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Self-avoiding walks

Self-avoiding walk

o A path on a lattice that does not intersect itself
o ¢, = |[{SAWs of n steps}|
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Self-avoiding walks

Self-avoiding walk

o A path on a lattice that does not intersect itself
o ¢, = |[{SAWs of n steps}|

o Computing ¢, is a very hard combinatorial problem

o Canonical model of linear polymer in solution
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Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

v Ap" I 4-)

o growth constant p = 2.63815852927(1) [Guttmann & Jensen]
o critical exponent v = 43/32 [Nienhuis]
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Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

v Ap" I 4-)

o growth constant p = 2.63815852927(1) [Guttmann & Jensen]
o critical exponent v = 43/32 [Nienhuis]

o Growth constant is lattice dependent
— o =V2+V2 [Nienhuis]
— pa = 4.150797226(26) [Jensen]
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Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

anAu"n771(1+---

o growth constant ug = 2.63815852927(1)

)

[Guttmann & Jensen]

o critical exponent v = 43/32 [Nienhuis]
o Growth constant is lattice dependent
— o =V2+V2 [Nienhuis]
— pa = 4.150797226(26) [Jensen]

o Critical exponent is universal
— conformal field theory
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Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

v Ap" I 4-)

growth constant up = 2.63815852927(1) [Guttmann & Jensen]

critical exponent v = 43/32 [Nienhuis]

o Growth constant is lattice dependent
— o =V2+V2 [Nienhuis]
— pa = 4.150797226(26) [Jensen]

Critical exponent is universal
— conformal field theory

Much of what is known for 2D lattice models comes from CFT
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Put things in wedges

o Growth constant independent of ¢ [Hammersley & Whittington]
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Put things in wedges

o Growth constant independent of ¢ [Hammersley & Whittington]

CFT exponent prediction

y=14+———— [Duplantier & Saleur]
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Not conformally invariant

@ Many interesting models are not conformally invariant
— bond trees
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Not conformally invariant

@ Many interesting models are not conformally invariant
— bond trees

o Much less is known
— mostly numerical results by series analysis and Monte-Carlo
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Not conformally invariant

@ Many interesting models are not conformally invariant
— bond trees

o Much less is known
— mostly numerical results by series analysis and Monte-Carlo

o Computer enumeration in wedge is hard
— big growth constant and no FLM
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Simulate trees

First problem as a postdoc

o Design algorithm to simulate trees in wedges

o Estimate growth constant A and critical exponent ~y
th v AN T (14 --)

o Repeat in different wedges

o Compare and contrast to conformally invariant models — SAWs
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Simulate trees

First problem as a postdoc

o Design algorithm to simulate trees in wedges

o Estimate growth constant A and critical exponent ~y
th v AN T (14 --)

o Repeat in different wedges

o Compare and contrast to conformally invariant models — SAWs

Spent about 1 year getting nowhere
— bad convergence problems

Partially directed walks in wedges



Exponents
[e]e]e]e] }

Simulate trees

First problem as a postdoc

o Design algorithm to simulate trees in wedges

o Estimate growth constant A and critical exponent ~y
th v AN T (14 --)

o Repeat in different wedges

o Compare and contrast to conformally invariant models — SAWs

Spent about 1 year getting nowhere
— bad convergence problems

o A few years later we had a more combinatorial idea. . .
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Directed paths

Partially directed self-avoiding walk
o A SAW that cannot step west (and ends with an east step)

o Not conformally invariant — behaviour in wedges = ?
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Generatmg function and asymptotlcs of Walks in the pIane

o Simple rational generating function

CEIDIIELES W

EPDSAW

o Dominant singularity gives asymptotics

pn = \52—1 (1+v2)" +o(1)

o Growth constant p =14 /2

o Critical exponent v =1
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Put them in wedges

o Put PDSAW in an upper wedge — Y = pX, X =0
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Put them in wedges

o Put PDSAW in an upper wedge — Y = pX, X =0

p

PDSAW in upper wedge

o If p € Q then g.f. is algebraic
o Growth constant varies with p (and so 0) [JvR & Yel

Partially directed walks in wedges



Directed paths r S Conclusions
000e00

Put them in wedges again

o The symmetric wedge is more interesting — Y = +pX

Y =pX
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Directed paths
000e00

Put them in wedges again

o The symmetric wedge is more interesting — Y = +pX

Y =pX

PDSAW in symmetric wedge

o For p > 1 the growth constant is 1 + /2
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Directed paths
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Put them in wedges again

o The symmetric wedge is more interesting — Y = +pX

Y =pX

PDSAW in symmetric wedge

o For p > 1 the growth constant is 1 + /2

o But what is the critical exponent?
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Put them in wedges again

o The symmetric wedge is more interesting — Y = +pX

Y =pX

PDSAW in symmetric wedge

o For p > 1 the growth constant is 1 + /2

o But what is the critical exponent?

