
Computer Algebra and Power Series with

Positive Coefficients

Manuel Kauers

RISC-Linz, Austria, Europe



Problem Statement

Let r(x1, x2, . . . , xd) be a particular rational function in d variables.



Problem Statement

Let r(x1, x2, . . . , xd) be a particular rational function in d variables.

Consider its Taylor expansion

r(x1, x2, . . . , xd) =
∑

n1,n2,...,nd

an1,n2,...,nd
xn1

1 xn2

2 · · ·x
nd

d .



Problem Statement

Let r(x1, x2, . . . , xd) be a particular rational function in d variables.

Consider its Taylor expansion

r(x1, x2, . . . , xd) =
∑

n1,n2,...,nd

an1,n2,...,nd
xn1

1 xn2

2 · · ·x
nd

d .

Question: Are all the coefficients an1,...,nd
in the expansion

of r(x1, . . . , xn) positive?



Problem Statement

Let r(x1, x2, . . . , xd) be a particular rational function in d variables.

Consider its Taylor expansion

r(x1, x2, . . . , xd) =
∑

n1,n2,...,nd

an1,n2,...,nd
xn1

1 xn2

2 · · ·x
nd

d .

Question: Are all the coefficients an1,...,nd
in the expansion

of r(x1, . . . , xn) positive?

For some r, obviously no.



Problem Statement

Let r(x1, x2, . . . , xd) be a particular rational function in d variables.

Consider its Taylor expansion

r(x1, x2, . . . , xd) =
∑

n1,n2,...,nd

an1,n2,...,nd
xn1

1 xn2

2 · · ·x
nd

d .

Question: Are all the coefficients an1,...,nd
in the expansion

of r(x1, . . . , xn) positive?

For some r, obviously no.
For some r, obviously yes.



Problem Statement

Let r(x1, x2, . . . , xd) be a particular rational function in d variables.

Consider its Taylor expansion

r(x1, x2, . . . , xd) =
∑

n1,n2,...,nd

an1,n2,...,nd
xn1

1 xn2

2 · · ·x
nd

d .

Question: Are all the coefficients an1,...,nd
in the expansion

of r(x1, . . . , xn) positive?

For some r, obviously no.
For some r, obviously yes.
For some r, it seems that yes, but nobody knows how to prove this.
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1− x− y+ 1
4
(x2 + xy + y2)

=
∑

n,m

an,mx
nym

Naive expansion leads to a mess.

This mess does not have a closed form.

A positivity proof for an,m is not obvious. (Try it.)
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Askey/Gasper (1977) proved that the power series

1

1− x− y − z+4xyz

has only positive coefficients.

Szegő (1933) proved that the power series

1

1− x− y − z+ 3
4
(xy + xz + yz)

has only positive coefficients.

These proofs are really complicated!
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Open problems

Gillis/Reznick/Zeilberger conjectured in 1982 that

1

1− x1 − x2 − · · · − xr + r!x1 · · ·xr

has nonnegative coefficients for all r ≥ 4.

Askey/Gasper conjectured in 1972 that

1

1− x− y − z − w+ 2
3
(xy + xz + xw + yz + yw + zw)

has positive coefficients.

These conjectures are still open.
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Such an algorithm could be used for solving Diophantine
equations, because

rat(x1, . . . , xr) =
∑

n1,...,nr

poly(n1, . . . , nr)
2xn1

1 · · ·x
nr
r

has positive coefficients if and only if poly does not have an integer
root.

Hence: No such algorithm exists.
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Not even the univariate case is under control:

rat(x) =
∞∑

n=0

anx
n

if and only if (an) satisfies a linear recurrence with constant
coefficients.

Open problem: Does there exist an algorithm that can decide for a
given (an) whether aN = 0 for some N?

