^n
for all $\{i_1, \dots, i_k\}$ complementary
to facets of Δ

Example

< A > < B >

A simplicial complex Δ on [n]

a diagonal arrangement
$$\mathcal{A}_{\Delta}$$
:
collection of diagonal subspaces
 $x_{i_1} = \cdots = x_{i_k}$ of \mathbb{R}^n
for all $\{i_1, \dots, i_k\}$ complementary
to facets of Δ



<ロ> < 回> < 回> < 回> < 回><< 回>

Example

The Braid arrangement
$$\mathcal{B}_n = \bigcup_{i < j} \{x_i = x_j\}$$

$$\Delta_{n,n-2} = \{ \sigma \in [n] : |\sigma| \le n-2 \}$$

Example

Sangwook Kim

University of Minnesota

▶ < ≣ ▶ ঊ ৩৭৫ FPSAC 2006 4/17

<ロ>

Example

$$\Delta_{n,n-2} = \{ \sigma \subset [n] : |\sigma| \le n-2 \}$$

Example

Sangwook Kim

University of Minnesota

▶ < ≣ ▶ ঊ ৩৭৫ FPSAC 2006 4/17

<ロ> <回> <回> <三</p>

Example

The Braid arrangement
$$\mathcal{B}_n = \bigcup_{i < j} \{x_i = x_j\}$$

$$\Delta_{n,n-2} = \{ \sigma \subset [n] : |\sigma| \le n-2 \}$$

Example

The *k*-equal arrangement
$$A_{n,k} = \bigcup_{i_1 < \cdots < i_k} \{x_{i_1} = \cdots = x_{i_k}\}$$

$\Delta_{n,n-k} = \{ \sigma \subset [n] : |\sigma| \le n-k \}$

Sangwook Kim

University of Minnesota

FPSAC 2006 4 / 17

<ロ> <問> < 回> < 回> < 回> < 三</p>

Example

The Braid arrangement
$$\mathcal{B}_n = \bigcup_{i < j} \{x_i = x_j\}$$

$$\Delta_{n,n-2} = \{ \sigma \subset [n] : |\sigma| \le n-2 \}$$

Example

The *k*-equal arrangement
$$A_{n,k} = \bigcup_{i_1 < \cdots < i_k} \{x_{i_1} = \cdots = x_{i_k}\}$$

$$(1)$$

$$\Delta_{n,n-k} = \{ \sigma \subset [n] : |\sigma| \le n-k \}$$

Sangwook Kim

・ロト ・回ト ・ヨト ・ヨト

Definition

• The complement of an arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{M}_{\mathcal{A}} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$$

• The singularity link of a central arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{V}_{\mathcal{A}}^{\circ} = \mathbb{S}^{n-1} \cap \bigcup_{H \in \mathcal{A}} H$$

Fact

By Alexander duality,

$H^{i}(\mathcal{M}_{\mathcal{A}};\mathbb{F}) = H_{n-2-i}(\mathcal{V}_{\mathcal{A}}^{\circ};\mathbb{F})$

Sangwook Kim

University of Minnesota

FPSAC 2006 5 / 17

Definition

• The complement of an arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{M}_{\mathcal{A}} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$$

• The singularity link of a central arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{V}_{\mathcal{A}}^{\circ} = \mathbb{S}^{n-1} \cap \bigcup_{H \in \mathcal{A}} H$$

Fact

By Alexander duality,

$H^{i}(\mathcal{M}_{\mathcal{A}};\mathbb{F}) = H_{n-2-i}(\mathcal{V}_{\mathcal{A}}^{\circ};\mathbb{F})$

Sangwook Kim

Definition

• The complement of an arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{M}_{\mathcal{A}} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$$

• The singularity link of a central arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{V}_{\mathcal{A}}^{\circ} = \mathbb{S}^{n-1} \cap \bigcup_{H \in \mathcal{A}} H$$

Fact

By Alexander duality,

$H^{i}(\mathcal{M}_{\mathcal{A}};\mathbb{F}) = H_{n-2-i}(\mathcal{V}_{\mathcal{A}}^{\circ};\mathbb{F})$

Sangwook Kim

Definition

• The complement of an arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{M}_{\mathcal{A}} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$$

• The singularity link of a central arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{V}_{\mathcal{A}}^{\circ} = \mathbb{S}^{n-1} \cap \bigcup_{H \in \mathcal{A}} H$$

Fact

By Alexander duality,

$$H^{i}(\mathcal{M}_{\mathcal{A}};\mathbb{F}) = H_{n-2-i}(\mathcal{V}_{\mathcal{A}}^{\circ};\mathbb{F})$$

Sangwook Kim

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the *n*-th homotopy group being trivial and the *n*-th homotopy group isomorphic to π .

