Partially directed walks in wedges

Buks van Rensburg Thomas Prellberg Andrew Rechnitzer

York University
Queen Mary College, University of London
University of British Columbia

FPSAC $2^{\text {nd }}$ July 2007

Self-avoiding walks

Self-avoiding walk

- A path on a lattice that does not intersect itself
- $c_{n}=\mid\{$ SAWs of n steps $\} \mid$

Self-avoiding walk

- A path on a lattice that does not intersect itself
- $c_{n}=\mid\{$ SAWs of n steps $\} \mid$

- Computing c_{n} is a very hard combinatorial problem
- Canonical model of linear polymer in solution

Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

$$
c_{n} \sim A \mu^{n} n^{\gamma-1}(1+\cdots)
$$

- growth constant $\mu_{\square}=2.63815852927$ (1)
[Guttmann \& Jensen]
- critical exponent $\gamma=43 / 32$
[Nienhuis]

Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

$$
c_{n} \sim A \mu^{n} n^{\gamma-1}(1+\cdots)
$$

- growth constant $\mu_{\square}=2.63815852927$ (1)
[Guttmann \& Jensen]
- critical exponent $\gamma=43 / 32$ [Nienhuis]
- Growth constant is lattice dependent

$$
\begin{aligned}
& -\mu_{\square}=\sqrt{2+\sqrt{2}} \\
& -\mu_{\triangle}=4.150797226(26)
\end{aligned}
$$

[Nienhuis]
[Jensen]

Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

$$
c_{n} \sim A \mu^{n} n^{\gamma-1}(1+\cdots)
$$

- growth constant $\mu_{\square}=2.63815852927$ (1)
[Guttmann \& Jensen]
- critical exponent $\gamma=43 / 32$ [Nienhuis]
- Growth constant is lattice dependent

$$
\begin{aligned}
& -\mu_{\square}=\sqrt{2+\sqrt{2}} \\
& -\mu_{\triangle}=4.150797226(26)
\end{aligned}
$$

- Critical exponent is universal
- conformal field theory

Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

$$
c_{n} \sim A \mu^{n} n^{\gamma-1}(1+\cdots)
$$

- growth constant $\mu_{\square}=2.63815852927(1)$
[Guttmann \& Jensen]
- critical exponent $\gamma=43 / 32$ [Nienhuis]
- Growth constant is lattice dependent

$$
\begin{aligned}
& -\mu_{\square}=\sqrt{2+\sqrt{2}} \\
& -\mu_{\triangle}=4.150797226(26)
\end{aligned}
$$

- Critical exponent is universal
- conformal field theory
- Much of what is known for 2D lattice models comes from CFT

Put things in wedges

- Growth constant independent of θ
[Hammersley \& Whittington]

Put things in wedges

- Growth constant independent of θ
[Hammersley \& Whittington]

CFT exponent prediction

$$
\gamma=1+\frac{27}{64}-\frac{15}{32} \frac{\pi}{\theta} \quad \text { [Duplantier \& Saleur] }
$$

Not conformally invariant

- Many interesting models are not conformally invariant - bond trees

Not conformally invariant

- Many interesting models are not conformally invariant — bond trees

- Much less is known
- mostly numerical results by series analysis and Monte-Carlo

Not conformally invariant

- Many interesting models are not conformally invariant — bond trees

- Much less is known
- mostly numerical results by series analysis and Monte-Carlo
- Computer enumeration in wedge is hard - big growth constant and no FLM

Simulate trees

First problem as a postdoc

- Design algorithm to simulate trees in wedges
- Estimate growth constant λ and critical exponent γ

$$
t_{n} \sim A \lambda^{n} n^{\gamma-1}(1+\cdots)
$$

- Repeat in different wedges
- Compare and contrast to conformally invariant models - SAWs

Simulate trees

First problem as a postdoc

- Design algorithm to simulate trees in wedges
- Estimate growth constant λ and critical exponent γ

$$
t_{n} \sim A \lambda^{n} n^{\gamma-1}(1+\cdots)
$$

- Repeat in different wedges
- Compare and contrast to conformally invariant models - SAWs
- Spent about 1 year getting nowhere - bad convergence problems

Simulate trees

First problem as a postdoc

- Design algorithm to simulate trees in wedges
- Estimate growth constant λ and critical exponent γ

$$
t_{n} \sim A \lambda^{n} n^{\gamma-1}(1+\cdots)
$$

- Repeat in different wedges
- Compare and contrast to conformally invariant models - SAWs
- Spent about 1 year getting nowhere - bad convergence problems
- A few years later we had a more combinatorial idea...