Such an algorithm exists if and only if there exists an algorithm for
deciding whether a given univariate rational function has only
positive coefficients.
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But the Computer is useful nevertheless

I For computing many series coefficients (searching for
counterexamples)

I For determining useful recurrence equations satisfied by the
coefficients

I For deriving and deciding (proving or disproving) sufficient
conditions that, if true, imply deciding certain sufficient
conditions



Computer Algebra Tools



Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with
polynomial coefficients for the series coefficients of a given rational
function.



Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with
polynomial coefficients for the series coefficients of a given rational
function.

Algorithm:



Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with
polynomial coefficients for the series coefficients of a given rational
function.

Algorithm:

1. Compute many series coefficients



Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with
polynomial coefficients for the series coefficients of a given rational
function.

Algorithm:

1. Compute many series coefficients

2. Make an ansatz for the recurrence equation



Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with
polynomial coefficients for the series coefficients of a given rational
function.

Algorithm:

1. Compute many series coefficients

2. Make an ansatz for the recurrence equation

3. Match the ansatz to the data by solving a linear system.
(“Automated Guessing”)



Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with
polynomial coefficients for the series coefficients of a given rational
function.

Algorithm:

1. Compute many series coefficients

2. Make an ansatz for the recurrence equation

3. Match the ansatz to the data by solving a linear system.
(“Automated Guessing”)

4. Every solution gives rise to a recurrence candidate. Transform
each candidate into a PDE for the series



Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with
polynomial coefficients for the series coefficients of a given rational
function.

Algorithm:

1. Compute many series coefficients

2. Make an ansatz for the recurrence equation

3. Match the ansatz to the data by solving a linear system.
(“Automated Guessing”)

4. Every solution gives rise to a recurrence candidate. Transform
each candidate into a PDE for the series

5. Check if the series is a solution to the PDEs. If not, repeat
with more data.



Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with
polynomial coefficients for the series coefficients of a given rational
function.

Algorithm:

1. Compute many series coefficients

2. Make an ansatz for the recurrence equation

3. Match the ansatz to the data by solving a linear system.
(“Automated Guessing”)

4. Every solution gives rise to a recurrence candidate. Transform
each candidate into a PDE for the series

5. Check if the series is a solution to the PDEs. If not, repeat
with more data.

(Example.)
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Task: Given an inequality involving multivariate polynomials,
decide whether or not it holds for all real numbers.

More generally: Consider formulas composed of polynomials,
quantifiers, logical connectives, and binary relations =, <,≤.
Given such a formula, construct an equivalent one which is
“quantifier free.”

This can be done with Collins’s algorithm (CAD), which is part the
standard distribution of Mathematica.

(Example.)
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But it can be shown that the an,m are diagonally increasing:

∀N,M,A0, A1, A2 ∈ � :

N ≥M ≥ 0 ∧A1 > A0 > 0

∧ − 9
32
(M +N + 2) · · · (2M + 2N + 9)A0

+ 1
4
(M +N + 4) · · ·

(
2M2 + · · ·+ 57

)
A1

− 2(M + 2) · · · (2M + 2N + 5)A2 = 0⇒ A2 > A1

is true. This proves the positivity result.
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I an,m,k satisfies nice (but lengthy) recurrence equations.

I But none of them implies positivity.

I The best we obtained were positivity implying recurrence
equations in n and m when k = 1, 2, . . . , 16 is fixed.

I Because for each fixed k, a shorter recurrence equations are
available.
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reasoning.

I Note that the an,m,k need not be increasing for this argument.

I Because by quantifier elimination, we can construct numbers
β such that βnan,m,k is provably increasing:

∀A0, A1, A2, N,M,K : A1 ≥ βA0 > 0 ∧ (. . . rec. . . )=0

⇒ A2 ≥ βA1

CAD
⇐⇒ β ≥ 1
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Szegö’s Example

1

1− x− y − z − w+ 3
4
(xy + xz + xw + yz + yw + zw)

The situation here is similar, we obtained only partial results:

a) (2D-results around the axes) for k, l fixed with
0 ≤ k + l ≤ 16, we have

∀n,m ∈ � : an,m,k,l > 0
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1− x− y − z − w+ 3
4
(xy + xz + xw + yz + yw + zw)

The situation here is similar, we obtained only partial results:

a) (2D-results around the axes) for k, l fixed with
0 ≤ k + l ≤ 16, we have

∀n,m ∈ � : an,m,k,l > 0

b) (1D-results around the diagonals) for u, v, w fixed with
0 ≤ u, v, w ≤ 12, we have

∀n ∈ � : an,n+u,n+v,n+w > 0.