Fact

If the CW complex X is a $K(\pi, 1)$ space, then

 $\operatorname{Tor}_{n}^{\mathbb{Z}\pi}(\mathbb{Z},\mathbb{Z})=H_{n}(X;\mathbb{Z})$ and $\operatorname{Ext}_{\mathbb{Z}\pi}^{n}(\mathbb{Z},\mathbb{Z})=H^{n}(X;\mathbb{Z}).$

Theorem (Fadell - Neuwirth, 1962)

Let \mathcal{B}_n be the braid arrangement in \mathbb{C}^n . Then $\mathcal{M}_{\mathcal{B}_n}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the *n*-th homotopy group being trivial and the *n*-th homotopy group isomorphic to π .

Fact

If the CW complex X is a $K(\pi, 1)$ space, then

 $\operatorname{Tor}_{n}^{\mathbb{Z}\pi}(\mathbb{Z},\mathbb{Z})=H_{n}(X;\mathbb{Z})$ and $\operatorname{Ext}_{\mathbb{Z}\pi}^{n}(\mathbb{Z},\mathbb{Z})=H^{n}(X;\mathbb{Z}).$

Theorem (Fadell - Neuwirth, 1962)

Let \mathcal{B}_n be the braid arrangement in \mathbb{C}^n . Then $\mathcal{M}_{\mathcal{B}_n}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the *n*-th homotopy group being trivial and the *n*-th homotopy group isomorphic to π .

Fact

If the CW complex X is a $K(\pi, 1)$ space, then

$$\operatorname{Tor}_{n}^{\mathbb{Z}\pi}(\mathbb{Z},\mathbb{Z}) = H_{n}(X;\mathbb{Z}) \text{ and } \operatorname{Ext}_{\mathbb{Z}\pi}^{n}(\mathbb{Z},\mathbb{Z}) = H^{n}(X;\mathbb{Z}).$$

Theorem (Fadell - Neuwirth, 1962)

Let \mathcal{B}_n be the braid arrangement in \mathbb{C}^n . Then $\mathcal{M}_{\mathcal{B}_n}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the *n*-th homotopy group being trivial and the *n*-th homotopy group isomorphic to π .

Fact

If the CW complex X is a $K(\pi, 1)$ space, then

 $\operatorname{Tor}_{n}^{\mathbb{Z}\pi}(\mathbb{Z},\mathbb{Z}) = H_{n}(X;\mathbb{Z}) \text{ and } \operatorname{Ext}_{\mathbb{Z}\pi}^{n}(\mathbb{Z},\mathbb{Z}) = H^{n}(X;\mathbb{Z}).$

Theorem (Fadell - Neuwirth, 1962)

Let \mathcal{B}_n be the braid arrangement in \mathbb{C}^n . Then $\mathcal{M}_{\mathcal{B}_n}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the *n*-th homotopy group being trivial and the *n*-th homotopy group isomorphic to π .

Fact

If the CW complex X is a $K(\pi, 1)$ space, then

$$\operatorname{Tor}_{n}^{\mathbb{Z}\pi}(\mathbb{Z},\mathbb{Z}) = H_{n}(X;\mathbb{Z}) \text{ and } \operatorname{Ext}_{\mathbb{Z}\pi}^{n}(\mathbb{Z},\mathbb{Z}) = H^{n}(X;\mathbb{Z}).$$

Theorem (Fadell - Neuwirth, 1962)

Let \mathcal{B}_n be the braid arrangement in \mathbb{C}^n . Then $\mathcal{M}_{\mathcal{B}_n}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Let $A_{n,3}$ be the 3-equal arrangement in \mathbb{R}^n . Then $\mathcal{M}_{A_{n,k}}$ is a $K(\pi, 1)$ space.

Sangwook Kim

Definition

The intersection lattice L_A of a subspace arrangement A is the collection of all nonempty intersections of subspaces of A ordered by reverse inclusion.