o Need to find g.f. — use the Temperley method
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Column-column construction

Each PDSAW in the Y = +pX wedge is
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Directed paths

[e]e]ele] Je]

Column-column construction

Each PDSAW in the Y = +pX wedge is

o either a single vertex
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Directed paths K S Conclusions

[e]e]ele] Je]

Column-column construction

Each PDSAW in the Y = +pX wedge is

o or obtained by adding an east step
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[e]e]ele] Je]

Column-column construction

Each PDSAW in the Y = +pX wedge is

o or by adding north steps and an east step
— but not too many north steps
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Column-column construction

Each PDSAW in the Y = +pX wedge is

o or obtained by adding south steps and an east step
— but not too many south steps
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Functional equation

Functional equation in the Y = £pX wedge

fi(a, b) = 1+ x(ab)°fy(a, b)

500 T2 (540, 0) = 0. 9)
—+ X(ab)plfbi){;/a (ﬁ,(a, b) — fy(by, b))

o fy(a, b) is the g.f. of PDSAW in this wedge

o x and y are conjugate to # horizontal and # vertical steps

@ a and b are conjugate to distance of endpoint from walls
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Functional equation

Functional equation in the Y = £pX wedge

fi(a, b) = 1+ x(ab)°fy(a, b)

x(ab) 7222 (2, )~ (o 2))

1—ya/b
I X(ab)plfbi){;/a (ﬁ,(a, b) — fo(by, b))

fy(a, b) is the g.f. of PDSAW in this wedge

o x and y are conjugate to # horizontal and # vertical steps

a and b are conjugate to distance of endpoint from walls

Very little progress except for p =1
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p = 1: solve using the iterated kernel method

Equation for Y = +£X wedge

xya®

f(ab) =1+ xabf(a,b) + 22 (f(a, b) — f(a, ay))

xyb?

e (f(a, b) — f(by, b))

o 1 equation with 3 unknowns
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Iterated Kernel
@000

p = 1: solve using the iterated kernel method

Equation for Y = +£X wedge

xya®

f(ab) =1+ xabf(a,b) + 22 (f(a, b) — f(a, ay))

xyb?

e (f(a, b) — f(by, b))

o 1 equation with 3 unknowns

o Singular when a = by or b = ay

Partially directed walks in wedges



Iterated Kernel
0e00

Kernelise. . .

Equation for Y = X wedge

f(a,b)K(a, b) = X(a,b) + Y(a, b) f(a,ay) + Z(a, b) f(by, b)
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Iterated Kernel
0e00

Kernelise. . .

Equation for Y = X wedge

f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a,ay) + Z(a, b) f(by, b)

o Symmetry implies

f(a, b) = f(b, a) K(a, b) = K(b, a)
X(a, b) = X(b, a) Y(a, b) = Z(b, a)
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Kernelise. . .

Equation for Y = X wedge

f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a,ay) + Y(b, a) f(b, by)

The kernel

K(a, b) = (b — ya)(a — yb)(1 — xab) — xyab(a® + b> — 2yab)

o Find the roots of the kernel b = 31+1(a)
o The kernel and f(a, b) can be removed by setting b = 3;1(a)
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Iterated Kernel
0e00

Kernelise. . .

Equation for Y = X wedge

f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a,ay) + Y(b, a) f(b, by)

The kernel

K(a, b) = (b — ya)(a — yb)(1 — xab) — xyab(a® + b> — 2yab)

o Find the roots of the kernel b = 31+1(a)
o The kernel and f(a, b) can be removed by setting b = 3;1(a)

0=X(a,6(a)) + Y (a,(a)) f(a, ay) + Y (B(a), a) f(5(a), B(a)y)
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Iterated Kernel
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Kernelise. . .

Equation for Y = X wedge

f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a,ay) + Y(b, a) f(b, by)

The kernel

K(a, b) = (b — ya)(a — yb)(1 — xab) — xyab(a® + b> — 2yab)

o Find the roots of the kernel b = 31+1(a)
o The kernel and f(a, b) can be removed by setting b = 3;1(a)

 X(B(a) Y@ ;o a0
@ ="y G8G) ~ Y(aa@) )
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Kernelise. . .

