06/2006

From Alternating Sign Matrices

To Orbital Varieties
P. Di Francesco and P. Zinn-Justin

Plan of the talk
\diamond Definition of the Temperley-Lieb model of loops
\diamond Relation to Alternating Sign Matrices
\diamond Quantum Knizhnik-Zamolodchikov Equation
\diamond Relation to $s l(N)$ Orbital Varieties
\diamond Generalization to other orbital varieties / other boundary conditions
(see also: DF + ZJ math-ph/0410061, math-ph/0508059)

The two types of plaquettes are chosen randomly with probabilities $p, 1-p$.
Question: how do the external vertices connect to each other?

Temperley-Lieb model of loops cont'd

It is convenient to encode the probabilities as a vector Ψ indexed by link patterns, and to normalize it so that the smallest entry is 1 .

Conjectures [de Gier, Nienhuis '01]
(1) The components can be chosen to be integers, the smallest being 1 .
(2) The sum of components is the number of alternating sign matrices of size n :

$$
A_{n}=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!} \quad\left(\begin{array}{ccc}
0 & + & 0 \\
+ & - & + \\
0 & + & 0
\end{array}\right)
$$

now a Theorem [PDF, PZJ oct '04]
(3) The largest component is A_{n-1}.
[Razumov, Stroganov '01] formulated a much more general conjecture that interprets combinatorially each individual component. [still unproven]

ASM enumeration: Izergin's determinant formula

Associate to each horizontal line of the grid a parameter x_{i} and to each vertical line a parameter y_{i}.
The weight $w(x, y)$ at a vertex depends on the parameters x, y of the lines and is equal to:

$$
\begin{aligned}
& \begin{array}{rllll}
+ & \cdots & \mathbf{0} & + \\
& & & \\
& & \text { or } & \vdots & \\
& + & \mathbf{0} & \cdots & + \\
a(x, y) & = & q^{1 / 2} x-q^{-1 / 2} y
\end{array} \\
& A_{n}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right) \equiv \sum_{6 \mathrm{v} \text { DWBC configs }} \prod_{i, j=1}^{n} w\left(x_{i}, y_{j}\right)
\end{aligned}
$$

Korepin wrote recursion relations that fix entirely A_{n} (in terms of A_{n-1}). Using them Izergin showed

$$
A_{n}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)=\frac{\prod_{i, j=1}^{n} a\left(x_{i}, y_{j}\right) b\left(x_{i}, y_{j}\right)}{\prod_{i<j}\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)} \operatorname{det}_{i, j=1 \ldots n}\left(\frac{c\left(x_{i}, y_{j}\right)}{a\left(x_{i}, y_{j}\right) b\left(x_{i}, y_{j}\right)}\right)
$$

NB: $A_{n}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)$ is a symmetric function of the x_{i}, and of the y_{i}.
Kuperberg ('98): set $q=\mathrm{e}^{2 i \pi / 3}$ and $x_{i}=y_{i}=1 \Rightarrow$ recover Zeilberger's formula for A_{n}.

6 Vertex Model with DWBC at $q=\mathrm{e}^{2 i \pi / 3}$: Okada formula

In the next 2 slides, set $q=\mathrm{e}^{2 i \pi / 3}$.
Okada ('02): $A_{n}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)$ is a symmetric function of the full set of parameters x_{i}, y_{i}.

$$
z_{i} \equiv x_{i} \quad z_{i+n} \equiv y_{i} \quad i=1 \ldots n
$$

It is a Schur function: (up to a prefactor)

$$
A_{n}\left(z_{1}, \ldots, z_{2 n}\right)=s_{Y}\left(z_{1}, \ldots, z_{2 n}\right)
$$

It is entirely characterized by the following properties: (Stroganov, '04)
(i) It is a symmetric [homogeneous] polynomial of the z_{i}, of degree $n-1$ in each variable.
(ii) It satisfies the recursion relation

$$
A_{n}\left(z_{1}, \ldots, z_{2 n}\right)_{z_{j}=q z_{i}}=\prod_{\substack{k=1 \\ k \neq i, j}}^{2 n}\left(q^{2} z_{i}-z_{k}\right) A_{n-1}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{2 n}\right)
$$

Inhomogeneous T-L model of loops [PDF, PZJ '04]

Introduce local probabilities dependent on the column i via a parameter z_{i} respecting integrability of the model (i.e. satisfying Yang-Baxter equation). Form the new vector $\Psi\left(z_{1}, \ldots, z_{2 n}\right)$ of probabilities, normalized so that its components are coprime polynomials.

