## Partially directed walks in wedges

#### Buks van Rensburg Thomas Prellberg Andrew Rechnitzer

York University

Queen Mary College, University of London

University of British Columbia

FPSAC 2nd July 2007

| Exponents    |         |  |  |
|--------------|---------|--|--|
| 00000        |         |  |  |
| Self-avoidin | g walks |  |  |

## Self-avoiding walk

- A path on a lattice that does not intersect itself
- $c_n = |\{SAWs \text{ of } n \text{ steps}\}|$



| Exponents     |         |  |  |
|---------------|---------|--|--|
| 00000         |         |  |  |
| Self-avoiding | g walks |  |  |

## Self-avoiding walk

- A path on a lattice that does not intersect itself
- $c_n = |\{SAWs \text{ of } n \text{ steps}\}|$



- Computing c<sub>n</sub> is a very hard combinatorial problem
- Canonical model of linear polymer in solution

| Exponents     |        |  |  |
|---------------|--------|--|--|
| 0000          |        |  |  |
| Critical expo | onents |  |  |

The number of self-avoiding walks grows as

$$c_n \sim A \mu^n n^{\gamma-1} (1 + \cdots)$$

• growth constant  $\mu_{\Box} = 2.63815852927(1)$ 

[Guttmann & Jensen]

• critical exponent  $\gamma = 43/32$ 

[Nienhuis]

Partially directed walks in wedges

| Exponents     |        |  |  |
|---------------|--------|--|--|
| 0000          |        |  |  |
| Critical expo | onents |  |  |

The number of self-avoiding walks grows as

$$c_n \sim A \mu^n n^{\gamma-1} (1 + \cdots)$$

• growth constant  $\mu_{\Box} = 2.63815852927(1)$ 

[Guttmann & Jensen]

• critical exponent  $\gamma = 43/32$ 

[Nienhuis]

• Growth constant is lattice dependent

$$\label{eq:model} \begin{array}{ll} - \mu_{\rm O} = \sqrt{2 + \sqrt{2}} & [{\tt Nienhuis}] \\ - \mu_{\rm \Delta} = 4.150797226(26) & [{\tt Jensen}] \end{array}$$

| Exponents     |        |  |  |
|---------------|--------|--|--|
| 0000          |        |  |  |
| Critical expo | onents |  |  |

The number of self-avoiding walks grows as

$$c_n \sim A \mu^n n^{\gamma-1} (1 + \cdots)$$

• growth constant  $\mu_{\Box} = 2.63815852927(1)$ 

• critical exponent 
$$\gamma = 43/32$$

[Guttmann & Jensen]

[Nienhuis]

• Growth constant is lattice dependent

$$-\mu_{\bigcirc} = \sqrt{2} + \sqrt{2}$$

$$-\mu_{\triangle} = 4.150797226(26)$$

Critical exponent is universal
 — conformal field theory

[Nienhuis] [Jensen]

| Exponents     |        |  |  |
|---------------|--------|--|--|
| 0000          |        |  |  |
| Critical expo | onents |  |  |

The number of self-avoiding walks grows as

$$c_n \sim A \mu^n n^{\gamma-1} (1 + \cdots)$$

• growth constant  $\mu_{\Box} = 2.63815852927(1)$ 

• critical exponent  $\gamma = 43/32$ 

[Guttmann & Jensen] [Nienhuis]

[Nienhuis]

[Jensen]

- Growth constant is lattice dependent
  - $-\mu_{\bigcirc} = \sqrt{2 + \sqrt{2}}$
  - $-\mu_{ riangle} = 4.150797226(26)$
- Critical exponent is universal
   conformal field theory
- Much of what is known for 2D lattice models comes from CFT

| Exponents  |           |  |  |
|------------|-----------|--|--|
| 00000      |           |  |  |
| Put things | in wedges |  |  |



• Growth constant independent of  $\boldsymbol{\theta}$ 

[Hammersley & Whittington]

| Exponents  |           |  |  |
|------------|-----------|--|--|
| 00000      |           |  |  |
| Put things | in wedges |  |  |