Equation for Y = X wedge

f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a,ay) + Y(b, a) f(b, by)

The kernel

K(a, b) = (b — ya)(a — yb)(1 — xab) — xyab(a® + b> — 2yab)

o Find the roots of the kernel b = 31+1(a)
o The kernel and f(a, b) can be removed by setting b = 3;1(a)

_ X@B@)  YEE) ;a0 ae
LA =Y 60@) ~ Vi ae) L2200

F(a) F(8(a)
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Iterated Kernel
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Kernelise. . .

Equation for Y = X wedge

f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a,ay) + Y(b, a) f(b, by)

The kernel

K(a, b) = (b — ya)(a — yb)(1 — xab) — xyab(a® + b> — 2yab)

o Find the roots of the kernel b = 31+1(a)
o The kernel and f(a, b) can be removed by setting b = 3;1(a)

F(a) = X(a) + Y(a) F (5(a))
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Now we can iterate. ..

F(a) = X(a) + Y(a) F (5(a)) J

o 1 equation with 2 unknowns
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Now we can iterate. ..

F(a) = X(a) + Y(a) F (5(a)) J

o 1 equation with 2 unknowns

o Since a is a formal variable, we can map a — ((a)
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Now we can iterate. ..

F(a) = X(a) + Y(a) F (5(a)) J

o 1 equation with 2 unknowns

o Since a is a formal variable, we can map a — ((a)

F(B(a)) = X (8(a)) + Y (8(a)) F (B (5(a)))
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Iterated Kernel

F(a) = X(a) + Y(a) F (5(a)) J

o 1 equation with 2 unknowns

o Since a is a formal variable, we can map a — ((a)

F(B(a)) = X (8(a)) + Y (8(a)) F (B (5(a)))

F(B2(a)) = X (52(a)) + Y (82(a)) F (Bs(a))
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F(a) = X(a) + Y(a) F (5(a)) J

o 1 equation with 2 unknowns

o Since a is a formal variable, we can map a — ((a)

F(B(a)) = X (8(a)) + Y (8(a)) F (B (5(a)))

F(B2(a)) = X (52(a)) + Y (82(a)) F (Bs(a))

F(Bn(a) = X (6a(a)) + Y (Ba(a)) F (Brs1(a)) J
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Formal solution

Back-substitution of first N equations

F(a) = 3. X(60) [] Y(80) + F(Busa)

n=0 k=0

| B RAEA)
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Iterated Kernel
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Formal solution

Back-substitution of first N equations

Zx(ﬁn) Hy Bk) + F(Bn+1) Hy(ﬁk

n=0 k=0

o If [TY(Bx) =0 as N— oo (v)

k=0

Formal solution

F(a) = f(a,ya) = ZX(ﬁn)Hy Bi)

n>0
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Iterated Kernel
oooe

Formal solution

Back-substitution of first N equations

Zx(ﬁn) Hy Bk) + F(Bn+1) Hy(ﬁk

n=0 k=0

o If [TY(Bx) =0 as N— oo (v)

k=0

Formal solution

F(a) = f(a,ya) = ZX(ﬁn)Hy Bi)

n>0

o Symmetry gives f(by, b) and so f(a, b)
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Iterated Kernel
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Formal solution

Back-substitution of first N equations

ZX(ﬁn) Hy Bi) + F(Bus1) Hy(ﬁk

n=0 k=0

o If [TY(Bx) =0 as N— oo (v)

k=0

Formal solution

F(a) = f(a,ya) = ZX(ﬁn)Hy Bi)

n>0

o Symmetry gives f(by, b) and so f(a, b)

o Is this helpful? — mess of nested radicals
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Can we simplify this mess?

o At first sight ,(a) is very complicated

a <1+y2¢ V(1 — y?)(1 — 4xya? —y2)>

Bil(a) = 5 v+ xa2 — Xy232

so we expect the compositions to be ugly
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Simplify
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Can we simplify this mess?

o At first sight ,(a) is very complicated

a <1+y2¢ V(1 — y?)(1 — 4xya? —y2)>

Bil(a) = 5 Y+ x32 — X_y232

so we expect the compositions to be ugly

Nice quadratic & nice composition structure

o Look carefully at roots: B+1(Bx1(a)) = a

Partially directed walks in wedges



Simplify
[ Jele]e]

Can we simplify this mess?

