Ehrhart polynomials of lattice-face polytopes

by *Fu Liu*

Massachusetts Institute of Technology

June 22, 2006

Definition 1. A *(convex) polytope* P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

 $P = \operatorname{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n : \text{ all } \lambda_i \ge 0, \text{ and } \lambda_1 + \lambda_2 + \dots + \lambda_n = 1\}.$

Definition 1. A *(convex) polytope* P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

 $P = \operatorname{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n : \text{ all } \lambda_i \ge 0, \text{ and } \lambda_1 + \lambda_2 + \dots + \lambda_n = 1\}.$

A *d*-dimensional *lattice* $\mathbb{Z}^d = \{ \mathbf{x} = (x_1, \dots, x_d) \mid \forall x_i \in \mathbb{Z} \}$ is the collection of all points with integer coordinates in \mathbb{R}^d . Any point in a lattice is called a *lattice point*.

Definition 1. A *(convex) polytope* P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

 $P = \operatorname{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n : \text{ all } \lambda_i \ge 0, \text{ and } \lambda_1 + \lambda_2 + \dots + \lambda_n = 1\}.$

A *d*-dimensional *lattice* $\mathbb{Z}^d = \{ \mathbf{x} = (x_1, \dots, x_d) \mid \forall x_i \in \mathbb{Z} \}$ is the collection of all points with integer coordinates in \mathbb{R}^d . Any point in a lattice is called a *lattice point*.

An *integral* polytope is a convex polytope, whose vertices are all lattice points.

Definition 1. A *(convex) polytope* P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

 $P = \operatorname{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n : \text{ all } \lambda_i \ge 0, \text{ and } \lambda_1 + \lambda_2 + \dots + \lambda_n = 1\}.$

A *d*-dimensional *lattice* $\mathbb{Z}^d = \{ \mathbf{x} = (x_1, \dots, x_d) \mid \forall x_i \in \mathbb{Z} \}$ is the collection of all points with integer coordinates in \mathbb{R}^d . Any point in a lattice is called a *lattice point*.

An *integral* polytope is a convex polytope, whose vertices are all lattice points.

For any region $R \subset \mathbb{R}^d$, we denote by $\mathcal{L}(R) := R \cap \mathbb{Z}^d$ the set of lattice points in R.

Definition 1. A *(convex) polytope* P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

 $P = \operatorname{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n : \text{ all } \lambda_i \ge 0, \text{ and } \lambda_1 + \lambda_2 + \dots + \lambda_n = 1\}.$

A *d*-dimensional *lattice* $\mathbb{Z}^d = \{ \mathbf{x} = (x_1, \dots, x_d) \mid \forall x_i \in \mathbb{Z} \}$ is the collection of all points with integer coordinates in \mathbb{R}^d . Any point in a lattice is called a *lattice point*.

An *integral* polytope is a convex polytope, whose vertices are all lattice points.

For any region $R \subset \mathbb{R}^d$, we denote by $\mathcal{L}(R) := R \cap \mathbb{Z}^d$ the set of lattice points in R. **Definition 2.** For any polytope $P \subset \mathbb{R}^d$ and some positive integer $m \in \mathbb{N}$, the *mth dilated polytope* of P is $mP = \{m\mathbf{x} : \mathbf{x} \in P\}$. We denote by

$$i(m,P) = |\mathcal{L}(mP)|$$

the number of lattice points in mP.

Definition 1. A *(convex) polytope* P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

 $P = \operatorname{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n : \text{ all } \lambda_i \ge 0, \text{ and } \lambda_1 + \lambda_2 + \dots + \lambda_n = 1\}.$

A *d*-dimensional *lattice* $\mathbb{Z}^d = \{ \mathbf{x} = (x_1, \dots, x_d) \mid \forall x_i \in \mathbb{Z} \}$ is the collection of all points with integer coordinates in \mathbb{R}^d . Any point in a lattice is called a *lattice point*.

An *integral* polytope is a convex polytope, whose vertices are all lattice points.

For any region $R \subset \mathbb{R}^d$, we denote by $\mathcal{L}(R) := R \cap \mathbb{Z}^d$ the set of lattice points in R. **Definition 2.** For any polytope $P \subset \mathbb{R}^d$ and some positive integer $m \in \mathbb{N}$, the *m*th dilated polytope of P is $mP = \{m\mathbf{x} : \mathbf{x} \in P\}$. We denote by

$$i(m,P) = |\mathcal{L}(mP)|$$

the number of lattice points in mP.

Example: When d = 1, P is an interval [a, b], where $a, b \in \mathbb{Z}$. Then mP = [ma, mb] and

$$i(P,m) = (b-a)m + 1.$$

Theorem of Ehrhart

Theorem 3. (Ehrhart) Let P be a d-dimensional integral polytope, then i(P, m) is a polynomial in m of degree d.

Therefore, we call i(P, m) the *Ehrhart polynomial* of *P*.

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial i(P,m)?

The leading coefficient of i(P,m) is the volume Vol(P) of P.

- The leading coefficient of i(P, m) is the volume Vol(P) of P.
- The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.

- The leading coefficient of i(P, m) is the volume Vol(P) of P.
- The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.
- The constant term of i(P, m) is always 1.

- The leading coefficient of i(P, m) is the volume Vol(P) of P.
- The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.
- The constant term of i(P,m) is always 1.
- No results for other coefficients for general polytopes.

Motivation

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.

Recall that given $T = \{t_1, \ldots, t_n\}_{<}$ a linearly ordered set, a d-dimensional cyclic polytope $C_d(T) = C_d(t_1, \ldots, t_n)$ is the convex hull $\operatorname{conv}\{v_d(t_1), v_d(t_2), \ldots, v_d(t_n)\}$ of n > d distinct points $\nu_d(t_i), 1 \le i \le n$, on the moment curve.

The *moment curve* in \mathbb{R}^d is defined by

$$\nu_d: \mathbb{R} \to \mathbb{R}^d, t \mapsto \nu_d(t) = \begin{pmatrix} t \\ t^2 \\ \vdots \\ t^d \end{pmatrix}$$

Motivation

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.

Recall that given $T = \{t_1, \ldots, t_n\}_{<}$ a linearly ordered set, a d-dimensional cyclic polytope $C_d(T) = C_d(t_1, \ldots, t_n)$ is the convex hull $\operatorname{conv}\{v_d(t_1), v_d(t_2), \ldots, v_d(t_n)\}$ of n > d distinct points $\nu_d(t_i), 1 \le i \le n$, on the moment curve.

The *moment curve* in \mathbb{R}^d is defined by

$$\nu_d : \mathbb{R} \to \mathbb{R}^d, t \mapsto \nu_d(t) = \begin{pmatrix} t \\ t^2 \\ \vdots \\ t^d \end{pmatrix}$$

Example: $T = \{1, 2, 3, 4\}, d = 3:$

 $C_d(T)$ is the convex polytope whose vertices are

$$\mathsf{re}\left(\begin{array}{c}1\\1\\1\end{array}\right), \left(\begin{array}{c}2\\4\\8\end{array}\right), \left(\begin{array}{c}3\\9\\27\end{array}\right), \left(\begin{array}{c}4\\16\\64\end{array}\right).$$

Theorem 4. For any d-dimensional integral cyclic polytope $C_d(T)$,

 $i(C_d(T), m) = Vol(mC_d(T)) + i(C_{d-1}(T), m).$

Hence,

$$i(C_d(T), m) = \sum_{k=0}^{d} \operatorname{Vol}_k(mC_k(T))$$
$$= \sum_{k=0}^{d} \operatorname{Vol}_k(C_k(T))m^k,$$

where $\operatorname{Vol}_k(mC_k(T))$ is the volume of $mC_k(T)$ in k-dimensional space, and by convention we let $\operatorname{Vol}_0(mC_0(T)) = 1$.

