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Preliminaries

Definition 1. A (convex) polytope P in the d-dimensional Euclidean spaceRd is the convex hull of finitely
many points V = {v1, v2, . . . , vn} ⊂ Rd. In other words,

P = conv(V ) = {λ1v1 + λ2v2 + · · · + λnvn : all λi ≥ 0, and λ1 + λ2 + · · · + λn = 1}.
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Preliminaries

Definition 1. A (convex) polytope P in the d-dimensional Euclidean spaceRd is the convex hull of finitely
many points V = {v1, v2, . . . , vn} ⊂ Rd. In other words,

P = conv(V ) = {λ1v1 + λ2v2 + · · · + λnvn : all λi ≥ 0, and λ1 + λ2 + · · · + λn = 1}.

A d-dimensional lattice Zd = {x = (x1, . . . , xd) | ∀xi ∈ Z} is the collection of all points with
integer coordinates in Rd. Any point in a lattice is called a lattice point.

An integral polytope is a convex polytope, whose vertices are all lattice points.

For any region R ⊂ Rd, we denote by L(R) := R ∩ Zd the set of lattice points in R.

Definition 2. For any polytope P ⊂ Rd and some positive integer m ∈ N, the mth dilated polytope of
P ismP = {mx : x ∈ P}.We denote by

i(m, P ) = |L(mP )|

the number of lattice points in mP.

Example: When d = 1, P is an interval [a, b], where a, b ∈ Z. ThenmP = [ma, mb] and

i(P, m) = (b − a)m + 1.
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Theorem of Ehrhart

Theorem 3. (Ehrhart) Let P be a d-dimensional integral polytope, then i(P, m) is a polynomial in m of

degree d.

Therefore, we call i(P, m) the Ehrhart polynomial of P.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial i(P, m)?
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial i(P, m)?

! The leading coefficient of i(P, m) is the volume Vol(P ) of P.

! The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with
respect to the sublattice in the hyperplane spanned by the facet.

! The constant term of i(P, m) is always 1.

! No results for other coefficients for general polytopes.
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Motivation

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.

Recall that given T = {t1, . . . , tn}< a linearly ordered set, a d-dimensional cyclic polytope Cd(T ) =

Cd(t1, . . . , tn) is the convex hull conv{vd(t1), vd(t2), . . . , vd(tn)} ofn > d distinct points νd(ti), 1 ≤
i ≤ n, on the moment curve.

The moment curve in Rd is defined by

νd : R → Rd, t )→ νd(t) =





t

t2

...

td




.
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The moment curve in Rd is defined by

νd : R → Rd, t )→ νd(t) =
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...

td




.

Example: T = {1, 2, 3, 4}, d = 3 :

Cd(T ) is the convex polytope whose vertices are
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Theorem 4. For any d-dimensional integral cyclic polytope Cd(T ),

i(Cd(T ), m) = Vol(mCd(T )) + i(Cd−1(T ), m).

Hence,

i(Cd(T ), m) =
d∑

k=0

Volk(mCk(T ))

=
d∑

k=0

Volk(Ck(T ))mk,

where Volk(mCk(T )) is the volume of mCk(T ) in k-dimensional space, and by convention we let

Vol0(mC0(T )) = 1.
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Example: T = {1, 2, 3, 4}, d = 3 :
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Example: T = {1, 2, 3, 4}, d = 3 :

! Cd(T ) = conv{





1

1

1



 ,





2

4

8



 ,





3

9

27



 ,





4

16

64



} : i(Cd(T ), m) = 2m3 + 4m2 +

3m + 1.

! Cd−1(T ) = conv{
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 ,
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 ,



 4

16



} : i(Cd−1(T ), m) = 4m2 +3m+1.

! Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.
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} : i(Cd−1(T ), m) = 4m2 +3m+1.

! Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.

! Cd−3(T ) = R0 : i(Cd−3(T ), m) = 1.
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Example: T = {1, 2, 3, 4}, d = 3 :
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} : i(Cd(T ), m) = 2m3 + 4m2 +

3m + 1.

