Computer Algebra and Power Series with Positive Coefficients

Manuel Kauers

RISC-Linz, Austria, Europe

Problem Statement

Let $r\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a particular rational function in d variables.

Problem Statement

Let $r\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a particular rational function in d variables.
Consider its Taylor expansion

$$
r\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{n_{1}, n_{2}, \ldots, n_{d}} a_{n_{1}, n_{2}, \ldots, n_{d}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}
$$

Problem Statement

Let $r\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a particular rational function in d variables.
Consider its Taylor expansion

$$
r\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{n_{1}, n_{2}, \ldots, n_{d}} a_{n_{1}, n_{2}, \ldots, n_{d}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}
$$

Question: Are all the coefficients $a_{n_{1}, \ldots, n_{d}}$ in the expansion of $r\left(x_{1}, \ldots, x_{n}\right)$ positive?

Problem Statement

Let $r\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a particular rational function in d variables.
Consider its Taylor expansion

$$
r\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{n_{1}, n_{2}, \ldots, n_{d}} a_{n_{1}, n_{2}, \ldots, n_{d}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}
$$

Question: Are all the coefficients $a_{n_{1}, \ldots, n_{d}}$ in the expansion of $r\left(x_{1}, \ldots, x_{n}\right)$ positive?

For some r, obviously no.

Problem Statement

Let $r\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a particular rational function in d variables.
Consider its Taylor expansion

$$
r\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{n_{1}, n_{2}, \ldots, n_{d}} a_{n_{1}, n_{2}, \ldots, n_{d}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}
$$

Question: Are all the coefficients $a_{n_{1}, \ldots, n_{d}}$ in the expansion of $r\left(x_{1}, \ldots, x_{n}\right)$ positive?

For some r, obviously no.
For some r, obviously yes.

Problem Statement

Let $r\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a particular rational function in d variables.
Consider its Taylor expansion

$$
r\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{n_{1}, n_{2}, \ldots, n_{d}} a_{n_{1}, n_{2}, \ldots, n_{d}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}
$$

Question: Are all the coefficients $a_{n_{1}, \ldots, n_{d}}$ in the expansion of $r\left(x_{1}, \ldots, x_{n}\right)$ positive?

For some r, obviously no.
For some r, obviously yes.
For some r, it seems that yes, but nobody knows how to prove this.

Simple Examples

Simple Examples

$$
\frac{1}{1-x-y-x y}
$$

Simple Examples

$$
\frac{1}{1-x-y-x y}=\sum_{n}(x+y+x y)^{n}
$$

Simple Examples

$$
\begin{aligned}
\frac{1}{1-x-y-x y} & =\sum_{n}(x+y+x y)^{n} \\
& =\sum_{n, m}(\underbrace{\sum_{k=0}^{m}\binom{n}{m-k}\binom{n+k}{k}}_{>0}) x^{n} y^{m}
\end{aligned}
$$

Simple Examples

$$
\begin{aligned}
& \frac{1}{1-x-y-x y}=\sum_{n}(x+y+x y)^{n} \\
&=\sum_{n, m}(\underbrace{\sum_{k=0}^{m}\binom{n}{m-k}\binom{n+k}{k}}_{>0}) x^{n} y^{m} \\
& \frac{1}{1-x-y+x y}
\end{aligned}
$$

Simple Examples

$$
\begin{aligned}
\frac{1}{1-x-y-x y} & =\sum_{n}(x+y+x y)^{n} \\
& =\sum_{n, m}(\underbrace{\sum_{k=0}^{m}\binom{n}{m-k}\binom{n+k}{k}}_{>0}) x^{n} y^{m} \\
\frac{1}{1-x-y+x y} & =\sum_{n}(x+y-x y)^{n}
\end{aligned}
$$

Simple Examples

$$
\begin{aligned}
\frac{1}{1-x-y-x y} & =\sum_{n}(x+y+x y)^{n} \\
& =\sum_{n, m}(\underbrace{\sum_{k=0}^{m}\binom{n}{m-k}\binom{n+k}{k}}_{>0}) x^{n} y^{m} \\
\frac{1}{1-x-y+x y} & =\sum_{n}(x+y-x y)^{n} \\
& =\sum_{n, m}(\underbrace{\sum_{k=0}^{m}(-1)^{m-k}\binom{n}{m-k}\binom{n+k}{k}}_{?}) x^{n} y^{m}
\end{aligned}
$$

