Ehrhart polynomials of lattice-face polytopes

by Fu Liu
Massachusetts Institute of Technology

June 22, 2006

Preliminaries

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space \mathbb{R}^{d} is the convex hull of finitely many points $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$. In other words,

$$
P=\operatorname{conv}(V)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: \quad \text { all } \lambda_{i} \geq 0, \text { and } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1\right\} .
$$

Preliminaries

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space \mathbb{R}^{d} is the convex hull of finitely many points $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$. In other words,

$$
P=\operatorname{conv}(V)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: \quad \text { all } \lambda_{i} \geq 0, \text { and } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1\right\} .
$$

A d-dimensional lattice $\mathbb{Z}^{d}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \mid \forall x_{i} \in \mathbb{Z}\right\}$ is the collection of all points with integer coordinates in \mathbb{R}^{d}. Any point in a lattice is called a lattice point.

Preliminaries

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space \mathbb{R}^{d} is the convex hull of finitely many points $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$. In other words,

$$
P=\operatorname{conv}(V)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: \quad \text { all } \lambda_{i} \geq 0, \text { and } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1\right\} .
$$

A d-dimensional lattice $\mathbb{Z}^{d}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \mid \forall x_{i} \in \mathbb{Z}\right\}$ is the collection of all points with integer coordinates in \mathbb{R}^{d}. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope, whose vertices are all lattice points.

Preliminaries

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space \mathbb{R}^{d} is the convex hull of finitely many points $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$. In other words,

$$
P=\operatorname{conv}(V)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: \quad \text { all } \lambda_{i} \geq 0, \text { and } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1\right\} .
$$

A d-dimensional lattice $\mathbb{Z}^{d}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \mid \forall x_{i} \in \mathbb{Z}\right\}$ is the collection of all points with integer coordinates in \mathbb{R}^{d}. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope, whose vertices are all lattice points.
For any region $R \subset \mathbb{R}^{d}$, we denote by $\mathcal{L}(R):=R \cap \mathbb{Z}^{d}$ the set of lattice points in R.

Preliminaries

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space \mathbb{R}^{d} is the convex hull of finitely many points $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$. In other words,

$$
P=\operatorname{conv}(V)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: \quad \text { all } \lambda_{i} \geq 0, \text { and } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1\right\} .
$$

A d-dimensional lattice $\mathbb{Z}^{d}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \mid \forall x_{i} \in \mathbb{Z}\right\}$ is the collection of all points with integer coordinates in \mathbb{R}^{d}. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope, whose vertices are all lattice points.
For any region $R \subset \mathbb{R}^{d}$, we denote by $\mathcal{L}(R):=R \cap \mathbb{Z}^{d}$ the set of lattice points in R.
Definition 2. For any polytope $P \subset \mathbb{R}^{d}$ and some positive integer $m \in \mathbb{N}$, the m th dilated polytope of P is $m P=\{m \mathbf{x}: \mathbf{x} \in P\}$. We denote by

$$
i(m, P)=|\mathcal{L}(m P)|
$$

the number of lattice points in $m P$.

Preliminaries

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space \mathbb{R}^{d} is the convex hull of finitely many points $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$. In other words,

$$
P=\operatorname{conv}(V)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}: \quad \text { all } \lambda_{i} \geq 0, \text { and } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1\right\} .
$$

A d-dimensional lattice $\mathbb{Z}^{d}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \mid \forall x_{i} \in \mathbb{Z}\right\}$ is the collection of all points with integer coordinates in \mathbb{R}^{d}. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope, whose vertices are all lattice points.
For any region $R \subset \mathbb{R}^{d}$, we denote by $\mathcal{L}(R):=R \cap \mathbb{Z}^{d}$ the set of lattice points in R.
Definition 2. For any polytope $P \subset \mathbb{R}^{d}$ and some positive integer $m \in \mathbb{N}$, the m th dilated polytope of P is $m P=\{m \mathbf{x}: \mathbf{x} \in P\}$. We denote by

$$
i(m, P)=|\mathcal{L}(m P)|
$$

the number of lattice points in $m P$.
Example: When $d=1, P$ is an interval $[a, b]$, where $a, b \in \mathbb{Z}$. Then $m P=[m a, m b]$ and

$$
i(P, m)=(b-a) m+1
$$

Theorem of Ehrhart

Theorem 3. (Ehrhart) Let P be a d-dimensional integral polytope, then $i(P, m)$ is a polynomial in m of degree d.

Therefore, we call $i(P, m)$ the Ehrhart polynomial of P.

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m) ?$

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m) ?$
ThIT The leading coefficient of $i(P, m)$ is the volume $\operatorname{Vol}(P)$ of P.

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m) ?$
The leading coefficient of $i(P, m)$ is the volume $\operatorname{Vol}(P)$ of P.
Inm second coefficient equals $1 / 2$ times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m) ?$
Thut The leading coefficient of $i(P, m)$ is the volume $\operatorname{Vol}(P)$ of P.
IIII The second coefficient equals $1 / 2$ times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.

IIIL The constant term of $i(P, m)$ is always 1 .

Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial $i(P, m) ?$
Num leading coefficient of $i(P, m)$ is the volume $\operatorname{Vol}(P)$ of P.
InIm second coefficient equals $1 / 2$ times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.

The constant term of $i(P, m)$ is always 1 .
IIII No results for other coefficients for general polytopes.