Directed paths

Partially directed self-avoiding walk

- A SAW that cannot step west (and ends with an east step)
- Not conformally invariant - behaviour in wedges $=$?

Generating function and asymptotics of walks in the plane

- Simple rational generating function

$$
P(z)=\sum_{\varphi \in \mathrm{PDSAW}} z^{|\varphi|}=\sum_{n} p_{n} z^{n}=\frac{z(1-z)}{1-2 z-z^{2}}
$$

- Dominant singularity gives asymptotics

$$
p_{n}=\frac{\sqrt{2}-1}{2}(1+\sqrt{2})^{n}+o(1)
$$

- Growth constant $\mu=1+\sqrt{2}$
- Critical exponent $\gamma=1$

Put them in wedges

- Put PDSAW in an upper wedge $-Y=p X, X=0$

Put them in wedges

- Put PDSAW in an upper wedge $-Y=p X, X=0$

PDSAW in upper wedge

- If $p \in \mathbb{Q}$ then g.f. is algebraic
- Growth constant varies with p (and so θ)

Put them in wedges again

- The symmetric wedge is more interesting - $Y= \pm p X$

Put them in wedges again

- The symmetric wedge is more interesting $-Y= \pm p X$

PDSAW in symmetric wedge

- For $p \geq 1$ the growth constant is $1+\sqrt{2}$

Put them in wedges again

- The symmetric wedge is more interesting $-Y= \pm p X$

PDSAW in symmetric wedge

- For $p \geq 1$ the growth constant is $1+\sqrt{2}$
- But what is the critical exponent?

Put them in wedges again

- The symmetric wedge is more interesting $-Y= \pm p X$

PDSAW in symmetric wedge

- For $p \geq 1$ the growth constant is $1+\sqrt{2}$
- But what is the critical exponent?
- Need to find g.f. - use the Temperley method

Column-column construction

Each PDSAW in the $Y= \pm p X$ wedge is

Column-column construction

Each PDSAW in the $Y= \pm p X$ wedge is

- either a single vertex

Column-column construction

Each PDSAW in the $Y= \pm p X$ wedge is

- or obtained by adding an east step

Column-column construction

Each PDSAW in the $Y= \pm p X$ wedge is

- or by adding north steps and an east step
- but not too many north steps

Column-column construction

Each PDSAW in the $Y= \pm p X$ wedge is

- or obtained by adding south steps and an east step
- but not too many south steps

Functional equation

Functional equation in the $Y= \pm p X$ wedge

$$
\begin{aligned}
f_{p}(a, b) & =1+x(a b)^{p} f_{p}(a, b) \\
& +x(a b)^{p} \frac{y a / b}{1-y a / b}\left(f_{p}(a, b)-f_{p}(a, a y)\right) \\
& +x(a b)^{p} \frac{y b / a}{1-y b / a}\left(f_{p}(a, b)-f_{p}(b y, b)\right)
\end{aligned}
$$

- $f_{p}(a, b)$ is the g.f. of PDSAW in this wedge
- x and y are conjugate to \# horizontal and \# vertical steps
- a and b are conjugate to distance of endpoint from walls

Functional equation

Functional equation in the $Y= \pm p X$ wedge

$$
\begin{aligned}
f_{p}(a, b) & =1+x(a b)^{p} f_{p}(a, b) \\
& +x(a b)^{p} \frac{y a / b}{1-y a / b}\left(f_{p}(a, b)-f_{p}(a, a y)\right) \\
& +x(a b)^{p} \frac{y b / a}{1-y b / a}\left(f_{p}(a, b)-f_{p}(b y, b)\right)
\end{aligned}
$$