• Growth constant independent of  $\boldsymbol{\theta}$ 

#### [Hammersley & Whittington]



| Exponents |                  |    |  |  |
|-----------|------------------|----|--|--|
| 00000     |                  |    |  |  |
| Not conf  | ormally invariar | it |  |  |

• Many interesting models are not conformally invariant — bond trees



| Exponents |                  |    |  |  |
|-----------|------------------|----|--|--|
| 00000     |                  |    |  |  |
| Not conf  | ormally invariar | it |  |  |

• Many interesting models are not conformally invariant — bond trees



• Much less is known

- mostly numerical results by series analysis and Monte-Carlo

| Exponents |                  |    |  |  |
|-----------|------------------|----|--|--|
| 00000     |                  |    |  |  |
| Not conf  | ormally invariar | it |  |  |

• Many interesting models are not conformally invariant — bond trees



- Much less is known
  - mostly numerical results by series analysis and Monte-Carlo
- Computer enumeration in wedge is hard
  - big growth constant and no  $\mathsf{FLM}$

| Exponents    |    |  |  |
|--------------|----|--|--|
| 00000        |    |  |  |
| Simulate tre | es |  |  |

## First problem as a postdoc

- Design algorithm to simulate trees in wedges
- $\bullet\,$  Estimate growth constant  $\lambda$  and critical exponent  $\gamma\,$

$$t_n \sim A \lambda^n n^{\gamma-1} (1 + \cdots)$$

- Repeat in different wedges
- Compare and contrast to conformally invariant models SAWs

| Exponents    |    |  |  |
|--------------|----|--|--|
| 00000        |    |  |  |
| Simulate tre | es |  |  |

## First problem as a postdoc

- Design algorithm to simulate trees in wedges
- $\bullet\,$  Estimate growth constant  $\lambda$  and critical exponent  $\gamma\,$

$$t_n \sim A \lambda^n n^{\gamma-1} (1 + \cdots)$$

- Repeat in different wedges
- Compare and contrast to conformally invariant models SAWs
- Spent about 1 year getting nowhere
  - bad convergence problems

| Exponents    |    |  |  |
|--------------|----|--|--|
| 00000        |    |  |  |
| Simulate tre | es |  |  |

## First problem as a postdoc

- Design algorithm to simulate trees in wedges
- $\bullet\,$  Estimate growth constant  $\lambda$  and critical exponent  $\gamma\,$

$$t_n \sim A \lambda^n n^{\gamma-1} (1 + \cdots)$$

- Repeat in different wedges
- Compare and contrast to conformally invariant models SAWs
- Spent about 1 year getting nowhere
  - bad convergence problems
- A few years later we had a more combinatorial idea...

|              | Directed paths |  |  |
|--------------|----------------|--|--|
|              | 00000          |  |  |
| Directed pat | ths            |  |  |



## Partially directed self-avoiding walk

- A SAW that cannot step west (and ends with an east step)
- Not conformally invariant behaviour in wedges = ?



• Simple rational generating function

$$P(z) = \sum_{\varphi \in \mathsf{PDSAW}} z^{|\varphi|} = \sum_{n} p_n z^n = \frac{z(1-z)}{1-2z-z^2}$$

• Dominant singularity gives asymptotics

$$p_n = \frac{\sqrt{2}-1}{2} \left(1+\sqrt{2}\right)^n + o(1)$$

- Growth constant  $\mu = 1 + \sqrt{2}$
- Critical exponent  $\gamma = 1$

|             | Directed paths |  |  |
|-------------|----------------|--|--|
|             | 00000          |  |  |
| Put them in | wedges         |  |  |

• Put PDSAW in an upper wedge — Y = pX, X = 0



|             | Directed paths |  |  |
|-------------|----------------|--|--|
|             | 00000          |  |  |
| Put them ir | n wedges       |  |  |

• Put PDSAW in an upper wedge — Y = pX, X = 0



## PDSAW in upper wedge

- If  $p \in \mathbb{Q}$  then g.f. is algebraic
- Growth constant varies with p (and so  $\theta$ )

[JvR & Ye]

|             | Directed paths |  |  |
|-------------|----------------|--|--|
|             | 000000         |  |  |
| Put them in | wedges again   |  |  |



|             | Directed paths |  |  |
|-------------|----------------|--|--|
|             | 000000         |  |  |
| Put them in | wedges again   |  |  |