! Cd−1(T ) = conv{



 1

1



 ,
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4



 ,
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9



 ,



 4

16



} : i(Cd−1(T ), m) = 4m2 +3m+1.

! Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.

! Cd−3(T ) = R0 : i(Cd−3(T ), m) = 1.

! 2, 4, 3 and 1 are the volumes of C3(T ), C2(T ), C1(T ) and C0(T ), respectively.
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Note that if we define πk : Rd → Rd−k to be the map which ignores the last k coordinates of a point,
then πk(Cd(T )) = Cd−k(T ). So when P = Cd(T ) is an integral cyclic polytope, we have that

i(P, m) = Vol(mP ) + i(π(P ), m) =
d∑

k=0

Volk(π
d−k(P ))mk, (5)

where Volk(P ) is the volume of P in k-dimensional Euclidean space Rk.
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Note that if we define πk : Rd → Rd−k to be the map which ignores the last k coordinates of a point,
then πk(Cd(T )) = Cd−k(T ). So when P = Cd(T ) is an integral cyclic polytope, we have that

i(P, m) = Vol(mP ) + i(π(P ), m) =
d∑

k=0

Volk(π
d−k(P ))mk, (5)

where Volk(P ) is the volume of P in k-dimensional Euclidean space Rk.

Question: Are there other integral polytopes which have the same form of Ehrhart polynomials as
cyclic polytopes? In other words, what kind of integral d-polytopes P are there whose Ehrhart polynomi-
als will be in the form of (5)?
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?

When d = 1, Cd(T ) is just an integral polytope.

For d ≥ 2, for any d-subset T ′ ⊂ T, let U = νd(T ′) be the corresponding d-subset of the vertex
set V = νd(T ) of Cd(T ). Then:

a) π(conv(U)) = π(Cd(T ′)) = Cd−1(T ′) is an integral cyclic polytope, and

b) π(L(HU)) = Zd−1, where HU is the affine space spanned by U . In other words, after dropping
the last coordinate of the lattice of HU , we get the (d − 1)-dimensional lattice.
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?

When d = 1, Cd(T ) is just an integral polytope.

For d ≥ 2, for any d-subset T ′ ⊂ T, let U = νd(T ′) be the corresponding d-subset of the vertex
set V = νd(T ) of Cd(T ). Then:

a) π(conv(U)) = π(Cd(T ′)) = Cd−1(T ′) is an integral cyclic polytope, and

b) π(L(HU)) = Zd−1, where HU is the affine space spanned by U . In other words, after dropping
the last coordinate of the lattice of HU , we get the (d − 1)-dimensional lattice.

Example:

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
HU = {(x, 1 + 4x) | x ∈ R}
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?

When d = 1, Cd(T ) is just an integral polytope.

For d ≥ 2, for any d-subset T ′ ⊂ T, let U = νd(T ′) be the corresponding d-subset of the vertex
set V = νd(T ) of Cd(T ). Then:

a) π(conv(U)) = π(Cd(T ′)) = Cd−1(T ′) is an integral cyclic polytope, and

b) π(L(HU)) = Zd−1, where HU is the affine space spanned by U . In other words, after dropping
the last coordinate of the lattice of HU , we get the (d − 1)-dimensional lattice.

Example:

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
HU = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

L(HU) = {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?
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the last coordinate of the lattice of HU , we get the (d − 1)-dimensional lattice.

Example:

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
HU = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

L(HU) = {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }

0 1 2 3 4

π(L(HU)) = {· · · , 0, 1, 2, 3, 4, · · · , } = Z
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?

When d = 1, Cd(T ) is just an integral polytope.