Motivation

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.
Recall that given $T=\left\{t_{1}, \ldots, t_{n}\right\}_{<}$a linearly ordered set, a d-dimensional cyclic polytope $C_{d}(T)=$ $C_{d}\left(t_{1}, \ldots, t_{n}\right)$ is the convex hull conv $\left\{v_{d}\left(t_{1}\right), v_{d}\left(t_{2}\right), \ldots, v_{d}\left(t_{n}\right)\right\}$ of $n>d$ distinct points $\nu_{d}\left(t_{i}\right), 1 \leq$ $i \leq n$, on the moment curve.

The moment curve in \mathbb{R}^{d} is defined by

$$
\nu_{d}: \mathbb{R} \rightarrow \mathbb{R}^{d}, t \mapsto \nu_{d}(t)=\left(\begin{array}{c}
t \\
t^{2} \\
\vdots \\
t^{d}
\end{array}\right)
$$

Motivation

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.
Recall that given $T=\left\{t_{1}, \ldots, t_{n}\right\}_{<}$a linearly ordered set, a d-dimensional cyclic polytope $C_{d}(T)=$ $C_{d}\left(t_{1}, \ldots, t_{n}\right)$ is the convex hull conv $\left\{v_{d}\left(t_{1}\right), v_{d}\left(t_{2}\right), \ldots, v_{d}\left(t_{n}\right)\right\}$ of $n>d$ distinct points $\nu_{d}\left(t_{i}\right), 1 \leq$ $i \leq n$, on the moment curve.

The moment curve in \mathbb{R}^{d} is defined by

$$
\nu_{d}: \mathbb{R} \rightarrow \mathbb{R}^{d}, t \mapsto \nu_{d}(t)=\left(\begin{array}{c}
t \\
t^{2} \\
\vdots \\
t^{d}
\end{array}\right)
$$

Example: $T=\{1,2,3,4\}, d=3$:
$C_{d}(T)$ is the convex polytope whose vertices are $\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)$.

Theorem 4. For any d-dimensional integral cyclic polytope $C_{d}(T)$,

$$
i\left(C_{d}(T), m\right)=\operatorname{Vol}\left(m C_{d}(T)\right)+i\left(C_{d-1}(T), m\right)
$$

Hence,

$$
\begin{aligned}
i\left(C_{d}(T), m\right) & =\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(m C_{k}(T)\right) \\
& =\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(C_{k}(T)\right) m^{k}
\end{aligned}
$$

where $\operatorname{Vol}_{k}\left(m C_{k}(T)\right)$ is the volume of $m C_{k}(T)$ in k-dimensional space, and by convention we let $\operatorname{Vol}_{0}\left(m C_{0}(T)\right)=1$.

$$
\text { Example: } T=\{1,2,3,4\}, d=3 \text { : }
$$

Example: $T=\{1,2,3,4\}, d=3$:
ㅔㅓ $C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+4 m^{2}+$ $3 m+1$.

Example: $T=\{1,2,3,4\}, d=3$:
$\operatorname{cIIt} C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+4 m^{2}+$ $3 m+1$.
IIt $C_{d-1}(T)=\operatorname{conv}\left\{\binom{1}{1},\binom{2}{4},\binom{3}{9},\binom{4}{16}\right\}: i\left(C_{d-1}(T), m\right)=4 m^{2}+3 m+1$.

Example: $T=\{1,2,3,4\}, d=3$:
$C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+4 m^{2}+$ $3 m+1$.
) $C_{d-1}(T)=\operatorname{conv}\left\{\binom{1}{1},\binom{2}{4},\binom{3}{9},\binom{4}{16}\right\}: i\left(C_{d-1}(T), m\right)=4 m^{2}+3 m+1$.
)| $C_{d-2}(T)=\operatorname{conv}\{1,2,3,4\}=[1,4]: i\left(C_{d-2}(T), m\right)=3 m+1$.

Example: $T=\{1,2,3,4\}, d=3$:
$C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+4 m^{2}+$ $3 m+1$.
) $C_{d-1}(T)=\operatorname{conv}\left\{\binom{1}{1},\binom{2}{4},\binom{3}{9},\binom{4}{16}\right\}: i\left(C_{d-1}(T), m\right)=4 m^{2}+3 m+1$.
"||l| $C_{d-2}(T)=\operatorname{conv}\{1,2,3,4\}=[1,4]: i\left(C_{d-2}(T), m\right)=3 m+1$.
${ }^{\text {InIL }} C_{d-3}(T)=\mathbb{R}^{0}: i\left(C_{d-3}(T), m\right)=1$.

Example: $T=\{1,2,3,4\}, d=3$:
? $C_{d}(T)=\operatorname{conv}\left\{\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ 8\end{array}\right),\left(\begin{array}{c}3 \\ 9 \\ 27\end{array}\right),\left(\begin{array}{c}4 \\ 16 \\ 64\end{array}\right)\right\}: i\left(C_{d}(T), m\right)=2 m^{3}+4 m^{2}+$ $3 m+1$.
) $C_{d-1}(T)=\operatorname{conv}\left\{\binom{1}{1},\binom{2}{4},\binom{3}{9},\binom{4}{16}\right\}: i\left(C_{d-1}(T), m\right)=4 m^{2}+3 m+1$.
"IIt $C_{d-2}(T)=\operatorname{conv}\{1,2,3,4\}=[1,4]: i\left(C_{d-2}(T), m\right)=3 m+1$.
"Int $C_{d-3}(T)=\mathbb{R}^{0}: i\left(C_{d-3}(T), m\right)=1$.
, $2,4,3$ and 1 are the volumes of $C_{3}(T), C_{2}(T), C_{1}(T)$ and $C_{0}(T)$, respectively.