Simple Examples

$$
\begin{aligned}
\frac{1}{1-x-y-x y} & =\sum_{n}(x+y+x y)^{n} \\
& =\sum_{n, m}(\underbrace{\sum_{k=0}^{m}\binom{n}{m-k}\binom{n+k}{k}}_{>0}) x^{n} y^{m} \\
\frac{1}{1-x-y+x y} & =\sum_{n}(x+y-x y)^{n} \\
& =\sum_{n, m}(\underbrace{\sum_{k=0}^{m}(-1)^{m-k}\binom{n}{m-k}\binom{n+k}{k}}_{=1>0}) x^{n} y^{m}
\end{aligned}
$$

A less Simple Example

A less Simple Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}
$$

A less Simple Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

A less Simple Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

A less Simple Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

Naive expansion leads to a mess.

A less Simple Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

Naive expansion leads to a mess.
This mess does not have a closed form.

A less Simple Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

Naive expansion leads to a mess.
This mess does not have a closed form.
A positivity proof for $a_{n, m}$ is not obvious.

A less Simple Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

Naive expansion leads to a mess.
This mess does not have a closed form.
A positivity proof for $a_{n, m}$ is not obvious. (Try it.)

Hard Examples

Askey/Gasper (1977) proved that the power series

$$
\frac{1}{1-x-y-z+4 x y z}
$$

has only positive coefficients.

Hard Examples

Askey/Gasper (1977) proved that the power series

$$
\frac{1}{1-x-y-z+4 x y z}
$$

has only positive coefficients.
Szegő (1933) proved that the power series

$$
\frac{1}{1-x-y-z+\frac{3}{4}(x y+x z+y z)}
$$

has only positive coefficients.

Hard Examples

Askey/Gasper (1977) proved that the power series

$$
\frac{1}{1-x-y-z+4 x y z}
$$

has only positive coefficients.
Szegő (1933) proved that the power series

$$
\frac{1}{1-x-y-z+\frac{3}{4}(x y+x z+y z)}
$$

has only positive coefficients.
These proofs are really complicated!

Open problems

Gillis/Reznick/Zeilberger conjectured in 1982 that

$$
\frac{1}{1-x_{1}-x_{2}-\cdots-x_{r}+r!x_{1} \cdots x_{r}}
$$

has nonnegative coefficients for all $r \geq 4$.

Open problems

Gillis/Reznick/Zeilberger conjectured in 1982 that

$$
\frac{1}{1-x_{1}-x_{2}-\cdots-x_{r}+r!x_{1} \cdots x_{r}}
$$

has nonnegative coefficients for all $r \geq 4$.
Askey/Gasper conjectured in 1972 that

$$
\frac{1}{1-x-y-z-w+\frac{2}{3}(x y+x z+x w+y z+y w+z w)}
$$

has positive coefficients.

Open problems

Gillis/Reznick/Zeilberger conjectured in 1982 that

$$
\frac{1}{1-x_{1}-x_{2}-\cdots-x_{r}+r!x_{1} \cdots x_{r}}
$$

has nonnegative coefficients for all $r \geq 4$.
Askey/Gasper conjectured in 1972 that

$$
\frac{1}{1-x-y-z-w+\frac{2}{3}(x y+x z+x w+y z+y w+z w)}
$$

has positive coefficients.
These conjectures are still open.

Can The Computer Help?

Principal Limitations

Principal Limitations

We need an algorithm for solving the following problem:

Principal Limitations

We need an algorithm for solving the following problem:
INPUT: a multivariate rational function rat over \mathbb{Q}

Principal Limitations

We need an algorithm for solving the following problem:
INPUT: a multivariate rational function rat over \mathbb{Q} OUTPUT: true if the coefficients of rat are positive, false otherwise.

Principal Limitations

We need an algorithm for solving the following problem:
INPUT: a multivariate rational function rat over \mathbb{Q} OUTPUT: true if the coefficients of rat are positive, false otherwise.

Such an algorithm could be used for solving Diophantine equations, because

$$
\operatorname{rat}\left(x_{1}, \ldots, x_{r}\right)=\sum_{n_{1}, \ldots, n_{r}} \operatorname{poly}\left(n_{1}, \ldots, n_{r}\right)^{2} x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}
$$

has positive coefficients if and only if poly does not have an integer root.

