The Horn Recursion for Schur P - and Q-functions Kevin Purbhoo
University of British Columbia
Joint work with
Frank Sottile
Texas A \& M University

Formal Power Series \& Algebraic Combinatorics
San Diego
22 June 2006

Symetric Littlewood-Richardson Numbers

Partitions \equiv Young diagrams $\quad 421 \leftrightarrow \not \square \square$
$S_{\lambda}=$ Schur function indexed by λ
Schur functions form an intersting basis for algebra of symmetric functions, important in representation theory, combinatorics, and Schubert calculus.

For $\lambda \subset n \times m:=\square n \quad\left(\lambda_{1} \leq m \& \lambda_{n+1}=0\right)$,
define λ^{c} by $\lambda^{c} \sqrt[m]{\lambda} n$
Symmetric Littlewood-Richardson numbers
For $\lambda, \mu, \nu \subset \square n$, define
$c_{\lambda, \mu, \nu}:=$ Coefficient of $S_{n \times m}$ in $S_{\lambda} S_{\mu} S_{\nu}$
$=$ Coefficient of $S_{\lambda^{c}}$ in $S_{\mu} S_{\nu}$

Definition.

$\lambda, \mu, \nu \subset \square^{m} n$ are feasible if $c_{\lambda, \mu, \nu} \neq 0$.
(Terminology from geometry.)

Horn Recursion

Let $\lambda \subset \square n$ and $\alpha \subset \square n$
$|\lambda|_{\alpha}:=\#$ boxes in λ that remain after crossing out rows $n-r+i-\alpha_{i}$

Example.

$$
\begin{aligned}
& n=7, m=8, r=3 . \\
& \lambda=8654310 \\
& \alpha=311 \quad n-r+i-\alpha_{i} \\
& 4+1-3=2 \\
& 4+2-1=5 \\
& 4+3-1=6
\end{aligned}
$$

Horn Recursion. (Klyachko, Knutson-Tao)
$\lambda, \mu, \nu \subset \square n$ are feasible of
$|\lambda|+|\mu|+|\nu|=m n$, and

$$
|\lambda|_{\alpha}+|\mu|_{\beta}+|\nu|_{\gamma} \leq m(n-r)
$$

for all feasible $\alpha, \beta, \gamma \subset \square r$ with $0<r<n$.

Remark. Could cross out columns instead of rows.

Symetric Horn Recursion

Given $\lambda \subset \square^{m} n$ and $\alpha \subset \square^{n-r} r$ as before, and $\alpha^{\prime} \subset \square^{m-r} r$, define $|\lambda|_{\alpha, \alpha^{\prime}}$ by crossing out rows using α and columns using α^{\prime}
Example

$$
\begin{aligned}
& n=7, m=8, r=3 . \\
& \lambda=8654310 \\
& \alpha=311 \quad \text { rows } 2,5,6 \\
& \alpha^{\prime}=410 \quad m-r+i-\alpha_{i}^{\prime} \\
& 5+1-4=2 \\
& 5+2-1=6 \\
& 5+3-0=8
\end{aligned}
$$

Symmetric Horn Recursion. (P.-Sottile)

m

$\lambda, \mu, \nu \subset \square n$ are feasible eff $|\lambda|+|\mu|+|\nu|=m n$ and

$$
|\lambda|_{\alpha, \alpha^{\prime}}+|\mu|_{\beta, \beta^{\prime}}+|\nu|_{\gamma, \gamma^{\prime}} \leq(m-r)(n-r)
$$

for all feasible $\alpha, \beta, \gamma \subset{ }^{n-r} r$
and all feasible $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} \subset \square^{m-r} r$ with $0<r<\min (m, n)$ (same r).

Schur P - and Q - Functions

$Q_{\lambda}=\operatorname{Schur} Q$-function indexed by strict partition λ These form an interesting basis for odd subalgebra of combinatorial Hopf algebra of symmetric functions. Important for representation theory and isotropic Schubert calculus.

define $\lambda^{c}:=\Delta_{n}-\lambda$ or pictorially

Symmetric Littlewood-Richardson numbers

For $\lambda, \mu, \nu \subset \Delta_{n}$, define
$q_{\lambda, \mu, \nu}:=$ Coefficient of $Q_{\Delta_{n}}$ in $Q_{\lambda} Q_{\mu} Q_{\nu}$
$=$ Coefficient of $Q_{\lambda^{c}}$ in $Q_{\mu} Q_{\nu}$

Definition.