Such results can probably be obtained for any fixed k, l, u, v, w.



Askey-Gasper’s Example

1

1− x− y − z+4xyz
=
∑

n,m,k

an,m,kx
nykzm



Askey-Gasper’s Example

1

1− x− y − z+4xyz
=
∑

n,m,k

an,m,kx
nykzm

I Positivity follows from the recurrence (Gillis/Kleeman 1982)

(1 + n)an+1,m+1,k+1 = 2(n+m− k)an,m,k+1

+ (1 + n−m+ k)an,m+1,k+1.



Askey-Gasper’s Example

1

1− x− y − z+4xyz
=
∑

n,m,k

an,m,kx
nykzm

I Positivity follows from the recurrence (Gillis/Kleeman 1982)

(1 + n)an+1,m+1,k+1 = 2(n+m− k)an,m,k+1

+ (1 + n−m+ k)an,m+1,k+1.

I Automated guessing delivers 10 linearly independent
multivariate recurrence equations with linear coefficients.



Askey-Gasper’s Example

1

1− x− y − z+4xyz
=
∑

n,m,k

an,m,kx
nykzm

I Positivity follows from the recurrence (Gillis/Kleeman 1982)

(1 + n)an+1,m+1,k+1 = 2(n+m− k)an,m,k+1

+ (1 + n−m+ k)an,m+1,k+1.

I Automated guessing delivers 10 linearly independent
multivariate recurrence equations with linear coefficients.

I A positivity-asserting linear-combination can be found by
making an ansatz and solving a quantifier elimination problem
for the undetermined coefficients.
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I This way, it can also be shown that Szegö’s result cannot be
shown by a first-order linear positivity-asserting recurrence
with linear coefficients.



Askey-Gasper’s Example

The conjectured generalization

1

1− x1 − x2 − · · · − xr + r!x1 · · ·xr

can be settled for every fixed r (at least for r = 4, 5, 6, 7)



Askey-Gasper’s Example

The conjectured generalization

1

1− x1 − x2 − · · · − xr + r!x1 · · ·xr

can be settled for every fixed r (at least for r = 4, 5, 6, 7) using a
lemma by Zeilberger et al. saying that positivity of the diagonal
elements

n∑

k=0

(−1)k
(rn− (r − 1)k)!(r!)k

(n− k)!rk!
.



Askey-Gasper’s Example

The conjectured generalization

1

1− x1 − x2 − · · · − xr + r!x1 · · ·xr

can be settled for every fixed r (at least for r = 4, 5, 6, 7) using a
lemma by Zeilberger et al. saying that positivity of the diagonal
elements

n∑

k=0

(−1)k
(rn− (r − 1)k)!(r!)k

(n− k)!rk!
.

The monotonicity-by-induction reasoning is applicable to this sum.
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Computer experiments and partial proofs suggest that the
following rational functions have positive coefficients:

I
1

1− x− y − z + 1
4
(x2 + y2 + z2)

I
1

1− x− y − z + 64
27
(xyz + xyw + xzw + yzw)

We can give partial proofs for both, but no full proofs.

(The first one is easily proven, as pointed out by Armin Straub a few

days ago. The second remains open so far.)
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Conclusion

I It is difficult to decide whether all the Taylor coefficients of a
rational function are positive.

I Standard tools from Computer Algebra (Recurrence Guessing
and Cylindrical Decomposition) can contribute to this topic.

I For nontrivial examples, we could obtain partial proofs in this
way.

I This extends the computational evidence in support of these
conjectures far beyond what was available so far.