Note that if we define $\pi^{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-k}$ to be the map which ignores the last k coordinates of a point, then $\pi^{k}\left(C_{d}(T)\right)=C_{d-k}(T)$. So when $P=C_{d}(T)$ is an integral cyclic polytope, we have that

$$
\begin{equation*}
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k} \tag{5}
\end{equation*}
$$

where $\operatorname{Vol}_{k}(P)$ is the volume of P in k-dimensional Euclidean space \mathbb{R}^{k}.

Note that if we define $\pi^{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-k}$ to be the map which ignores the last k coordinates of a point, then $\pi^{k}\left(C_{d}(T)\right)=C_{d-k}(T)$. So when $P=C_{d}(T)$ is an integral cyclic polytope, we have that

$$
\begin{equation*}
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k} \tag{5}
\end{equation*}
$$

where $\operatorname{Vol}_{k}(P)$ is the volume of P in k-dimensional Euclidean space \mathbb{R}^{k}.
Question: Are there other integral polytopes which have the same form of Ehrhart polynomials as cyclic polytopes? In other words, what kind of integral d-polytopes P are there whose Ehrhart polynomials will be in the form of (5)?

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_{d}(T)$?
When $d=1, C_{d}(T)$ is just an integral polytope.
For $d \geq 2$, for any d-subset $T^{\prime} \subset T$, let $U=\nu_{d}\left(T^{\prime}\right)$ be the corresponding d-subset of the vertex set $V=\nu_{d}(T)$ of $C_{d}(T)$. Then:
a) $\pi(\operatorname{conv}(U))=\pi\left(C_{d}\left(T^{\prime}\right)\right)=C_{d-1}\left(T^{\prime}\right)$ is an integral cyclic polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$, where H_{U} is the affine space spanned by U. In other words, after dropping the last coordinate of the lattice of H_{U}, we get the $(d-1)$-dimensional lattice.

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_{d}(T)$?
When $d=1, C_{d}(T)$ is just an integral polytope.
For $d \geq 2$, for any d-subset $T^{\prime} \subset T$, let $U=\nu_{d}\left(T^{\prime}\right)$ be the corresponding d-subset of the vertex set $V=\nu_{d}(T)$ of $C_{d}(T)$. Then:
a) $\pi(\operatorname{conv}(U))=\pi\left(C_{d}\left(T^{\prime}\right)\right)=C_{d-1}\left(T^{\prime}\right)$ is an integral cyclic polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$, where H_{U} is the affine space spanned by U. In other words, after dropping the last coordinate of the lattice of H_{U}, we get the $(d-1)$-dimensional lattice.

Example:
$(4,16)$

$$
P=C_{2}(\{1,2,3,4\})=
$$

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_{d}(T)$?
When $d=1, C_{d}(T)$ is just an integral polytope.
For $d \geq 2$, for any d-subset $T^{\prime} \subset T$, let $U=\nu_{d}\left(T^{\prime}\right)$ be the corresponding d-subset of the vertex set $V=\nu_{d}(T)$ of $C_{d}(T)$. Then:
a) $\pi(\operatorname{conv}(U))=\pi\left(C_{d}\left(T^{\prime}\right)\right)=C_{d-1}\left(T^{\prime}\right)$ is an integral cyclic polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$, where H_{U} is the affine space spanned by U. In other words, after dropping the last coordinate of the lattice of H_{U}, we get the $(d-1)$-dimensional lattice.

Example:

$$
P=C_{2}(\{1,2,3,4\})=
$$

$$
\begin{equation*}
H_{U}=\{(x, 1+4 x) \mid x \in \mathbb{R}\} \tag{4,16}
\end{equation*}
$$

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_{d}(T)$?
When $d=1, C_{d}(T)$ is just an integral polytope.
For $d \geq 2$, for any d-subset $T^{\prime} \subset T$, let $U=\nu_{d}\left(T^{\prime}\right)$ be the corresponding d-subset of the vertex set $V=\nu_{d}(T)$ of $C_{d}(T)$. Then:
a) $\pi(\operatorname{conv}(U))=\pi\left(C_{d}\left(T^{\prime}\right)\right)=C_{d-1}\left(T^{\prime}\right)$ is an integral cyclic polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$, where H_{U} is the affine space spanned by U. In other words, after dropping the last coordinate of the lattice of H_{U}, we get the $(d-1)$-dimensional lattice.

Example:
$P=C_{2}(\{1,2,3,4\})=$

$$
\mathcal{L}\left(H_{U}\right)=\{\cdots,(0,-3),(1,1),(2,5),(3,9),(4,13), \cdots\}
$$

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_{d}(T)$?
When $d=1, C_{d}(T)$ is just an integral polytope.
For $d \geq 2$, for any d-subset $T^{\prime} \subset T$, let $U=\nu_{d}\left(T^{\prime}\right)$ be the corresponding d-subset of the vertex set $V=\nu_{d}(T)$ of $C_{d}(T)$. Then:
a) $\pi(\operatorname{conv}(U))=\pi\left(C_{d}\left(T^{\prime}\right)\right)=C_{d-1}\left(T^{\prime}\right)$ is an integral cyclic polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$, where H_{U} is the affine space spanned by U. In other words, after dropping the last coordinate of the lattice of H_{U}, we get the $(d-1)$-dimensional lattice.