Principal Limitations

We need an algorithm for solving the following problem:
INPUT: a multivariate rational function rat over \mathbb{Q} OUTPUT: true if the coefficients of rat are positive, false otherwise.

Such an algorithm could be used for solving Diophantine equations, because

$$
\operatorname{rat}\left(x_{1}, \ldots, x_{r}\right)=\sum_{n_{1}, \ldots, n_{r}} \operatorname{poly}\left(n_{1}, \ldots, n_{r}\right)^{2} x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}
$$

has positive coefficients if and only if poly does not have an integer root.

Hence: No such algorithm exists.

Principal Limitations

Not even the univariate case is under control:

Principal Limitations

Not even the univariate case is under control:

$$
\operatorname{rat}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

if and only if $\left(a_{n}\right)$ satisfies a linear recurrence with constant coefficients.

Principal Limitations

Not even the univariate case is under control:

$$
\operatorname{rat}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

if and only if $\left(a_{n}\right)$ satisfies a linear recurrence with constant coefficients.

Open problem: Does there exist an algorithm that can decide for a given $\left(a_{n}\right)$ whether $a_{N}=0$ for some N ?

Principal Limitations

Not even the univariate case is under control:

$$
\operatorname{rat}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

if and only if $\left(a_{n}\right)$ satisfies a linear recurrence with constant coefficients.

Open problem: Does there exist an algorithm that can decide for a given $\left(a_{n}\right)$ whether $a_{N}=0$ for some N ?
Such an algorithm exists if and only if there exists an algorithm for deciding whether a given univariate rational function has only positive coefficients.

But the Computer is useful nevertheless

But the Computer is useful nevertheless

- For computing many series coefficients (searching for counterexamples)

But the Computer is useful nevertheless

- For computing many series coefficients (searching for counterexamples)
- For determining useful recurrence equations satisfied by the coefficients

But the Computer is useful nevertheless

- For computing many series coefficients (searching for counterexamples)
- For determining useful recurrence equations satisfied by the coefficients
- For deriving and deciding (proving or disproving) sufficient conditions that, if true, imply deciding certain sufficient conditions

Computer Algebra Tools

Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with polynomial coefficients for the series coefficients of a given rational function.

Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with polynomial coefficients for the series coefficients of a given rational function.

Algorithm:

Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with polynomial coefficients for the series coefficients of a given rational function.

Algorithm:

1. Compute many series coefficients

Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with polynomial coefficients for the series coefficients of a given rational function.

Algorithm:

1. Compute many series coefficients
2. Make an ansatz for the recurrence equation

Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with polynomial coefficients for the series coefficients of a given rational function.

Algorithm:

1. Compute many series coefficients
2. Make an ansatz for the recurrence equation
3. Match the ansatz to the data by solving a linear system. ("Automated Guessing")

Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with polynomial coefficients for the series coefficients of a given rational function.

Algorithm:

1. Compute many series coefficients
2. Make an ansatz for the recurrence equation
3. Match the ansatz to the data by solving a linear system. ("Automated Guessing")
4. Every solution gives rise to a recurrence candidate. Transform each candidate into a PDE for the series

Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with polynomial coefficients for the series coefficients of a given rational function.

Algorithm:

1. Compute many series coefficients
2. Make an ansatz for the recurrence equation
3. Match the ansatz to the data by solving a linear system. ("Automated Guessing")
4. Every solution gives rise to a recurrence candidate. Transform each candidate into a PDE for the series
5. Check if the series is a solution to the PDEs. If not, repeat with more data.

Guessing and Proving Recurrence Equations

Task: Find a linear (possibly multivariate) recurrence equation with polynomial coefficients for the series coefficients of a given rational function.

Algorithm:

1. Compute many series coefficients
2. Make an ansatz for the recurrence equation
3. Match the ansatz to the data by solving a linear system. ("Automated Guessing")
4. Every solution gives rise to a recurrence candidate. Transform each candidate into a PDE for the series
5. Check if the series is a solution to the PDEs. If not, repeat with more data.
(Example.)

Proving and Finding Inequalities

Task: Given an inequality involving multivariate polynomials, decide whether or not it holds for all real numbers.

Proving and Finding Inequalities

Task: Given an inequality involving multivariate polynomials, decide whether or not it holds for all real numbers.