Ehrhart polynomials of lattice-face polytopes

Example: $T = \{1, 2, 3, 4\}, d = 3:$

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:
 $C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:
 $C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$

 $m C_{d-1}(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 4\\16 \end{pmatrix}\right\} : i(C_{d-1}(T), m) = 4m^2 + 3m + 1.$

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:
 $C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$
 $3m + 1.$
 $C_{d-1}(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 4\\16 \end{pmatrix}\right\} : i(C_{d-1}(T), m) = 4m^2 + 3m + 1.$

 $\bullet C_{d-2}(T) = \operatorname{conv}\{1, 2, 3, 4\} = [1, 4] : i(C_{d-2}(T), m) = 3m + 1.$

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:
 $C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$

 $M \leftarrow C_{d-1}(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 4\\16 \end{pmatrix}\right\} : i(C_{d-1}(T), m) = 4m^2 + 3m + 1.$

$$\bullet C_{d-2}(T) = \operatorname{conv}\{1, 2, 3, 4\} = [1, 4] : i(C_{d-2}(T), m) = 3m + 1.$$

$$C_{d-3}(T) = \mathbb{R}^0 : i(C_{d-3}(T), m) = 1.$$

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:
 $C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$

 $M \leftarrow C_{d-1}(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 4\\16 \end{pmatrix}\right\} : i(C_{d-1}(T), m) = 4m^2 + 3m + 1.$

$$\bullet C_{d-2}(T) = \operatorname{conv}\{1, 2, 3, 4\} = [1, 4] : i(C_{d-2}(T), m) = 3m + 1.$$

$$C_{d-3}(T) = \mathbb{R}^0 : i(C_{d-3}(T), m) = 1.$$

 \blacksquare 2, 4, 3 and 1 are the volumes of $C_3(T)$, $C_2(T)$, $C_1(T)$ and $C_0(T)$, respectively.

Note that if we define $\pi^k : \mathbb{R}^d \to \mathbb{R}^{d-k}$ to be the map which ignores the last k coordinates of a point, then $\pi^k(C_d(T)) = C_{d-k}(T)$. So when $P = C_d(T)$ is an integral cyclic polytope, we have that

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_k(\pi^{d-k}(P))m^k,$$
 (5)

where $\operatorname{Vol}_k(P)$ is the volume of P in k-dimensional Euclidean space \mathbb{R}^k .

Note that if we define $\pi^k : \mathbb{R}^d \to \mathbb{R}^{d-k}$ to be the map which ignores the last k coordinates of a point, then $\pi^k(C_d(T)) = C_{d-k}(T)$. So when $P = C_d(T)$ is an integral cyclic polytope, we have that

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_k(\pi^{d-k}(P))m^k,$$
 (5)

where $\operatorname{Vol}_k(P)$ is the volume of P in k-dimensional Euclidean space \mathbb{R}^k .

Question: Are there other integral polytopes which have the same form of Ehrhart polynomials as cyclic polytopes? In other words, what kind of integral d-polytopes P are there whose Ehrhart polynomials will be in the form of (5)?

What are some key properties of an integral cyclic polytope $C_d(T)$?

When d = 1, $C_d(T)$ is just an integral polytope.

For $d \ge 2$, for any d-subset $T' \subset T$, let $U = \nu_d(T')$ be the corresponding d-subset of the vertex set $V = \nu_d(T)$ of $C_d(T)$. Then:

a) $\pi(\operatorname{conv}(U)) = \pi(C_d(T')) = C_{d-1}(T')$ is an integral cyclic polytope, and

What are some key properties of an integral cyclic polytope $C_d(T)$?

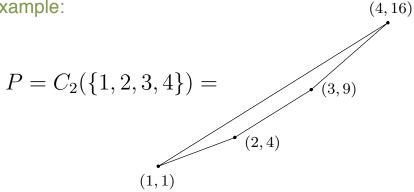
When d = 1, $C_d(T)$ is just an integral polytope.

For $d \geq 2$, for any d-subset $T' \subset T$, let $U = \nu_d(T')$ be the corresponding d-subset of the vertex set $V = \nu_d(T)$ of $C_d(T)$. Then:

a) $\pi(\operatorname{conv}(U)) = \pi(C_d(T')) = C_{d-1}(T')$ is an integral cyclic polytope, and

b) $\pi(\mathcal{L}(H_U)) = \mathbb{Z}^{d-1}$, where H_U is the affine space spanned by U. In other words, after dropping the last coordinate of the lattice of H_U , we get the (d-1)-dimensional lattice.

Example:

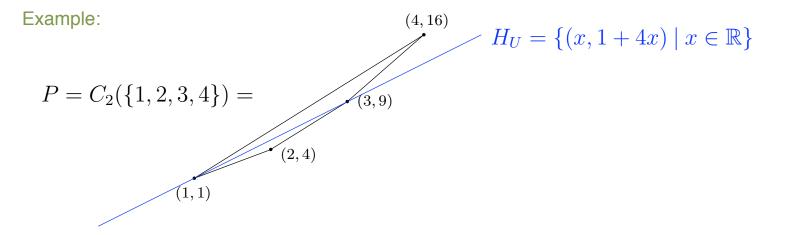


What are some key properties of an integral cyclic polytope $C_d(T)$?

When d = 1, $C_d(T)$ is just an integral polytope.

For $d \ge 2$, for any d-subset $T' \subset T$, let $U = \nu_d(T')$ be the corresponding d-subset of the vertex set $V = \nu_d(T)$ of $C_d(T)$. Then:

a) $\pi(\operatorname{conv}(U)) = \pi(C_d(T')) = C_{d-1}(T')$ is an integral cyclic polytope, and



What are some key properties of an integral cyclic polytope $C_d(T)$?

When d = 1, $C_d(T)$ is just an integral polytope.

For $d \ge 2$, for any d-subset $T' \subset T$, let $U = \nu_d(T')$ be the corresponding d-subset of the vertex set $V = \nu_d(T)$ of $C_d(T)$. Then:

a) $\pi(\operatorname{conv}(U)) = \pi(C_d(T')) = C_{d-1}(T')$ is an integral cyclic polytope, and

Example:

$$(4, 16) \qquad H_U = \{(x, 1 + 4x) \mid x \in \mathbb{R}\}$$

$$P = C_2(\{1, 2, 3, 4\}) = (3, 9) \qquad (4, 13) \qquad (4, 13) \qquad (4, 13), \dots \}$$

$$(0, -3) \qquad (1, 1) \qquad (2, 5), (3, 9), (4, 13), \dots \}$$

What are some key properties of an integral cyclic polytope $C_d(T)$?

When d = 1, $C_d(T)$ is just an integral polytope.

For $d \ge 2$, for any d-subset $T' \subset T$, let $U = \nu_d(T')$ be the corresponding d-subset of the vertex set $V = \nu_d(T)$ of $C_d(T)$. Then:

a) $\pi(\operatorname{conv}(U)) = \pi(C_d(T')) = C_{d-1}(T')$ is an integral cyclic polytope, and

Example:

$$(4,16) \quad H_U = \{(x, 1+4x) \mid x \in \mathbb{R}\}$$

$$P = C_2(\{1,2,3,4\}) = (3,9) \quad \mathcal{L}(H_U) = \{\cdots, (0,-3), (1,1), (2,5), (3,9), (4,13), \cdots\}$$

$$(0,-3) \quad (1,1) \quad \mathcal{L}(H_U) = \{\cdots, 0,1,2,3,4, \cdots, \} = \mathbb{Z}$$

What are some key properties of an integral cyclic polytope $C_d(T)$?

When d = 1, $C_d(T)$ is just an integral polytope.

