

Marni Mishna Simon Fraser University

SFU

FPSAC 2007

Two walks in the quarter plane

Two theorems

Theorem 1. [M.-Rechnitzer 07]

The generating function $W_A(t) = \sum t^{\operatorname{length}(w)}$

for walks w in the quarter plane with steps from

Theorem 2. [M.-Rechnitzer 07]

The generating function $W_B(t) = \sum t^{\operatorname{length}(w)}$

for the walks in the quarter plane with steps from

Can we characterize "holonomic walks"?

Main Problem

Characterize (combinatorially) lattice walks with a holonomic generating function.

- By region (quarter plane, general wedge, ...)

Develop general techniques and algorithms to automate this decision.

July 2, 2007 Walks in the quarter plane Marni Mishna Simon Fraser University

- Classic combinatorial structure
 - Arising in probability, statistical physics, queuing theory

- Classic combinatorial structure
 - Arising in probability, statistical physics, queuing theory
- We understand much of the story already

(1/2-plane, slit plane, specific examples)

- Many are algebraic
- Several standard techniques

- Classic combinatorial structure
 - Arising in probability, statistical physics, queuing theory
- We understand much of the story already

(1/2-plane, slit plane, specific examples)

- Many are algebraic
- Several standard techniques
- Proving non-holonomy is still hard
 - So far: very few examples proved, many suspected.

July 2, 2007 Walks in the quarter plane Marni Mishna Simon Fraser University

Because two conditions is harder than 1

- ▶ Because two conditions is harder than 1
- ▶ "Kreweras" walks: $S=\{\leftarrow \sqrt{3}\}$
 - Kreweras, Gessel : algebraic
 - Bousquet-Mélou: constructive approach
 - Bernardi: combinatorial bijection

- Because two conditions is harder than 1
- ▶ "Kreweras" walks: $S=\{\leftarrow \sqrt{3}\}$
 - Kreweras, Gessel : algebraic
 - Bousquet-Mélou: constructive approach
 - Bernardi: combinatorial bijection
- Knights walks: S={(2,1), (1,2)}
 - Bousquet-Mélou+Petkovšek: non-holonomic

- Because two conditions is harder than 1
- ▶ "Kreweras" walks: $S=\{\leftarrow \sqrt{7}\}$
 - Kreweras, Gessel : algebraic
 - Bousquet-Mélou: constructive approach
 - Bernardi: combinatorial bijection
- Knights walks: S={(2,1), (1,2)}
 - Bousquet-Mélou+Petkovšek: non-holonomic
- ▶ "Gessel" walks: S={↑↓↗∠}
 - conjectured holonomic

- ▶ Because two conditions is harder than 1
- ▶ "Kreweras" walks: $S=\{\leftarrow \sqrt{3}\}$
 - Kreweras, Gessel : algebraic
 - Bousquet-Mélou: constructive approach
 - Bernardi: combinatorial bijection
- Knights walks: S={(2,1), (1,2)}
 - Bousquet-Mélou+Petkovšek: non-holonomic
- ▶ "Gessel" walks: S={↑↓↗∠}
 - conjectured holonomic
- ► |S|=3: classified (M.)

July 2, 2007 Walks in the quarter plane Marni Mishna Simon Fraser University

▶ Holonomic functions satisfy a nice ODE

July 2, 2007 Walks in the quarter plane Marni Mishna Simon Fraser University

- Holonomic functions satisfy a nice ODE
- Efficient coefficient generation

- Holonomic functions satisfy a nice ODE
- Efficient coefficient generation
- Hope for solving the system

- ▶ Holonomic functions satisfy a nice ODE
- Efficient coefficient generation
- Hope for solving the system
- Asymptotic template for coefficients

- Holonomic functions satisfy a nice ODE
- Efficient coefficient generation
- Hope for solving the system
- Asymptotic template for coefficients
- Indicator of structure

"Everything is non-holonomic unless it is holonomic by design." - Flajolet, Gerhold, Salvy

- Holonomic functions satisfy a nice ODE
- Efficient coefficient generation
- Hope for solving the system
- Asymptotic template for coefficients
- Indicator of structure
 - "Everything is non-holonomic unless it is holonomic by design." Flajolet, Gerhold, Salvy
- "Guessability" (gfun, rate, ...)