- $f_{p}(a, b)$ is the g.f. of PDSAW in this wedge
- x and y are conjugate to \# horizontal and \# vertical steps
- a and b are conjugate to distance of endpoint from walls
- Very little progress except for $p=1$

$p=1$: solve using the iterated kernel method

Equation for $Y= \pm X$ wedge

$$
\begin{aligned}
f(a, b)=1+\operatorname{xabf}(a, b)+\frac{x y a^{2}}{1-y a / b}(f(a, b) & -f(a, a y)) \\
& +\frac{x y b^{2}}{1-y b / a}(f(a, b)-f(b y, b))
\end{aligned}
$$

- 1 equation with 3 unknowns

$p=1$: solve using the iterated kernel method

Equation for $Y= \pm X$ wedge

$$
\begin{aligned}
& f(a, b)=1+x a b f(a, b)+\frac{x y a^{2}}{1-y a / b}(f(a, b)-f(a, a y)) \\
&+\frac{x y b^{2}}{1-y b / a}(f(a, b)-f(b y, b))
\end{aligned}
$$

- 1 equation with 3 unknowns
- Singular when $a=b y$ or $b=a y$

Kernelise. . .

Equation for $Y= \pm X$ wedge

$$
f(a, b) K(a, b)=X(a, b)+Y(a, b) f(a, a y)+Z(a, b) f(b y, b)
$$

Kernelise. . .

Equation for $Y= \pm X$ wedge

$$
f(a, b) K(a, b)=X(a, b)+Y(a, b) f(a, a y)+Z(a, b) f(b y, b)
$$

- Symmetry implies

$$
\begin{aligned}
f(a, b) & =f(b, a) & K(a, b)=K(b, a) \\
X(a, b) & =X(b, a) & Y(a, b)=Z(b, a)
\end{aligned}
$$

Kernelise. . .

Equation for $Y= \pm X$ wedge

$$
f(a, b) K(a, b)=X(a, b)+Y(a, b) f(a, a y)+Y(b, a) f(b, b y)
$$

The kernel

$$
K(a, b)=(b-y a)(a-y b)(1-x a b)-x y a b\left(a^{2}+b^{2}-2 y a b\right)
$$

- Find the roots of the kernel $b=\beta_{ \pm 1}(a)$
- The kernel and $f(a, b)$ can be removed by setting $b=\beta_{+1}(a)$

Kernelise. . .

Equation for $Y= \pm X$ wedge

$$
f(a, b) K(a, b)=X(a, b)+Y(a, b) f(a, a y)+Y(b, a) f(b, b y)
$$

The kernel

$$
K(a, b)=(b-y a)(a-y b)(1-x a b)-x y a b\left(a^{2}+b^{2}-2 y a b\right)
$$

- Find the roots of the kernel $b=\beta_{ \pm 1}(a)$
- The kernel and $f(a, b)$ can be removed by setting $b=\beta_{+1}(a)$

$$
0=X(a, \beta(a))+Y(a, \beta(a)) f(a, a y)+Y(\beta(a), a) f(\beta(a), \beta(a) y)
$$

Kernelise. . .

Equation for $Y= \pm X$ wedge

$$
f(a, b) K(a, b)=X(a, b)+Y(a, b) f(a, a y)+Y(b, a) f(b, b y)
$$

The kernel

$$
K(a, b)=(b-y a)(a-y b)(1-x a b)-x y a b\left(a^{2}+b^{2}-2 y a b\right)
$$

- Find the roots of the kernel $b=\beta_{ \pm 1}(a)$
- The kernel and $f(a, b)$ can be removed by setting $b=\beta_{+1}(a)$

$$
f(a, a y)=-\frac{X(a, \beta(a))}{Y(a, \beta(a))}-\frac{Y(\beta(a), a)}{Y(a, \beta(a))} f(\beta(a), \beta(a) y)
$$

Kernelise. . .