For $d \ge 2$, for any d-subset $T' \subset T$, let $U = \nu_d(T')$ be the corresponding d-subset of the vertex set $V = \nu_d(T)$ of $C_d(T)$. Then:

a) $\pi(\operatorname{conv}(U)) = \pi(C_d(T')) = C_{d-1}(T')$ is an integral cyclic polytope, and

b) $\pi(\mathcal{L}(H_U)) = \mathbb{Z}^{d-1}$, where H_U is the affine space spanned by U. In other words, after dropping the last coordinate of the lattice of H_U , we get the (d-1)-dimensional lattice.

Example:

$$(4,16) \quad H_U = \{(x, 1+4x) \mid x \in \mathbb{R}\}$$

$$P = C_2(\{1,2,3,4\}) = (3,9) \quad \mathcal{L}(H_U) = \{\cdots, (0,-3), (1,1), (2,5), (3,9), (4,13), \cdots\}$$

$$(0,-3) \quad (1,1) \quad \mathcal{L}(H_U) = \{\cdots, 0, 1, 2, 3, 4, \cdots, \} = \mathbb{Z}$$

Remark: Condition b) is equivalent to say that for any lattice point $y \in \mathbb{Z}^{d-1}$, we have that $\pi^{-1}(y) \cap H_U$, the intersection of H_U with the inverse image of y under π , is a lattice point.

We define *lattice-face* polytopes recursively.

We define *lattice-face* polytopes recursively.

We call a one dimensional polytope a *lattice-face* polytope if it is integral.

We define *lattice-face* polytopes recursively.

We call a one dimensional polytope a *lattice-face* polytope if it is integral.

For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a *lattice-face* polytope if for any d-subset $U \subset V$,

- a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
- b) $\pi(\mathcal{L}(H_U)) = \mathbb{Z}^{d-1}.$

We define *lattice-face* polytopes recursively.

We call a one dimensional polytope a *lattice-face* polytope if it is integral.

For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a *lattice-face* polytope if for any d-subset $U \subset V$,

- a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
- b) $\pi(\mathcal{L}(H_U)) = \mathbb{Z}^{d-1}.$

Lemma 6. Any integral cyclic polytope is a lattice-face polytope.

We define *lattice-face* polytopes recursively.

We call a one dimensional polytope a *lattice-face* polytope if it is integral.

For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a *lattice-face* polytope if for any d-subset $U \subset V$,

- a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and
- b) $\pi(\mathcal{L}(H_U)) = \mathbb{Z}^{d-1}.$

Lemma 6. Any integral cyclic polytope is a lattice-face polytope.

Lemma 7. Any lattice-face polytope is an integral polytope.

The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_{k}(\pi^{d-k}(P))m^{k}.$$

The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_{k}(\pi^{d-k}(P))m^{k}.$$

Observation:

1. $\pi(P)$ is a lattice-face $(d-1)\text{-polytope} \Rightarrow$ we only need to show the first equality.

The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_{k}(\pi^{d-k}(P))m^{k}.$$

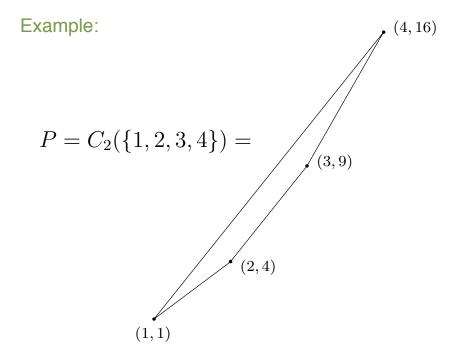
Observation:

- 1. $\pi(P)$ is a lattice-face (d-1)-polytope \Rightarrow we only need to show the first equality.
- 2. mP is a lattice-face d-polytope \Rightarrow it's enough to show that

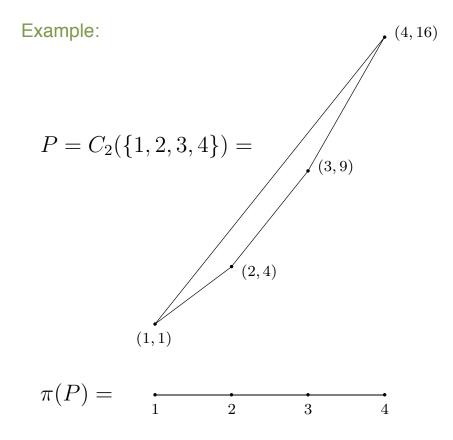
 $|\mathcal{L}(P)| = \operatorname{Vol}(P) + |\mathcal{L}(\pi(P))|.$

1. For any polytope $P \subset \mathbb{R}^d$ and any point $y \in \pi(P)$, let n(y, P) be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.

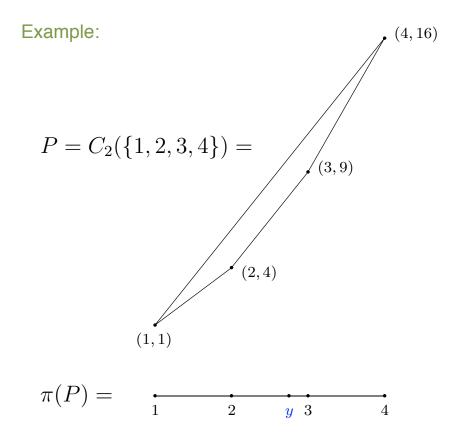
1. For any polytope $P \subset \mathbb{R}^d$ and any point $y \in \pi(P)$, let n(y, P) be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.



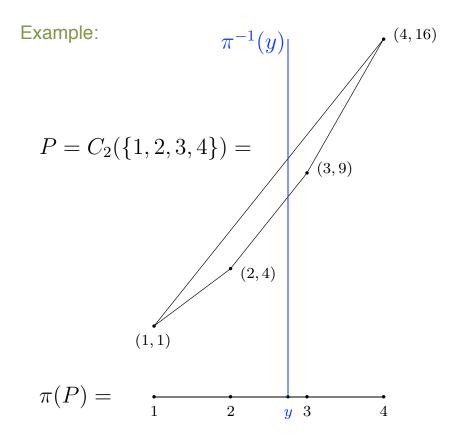
1. For any polytope $P \subset \mathbb{R}^d$ and any point $y \in \pi(P)$, let n(y, P) be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.



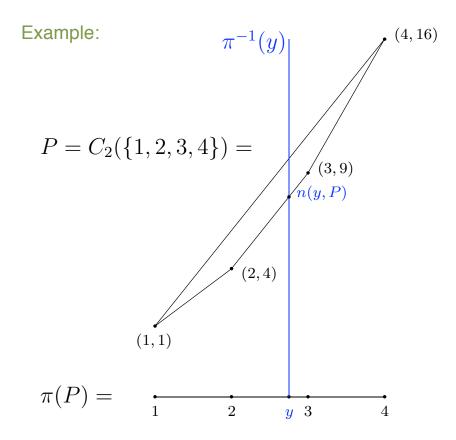
1. For any polytope $P \subset \mathbb{R}^d$ and any point $y \in \pi(P)$, let n(y, P) be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.



1. For any polytope $P \subset \mathbb{R}^d$ and any point $y \in \pi(P)$, let n(y, P) be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.

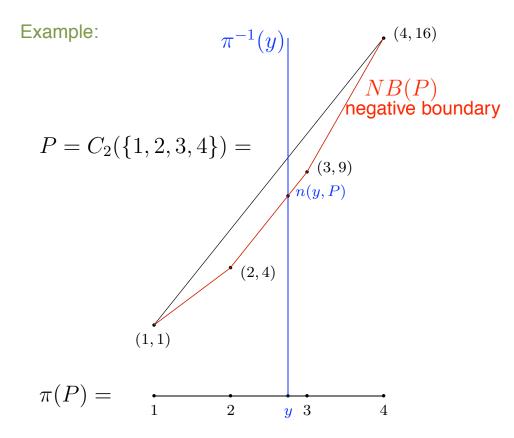


1. For any polytope $P \subset \mathbb{R}^d$ and any point $y \in \pi(P)$, let n(y, P) be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.