Theorem (Goresky - Macpherson, 1988)

Let \mathcal{A} be a subspace arrangement in \mathbb{R}^n . Then

$$\widetilde{H}^{i}(\mathcal{M}_{\mathcal{A}}) \cong \bigoplus_{x \in L_{\mathcal{A}} - \{\hat{0}\}} \widetilde{H}_{codim(x) - 2 - i}(\hat{0}, x).$$

Theorem (Ziegler - Živaljević, 1993) For every central subspace arrangement \mathcal{A} in \mathbb{R}^n , $\mathcal{V}^o_A \simeq \quad \bigvee \quad (\Delta(\hat{0}, x) * \mathbb{S}^{\dim(x)-1})$

Definition

The intersection lattice L_A of a subspace arrangement A is the collection of all nonempty intersections of subspaces of A ordered by reverse inclusion.

Theorem (Goresky - Macpherson, 1988)

Let \mathcal{A} be a subspace arrangement in \mathbb{R}^n . Then

$$\widetilde{H}^{i}(\mathcal{M}_{\mathcal{A}}) \cong \bigoplus_{x \in L_{\mathcal{A}} - \{\hat{0}\}} \widetilde{H}_{codim(x)-2-i}(\hat{0}, x).$$

Theorem (Ziegler - Živaljević, 1993)

For every central subspace arrangement \mathcal{A} in \mathbb{R}^n ,

$$\mathcal{V}^{\circ}_{\mathcal{A}} \simeq \bigvee_{x \in \mathcal{L}_{\mathcal{A}} - \{\hat{0}\}} (\Delta(\hat{0}, x) * \mathbb{S}^{\dim(x)-1}).$$

Sangwook Kim

Definition

The intersection lattice L_A of a subspace arrangement A is the collection of all nonempty intersections of subspaces of A ordered by reverse inclusion.

Theorem (Goresky - Macpherson, 1988)

Let \mathcal{A} be a subspace arrangement in \mathbb{R}^n . Then

$$\widetilde{H}^{i}(\mathcal{M}_{\mathcal{A}}) \cong \bigoplus_{x \in L_{\mathcal{A}} - \{\hat{0}\}} \widetilde{H}_{codim(x)-2-i}(\hat{0}, x).$$

Theorem (Ziegler - Živaljević, 1993)

For every central subspace arrangement \mathcal{A} in \mathbb{R}^n ,

$$\mathcal{V}^{\circ}_{\mathcal{A}} \simeq \bigvee_{x \in \mathcal{L}_{\mathcal{A}} - \{\hat{0}\}} (\Delta(\hat{0}, x) * \mathbb{S}^{\dim(x)-1}).$$

Sangwook Kim

Definition

The intersection lattice L_A of a subspace arrangement A is the collection of all nonempty intersections of subspaces of A ordered by reverse inclusion.

Theorem (Goresky - Macpherson, 1988)

Let \mathcal{A} be a subspace arrangement in \mathbb{R}^n . Then

$$\widetilde{H}^{i}(\mathcal{M}_{\mathcal{A}}) \cong \bigoplus_{x \in L_{\mathcal{A}} - \{\hat{0}\}} \widetilde{H}_{codim(x)-2-i}(\hat{0}, x).$$

Theorem (Ziegler - Živaljević, 1993)

For every central subspace arrangement \mathcal{A} in \mathbb{R}^n ,

$$\mathcal{V}^{\circ}_{\mathcal{A}} \simeq \bigvee_{x \in L_{\mathcal{A}} - \{\hat{0}\}} (\Delta(\hat{0}, x) * \mathbb{S}^{\dim(x)-1}).$$

Sangwook Kim

Theorem (Björner - Welker, 1995)

The intersection lattice $L_{A_{n,k}}$ for the k-equal arrangement $A_{n,k}$ has the homotopy type of a wedge of spheres.

 $\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}}$, and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on [n] that satisfies some conditions. Then the intersection lattice for \mathcal{A}_{Δ} is EL-shellable, and hence has the homotopy type of a wedge of spheres.

Δ in Kozlov's theorem is shellable

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Björner - Welker, 1995)

The intersection lattice $L_{A_{n,k}}$ for the *k*-equal arrangement $A_{n,k}$ has the homotopy type of a wedge of spheres.

 $\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}}$, and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on [n] that satisfies some conditions. Then the intersection lattice for \mathcal{A}_{Δ} is EL-shellable, and hence has the homotopy type of a wedge of spheres.

