Coincidences amongst skew Schur functions

Steph van Willigenburg
University of British Columbia
1984 Mathematics Rd
Vancouver, BC.

www.math.ubc.ca/~steph/fpsac06.pdf with Vic Reiner and Kris Shaw

FPSAC/SFCA XVIII
21 June 2006

Compositions and partitions

A composition $\alpha_{1} \ldots \alpha_{k}$ of n is a list of positive integers whose sum is n : 2213 $=8$.

A composition is a partition if $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{k}>0$: $3221 \vdash 8$.

Any composition determines a partition: $\lambda(2213)=3221$.

Skew diagrams and ribbons

The diagram $\lambda=\lambda_{1} \geq \ldots \geq \lambda_{k}>0$ is the array of boxes with λ_{i} boxes in row i.

For λ, μ the skew diagram λ / μ is the array of boxes contained in λ but not in μ.

A skew diagram λ / μ is a ribbon if

$$
\text { connected shape with no } 2 \times 2 \text { square. }
$$

5332

5332/221

Skew diagrams and ribbons

The diagram $\lambda=\lambda_{1} \geq \ldots \geq \lambda_{k}>0$ is the array of boxes with λ_{i} boxes in row i.

For λ, μ the skew diagram λ / μ is the array of boxes contained in λ but not in μ.

A skew diagram λ / μ is a ribbon if

$$
\text { connected shape with no } 2 \times 2 \text { square. }
$$

5332

5332/221

Symmetries of skew diagrams

Given a skew diagram λ / μ :

Conjugation gives $(\lambda / \mu)^{t}=\lambda^{t} / \mu^{t}$:

Antipodal rotation gives $(\lambda / \mu)^{*}$:

Young tableaux

A semi-standard Young tableau (SSYT) T of shape λ / μ is a filling with $1,2,3, \ldots$ so rows weakly increase and columns increase.

Example

$$
\begin{array}{ll}
& 1 \\
2 & 2
\end{array}
$$

Given a SSYT T we have

$$
x^{T}:=x_{1}^{\# 1 s} x_{2}^{\# 2 s} x_{3}^{\# 3 s} \cdots
$$

Example

$$
x_{1} x_{2}^{2}
$$

Skew Schur functions

We define skew Schur function of shape λ / μ by

$$
s_{\lambda / \mu}=\sum_{T \text { SSYT of shape } \lambda / \mu} x^{T} .
$$

The classical Schur functions are s_{λ} when $\mu=0$.
Let $\wedge \subset \mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ be the algebra of all symmetric functions

$$
\wedge:=\wedge_{0} \oplus \Lambda_{1} \oplus \cdots
$$

where

$$
\wedge_{n}:=\operatorname{span}_{\mathbb{Q}}\left\{s_{\lambda} \mid \lambda \vdash n\right\} .
$$

Example $s_{22 / 1}=x_{1} x_{2}^{2}+\ldots$

Equality of skew Schur functions

Question: When is

$$
c s_{D_{1}} s_{D_{2}} \ldots s_{D_{m}}-c^{\prime} s_{D_{1}^{\prime}} s_{D_{2}^{\prime}} \ldots s_{D_{m}^{\prime}}=0 ?
$$

Question: When are $G L_{n}$-representations the same?

Answer: Determine when

$$
s_{\lambda / \mu}=s_{\nu / \rho}
$$

for $\lambda / \mu, \nu / \rho$ connected. Denote by

$$
\lambda / \mu \sim \nu / \rho
$$

Necessary conditions

For λ / μ the k-row overlap composition is $r^{(k)}:=r_{1}^{(k)} r_{2}^{(k)} \ldots$ where $r_{i}^{(k)}$ is number of common columns for rows $i, \ldots, i+k-1$.
$\begin{array}{cccccccc} & & \times & \times & \times & \times & r^{(1)} & =4331 \\ \times & \times & \times & & & r^{(2)} & = & 131 \\ \times & \times & \times & & & r^{(3)} & = & 11 \\ \times & & & & r^{(4)} & = & 0\end{array}$

Theorem If $D \sim E$ then $\lambda\left(r^{(k)}(D)\right)=\lambda\left(r^{(k)}(E)\right)$ for all k.

Necessary conditions

For λ / μ the k-row overlap composition is $r^{(k)}:=r_{1}^{(k)} r_{2}^{(k)} \ldots$ where $r_{i}^{(k)}$ is number of common columns for rows $i, \ldots, i+k-1$.
$\begin{array}{cccccccc} & & \times & \times & \times & \times & r^{(1)} & =4331 \\ \times & \times & \times & & & r^{(2)} & = & 131 \\ \times & \times & \times & & & r^{(3)} & = & 11 \\ \times & & & & r^{(4)} & = & 0\end{array}$

Theorem If $D \sim E$ then $\lambda\left(r^{(k)}(D)\right)=\lambda\left(r^{(k)}(E)\right)$ for all k.