Equation for $Y= \pm X$ wedge

$$
f(a, b) K(a, b)=X(a, b)+Y(a, b) f(a, a y)+Y(b, a) f(b, b y)
$$

The kernel

$$
K(a, b)=(b-y a)(a-y b)(1-x a b)-x y a b\left(a^{2}+b^{2}-2 y a b\right)
$$

- Find the roots of the kernel $b=\beta_{ \pm 1}(a)$
- The kernel and $f(a, b)$ can be removed by setting $b=\beta_{+1}(a)$

$$
\underbrace{f(a, a y)}_{F(a)}=-\frac{X(a, \beta(a))}{Y(a, \beta(a))}-\frac{Y(\beta(a), a)}{Y(a, \beta(a))} \underbrace{f(\beta(a), \beta(a) y)}_{F(\beta(a))}
$$

Kernelise. . .

Equation for $Y= \pm X$ wedge

$$
f(a, b) K(a, b)=X(a, b)+Y(a, b) f(a, a y)+Y(b, a) f(b, b y)
$$

The kernel

$$
K(a, b)=(b-y a)(a-y b)(1-x a b)-x y a b\left(a^{2}+b^{2}-2 y a b\right)
$$

- Find the roots of the kernel $b=\beta_{ \pm 1}(a)$
- The kernel and $f(a, b)$ can be removed by setting $b=\beta_{+1}(a)$

$$
F(a)=\mathcal{X}(a)+\mathcal{Y}(a) F(\beta(a))
$$

Now we can iterate. . .

$$
F(a)=\mathcal{X}(a)+\mathcal{Y}(a) F(\beta(a))
$$

- 1 equation with 2 unknowns

Now we can iterate. . .

$$
F(a)=\mathcal{X}(a)+\mathcal{Y}(a) F(\beta(a))
$$

- 1 equation with 2 unknowns
- Since a is a formal variable, we can map $a \mapsto \beta(a)$

Now we can iterate. . .

$$
F(a)=\mathcal{X}(a)+\mathcal{Y}(a) F(\beta(a))
$$

- 1 equation with 2 unknowns
- Since a is a formal variable, we can map $a \mapsto \beta(a)$

$$
F(\beta(a))=\mathcal{X}(\beta(a))+\mathcal{Y}(\beta(a)) F(\beta(\beta(a)))
$$

Now we can iterate. . .

$$
F(a)=\mathcal{X}(a)+\mathcal{Y}(a) F(\beta(a))
$$

- 1 equation with 2 unknowns
- Since a is a formal variable, we can map $a \mapsto \beta(a)$

$$
\begin{aligned}
& F(\beta(a))=\mathcal{X}(\beta(a))+\mathcal{Y}(\beta(a)) F(\beta(\beta(a))) \\
& F\left(\beta_{2}(a)\right)=\mathcal{X}\left(\beta_{2}(a)\right)+\mathcal{Y}\left(\beta_{2}(a)\right) F\left(\beta_{3}(a)\right)
\end{aligned}
$$

Now we can iterate. . .

$$
F(a)=\mathcal{X}(a)+\mathcal{Y}(a) F(\beta(a))
$$

- 1 equation with 2 unknowns
- Since a is a formal variable, we can map $a \mapsto \beta(a)$

$$
\begin{aligned}
& F(\beta(a))=\mathcal{X}(\beta(a))+\mathcal{Y}(\beta(a)) F(\beta(\beta(a))) \\
& F\left(\beta_{2}(a)\right)=\mathcal{X}\left(\beta_{2}(a)\right)+\mathcal{Y}\left(\beta_{2}(a)\right) F\left(\beta_{3}(a)\right)
\end{aligned}
$$

$$
F\left(\beta_{n}(a)\right)=\mathcal{X}\left(\beta_{n}(a)\right)+\mathcal{Y}\left(\beta_{n}(a)\right) F\left(\beta_{n+1}(a)\right)
$$

Formal solution

Back-substitution of first N equations

$$
F(a)=\sum_{n=0}^{N} \mathcal{X}\left(\beta_{n}\right) \prod_{k=0}^{n-1} \mathcal{Y}\left(\beta_{k}\right)+F\left(\beta_{N+1}\right) \prod_{k=0}^{N} \mathcal{Y}\left(\beta_{k}\right)
$$