Δ in Kozlov's theorem is shellable

Theorem (Björner - Welker, 1995)

The intersection lattice $L_{A_{n,k}}$ for the *k*-equal arrangement $A_{n,k}$ has the homotopy type of a wedge of spheres.

 $\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}}$, and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on [n] that satisfies some conditions. Then the intersection lattice for \mathcal{A}_{Δ} is EL-shellable, and hence has the homotopy type of a wedge of spheres.

∆ in Kozlov's theorem is shellable

Theorem (Björner - Welker, 1995)

The intersection lattice $L_{A_{n,k}}$ for the *k*-equal arrangement $A_{n,k}$ has the homotopy type of a wedge of spheres.

 $\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}}$, and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on [n] that satisfies some conditions. Then the intersection lattice for A_{Δ} is EL-shellable, and hence has the homotopy type of a wedge of spheres.

1 in Kozlov's theorem is shellable

<ロ> <同> <同> < 目> < 目> < 三> 三

Theorem (Björner - Welker, 1995)

The intersection lattice $L_{A_{n,k}}$ for the k-equal arrangement $A_{n,k}$ has the homotopy type of a wedge of spheres.

 $\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}}$, and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on [n] that satisfies some conditions. Then the intersection lattice for A_{Δ} is EL-shellable, and hence has the homotopy type of a wedge of spheres.

 Δ in Kozlov's theorem is shellable.

(□) < □) < □) < □) < □)

Theorem (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n-3$. Then the intersection lattice L_{Δ} of A_{Δ} is homotopy equivalent to a wedge of spheres.

<ロ> < □> < □> < □> < □> <

Theorem (K.)

Let Δ be a shellable simplicial complex on [n] with dim $\Delta \leq n-3$. Let σ be the intersection of all facets and $\bar{\sigma}$ its complement. Then the intersection lattice L_{Δ} is homotopy equivalent to a wedge of spheres, consisting of (p-1)! copies of spheres of dimension

$$\delta(D) = p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| + |\bar{\sigma}| - 3$$

for each (unordered) shelling-trapped decomposition $D = \{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of $\bar{\sigma}$.

Moreover, if one removes the $\delta(D)$ -simplex corresponding to a saturated chain $\overline{C}_{D,\omega}$ for each shelling-trapped decomposition $D = \{(\overline{\sigma}_1, F_{i_1}), \dots, (\overline{\sigma}_p, F_{i_p})\}$ of $\overline{\sigma}$ and a permutation ω of [p - 1], then the remaining simplicial complex \widehat{L}_{Δ} is contractible.

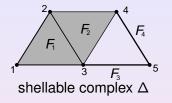
Theorem (K.)

Let Δ be a shellable simplicial complex on [n] with dim $\Delta \leq n-3$. Let σ be the intersection of all facets and $\bar{\sigma}$ its complement. Then the intersection lattice L_{Δ} is homotopy equivalent to a wedge of spheres, consisting of (p-1)! copies of spheres of dimension

$$\delta(D) = p(2-n) + \sum_{j=1}^{p} |F_{i_j}| + |\bar{\sigma}| - 3$$

for each (unordered) shelling-trapped decomposition $D = \{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of $\bar{\sigma}$. Moreover, if one removes the $\delta(D)$ -simplex corresponding to a saturated chain $\overline{C}_{D,\omega}$ for each shelling-trapped decomposition $D = \{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of $\bar{\sigma}$ and a permutation ω of [p - 1], then the remaining simplicial complex \widehat{L}_Δ is contractible.

(日)



$$\{ \begin{aligned} & \{x_4 = x_5\} \\ & \{x_1 = x_5\} \\ & \{x_1 = x_2 = x_4\} \\ & \{x_1 = x_2 = x_3\} \end{aligned}$$
 diagonal arrangement \mathcal{A}_{Δ}

