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I. INTRODUCTION
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A model for a Hyperelliptic Curve (with a rational point) is an

equation of the form

y2 = f(x)

where f(x) is a polynomial of degree 2g + 1 with all roots distinct,

and coefficients in a field K of characteristic 6= 2.

We will let C denote the zero locus of such a curve with

(x, y)−coordinates in K.

Projectivizing, we also obtain one point at infinity P∞.

The number g is a positive integer known as the genus of the curve.
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We let K be Fq, a finite field containing q elements, where q is a

power of a prime.

We can also let K be a field extension of Fq, such as Fqk , or even

the algebraic closure Fq.

C(Fq), C(Fqk), or C(Fq) will denote the curves over these fields,

respectively.

C(Fq) ⊂ C(Fqk1 ) ⊂ C(Fqk2 ) ⊂ · · · ⊂ C(Fq)

for any sequence of natural numbers 1|k1|k2| . . . .
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The Frobenius automorphism π acts on curve C over finite field Fq

via

π(a, b) = (aq, bq).

Fact 1 For a point P ∈ C(Fq),

π(P ) ∈ C(Fq).

Fact 2 For a point P ∈ C(Fqk),

πk(P ) = P.
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Let Nm signify the number of points on curve C, over finite field

Fqm .

Alternatively, Nm counts the number of points in C(Fq) which are

fixed by the mth power of the Frobenius automorphism, πm.

Using this sequence, we define the Zeta Function as the

exponential generating function.

Z(C, T ) = exp

( ∞
∑

m=1

Nm
T m

m

)
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Theorem 1 (Rationality - Weil 1948)

Z(C, T ) =
(1 − α1T )(1 − α2T ) · · · (1 − α2g−1T )(1 − α2gT )

(1 − T )(1 − qT )

for complex numbers αi’s, where g is the genus of the curve C.

Furthermore, the numerator of Z(C, T ), which we will denote as

L(C, T ), has integer coefficients.

Theorem 2 (Functional Equation - Weil 1948)

Z(C, T ) = qg−1T 2g−2Z(C, 1/qT )
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As a corollary to Rationality we get

Nk = pk[1 + q − α1 − · · · − α2g]

= 1 + qk − αk
1 − · · · − αk

2g

and the Functional Equation implies up to permutation,

α2i−1α2i = q.

By Rationality and the Functional Equation:

The Zeta Function of curve C of genus g,

hence the entire sequence of {Nk}’s,

only depends on {q, N1, N2, . . . , Ng}.
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Specializing to the case of an elliptic curve E, where g = 1, a lot

more is known and there is additional structure.

Fact 3 E can be represented as the zero locus in P
2 of the equation

y2 = x3 + Ax + B

for A, B ∈ Fq. (if p 6= 2, 3)

Fact 4 E has a group structure where two points on E can be

added to yield another point on the curve.

Fact 5 The Frobenius automorphism is compatible with the group

structure:

π(P ⊕ Q) = π(P ) ⊕ π(Q).
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Draw Chord/Tangent Line and then reflect about horizontal axis

P

Q

R

P + Q = R
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If P1 = (x1, y1), P2 = (x2, y2), then

P1 ⊕ P2 = P3 = (x3, y3) where

1) If x1 6= x2 then

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1 with m =
y2 − y1

x2 − x1
.

2) If x1 = x2 but (y1 6= y2, or y1 = 0 = y2) then P3 = P∞.

3) If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1 and y3 = m(x1 − x3) − y1 with m =
3x2

1 + A

2y1
.

4) P∞ acts as the identity element in this addition.
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Theorem 3 (Garsia ? 2004) For an elliptic curve, we can write

Nk as a polynomial in terms of N1 and q such that

Nk =

k
∑

i=1

(−1)i−1Pk,i(q)N
i
1

where each Pk,i is a polynomial in q with positive integer

coefficients.

This can be proven using the fact that

Nk = 1 + qk − αk
1 − αk

2

and this leads to a recursion for αk
1 + αk

2 in terms of

α1 + α2 = 1 + q − N1 and

α1α2 = q.

We can prove positivity by induction.
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N2 = (2 + 2q)N1 − N2
1

N3 = (3 + 3q + 3q2)N1 − (3 + 3q)N2
1 + N3

1

N4 = (4 + 4q + 4q2 + 4q3)N1 − (6 + 8q + 6q2)N2
1 + (4 + 4q)N3

1 − N4
1

N5 = (5 + 5q + 5q2 + 5q3 + 5q4)N1 − (10 + 15q + 15q2 + 10q3)N2
1

+ (10 + 15q + 10q2)N3
1 − (5 + 5q)N4

1 + N5
1

Question 1 What is a combinatorial interpretation of these

expressions, i.e. of the Pk,i’s?
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II. A COMBINATORIAL INTERPRETATION OF Nk.
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Fibonacci Numbers

Fn = Fn−1 + Fn−2

F0 = 1, F1 = 1

1, 1, 2, 3, 5, 8, 13, 21, 34 . . .