For d ≥ 2, for any d-subset T ′ ⊂ T, let U = νd(T ′) be the corresponding d-subset of the vertex
set V = νd(T ) of Cd(T ). Then:

a) π(conv(U)) = π(Cd(T ′)) = Cd−1(T ′) is an integral cyclic polytope, and

b) π(L(HU)) = Zd−1, where HU is the affine space spanned by U . In other words, after dropping
the last coordinate of the lattice of HU , we get the (d − 1)-dimensional lattice.

Example:

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
HU = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

L(HU) = {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }

0 1 2 3 4

π(L(HU)) = {· · · , 0, 1, 2, 3, 4, · · · , } = Z

Remark: Condition b) is equivalent to say that for any lattice point y ∈ Zd−1, we have that

π−1(y) ∩ HU , the intersection ofHU with the inverse image of y under π, is a lattice point.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any
d-subset U ⊂ V,

a) π(conv(U)) is a lattice-face polytope, and

b) π(L(HU)) = Zd−1.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any
d-subset U ⊂ V,

a) π(conv(U)) is a lattice-face polytope, and

b) π(L(HU)) = Zd−1.

Lemma 6. Any integral cyclic polytope is a lattice-face polytope.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face polytope if for any
d-subset U ⊂ V,

a) π(conv(U)) is a lattice-face polytope, and

b) π(L(HU)) = Zd−1.

Lemma 6. Any integral cyclic polytope is a lattice-face polytope.

Lemma 7. Any lattice-face polytope is an integral polytope.
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The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

i(P, m) = Vol(mP ) + i(π(P ), m) =
d∑

k=0

Volk(π
d−k(P ))mk.

FPSAC, 2006 Page 11



Ehrhart polynomials of lattice-face polytopes Fu Liu

The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

i(P, m) = Vol(mP ) + i(π(P ), m) =
d∑

k=0

Volk(π
d−k(P ))mk.

Observation:

1. π(P ) is a lattice-face (d − 1)-polytope⇒ we only need to show the first equality.
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The Main Theorem

Theorem 8. Let P be a lattice-face d-polytope, then

i(P, m) = Vol(mP ) + i(π(P ), m) =
d∑

k=0

Volk(π
d−k(P ))mk.

Observation:

1. π(P ) is a lattice-face (d − 1)-polytope⇒ we only need to show the first equality.

2. mP is a lattice-face d-polytope⇒ it’s enough to show that

|L(P )| = Vol(P ) + |L(π(P ))|.
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More Notation

1. For any polytope P ⊂ Rd and any point y ∈ π(P ), let n(y, P ) be the point of π−1(y) ∩ P

having the smallest last coordinate.

2. DefineNB(P ) = ∪y∈π(P )n(y, P ) to be the negative boundary of P and Ω(P ) = P \NB(P )

to be the nonnegative part of P.
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More Notation
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More Notation

1. For any polytope P ⊂ Rd and any point y ∈ π(P ), let n(y, P ) be the point of π−1(y) ∩ P

having the smallest last coordinate.

2. DefineNB(P ) = ∪y∈π(P )n(y, P ) to be the negative boundary of P and Ω(P ) = P \NB(P )

to be the nonnegative part of P.

Example:

P = C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)

π(P ) =
1 2 3 4y

π−1(y)

n(y, P )

NB(P )
negative boundary

=⇒ Ω(P ) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
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Clearly, π induces a bijection between L(NB(P )) and L(π(P )). Therefore,

|L(P )|
= |L(Ω(P ))| + |L(NB(P ))|
= |L(Ω(P ))| + |L(π(P ))|.
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Clearly, π induces a bijection between L(NB(P )) and L(π(P )). Therefore,

|L(P )|
= |L(Ω(P ))| + |L(NB(P ))|
= |L(Ω(P ))| + |L(π(P ))|.

Comparing with the formula we want to show:

|L(P )| = Vol(P ) + |L(π(P ))|,

one see that to prove Theorem 8 it is sufficient to prove the following theorem.

