Coincidences amongst skew Schur functions

Steph van Willigenburg University of British Columbia 1984 Mathematics Rd Vancouver, BC. www.math.ubc.ca/~steph/fpsac06.pdf with Vic Reiner and Kris Shaw

> FPSAC/SFCA XVIII 21 June 2006

Compositions and partitions

A composition $\alpha_1 \dots \alpha_k$ of n is a list of positive integers whose sum is n: 2213 \models 8.

A composition is a partition if $\alpha_1 \ge \alpha_2 \ge \ldots \ge \alpha_k > 0$: 3221 \vdash 8.

Any composition determines a partition: $\lambda(2213) = 3221$.

Skew diagrams and ribbons

The diagram $\lambda = \lambda_1 \ge \ldots \ge \lambda_k > 0$ is the array of boxes with λ_i boxes in row *i*.

For λ, μ the skew diagram λ/μ is the array of boxes contained in λ but not in μ .

A skew diagram λ/μ is a ribbon if

connected shape with no 2×2 square.

Skew diagrams and ribbons

The diagram $\lambda = \lambda_1 \ge \ldots \ge \lambda_k > 0$ is the array of boxes with λ_i boxes in row *i*.

For λ, μ the skew diagram λ/μ is the array of boxes contained in λ but not in μ .

A skew diagram λ/μ is a ribbon if

connected shape with no 2×2 square.

Symmetries of skew diagrams

Given a skew diagram λ/μ :

Conjugation gives $(\lambda/\mu)^t = \lambda^t/\mu^t$:

Young tableaux

A semi-standard Young tableau (SSYT) T of shape λ/μ is a filling with 1, 2, 3, ... so rows weakly increase and columns increase.

Example

1 2 2

Given a SSYT T we have

$$x^T := x_1^{\#1s} x_2^{\#2s} x_3^{\#3s} \dots$$

Example

$$x_1 x_2^2$$

Skew Schur functions

We define skew Schur function of shape λ/μ by

$$s_{\lambda/\mu} = \sum_{T \text{ SSYT of shape } \lambda/\mu} x^T.$$

The classical Schur functions are s_{λ} when $\mu = 0$.

Let $\Lambda \subset \mathbb{Q}[[x_1, x_2, \dots]]$ be the algebra of all symmetric functions $\Lambda := \Lambda_0 \oplus \Lambda_1 \oplus \cdots$

where

$$\Lambda_n := \operatorname{span}_{\mathbb{Q}}\{s_\lambda \mid \lambda \vdash n\}.$$

Example $s_{22/1} = x_1 x_2^2 + \dots$

Equality of skew Schur functions

Question: When is

$$cs_{D_1}s_{D_2}\ldots s_{D_m} - c's_{D'_1}s_{D'_2}\ldots s_{D'_m} = 0?$$

Question: When are GL_n -representations the same?

Answer: Determine when

 $s_{\lambda/\mu} = s_{\nu/\rho}$

for $\lambda/\mu,\nu/\rho$ connected. Denote by

 $\lambda/\mu \sim \nu/\rho.$

For λ/μ the *k*-row overlap composition is $r^{(k)} := r_1^{(k)} r_2^{(k)} \dots$ where $r_i^{(k)}$ is number of common columns for rows $i, \dots, i + k - 1$.

			Х	Х	Х	Х	$r^{(1)}$	=	4331
Example	×	×	×				_r (2)	=	131
Example	×	×	×				r(3)	=	11
	Х						$r^{(4)}$	=	0

For λ/μ the *k*-row overlap composition is $r^{(k)} := r_1^{(k)} r_2^{(k)} \dots$ where $r_i^{(k)}$ is number of common columns for rows $i, \dots, i + k - 1$.

			X	X	Х	X	$r^{(1)}$	=	4331
Example	×	×	×				_r (2)	=	131
Example	\times	×	Х				r(3)	=	11
	Х						$r^{(4)}$	=	0

For λ/μ the *k*-row overlap composition is $r^{(k)} := r_1^{(k)} r_2^{(k)} \dots$ where $r_i^{(k)}$ is number of common columns for rows $i, \dots, i + k - 1$.

