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Self-avoiding walks

Self-avoiding walk

A path on a lattice that does not intersect itself

cn = |{SAWs of n steps}|

Computing cn is a very hard combinatorial problem

Canonical model of linear polymer in solution
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Critical exponents

Scaling of self-avoiding walks

The number of self-avoiding walks grows as

cn ∼ A µn nγ−1 (1 + · · · )

growth constant µ� = 2.63815852927(1) [Guttmann & Jensen]

critical exponent γ = 43/32 [Nienhuis]

Growth constant is lattice dependent

— µ7 =
p

2 +
√

2 [Nienhuis]

— µ4 = 4.150797226(26) [Jensen]

Critical exponent is universal
— conformal field theory

Much of what is known for 2D lattice models comes from CFT
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Put things in wedges

Growth constant independent of θ [Hammersley & Whittington]

CFT exponent prediction

γ = 1 +
27

64
− 15

32

π

θ
[Duplantier & Saleur]
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Not conformally invariant

Many interesting models are not conformally invariant
— bond trees

Much less is known
— mostly numerical results by series analysis and Monte-Carlo

Computer enumeration in wedge is hard
— big growth constant and no FLM
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Simulate trees

First problem as a postdoc

Design algorithm to simulate trees in wedges

Estimate growth constant λ and critical exponent γ

tn ∼ A λn nγ−1 (1 + · · · )

Repeat in different wedges

Compare and contrast to conformally invariant models — SAWs

Spent about 1 year getting nowhere
— bad convergence problems

A few years later we had a more combinatorial idea. . .
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Directed paths

Partially directed self-avoiding walk

A SAW that cannot step west (and ends with an east step)

Not conformally invariant — behaviour in wedges = ?
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Generating function and asymptotics of walks in the plane

Simple rational generating function

P(z) =
X

ϕ∈PDSAW

z |ϕ| =
X

n

pnz
n =

z(1− z)

1− 2z − z2

Dominant singularity gives asymptotics

pn =

√
2− 1

2

“
1 +

√
2
”n

+ o(1)

Growth constant µ = 1 +
√

2

Critical exponent γ = 1
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Put them in wedges

Put PDSAW in an upper wedge — Y = pX , X = 0

PDSAW in upper wedge

If p ∈ Q then g.f. is algebraic

Growth constant varies with p (and so θ) [JvR & Ye]
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Put them in wedges again

The symmetric wedge is more interesting — Y = ±pX

PDSAW in symmetric wedge

For p ≥ 1 the growth constant is 1 +
√

2

But what is the critical exponent?

Need to find g.f. — use the Temperley method
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Column-column construction

Each PDSAW in the Y = ±pX wedge is

either a single vertex
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Column-column construction

Each PDSAW in the Y = ±pX wedge is

or obtained by adding an east step
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Column-column construction

Each PDSAW in the Y = ±pX wedge is

or by adding north steps and an east step
— but not too many north steps
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Column-column construction

Each PDSAW in the Y = ±pX wedge is

or obtained by adding south steps and an east step
— but not too many south steps
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Functional equation

Functional equation in the Y = ±pX wedge

fp(a, b) = 1 + x(ab)pfp(a, b)

+ x(ab)p ya/b

1− ya/b

“
fp(a, b)− fp(a, ay)

”
+ x(ab)p yb/a

1− yb/a

“
fp(a, b)− fp(by , b)

”

fp(a, b) is the g.f. of PDSAW in this wedge

x and y are conjugate to # horizontal and # vertical steps

a and b are conjugate to distance of endpoint from walls

Very little progress except for p = 1
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p = 1: solve using the iterated kernel method

Equation for Y = ±X wedge

f (a, b) = 1 + xabf (a, b) +
xya2

1− ya/b

“
f (a, b)− f (a, ay)

”
+

xyb2

1− yb/a

“
f (a, b)− f (by , b)

”

1 equation with 3 unknowns

Singular when a = by or b = ay

Partially directed walks in wedges Rechnitzer
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Kernelise. . .

Equation for Y = ±X wedge

f (a, b)K(a, b) = X (a, b) + Y (a, b) f (a, ay) + Z(a, b) f (by , b)

Find the roots of the kernel b = β±1(a)

The kernel and f (a, b) can be removed by setting b = β+1(a)
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Kernelise. . .

Equation for Y = ±X wedge
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Y (a, β(a))
− Y (β(a), a)
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f (β(a), β(a)y)
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Kernelise. . .

Equation for Y = ±X wedge

f (a, b)K(a, b) = X (a, b) + Y (a, b) f (a, ay) + Y (b, a) f (b, by)

The kernel

K(a, b) = (b − ya)(a− yb)(1− xab)− xyab(a2 + b2 − 2yab)

Find the roots of the kernel b = β±1(a)

The kernel and f (a, b) can be removed by setting b = β+1(a)

f (a, ay)| {z }
F (a)

= −X (a, β(a))

Y (a, β(a))
− Y (β(a), a)

Y (a, β(a))
f (β(a), β(a)y)| {z }

F (β(a))
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Kernelise. . .