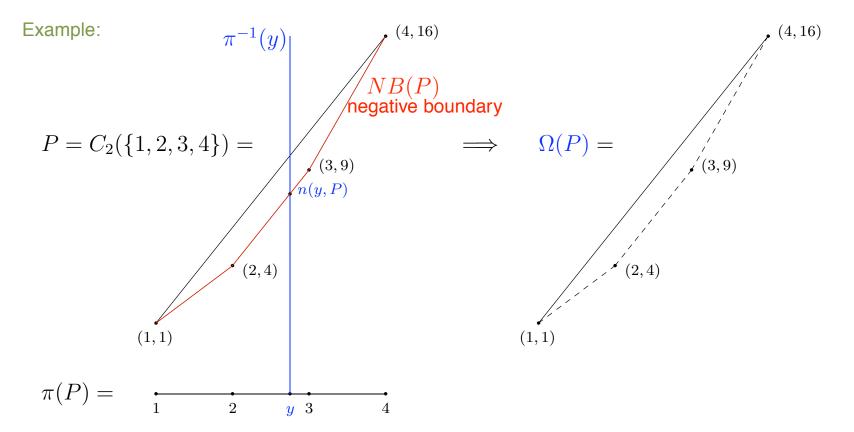
1. For any polytope $P \subset \mathbb{R}^d$ and any point $y \in \pi(P)$, let n(y, P) be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.

2. Define $NB(P) = \bigcup_{y \in \pi(P)} n(y, P)$ to be the *negative boundary* of P and $\Omega(P) = P \setminus NB(P)$ to be the *nonnegative part* of P.



FPSAC, 2006

1. For any polytope $P \subset \mathbb{R}^d$ and any point $y \in \pi(P)$, let n(y, P) be the point of $\pi^{-1}(y) \cap P$ having the smallest last coordinate.



Fu Liu

Clearly, π induces a bijection between $\mathcal{L}(NB(P))$ and $\mathcal{L}(\pi(P)).$ Therefore,

 $|\mathcal{L}(P)|$ = $|\mathcal{L}(\Omega(P))| + |\mathcal{L}(NB(P))|$ = $|\mathcal{L}(\Omega(P))| + |\mathcal{L}(\pi(P))|.$ Clearly, π induces a bijection between $\mathcal{L}(NB(P))$ and $\mathcal{L}(\pi(P))$. Therefore,

 $|\mathcal{L}(P)|$ = $|\mathcal{L}(\Omega(P))| + |\mathcal{L}(NB(P))|$ = $|\mathcal{L}(\Omega(P))| + |\mathcal{L}(\pi(P))|.$

Comparing with the formula we want to show:

 $|\mathcal{L}(P)| = \operatorname{Vol}(P) + |\mathcal{L}(\pi(P))|,$

one see that to prove Theorem 8 it is sufficient to prove the following theorem.

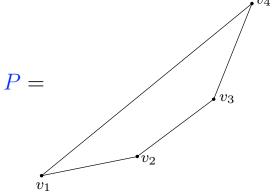
Theorem 9. For any P a lattice-face d-polytope,

 $\operatorname{Vol}(P) = |\mathcal{L}(\Omega(P))|.$

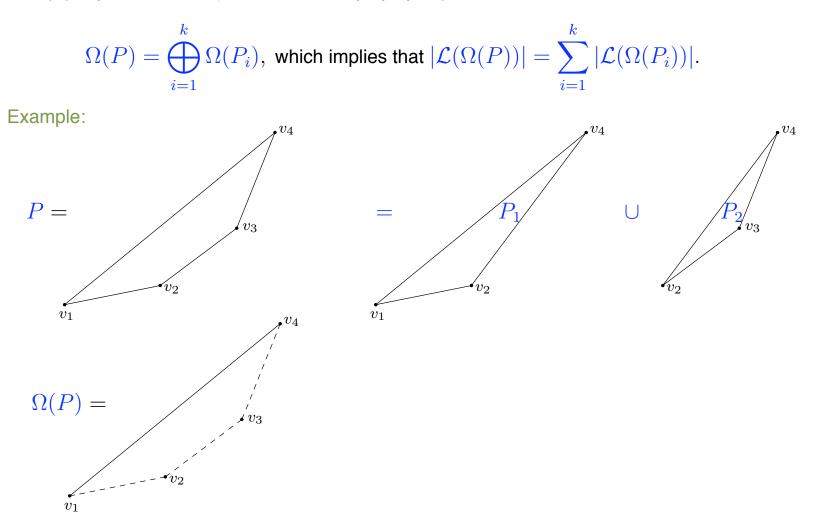
$$\Omega(P) = \bigoplus_{i=1}^{k} \Omega(P_i), \text{ which implies that } |\mathcal{L}(\Omega(P))| = \sum_{i=1}^{k} |\mathcal{L}(\Omega(P_i))|.$$

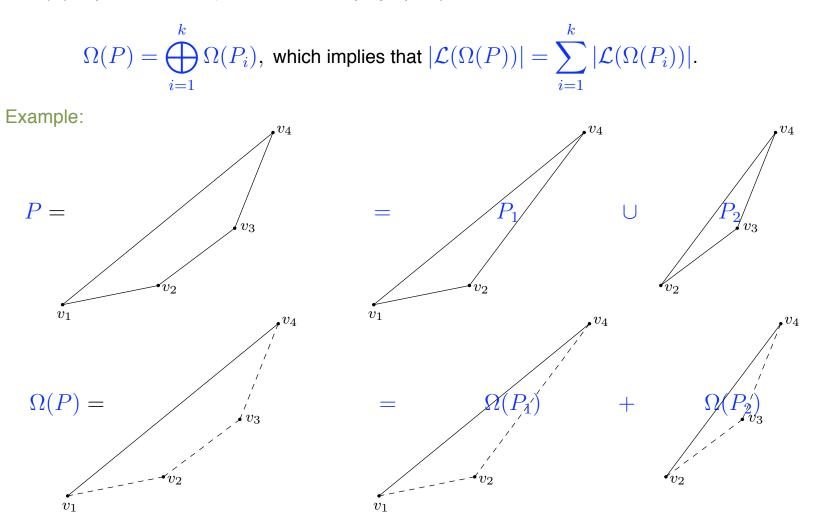
$$\Omega(P) = \bigoplus_{i=1}^k \Omega(P_i), \text{ which implies that } |\mathcal{L}(\Omega(P))| = \sum_{i=1}^k |\mathcal{L}(\Omega(P_i))|.$$

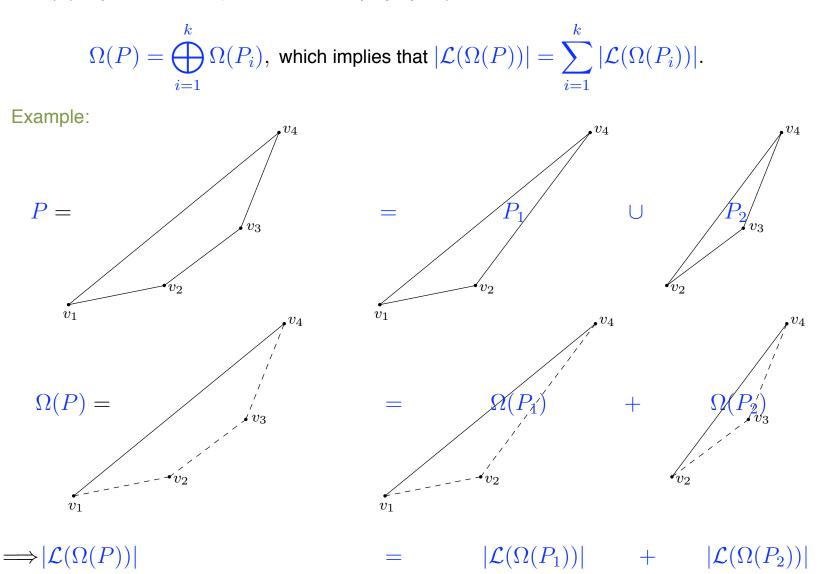
Example:



$$\Omega(P) = \bigoplus_{i=1}^{k} \Omega(P_i), \text{ which implies that } |\mathcal{L}(\Omega(P))| = \sum_{i=1}^{k} |\mathcal{L}(\Omega(P_i))|.$$
Example:
$$P = \underbrace{v_4}_{v_3} = \underbrace{P_1}_{v_2} \cup \underbrace{P_2}_{v_2} \underbrace{v_3}_{v_1} \cup \underbrace{P_2}_{v_3} \underbrace{v_4}_{v_4} \bigcup \underbrace{P_2}_{v_4} \underbrace{v_5}_{v_4} \bigcup \underbrace{P_2}_{v_5} \underbrace{v_5}_{v_4} \bigcup \underbrace{P_2}_{v_5} \underbrace{v_5}_{v_4} \bigcup \underbrace{P_2}_{v_5} \underbrace{v_5}_{v_4} \bigcup \underbrace{P_2}_{v_5} \underbrace{v_5}_{v_5} \underbrace{v_5}_{v_5} \bigcup \underbrace{P_2}_{v_5} \underbrace{v_5}_{v_5} \underbrace$$







Fu Liu

However, for any triangulation (without introducing new vertices) $P_1 \cup \cdots \cup P_k$, we have that

$$\operatorname{Vol}(P) = \sum_{i=1}^{k} \operatorname{Vol}(P_i).$$

Comparing this with

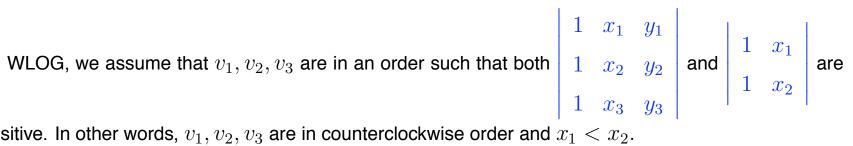
$$\mathcal{L}(\Omega(P))| = \sum_{i=1}^{k} |\mathcal{L}(\Omega(P_i))|,$$

we conclude that, to prove Theorem 9 ($Vol(P) = |\mathcal{L}(\Omega(P))|$), it is enough to prove the the case when P is a lattice-face d-simplex, i.e., P has d + 1 vertices which are affinely independent.

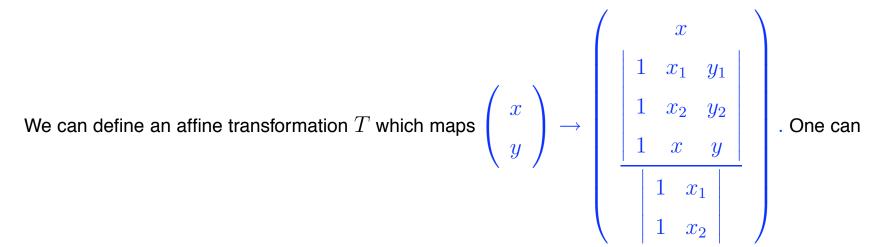
Idea of the Proof

We will use two dimensional lattice-face simplices to illustrate the idea of our proof.

Assume P is a 2-dimensional lattice-face simplex with vertex set $V = \{v_1, v_2, v_3\}$, where the coordinates of v_i are $\begin{pmatrix} x_i \\ y_i \end{pmatrix}$.



positive. In other words, v_1, v_2, v_3 are in counterclockwise order and $x_1 < x_2$.



check that

1. T gives a bijection between the lattice points in $\Omega(P)$ and the lattice points in $\Omega(T(P)).$ Therefore, we want to show that

$$\operatorname{Vol}(P) = |\mathcal{L}(\Omega(T(P)))|.$$

2. T(P) is a lattice-face polytope, as well.

Let
$$P' = T(P)$$
. Then its vertex set is $V' = \{v'_1 = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v'_2 = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v'_3 = \begin{pmatrix} x_3 \\ y'_3 \end{pmatrix}\},$

where
$$y_3' = rac{\left|\begin{array}{cccc} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{array}\right|}{\left|\begin{array}{cccc} 1 & x_1 \\ 1 & x_2 \end{array}\right|}.$$

Let
$$P' = T(P)$$
. Then its vertex set is $V' = \{v'_1 = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v'_2 = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v'_3 = \begin{pmatrix} x_3 \\ y'_3 \end{pmatrix}\},$
where $y'_3 = \frac{\begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}}{\begin{vmatrix} 1 & x_1 \\ 1 & x_2 \end{vmatrix}}.$

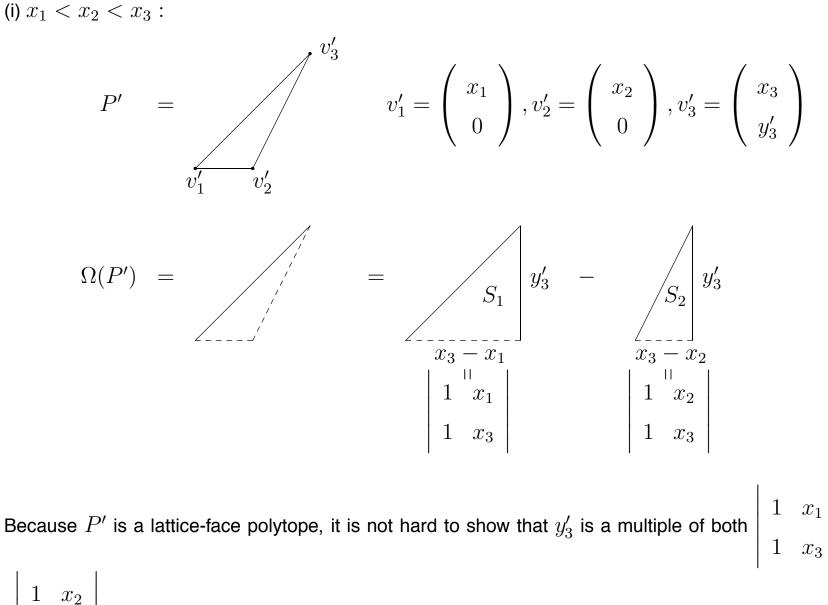
By our assumption, $y'_3 > 0$. There are 3 cases for the position of the vertices of P': (i) $x_1 < x_2 < x_3$; (ii) $x_1 < x_3 < x_2$; (iii) $x_3 < x_1 < x_2$. (i) $x_1 < x_2 < x_3$: $P' = v_3'$ $v_3' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ (i) $x_1 < x_2 < x_3$: $P' = v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ $\Omega(P') = v_1' = v_2'$ (i) $x_1 < x_2 < x_3$: $P' = v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ $\Omega(P') = v_1' = -$ (i) $x_1 < x_2 < x_3$: $P' = v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ $\Omega(P') = S_1 - M$ (i) $x_1 < x_2 < x_3$: $P' = v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ $\Omega(P') = S_1 y_3' - S_1$ (i) $x_1 < x_2 < x_3$: $P' = v_3' = (x_1 \\ v_1' = v_2' = (x_2 \\ 0), v_3' = (x_3 \\ y_3') = v_1' = v_2' = (x_1 \\ 0), v_2' = (x_2 \\ 0), v_3' = (x_3 \\ y_3') =$ (i) $x_1 < x_2 < x_3$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 $\Omega(P')$ y'_3 == S_1 $x_3 - x_1$ x_1 1 $1 \ x_3$

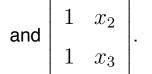
(i) $x_1 < x_2 < x_3$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 y'_3 $\Omega(P')$ == S_2 S_1 $x_3 - x_1$ x_1 1 1 x_3

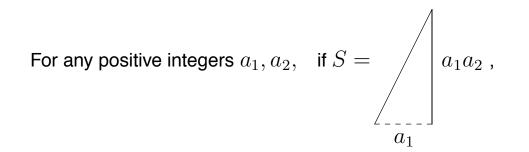
(i) $x_1 < x_2 < x_3$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 y'_3 – $\Omega(P')$ y'_3 = = S_2 S_1 $x_3 - x_1$ x_1 1 1 x_3

(i) $x_1 < x_2 < x_3$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 y'_3 – $\Omega(P')$ y'_3 = = S_2 S_1 $x_3 - x_1$ $x_3 - x_2$ $\overset{\scriptstyle\scriptstyle\scriptstyle ||}{x_1}$ 1 1 x_3

(i) $x_1 < x_2 < x_3$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 y'_3 – $\Omega(P')$ y'_3 = = S_2 S_1 $x_3 - x_1$ $x_3 - x_2$ $1 x_1$ || x_2 1 1 1 x_3 x_3







For any positive integers
$$a_1, a_2$$
, if $S =$
 a_1a_2 , then $|\mathcal{L}(S)| = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1$.