More generally: Consider formulas composed of polynomials, quantifiers, logical connectives, and binary relations $=,<, \leq$. Given such a formula, construct an equivalent one which is "quantifier free."

Proving and Finding Inequalities

Task: Given an inequality involving multivariate polynomials, decide whether or not it holds for all real numbers.

More generally: Consider formulas composed of polynomials, quantifiers, logical connectives, and binary relations $=,<, \leq$. Given such a formula, construct an equivalent one which is "quantifier free."

This can be done with Collins's algorithm (CAD), which is part the standard distribution of Mathematica.

Proving and Finding Inequalities

Task: Given an inequality involving multivariate polynomials, decide whether or not it holds for all real numbers.

More generally: Consider formulas composed of polynomials, quantifiers, logical connectives, and binary relations $=,<, \leq$. Given such a formula, construct an equivalent one which is "quantifier free."

This can be done with Collins's algorithm (CAD), which is part the standard distribution of Mathematica.
(Example.)

Back to the Examples

The Bivariate Example

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}
$$

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

The coefficients $a_{n, m}$ satisfy

$$
\begin{aligned}
& \frac{3}{16}(m+n+2)(m+n+3) a_{n, m} \\
& -\frac{1}{8}(m+n+3)(m+7 n+13) a_{n+1, m} \\
& +\frac{1}{2}(n+2)(2 n+5) a_{n+2, m}=0
\end{aligned}
$$

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

For positivity of $a_{n, m}$ it would be sufficient to show

$$
\begin{aligned}
& \forall N, M, A_{0}, A_{1}, A_{2} \in \mathbb{R}: \\
& N \geq M \geq 0 \wedge A_{1}>0 \wedge A_{0}>0 \\
& \wedge \frac{3}{16}(M+N+2)(M+N+3) A_{0} \\
& -\frac{1}{8}(M+N+3)(M+7 N+13) A_{1} \\
& +\frac{1}{2}(N+2)(2 N+5) A_{2}=0 \\
& \Rightarrow A_{2}>0
\end{aligned}
$$

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

For positivity of $a_{n, m}$ it would be sufficient to show

$$
\begin{aligned}
& \forall N, M, A_{0}, A_{1}, A_{2} \in \mathbb{R}: \\
& N \geq M \geq 0 \wedge A_{1}>0 \wedge A_{0}>0 \\
& \wedge \frac{3}{16}(M+N+2)(M+N+3) A_{0} \\
& -\frac{1}{8}(M+N+3)(M+7 N+13) A_{1} \\
& +\frac{1}{2}(N+2)(2 N+5) A_{2}=0 \\
& \Rightarrow A_{2}>0
\end{aligned}
$$

Collins's algorithm tells us that this is wrong.

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

The coefficients $a_{n, m}$ also satisfy

$$
\begin{aligned}
& -\frac{9}{32}(m+n+2)(m+n+3) \\
& \times(m+n+4)(m+n+5)(2 m+2 n+9) a_{n, m} \\
& +\frac{1}{4}(m+n+4)(m+n+5)(2 m+2 n+7) \\
& \times\left(2 m^{2}+16 n m+35 m+2 n^{2}+35 n+57\right) a_{n+1, m+1} \\
& -2(m+2)(2 m+5)(n+2) \\
& \times(2 n+5)(2 m+2 n+5) a_{n+2, m+2}=0
\end{aligned}
$$

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

For positivity of $a_{n, m}$ it would be sufficient to show

$$
\begin{aligned}
& \forall N, M, A_{0}, A_{1}, A_{2} \in \mathbb{R}: \\
& N \geq M \geq 0 \wedge A_{1}>0 \wedge A_{0}>0 \\
& \wedge-\frac{9}{32}(M+N+2) \cdots(2 M+2 N+9) A_{0} \\
& +\frac{1}{4}(M+N+4) \cdots\left(2 M^{2}+\cdots+57\right) A_{1} \\
& -2(M+2) \cdots(2 M+2 N+5) A_{2}=0 \Rightarrow A_{2}>0
\end{aligned}
$$

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

For positivity of $a_{n, m}$ it would be sufficient to show

$$
\begin{aligned}
& \forall N, M, A_{0}, A_{1}, A_{2} \in \mathbb{R}: \\
& N \geq M \geq 0 \wedge A_{1}>0 \wedge A_{0}>0 \\
& \wedge-\frac{9}{32}(M+N+2) \cdots(2 M+2 N+9) A_{0} \\
& +\frac{1}{4}(M+N+4) \cdots\left(2 M^{2}+\cdots+57\right) A_{1} \\
& -2(M+2) \cdots(2 M+2 N+5) A_{2}=0 \Rightarrow A_{2}>0
\end{aligned}
$$

Collin's algorithm tells us that this is also wrong.