Formal solution

Back-substitution of first N equations

$$
F(a)=\sum_{n=0}^{N} \mathcal{X}\left(\beta_{n}\right) \prod_{k=0}^{n-1} \mathcal{Y}\left(\beta_{k}\right)+F\left(\beta_{N+1}\right) \prod_{k=0}^{N} \mathcal{Y}\left(\beta_{k}\right)
$$

$$
\text { If } \prod_{k=0}^{N} \mathcal{Y}\left(\beta_{k}\right) \rightarrow 0 \text { as } N \rightarrow \infty(\checkmark)
$$

Formal solution

$$
F(a) \equiv f(a, y a)=\sum_{n \geq 0} \mathcal{X}\left(\beta_{n}\right) \prod_{k=0}^{n-1} \mathcal{Y}\left(\beta_{k}\right)
$$

Formal solution

Back-substitution of first N equations

$$
F(a)=\sum_{n=0}^{N} \mathcal{X}\left(\beta_{n}\right) \prod_{k=0}^{n-1} \mathcal{Y}\left(\beta_{k}\right)+F\left(\beta_{N+1}\right) \prod_{k=0}^{N} \mathcal{Y}\left(\beta_{k}\right)
$$

$$
\text { If } \prod_{k=0}^{N} \mathcal{Y}\left(\beta_{k}\right) \rightarrow 0 \text { as } N \rightarrow \infty(\checkmark)
$$

Formal solution

$$
F(a) \equiv f(a, y a)=\sum_{n \geq 0} \mathcal{X}\left(\beta_{n}\right) \prod_{k=0}^{n-1} \mathcal{Y}\left(\beta_{k}\right)
$$

- Symmetry gives $f(b y, b)$ and so $f(a, b)$

Formal solution

Back-substitution of first N equations

$$
F(a)=\sum_{n=0}^{N} \mathcal{X}\left(\beta_{n}\right) \prod_{k=0}^{n-1} \mathcal{Y}\left(\beta_{k}\right)+F\left(\beta_{N+1}\right) \prod_{k=0}^{N} \mathcal{Y}\left(\beta_{k}\right)
$$

$$
\text { - If } \prod_{k=0}^{N} \mathcal{Y}\left(\beta_{k}\right) \rightarrow 0 \text { as } N \rightarrow \infty(\checkmark)
$$

Formal solution

$$
F(a) \equiv f(a, y a)=\sum_{n \geq 0} \mathcal{X}\left(\beta_{n}\right) \prod_{k=0}^{n-1} \mathcal{Y}\left(\beta_{k}\right)
$$

- Symmetry gives $f($ by,$b)$ and so $f(a, b)$
- Is this helpful? - mess of nested radicals

Can we simplify this mess?

- At first sight $\beta_{n}(a)$ is very complicated

$$
\beta_{ \pm 1}(a)=\frac{a}{2}\left(\frac{1+y^{2} \mp \sqrt{\left(1-y^{2}\right)\left(1-4 x y a^{2}-y^{2}\right)}}{y+x a^{2}-x y^{2} a^{2}}\right)
$$

so we expect the compositions to be ugly

Can we simplify this mess?

- At first sight $\beta_{n}(a)$ is very complicated

$$
\beta_{ \pm 1}(a)=\frac{a}{2}\left(\frac{1+y^{2} \mp \sqrt{\left(1-y^{2}\right)\left(1-4 x y a^{2}-y^{2}\right)}}{y+x a^{2}-x y^{2} a^{2}}\right)
$$

so we expect the compositions to be ugly

Nice quadratic \& nice composition structure

- Look carefully at roots: $\quad \beta_{ \pm 1}\left(\beta_{\mp 1}(a)\right)=a$

Can we simplify this mess?

