Combinatorial Aspects of Elliptic Curves over Finite Fields

Gregg Musiker
University of California, San Diego
FPSAC 2006

June 19, 2006

OUTLINE

I. Introduction

II. A Combinatorial Interpretation of N_{k}
III. Understanding Number Theoretically

$$
N_{2}=(2+2 q) N_{1}-N_{1}^{2}
$$

IV. A Geometric Interpretation of N_{k}

I. INTRODUCTION

A model for a Hyperelliptic Curve (with a rational point) is an equation of the form

$$
y^{2}=f(x)
$$

where $f(x)$ is a polynomial of degree $2 g+1$ with all roots distinct, and coefficients in a field K of characteristic $\neq 2$.

We will let C denote the zero locus of such a curve with (x, y)-coordinates in K.

Projectivizing, we also obtain one point at infinity P_{∞}.

The number g is a positive integer known as the genus of the curve.

We let K be \mathbb{F}_{q}, a finite field containing q elements, where q is a power of a prime.

We can also let K be a field extension of \mathbb{F}_{q}, such as $\mathbb{F}_{q^{k}}$, or even the algebraic closure $\overline{\mathbb{F}_{q}}$.
$C\left(\mathbb{F}_{q}\right), C\left(\mathbb{F}_{q^{k}}\right)$, or $C\left(\overline{\mathbb{F}_{q}}\right)$ will denote the curves over these fields, respectively.

$$
C\left(\mathbb{F}_{q}\right) \subset C\left(\mathbb{F}_{q^{k_{1}}}\right) \subset C\left(\mathbb{F}_{q^{k_{2}}}\right) \subset \cdots \subset C\left(\overline{\mathbb{F}_{q}}\right)
$$

for any sequence of natural numbers $1\left|k_{1}\right| k_{2} \mid \ldots$.

The Frobenius automorphism π acts on curve C over finite field \mathbb{F}_{q} via

$$
\pi(a, b)=\left(a^{q}, b^{q}\right)
$$

Fact 1 For a point $P \in C\left(\overline{\mathbb{F}_{q}}\right)$,

$$
\pi(P) \in C\left(\overline{\mathbb{F}_{q}}\right)
$$

Fact 2 For a point $P \in C\left(\mathbb{F}_{q^{k}}\right)$,

$$
\pi^{k}(P)=P
$$

Let N_{m} signify the number of points on curve C, over finite field $\mathbb{F}_{q^{m}}$.

Alternatively, N_{m} counts the number of points in $C\left(\overline{\mathbb{F}_{q}}\right)$ which are fixed by the m th power of the Frobenius automorphism, π^{m}.

Using this sequence, we define the Zeta Function as the exponential generating function.

$$
Z(C, T)=\exp \left(\sum_{m=1}^{\infty} N_{m} \frac{T^{m}}{m}\right)
$$

Theorem 1 (Rationality - Weil 1948)

$$
Z(C, T)=\frac{\left(1-\alpha_{1} T\right)\left(1-\alpha_{2} T\right) \cdots\left(1-\alpha_{2 g-1} T\right)\left(1-\alpha_{2 g} T\right)}{(1-T)(1-q T)}
$$

for complex numbers α_{i} 's, where g is the genus of the curve C.
Furthermore, the numerator of $Z(C, T)$, which we will denote as $L(C, T)$, has integer coefficients.

Theorem 2 (Functional Equation - Weil 1948)

$$
Z(C, T)=q^{g-1} T^{2 g-2} Z(C, 1 / q T)
$$

As a corollary to Rationality we get

$$
\begin{aligned}
N_{k} & =p_{k}\left[1+q-\alpha_{1}-\cdots-\alpha_{2 g}\right] \\
& =1+q^{k}-\alpha_{1}^{k}-\cdots-\alpha_{2 g}^{k}
\end{aligned}
$$

and the Functional Equation implies up to permutation,

$$
\alpha_{2 i-1} \alpha_{2 i}=q .
$$

By Rationality and the Functional Equation:
The Zeta Function of curve C of genus g, hence the entire sequence of $\left\{N_{k}\right\}$'s, only depends on $\left\{q, N_{1}, N_{2}, \ldots, N_{g}\right\}$.