## PDSAW in symmetric wedge

• For  $p \ge 1$  the growth constant is  $1 + \sqrt{2}$ 

|             | Directed paths |  |  |
|-------------|----------------|--|--|
|             | 000000         |  |  |
| Put them in | wedges again   |  |  |



## PDSAW in symmetric wedge

- For  $p \ge 1$  the growth constant is  $1 + \sqrt{2}$
- But what is the critical exponent?

|             | Directed paths |  |  |
|-------------|----------------|--|--|
|             | 000000         |  |  |
| Put them in | wedges again   |  |  |



## PDSAW in symmetric wedge

- For  $p \ge 1$  the growth constant is  $1 + \sqrt{2}$
- But what is the critical exponent?
- Need to find g.f. use the Temperley method

|             | Directed paths  |   |  |  |
|-------------|-----------------|---|--|--|
|             | 000000          |   |  |  |
| Column-colu | ımn constructio | n |  |  |



|             | Directed paths  |   |      |  |
|-------------|-----------------|---|------|--|
|             | 000000          |   |      |  |
| Column-colu | imn constructio | n | <br> |  |



• either a single vertex

|             | Directed paths  |   |  |  |
|-------------|-----------------|---|--|--|
|             | 000000          |   |  |  |
| Column-colı | ımn constructio | n |  |  |



• or obtained by adding an east step

|             | Directed paths  |   |  |  |
|-------------|-----------------|---|--|--|
|             | 000000          |   |  |  |
| Column-colu | ımn constructio | n |  |  |



- ${\scriptstyle \bullet}$  or by adding north steps and an east step
  - but not too many north steps

|             | Directed paths  |   |  |  |
|-------------|-----------------|---|--|--|
|             | 000000          |   |  |  |
| Column-colu | ımn constructio | n |  |  |



• or obtained by adding south steps and an east step

- but not too many south steps

|              | Directed paths |  |  |
|--------------|----------------|--|--|
| Functional e | equation       |  |  |

#### Functional equation in the $Y = \pm pX$ wedge

 $f_p$ 

$$\begin{split} f(a,b) &= 1 + x(ab)^{p} f_{p}(a,b) \\ &+ x(ab)^{p} \frac{ya/b}{1 - ya/b} \Big( f_{p}(a,b) - f_{p}(a,ay) \Big) \\ &+ x(ab)^{p} \frac{yb/a}{1 - yb/a} \Big( f_{p}(a,b) - f_{p}(by,b) \Big) \end{split}$$

- $f_p(a, b)$  is the g.f. of PDSAW in this wedge
- x and y are conjugate to # horizontal and # vertical steps
- a and b are conjugate to distance of endpoint from walls

|              | Directed paths |  |  |
|--------------|----------------|--|--|
| Functional e | equation       |  |  |

## Functional equation in the $Y = \pm pX$ wedge

 $f_c$ 

$$egin{aligned} f_{p}(a,b) &= 1 + x(ab)^{p} f_{p}(a,b) \ &+ x(ab)^{p} rac{ya/b}{1-ya/b} \Big( f_{p}(a,b) - f_{p}(a,ay) \Big) \ &+ x(ab)^{p} rac{yb/a}{1-yb/a} \Big( f_{p}(a,b) - f_{p}(by,b) \Big) \end{aligned}$$

- $f_{\rho}(a, b)$  is the g.f. of PDSAW in this wedge
- x and y are conjugate to # horizontal and # vertical steps
- a and b are conjugate to distance of endpoint from walls
- Very little progress except for p = 1

|         |                  | Iterated Kernel |       |  |
|---------|------------------|-----------------|-------|--|
|         |                  | 0000            |       |  |
| p=1: so | lve using the it | erated kernel m | ethod |  |

$$\begin{split} f(a,b) &= 1 + xabf(a,b) + \frac{xya^2}{1 - ya/b} \Big( f(a,b) - f(a,ay) \Big) \\ &+ \frac{xyb^2}{1 - yb/a} \Big( f(a,b) - f(by,b) \Big) \end{split}$$