12345

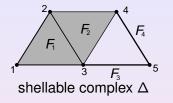
intersection lattice L_{Δ} of \mathcal{A}_{Δ}

order complex of \overline{L}_{Δ}

< □ > < □ > < □ > < □ > < □ > < □ >

Sangwook Kim

University of Minnesota



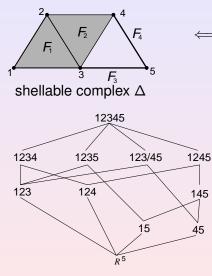
$$\{x_4 = x_5\} \\ \{x_1 = x_5\} \\ \{x_1 = x_2 = x_4\} \\ \{x_1 = x_2 = x_3\}$$

diagonal arrangement A_{Δ}

Sangwook Kim

University of Minnesota

FPSAC 2006 11/17

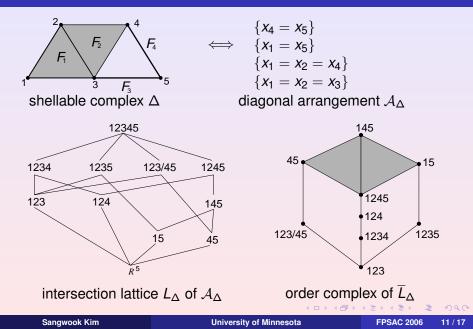


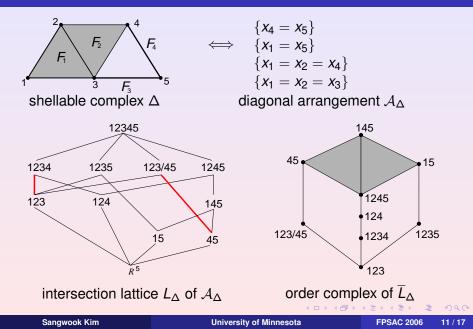
 $\{x_4 = x_5\} \\ \iff \{x_1 = x_5\}$ $\{x_1 = x_2 = x_4\}$ $\{x_1 = x_2 = x_3\}$

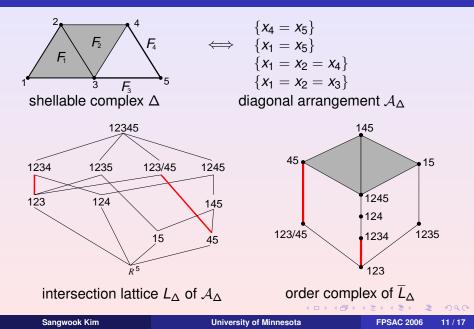
diagonal arrangement \mathcal{A}_{Δ}

intersection lattice L_{Δ} of \mathcal{A}_{Δ}

FPSAC 2006 11 / 17







Corollary (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n-3$. The singularity link of A_{Δ} has the homotopy type of a wedge of spheres, consisting of p! spheres of dimension $n + p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| - 2$ for each shelling-trapped decomposition $\{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of [n].

Theorem (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n - 3$. Then dim_F $H_i(\mathcal{V}^{\circ}_{\mathcal{A}_{\Delta}}; \mathbb{F})$ is the number of ordered shelling-trapped decompositions $((\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p}))$ of [n] with $i = n + p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| - 2$.

(1)

Corollary (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n-3$. The singularity link of A_{Δ} has the homotopy type of a wedge of spheres, consisting of p! spheres of dimension $n + p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| - 2$ for each shelling-trapped decomposition $\{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of [n].

Theorem (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n - 3$. Then dim_{\mathbb{F}} $H_i(\mathcal{V}^{\circ}_{\mathcal{A}_{\Delta}}; \mathbb{F})$ is the number of ordered shelling-trapped decompositions $((\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p}))$ of [n] with $i = n + p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| - 2$.

<ロ> <同> <同> < 同> < 同> < 同> < 三>

Corollary (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n-3$. The singularity link of A_{Δ} has the homotopy type of a wedge of spheres, consisting of p! spheres of dimension $n + p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| - 2$ for each shelling-trapped decomposition $\{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of [n].

Theorem (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n-3$. Then dim_F $H_i(\mathcal{V}^{\circ}_{\mathcal{A}_{\Delta}}; \mathbb{F})$ is the number of ordered shelling-trapped decompositions $((\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p}))$ of [n] with $i = n + p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| - 2$.

・ロン ・聞 と ・ ヨン ・ ヨン … ヨ

Lemma

For the upper interval, there is a simplicial complex whose intersection lattice is isomorphic to $[U_{\overline{\sigma}}, \hat{1}]$. If F is the last facet in the shelling order, the simplicial complex which corresponds to $[U_{\overline{F}}, \hat{1}]$ is shellable.