Specializing to the case of an elliptic curve E, where $g=1$, a lot more is known and there is additional structure.

Fact $3 E$ can be represented as the zero locus in \mathbb{P}^{2} of the equation

$$
y^{2}=x^{3}+A x+B
$$

for $A, B \in \mathbb{F}_{q} . \quad($ if $p \neq 2,3)$
Fact $4 E$ has a group structure where two points on E can be added to yield another point on the curve.

Fact 5 The Frobenius automorphism is compatible with the group structure:

$$
\pi(P \oplus Q)=\pi(P) \oplus \pi(Q)
$$

Draw Chord/Tangent Line and then reflect about horizontal axis

If $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$, then

$$
P_{1} \oplus P_{2}=P_{3}=\left(x_{3}, y_{3}\right) \text { where }
$$

1) If $x_{1} \neq x_{2}$ then
$x_{3}=m^{2}-x_{1}-x_{2}$ and $y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}$ with $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
2) If $x_{1}=x_{2}$ but $\left(y_{1} \neq y_{2}\right.$, or $\left.y_{1}=0=y_{2}\right)$ then $P_{3}=P_{\infty}$.
3) If $P_{1}=P_{2}$ and $y_{1} \neq 0$, then
$x_{3}=m^{2}-2 x_{1}$ and $y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}$ with $m=\frac{3 x_{1}^{2}+A}{2 y_{1}}$.
4) P_{∞} acts as the identity element in this addition.

Theorem 3 (Garsia ? 2004) For an elliptic curve, we can write N_{k} as a polynomial in terms of N_{1} and q such that

$$
N_{k}=\sum_{i=1}^{k}(-1)^{i-1} P_{k, i}(q) N_{1}^{i}
$$

where each $P_{k, i}$ is a polynomial in q with positive integer coefficients.

This can be proven using the fact that

$$
N_{k}=1+q^{k}-\alpha_{1}^{k}-\alpha_{2}^{k}
$$

and this leads to a recursion for $\alpha_{1}^{k}+\alpha_{2}^{k}$ in terms of

$$
\begin{aligned}
\alpha_{1}+\alpha_{2} & =1+q-N_{1} \quad \text { and } \\
\alpha_{1} \alpha_{2} & =q
\end{aligned}
$$

We can prove positivity by induction.

$$
\begin{aligned}
N_{2} & =(2+2 q) N_{1}-N_{1}^{2} \\
N_{3} & =\left(3+3 q+3 q^{2}\right) N_{1}-(3+3 q) N_{1}^{2}+N_{1}^{3} \\
N_{4} & =\left(4+4 q+4 q^{2}+4 q^{3}\right) N_{1}-\left(6+8 q+6 q^{2}\right) N_{1}^{2}+(4+4 q) N_{1}^{3}-N_{1}^{4} \\
N_{5} & =\left(5+5 q+5 q^{2}+5 q^{3}+5 q^{4}\right) N_{1}-\left(10+15 q+15 q^{2}+10 q^{3}\right) N_{1}^{2} \\
& +\left(10+15 q+10 q^{2}\right) N_{1}^{3}-(5+5 q) N_{1}^{4}+N_{1}^{5}
\end{aligned}
$$

Question 1 What is a combinatorial interpretation of these expressions, i.e. of the $P_{k, i}$'s?

II. A COMBINATORIAL INTERPRETATION OF N_{k}.

Fibonacci Numbers

$$
\begin{gathered}
F_{n}=F_{n-1}+F_{n-2} \\
F_{0}=1, \quad F_{1}=1 \\
1,1,2,3,5,8,13,21,34 \ldots
\end{gathered}
$$

Counts the number of subsets of $\{1,2, \ldots, n-1\}$ with no two elements consecutive

$$
\text { e.g. } F_{5}=8:\{ \},\{1\},\{2\},\{3\},\{4\},\{1,3\},\{1,4\},\{2,4\}
$$

Lucas Numbers

$$
\begin{gathered}
L_{n}=L_{n-1}+L_{n-2} \\
L_{1}=1, \quad L_{2}=3 \\
1,3,4,7,11,18,29,47, \ldots
\end{gathered}
$$