- At first sight $\beta_{n}(a)$ is very complicated

$$
\beta_{ \pm 1}(a)=\frac{a}{2}\left(\frac{1+y^{2} \mp \sqrt{\left(1-y^{2}\right)\left(1-4 x y a^{2}-y^{2}\right)}}{y+x a^{2}-x y^{2} a^{2}}\right)
$$

so we expect the compositions to be ugly

Nice quadratic \& nice composition structure

- Look carefully at roots: $\quad \beta_{ \pm 1}\left(\beta_{\mp 1}(a)\right)=a$
- Roots of quadratic:

$$
\frac{1}{\beta_{1}(a)}+\frac{1}{\beta_{-1}(a)}=\frac{1+y^{2}}{y} \frac{1}{a}
$$

Can we simplify this mess?

- At first sight $\beta_{n}(a)$ is very complicated

$$
\beta_{ \pm 1}(a)=\frac{a}{2}\left(\frac{1+y^{2} \mp \sqrt{\left(1-y^{2}\right)\left(1-4 x y a^{2}-y^{2}\right)}}{y+x a^{2}-x y^{2} a^{2}}\right)
$$

so we expect the compositions to be ugly

Nice quadratic \& nice composition structure

- Look carefully at roots: $\quad \beta_{ \pm 1}\left(\beta_{\mp 1}(a)\right)=a$
- Roots of quadratic: $\quad \frac{1}{\beta_{1}(a)}+\frac{1}{\beta_{-1}(a)}=\frac{1+y^{2}}{y} \frac{1}{a}$
- Substitute $a \mapsto \beta_{n}: \quad \frac{1}{\beta_{n+1}}+\frac{1}{\beta_{n-1}}=\frac{1+y^{2}}{y} \frac{1}{\beta_{n}}$

Closed form for $\beta_{n}(a)$

Closed form solution to recurrence

$$
\frac{1}{\beta_{n}(a)}=\frac{y\left(1-y^{2 n}\right)}{y^{n}\left(1-y^{2}\right)} \frac{1}{\beta_{1}}-\frac{y^{2}\left(1-y^{2 n-2}\right)}{y^{n}\left(1-y^{2}\right)} \frac{1}{a}
$$

Closed form for $\beta_{n}(a)$

Closed form solution to recurrence

$$
\frac{1}{\beta_{n}(a)}=\frac{y\left(1-y^{2 n}\right)}{y^{n}\left(1-y^{2}\right)} \frac{1}{\beta_{1}}-\frac{y^{2}\left(1-y^{2 n-2}\right)}{y^{n}\left(1-y^{2}\right)} \frac{1}{a}
$$

Big simplifications

$$
f(a, a y)=\sum_{n \geq 0} \mathcal{X}\left(\beta_{n}\right) \prod_{k=0}^{n-1} \mathcal{Y}\left(\beta_{k}\right)
$$

Closed form for $\beta_{n}(a)$

Closed form solution to recurrence

$$
\frac{1}{\beta_{n}(a)}=\frac{y\left(1-y^{2 n}\right)}{y^{n}\left(1-y^{2}\right)} \frac{1}{\beta_{1}}-\frac{y^{2}\left(1-y^{2 n-2}\right)}{y^{n}\left(1-y^{2}\right)} \frac{1}{a}
$$

Big simplifications

$$
\begin{aligned}
f(a, a y) & =\left(1+\frac{Q(a)}{y}\right) \sum_{n=0}^{\infty}(-1)^{n} y^{n^{2}} Q(a)^{n} \\
Q(a) & =\left(\frac{1}{x a^{2}}-\frac{y}{x a \beta_{1}}-y\right)
\end{aligned}
$$

Generating function

Generating function of PDSAW in $Y= \pm X$ wedge

- Put $x=t$ and $y=t$:

$$
\begin{aligned}
f(1,1) & =\frac{1-t}{1-2 t-t^{2}} \\
& -\frac{1-t^{2}-\sqrt{\left(1-t^{2}\right)\left(1-5 t^{2}\right)}}{1-2 t-t^{2}} \sum_{n=0}^{\infty}(-1)^{n} t^{n^{2}} Q(1)^{n} \\
Q(1) & =\left(1-3 t^{2}-\sqrt{\left(1-t^{2}\right)\left(1-5 t^{2}\right)}\right) / 2 t
\end{aligned}
$$