Proof sketch of main theorem

If *F* is the last facet in the shelling of Δ , one can consider the following decomposition of $\widehat{\Delta}(\overline{L})$:

$$\widehat{\Delta}(\overline{L}) = \widehat{\Delta}(\overline{L} - \{H\}) \cup \widehat{\Delta}(\overline{L}_{\geq H}),$$

where $\widehat{\Delta}(\overline{L} - \{H\})$ is obtained by removing all chains $\overline{C}_{D,\omega}$ not containing H from $\overline{L} - \{H\}$ and $\widehat{\Delta}(\overline{L}_{\geq H})$ is obtained by removing $\overline{C}_{D,\omega}$ and $\overline{C}_{D,\omega} - H$ from $\overline{L}_{\geq H}$ for all $\overline{C}_{D,\omega}$ containing H. Then one can show that all three spaces $\widehat{\Delta}(\overline{L} - \{H\})$, $\widehat{\Delta}(\overline{L}_{\geq H})$ and their intersection are contractible, and hence $\widehat{\Delta}(\overline{L})$ is also contractible.

Sangwook Kim

University of Minnesota

Lemma

For the upper interval, there is a simplicial complex whose intersection lattice is isomorphic to $[U_{\bar{\sigma}}, \hat{1}]$. If *F* is the last facet in the shelling order, the simplicial complex which corresponds to $[U_{\overline{F}}, \hat{1}]$ is shellable.

Proof sketch of main theorem

If *F* is the last facet in the shelling of Δ , one can consider the following decomposition of $\widehat{\Delta}(\overline{L})$:

$$\widehat{\Delta}(\overline{L}) = \widehat{\Delta}(\overline{L} - \{H\}) \cup \widehat{\Delta}(\overline{L}_{\geq H}),$$

where $\widehat{\Delta}(\overline{L} - \{H\})$ is obtained by removing all chains $\overline{C}_{D,\omega}$ not containing H from $\overline{L} - \{H\}$ and $\widehat{\Delta}(\overline{L}_{\geq H})$ is obtained by removing $\overline{C}_{D,\omega}$ and $\overline{C}_{D,\omega} - H$ from $\overline{L}_{\geq H}$ for all $\overline{C}_{D,\omega}$ containing H. Then one can show that all three spaces $\widehat{\Delta}(\overline{L} - \{H\})$, $\widehat{\Delta}(\overline{L}_{\geq H})$ and their intersection are contractible, and hence $\widehat{\Delta}(\overline{L})$ is also contractible.

Sangwook Kim

University of Minnesota

Lemma

For the upper interval, there is a simplicial complex whose intersection lattice is isomorphic to $[U_{\bar{\sigma}}, \hat{1}]$. If *F* is the last facet in the shelling order, the simplicial complex which corresponds to $[U_{\overline{F}}, \hat{1}]$ is shellable.

Proof sketch of main theorem

If *F* is the last facet in the shelling of Δ , one can consider the following decomposition of $\widehat{\Delta}(\overline{L})$:

$$\widehat{\Delta}(\overline{L}) = \widehat{\Delta}(\overline{L} - \{H\}) \cup \widehat{\Delta}(\overline{L}_{\geq H}),$$

where $\widehat{\Delta}(\overline{L} - \{H\})$ is obtained by removing all chains $\overline{C}_{D,\omega}$ not containing H from $\overline{L} - \{H\}$ and $\widehat{\Delta}(\overline{L}_{\geq H})$ is obtained by removing $\overline{C}_{D,\omega}$ and $\overline{C}_{D,\omega} - H$ from $\overline{L}_{\geq H}$ for all $\overline{C}_{D,\omega}$ containing H. Then one can show that all three spaces $\widehat{\Delta}(\overline{L} - \{H\})$, $\widehat{\Delta}(\overline{L}_{\geq H})$ and their intersection are contractible, and hence $\widehat{\Delta}(\overline{L})$ is also contractible.

Sangwook Kim

Diagonal arrangement A such that M_A is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let \mathcal{H} be a simplicial real hyperplane arrangement in \mathbb{R}^n . Let \mathcal{A} be any arrangement of codimension-2 intersection subspaces in \mathcal{H} which intersects every chamber in a codimension-2 subcomplex. Then $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$.

Corollary (K.)

Let \mathcal{A} be a subarrangement of 3-equal arrangement of \mathbb{R}^n so that

$$\mathcal{A} = \left\{ \{ x_i = x_j = x_k \} \mid \{i, j, k\} \in \mathcal{T}_{\mathcal{A}} \right\},\$$

for some collection T_A of 3-element subsets of [n]. Then A satisfies the hypothesis of DJS's theorem (and hence \mathcal{M}_A is $K(\pi, 1)$) if and only if every permutation ω in \mathfrak{S}_n has at least one triple in T_A consecutive.