Counts the number of subsets of $\{1,2, \ldots, \mathbf{n}\}$ with no two elements circularly consecutive

$$
\text { e.g. } L_{4}=7:\{ \},\{1\},\{2\},\{3\},\{4\},\{1,3\}, \quad\{2,4\}
$$

By Convention and Recurrence: $L_{0}=2$

Definition 1 We define the (\mathbf{q}, \mathbf{t})-Lucas numbers to be a sequence of polynomials in variables q and t such that $L_{n}(q, t)$ is defined as

$$
L_{n}(q, t)=\sum_{S} q^{\# \text { even elements in } S} t\left\lfloor\frac{n}{2}\right\rfloor-\# S
$$

where the sum is over subsets S of $\{1,2, \ldots, n\}$ such that no two numbers are circularly consecutive.
e.g. $L_{2}=3: \quad\{ \},\{1\},\{2\}$
$L_{2}(q, t)=q^{0} t^{1}+q^{0} t^{0}+q^{1} t^{0}=1+q+t$
e.g. $L_{4}=7:\{ \},\{1\},\{2\},\{3\},\{4\},\{1,3\}, \quad\{2,4\}$
$L_{4}(q, t)=q^{0} t^{2}+q^{0} t^{1}+q^{1} t^{1}+q^{0} t^{1}+q^{1} t^{1}+q^{0} t^{0}+q^{2} t^{0}$

$$
=1+q^{2}+(2 q+2) t+t^{2}
$$

Theorem 4 (M- 2005)

$$
L_{2 k}(q, t)=1+q^{k}-\left.N_{k}\right|_{N_{1}=-t}
$$

We prove this by showing that the left- and right-hand-sides satisfy the same initial conditions and recurrence relations:

$$
\begin{aligned}
L_{2}(q, t) & =1+q+t \\
L_{4}(q, t) & =1+q^{2}+(2+2 q) t+t^{2}
\end{aligned}
$$

The $L_{2 k}(q, t)$'s satisfy recurrence relation

$$
L_{2 k+2}(q, t)=(1+q+t) L_{2 k}(q, t)-q L_{2 k-2}(q, t)
$$

The right-hand-sides are equal to $1+q^{k}-\left.N_{k}\right|_{N_{1}=-t}=\alpha_{1}^{k}+\alpha_{2}^{k}$

$$
\alpha_{1}^{k+1}+\alpha_{2}^{k+1}=\left(1+q-N_{1}\right)\left(\alpha_{1}^{k}+\alpha_{2}^{k}\right)-q\left(\alpha_{1}^{k-1}+\alpha_{2}^{k-1}\right)
$$

Question 2 Is there a generating function equal to N_{k} directly?

Question 2 Is there a generating function equal to N_{k} directly?

We can come close.

We let W_{n} denote the wheel graph which consists of n vertices on a circle and a central vertex which is adjacent to every other vertex.

We let W_{n} denote the wheel graph which consists of n vertices on a circle and a central vertex which is adjacent to every other vertex.

We note that a spanning tree will consist of arcs on the rim and spokes. We orient the arcs clockwise and designate the head of each arc.

Definition 2

$$
\mathcal{W}_{k}(q, t)=\sum_{\text {spanning trees of } W_{k}} q^{\text {total dist from spokes to tails }} t^{\# \text { spokes }} .
$$

Theorem 5 (M- 2005)

$$
\mathcal{W}_{k}(q, t)=-\left.N_{k}\right|_{N_{1}=-t}=\sum_{i=1}^{k} P_{k, i}(q) t^{i} \text { for all } k \geq 1
$$

The proof uses combinatorial facts from [Egeciouglu-Remmel 1990] and [Benjamin-Yerger 2004].

Number Theoretic Interpretation of $N_{k}\left(q, N_{1}\right)$'s?

Algebraic Geometric Interpretation of $N_{k}\left(q, N_{1}\right)$'s?

IV. UNDERSTANDING NUMBER THEORETICALLY

$$
N_{2}=(2+2 q) N_{1}-N_{1}^{2} .
$$

Our first observation is the factorization:

$$
N_{2}=N_{1} \cdot\left(2+2 q-N_{1}\right) .
$$

N_{1} clearly counts objects, namely points on elliptic curve E.
Does the second factor also count something?

