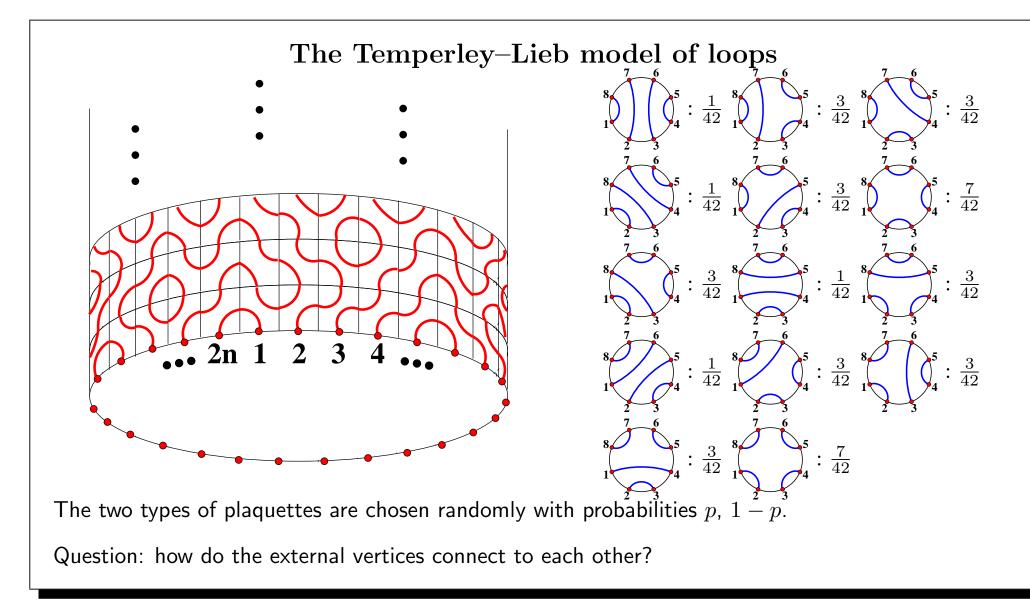
06/2006 From Alternating Sign Matrices **To Orbital Varieties** P. Di Francesco and P. Zinn-Justin Plan of the talk ◇ Definition of the Temperley–Lieb model of loops ◊ Relation to Alternating Sign Matrices ◊ Quantum Knizhnik–Zamolodchikov Equation \diamond Relation to sl(N) Orbital Varieties ♦ Generalization to other orbital varieties / other boundary conditions (see also: DF+ZJ math-ph/0410061, math-ph/0508059)



Temperley–Lieb model of loops cont'd

It is convenient to encode the probabilities as a vector Ψ indexed by link patterns, and to normalize

it so that the smallest entry is 1.

Conjectures [de Gier, Nienhuis '01]

(1) The components can be chosen to be integers, the smallest being 1.

(2) The sum of components is the number of alternating sign matrices of size n:

$$A_n = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!(n+2)!\cdots(2n-1)!} \qquad \begin{pmatrix} 0 & + & 0 \\ + & - & + \\ 0 & + & 0 \end{pmatrix}$$

now a Theorem [PDF, PZJ oct '04]

(3) The largest component is A_{n-1} .

[Razumov, Stroganov '01] formulated a much more general conjecture that interprets combinatorially *each individual component*. [still unproven]

ASM enumeration: Izergin's determinant formula

Associate to each horizontal line of the grid a parameter x_i and to each vertical line a parameter y_i .

The weight w(x,y) at a vertex depends on the parameters x, y of the lines and is equal to:

Kuperberg ('98): set $q = e^{2i\pi/3}$ and $x_i = y_i = 1 \Rightarrow$ recover Zeilberger's formula for A_n .