• 1 equation with 3 unknowns

|         |                  | Iterated Kernel |       |  |
|---------|------------------|-----------------|-------|--|
|         |                  | 0000            |       |  |
| p=1: so | lve using the it | erated kernel m | ethod |  |

$$egin{aligned} f(a,b) &= 1 + xabf(a,b) + rac{xya^2}{1 - ya/b} \Big( f(a,b) - f(a,ay) \Big) \ &+ rac{xyb^2}{1 - yb/a} \Big( f(a,b) - f(by,b) \Big) \end{aligned}$$

- 1 equation with 3 unknowns
- Singular when a = by or b = ay

|           | Iterated Kernel |  |  |
|-----------|-----------------|--|--|
|           | 0000            |  |  |
| Kernelise |                 |  |  |

# f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a, ay) + Z(a, b) f(by, b)



|           | Iterated Kernel |  |  |
|-----------|-----------------|--|--|
|           | 0000            |  |  |
| Kernelise |                 |  |  |

$$f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a, ay) + Z(a, b) f(by, b)$$

## • Symmetry implies

$$f(a,b) = f(b,a)$$
  $K(a,b) = K(b,a)$   
 $X(a,b) = X(b,a)$   $Y(a,b) = Z(b,a)$ 

|           | Iterated Kernel |  |  |
|-----------|-----------------|--|--|
|           | 0000            |  |  |
| Kernelise |                 |  |  |

$$f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a, ay) + Y(b, a) f(b, by)$$

$$K(a,b) = (b - ya)(a - yb)(1 - xab) - xyab(a2 + b2 - 2yab)$$

- Find the roots of the kernel  $b = \beta_{\pm 1}(a)$
- The kernel and f(a, b) can be removed by setting  $b = \beta_{+1}(a)$

|           | Iterated Kernel |  |  |
|-----------|-----------------|--|--|
|           | 0000            |  |  |
| Kernelise |                 |  |  |

$$f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a, ay) + Y(b, a) f(b, by)$$

## The kernel

$$K(a,b) = (b - ya)(a - yb)(1 - xab) - xyab(a2 + b2 - 2yab)$$

- Find the roots of the kernel  $b = \beta_{\pm 1}(a)$
- The kernel and f(a, b) can be removed by setting  $b = \beta_{+1}(a)$

 $0 = X(a,\beta(a)) + Y(a,\beta(a)) f(a,ay) + Y(\beta(a),a) f(\beta(a),\beta(a)y)$ 

|           | Iterated Kernel |  |  |
|-----------|-----------------|--|--|
|           | 0000            |  |  |
| Kernelise |                 |  |  |

$$f(a,b)K(a,b) = X(a,b) + Y(a,b)f(a,ay) + Y(b,a)f(b,by)$$

$$K(a,b) = (b - ya)(a - yb)(1 - xab) - xyab(a2 + b2 - 2yab)$$

- Find the roots of the kernel  $b = \beta_{\pm 1}(a)$
- The kernel and f(a, b) can be removed by setting  $b = \beta_{+1}(a)$

$$f(a,ay) = -\frac{X(a,\beta(a))}{Y(a,\beta(a))} - \frac{Y(\beta(a),a)}{Y(a,\beta(a))} f(\beta(a),\beta(a)y)$$

|           | Iterated Kernel |  |  |
|-----------|-----------------|--|--|
|           | 0000            |  |  |
| Kernelise |                 |  |  |

$$f(a,b)K(a,b) = X(a,b) + Y(a,b)f(a,ay) + Y(b,a)f(b,by)$$

$$K(a,b) = (b - ya)(a - yb)(1 - xab) - xyab(a2 + b2 - 2yab)$$

- Find the roots of the kernel  $b = \beta_{\pm 1}(a)$
- The kernel and f(a, b) can be removed by setting  $b = \beta_{+1}(a)$

$$\underbrace{f(a,ay)}_{F(a)} = -\frac{X(a,\beta(a))}{Y(a,\beta(a))} - \frac{Y(\beta(a),a)}{Y(a,\beta(a))} \underbrace{f(\beta(a),\beta(a)y)}_{F(\beta(a))}$$