Necessary conditions

For λ / μ the k-row overlap composition is $r^{(k)}:=r_{1}^{(k)} r_{2}^{(k)} \ldots$ where $r_{i}^{(k)}$ is number of common columns for rows $i, \ldots, i+k-1$.

Theorem If $D \sim E$ then $\lambda\left(r^{(k)}(D)\right)=\lambda\left(r^{(k)}(E)\right)$ for all k.

Necessary conditions

For λ / μ the k-row overlap composition is $r^{(k)}:=r_{1}^{(k)} r_{2}^{(k)} \ldots$ where $r_{i}^{(k)}$ is number of common columns for rows $i, \ldots, i+k-1$.
$\begin{array}{cccccccc} & & \times & \times & \times & \times & r^{(1)} & =4331 \\ \times & \times & \times & & & r^{(2)} & =131 \\ \times & \times & \times & & & r^{(3)} & = & 11 \\ \times & & & & r^{(4)} & = & 0\end{array}$

Theorem If $D \sim E$ then $\lambda\left(r^{(k)}(D)\right)=\lambda\left(r^{(k)}(E)\right)$ for all k.

Back to ribbons

Example
and

$$
\begin{array}{cccc}
r^{(1)} & : & 2321 & 3221 \\
r^{(2)} & : & 121 & 211 \\
r^{(3)} & : & 01 & 10 \\
r^{(4)} & : & 0 & 0
\end{array}
$$

Corollary \sim restricts to the subset of ribbons since they are the only skew diagrams with $r^{(2)}=1 \ldots 1$.

Is this enough?

Example
but

$r^{(1)}$	$:$	231	321
$r^{(2)}$	$:$	11	11
$r^{(3)}$	$:$	0	0

Question:

What is sufficient?

Operations on skew diagrams

Ribbons and skew diagrams I

Observe if α is a ribbon then

$$
\alpha=\times \star_{1} \times \star_{2} \ldots \star_{k} \times
$$

where $\star_{i}=\cdot$ or \odot.

Example

$$
\begin{array}{r}
\times \\
\times \quad \times \\
\times
\end{array} \quad \times \odot \times \times \odot \times
$$

If $\alpha=\times \star_{1} \times \star_{2} \ldots \star_{k} \times$ then

$$
\alpha \circ D=D \star_{1} D \star_{2} \ldots \star_{k} D .
$$

Ribbons and skew diagrams II

Example

Theorem If $\alpha \sim \alpha^{\prime}$ then

$$
\alpha^{\prime} \circ D \sim \alpha \circ D \sim \alpha \circ D^{*} .
$$

An important map

For a fixed skew diagram D we have

$$
\wedge_{s_{\alpha}} \stackrel{(-) \circ s_{D}}{\longrightarrow} s_{\alpha \circ D}^{\longmapsto}
$$

is well-defined.

Remark For $f \in \Lambda$ write f in ribbon Schur functions $f=p\left(s_{\alpha}\right)$ and set $f \circ s_{D}:=p\left(s_{\alpha \circ D}\right)$ so

$$
s_{\alpha} \circ s_{D}=s_{\alpha \circ D}
$$

Ribbons and protrusions

If D is a skew diagram we say a ribbon ω protrudes from the top and bottom if

$$
D=\begin{aligned}
& \times \\
& \times \times \\
& \times
\end{aligned} \times
$$

and the amalgamation of D along ω is

$$
D \amalg_{\omega} D=\begin{array}{cccccc}
& & & & \times & \times \\
& \times & \times & \times & \times & \times \\
\times & \times
\end{array}
$$

If ω protrudes from D then

Outer projection gives $\begin{array}{ccccccccc} & \times & \times & \times & & \times & \times & \times \\ & \times & \times & \times & & \times & \times & \times & \end{array}$

Inner projection gives

Note: At most one is a skew diagram $D \cdot \omega D$.

If

$$
\alpha \circ D=D \star_{1} D \star_{2} \ldots \star_{k} D
$$

then for ω protruding from top and bottom swap • for ω and \odot for \amalg_{ω} to get

$$
\alpha \circ_{\omega} D
$$

Theorem If ω s are separated by at least one diagonal and $\alpha \sim \alpha^{\prime}$ then

$$
\alpha^{\prime} \circ_{\omega} D \sim \alpha \circ_{\omega} D \sim \alpha \circ_{\omega^{*}} D^{*}
$$

Further avenues

Conjecture Operations o_{ω} and * provide all necessary and sufficient conditions for \sim.
(McNamara and SvW upto $n=18$)

Conjecture All \sim classes have cardinality power of 2.

> Coincidences among skew Schur functions arXiv:math.CO/0602634