6 Vertex Model with DWBC at $q = e^{2i\pi/3}$: Okada formula In the next 2 slides, set $q = e^{2i\pi/3}$. Okada ('02): $A_n(x_1, \ldots, x_n; y_1, \ldots, y_n)$ is a symmetric function of the full set of parameters x_i , y_i . $z_i \equiv x_i$ $z_{i+n} \equiv y_i$ $i = 1 \dots n$ It is a Schur function: (up to a prefactor) $A_n(z_1, \dots, z_{2n}) = s_Y(z_1, \dots, z_{2n})$ Y => 2n-2It is entirely characterized by the following properties: (Stroganov, '04) (i) It is a symmetric [homogeneous] polynomial of the z_i , of degree n-1 in each variable. (ii) It satisfies the recursion relation 2n $A_n(z_1,\ldots,z_{2n})|_{z_j=q\,z_i} = \prod_{k=1} (q^2 z_i - z_k) A_{n-1}(z_1,\ldots,z_{i-1},z_{i+1},\ldots,z_{j-1},z_{j+1},\ldots,z_{2n}) .$

Inhomogeneous T–L model of loops [PDF, PZJ '04]

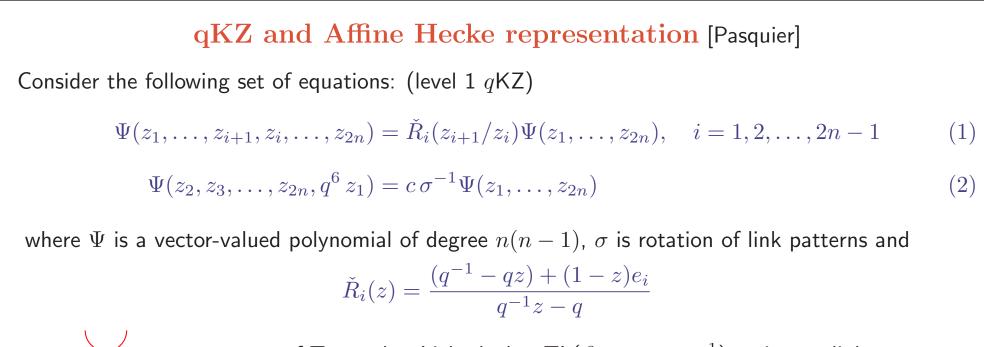
Introduce local probabilities dependent on the column *i* via a parameter z_i respecting **integrability** of the model (i.e. satisfying Yang–Baxter equation). Form the new vector $\Psi(z_1, \ldots, z_{2n})$ of probabilities, normalized so that its components are **coprime** polynomials.

- * Polynomiality. The components of $\Psi(z_1, \ldots, z_{2n})$ are homogenous polynomials of total degree n(n-1) and of partial degree at most n-1 in each z_i , with coefficients in $\mathbb{Z}[q]$, $q = e^{2i\pi/3}$.
- \star Factorization and symmetry. (...)

The sum of components is a symmetric polynomial of all z_i .

* Recursion relations. The set of components $\Psi_{\pi}(z_1, \ldots, z_{2n})$ satisfies linear recursion relations when $z_j = q^2 z_i$; in particular, the sum satisfies the Korepin/Stroganov recursion relation, and therefore

$$\sum_{\pi} \Psi_{\pi}(z_1, \dots, z_{2n}) = A_n(z_1, \dots, z_{2n})$$



 $e_i = \bigvee_{i \quad i+I} =$ generator of Temperley–Lieb algebra $TL(\beta = -q - q^{-1})$ acting on link patterns. For $q = e^{\pm 2i\pi/3}$, one recovers the previous eigenvector Ψ .

Rewrite Eqs. (1) by separating the action on link patterns and that on polynomials:

$$(q^{-1}z_{i+1} - qz_i)\partial_i\Psi = (e_i + q + q^{-1})\Psi$$
(1')