|           | Iterated Kernel |  |  |
|-----------|-----------------|--|--|
|           | 0000            |  |  |
| Kernelise |                 |  |  |

$$f(a, b)K(a, b) = X(a, b) + Y(a, b) f(a, ay) + Y(b, a) f(b, by)$$

$$K(a,b) = (b - ya)(a - yb)(1 - xab) - xyab(a2 + b2 - 2yab)$$

- Find the roots of the kernel  $b = \beta_{\pm 1}(a)$
- The kernel and f(a, b) can be removed by setting  $b = \beta_{+1}(a)$

$$F(a) = \mathcal{X}(a) + \mathcal{Y}(a) F(\beta(a))$$

|            |         | Iterated Kernel<br>00●0 |  |  |
|------------|---------|-------------------------|--|--|
| Now we can | iterate |                         |  |  |

$$F(a) = \mathcal{X}(a) + \mathcal{Y}(a) F(\beta(a))$$

• 1 equation with 2 unknowns



|            |         | Iterated Kernel<br>00●0 |  |  |
|------------|---------|-------------------------|--|--|
| Now we can | iterate |                         |  |  |

$$F(a) = \mathcal{X}(a) + \mathcal{Y}(a) F(\beta(a))$$

- 1 equation with 2 unknowns
- Since a is a formal variable, we can map  $a \mapsto \beta(a)$

|            |         | Iterated Kernel<br>00●0 |  |  |
|------------|---------|-------------------------|--|--|
| Now we can | iterate |                         |  |  |

$$F(a) = \mathcal{X}(a) + \mathcal{Y}(a) F(\beta(a))$$

- 1 equation with 2 unknowns
- Since a is a formal variable, we can map  $a \mapsto \beta(a)$

$$F(\beta(a)) = \mathcal{X}(\beta(a)) + \mathcal{Y}(\beta(a)) F(\beta(\beta(a)))$$

|            |         | Iterated Kernel<br>00●0 |  |  |
|------------|---------|-------------------------|--|--|
| Now we can | iterate |                         |  |  |

$$F(a) = \mathcal{X}(a) + \mathcal{Y}(a) F(\beta(a))$$

- 1 equation with 2 unknowns
- Since a is a formal variable, we can map  $a \mapsto \beta(a)$

$$F(\beta(a)) = \mathcal{X}(\beta(a)) + \mathcal{Y}(\beta(a)) F(\beta(\beta(a)))$$

$$F(\beta_2(a)) = \mathcal{X}(\beta_2(a)) + \mathcal{Y}(\beta_2(a)) F(\beta_3(a))$$

|            |         | Iterated Kernel<br>00●0 |  |  |
|------------|---------|-------------------------|--|--|
| Now we can | iterate |                         |  |  |

$$F(a) = \mathcal{X}(a) + \mathcal{Y}(a) F(\beta(a))$$

- 1 equation with 2 unknowns
- Since a is a formal variable, we can map  $a \mapsto \beta(a)$

$$F(\beta(a)) = \mathcal{X}(\beta(a)) + \mathcal{Y}(\beta(a)) F(\beta(\beta(a)))$$

 $F(\beta_2(a)) = \mathcal{X}(\beta_2(a)) + \mathcal{Y}(\beta_2(a)) F(\beta_3(a))$ 

 $F(\beta_n(a)) = \mathcal{X}(\beta_n(a)) + \mathcal{Y}(\beta_n(a)) F(\beta_{n+1}(a))$ 

|             |      | Iterated Kernel |  |  |
|-------------|------|-----------------|--|--|
|             |      | 0000            |  |  |
| Formal solu | tion |                 |  |  |

$$F(a) = \sum_{n=0}^{N} \mathcal{X}(\beta_n) \prod_{k=0}^{n-1} \mathcal{Y}(\beta_k) + F(\beta_{N+1}) \prod_{k=0}^{N} \mathcal{Y}(\beta_k)$$



|             |      | Iterated Kernel |  |  |
|-------------|------|-----------------|--|--|
|             |      | 0000            |  |  |
| Formal solu | tion |                 |  |  |

$$F(a) = \sum_{n=0}^{N} \mathcal{X}(\beta_n) \prod_{k=0}^{n-1} \mathcal{Y}(\beta_k) + F(\beta_{N+1}) \prod_{k=0}^{N} \mathcal{Y}(\beta_k)$$