Our first observation is the factorization:

$$
N_{2}=N_{1} \cdot\left(2+2 q-N_{1}\right) .
$$

N_{1} clearly counts objects, namely points on elliptic curve E.
Does the second factor also count something?

YES,

$2+2 q-N_{1}$ counts the number of points on E^{t}.
If E has equation (char $\neq 2,3$)

$$
y^{2}=x^{3}+a x+b,
$$

then E^{t} has equation $y^{2}=x^{3}+a \Lambda^{-2} x+b \Lambda^{-3}$ for $\Lambda \neq \alpha^{2}, \alpha \in \mathbb{F}_{q}$.

The isomorphism class of E^{t} doesn't depend on the choice of Λ, as long as it is a non-square, and

$$
E^{t}: \quad y^{2}=x^{3}+a \Lambda^{-2} x+b \Lambda^{-3}
$$

is also isomorphic to the curve with equation

$$
y^{2}=\Lambda \cdot\left(x^{3}+a x+b\right) .
$$

E^{t} also isomorphic to $E^{\prime}\left(\mathbb{F}_{q}\right) \leq E\left(\mathbb{F}_{q^{2}}\right)$,
the set

$$
\left\{(\alpha, \lambda \beta) \in E\left(\mathbb{F}_{q^{2}}\right): \alpha, \beta \in \mathbb{F}_{q}, \quad \lambda \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}\right\}
$$

We follow [Stark 1973] and partition the set \mathbb{F}_{q} into three sets:
We let \mathcal{I}_{1} denote the number of $\alpha \in \mathbb{F}_{q}$ such that α is the x-coordinate of some ordinary point on E, i.e. $(\alpha, \beta), \beta \neq 0$.

We let \mathcal{I}_{0} denote the number of $\alpha \in \mathbb{F}_{q}$ such that α is the x-coordinate of a special point on E, i.e. $(\alpha, 0)$.

We let \mathcal{I}_{-1} denote the number of $\alpha \in \mathbb{F}_{q}$ such that α is not the x-coordinate of some point on E.

If the equation of E is $y^{2}=f(x)$, these can also be described as:

$$
\mathcal{I}_{i}=\#\left\{\alpha \in \mathbb{F}_{q} \text { such that } f(\alpha)^{\frac{q-1}{2}}=i\right\}
$$

Since these three possibilities partition the set \mathbb{F}_{q}, we obtain

$$
\mathcal{I}_{-1}+\mathcal{I}_{0}+\mathcal{I}_{1}=q .
$$

Since ordinary points come in conjugate pairs, and special and infinite points come singleton, we get futher

$$
N_{1}(E)=2 \mathcal{I}_{1}+\mathcal{I}_{0}+1 .
$$

Lastly, by the definition of E^{t}, we conclude

$$
N_{1}\left(E^{t}\right)=2 \mathcal{I}_{-1}+\mathcal{I}_{0}+1 .
$$

$$
\begin{aligned}
2 q+2-N_{1}(E) & =2 \mathcal{I}_{-1}+2 \mathcal{I}_{0}+2 \mathcal{I}_{1}+2-N_{1}(E) \\
& =\left(2 \mathcal{I}_{-1}+2 \mathcal{I}_{0}+2 \mathcal{I}_{1}+2\right)-\left(2 \mathcal{I}_{1}+\mathcal{I}_{0}+1\right) \\
& =2 \mathcal{I}_{-1}+\mathcal{I}_{0}+1
\end{aligned}
$$

which we note is now a positive sum, rather than an alternating one, and in fact this sum is exactly $N_{1}\left(E^{t}\right)$.

Thus

$$
N_{2}=\left|E\left(\mathbb{F}_{q^{2}}\right)\right|=\left|E\left(\mathbb{F}_{q}\right)\right| \cdot\left|E^{t}\left(\mathbb{F}_{q}\right)\right|
$$

This can also be proven via considering the trace of the Frobenius.
Question 3 Is there a direct bijective proof of this identity?

$$
\begin{aligned}
2 q+2-N_{1}(E) & =2 \mathcal{I}_{-1}+2 \mathcal{I}_{0}+2 \mathcal{I}_{1}+2-N_{1}(E) \\
& =\left(2 \mathcal{I}_{-1}+2 \mathcal{I}_{0}+2 \mathcal{I}_{1}+2\right)-\left(2 \mathcal{I}_{1}+\mathcal{I}_{0}+1\right) \\
& =2 \mathcal{I}_{-1}+\mathcal{I}_{0}+1
\end{aligned}
$$

which we note is now a positive sum, rather than an alternating one, and in fact this sum is exactly $N_{1}\left(E^{t}\right)$.