* Polynomiality. The components of $\Psi\left(z_{1}, \ldots, z_{2 n}\right)$ are homogenous polynomials of total degree $n(n-1)$ and of partial degree at most $n-1$ in each z_{i}, with coefficients in $\mathbb{Z}[q], q=\mathrm{e}^{2 i \pi / 3}$.
* Factorization and symmetry. (...)

The sum of components is a symmetric polynomial of all z_{i}.
\star Recursion relations. The set of components $\Psi_{\pi}\left(z_{1}, \ldots, z_{2 n}\right)$ satisfies linear recursion relations when $z_{j}=q^{2} z_{i}$; in particular, the sum satisfies the Korepin/Stroganov recursion relation, and therefore

$$
\sum_{\pi} \Psi_{\pi}\left(z_{1}, \ldots, z_{2 n}\right)=A_{n}\left(z_{1}, \ldots, z_{2 n}\right)
$$

$q \mathbb{K Z}$ and Affine Hecke representation [Pasquier]

Consider the following set of equations: (level $1 q \mathrm{KZ}$)

$$
\begin{align*}
\Psi\left(z_{1}, \ldots, z_{i+1}, z_{i}, \ldots, z_{2 n}\right) & =\check{R}_{i}\left(z_{i+1} / z_{i}\right) \Psi\left(z_{1}, \ldots, z_{2 n}\right), \quad i=1,2, \ldots, 2 n-1 \tag{1}\\
\Psi\left(z_{2}, z_{3}, \ldots, z_{2 n}, q^{6} z_{1}\right) & =c \sigma^{-1} \Psi\left(z_{1}, \ldots, z_{2 n}\right) \tag{2}
\end{align*}
$$

where Ψ is a vector-valued polynomial of degree $n(n-1), \sigma$ is rotation of link patterns and

$$
\check{R}_{i}(z)=\frac{\left(q^{-1}-q z\right)+(1-z) e_{i}}{q^{-1} z-q}
$$

$e_{i}=\bigcup_{i} \bigcap_{i+1}=$ generator of Temperley-Lieb algebra $\operatorname{TL}\left(\beta=-q-q^{-1}\right)$ acting on link patterns.
For $q=\mathrm{e}^{ \pm 2 i \pi / 3}$, one recovers the previous eigenvector Ψ.
Rewrite Eqs. (1) by separating the action on link patterns and that on polynomials:

$$
\left(q^{-1} z_{i+1}-q z_{i}\right) \partial_{i} \Psi=\left(e_{i}+q+q^{-1}\right) \Psi
$$

where $\partial \equiv \frac{1}{z_{i+1}-z_{i}}\left(\tau_{i}-1\right)$ and τ_{i} switches z_{i} and z_{i+1}. The operators $\left(q^{-1} z_{i+1}-q z_{i}\right) \partial_{i}$ acting on polynomials form a representation of the Hecke algebra. Together with the cyclic shift of spectral parameters they generate a representation of affine Hecke...