Example:

$$
P=C_{2}(\{1,2,3,4\})=
$$

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_{d}(T)$?
When $d=1, C_{d}(T)$ is just an integral polytope.
For $d \geq 2$, for any d-subset $T^{\prime} \subset T$, let $U=\nu_{d}\left(T^{\prime}\right)$ be the corresponding d-subset of the vertex set $V=\nu_{d}(T)$ of $C_{d}(T)$. Then:
a) $\pi(\operatorname{conv}(U))=\pi\left(C_{d}\left(T^{\prime}\right)\right)=C_{d-1}\left(T^{\prime}\right)$ is an integral cyclic polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$, where H_{U} is the affine space spanned by U. In other words, after dropping the last coordinate of the lattice of H_{U}, we get the $(d-1)$-dimensional lattice.

Remark: Condition b) is equivalent to say that for any lattice point $y \in \mathbb{Z}^{d-1}$, we have that $\pi^{-1}(y) \cap H_{U}$, the intersection of H_{U} with the inverse image of y under π, is a lattice point.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
We call a one dimensional polytope a lattice-face polytope if it is integral.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
We call a one dimensional polytope a lattice-face polytope if it is integral.
For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any d-subset $U \subset V$,
a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
We call a one dimensional polytope a lattice-face polytope if it is integral.
For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any d-subset $U \subset V$,
a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$.

Lemma 6. Any integral cyclic polytope is a lattice-face polytope.

Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
We call a one dimensional polytope a lattice-face polytope if it is integral.
For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any d-subset $U \subset V$,
a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
b) $\pi\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{d-1}$.

Lemma 6. Any integral cyclic polytope is a lattice-face polytope.

Lemma 7. Any lattice-face polytope is an integral polytope.

The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

$$
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k}
$$

The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

$$
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k}
$$

Observation:

1. $\pi(P)$ is a lattice-face $(d-1)$-polytope \Rightarrow we only need to show the first equality.

The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

$$
i(P, m)=\operatorname{Vol}(m P)+i(\pi(P), m)=\sum_{k=0}^{d} \operatorname{Vol}_{k}\left(\pi^{d-k}(P)\right) m^{k}
$$

Observation:

1. $\pi(P)$ is a lattice-face $(d-1)$-polytope \Rightarrow we only need to show the first equality.
2. $m P$ is a lattice-face d-polytope \Rightarrow it's enough to show that

$$
|\mathcal{L}(P)|=\operatorname{Vol}(P)+|\mathcal{L}(\pi(P))|
$$

More Notation

1. For any polytope $P \subset \mathbb{R}^{d}$ and any point $y \in \pi(P)$, let $n(y, P)$ be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.
2. Define $N B(P)=\cup_{y \in \pi(P)} n(y, P)$ to be the negative boundary of P and $\Omega(P)=P \backslash N B(P)$ to be the nonnegative part of P.

More Notation

1. For any polytope $P \subset \mathbb{R}^{d}$ and any point $y \in \pi(P)$, let $n(y, P)$ be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.
2. Define $N B(P)=\cup_{y \in \pi(P)} n(y, P)$ to be the negative boundary of P and $\Omega(P)=P \backslash N B(P)$ to be the nonnegative part of P.

More Notation

1. For any polytope $P \subset \mathbb{R}^{d}$ and any point $y \in \pi(P)$, let $n(y, P)$ be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.
2. Define $N B(P)=\cup_{y \in \pi(P)} n(y, P)$ to be the negative boundary of P and $\Omega(P)=P \backslash N B(P)$ to be the nonnegative part of P.

More Notation

1. For any polytope $P \subset \mathbb{R}^{d}$ and any point $y \in \pi(P)$, let $n(y, P)$ be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.
2. Define $N B(P)=\cup_{y \in \pi(P)} n(y, P)$ to be the negative boundary of P and $\Omega(P)=P \backslash N B(P)$ to be the nonnegative part of P.

More Notation

1. For any polytope $P \subset \mathbb{R}^{d}$ and any point $y \in \pi(P)$, let $n(y, P)$ be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.
2. Define $N B(P)=\cup_{y \in \pi(P)} n(y, P)$ to be the negative boundary of P and $\Omega(P)=P \backslash N B(P)$ to be the nonnegative part of P.

More Notation

1. For any polytope $P \subset \mathbb{R}^{d}$ and any point $y \in \pi(P)$, let $n(y, P)$ be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.
2. Define $N B(P)=\cup_{y \in \pi(P)} n(y, P)$ to be the negative boundary of P and $\Omega(P)=P \backslash N B(P)$ to be the nonnegative part of P.

More Notation

1. For any polytope $P \subset \mathbb{R}^{d}$ and any point $y \in \pi(P)$, let $n(y, P)$ be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.
2. Define $N B(P)=\cup_{y \in \pi(P)} n(y, P)$ to be the negative boundary of P and $\Omega(P)=P \backslash N B(P)$ to be the nonnegative part of P.

More Notation

1. For any polytope $P \subset \mathbb{R}^{d}$ and any point $y \in \pi(P)$, let $n(y, P)$ be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.
2. Define $N B(P)=\cup_{y \in \pi(P)} n(y, P)$ to be the negative boundary of P and $\Omega(P)=P \backslash N B(P)$ to be the nonnegative part of P.