Therefore, we define $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1$, for any positive integers a_1, a_2 .

For any positive integers
$$a_1, a_2$$
, if $S =$
 a_1a_2 , then $|\mathcal{L}(S)| = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1$.

Therefore, we define $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1$, for any positive integers a_1, a_2 . Thus,

$$|\mathcal{L}(S_1)| = \sum_{s_1=1}^{1 \ x_1} \left| \begin{pmatrix} y'_3 / \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \right|_{s_1}^{s_1} \\ \sum_{s_2=1} \ 1 = f_2 \left(\begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix}, y'_3 / \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \right), \text{ and}$$

For any positive integers
$$a_1, a_2$$
, if $S = \left| \begin{array}{c} a_1 a_2 \\ a_1 a_2 \end{array} \right|$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2 s_1} 1$.

Therefore, we define $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1$, for any positive integers a_1, a_2 . Thus,

$$\begin{aligned} |\mathcal{L}(S_1)| &= \sum_{s_1=1}^{1-x_1} \left| \begin{pmatrix} y_3' \\ 1 & x_3 \\ 1 & x_3 \end{pmatrix} \right|_{s_1}^{s_1} \\ &= \sum_{s_1=1}^{1-x_2} \sum_{s_2=1}^{1-x_2} \left| 1 = f_2 \begin{pmatrix} \left| 1 & x_1 \\ 1 & x_3 \\ 1 & x_3 \end{pmatrix} \right|_{s_1}^{s_1} \\ |\mathcal{L}(S_2)| &= \sum_{s_1=1}^{1-x_2} \sum_{s_2=1}^{1-x_2} 1 = f_2 \begin{pmatrix} \left| 1 & x_2 \\ 1 & x_3 \\ 1 & x_3 \\ 1 & x_3 \end{pmatrix} \right|_{s_1}^{s_1} \\ &= \int_{s_1=1}^{1-x_2} \sum_{s_2=1}^{1-x_2} 1 = f_2 \begin{pmatrix} \left| 1 & x_2 \\ 1 & x_3 \\ 1 & x_3 \\ 1 & x_3 \\ 1 & x_3 \end{pmatrix} \right|_{s_1}^{s_1} \\ &= \int_{s_1=1}^{1-x_2} \sum_{s_2=1}^{1-x_2} 1 = f_2 \begin{pmatrix} \left| 1 & x_2 \\ 1 & x_3 \\ 1 & x_$$

For any positive integers
$$a_1, a_2$$
, if $S = \left| \begin{array}{c} a_1 a_2 \\ a_1 a_2 \end{array} \right|$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2 s_1} 1$.

Therefore, we define $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1$, for any positive integers a_1, a_2 . Thus,

$$\begin{aligned} \left| \mathcal{L}(S_1) \right| &= \sum_{s_1=1}^{1-x_1} \left| \begin{pmatrix} y_3' \\ 1 & x_3 \\ 1 & x_3 \\ \end{pmatrix} \right|_{s_1}^{s_1} \\ \left| \mathcal{L}(S_1) \right| &= \sum_{s_1=1}^{1-x_2} \sum_{s_2=1}^{1-x_2} \left| 1 = f_2 \left(\begin{vmatrix} 1 & x_1 \\ 1 & x_3 \\ 1 & x_3 \\ \end{vmatrix} \right|_{s_1}^{s_1} \\ \left| \mathcal{L}(S_2) \right| &= \sum_{s_1=1}^{1-x_2} \sum_{s_2=1}^{1-x_2} \left| 1 = f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \\ 1 & x_3 \\ \end{vmatrix} \right|_{s_1}^{s_1} \\ \left| 1 & x_3 \\ 1 & x_3 \\ \end{vmatrix} \right|_{s_1}^{s_2} \\ \\ 1 & x_3 \\$$

FPSAC, 2006

(ii) $x_1 < x_3 < x_2$: $P' = v_3' = (x_1 \\ v_1' = (x_1 \\ 0), v_2' = (x_2 \\ 0), v_3' = (x_3 \\ y_3')$ (ii) $x_1 < x_3 < x_2$: $P' = \underbrace{v_3'}_{v_1' \cdots v_2'} \qquad v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ $\Omega(P') = \underbrace{\Omega(P')}_{v_1' \cdots v_2'} \qquad (i)$ (ii) $x_1 < x_3 < x_2$: $P' = \underbrace{v_3'}_{v_1'} \qquad v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ $\Omega(P') = \underbrace{(P')}_{v_1'} = \underbrace{(P')}_{v_2'} \qquad (P') = \underbrace{(P')}_{v_1'} = \underbrace{(P')}_{v_2'} = \underbrace{(P')}_{v_2'} = \underbrace{(P')}_{v_1'} = \underbrace{(P')}_{v_2'} = \underbrace{(P')}_{v_2'}$ (ii) $x_1 < x_3 < x_2$: $P' = \underbrace{v'_3}_{v'_1} \quad v'_1 = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v'_2 = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v'_3 = \begin{pmatrix} x_3 \\ y'_3 \end{pmatrix}$ $\Omega(P') = \underbrace{S_1} + \underbrace{S_1}$ (ii) $x_1 < x_3 < x_2$: $P' = \underbrace{v'_3}_{v'_1} \quad v'_1 = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v'_2 = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v'_3 = \begin{pmatrix} x_3 \\ y'_3 \end{pmatrix}$ $\Omega(P') = \underbrace{S_1}_{v'_1} \quad y'_3 + \underbrace{S_1}_{v'_3}$ (ii) $x_1 < x_3 < x_2$: $P' = \underbrace{v_3'}_{v_1'} \quad v_2' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ $\Omega(P') = \underbrace{S_1}_{x_3 - x_1} y_3' + \underbrace{S_1}_{x_3 - x_1} y_3' +$ (ii) $x_1 < x_3 < x_2$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 + $\Omega(P')$ y'_3 == S_1 $x_3 - x_1$ x_1 1 1 x_3

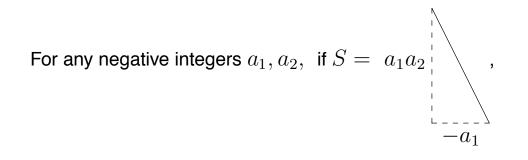
(ii) $x_1 < x_3 < x_2$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 + y'_3 $\Omega(P')$ == S_2 S_1 $x_3 - x_1$ x_1 1 1 x_3

(ii) $x_1 < x_3 < x_2$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 $\left|\begin{array}{cccc}y_3'&+&y_3'\\S_2\end{array}\right|_{S_2}$ $\Omega(P')$ == S_1 $x_3 - x_1$ x_1 1 1 x_3

(ii) $x_1 < x_3 < x_2$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 $\left| \begin{array}{ccc} y_3' & + & y_3' \end{array} \right| \left| \begin{array}{c} & & \\ S_2 \end{array} \right|$ $\Omega(P')$ == S_1 $(x_3 - x_2)$ $x_3 - x_1$ x_1 1 1 x_3

(ii) $x_1 < x_3 < x_2$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P'= v_2' v'_1 y'_3 + y'_3 $\Omega(P')$ == S_1 S_2^{\setminus} $-(x_3 - x_2)$ $x_3 - x_1$ וי 1 $\begin{bmatrix} 11\\ x_1 \end{bmatrix}$ x_2 1 1 1 x_3 x_3

(ii) $x_1 < x_3 < x_2$: v'_3 $v_1' = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, v_2' = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}, v_3' = \begin{pmatrix} x_3 \\ y_3' \end{pmatrix}$ P' v_2' v'_1 $= \qquad \qquad S_1 \quad \begin{vmatrix} y_3' & + & y_3' \\ S_2 \\ \end{vmatrix}$ $\Omega(P')$ = $-(x_3 - x_2)$ Clearly $|\mathcal{L}(S_1)| = f_2 \left(\begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix}, y'_3 / \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \right)$, but what is $|\mathcal{L}(S_2)|$?