Thus

$$
N_{2}=\left|E\left(\mathbb{F}_{q^{2}}\right)\right|=\left|E\left(\mathbb{F}_{q}\right)\right| \cdot\left|E^{t}\left(\mathbb{F}_{q}\right)\right|
$$

This can also be proven via considering the trace of the Frobenius.
Question 3 Is there a direct bijective proof of this identity?

YES

Theorem 6 (M- 2005) We have an explicit bijection θ in all cases between $E\left(\mathbb{F}_{q}\right) \times E^{\prime}\left(\mathbb{F}_{q}\right)$ and $E\left(\mathbb{F}_{q^{2}}\right)$. In some cases, it is additionally an isomorphism of groups.

For example, when $I_{0}=0$ this bijection is an isomorphism. In this case, the bijection is given by

$$
(P, Q) \mapsto P \oplus Q \text { in } E\left(\mathbb{F}_{q^{2}}\right) .
$$

If $\mathcal{I}_{0}=1$, the addition map is a 2 -to- 1 map
If $\mathcal{I}_{0}=3$, the addition map is a 4 -to- 1 map
In these last two cases, explicit bijection θ is not just the addition map, but can be constructed by coset decomposition.

When $\mathcal{I}_{0}=0$, map θ is group theoretic as given above.

When $\mathcal{I}_{0}=3$, map θ is NEVER group theoretic.

When $\mathcal{I}_{0}=1$, we can choose the coset representatives to make θ an isomorphism depending on whether or not

$$
\operatorname{ord}_{2}\left(\left|E\left(\mathbb{F}_{q}\right)\right|\right)=\operatorname{ord}_{2}\left(\left|E^{\prime}\left(\mathbb{F}_{q}\right)\right|\right) .
$$

Note: $\quad \operatorname{ord}_{2}(n)=k$ if $n=2^{k} m$ where m is odd.

III. A GEOMETRIC INTERPRETATION OF N_{k}.

$$
N_{k}=\sum_{i=1}^{k}(-1)^{i-1} P_{k, i}(q) N_{1}^{i}
$$

True in general: $N_{1} \mid N_{k}$ so want to understand second factor of $N_{k}=N_{1} \cdot \tilde{N}_{k}$.

In fact, we can define sets $E^{(k)}\left(\mathbb{F}_{q}\right)$ for all k so that

$$
\left|E^{(k)}\left(\mathbb{F}_{q}\right)\right|=\frac{N_{k}}{N_{1}}
$$

Let $E^{(k)}\left(\mathbb{F}_{q}\right)$ be the kernel of the Trace Map

$$
\begin{aligned}
\Phi_{k}: E\left(\overline{\mathbb{F}_{q}}\right) & \rightarrow E\left(\overline{\mathbb{F}_{q}}\right) \\
P & \mapsto P \oplus \pi(P) \oplus \pi^{2}(P) \oplus \cdots \oplus \pi^{k-1}(P) .
\end{aligned}
$$

In other words, $E^{(k)}\left(\mathbb{F}_{q}\right)$ equals the subset of points P in $E\left(\overline{\mathbb{F}_{q}}\right)$ such that $\Phi_{k}(P)=P_{\infty}$.

$$
\text { If } P \oplus \pi(P) \oplus \pi^{2}(P) \oplus \cdots \oplus \pi^{k-1}(P)=P_{\infty}
$$

Then $\pi(P) \oplus \pi^{2}(P) \oplus \pi^{3}(P) \oplus \cdots \oplus \pi^{k}(P)=\pi\left(P_{\infty}\right)=P_{\infty}$
Hence $\quad \pi^{k}(P)=P \quad$ and thus $\quad E^{(k)}\left(\mathbb{F}_{q}\right) \subseteq E\left(\mathbb{F}_{q^{k}}\right)$
Also $\pi\left(\Phi_{k}(P)\right)=\Phi_{k}(P) \quad$ and thus $\quad \operatorname{Im} \quad \Phi_{k} \subseteq E\left(\mathbb{F}_{q}\right)$