Clearly, π induces a bijection between $\mathcal{L}(N B(P))$ and $\mathcal{L}(\pi(P))$. Therefore,

$$
\begin{aligned}
& |\mathcal{L}(P)| \\
= & |\mathcal{L}(\Omega(P))|+|\mathcal{L}(N B(P))| \\
= & |\mathcal{L}(\Omega(P))|+|\mathcal{L}(\pi(P))|
\end{aligned}
$$

Clearly, π induces a bijection between $\mathcal{L}(N B(P))$ and $\mathcal{L}(\pi(P))$. Therefore,

$$
\begin{aligned}
& |\mathcal{L}(P)| \\
= & |\mathcal{L}(\Omega(P))|+|\mathcal{L}(N B(P))| \\
= & |\mathcal{L}(\Omega(P))|+|\mathcal{L}(\pi(P))| .
\end{aligned}
$$

Comparing with the formula we want to show:

$$
|\mathcal{L}(P)|=\operatorname{Vol}(P)+|\mathcal{L}(\pi(P))|
$$

one see that to prove Theorem 8 it is sufficient to prove the following theorem.
Theorem 9. For any P a lattice-face d-polytope,

$$
\operatorname{Vol}(P)=|\mathcal{L}(\Omega(P))|
$$

For any triangulation (without introducing new vertices) $P_{1} \cup \cdots \cup P_{k}$ of a lattice-face polytope P, (note that (iv) implies that all P_{i} are lattice-face polytopes,) we have that

$$
\Omega(P)=\bigoplus_{i=1}^{k} \Omega\left(P_{i}\right), \text { which implies that }|\mathcal{L}(\Omega(P))|=\sum_{i=1}^{k}\left|\mathcal{L}\left(\Omega\left(P_{i}\right)\right)\right| .
$$

For any triangulation (without introducing new vertices) $P_{1} \cup \cdots \cup P_{k}$ of a lattice-face polytope P, (note that (iv) implies that all P_{i} are lattice-face polytopes,) we have that

$$
\Omega(P)=\bigoplus_{i=1}^{k} \Omega\left(P_{i}\right), \text { which implies that }|\mathcal{L}(\Omega(P))|=\sum_{i=1}^{k}\left|\mathcal{L}\left(\Omega\left(P_{i}\right)\right)\right| .
$$

Example:

For any triangulation (without introducing new vertices) $P_{1} \cup \cdots \cup P_{k}$ of a lattice-face polytope P, (note that (iv) implies that all P_{i} are lattice-face polytopes,) we have that

$$
\Omega(P)=\bigoplus_{i=1}^{k} \Omega\left(P_{i}\right), \text { which implies that }|\mathcal{L}(\Omega(P))|=\sum_{i=1}^{k}\left|\mathcal{L}\left(\Omega\left(P_{i}\right)\right)\right| .
$$

Example:

For any triangulation (without introducing new vertices) $P_{1} \cup \cdots \cup P_{k}$ of a lattice-face polytope P, (note that (iv) implies that all P_{i} are lattice-face polytopes,) we have that

$$
\Omega(P)=\bigoplus_{i=1}^{k} \Omega\left(P_{i}\right), \text { which implies that }|\mathcal{L}(\Omega(P))|=\sum_{i=1}^{k}\left|\mathcal{L}\left(\Omega\left(P_{i}\right)\right)\right| .
$$

Example:

For any triangulation (without introducing new vertices) $P_{1} \cup \cdots \cup P_{k}$ of a lattice-face polytope P, (note that (iv) implies that all P_{i} are lattice-face polytopes,) we have that

$$
\Omega(P)=\bigoplus_{i=1}^{k} \Omega\left(P_{i}\right), \text { which implies that }|\mathcal{L}(\Omega(P))|=\sum_{i=1}^{k}\left|\mathcal{L}\left(\Omega\left(P_{i}\right)\right)\right| .
$$

Example:

\cup

For any triangulation (without introducing new vertices) $P_{1} \cup \cdots \cup P_{k}$ of a lattice-face polytope P, (note that (iv) implies that all P_{i} are lattice-face polytopes,) we have that

$$
\Omega(P)=\bigoplus_{i=1}^{k} \Omega\left(P_{i}\right), \text { which implies that }|\mathcal{L}(\Omega(P))|=\sum_{i=1}^{k}\left|\mathcal{L}\left(\Omega\left(P_{i}\right)\right)\right| .
$$

However, for any triangulation (without introducing new vertices) $P_{1} \cup \cdots \cup P_{k}$, we have that

$$
\operatorname{Vol}(P)=\sum_{i=1}^{k} \operatorname{Vol}\left(P_{i}\right)
$$

Comparing this with

$$
|\mathcal{L}(\Omega(P))|=\sum_{i=1}^{k}\left|\mathcal{L}\left(\Omega\left(P_{i}\right)\right)\right|
$$

we conclude that, to prove Theorem $9(\operatorname{Vol}(P)=|\mathcal{L}(\Omega(P))|)$, it is enough to prove the the case when P is a lattice-face d-simplex, i.e., P has $d+1$ vertices which are affinely independent.

Idea of the Proof

We will use two dimensional lattice-face simplices to illustrate the idea of our proof.
Assume P is a 2-dimensional lattice-face simplex with vertex set $V=\left\{v_{1}, v_{2}, v_{3}\right\}$, where the coordinates of v_{i} are $\binom{x_{i}}{y_{i}}$.

WLOG, we assume that v_{1}, v_{2}, v_{3} are in an order such that both $\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|$ and $\left|\begin{array}{ll}1 & x_{1} \\ 1 & x_{2}\end{array}\right|$ are positive. In other words, v_{1}, v_{2}, v_{3} are in counterclockwise order and $x_{1}<x_{2}$.