$\lambda, \mu, \nu \subset \Delta_{n}$ are feasible if $q_{\lambda, \mu, \nu} \neq 0$.
Schur P-functions P_{λ} are another basis.
Have symmetric Littlewood-Richardson coeffients
$p_{\lambda, \mu, \nu}$ with the same feasible triples.

Given $\lambda \subset \Delta_{n}$ and $\alpha \subset \square-r$, cross out hooks at inner corners given by α to define $[\lambda]_{\alpha}$:
$n=8, r=4$.
$\lambda=8643$
$\alpha=4220 \quad n-r+i-\alpha_{i}$
$4+1-4=1$
$4+2-2=4$
$4+3-2=5$
$4+4-0=8$

$[\lambda]_{\alpha}=6$

Given instead $\alpha \subset n^{n+1-r} r$, cross out hooks at outer corners given by α and $n+1$ to define $\{\lambda\}_{\alpha}$:

$$
\begin{aligned}
& n=8, r=4 \\
& \lambda=8643 \\
& \alpha=4220 \quad n+1-r+i-\alpha_{i} \\
& 5+1-4=2 \\
& 5+2-2=5 \\
& 5+3-2=6 \\
& 5+4-0=9
\end{aligned}
$$

Horn Recursion. (P.-Sottile)
$\lambda, \mu, \nu \subset \Delta_{n}$ are feasible of
$|\lambda|+|\mu|+|\nu|=\binom{n+1}{2}=\left|\Delta_{n}\right|$
and either
(1) $[\lambda]_{\alpha}+[\mu]_{\beta}+[\nu]_{\gamma} \leq\binom{ n+1-r}{2}=\left|\Delta_{n-r}\right|$
for all feasible $\alpha, \beta, \gamma \subset \square-\quad \square$ with $0<r<n$ or else
(2) $\{\lambda\}_{\alpha}+\{\mu\}_{\beta}+\{\nu\}_{\gamma} \leq\binom{ n+1-r}{2}=\left|\Delta_{n-r}\right|$
for all feasible $\alpha, \beta, \gamma \subset \stackrel{n+1-r}{\square} r$
with $0<r<n+1$ and r even.

Underlying Geometry

$G / P=$ cominuscule flag variety
$L=$ Levi subgroup of P, acts on $\mathfrak{g} / \mathfrak{p}$ (finitely many orbits)
$\lambda \rightsquigarrow T_{\lambda} \subset \mathfrak{g} / \mathfrak{p}$ (tangent space to Schubert variety)
For $x \in \mathfrak{g} / \mathfrak{p}$, consider quotient map:

$$
\phi_{x}: \mathfrak{g} / \mathfrak{p} \rightarrow(\mathfrak{g} / \mathfrak{p}) /\left(T_{x}(L \cdot x)\right)
$$

Idea. λ, μ, ν are feasible
$\Longleftrightarrow a \cdot T_{\lambda}, b \cdot T_{\mu}, c \cdot T_{\nu} \subset \mathfrak{g} / \mathfrak{p}$ are transverse
for generic $a, b, c \in L$
$\Longleftrightarrow \operatorname{codim} \phi_{x}\left(a \cdot T_{\lambda}\right)+\operatorname{codim} \phi_{x}\left(b \cdot T_{\mu}\right)$ $+\operatorname{codim} \phi_{x}\left(c \cdot T_{\nu}\right) \leq \operatorname{rank}\left(\phi_{x}\right)$
for all $x \in \mathfrak{g} / \mathfrak{p}$.
Simplified, these become the Horn inequalities.

	G	$\mathfrak{g} / \mathfrak{p}$	L	L-orbits on $\mathfrak{g} / \mathfrak{p}$
Schur fans	$G L(m+n)$	$\operatorname{Mat}(m \times n)$	$G L(m) \times G L(n)$	rank r
Schur Q-fans	$S p(2 n)$	$\operatorname{Sym}(n)$	$G L(n)$	rank r
Schur P-fans	$S O(2 n+2)$	$\operatorname{SkewSym}(n+1)$	$G L(n+1)$	(even) rank $2 r$

