The Horn Recursion for Schur P- and Q-functions Kevin Purbhoo University of British Columbia

Joint work with Frank Sottile Texas A & M University

Formal Power Series & Algebraic Combinatorics San Diego 22 June 2006

Symetric Littlewood-Richardson Numbers

Partitions \equiv Young diagrams $421 \leftrightarrow$ $S_{\lambda} =$ Schur function indexed by λ Schur functions form an intersting basis for algebra of symmetric functions, important in representation theory, combinatorics, and Schubert calculus.

For
$$\lambda \subset n \times m := \prod_{m=1}^{m} n \quad (\lambda_1 \leq m \& \lambda_{n+1} = 0)$$
,
define λ^c by $\lambda^c \land \lambda n$

Symmetric Littlewood-Richardson numbers

For
$$\lambda, \mu, \nu \subset \square n$$
 , define
 $c_{\lambda,\mu,\nu} := \text{Coefficient of } S_{n \times m} \text{ in } S_{\lambda}S_{\mu}S_{\nu}$
 $= \text{Coefficient of } S_{\lambda^c} \text{ in } S_{\mu}S_{\nu}$

Definition.

 $\lambda, \mu, \nu \subset \square n$ are *feasible* if $c_{\lambda,\mu,\nu} \neq 0$. (Terminology from geometry.)

Horn Recursion

Let
$$\lambda \subset \square n$$
 and $\alpha \subset \square r$
 $|\lambda|_{\alpha} := \#$ boxes in λ that remain after
crossing out rows $n-r+i-\alpha_i$
Example.
7 • • • • • • • •

$$n = 7, m = 8, r = 3.$$

$$\lambda = 8654310$$

$$\alpha = 311 \quad n - r + i - \alpha_i$$

$$4 + 1 - 3 = 2$$

$$4 + 2 - 1 = 5$$

$$4 + 3 - 1 = 6$$

$$|\lambda|_{\alpha} = 15$$

Horn Recursion. (Klyachko, Knutson-Tao)

$$\lambda, \mu, \nu \subset \square n$$
 are feasible iff $|\lambda| + |\mu| + |\nu| = mn$, and

$$\begin{split} |\lambda|_{\alpha} + |\mu|_{\beta} + |\nu|_{\gamma} &\leq m(n-r) \\ \text{for all feasible } \alpha, \beta, \gamma \subset \boxed{n-r} r \text{ with } 0 < r < n. \end{split}$$

Remark. Could cross out *columns* instead of rows.

Symetric Horn Recursion

Given
$$\lambda \subset \prod_{m=r}^{m} n$$
 and $\alpha \subset \prod_{r=r}^{n-r} r$ as before,
and $\alpha' \subset \prod_{r=r}^{m-r} r$, define $|\lambda|_{\alpha,\alpha'}$ by
crossing out rows using α and columns using α'
Example
 $n = 7, m = 8, r = 3.$
 $\lambda = 8654310$
 $\alpha = 311$ rows 2, 5, 6
 $\alpha' = 410$ $m-r+i-\alpha'_i$
 $5+1-4=2$
 $5+2-1=6$
 $5+3-0=8$
 $|\lambda|_{\alpha,\alpha'} = 8.$

Symmetric Horn Recursion. (P.-Sottile)

$$\begin{array}{l} \lambda, \mu, \nu \subset \fbox{n} & \text{are feasible iff} \\ |\lambda| + |\mu| + |\nu| &= mn \text{ and} \\ |\lambda|_{\alpha,\alpha'} + |\mu|_{\beta,\beta'} + |\nu|_{\gamma,\gamma'} &\leq (m-r)(n-r) \\ \text{for all feasible } \alpha, \beta, \gamma \subset \fbox{r} \\ \text{and all feasible } \alpha', \beta', \gamma' \subset \fbox{r} \\ \text{with } 0 < r < \min(m, n) \text{ (same } r\text{)}. \end{array}$$

Schur P- and Q- Functions

 $Q_{\lambda} =$ Schur Q-function indexed by strict partition λ These form an interesting basis for odd subalgebra of combinatorial Hopf algebra of symmetric functions. Important for representation theory and isotropic Schubert calculus.