Theorem 9. For any P a lattice-face d-polytope,

Vol(P ) = |L(Ω(P ))|.
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For any triangulation (without introducing new vertices) P1 ∪ · · · ∪ Pk of a lattice-face polytope P,

(note that (iv) implies that all Pi are lattice-face polytopes,) we have that

Ω(P ) =
k⊕

i=1

Ω(Pi), which implies that |L(Ω(P ))| =
k∑

i=1

|L(Ω(Pi))|.
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For any triangulation (without introducing new vertices) P1 ∪ · · · ∪ Pk of a lattice-face polytope P,

(note that (iv) implies that all Pi are lattice-face polytopes,) we have that

Ω(P ) =
k⊕

i=1

Ω(Pi), which implies that |L(Ω(P ))| =
k∑

i=1

|L(Ω(Pi))|.

Example:

P =

v1

v2

v3

v4

=

v1

v2

v4

P1 ∪ P2

v2

v3

v4

Ω(P ) =

v1

v2

v3

v4

=

v1

v2

v4

Ω(P1) + Ω(P2)

v2

v3

v4

=⇒|L(Ω(P ))| = |L(Ω(P1))| + |L(Ω(P2))|
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However, for any triangulation (without introducing new vertices) P1 ∪ · · · ∪ Pk, we have that

Vol(P ) =
k∑

i=1

Vol(Pi).

Comparing this with

|L(Ω(P ))| =
k∑

i=1

|L(Ω(Pi))|,

we conclude that, to prove Theorem 9 (Vol(P ) = |L(Ω(P ))|), it is enough to prove the the case
when P is a lattice-face d-simplex, i.e., P has d + 1 vertices which are affinely independent.
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Idea of the Proof

We will use two dimensional lattice-face simplices to illustrate the idea of our proof.

Assume P is a 2-dimensional lattice-face simplex with vertex set V = {v1, v2, v3}, where the

coordinates of vi are



 xi

yi



 .

WLOG, we assume that v1, v2, v3 are in an order such that both

∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣
and

∣∣∣∣∣∣
1 x1

1 x2

∣∣∣∣∣∣
are

positive. In other words, v1, v2, v3 are in counterclockwise order and x1 < x2.
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We can define an affine transformation T which maps



 x

y



 →





x
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

1 x1 y1

1 x2 y2

1 x y

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

˛̨
˛̨
˛̨
˛̨

1 x1

1 x2

˛̨
˛̨
˛̨
˛̨





. One can

check that

1. T gives a bijection between the lattice points inΩ(P ) and the lattice points inΩ(T (P )). Therefore,
we want to show that

Vol(P ) = |L(Ω(T (P )))|.

2. T (P ) is a lattice-face polytope, as well.

FPSAC, 2006 Page 17



Ehrhart polynomials of lattice-face polytopes Fu Liu

Let P ′ = T (P ). Then its vertex set is V ′ = {v′
1 =



 x1

0



, v′
2 =



 x2

0



, v′
3 =



 x3

y′
3



},

where y′3 =

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

1 x1 y1

1 x2 y2

1 x3 y3

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

˛̨
˛̨
˛̨
˛̨

1 x1

1 x2

˛̨
˛̨
˛̨
˛̨

.
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Let P ′ = T (P ). Then its vertex set is V ′ = {v′
1 =



 x1

0



, v′
2 =



 x2

0



, v′
3 =



 x3

y′
3



},

where y′3 =

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

1 x1 y1

1 x2 y2

1 x3 y3

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

˛̨
˛̨
˛̨
˛̨

1 x1

1 x2

˛̨
˛̨
˛̨
˛̨

.