We can define an affine transformation T which maps $\binom{x}{y} \rightarrow\left(\left.\begin{array}{ccc}x \\ 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x & y\end{array} \right\rvert\,\right)$. One can check that

1. T gives a bijection between the lattice points in $\Omega(P)$ and the lattice points in $\Omega(T(P))$. Therefore, we want to show that

$$
\operatorname{Vol}(P)=|\mathcal{L}(\Omega(T(P)))|
$$

2. $T(P)$ is a lattice-face polytope, as well.

Let $P^{\prime}=T(P)$. Then its vertex set is $V^{\prime}=\left\{v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}\right\}$, where $y_{3}^{\prime}=\frac{\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|}{\left|\begin{array}{ll}1 & x_{1} \\ 1 & x_{2}\end{array}\right|}$.

Let $P^{\prime}=T(P)$. Then its vertex set is $V^{\prime}=\left\{v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}\right\}$,
where $y_{3}^{\prime}=\frac{\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|}{\left|\begin{array}{ll}1 & x_{1} \\ 1 & x_{2}\end{array}\right|}$.
By our assumption, $y_{3}^{\prime}>0$. There are 3 cases for the position of the vertices of P^{\prime} :
(i) $x_{1}<x_{2}<x_{3}$; (ii) $x_{1}<x_{3}<x_{2}$; (iii) $x_{3}<x_{1}<x_{2}$.
(i) $x_{1}<x_{2}<x_{3}$:

$$
v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(i) $x_{1}<x_{2}<x_{3}$:

$$
P^{\prime}=v_{1}^{v_{3}^{\prime}}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(i) $x_{1}<x_{2}<x_{3}$:

(i) $x_{1}<x_{2}<x_{3}$:

(i) $x_{1}<x_{2}<x_{3}$:

(i) $x_{1}<x_{2}<x_{3}$:

(i) $x_{1}<x_{2}<x_{3}$:

$$
P^{\prime}=v_{v_{1}^{\prime}}^{v_{3}^{\prime}}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(i) $x_{1}<x_{2}<x_{3}$:

$$
P^{\prime}=v_{v_{1}^{\prime}}^{v_{3}^{\prime}}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(i) $x_{1}<x_{2}<x_{3}$:

$$
P^{\prime}=v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(i) $x_{1}<x_{2}<x_{3}$:

(i) $x_{1}<x_{2}<x_{3}$:

$$
P^{\prime}=v_{v_{1}^{\prime}}^{v_{3}^{\prime}}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(i) $x_{1}<x_{2}<x_{3}$:

$$
P^{\prime}=\int_{v_{1}^{\prime}}^{v_{3}^{\prime}} v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

Because P^{\prime} is a lattice-face polytope, it is not hard to show that y_{3}^{\prime} is a multiple of both $\left|\begin{array}{ll}1 & x_{1} \\ 1 & x_{3}\end{array}\right|$

$$
\text { and }\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|
$$

Therefore, we define $f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1$, for any positive integers a_{1}, a_{2}.

Therefore, we define $f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1$, for any positive integers a_{1}, a_{2}. Thus,

$$
\left.\left|\mathcal{L}\left(S_{1}\right)\right|=\sum_{s_{1}=1} \sum_{s_{2}=1}^{1} \begin{array}{ll}
x_{1} \\
1 & x_{3}
\end{array} \right\rvert\,\left(y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right) s_{1}
$$

Therefore, we define $f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1$, for any positive integers a_{1}, a_{2}. Thus,

$$
\begin{aligned}
&\left|\mathcal{L}\left(S_{1}\right)\right|=\left|\begin{array}{ll}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\left(y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right) s_{1} \\
& \sum_{s_{1}=1} \\
&\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\left(y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right) s_{1} \\
&\left|\mathcal{L}\left(S_{2}\right)\right|=\sum_{s_{1}=1}^{1} \begin{array}{ll}
x_{1} \\
1 & x_{3}
\end{array}\left|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right), \text { and } \\
& \sum_{s_{2}=1}
\end{aligned}
$$

$$
\text { For any positive integers } a_{1}, a_{2}, \quad \text { if } S=
$$

Therefore, we define $f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1$, for any positive integers a_{1}, a_{2}. Thus,

$$
\begin{aligned}
\left|\mathcal{L}\left(S_{1}\right)\right|= & \sum_{s_{1}=1}^{1} x_{1} \\
1 & x_{3}
\end{aligned} \left\lvert\,\left(\begin{array}{ll}
\left.y_{3}^{\prime} /\left|\begin{array}{ll}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right)^{s_{1}} \\
s_{2}=1
\end{array} 1=f_{2}\left(\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right), \text { and } .\right.\right.
$$

Hence, for case (i) $x_{1}<x_{2}<x_{3}:|\mathcal{L}(\Omega(P))|=\left|\mathcal{L}\left(\Omega\left(P^{\prime}\right)\right)\right|=\left|\mathcal{L}\left(S_{1}\right)\right|-\left|\mathcal{L}\left(S_{2}\right)\right|$

$$
=f_{2}\left(\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right)-f_{2}\left(\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right) .
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

$+$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

$+$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
P^{\prime}=\underbrace{v_{3}^{\prime}}_{v_{1}^{\prime}}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
P^{\prime}=\int_{v_{1}^{\prime}}^{v_{1}^{\prime}}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
P^{\prime}=\int_{v_{1}^{\prime}}^{v_{3}^{\prime}} v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
P^{\prime}=\int_{v_{1}^{\prime}}^{v_{3}^{\prime}} v_{1}^{\prime}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

$$
\left|\begin{array}{ll}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
P^{\prime}=\underbrace{v_{1}^{\prime}}_{v_{1}^{\prime}}=\binom{x_{1}}{0}, v_{2}^{\prime}=\binom{x_{2}}{0}, v_{3}^{\prime}=\binom{x_{3}}{y_{3}^{\prime}}
$$