Symmetric Littlewood-Richardson numbers For $\lambda, \mu, \nu \subset \Delta_n$, define $q_{\lambda,\mu,\nu} :=$ Coefficient of Q_{Δ_n} in $Q_{\lambda}Q_{\mu}Q_{\nu}$ = Coefficient of Q_{λ^c} in $Q_{\mu}Q_{\nu}$

Definition.

$$\lambda, \mu, \nu \subset \mathbf{\Delta}_n$$
 are feasible if $q_{\lambda,\mu,\nu} \neq 0$.

Schur *P*-functions P_{λ} are another basis. Have symmetric Littlewood-Richardson coefficients $p_{\lambda,\mu,\nu}$ with the same feasible triples. Two measures, $[\lambda]_{lpha}$ and $\{\lambda\}_{lpha}$

Given $\lambda \subset \Delta_n$ and $\alpha \subset \mathbf{r} r$, cross out hooks at inner corners given by α to define $[\lambda]_{\alpha}$:

Given instead $\alpha \subset \prod r$, cross out hooks at outer corners given by α and n + 1 to define $\{\lambda\}_{\alpha}$:

$$n = 8, r = 4.$$

$$\lambda = 8643$$

$$\alpha = 4220 \quad n+1-r+i-\alpha_i$$

$$5+1-4 = 2$$

$$5+2-2 = 5$$

$$5+3-2 = 6$$

$$5+4-0 = 9$$

Horn recursion for Schur P- and Q-functions

Horn Recursion. (P.-Sottile) $\lambda, \mu, \nu \subset \varDelta_n$ are feasible iff $|\lambda| + |\mu| + |\nu| = \binom{n+1}{2} = |\varDelta_n|$ and either (1) $[\lambda]_{\alpha} + [\mu]_{\beta} + [\nu]_{\gamma} \leq \binom{n+1-r}{2} = |\varDelta_{n-r}|$ for all feasible $\alpha, \beta, \gamma \subset \square r$ with 0 < r < nor else (2) $\{\lambda\}_{\alpha} + \{\mu\}_{\beta} + \{\nu\}_{\gamma} \leq \binom{n+1-r}{2} = |\varDelta_{n-r}|$ for all feasible $\alpha, \beta, \gamma \subset \square r$ with 0 < r < n+1 and r even.

Underlying Geometry

G/P = cominuscule flag variety L = Levi subgroup of P, acts on $\mathfrak{g}/\mathfrak{p}$ (finitely many orbits) $\lambda \rightsquigarrow T_{\lambda} \subset \mathfrak{g}/\mathfrak{p}$ (tangent space to Schubert variety) For $x \in \mathfrak{g}/\mathfrak{p}$, consider quotient map:

$$\phi_x: \mathfrak{g}/\mathfrak{p} \to (\mathfrak{g}/\mathfrak{p})/(T_x(L \cdot x))$$

<u>Idea</u>. λ, μ, ν are feasible

 $\iff a \cdot T_{\lambda}, \ b \cdot T_{\mu}, \ c \cdot T_{\nu} \subset \mathfrak{g}/\mathfrak{p} \text{ are transverse}$ for generic $a, b, c \in L$

$$\iff \operatorname{codim} \phi_x(a \cdot T_\lambda) + \operatorname{codim} \phi_x(b \cdot T_\mu) \\ + \operatorname{codim} \phi_x(c \cdot T_\nu) \leq \operatorname{rank}(\phi_x)$$

for all $x \in \mathfrak{g}/\mathfrak{p}$.

Simplified, these become the Horn inequalities.

	G	$\mathfrak{g}/\mathfrak{p}$	L	<i>L</i> -orbits on $\mathfrak{g}/\mathfrak{p}$
Schur fcns	GL(m+n)	$Mat(m \! imes \! n)$	$GL(m) \times GL(n)$	rank r
Schur Q -fcns	Sp(2n)	Sym(n)	GL(n)	rank r
Schur P -fcns	SO(2n+2)	SkewSym(n+1)	GL(n+1)	(even) rank $2r$