Rational limit and Hotta's construction

Consider $q=-\mathrm{e}^{-\hbar a / 2}, z_{i}=\mathrm{e}^{-\hbar w_{i}}, \hbar \rightarrow 0$. In this limit the e_{i} form a representation of $\operatorname{TL}(\beta=2)$ which is a quotient of the symmetric group. The e_{i} generate the Joseph representation on orbital varieties, and Eq. (1') is related to Hotta's construction of this representation. Each Ψ_{π} is the multidegree of an orbital variety. $\mathrm{NB}: \Psi_{\pi}\left(z_{i}=0, a=1\right)=$ degree, $\Psi(a=0)=$ Joseph polynomial. Here the orbital varieties are the irreducible components of the scheme of upper triangular $N \times N$ matrices that square to zero, $N=2 n$. Torus action $=$ conjugation by diagonal matrices and scaling. Example: $N=4$. Two components:

$$
\begin{aligned}
& O \underset{0_{i} \overbrace{i}}{ }=\left\{M=\left(\begin{array}{ccc}
0 & m_{13} & m_{14} \\
& m_{23} & m_{24} \\
& & 0
\end{array}\right)\right\} \quad \Psi \underbrace{0}_{i=1}=\left(a+z_{1}-z_{2}\right)\left(a+z_{3}-z_{4}\right) \\
& O_{-\Omega_{i}}^{\Omega_{3}} \Omega_{4}=\left\{M=\left(\begin{array}{ccc}
m_{12} & m_{13} & m_{14} \\
& 0 & m_{24} \\
& & m_{34}
\end{array}\right): m_{12} m_{24}+m_{13} m_{34}=0\right\} \\
& \Psi_{\overbrace{i} \cap_{3} \cap_{4}}=\left(a+z_{2}-z_{3}\right)\left(2 a+z_{1}-z_{4}\right)
\end{aligned}
$$

Other orbital varieties/boundary conditions

B-type orbital varieties: consider $(2 r+1) \times(2 r+1)$ matrices such that $M^{T} J+J M=0$ where J is the antidiagonal matrix with 1 's on the antidiagonal, and $M^{2}=0$.

The multidegrees of irreducible components of this scheme satisfy B-type $q \mathrm{KZ}$ equation at $q=-1$. q-deform and set $q=\mathrm{e}^{2 i \pi / 3}, z_{i}=1$.
Results for r even:
Theorem [DF '05]: if one normalizes the solution of $q \mathrm{KZ}$ equation so that its smallest entry is 1 , then the sum of components is $A_{V}(r)$, the number of Vertically Symmetric Alternating Sign Matrices of size $r+1$

Conjecture: the largest component is the number of Cyclically Symmetric Transpose Complement Plane Partitions in a hexagon of size $r \times r \times r$.

The O (1) loop model: closed boundary conditions
The components are the (unnormalized) probabilities of the following model on a strip:

$$
\bigcap_{2} \bigcap_{8} \cap_{8}: \frac{56}{646} \cap_{23} \bigcap_{\Omega_{8}}: \frac{14}{646} \bigcap_{2} \bigcap_{8} \bigcap_{8}: \frac{75}{646}
$$

Other orbital varieties/boundary conditions

C-type orbital varieties: consider $(2 r) \times(2 r)$ matrices such that $M^{T} J+J M=0$ where J is the antidiagonal matrix with 1 's (resp. -1 's) in the upper (resp. lower) triangle. and $M^{2}=0$. Take its multidegrees, q-deform them, and set $q=\mathrm{e}^{2 i \pi / 3}, z_{i}=1$. Conjectures: (r even)
\diamond With the normalization that the smallest component is 1 , the sum of components is the number of Cyclically Symmetric Self-Complementary Plane Partitions in a hexagon of size $r \times r \times r$.
\diamond The largest entry is the sum of components at size $r-1$.
D-type orbital varieties: consider $(2 r) \times(2 r)$ matrices such that $M^{T} J+J M=0$ where J is the antidiagonal matrix with 1 's on the antidiagonal, and $M^{2}=0$.
Take its multidegrees, q-deform them, and set $q=\mathrm{e}^{2 i \pi / 3}, z_{i}=1$. Conjectures:
\diamond With the normalization that the smallest component is 1 , the sum of components is the number of Half-Turn Symmetric Alternating Sign Matrices of size r.
\diamond The largest entry is the sum of components of the C-type solution at size $r-1$.