By our assumption, y′3 > 0. There are 3 cases for the position of the vertices of P ′ :

(i) x1 < x2 < x3; (ii) x1 < x3 < x2; (iii) x3 < x1 < x2.
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(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3
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(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) =
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(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = −
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(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = −
S1
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(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = −
S1

y′
3

FPSAC, 2006 Page 19



Ehrhart polynomials of lattice-face polytopes Fu Liu

(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3
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S1

y′
3
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(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = −
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
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∣∣∣∣∣∣
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(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = −
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2

y′
3

x3 − x2!∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣

FPSAC, 2006 Page 19



Ehrhart polynomials of lattice-face polytopes Fu Liu

(i) x1 < x2 < x3 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = −
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2

y′
3

x3 − x2!∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣

Because P ′ is a lattice-face polytope, it is not hard to show that y′3 is a multiple of both

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

and

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
.
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For any positive integers a1, a2, if S = a1a2

a1

,
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For any positive integers a1, a2, if S = a1a2

a1

, then |L(S)| =
∑a1

s1=1

∑a2s1

s2=1 1.
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For any positive integers a1, a2, if S = a1a2

a1

, then |L(S)| =
∑a1

s1=1

∑a2s1

s2=1 1.

Therefore, we define f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1, for any positive integers a1, a2.
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For any positive integers a1, a2, if S = a1a2

a1

, then |L(S)| =
∑a1

s1=1

∑a2s1

s2=1 1.

Therefore, we define f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1, for any positive integers a1, a2. Thus,

|L(S1)| =

˛̨
˛̨
˛̨

1 x1

1 x3

˛̨
˛̨
˛̨

∑

s1=1

0

@y′
3/

˛̨
˛̨
˛̨

1 x1

1 x3

˛̨
˛̨
˛̨

1

As1

∑

s2=1

1 = f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 , and
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For any positive integers a1, a2, if S = a1a2

a1

, then |L(S)| =
∑a1

s1=1

∑a2s1

s2=1 1.

Therefore, we define f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1, for any positive integers a1, a2. Thus,

|L(S1)| =

˛̨
˛̨
˛̨

1 x1

1 x3

˛̨
˛̨
˛̨

∑

s1=1

0

@y′
3/

˛̨
˛̨
˛̨

1 x1

1 x3

˛̨
˛̨
˛̨

1

As1

∑

s2=1

1 = f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 , and

|L(S2)| =

˛̨
˛̨
˛̨

1 x2

1 x3

˛̨
˛̨
˛̨

∑

s1=1

0

@y′
3/

˛̨
˛̨
˛̨

1 x2

1 x3

˛̨
˛̨
˛̨

1

As1

∑

s2=1

1 = f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 .
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For any positive integers a1, a2, if S = a1a2

a1

, then |L(S)| =
∑a1

s1=1

∑a2s1

s2=1 1.

Therefore, we define f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1, for any positive integers a1, a2. Thus,

|L(S1)| =

˛̨
˛̨
˛̨

1 x1

1 x3

˛̨
˛̨
˛̨

∑

s1=1

0

@y′
3/

˛̨
˛̨
˛̨

1 x1

1 x3

˛̨
˛̨
˛̨

1

As1

∑

s2=1

1 = f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 , and

|L(S2)| =

˛̨
˛̨
˛̨

1 x2

1 x3

˛̨
˛̨
˛̨

∑

s1=1

0

@y′
3/

˛̨
˛̨
˛̨

1 x2

1 x3

˛̨
˛̨
˛̨

1

As1

∑

s2=1

1 = f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 .

Hence, for case (i) x1 < x2 < x3 : |L(Ω(P ))| = |L(Ω(P ′))| = |L(S1)|− |L(S2)|

= f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 − f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 .
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) =
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1

y′
3
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1

y′
3

x3 − x1
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2

y′
3
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2

y′
3

−(x3 − x2)
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2

y′
3

−(x3 − x2)!
−

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
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(ii) x1 < x3 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = +
S1

y′
3

x3 − x1!∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2

y′
3

−(x3 − x2)!
−

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣

Clearly |L(S1)| = f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 , but what is |L(S2)|?
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For any negative integers a1, a2, if S = a1a2

−a1

,
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)

= −a2
a1
2 (a1 + 1)
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)

= −a2
a1
2 (a1 + 1)

Recall that for any a1, a2 ∈ N, f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)

= −a2
a1
2 (a1 + 1)

Recall that for any a1, a2 ∈ N, f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1 =
∑a1

s1
a2s1
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)

= −a2
a1
2 (a1 + 1)

Recall that for any a1, a2 ∈ N, f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1 =
∑a1

s1
a2s1 = a2

a1
2 (a1 + 1).
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)

= −a2
a1
2 (a1 + 1)

Recall that for any a1, a2 ∈ N, f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1 =
∑a1

s1
a2s1 = a2

a1
2 (a1 + 1).