We now wish to prove $E^{(k)}\left(\mathbb{F}_{q}\right)=\operatorname{Ker} \Phi_{k}$ really satisfies

$$
\left|E^{(k)}\left(\mathbb{F}_{q}\right)\right|=\frac{N_{k}}{N_{1}}
$$

We consider the chain complex

$$
0 \longrightarrow E^{(k)}\left(\mathbb{F}_{q}\right) \longrightarrow E\left(\mathbb{F}_{q^{k}}\right) \xrightarrow{\Phi_{k}} E\left(\mathbb{F}_{q}\right) \longrightarrow 0
$$

which we prove is a short exact sequence.

We now wish to prove $E^{(k)}\left(\mathbb{F}_{q}\right)=\operatorname{Ker} \Phi_{k}$ really satisfies

$$
\left|E^{(k)}\left(\mathbb{F}_{q}\right)\right|=\frac{N_{k}}{N_{1}}
$$

We consider the chain complex

$$
0 \longrightarrow E^{(k)}\left(\mathbb{F}_{q}\right) \longrightarrow E\left(\mathbb{F}_{q^{k}}\right) \xrightarrow{\Phi_{k}} E\left(\mathbb{F}_{q}\right) \longrightarrow 0
$$

which we prove is a short exact sequence.
Recall for $P \in E^{(k)}\left(\mathbb{F}_{q}\right)$,

$$
\begin{aligned}
\pi^{k}(P) & =P & & \text { and thus } & & E^{(k)}\left(\mathbb{F}_{q}\right) \subseteq E\left(\mathbb{F}_{q^{k}}\right) \\
\pi\left(\Phi_{k}(P)\right) & =\Phi_{k}(P) & & \text { and thus } & & \operatorname{Im} \Phi_{k} \subseteq E\left(\mathbb{F}_{q}\right)
\end{aligned}
$$

We now wish to prove $E^{(k)}\left(\mathbb{F}_{q}\right)=\operatorname{Ker} \Phi_{k}$ really satisfies

$$
\left|E^{(k)}\left(\mathbb{F}_{q}\right)\right|=\frac{N_{k}}{N_{1}}
$$

We consider the chain complex

$$
0 \longrightarrow E^{(k)}\left(\mathbb{F}_{q}\right) \longrightarrow E\left(\mathbb{F}_{q^{k}}\right) \xrightarrow{\Phi_{k}} E\left(\mathbb{F}_{q}\right) \longrightarrow 0
$$

which we prove is a short exact sequence.
Recall for $P \in E^{(k)}\left(\mathbb{F}_{q}\right)$,

$$
\begin{aligned}
\pi^{k}(P) & =P & & \text { and thus } & & E^{(k)}\left(\mathbb{F}_{q}\right) \subseteq E\left(\mathbb{F}_{q^{k}}\right) \\
\pi\left(\Phi_{k}(P)\right) & =\Phi_{k}(P) & & \text { and thus } & & \operatorname{Im} \Phi_{k}
\end{aligned} \subseteq E\left(\mathbb{F}_{q}\right)
$$

Exactness if and only if

$$
\operatorname{Im} \Phi_{k}=E\left(\mathbb{F}_{q}\right) .
$$

One way to see this is to notice the following sequence is exact:

$$
0 \longrightarrow E\left(\mathbb{F}_{q}\right) \longrightarrow E\left(\mathbb{F}_{q^{k}}\right) \xrightarrow{1-\pi} E^{(k)}\left(\mathbb{F}_{q}\right) \longrightarrow 0 .
$$

One way to see this is to notice the following sequence is exact:

$$
0 \longrightarrow E\left(\mathbb{F}_{q}\right) \longrightarrow E\left(\mathbb{F}_{q^{k}}\right) \xrightarrow{1-\pi} E^{(k)}\left(\mathbb{F}_{q}\right) \longrightarrow 0 .
$$

Hilbert's Theorem 90 tells us that

$$
\operatorname{Ker} \Phi_{k}=E^{(k)}\left(\mathbb{F}_{q}\right)=\operatorname{Im}(1-\pi)
$$

and it is clear that $E\left(\mathbb{F}_{q}\right)$ is the kernel of $(1-\pi)$.