For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2 \Big|_{a_1 a_2}$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2 s_1} 1 -a_1$

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{\substack{s_1=1 \\ s_1=1}}^{-a_1-1} \sum_{\substack{s_2=1 \\ s_2=1}}^{-a_2s_1} 1$
 $= \sum_{\substack{s_1=1 \\ s_1=1}}^{-a_1-1} (-a_2 s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1) (-a_1)$

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1) (-a_1)$
 $= -a_2 \frac{a_1}{2} (a_1 + 1)$

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1) (-a_1)$
 $= -a_2 \frac{a_1}{2} (a_1 + 1)$

Recall that for any $a_1, a_2 \in \mathbb{N}$, $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2 s_1} 1$

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1) (-a_1)$
 $= -a_2 \frac{a_1}{2} (a_1 + 1)$
Recall that for any $a_1, a_2 \in \mathbb{N}$, $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1 = \sum_{s_1}^{a_1} a_2s_1$

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1) (-a_1)$
 $= -a_2 \frac{a_1}{2} (a_1 + 1)$
Recall that for any $a_1, a_2 \in \mathbb{N}$, $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1 = \sum_{s_1}^{a_1} a_2s_1 = a_2 \frac{a_1}{2} (a_1 + 1).$

even \mathbb{R}^2 .

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1) (-a_1)$
 $= -a_2 \frac{a_1}{2} (a_1 + 1)$
Recall that for any $a_1, a_2 \in \mathbb{N}$, $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1 = \sum_{s_1}^{a_1} a_2s_1 = a_2 \frac{a_1}{2} (a_1 + 1)$.
Because $a_2 \frac{a_1}{2} (a_1 + 1)$ is a polynomial in a_1, a_2 , we can extend the domain of f_2 from \mathbb{N}^2 to \mathbb{Z}^2 or

FPSAC, 2006

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1) (-a_1)$
 $= -a_2 \frac{a_1}{2} (a_1 + 1)$
Recall that for any $a_1, a_2 \in \mathbb{N}$, $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1 = \sum_{s_1}^{a_1} a_2s_1 = a_2 \frac{a_1}{2} (a_1 + 1)$.
Because $a_2 \frac{a_1}{2} (a_1 + 1)$ is a polynomial in a_1, a_2 , we can extend the domain of f_2 from \mathbb{N}^2 to \mathbb{Z}^2 or

even \mathbb{R}^2 .

Then

 $|\mathcal{L}(S)| = -f_2(a_1, a_2).$

For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1) (-a_1)$
 $= -a_2 \frac{a_1}{2} (a_1 + 1)$
Recall that for any $a_1, a_2 \in \mathbb{N}$, $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1 = \sum_{s_1}^{a_1} a_2s_1 = a_2 \frac{a_1}{2} (a_1 + 1)$.
Because $a_2 \frac{a_1}{2} (a_1 + 1)$ is a polynomial in a_1, a_2 , we can extend the domain of f_2 from \mathbb{N}^2 to \mathbb{Z}^2 or

Because $a_2 \frac{a_1}{2}(a_1 + 1)$ is a polynomial in a_1, a_2 , we can extend the domain of f_2 from \mathbb{N}^2 to \mathbb{Z}^2 or even \mathbb{R}^2 .

Then

$$|\mathcal{L}(S)| = -f_2(a_1, a_2).$$

Thus,

$$|\mathcal{L}(S_2)| = \sum_{s_1=1}^{1} \sum_{s_2=1}^{1-1} \left(-\frac{y_3'}{\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix}} \right) s_1$$

$$|\mathcal{L}(S_2)| = \sum_{s_1=1}^{1-1} \sum_{s_2=1}^{1-1} \sum_{s_2=1}^{1-1} 1 = -f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix}, \frac{y_3'}{\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right)$$

•

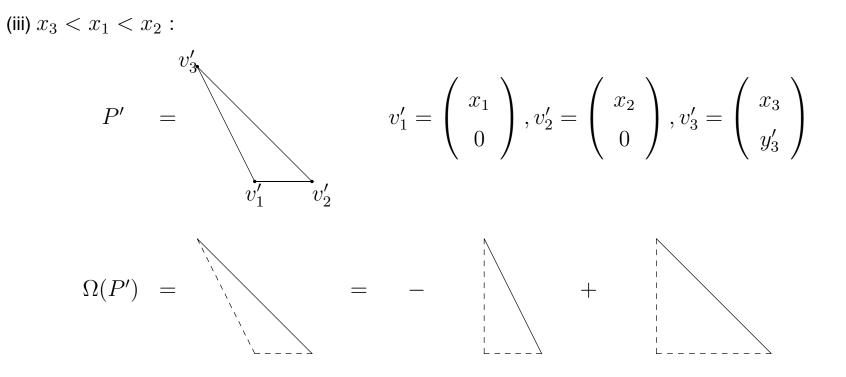
For any negative integers
$$a_1, a_2$$
, if $S = a_1 a_2$, then $|\mathcal{L}(S)| = \sum_{s_1=1}^{-a_1-1} \sum_{s_2=1}^{-a_2s_1} 1$
 $= \sum_{s_1=1}^{-a_1-1} (-a_2s_1)$
 $= -a_2 \frac{1}{2} (-a_1 - 1)(-a_1)$
 $= -a_2 \frac{a_1}{2} (a_1 + 1)$
Recall that for any $a_1, a_2 \in \mathbb{N}$, $f_2(a_1, a_2) = \sum_{s_1=1}^{a_1} \sum_{s_2=1}^{a_2s_1} 1 = \sum_{s_1}^{a_1} a_2s_1 = a_2 \frac{a_1}{2} (a_1 + 1)$.
Because $a_2 \frac{a_1}{2} (a_1 + 1)$ is a polynomial in a_1, a_2 , we can extend the domain of f_2 from \mathbb{N}^2 to \mathbb{Z}^2 or even \mathbb{R}^2 .