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

But it can be shown that the $a_{n, m}$ are diagonally increasing:

$$
\begin{aligned}
& \forall N, M, A_{0}, A_{1}, A_{2} \in \mathbb{R}: \\
& N \geq M \geq 0 \wedge A_{1}>A_{0}>0 \\
& \wedge-\frac{9}{32}(M+N+2) \cdots(2 M+2 N+9) A_{0} \\
& +\frac{1}{4}(M+N+4) \cdots\left(2 M^{2}+\cdots+57\right) A_{1} \\
& -2(M+2) \cdots(2 M+2 N+5) A_{2}=0 \Rightarrow A_{2}>A_{1}
\end{aligned}
$$

is true.

The Bivariate Example

$$
\frac{1}{1-x-y+\frac{1}{4}\left(x^{2}+x y+y^{2}\right)}=\sum_{n, m} a_{n, m} x^{n} y^{m}
$$

But it can be shown that the $a_{n, m}$ are diagonally increasing:

$$
\begin{aligned}
& \forall N, M, A_{0}, A_{1}, A_{2} \in \mathbb{R}: \\
& N \geq M \geq 0 \wedge A_{1}>A_{0}>0 \\
& \wedge-\frac{9}{32}(M+N+2) \cdots(2 M+2 N+9) A_{0} \\
& +\frac{1}{4}(M+N+4) \cdots\left(2 M^{2}+\cdots+57\right) A_{1} \\
& -2(M+2) \cdots(2 M+2 N+5) A_{2}=0 \Rightarrow A_{2}>A_{1}
\end{aligned}
$$

is true. This proves the positivity result.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.
- Better: Prove positivity for some infinite set of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.
- Better: Prove positivity for some infinite set of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.
- Better: Prove positivity for some infinite set of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.
- Better: Prove positivity for some infinite set of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.
- Better: Prove positivity for some infinite set of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.
- Better: Prove positivity for some infinite set of coefficients.

Increasing Evidence

- Easy: Compute some large (but finite) number of coefficients.
- Better: Prove positivity for some infinite set of coefficients.
- Best case: Prove positivity for all coefficients.

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- $a_{n, m, k}$ satisfies nice (but lengthy) recurrence equations.

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- $a_{n, m, k}$ satisfies nice (but lengthy) recurrence equations.
- But none of them implies positivity.

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- $a_{n, m, k}$ satisfies nice (but lengthy) recurrence equations.
- But none of them implies positivity.
- The best we obtained were positivity implying recurrence equations in n and m when $k=1,2, \ldots, 16$ is fixed.

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- $a_{n, m, k}$ satisfies nice (but lengthy) recurrence equations.
- But none of them implies positivity.
- The best we obtained were positivity implying recurrence equations in n and m when $k=1,2, \ldots, 16$ is fixed.
- Because for each fixed k, a shorter recurrence equations are available.

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- Here it is possible to apply the monotonicity-by-induction reasoning.

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- Here it is possible to apply the monotonicity-by-induction reasoning.
- Note that the $a_{n, m, k}$ need not be increasing for this argument.

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- Here it is possible to apply the monotonicity-by-induction reasoning.
- Note that the $a_{n, m, k}$ need not be increasing for this argument.
- Because by quantifier elimination, we can construct numbers β such that $\beta^{n} a_{n, m, k}$ is provably increasing:

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- Here it is possible to apply the monotonicity-by-induction reasoning.
- Note that the $a_{n, m, k}$ need not be increasing for this argument.
- Because by quantifier elimination, we can construct numbers β such that $\beta^{n} a_{n, m, k}$ is provably increasing:

$$
\begin{aligned}
& \forall A_{0}, A_{1}, A_{2}, N, M, K: A_{1} \geq \beta A_{0}>0 \wedge(\ldots \text { rec. } . .)=0 \\
& \quad \Rightarrow A_{2} \geq \beta A_{1}
\end{aligned}
$$