One way to see this is to notice the following sequence is exact:

$$
0 \longrightarrow E\left(\mathbb{F}_{q}\right) \longrightarrow E\left(\mathbb{F}_{q^{k}}\right) \xrightarrow{1-\pi} E^{(k)}\left(\mathbb{F}_{q}\right) \longrightarrow 0
$$

Hilbert's Theorem 90 tells us that

$$
\operatorname{Ker} \Phi_{k}=E^{(k)}\left(\mathbb{F}_{q}\right)=\operatorname{Im}(1-\pi)
$$

and it is clear that $E\left(\mathbb{F}_{q}\right)$ is the kernel of $(1-\pi)$.
Furthermore,

$$
\operatorname{Ker}(1-\pi)=E\left(\mathbb{F}_{q}\right)=\operatorname{Im} \Phi_{k},
$$

which implies the exactness of

$$
0 \longrightarrow E^{(k)}\left(\mathbb{F}_{q}\right) \longrightarrow E\left(\mathbb{F}_{q^{k}}\right) \xrightarrow{\Phi_{k}} E\left(\mathbb{F}_{q}\right) \longrightarrow 0 .
$$

Factoring N_{k} Completely:
Theorem 7 (M- 2005) There exists polynomials, which we will
denote as $E C y c_{d}$, in N_{1} and q, only depending on d such that

$$
N_{k}\left(N_{1}, q\right)=\prod_{d \mid k} E C y c_{d}
$$

Moreover,

$$
E C y c_{d}=\left|\operatorname{Ker} C y c_{d}(\pi): E\left(\overline{\mathbb{F}_{q}}\right) \circlearrowleft\right|
$$

where $C y c_{d}(\pi)$ denotes the isogeny obtained from the d th Cyclotomic polynomial of the Frobenius map.

Example: Factoring N_{6} Completely

$$
\begin{gathered}
N_{6}=N_{1}\left(2+2 q-N_{1}\right)\left(\left(3+3 q+3 q^{2}\right)-(3+3 q) N_{1}+N_{1}^{2}\right)\left(\left(1-q+q^{2}\right)-(1+q) N_{1}+N_{1}^{2}\right) \\
N_{6}=E\left(\mathbb{F}_{q^{6}}\right)=\operatorname{Ker}\left(1-\pi^{6}\right) \\
N_{2}=E\left(\mathbb{F}_{q^{2}}\right)=\operatorname{Ker}\left(1-\pi^{2}\right) \quad N_{3}=E\left(\mathbb{F}_{q^{3}}\right)=\operatorname{Ker}\left(1-\pi^{3}\right) \\
N_{1}=E\left(\mathbb{F}_{q}\right)=\operatorname{Ker}(1-\pi) \\
C y c_{d}(\pi)=\prod_{k \mid d}\left(1-\pi^{k}\right)^{\mu(d / k)} \\
1-\pi^{6}=(1-\pi)(1+\pi)\left(1+\pi+\pi^{2}\right)\left(1-\pi+\pi^{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
\text { ECyc }_{1} & =N_{1} \\
\text { ECyc }_{2} & =2+2 q-N_{1} \\
\text { ECyc }_{3} & =\left(3+3 q+3 q^{2}\right)-(3+3 q) N_{1}+N_{1}^{2} \\
E_{4} & =\left(2 q^{2}+2\right)-(2 q+2) N_{1}+N_{1}^{2} \\
E^{2} y c_{5} & =\left(5+5 q+5 q^{2}+5 q^{3}+5 q^{4}\right)-\left(10+15 q+15 q^{2}+10 q^{3}\right) N_{1} \\
& +\left(10+15 q+10 q^{2}\right) N_{1}^{2}-(5+5 q) N_{1}^{3}+N_{1}^{4} \\
\text { ECyc }_{6} & =\left(q^{2}-q+1\right)-(q+1) N_{1}+N_{1}^{2}
\end{aligned}
$$

Question 4 Is there a combinatorial interpretation for these polynomials?

Question 5 How do these various combinatorial and geometric interpretations, including the original one of $\left|E\left(\mathbb{F}_{q^{k}}\right)\right|$ all relate to each other?