o At first sight ,(a) is very complicated

a <1+y2¢ V(1 — y?)(1 — 4xya? —y2)>

Bil(a) = 5 v+ xa2 — X_y232

so we expect the compositions to be ugly

Nice quadratic & nice composition structure

o Look carefully at roots: B+1(Bx1(a)) = a
@ Roots of quadratic: 1 n 1 1+ y? 1
pu(a) ~ B-1(a) y a
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Simplify
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Can we simplify this mess?

o At first sight ,(a) is very complicated

a <1+y2¢ V(1 — y?)(1 — 4xya? —y2)>

Bil(a) = 5 v+ xa2 — X_y232

so we expect the compositions to be ugly

Nice quadratic & nice composition structure

o Look carefully at roots: B+1(Bx1(a)) = a
@ Roots of quadratic: 1 n 1 1+ y? 1
pi(a)  B-1(a) y a
o Substitute a — Gn: 1 1 1+y> 1
+ = =
ﬂn+l ,Bn—l y n
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Closed form for (3,(a)

Closed form solution to recurrence

1 y1-y*M 1 y(a-y"?)1
Ba(a) y"(1-y?)Br  y"(1-y?) a
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Simplify
0e00

Closed form for [

Closed form solution to recurrence

1 y@-y")1 ya-y"31
a

Ba(a)  y"(1—y?) B y"(1—y?)

Big simplifications

f(a,ay) = > X(6n) Hy(ﬁk

n>0
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Simplify
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Closed form solution to recurrence

1 y@-y")1 ya-y"31
a

Ba(a)  y"(1—y?) B y"(1—y?)

Big simplifications

flaay) = (1+ “’f’))Z( 1)y Q(a)"

n=0

_ (1 y
Q(a) = (732 ~ xab —}’)
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Generating function

Generating function of PDSAW in Y = +£X wedge

o Putx=tand y =t

=15
-2 /A-)1-5)
1 t2 1_(12tt)(1 5t Z( 1) Q(l)

n=0

Q1) = (1 -3¢ - /(1- )T -58)) /2t
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Asymptotics when p =1

PDSAW in Y = £X wedge

The number of PDSAW of length n, v,(,l), in this wedge grows as

n/2

a _ "
vy’ = Ao (l—l—\@) + (nt 1)

(A1 +(~1)"A + 0(1/n))

where the constants are

Ao = 0.277309853486031 . ..
A; = 3.714104865336623 . .. Az = 0.206979970208041 . ..
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Asymptotics when p =1

PDSAW in Y = £X wedge

The number of PDSAW of length n, ,, , in this wedge grows as

W = o (14+V3)" + % (A1 + (142 + 0/n))

where the constants are

Ao = 0.277309853486031 . ..
A; = 3.714104865336623 . .. Az = 0.206979970208041 . ..

PDSAW in Y =0, Y = pX wedge

Forany 1 < p < o

(p)
0.2773... < lim < (1++v2)/2 =1.2071.
n— oo (]_ + f)n
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Asymptotics when p =1

PDSAW in Y = £X wedge

The number of PDSAW of length n, ,, , in this wedge grows as

W = o (14+V3)" + % (A1 + (142 + 0/n))

where the constants are

Ao = 0.277309853486031 . ..
A; = 3.714104865336623 . .. Az = 0.206979970208041 . ..

PDSAW in Y =0, Y = pX wedge

Forany 1 < p < o

(p)
0.2773... < lim < (1++v2)/2 =1.2071.
n— oo (]_ + f)n

o All scale like PDSAW in the plane



Conclusions
o

Conclusions

We have derived functional equations for PDSAW in symmetric wedges

For the Y = £X wedge we can find the g.f.

We use this to compute asymptotics

Growth constant and critical exponent are independent of the wedge angle
— very different to conformally invariant models
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Conclusions
o

Conclusions

We have derived functional equations for PDSAW in symmetric wedges

For the Y = £X wedge we can find the g.f.

We use this to compute asymptotics

Growth constant and critical exponent are independent of the wedge angle
— very different to conformally invariant models

o Link between PDSAW in wedge and involutions without fixed points
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Aside to chord diagrams

Chord diagrams = involutions without fixed-points

o g.f. of diagrams with n chords in which g counts crossings [Touchard]

nla) = (1- q) Z; y (nsz) at)
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inumerous — no bijection yet.

PDSAW in wedges and chord diagrams

The number of chord diagrams with n chords and m crossings

the number of PDSAW in the Y = £X wedge with n horizontal edges,
n+ 2m vertical edges and ending at (n, —n)
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