Szegö's Example

$$
\frac{1}{1-x-y-z+\frac{2}{3}(x y+x z+y z)}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{m} z^{k}
$$

- Here it is possible to apply the monotonicity-by-induction reasoning.
- Note that the $a_{n, m, k}$ need not be increasing for this argument.
- Because by quantifier elimination, we can construct numbers β such that $\beta^{n} a_{n, m, k}$ is provably increasing:

$$
\begin{aligned}
& \forall A_{0}, A_{1}, A_{2}, N, M, K: A_{1} \geq \beta A_{0}>0 \wedge(\ldots \text { rec. . . })=0 \\
& \quad \Rightarrow A_{2} \geq \beta A_{1} \\
& \quad \begin{array}{l}
C A D \\
\Longleftrightarrow
\end{array} \geq 1
\end{aligned}
$$

Szegö's Example

$$
\frac{1}{1-x-y-z-w+\frac{3}{4}(x y+x z+x w+y z+y w+z w)}
$$

The situation here is similar, we obtained only partial results:

Szegö's Example

$$
\frac{1}{1-x-y-z-w+\frac{3}{4}(x y+x z+x w+y z+y w+z w)}
$$

The situation here is similar, we obtained only partial results:
a) (2D-results around the axes) for k, l fixed with $0 \leq k+l \leq 16$, we have

$$
\forall n, m \in \mathbb{N}: a_{n, m, k, l}>0
$$

Szegö’s Example

$$
\frac{1}{1-x-y-z-w+\frac{3}{4}(x y+x z+x w+y z+y w+z w)}
$$

The situation here is similar, we obtained only partial results:
a) (2D-results around the axes) for k, l fixed with $0 \leq k+l \leq 16$, we have

$$
\forall n, m \in \mathbb{N}: a_{n, m, k, l}>0
$$

b) (1D-results around the diagonals) for u, v, w fixed with $0 \leq u, v, w \leq 12$, we have

$$
\forall n \in \mathbb{N}: a_{n, n+u, n+v, n+w}>0
$$

Szegö’s Example

$$
\frac{1}{1-x-y-z-w+\frac{3}{4}(x y+x z+x w+y z+y w+z w)}
$$

The situation here is similar, we obtained only partial results:
a) (2D-results around the axes) for k, l fixed with $0 \leq k+l \leq 16$, we have

$$
\forall n, m \in \mathbb{N}: a_{n, m, k, l}>0
$$

b) (1D-results around the diagonals) for u, v, w fixed with $0 \leq u, v, w \leq 12$, we have

$$
\forall n \in \mathbb{N}: a_{n, n+u, n+v, n+w}>0
$$

Such results can probably be obtained for any fixed k, l, u, v, w.

Askey-Gasper's Example

$$
\frac{1}{1-x-y-z+4 x y z}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{k} z^{m}
$$

Askey-Gasper's Example

$$
\frac{1}{1-x-y-z+4 x y z}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{k} z^{m}
$$

- Positivity follows from the recurrence (Gillis/Kleeman 1982)

$$
\begin{aligned}
(1+n) a_{n+1, m+1, k+1} & =2(n+m-k) a_{n, m, k+1} \\
& +(1+n-m+k) a_{n, m+1, k+1}
\end{aligned}
$$

Askey-Gasper's Example

$$
\frac{1}{1-x-y-z+4 x y z}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{k} z^{m}
$$

- Positivity follows from the recurrence (Gillis/Kleeman 1982)

$$
\begin{aligned}
(1+n) a_{n+1, m+1, k+1} & =2(n+m-k) a_{n, m, k+1} \\
& +(1+n-m+k) a_{n, m+1, k+1} .
\end{aligned}
$$

- Automated guessing delivers 10 linearly independent multivariate recurrence equations with linear coefficients.

Askey-Gasper's Example

$$
\frac{1}{1-x-y-z+4 x y z}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{k} z^{m}
$$

- Positivity follows from the recurrence (Gillis/Kleeman 1982)

$$
\begin{aligned}
(1+n) a_{n+1, m+1, k+1} & =2(n+m-k) a_{n, m, k+1} \\
& +(1+n-m+k) a_{n, m+1, k+1} .
\end{aligned}
$$

- Automated guessing delivers 10 linearly independent multivariate recurrence equations with linear coefficients.
- A positivity-asserting linear-combination can be found by making an ansatz and solving a quantifier elimination problem for the undetermined coefficients.