Sangwook Kim

Diagonal arrangement A such that M_A is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let \mathcal{H} be a simplicial real hyperplane arrangement in \mathbb{R}^n . Let \mathcal{A} be any arrangement of codimension-2 intersection subspaces in \mathcal{H} which intersects every chamber in a codimension-2 subcomplex. Then $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$.

Corollary (K.)

Let $\mathcal A$ be a subarrangement of 3-equal arrangement of $\mathbb R^n$ so that

$$\mathcal{A} = \left\{ \{ x_i = x_j = x_k \} \mid \{i, j, k\} \in \mathcal{T}_{\mathcal{A}} \right\},\$$

for some collection T_A of 3-element subsets of [n]. Then A satisfies the hypothesis of DJS's theorem (and hence \mathcal{M}_A is $K(\pi, 1)$) if and only if every permutation ω in \mathfrak{S}_n has at least one triple in T_A consecutive.

Diagonal arrangement A such that M_A is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let \mathcal{H} be a simplicial real hyperplane arrangement in \mathbb{R}^n . Let \mathcal{A} be any arrangement of codimension-2 intersection subspaces in \mathcal{H} which intersects every chamber in a codimension-2 subcomplex. Then $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$.

Corollary (K.)

Let \mathcal{A} be a subarrangement of 3-equal arrangement of \mathbb{R}^n so that

$$\mathcal{A} = \left\{ \{ x_i = x_j = x_k \} \mid \{i, j, k\} \in \mathcal{T}_{\mathcal{A}} \right\},\$$

for some collection T_A of 3-element subsets of [n]. Then A satisfies the hypothesis of DJS's theorem (and hence \mathcal{M}_A is $K(\pi, 1)$) if and only if every permutation ω in \mathfrak{S}_n has at least one triple in T_A consecutive.

・ロン ・聞 と ・ ヨン ・ ヨン … ヨ

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid *M* on [*n*] is DJS if its bases $\mathcal{B}(M)$ satisfies the condition of Corollary, i.e., every permutation ω in \mathfrak{S}_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Rank 3 matroids are not always DJS in general.

Proposition (K.)

Let *M* be a rank 3 matroid on the ground set [*n*] with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let *N* be the set of all elements which are not parallel with anything else. Then, *M* is DJS if and only if $\lfloor \frac{|P_1|}{2} \rfloor + \cdots + \lfloor \frac{|P_k|}{2} \rfloor - k < |N| - 2.$

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on [n] is DJS if its bases $\mathcal{B}(M)$ satisfies the condition of Corollary, i.e., every permutation ω in \mathfrak{S}_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Rank 3 matroids are not always DJS in general.

Proposition (K.)

Let *M* be a rank 3 matroid on the ground set [*n*] with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let *N* be the set of all elements which are not parallel with anything else. Then, *M* is DJS if and only if $\lfloor \frac{|P_1|}{2} \rfloor + \cdots + \lfloor \frac{|P_k|}{2} \rfloor - k < |N| - 2.$

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid *M* on [*n*] is DJS if its bases $\mathcal{B}(M)$ satisfies the condition of Corollary, i.e., every permutation ω in \mathfrak{S}_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Rank 3 matroids are not always DJS in general.

Proposition (K.)

Let *M* be a rank 3 matroid on the ground set [*n*] with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let *N* be the set of all elements which are not parallel with anything else. Then, *M* is DJS if and only if $\lfloor \frac{|P_1|}{2} \rfloor + \cdots + \lfloor \frac{|P_k|}{2} \rfloor - k < |N| - 2.$

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid *M* on [*n*] is DJS if its bases $\mathcal{B}(M)$ satisfies the condition of Corollary, i.e., every permutation ω in \mathfrak{S}_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Rank 3 matroids are not always DJS in general.

Proposition (K.)

Let *M* be a rank 3 matroid on the ground set [*n*] with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let *N* be the set of all elements which are not parallel with anything else. Then, *M* is DJS if and only if

$$\lfloor \frac{|P_1|}{2} \rfloor + \cdots + \lfloor \frac{|P_k|}{2} \rfloor - k < |N| - 2.$$

Definition

A simplicial complex Δ on [n] is shifted if, for any face of Δ, replacing any vertex i by a vertex j(< i) gives another face in Δ.