Because a2
a1
2 (a1 + 1) is a polynomial in a1, a2, we can extend the domain of f2 from N2 to Z2 or

even R2.
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)

= −a2
a1
2 (a1 + 1)

Recall that for any a1, a2 ∈ N, f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1 =
∑a1

s1
a2s1 = a2

a1
2 (a1 + 1).

Because a2
a1
2 (a1 + 1) is a polynomial in a1, a2, we can extend the domain of f2 from N2 to Z2 or

even R2.

Then

|L(S)| = −f2(a1, a2).
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)

= −a2
a1
2 (a1 + 1)

Recall that for any a1, a2 ∈ N, f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1 =
∑a1

s1
a2s1 = a2

a1
2 (a1 + 1).

Because a2
a1
2 (a1 + 1) is a polynomial in a1, a2, we can extend the domain of f2 from N2 to Z2 or

even R2.

Then

|L(S)| = −f2(a1, a2).

Thus,

|L(S2)| =

−

˛̨
˛̨
˛̨

1 x2

1 x3

˛̨
˛̨
˛̨−1

∑

s1=1

0

@−y′
3/

˛̨
˛̨
˛̨

1 x2

1 x3

˛̨
˛̨
˛̨

1

As1

∑

s2=1

1 = −f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 .
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For any negative integers a1, a2, if S = a1a2

−a1

, then |L(S)| =
∑−a1−1

s1=1

∑−a2s1

s2=1 1

=
∑−a1−1

s1=1 (−a2s1)

= −a2
1
2(−a1 − 1)(−a1)

= −a2
a1
2 (a1 + 1)

Recall that for any a1, a2 ∈ N, f2(a1, a2) =
∑a1

s1=1

∑a2s1

s2=1 1 =
∑a1

s1
a2s1 = a2

a1
2 (a1 + 1).

Because a2
a1
2 (a1 + 1) is a polynomial in a1, a2, we can extend the domain of f2 from N2 to Z2 or

even R2.

Then
|L(S)| = −f2(a1, a2).

Thus,

|L(S2)| =

−

˛̨
˛̨
˛̨

1 x2

1 x3

˛̨
˛̨
˛̨−1

∑

s1=1

0

@−y′
3/

˛̨
˛̨
˛̨

1 x2

1 x3

˛̨
˛̨
˛̨

1

As1

∑

s2=1

1 = −f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 .

Hence, for case (ii) x1 < x3 < x2 : |L(Ω(P ))| = |L(Ω(P ′))| = |L(S1)| + |L(S2)| =

f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 − f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 .
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(iii) x3 < x1 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = − +
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(iii) x3 < x1 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = − +
S1

y′
3

−(x3 − x1)!
−

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2

y′
3

−(x3 − x2)!
−

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
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(iii) x3 < x1 < x2 :

P ′ =

v′
1 v′

2

v′
3

v′
1 =



 x1

0



 , v′
2 =



 x2

0



 , v′
3 =



 x3

y′
3





Ω(P ′) = = − +
S1

y′
3

−(x3 − x1)!
−

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣

S2

y′
3

−(x3 − x2)!
−

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣

As before, we have that |L(Ω(P ))| = |L(Ω(P ′))| = −|L(S1)| + |L(S2)|

= f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 − f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 .
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Therefore, for any of the three cases,

|L(Ω(P ))| = f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 − f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 ,

where y′3 =

∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣
1 x1

1 x2

∣∣∣∣∣∣
.
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Therefore, for any of the three cases,

|L(Ω(P ))| = f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 − f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 ,

where y′3 =

∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣
1 x1

1 x2

∣∣∣∣∣∣
.