Then

$$|\mathcal{L}(S)| = -f_2(a_1, a_2).$$

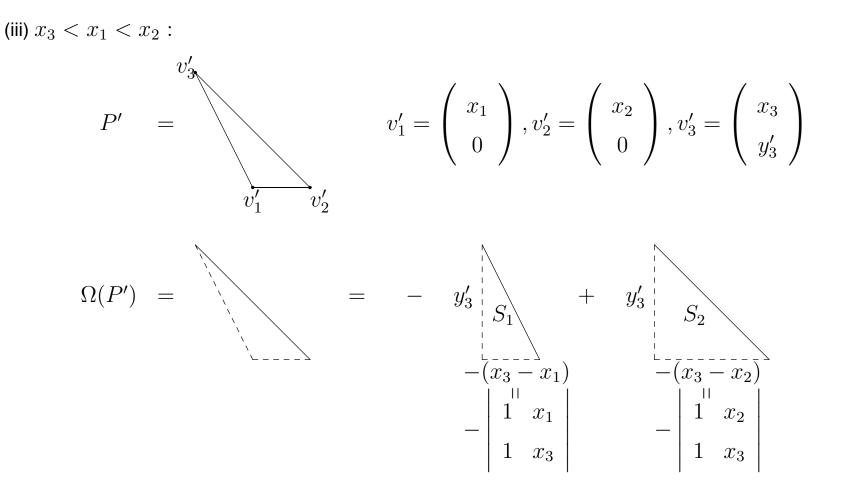
Thus,

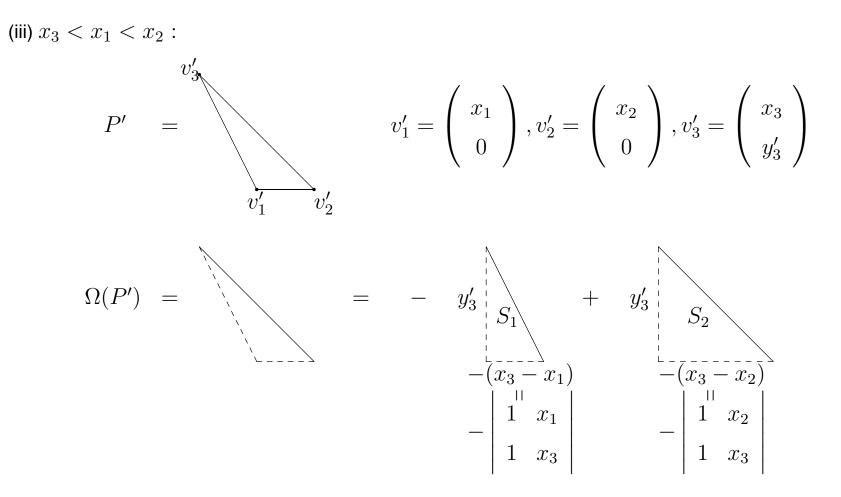
$$\begin{aligned} - \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \begin{vmatrix} -1 \left(-y'_3 / \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right) s_1 \\ |\mathcal{L}(S_2)| &= \sum_{s_1=1}^{-1} \sum_{s_2=1}^{-1} \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right) s_1 \\ 1 & x_3 \end{vmatrix} = -f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} , y'_3 / \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right) . \end{aligned}$$
Hence, for case (ii) $x_1 < x_3 < x_2 : |\mathcal{L}(\Omega(P))| = |\mathcal{L}(\Omega(P'))| = |\mathcal{L}(S_1)| + |\mathcal{L}(S_2)| = f_2 \left(\begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} , y'_3 / \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} - f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} , y'_3 / \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \right) - f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} , y'_3 / \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right). \end{aligned}$



FPSAC, 2006

Page 23





As before, we have that
$$|\mathcal{L}(\Omega(P))| = |\mathcal{L}(\Omega(P'))| = -|\mathcal{L}(S_1)| + |\mathcal{L}(S_2)|$$

= $f_2 \left(\begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix}, y'_3 / \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \right) - f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix}, y'_3 / \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right).$

FPSAC, 2006

Therefore, for any of the three cases,

$$\begin{aligned} |\mathcal{L}(\Omega(P))| &= f_2 \left(\begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix}, y_3' \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \right) - f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix}, y_3' \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right), \\ \text{where } y_3' &= \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} \middle| / \begin{vmatrix} 1 & x_1 \\ 1 & x_2 \end{vmatrix} \Big|. \end{aligned}$$

Therefore, for any of the three cases,

$$\begin{aligned} |\mathcal{L}(\Omega(P))| &= f_2 \left(\begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix}, y_3' \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \right) - f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix}, y_3' \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right), \\ \text{where } y_3' &= \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} \middle| \left| \begin{array}{c} 1 & x_1 \\ 1 & x_2 \\ 1 & x_2 \end{vmatrix} \right|. \end{aligned}$$

Recall that $f_2(a_1, a_2) = a_2 \frac{a_1}{2}(a_1 + 1)$, we can calculate that

$$|\mathcal{L}(\Omega(P))| = \frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} = \operatorname{Vol}(P).$$

Therefore, for any of the three cases,

$$\begin{aligned} |\mathcal{L}(\Omega(P))| &= f_2 \left(\begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix}, y_3' \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \right) - f_2 \left(\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix}, y_3' \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \right), \\ \text{where } y_3' &= \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} \middle| \left| \begin{array}{c} 1 & x_1 \\ 1 & x_2 \\ 1 & x_2 \end{vmatrix} \right|. \end{aligned}$$

Recall that $f_2(a_1, a_2) = a_2 \frac{a_1}{2}(a_1 + 1)$, we can calculate that

$$|\mathcal{L}(\Omega(P))| = \frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} = \operatorname{Vol}(P).$$

This completes the proof of Theorem 9 for dimension 2.

Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k: 0 \le k \le d-1$,

(*) for any (k+1)-subset $U \subset V$, $\pi^{d-k}(\mathcal{L}(H_U)) = \mathbb{Z}^k$,

where H_U is the affine space spanned by U. In other words, after dropping the last d - k coordinates of the lattice of H_U , we get the k-dimensional lattice.

Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k: 0 \le k \le d-1$,

(*) for any (k+1)-subset $U \subset V$, $\pi^{d-k}(\mathcal{L}(H_U)) = \mathbb{Z}^k$,

where H_U is the affine space spanned by U. In other words, after dropping the last d - k coordinates of the lattice of H_U , we get the k-dimensional lattice.

Note that in this definition, when k = 0, satisfying (*) is equivalent to saying that P is an integral polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1.

Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k: 0 \le k \le d-1$,

(*) for any (k+1)-subset $U \subset V$, $\pi^{d-k}(\mathcal{L}(H_U)) = \mathbb{Z}^k$,

where H_U is the affine space spanned by U. In other words, after dropping the last d - k coordinates of the lattice of H_U , we get the k-dimensional lattice.

Note that in this definition, when k = 0, satisfying (*) is equivalent to saying that P is an integral polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1.

Therefore, one may ask

Question: If P is a polytope that satisfies (*) for all $k \in K$, where K is a fixed subset of $\{0, 1, \ldots, d-1\}$, can we say something about the Ehrhart polynomial of P?

A conjecture

A special set K can be chosen as the set of consecutive integers from 0 to d', where d' is an integer no greater than d - 1. Based on some examples in this case, the Ehrhart polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 10. Given $d' \leq d - 1$, if P is a d-polytope with vertex set V such that $\forall k : 0 \leq k \leq d'$, (*) is satisfied, then for $0 \leq k \leq d'$, the coefficient of m^k in i(P, m) is the same as in $i(\pi^{d-d'}(P), m)$. In other words,

$$i(P,m) = i(\pi^{d-d'}(P),m) + \sum_{i=d'+1}^{d} c_i m^i.$$

A conjecture

A special set K can be chosen as the set of consecutive integers from 0 to d', where d' is an integer no greater than d - 1. Based on some examples in this case, the Ehrhart polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 10. Given $d' \leq d - 1$, if P is a d-polytope with vertex set V such that $\forall k : 0 \leq k \leq d'$, (*) is satisfied, then for $0 \leq k \leq d'$, the coefficient of m^k in i(P, m) is the same as in $i(\pi^{d-d'}(P), m)$. In other words,

$$i(P,m) = i(\pi^{d-d'}(P),m) + \sum_{i=d'+1}^{d} c_i m^i.$$

Example: $P = conv\{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)\}$. One can check that P satisfies (*) for k = 0, 1 but not for k = 2.

$$i(P,m) = 8m^3 + 10m^2 + 4m + 1,$$

where 4m + 1 is the Ehrhart polynomial of $\pi^2(P) = [0, 4]$.