• If 
$$\prod_{k=0}^{N}\mathcal{Y}(eta_k)
ightarrow 0$$
 as  $N
ightarrow\infty$   $(\checkmark)$ 

Formal solution

$$F(a) \equiv f(a, ya) = \sum_{n \ge 0} \mathcal{X}(\beta_n) \prod_{k=0}^{n-1} \mathcal{Y}(\beta_k)$$

|             |      | Iterated Kernel |  |  |
|-------------|------|-----------------|--|--|
|             |      | 0000            |  |  |
| Formal solu | tion |                 |  |  |

$$F(a) = \sum_{n=0}^{N} \mathcal{X}(\beta_n) \prod_{k=0}^{n-1} \mathcal{Y}(\beta_k) + F(\beta_{N+1}) \prod_{k=0}^{N} \mathcal{Y}(\beta_k)$$

• If 
$$\prod_{k=0}^{N}\mathcal{Y}(eta_k)
ightarrow 0$$
 as  $N
ightarrow\infty$   $(\checkmark)$ 

Formal solution

$$F(a) \equiv f(a, ya) = \sum_{n \ge 0} \mathcal{X}(\beta_n) \prod_{k=0}^{n-1} \mathcal{Y}(\beta_k)$$

• Symmetry gives f(by, b) and so f(a, b)

|             |      | Iterated Kernel |  |  |
|-------------|------|-----------------|--|--|
|             |      | 0000            |  |  |
| Formal solu | tion |                 |  |  |

$$F(a) = \sum_{n=0}^{N} \mathcal{X}(\beta_n) \prod_{k=0}^{n-1} \mathcal{Y}(\beta_k) + F(\beta_{N+1}) \prod_{k=0}^{N} \mathcal{Y}(\beta_k)$$

• If 
$$\prod_{k=0}^{N}\mathcal{Y}(eta_k)
ightarrow 0$$
 as  $N
ightarrow\infty$   $(\checkmark)$ 

Formal solution

$$F(a) \equiv f(a, ya) = \sum_{n \ge 0} \mathcal{X}(\beta_n) \prod_{k=0}^{n-1} \mathcal{Y}(\beta_k)$$

• Symmetry gives f(by, b) and so f(a, b)

• Is this helpful? - mess of nested radicals

|             |                  | Simplify<br>●○○○ |  |
|-------------|------------------|------------------|--|
| Can we simp | olify this mess? |                  |  |

$$eta_{\pm 1}(a) = rac{a}{2} \left( rac{1+y^2 \mp \sqrt{(1-y^2)(1-4xya^2-y^2)}}{y+xa^2-xy^2a^2} 
ight)$$

so we expect the compositions to be ugly

|             |                  | Simplify |  |
|-------------|------------------|----------|--|
| Can we simp | olify this mess? |          |  |

$$eta_{\pm 1}(a) = rac{a}{2} \left( rac{1+y^2 \mp \sqrt{(1-y^2)(1-4xya^2-y^2)}}{y+xa^2-xy^2a^2} 
ight)$$

so we expect the compositions to be ugly

#### Nice quadratic & nice composition structure

• Look carefully at roots:  $eta_{\pm 1}\left(eta_{\mp 1}(a)
ight)=a$ 

|             |                  | Simplify |  |
|-------------|------------------|----------|--|
| Can we simp | olify this mess? |          |  |

$$eta_{\pm 1}(a) = rac{a}{2} \left( rac{1+y^2 \mp \sqrt{(1-y^2)(1-4xya^2-y^2)}}{y+xa^2-xy^2a^2} 
ight)$$

so we expect the compositions to be ugly

#### Nice quadratic & nice composition structure

• Look carefully at roots:  $eta_{\pm 1}\left(eta_{\mp 1}(a)
ight)=a$ 

• Roots of quadratic: 
$$\frac{1}{\beta_1(a)} + \frac{1}{\beta_{-1}(a)} = \frac{1+y^2}{y} \frac{1}{a}$$