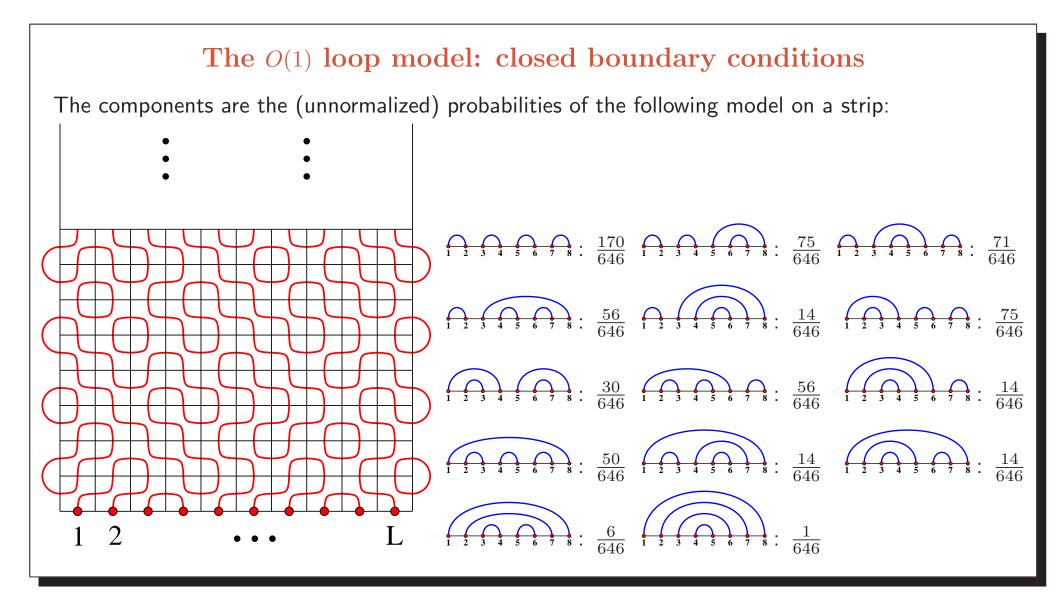
where $\partial \equiv \frac{1}{z_{i+1}-z_i}(\tau_i - 1)$ and τ_i switches z_i and z_{i+1} . The operators $(q^{-1}z_{i+1} - qz_i)\partial_i$ acting on polynomials form a representation of the Hecke algebra. Together with the cyclic shift of spectral parameters they generate a representation of affine Hecke...

Rational limit and Hotta's construction

Consider $q = -e^{-\hbar a/2}$, $z_i = e^{-\hbar w_i}$, $\hbar \to 0$. In this limit the e_i form a representation of $TL(\beta = 2)$ which is a quotient of the symmetric group. The e_i generate the Joseph representation on orbital varieties, and Eq. (1') is related to Hotta's construction of this representation. Each Ψ_{π} is the *multidegree* of an orbital variety. NB: $\Psi_{\pi}(z_i = 0, a = 1) = degree$, $\Psi(a = 0) = Joseph polynomial$. Here the orbital varieties are the irreducible components of the scheme of upper triangular $N \times N$ matrices that square to zero, N = 2n. Torus action = conjugation by diagonal matrices and scaling. *Example:* N = 4. Two components:

(9)

Other orbital varieties/boundary conditions **B-type orbital varieties:** consider $(2r+1) \times (2r+1)$ matrices such that $M^T J + JM = 0$ where J is the antidiagonal matrix with 1's on the antidiagonal, and $M^2 = 0$. The multidegrees of irreducible components of this scheme satisfy B-type qKZ equation at q = -1. q-deform and set $q = e^{2i\pi/3}$, $z_i = 1$. Results for r even: Theorem [DF '05]: if one normalizes the solution of qKZ equation so that its smallest entry is 1, then the sum of components is $A_V(r)$, the number of Vertically Symmetric Alternating Sign Matrices of size r+1Conjecture: the largest component is the number of Cyclically Symmetric Transpose Complement Plane Partitions in a hexagon of size $r \times r \times r$.



Other orbital varieties/boundary conditions **C-type orbital varieties:** consider $(2r) \times (2r)$ matrices such that $M^T J + JM = 0$ where J is the antidiagonal matrix with 1's (resp. -1's) in the upper (resp. lower) triangle. and $M^2 = 0$. Take its multidegrees, q-deform them, and set $q = e^{2i\pi/3}$, $z_i = 1$. Conjectures: (r even) ♦ With the normalization that the smallest component is 1, the sum of components is the number of Cyclically Symmetric Self-Complementary Plane Partitions in a hexagon of size $r \times r \times r$. \diamond The largest entry is the sum of components at size r-1. **D-type orbital varieties:** consider $(2r) \times (2r)$ matrices such that $M^T J + JM = 0$ where J is the antidiagonal matrix with 1's on the antidiagonal, and $M^2 = 0$. Take its multidegrees, q-deform them, and set $q = e^{2i\pi/3}$, $z_i = 1$. Conjectures: ♦ With the normalization that the smallest component is 1, the sum of components is the number of Half-Turn Symmetric Alternating Sign Matrices of size r.

 \diamond The largest entry is the sum of components of the C-type solution at size r-1.