Askey-Gasper's Example

$$
\frac{1}{1-x-y-z+4 x y z}=\sum_{n, m, k} a_{n, m, k} x^{n} y^{k} z^{m}
$$

- This way, it can also be shown that Szegö's result cannot be shown by a first-order linear positivity-asserting recurrence with linear coefficients.

Askey-Gasper's Example

The conjectured generalization

$$
\frac{1}{1-x_{1}-x_{2}-\cdots-x_{r}+r!x_{1} \cdots x_{r}}
$$

can be settled for every fixed r (at least for $r=4,5,6,7$)

Askey-Gasper's Example

The conjectured generalization

$$
\frac{1}{1-x_{1}-x_{2}-\cdots-x_{r}+r!x_{1} \cdots x_{r}}
$$

can be settled for every fixed r (at least for $r=4,5,6,7$) using a lemma by Zeilberger et al. saying that positivity of the diagonal elements

$$
\sum_{k=0}^{n}(-1)^{k} \frac{(r n-(r-1) k)!(r!)^{k}}{(n-k)!r k!}
$$

Askey-Gasper's Example

The conjectured generalization

$$
\frac{1}{1-x_{1}-x_{2}-\cdots-x_{r}+r!x_{1} \cdots x_{r}}
$$

can be settled for every fixed r (at least for $r=4,5,6,7$) using a lemma by Zeilberger et al. saying that positivity of the diagonal elements

$$
\sum_{k=0}^{n}(-1)^{k} \frac{(r n-(r-1) k)!(r!)^{k}}{(n-k)!r k!}
$$

The monotonicity-by-induction reasoning is applicable to this sum.

New Challenges \& Conclusion

New Challenges

Computer experiments and partial proofs suggest that the following rational functions have positive coefficients:

New Challenges

Computer experiments and partial proofs suggest that the following rational functions have positive coefficients:

1

$\overline{1-x-y-z+\frac{1}{4}\left(x^{2}+y^{2}+z^{2}\right)}$

New Challenges

Computer experiments and partial proofs suggest that the following rational functions have positive coefficients:
-1
$\overline{1-x-y-z+\frac{1}{4}\left(x^{2}+y^{2}+z^{2}\right)}$
1
$\overline{1-x-y-z+\frac{64}{27}(x y z+x y w+x z w+y z w)}$

New Challenges

Computer experiments and partial proofs suggest that the following rational functions have positive coefficients:

1

- $\overline{1-x-y-z+\frac{1}{4}\left(x^{2}+y^{2}+z^{2}\right)}$

1

- $\overline{1-x-y-z+\frac{64}{27}(x y z+x y w+x z w+y z w)}$

We can give partial proofs for both, but no full proofs.

New Challenges

Computer experiments and partial proofs suggest that the following rational functions have positive coefficients:

1

- $\overline{1-x-y-z+\frac{1}{4}\left(x^{2}+y^{2}+z^{2}\right)}$

1

- $\overline{1-x-y-z+\frac{64}{27}(x y z+x y w+x z w+y z w)}$

We can give partial proofs for both, but no full proofs.
(The first one is easily proven, as pointed out by Armin Straub a few days ago. The second remains open so far.)

Conclusion

Conclusion

- It is difficult to decide whether all the Taylor coefficients of a rational function are positive.

Conclusion

- It is difficult to decide whether all the Taylor coefficients of a rational function are positive.
- Standard tools from Computer Algebra (Recurrence Guessing and Cylindrical Decomposition) can contribute to this topic.

Conclusion

- It is difficult to decide whether all the Taylor coefficients of a rational function are positive.
- Standard tools from Computer Algebra (Recurrence Guessing and Cylindrical Decomposition) can contribute to this topic.
- For nontrivial examples, we could obtain partial proofs in this way.

Conclusion

- It is difficult to decide whether all the Taylor coefficients of a rational function are positive.
- Standard tools from Computer Algebra (Recurrence Guessing and Cylindrical Decomposition) can contribute to this topic.
- For nontrivial examples, we could obtain partial proofs in this way.
- This extends the computational evidence in support of these conjectures far beyond what was available so far.