|             |                  | Simplify<br>•••• |  |
|-------------|------------------|------------------|--|
| Can we simp | olify this mess? |                  |  |

$$\beta_{\pm 1}(\textbf{a}) = \frac{\textbf{a}}{2} \left( \frac{1 + y^2 \mp \sqrt{(1 - y^2)(1 - 4xya^2 - y^2)}}{y + xa^2 - xy^2a^2} \right)$$

so we expect the compositions to be ugly

#### Nice quadratic & nice composition structure

• Look carefully at roots:  $eta_{\pm 1}\left(eta_{\mp 1}(a)
ight)=a$ 

• Roots of quadratic:  

$$\frac{1}{\beta_1(a)} + \frac{1}{\beta_{-1}(a)} = \frac{1+y^2}{y} \frac{1}{a}$$
• Substitute  $a \mapsto \beta_n$ :  

$$\frac{1}{\beta_{n+1}} + \frac{1}{\beta_{n-1}} = \frac{1+y^2}{y} \frac{1}{\beta_n}$$

|             |                  | Simplify |  |
|-------------|------------------|----------|--|
|             |                  | 0000     |  |
| Closed form | for $\beta_n(a)$ |          |  |

Closed form solution to recurrence

$$\frac{1}{\beta_n(a)} = \frac{y(1-y^{2n})}{y^n(1-y^2)} \frac{1}{\beta_1} - \frac{y^2(1-y^{2n-2})}{y^n(1-y^2)} \frac{1}{a}$$

・ロト ・ 同ト ・ ヨト ・ ヨー・ りへぐ

|             |                  | Simplify |  |
|-------------|------------------|----------|--|
|             |                  | 0000     |  |
| Closed form | for $\beta_n(a)$ |          |  |

## Closed form solution to recurrence

$$\frac{1}{\beta_n(a)} = \frac{y(1-y^{2n})}{y^n(1-y^2)} \frac{1}{\beta_1} - \frac{y^2(1-y^{2n-2})}{y^n(1-y^2)} \frac{1}{a}$$

# Big simplifications

$$f(a,ay) = \sum_{n\geq 0} \mathcal{X}(\beta_n) \prod_{k=0}^{n-1} \mathcal{Y}(\beta_k)$$

|             |                  | Simplify |  |
|-------------|------------------|----------|--|
|             |                  | 0000     |  |
| Closed form | for $\beta_n(a)$ |          |  |

## Closed form solution to recurrence

$$\frac{1}{\beta_n(a)} = \frac{y(1-y^{2n})}{y^n(1-y^2)} \frac{1}{\beta_1} - \frac{y^2(1-y^{2n-2})}{y^n(1-y^2)} \frac{1}{a}$$

# Big simplifications

$$f(a, ay) = \left(1 + \frac{Q(a)}{y}\right) \sum_{n=0}^{\infty} (-1)^n y^{n^2} Q(a)^n$$
$$Q(a) = \left(\frac{1}{xa^2} - \frac{y}{xa\beta_1} - y\right)$$

|            |          | Simplify |  |
|------------|----------|----------|--|
|            |          | 0000     |  |
| Generating | function |          |  |

Generating function of PDSAW in  $Y = \pm X$  wedge

• Put x = t and y = t:

$$f(1,1) = \frac{1-t}{1-2t-t^2} - \frac{1-t^2 - \sqrt{(1-t^2)(1-5t^2)}}{1-2t-t^2} \sum_{n=0}^{\infty} (-1)^n t^{n^2} Q(1)^n$$

$$Q(1) = \left(1 - 3t^2 - \sqrt{(1 - t^2)(1 - 5t^2)}\right)/2t$$

|            |              | Simplify |  |
|------------|--------------|----------|--|
|            |              | 0000     |  |
| Asymptotic | s when $p=1$ |          |  |

## PDSAW in $Y = \pm X$ wedge

The number of PDSAW of length n,  $v_n^{(1)}$ , in this wedge grows as

$$v_n^{(1)} = A_0 \left(1 + \sqrt{2}\right)^n + \frac{5^{n/2}}{(n+1)^{3/2}} \Big(A_1 + (-1)^n A_2 + O(1/n)\Big)$$

where the constants are

 $A_0 = 0.277309853486031\ldots$  $A_1 = 3.714104865336623...$   $A_2 = 0.206979970208041...$ 

|         |                  | Simplify |  |
|---------|------------------|----------|--|
|         |                  | 0000     |  |
| Asympto | otics when $p=1$ |          |  |