Equation for Y = ±X wedge

f (a, b)K(a, b) = X (a, b) + Y (a, b) f (a, ay) + Y (b, a) f (b, by)

The kernel

K(a, b) = (b − ya)(a− yb)(1− xab)− xyab(a2 + b2 − 2yab)

Find the roots of the kernel b = β±1(a)

The kernel and f (a, b) can be removed by setting b = β+1(a)

F (a) = X (a) + Y(a)F (β(a))
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Now we can iterate. . .

F (a) = X (a) + Y(a)F (β(a))

1 equation with 2 unknowns

Since a is a formal variable, we can map a 7→ β(a)

F (β(a)) = X (β(a)) + Y (β(a)) F (β (β(a)))

F (β2(a)) = X (β2(a)) + Y (β2(a)) F (β3(a))

F (βn(a)) = X (βn(a)) + Y (βn(a)) F (βn+1(a))
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Formal solution

Back-substitution of first N equations

F (a) =
NX

n=0

X (βn)
n−1Y
k=0

Y(βk) + F (βN+1)
NY

k=0

Y(βk)

If
NY

k=0

Y(βk) → 0 as N →∞ (X)

Formal solution

F (a) ≡ f (a, ya) =
X
n≥0

X (βn)
n−1Y
k=0

Y(βk)

Symmetry gives f (by , b) and so f (a, b)

Is this helpful? — mess of nested radicals
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Can we simplify this mess?

At first sight βn(a) is very complicated

β±1(a) =
a

2

 
1 + y 2 ∓

p
(1− y 2)(1− 4xya2 − y 2)

y + xa2 − xy 2a2

!
so we expect the compositions to be ugly

Nice quadratic & nice composition structure

Look carefully at roots: β±1 (β∓1(a)) = a

Roots of quadratic: 1

β1(a)
+

1

β−1(a)
=

1 + y 2

y

1

a

Substitute a 7→ βn: 1

βn+1
+

1

βn−1
=

1 + y 2

y

1

βn

Partially directed walks in wedges Rechnitzer
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Closed form for βn(a)

Closed form solution to recurrence

1

βn(a)
=

y(1− y 2n)

yn(1− y 2)

1

β1
− y 2(1− y 2n−2)

yn(1− y 2)

1

a

Big simplifications

Partially directed walks in wedges Rechnitzer
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Closed form for βn(a)

Closed form solution to recurrence

1

βn(a)
=

y(1− y 2n)

yn(1− y 2)

1

β1
− y 2(1− y 2n−2)

yn(1− y 2)

1

a

Big simplifications

f (a, ay) =
X
n≥0

X (βn)
n−1Y
k=0
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Generating function

Generating function of PDSAW in Y = ±X wedge

Put x = t and y = t:

f (1, 1) =
1− t

1− 2t − t2

−
1− t2 −

p
(1− t2)(1− 5t2)

1− 2t − t2
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/2t
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Asymptotics when p = 1

PDSAW in Y = ±X wedge

The number of PDSAW of length n, v
(1)
n , in this wedge grows as

v (1)
n = A0

“
1 +

√
2
”n

+
5n/2

(n + 1)3/2

“
A1 + (−1)nA2 + O(1/n)

”
where the constants are

A0 = 0.277309853486031 . . .

A1 = 3.714104865336623 . . . A2 = 0.206979970208041 . . .

PDSAW in Y = 0, Y = pX wedge

For any 1 ≤ p < ∞

0.2773 . . . ≤ lim
n→∞

v
(p)
n

(1 +
√

2)n
≤ (1 +

√
2)/2 = 1.2071 . . .

All scale like PDSAW in the plane
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Conclusions

We have derived functional equations for PDSAW in symmetric wedges

For the Y = ±X wedge we can find the g.f.

We use this to compute asymptotics

Growth constant and critical exponent are independent of the wedge angle
— very different to conformally invariant models

Link between PDSAW in wedge and involutions without fixed points
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Aside to chord diagrams

Chord diagrams ≡ involutions without fixed-points

g.f. of diagrams with n chords in which q counts crossings [Touchard]

Φn(q) =
1

(1− q)n

nX
k=−n

(−1)k

 
2n

n + k

!
q(k

2)
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Equinumerous — no bijection yet.

PDSAW in wedges and chord diagrams

The number of chord diagrams with n chords and m crossings

| |

the number of PDSAW in the Y = ±X wedge with n horizontal edges,
n + 2m vertical edges and ending at (n,−n)
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