Counts the number of subsets of {1, 2, . . . , n − 1} with no two

elements consecutive

e.g. F5 = 8 : { }, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 4}
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Lucas Numbers

Ln = Ln−1 + Ln−2

L1 = 1, L2 = 3

1, 3, 4, 7, 11, 18, 29, 47, . . .

Counts the number of subsets of {1, 2, . . . ,n} with no two elements

circularly consecutive

e.g. L4 = 7 : { }, {1}, {2}, {3}, {4}, {1, 3}, {2, 4}

By Convention and Recurrence: L0 = 2
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Definition 1 We define the (q, t)−Lucas numbers to be a

sequence of polynomials in variables q and t such that Ln(q, t) is

defined as

Ln(q, t) =
∑

S

q# even elements in S t ⌊n
2
⌋−#S

where the sum is over subsets S of {1, 2, . . . , n} such that no two

numbers are circularly consecutive.

e.g. L2 = 3 : { }, {1}, {2}

L2(q, t) = q0t1 + q0t0 + q1t0 = 1 + q + t

e.g. L4 = 7 : { }, {1}, {2}, {3}, {4}, {1, 3}, {2, 4}

L4(q, t) = q0t2 + q0t1 + q1t1 + q0t1 + q1t1 + q0t0 + q2t0

= 1 + q2 + (2q + 2)t + t2

University of California, San Diego Slide 18



Combinatorial Aspects of Elliptic Curves Gregg Musiker

Theorem 4 (M- 2005)

L2k(q, t) = 1 + qk − Nk

∣

∣

∣

∣

N1=−t

We prove this by showing that the left- and right-hand-sides satisfy

the same initial conditions and recurrence relations:

L2(q, t) = 1 + q + t

L4(q, t) = 1 + q2 + (2 + 2q)t + t2

The L2k(q, t)’s satisfy recurrence relation

L2k+2(q, t) = (1 + q + t)L2k(q, t) − qL2k−2(q, t).

The right-hand-sides are equal to 1 + qk − Nk

∣

∣

∣

∣

N1=−t

= αk
1 + αk

2

αk+1
1 + αk+1

2 = (1 + q − N1)(α
k
1 + αk

2) − q(αk−1
1 + αk−1

2 )
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Question 2 Is there a generating function equal to Nk directly?

University of California, San Diego Slide 20



Combinatorial Aspects of Elliptic Curves Gregg Musiker

Question 2 Is there a generating function equal to Nk directly?

We can come close.
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We let Wn denote the wheel graph which consists of n vertices on a

circle and a central vertex which is adjacent to every other vertex.
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We let Wn denote the wheel graph which consists of n vertices on a

circle and a central vertex which is adjacent to every other vertex.

We note that a spanning tree will consist of arcs on the rim and

spokes. We orient the arcs clockwise and designate the head of each

arc.
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Definition 2

Wk(q, t) =
∑

spanning trees of Wk

qtotal dist from spokes to tails t# spokes.

Theorem 5 (M- 2005)

Wk(q, t) = −Nk

∣

∣

N1=−t
=

k
∑

i=1

Pk,i(q) ti for all k ≥ 1.

q2t3

dist = 1

dist = 1

dist = 0

q3t3

dist = 0

dist = 1

dist = 2

The proof uses combinatorial facts from [Egeciouglu-Remmel 1990]

and [Benjamin-Yerger 2004].
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Number Theoretic Interpretation of Nk(q, N1)’s?

Algebraic Geometric Interpretation of Nk(q, N1)’s?
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IV. UNDERSTANDING NUMBER THEORETICALLY

N2 = (2 + 2q)N1 − N2
1 .
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Our first observation is the factorization:

N2 = N1 · (2 + 2q − N1).

N1 clearly counts objects, namely points on elliptic curve E.

Does the second factor also count something?
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Our first observation is the factorization:

N2 = N1 · (2 + 2q − N1).

N1 clearly counts objects, namely points on elliptic curve E.

Does the second factor also count something?

YES,

2 + 2q − N1 counts the number of points on Et.