#### PDSAW in $Y = \pm X$ wedge

The number of PDSAW of length n,  $v_n^{(1)}$ , in this wedge grows as

$$v_n^{(1)} = A_0 \left(1 + \sqrt{2}\right)^n + rac{5^{n/2}}{(n+1)^{3/2}} \Big(A_1 + (-1)^n A_2 + O(1/n)\Big)$$

where the constants are

 $A_0 = 0.277309853486031\ldots$  $A_1 = 3.714104865336623...$   $A_2 = 0.206979970208041...$ 

## PDSAW in Y = 0, Y = pX wedge

For any 
$$1 \le p < \infty$$
  
 $0.2773 \ldots \le \lim_{n \to \infty} \frac{v_n^{(p)}}{(1 + \sqrt{2})^n} \le (1 + \sqrt{2})/2 = 1.2071 \ldots$ 

|            |              | Simplify |  |
|------------|--------------|----------|--|
|            |              | 0000     |  |
| Asymptotic | s when $p=1$ |          |  |

#### PDSAW in $Y = \pm X$ wedge

The number of PDSAW of length *n*,  $v_n^{(1)}$ , in this wedge grows as

$$v_n^{(1)} = A_0 \left(1 + \sqrt{2}\right)^n + rac{5^{n/2}}{(n+1)^{3/2}} \Big(A_1 + (-1)^n A_2 + O(1/n)\Big)$$

where the constants are

 $A_0 = 0.277309853486031\ldots$  $A_1 = 3.714104865336623...$   $A_2 = 0.206979970208041...$ 

## PDSAW in Y = 0, Y = pX wedge

For any 
$$1 \le p < \infty$$
  
 $0.2773 \ldots \le \lim_{n \to \infty} \frac{v_n^{(p)}}{(1 + \sqrt{2})^n} \le (1 + \sqrt{2})/2 = 1.2071 \ldots$ 

All scale like PDSAW in the plane

|             |  | Conclusions |  |
|-------------|--|-------------|--|
|             |  | •           |  |
| Conclusions |  |             |  |

- We have derived functional equations for PDSAW in symmetric wedges
- For the  $Y = \pm X$  wedge we can find the g.f.
- We use this to compute asymptotics
- Growth constant and critical exponent are independent of the wedge angle — very different to conformally invariant models

|             |  | Conclusions |  |
|-------------|--|-------------|--|
|             |  | •           |  |
| Conclusions |  |             |  |

- We have derived functional equations for PDSAW in symmetric wedges
- For the  $Y = \pm X$  wedge we can find the g.f.
- We use this to compute asymptotics
- Growth constant and critical exponent are independent of the wedge angle — very different to conformally invariant models
- Link between PDSAW in wedge and involutions without fixed points

|                         |  |  |  |  | Bijection |  |  |  |
|-------------------------|--|--|--|--|-----------|--|--|--|
|                         |  |  |  |  | 00        |  |  |  |
| Aside to chord diagrams |  |  |  |  |           |  |  |  |



## Chord diagrams $\equiv$ involutions without fixed-points

• g.f. of diagrams with *n* chords in which *q* counts crossings [Touchard]

$$\Phi_n(q) = \frac{1}{(1-q)^n} \sum_{k=-n}^n (-1)^k \binom{2n}{n+k} q^{\binom{k}{2}}$$

|                                  |  |  |  |  | Bijection |  |  |  |
|----------------------------------|--|--|--|--|-----------|--|--|--|
|                                  |  |  |  |  | 00        |  |  |  |
| Equinumerous — no bijection yet. |  |  |  |  |           |  |  |  |



#### PDSAW in wedges and chord diagrams

The number of chord diagrams with n chords and m crossings

the number of PDSAW in the  $Y = \pm X$  wedge with *n* horizontal edges, n + 2m vertical edges and ending at (n, -n)