(ii) $x_{1}<x_{3}<x_{2}$:

$$
\text { Clearly }\left|\mathcal{L}\left(S_{1}\right)\right|=f_{2}\left(\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right), \text { but what is }\left|\mathcal{L}\left(S_{2}\right)\right| ?
$$

Recall that for any $a_{1}, a_{2} \in \mathbb{N}, \quad f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1$

Recall that for any $a_{1}, a_{2} \in \mathbb{N}, \quad f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1=\sum_{s_{1}}^{a_{1}} a_{2} s_{1}$

Recall that for any $a_{1}, a_{2} \in \mathbb{N}, \quad f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1=\sum_{s_{1}}^{a_{1}} a_{2} s_{1}=a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$.

$$
\text { For any negative integers } \left.a_{1}, a_{2}, \text { if } S=a_{1} a_{2}\right\}_{1}, \quad \text { then }|\mathcal{L}(S)|=\sum_{s_{1}=1}^{-a_{1}-1} \sum_{s_{2}=1}^{-a_{2} s_{1}} 1
$$

Recall that for any $a_{1}, a_{2} \in \mathbb{N}, \quad f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1=\sum_{s_{1}}^{a_{1}} a_{2} s_{1}=a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$.
Because $a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$ is a polynomial in a_{1}, a_{2}, we can extend the domain of f_{2} from \mathbb{N}^{2} to \mathbb{Z}^{2} or even \mathbb{R}^{2}.

$$
\text { For any negative integers } \left.a_{1}, a_{2}, \text { if } S=a_{1} a_{2}\right\}_{2}, \quad \text { then }|\mathcal{L}(S)|=\sum_{s_{1}=1}^{-a_{1}-1} \sum_{s_{2}=1}^{-a_{2} s_{1}} 1
$$

Recall that for any $a_{1}, a_{2} \in \mathbb{N}, \quad f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1=\sum_{s_{1}}^{a_{1}} a_{2} s_{1}=a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$.
Because $a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$ is a polynomial in a_{1}, a_{2}, we can extend the domain of f_{2} from \mathbb{N}^{2} to \mathbb{Z}^{2} or even \mathbb{R}^{2}.

Then

$$
|\mathcal{L}(S)|=-f_{2}\left(a_{1}, a_{2}\right)
$$

Recall that for any $a_{1}, a_{2} \in \mathbb{N}, \quad f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1=\sum_{s_{1}}^{a_{1}} a_{2} s_{1}=a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$.
Because $a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$ is a polynomial in a_{1}, a_{2}, we can extend the domain of f_{2} from \mathbb{N}^{2} to \mathbb{Z}^{2} or even \mathbb{R}^{2}.

Then

$$
|\mathcal{L}(S)|=-f_{2}\left(a_{1}, a_{2}\right)
$$

Thus,

$$
\left|\mathcal{L}\left(S_{2}\right)\right|=\sum_{s_{1}=1}^{-\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|-1\left(-y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right) s_{1}} \sum_{s_{2}=1} 1=-f_{2}\left(\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right) .
$$

$$
\text { For any negative integers } a_{1}, a_{2}, \text { if } S=a_{1} a_{2}, \quad \text { then }|\mathcal{L}(S)|=\sum_{s_{1}=1}^{-a_{1}-1} \sum_{s_{2}=1}^{-a_{2} s_{1}} 1
$$

Recall that for any $a_{1}, a_{2} \in \mathbb{N}, \quad f_{2}\left(a_{1}, a_{2}\right)=\sum_{s_{1}=1}^{a_{1}} \sum_{s_{2}=1}^{a_{2} s_{1}} 1=\sum_{s_{1}}^{a_{1}} a_{2} s_{1}=a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$.
Because $a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$ is a polynomial in a_{1}, a_{2}, we can extend the domain of f_{2} from \mathbb{N}^{2} to \mathbb{Z}^{2} or even \mathbb{R}^{2}.

Then

$$
|\mathcal{L}(S)|=-f_{2}\left(a_{1}, a_{2}\right)
$$

Thus,

$$
\left|\mathcal{L}\left(S_{2}\right)\right|=\sum_{s_{1}=1}^{-\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|-1\left(-y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right) s_{1}} \sum_{s_{2}=1} 1=-f_{2}\left(\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right)
$$

Hence, for case (ii) $x_{1}<x_{3}<x_{2}:|\mathcal{L}(\Omega(P))|=\left|\mathcal{L}\left(\Omega\left(P^{\prime}\right)\right)\right|=\left|\mathcal{L}\left(S_{1}\right)\right|+\left|\mathcal{L}\left(S_{2}\right)\right|=$

$$
f_{2}\left(\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right)-f_{2}\left(\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right)
$$

(iii) $x_{3}<x_{1}<x_{2}$:

(iii) $x_{3}<x_{1}<x_{2}$:

(iii) $x_{3}<x_{1}<x_{2}$:

As before, we have that $|\mathcal{L}(\Omega(P))|=\left|\mathcal{L}\left(\Omega\left(P^{\prime}\right)\right)\right|=-\left|\mathcal{L}\left(S_{1}\right)\right|+\left|\mathcal{L}\left(S_{2}\right)\right|$

$$
=f_{2}\left(\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right)-f_{2}\left(\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right)
$$