Recall that f2(a1, a2) = a2
a1
2 (a1 + 1), we can calculate that

|L(Ω(P ))| =
1

2

∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣
= Vol(P ).
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Therefore, for any of the three cases,

|L(Ω(P ))| = f2





∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x1

1 x3

∣∣∣∣∣∣



 − f2





∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣
, y′

3/

∣∣∣∣∣∣
1 x2

1 x3

∣∣∣∣∣∣



 ,

where y′3 =

∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣
1 x1

1 x2

∣∣∣∣∣∣
.

Recall that f2(a1, a2) = a2
a1
2 (a1 + 1), we can calculate that

|L(Ω(P ))| =
1

2

∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣
= Vol(P ).

This completes the proof of Theorem 9 for dimension 2.
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Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition
we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all
k : 0 ≤ k ≤ d − 1,

($) for any (k + 1)-subset U ⊂ V,

πd−k(L(HU)) = Zk,

whereHU is the affine space spanned by U. In other words, after dropping the last d−k coordinates
of the lattice ofHU , we get the k-dimensional lattice.
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Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition
we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all
k : 0 ≤ k ≤ d − 1,

($) for any (k + 1)-subset U ⊂ V,

πd−k(L(HU)) = Zk,

whereHU is the affine space spanned by U. In other words, after dropping the last d−k coordinates
of the lattice ofHU , we get the k-dimensional lattice.

Note that in this definition, when k = 0, satisfying ($) is equivalent to saying that P is an integral
polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1.
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Further Discussion

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition
we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all
k : 0 ≤ k ≤ d − 1,

($) for any (k + 1)-subset U ⊂ V,

πd−k(L(HU)) = Zk,

whereHU is the affine space spanned by U. In other words, after dropping the last d−k coordinates
of the lattice ofHU , we get the k-dimensional lattice.

Note that in this definition, when k = 0, satisfying ($) is equivalent to saying that P is an integral
polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1.

Therefore, one may ask

Question: IfP is a polytope that satisfies ($) for all k ∈ K,whereK is a fixed subset of {0, 1, . . . , d−
1}, can we say something about the Ehrhart polynomial of P ?
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A conjecture

A special setK can be chosen as the set of consecutive integers from 0 to d′, where d′ is an integer
no greater than d− 1. Based on some examples in this case, the Ehrhart polynomials seems to follow a
certain pattern, so we conjecture the following:

Conjecture 10. Given d′ ≤ d − 1, if P is a d-polytope with vertex set V such that ∀k : 0 ≤ k ≤ d′,

($) is satisfied, then for 0 ≤ k ≤ d′, the coefficient of mk in i(P, m) is the same as in i(πd−d′(P ), m).

In other words,

i(P, m) = i(πd−d′(P ), m) +
d∑

i=d′+1

cim
i.
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A conjecture

A special setK can be chosen as the set of consecutive integers from 0 to d′, where d′ is an integer
no greater than d− 1. Based on some examples in this case, the Ehrhart polynomials seems to follow a
certain pattern, so we conjecture the following:

Conjecture 10. Given d′ ≤ d − 1, if P is a d-polytope with vertex set V such that ∀k : 0 ≤ k ≤ d′,

($) is satisfied, then for 0 ≤ k ≤ d′, the coefficient of mk in i(P, m) is the same as in i(πd−d′(P ), m).

In other words,

i(P, m) = i(πd−d′(P ), m) +
d∑

i=d′+1

cim
i.

Example: P = conv{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)}.One can check that P satisfies ($) for
k = 0, 1 but not for k = 2.

i(P, m) = 8m3 + 10m2 + 4m + 1,

where 4m + 1 is the Ehrhart polynomial of π2(P ) = [0, 4].
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