If E has equation (char 6= 2, 3)

y2 = x3 + ax + b,

then Et has equation y2 = x3 + aΛ−2x + bΛ−3 for Λ 6= α2, α ∈ Fq.
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The isomorphism class of Et doesn’t depend on the choice of Λ, as

long as it is a non-square, and

Et : y2 = x3 + aΛ−2x + bΛ−3

is also isomorphic to the curve with equation

y2 = Λ · (x3 + ax + b).

Et also isomorphic to E′(Fq) ≤ E(Fq2),

the set
{

(α, λβ) ∈ E(Fq2) : α, β ∈ Fq, λ ∈ Fq2 \ Fq

}
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We follow [Stark 1973] and partition the set Fq into three sets:

We let I1 denote the number of α ∈ Fq such that α is the

x−coordinate of some ordinary point on E, i.e. (α, β), β 6= 0.

We let I0 denote the number of α ∈ Fq such that α is the

x−coordinate of a special point on E, i.e. (α, 0).

We let I−1 denote the number of α ∈ Fq such that α is not the

x−coordinate of some point on E.

If the equation of E is y2 = f(x), these can also be described as:

Ii = #{α ∈ Fq such that f(α)
q−1

2 = i}
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Since these three possibilities partition the set Fq, we obtain

I−1 + I0 + I1 = q.

Since ordinary points come in conjugate pairs, and special and

infinite points come singleton, we get futher

N1(E) = 2I1 + I0 + 1.

Lastly, by the definition of Et, we conclude

N1(E
t) = 2I−1 + I0 + 1.
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2q + 2 − N1(E) = 2I−1 + 2I0 + 2I1 + 2 − N1(E)

= (2I−1 + 2I0 + 2I1 + 2) − (2I1 + I0 + 1)

= 2I−1 + I0 + 1

which we note is now a positive sum, rather than an alternating

one, and in fact this sum is exactly N1(E
t).

Thus

N2 = |E(Fq2)| = |E(Fq)| · |E
t(Fq)|.

This can also be proven via considering the trace of the Frobenius.

Question 3 Is there a direct bijective proof of this identity?
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2q + 2 − N1(E) = 2I−1 + 2I0 + 2I1 + 2 − N1(E)

= (2I−1 + 2I0 + 2I1 + 2) − (2I1 + I0 + 1)

= 2I−1 + I0 + 1

which we note is now a positive sum, rather than an alternating

one, and in fact this sum is exactly N1(E
t).

Thus

N2 = |E(Fq2)| = |E(Fq)| · |E
t(Fq)|.

This can also be proven via considering the trace of the Frobenius.

Question 3 Is there a direct bijective proof of this identity?

YES

University of California, San Diego Slide 33



Combinatorial Aspects of Elliptic Curves Gregg Musiker

Theorem 6 (M- 2005) We have an explicit bijection θ in all

cases between E(Fq) × E′(Fq) and E(Fq2). In some cases, it is

additionally an isomorphism of groups.

For example, when I0 = 0 this bijection is an isomorphism. In this

case, the bijection is given by

(P, Q) 7→ P ⊕ Q in E(Fq2).

If I0 = 1, the addition map is a 2-to-1 map

If I0 = 3, the addition map is a 4-to-1 map

In these last two cases, explicit bijection θ is not just the addition

map, but can be constructed by coset decomposition.
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When I0 = 0, map θ is group theoretic as given above.

When I0 = 3, map θ is NEVER group theoretic.

When I0 = 1, we can choose the coset representatives to make θ an

isomorphism depending on whether or not

ord2(|E(Fq)|) = ord2(|E
′(Fq)|).

Note : ord2(n) = k if n = 2km where m is odd.
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III. A GEOMETRIC INTERPRETATION OF Nk.
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Nk =
k

∑

i=1

(−1)i−1Pk,i(q)N
i
1

True in general: N1

∣

∣

∣

∣

Nk so want to understand second factor of

Nk = N1 · Ñk.

In fact, we can define sets E(k)(Fq) for all k so that

|E(k)(Fq)| =
Nk

N1
.

University of California, San Diego Slide 37



Combinatorial Aspects of Elliptic Curves Gregg Musiker

Let E(k)(Fq) be the kernel of the Trace Map

Φk : E(Fq) → E(Fq)

P 7→ P ⊕ π(P ) ⊕ π2(P ) ⊕ · · · ⊕ πk−1(P ).

In other words, E(k)(Fq) equals the subset of points P in E(Fq)

such that Φk(P ) = P∞.