Therefore, for any of the three cases,

$$
\begin{aligned}
& \qquad|\mathcal{L}(\Omega(P))|=f_{2}\left(\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right)-f_{2}\left(\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right), \\
& \text { where } y_{3}^{\prime}=\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right| /\left|\begin{array}{ll}
1 & x_{1} \\
1 & x_{2}
\end{array}\right| .
\end{aligned}
$$

Therefore, for any of the three cases,

$$
\begin{aligned}
& \qquad|\mathcal{L}(\Omega(P))|=f_{2}\left(\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right)-f_{2}\left(\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right) \\
& \text { where } y_{3}^{\prime}=\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right| /\left|\begin{array}{ll}
1 & x_{1} \\
1 & x_{2}
\end{array}\right| .
\end{aligned}
$$

Recall that $f_{2}\left(a_{1}, a_{2}\right)=a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$, we can calculate that

$$
|\mathcal{L}(\Omega(P))|=\frac{1}{2}\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right|=\operatorname{Vol}(P)
$$

Therefore, for any of the three cases,

$$
\begin{aligned}
& \qquad|\mathcal{L}(\Omega(P))|=f_{2}\left(\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{1} \\
1 & x_{3}
\end{array}\right|\right)-f_{2}\left(\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|, y_{3}^{\prime} /\left|\begin{array}{cc}
1 & x_{2} \\
1 & x_{3}
\end{array}\right|\right) \\
& \text { where } y_{3}^{\prime}=\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right| /\left|\begin{array}{ll}
1 & x_{1} \\
1 & x_{2}
\end{array}\right|
\end{aligned}
$$

Recall that $f_{2}\left(a_{1}, a_{2}\right)=a_{2} \frac{a_{1}}{2}\left(a_{1}+1\right)$, we can calculate that

$$
|\mathcal{L}(\Omega(P))|=\frac{1}{2}\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right|=\operatorname{Vol}(P)
$$

This completes the proof of Theorem 9 for dimension 2.

Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k: 0 \leq k \leq d-1$,

$$
\begin{array}{ll}
(\star) & \text { for any }(k+1) \text {-subset } U \subset V, \\
& \pi^{d-k}\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{k}
\end{array}
$$

where H_{U} is the affine space spanned by U. In other words, after dropping the last $d-k$ coordinates of the lattice of H_{U}, we get the k-dimensional lattice.

Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k: 0 \leq k \leq d-1$,

$$
\begin{array}{ll}
(\star) & \text { for any }(k+1) \text {-subset } U \subset V, \\
& \pi^{d-k}\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{k}
\end{array}
$$

where H_{U} is the affine space spanned by U. In other words, after dropping the last $d-k$ coordinates of the lattice of H_{U}, we get the k-dimensional lattice.

Note that in this definition, when $k=0$, satisfying (\star) is equivalent to saying that P is an integral polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1 .

Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k: 0 \leq k \leq d-1$,

$$
\begin{array}{ll}
(\star) & \text { for any }(k+1) \text {-subset } U \subset V, \\
& \pi^{d-k}\left(\mathcal{L}\left(H_{U}\right)\right)=\mathbb{Z}^{k},
\end{array}
$$

where H_{U} is the affine space spanned by U. In other words, after dropping the last $d-k$ coordinates of the lattice of H_{U}, we get the k-dimensional lattice.

Note that in this definition, when $k=0$, satisfying (\star) is equivalent to saying that P is an integral polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1 .

Therefore, one may ask
Question: If P is a polytope that satisfies (\star) for all $k \in K$, where K is a fixed subset of $\{0,1, \ldots, d-$ $1\}$, can we say something about the Ehrhart polynomial of P ?

A conjecture

A special set K can be chosen as the set of consecutive integers from 0 to d^{\prime}, where d^{\prime} is an integer no greater than $d-1$. Based on some examples in this case, the Ehrhart polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 10. Given $d^{\prime} \leq d-1$, if P is a d-polytope with vertex set V such that $\forall k: 0 \leq k \leq d^{\prime}$, (\star) is satisfied, then for $0 \leq k \leq d^{\prime}$, the coefficient of m^{k} in $i(P, m)$ is the same as in $i\left(\pi^{d-d^{\prime}}(P), m\right)$. In other words,

$$
i(P, m)=i\left(\pi^{d-d^{\prime}}(P), m\right)+\sum_{i=d^{\prime}+1}^{d} c_{i} m^{i}
$$

A conjecture

A special set K can be chosen as the set of consecutive integers from 0 to d^{\prime}, where d^{\prime} is an integer no greater than $d-1$. Based on some examples in this case, the Ehrhart polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 10. Given $d^{\prime} \leq d-1$, if P is a d-polytope with vertex set V such that $\forall k: 0 \leq k \leq d^{\prime}$, (\star) is satisfied, then for $0 \leq k \leq d^{\prime}$, the coefficient of m^{k} in $i(P, m)$ is the same as in $i\left(\pi^{d-d^{\prime}}(P), m\right)$. In other words,

$$
i(P, m)=i\left(\pi^{d-d^{\prime}}(P), m\right)+\sum_{i=d^{\prime}+1}^{d} c_{i} m^{i}
$$

Example: $P=\operatorname{conv}\{(0,0,0),(4,0,0),(3,6,0),(2,2,2)\}$. One can check that P satisfies (\star) for $k=0,1$ but not for $k=2$.

$$
i(P, m)=8 m^{3}+10 m^{2}+4 m+1
$$

where $4 m+1$ is the Ehrhart polynomial of $\pi^{2}(P)=[0,4]$.