Asymptotics when $p=1$

PDSAW in $Y= \pm X$ wedge

The number of PDSAW of length $n, v_{n}^{(1)}$, in this wedge grows as

$$
v_{n}^{(1)}=A_{0}(1+\sqrt{2})^{n}+\frac{5^{n / 2}}{(n+1)^{3 / 2}}\left(A_{1}+(-1)^{n} A_{2}+O(1 / n)\right)
$$

where the constants are

$$
\begin{aligned}
& A_{0}=0.277309853486031 \ldots \\
& A_{1}=3.714104865336623 \ldots
\end{aligned} \quad A_{2}=0.206979970208041 \ldots
$$

Asymptotics when $p=1$

PDSAW in $Y= \pm X$ wedge

The number of PDSAW of length $n, v_{n}^{(1)}$, in this wedge grows as

$$
v_{n}^{(1)}=A_{0}(1+\sqrt{2})^{n}+\frac{5^{n / 2}}{(n+1)^{3 / 2}}\left(A_{1}+(-1)^{n} A_{2}+O(1 / n)\right)
$$

where the constants are

$$
\begin{aligned}
& A_{0}=0.277309853486031 \ldots \\
& A_{1}=3.714104865336623 \ldots
\end{aligned} \quad A_{2}=0.206979970208041 \ldots
$$

PDSAW in $Y=0, Y=p X$ wedge

For any $1 \leq p<\infty$

$$
0.2773 \ldots \leq \lim _{n \rightarrow \infty} \frac{v_{n}^{(p)}}{(1+\sqrt{2})^{n}} \leq(1+\sqrt{2}) / 2=1.2071 \ldots
$$

Asymptotics when $p=1$

PDSAW in $Y= \pm X$ wedge

The number of PDSAW of length $n, v_{n}^{(1)}$, in this wedge grows as

$$
v_{n}^{(1)}=A_{0}(1+\sqrt{2})^{n}+\frac{5^{n / 2}}{(n+1)^{3 / 2}}\left(A_{1}+(-1)^{n} A_{2}+O(1 / n)\right)
$$

where the constants are

$$
\begin{aligned}
& A_{0}=0.277309853486031 \ldots \\
& A_{1}=3.714104865336623 \ldots
\end{aligned} \quad A_{2}=0.206979970208041 \ldots
$$

PDSAW in $Y=0, Y=p X$ wedge

For any $1 \leq p<\infty$

$$
0.2773 \ldots \leq \lim _{n \rightarrow \infty} \frac{v_{n}^{(p)}}{(1+\sqrt{2})^{n}} \leq(1+\sqrt{2}) / 2=1.2071 \ldots
$$

- All scale like PDSAW in the plane

Conclusions

- We have derived functional equations for PDSAW in symmetric wedges
- For the $Y= \pm X$ wedge we can find the g.f.
- We use this to compute asymptotics
- Growth constant and critical exponent are independent of the wedge angle - very different to conformally invariant models

Conclusions

- We have derived functional equations for PDSAW in symmetric wedges
- For the $Y= \pm X$ wedge we can find the g.f.
- We use this to compute asymptotics
- Growth constant and critical exponent are independent of the wedge angle - very different to conformally invariant models
- Link between PDSAW in wedge and involutions without fixed points

Aside to chord diagrams

Chord diagrams $=$ involutions without fixed-points

- g.f. of diagrams with n chords in which q counts crossings [Touchard]

$$
\Phi_{n}(q)=\frac{1}{(1-q)^{n}} \sum_{k=-n}^{n}(-1)^{k}\binom{2 n}{n+k} q^{\binom{k}{2}}
$$

Equinumerous - no bijection yet.

PDSAW in wedges and chord diagrams

The number of chord diagrams with n chords and m crossings
the number of PDSAW in the $Y= \pm X$ wedge with n horizontal edges, $n+2 m$ vertical edges and ending at ($n,-n$)