			Х	Х	Х	Х	$r^{(1)}$	=	4331
Example	×	×	×				r(2)	=	131
LXample	×	×	X				_r (3)	=	11
	Х						$r^{(4)}$	=	0

For λ/μ the *k*-row overlap composition is $r^{(k)} := r_1^{(k)} r_2^{(k)} \dots$ where $r_i^{(k)}$ is number of common columns for rows $i, \dots, i + k - 1$.

			Х	Х	Х	×	$r^{(1)}$	=	4331
Example	×	×	×				_r (2)	=	131
LXample	×	×	X				r(3)	=	11
	Х						$r^{(4)}$	=	0

Back to ribbons

Example				
			× ×	\times \times \times
		×	\times \times	× ×
		×	×	$\sim \times \times$
		×		×
and				
	$r^{(1)}$:	2321	3221
	$r^{(2)}$:	121	211
	$r^{(3)}$:	01	10
	$r^{(4)}$	•	0	0

Corollary ~ restricts to the subset of ribbons since they are the only skew diagrams with $r^{(2)} = 1 \dots 1$.

Is this enough?

Example										
				×	×			×	×	×
		×	×	×		\checkmark	\times	×		
		×					×			
but										
	$r^{(1)}$:		23	1		32	21		
	$r^{(2)}$:		11	L		1	1		
	r(3)	:		0			0)		

Question:

What is sufficient?

Operations on skew diagrams

Near concatenation gives
$$\begin{array}{cccc} \times & \times & \times & \times & \times \\ \times & \times & \otimes & \times & \times & \times \\ & \times & \times & & \times & \times \end{array}$$

Ribbons and skew diagrams I

Observe if α is a ribbon then

 $\alpha = \times \star_1 \times \star_2 \ldots \star_k \times$

where $\star_i = \cdot$ or \odot .

Example

$$\begin{array}{ccc} & \times & \times \\ \times & \times \end{array} = \times \odot \times \cdot \times \odot \times$$

If $\alpha = \times \star_1 \times \star_2 \ldots \star_k \times$ then

$$\alpha \circ D = D \star_1 D \star_2 \ldots \star_k D.$$

Ribbons and skew diagrams II

Theorem If $\alpha \sim \alpha'$ then

 $\alpha' \circ D \sim \alpha \circ D \sim \alpha \circ D^*.$

An important map

For a fixed skew diagram D we have

 $\begin{array}{ccc} \Lambda & \stackrel{(-) \circ s_D}{\longrightarrow} & \Lambda \\ s_{\alpha} & \longmapsto & s_{\alpha \circ D} \end{array}$

is well-defined.

Remark For $f \in \Lambda$ write f in ribbon Schur functions $f = p(s_{\alpha})$ and set $f \circ s_D := p(s_{\alpha \circ D})$ so

 $s_{\alpha} \circ s_D = s_{\alpha \circ D}.$

Ribbons and protrusions

If D is a skew diagram we say a ribbon ω protrudes from the top and bottom if

$$D = \begin{array}{ccc} \times & \times & \times \\ \times & \times & \times \end{array}$$

and the amalgamation of D along ω is

$$D \amalg_{\omega} D = \underset{\times \times \times}{\times} \underset{\times \times \times}{\times} \times \underset{\times}{\times} \times \times$$

Inner and outer projections

Note: At most one is a skew diagram $D \cdot_{\omega} D$.

<u>o wrt a ribbon</u>

If

$\alpha \circ D = D \star_1 D \star_2 \ldots \star_k D$

then for ω protruding from top and bottom swap \cdot for \cdot_ω and \odot for \amalg_ω to get

 $\alpha \circ_{\omega} D.$

Theorem If ω s are separated by at least one diagonal and $\alpha \sim \alpha'$ then

$$\alpha' \circ_{\omega} D \sim \alpha \circ_{\omega} D \sim \alpha \circ_{\omega^*} D^*.$$

Further avenues

Conjecture Operations \circ_{ω} and * provide all necessary and sufficient conditions for \sim .

(McNamara and SvW upto n=18)

Conjecture All \sim classes have cardinality power of 2.

Coincidences among skew Schur functions arXiv:math.CO/0602634