If P ⊕ π(P ) ⊕ π2(P ) ⊕ · · · ⊕ πk−1(P ) = P∞

Then π(P ) ⊕ π2(P ) ⊕ π3(P ) ⊕ · · · ⊕ πk(P ) = π(P∞) = P∞

Hence πk(P ) = P and thus E(k)(Fq) ⊆ E(Fqk)

Also π(Φk(P )) = Φk(P ) and thus Im Φk ⊆ E(Fq)
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We now wish to prove E(k)(Fq) = Ker Φk really satisfies

|E(k)(Fq)| =
Nk

N1
.

We consider the chain complex

0 −→ E(k)(Fq) −→ E(Fqk)
Φk
−→ E(Fq) −→ 0

which we prove is a short exact sequence.
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We now wish to prove E(k)(Fq) = Ker Φk really satisfies

|E(k)(Fq)| =
Nk

N1
.

We consider the chain complex

0 −→ E(k)(Fq) −→ E(Fqk)
Φk
−→ E(Fq) −→ 0

which we prove is a short exact sequence.

Recall for P ∈ E(k)(Fq),

πk(P ) = P and thus E(k)(Fq) ⊆ E(Fqk)

π(Φk(P )) = Φk(P ) and thus Im Φk ⊆ E(Fq)
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We now wish to prove E(k)(Fq) = Ker Φk really satisfies

|E(k)(Fq)| =
Nk

N1
.

We consider the chain complex

0 −→ E(k)(Fq) −→ E(Fqk)
Φk
−→ E(Fq) −→ 0

which we prove is a short exact sequence.

Recall for P ∈ E(k)(Fq),

πk(P ) = P and thus E(k)(Fq) ⊆ E(Fqk)

π(Φk(P )) = Φk(P ) and thus Im Φk ⊆ E(Fq)

Exactness if and only if

Im Φk = E(Fq).
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One way to see this is to notice the following sequence is exact:

0 −→ E(Fq) −→ E(Fqk)
1−π
−−→ E(k)(Fq) −→ 0.
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One way to see this is to notice the following sequence is exact:

0 −→ E(Fq) −→ E(Fqk)
1−π
−−→ E(k)(Fq) −→ 0.

Hilbert’s Theorem 90 tells us that

Ker Φk = E(k)(Fq) = Im (1 − π)

and it is clear that E(Fq) is the kernel of (1 − π).
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One way to see this is to notice the following sequence is exact:

0 −→ E(Fq) −→ E(Fqk)
1−π
−−→ E(k)(Fq) −→ 0.

Hilbert’s Theorem 90 tells us that

Ker Φk = E(k)(Fq) = Im (1 − π)

and it is clear that E(Fq) is the kernel of (1 − π).

Furthermore,

Ker (1 − π) = E(Fq) = Im Φk,

which implies the exactness of

0 −→ E(k)(Fq) −→ E(Fqk)
Φk
−→ E(Fq) −→ 0.
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Factoring Nk Completely:

Theorem 7 (M- 2005) There exists polynomials, which we will

denote as ECycd, in N1 and q, only depending on d such that

Nk(N1, q) =
∏

d|k

ECycd.

Moreover,

ECycd =

∣

∣

∣

∣

Ker Cycd(π) : E(Fq) 	

∣

∣

∣

∣

where Cycd(π) denotes the isogeny obtained from the dth

Cyclotomic polynomial of the Frobenius map.
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Example: Factoring N6 Completely

N6 = N1

„

2 + 2q − N1

«„

(3 + 3q + 3q
2
) − (3 + 3q)N1 + N

2

1

«„

(1 − q + q
2
) − (1 + q)N1 + N

2

1

«

N6 = E(Fq6) = Ker(1 − π6)

N2 = E(Fq2) = Ker(1 − π2) N3 = E(Fq3) = Ker(1 − π3)

N1 = E(Fq) = Ker(1 − π)

Cycd(π) =
∏

k|d

(1 − πk)µ(d/k)

1 − π6 = (1 − π)(1 + π)(1 + π + π2)(1 − π + π2)
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ECyc1 = N1

ECyc2 = 2 + 2q − N1

ECyc3 = (3 + 3q + 3q2) − (3 + 3q)N1 + N2
1

ECyc4 = (2q2 + 2) − (2q + 2)N1 + N2
1

ECyc5 = (5 + 5q + 5q2 + 5q3 + 5q4) − (10 + 15q + 15q2 + 10q3)N1

+ (10 + 15q + 10q2)N2
1 − (5 + 5q)N3

1 + N4
1

ECyc6 = (q2 − q + 1) − (q + 1)N1 + N2
1

Question 4 Is there a combinatorial interpretation for these

polynomials?

Question 5 How do these various combinatorial and geometric

interpretations, including the original one of |E(Fqk)| all relate to

each other?
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