The Gale ordering on all *k* element subsets of [*n*] is given by $\{x_1 < \cdots < x_k\}$ is less than $\{y_1 < \cdots < y_k\}$ if $x_i \le y_i$ for all *i* and $\{x_1, \ldots, x_k\} \ne \{y_1, \ldots, y_k\}$.

Theorem (Klivans)

Let M be a matroid whose independent set complex is shifted. Then its bases $\mathcal{B}(M)$ is the principal order ideal of Gale ordering.

Proposition (K.)

Definition

- A simplicial complex Δ on [n] is shifted if, for any face of Δ, replacing any vertex i by a vertex j(< i) gives another face in Δ.
- The Gale ordering on all k element subsets of [n] is given by $\{x_1 < \cdots < x_k\}$ is less than $\{y_1 < \cdots < y_k\}$ if $x_i \le y_i$ for all i and $\{x_1, \ldots, x_k\} \ne \{y_1, \ldots, y_k\}$.

Theorem (Klivans)

Let M be a matroid whose independent set complex is shifted. Then its bases $\mathcal{B}(M)$ is the principal order ideal of Gale ordering.

Proposition (K.)

Definition

A simplicial complex Δ on [n] is shifted if, for any face of Δ, replacing any vertex i by a vertex j(< i) gives another face in Δ.

• The Gale ordering on all k element subsets of [n] is given by $\{x_1 < \cdots < x_k\}$ is less than $\{y_1 < \cdots < y_k\}$ if $x_i \le y_i$ for all i and $\{x_1, \ldots, x_k\} \ne \{y_1, \ldots, y_k\}$.

Theorem (Klivans)

Let M be a matroid whose independent set complex is shifted. Then its bases $\mathcal{B}(M)$ is the principal order ideal of Gale ordering.

Proposition (K.)

Definition

A simplicial complex Δ on [n] is shifted if, for any face of Δ, replacing any vertex i by a vertex j(< i) gives another face in Δ.

• The Gale ordering on all k element subsets of [n] is given by $\{x_1 < \cdots < x_k\}$ is less than $\{y_1 < \cdots < y_k\}$ if $x_i \le y_i$ for all i and $\{x_1, \ldots, x_k\} \ne \{y_1, \ldots, y_k\}$.

Theorem (Klivans)

Let M be a matroid whose independent set complex is shifted. Then its bases $\mathcal{B}(M)$ is the principal order ideal of Gale ordering.

Proposition (K.)

Definition

A coordinate subspace arrangement \mathcal{A}^{c}_{Δ} is a collection of coordinate subspaces $\{x_{i_{1}} = \cdots = x_{i_{k}} = 0\}$ of \mathbb{R}^{n} for all $\{i_{1}, \ldots, i_{k}\}$ complementary to facets of Δ .

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)

A complement of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Problem

Characterize the rank 3 matroids which are DJS.

Sangwook Kim

University of Minnesota

Definition

A coordinate subspace arrangement \mathcal{A}^{c}_{Δ} is a collection of coordinate subspaces $\{x_{i_1} = \cdots = x_{i_k} = 0\}$ of \mathbb{R}^{n} for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ .

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)

A complement of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Problem

Characterize the rank 3 matroids which are DJS.

Sangwook Kim

University of Minnesota

Definition

A coordinate subspace arrangement \mathcal{A}^{c}_{Δ} is a collection of coordinate subspaces $\{x_{i_1} = \cdots = x_{i_k} = 0\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ .

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)

A complement of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Problem

Characterize the rank 3 matroids which are DJS.

Sangwook Kim

University of Minnesota

Definition

A coordinate subspace arrangement \mathcal{A}^{c}_{Δ} is a collection of coordinate subspaces $\{x_{i_1} = \cdots = x_{i_k} = 0\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ .

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)

A complement of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Problem

Characterize the rank 3 matroids which are DJS.

Sangwook Kim

University of Minnesota

Definition

A coordinate subspace arrangement \mathcal{A}^{c}_{Δ} is a collection of coordinate subspaces $\{x_{i_1} = \cdots = x_{i_k} = 0\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ .

A singularity link of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)

A complement of a coordinate subspace arrangement for a shellable complex is homotopy equivalent to a wedge of spheres.

Problem

Characterize the rank 3 matroids which are DJS.

Sangwook Kim

University of Minnesota