Examples and Non-Examples

- ✓ Algebraic: Dyck paths, Motzkin paths, ...
- √ Shuffles of Dyck paths
- ✓ Walks in 1/4 plane with steps $\{ \uparrow \rightarrow \downarrow \leftarrow \}$
- √ k-regular graphs (Gessel)
- x Regular graphs
- x Partitions
- \times Knights walks {(2, -1), (-1, 2)} (B.-M.+P)
- $\times \sum \log(n)z^n$ (Flajolet+Gerhold+Salvy)
- ? Pattern avoiding permutations
- ? Walks in 1/4 plane with steps {↑↓↗∠}

July 2, 2007 Walks in the quarter plane Marni Mishna Simon Fraser University

√ Find the explicit differential equation

- √ Find the explicit differential equation
- ✓ Find a recurrence for coefficients

- √ Find the explicit differential equation
- √ Find a recurrence for coefficients
- ✓ Using closure properties and known holonomic functions

- √ Find the explicit differential equation
- √ Find a recurrence for coefficients
- ✓ Using closure properties and known holonomic functions
- x Infinite number of singularities

- √ Find the explicit differential equation
- √ Find a recurrence for coefficients
- ✓ Using closure properties and known holonomic functions
- x Infinite number of singularities
- \mathbf{x} Poles of $\mathbf{a}_n(\mathbf{x}) \in \mathbb{C}(\mathbf{x})$ dense in bounded region then $\mathbf{F}(\mathbf{x},\mathbf{z}) = \sum \mathbf{a}_n(\mathbf{x})\mathbf{z}^n$ is not holonomic.

- √ Find the explicit differential equation
- √ Find a recurrence for coefficients
- ✓ Using closure properties and known holonomic functions
- x Infinite number of singularities
- X Poles of $a_n(x) \in \mathbb{C}(x)$ dense in bounded region then $F(x,z) = \sum a_n(x)z^n$ is not holonomic.
- \times Q(0,0;t) not holonomic \Rightarrow Q(x,y;t) not holonomic

July 2, 2007 Walks in the quarter plane Marni Mishna Simon Fraser University

The generating function of walks with steps from S is holonomic if(f) the set S has combinatorial property _____."

[fill in the blank...]

- The generating function of walks with steps from S is holonomic if(f) the set S has combinatorial property _____."

 (fill in the blank...)
 - Example:

...W(t) is holonomic if S has small height variations and is symmetric across the y-axis. (Bousquet-Mélou+ Petkovšek)

- The generating function of walks with steps from S is holonomic if(f) the set S has combinatorial property _____."

 (fill in the blank...)
 - Example:
 - ...W(t) is holonomic if S has small height variations and is symmetric across the y-axis. (Bousquet-Mélou+ Petkovšek)
- ▶ A coherent, complete, combinatorial theory of holonomy, ideally, similar to the theory of algebraic functions.

Criteria for holonomicity?

July 2, 2007

Criteria for holonomicity?

Conjecture (M.) The generating function W(t) for walks in the quarter plane with steps from $S \subseteq \{0, \pm 1\}x\{0, \pm 1\}$ is holonomic iff one of the following holds:

Criteria for holonomicity?

Conjecture (M.) The generating function W(t) for walks in the quarter plane with steps from $S \subseteq \{0, \pm 1\}x\{0, \pm 1\}$ is holonomic iff one of the following holds:

1. The condition reduces to a half plane condition

Conjecture (M.) The generating function W(t) for walks in the quarter plane with steps from $S \subseteq \{0, \pm 1\}x\{0, \pm 1\}$ is holonomic iff one of the following holds:

- 1. The condition reduces to a half plane condition
- 2. S has x- or y- axis symmetry

Conjecture (M.) The generating function W(t) for walks in the quarter plane with steps from $S \subseteq \{0, \pm 1\}x\{0, \pm 1\}$ is holonomic iff one of the following holds:

- 1. The condition reduces to a half plane condition
- 2. S has x- or y- axis symmetry
- 3. S = reverse(S)

reverse(
$$\leftarrow$$
)= \rightarrow

Conjecture (M.) The generating function W(t) for walks in the quarter plane with steps from $S \subseteq \{0, \pm 1\}x\{0, \pm 1\}$ is holonomic iff one of the following holds:

- 1. The condition reduces to a half plane condition
- 2. S has x- or y- axis symmetry
- 3. S = reverse(S)
- 4. S = reflect(reverse(S))

reverse
$$(\leftarrow) = \rightarrow$$

Conjecture (M.) The generating function W(t) for walks in the quarter plane with steps from $S \subseteq \{0, \pm 1\}x\{0, \pm 1\}$ is holonomic iff one of the following holds:

- 1. The condition reduces to a half plane condition
- 2. S has x- or y- axis symmetry
- 3. S = reverse(S)

reverse(
$$\leftarrow$$
)= \rightarrow

$$reflect(\leftarrow)= \downarrow$$

5. $S=\{\leftarrow \sqrt{7}\}$ (Kreweras) or S=reverse(Kreweras)

How are Kreweras and reverse (Kreweras)" combinatorial"?

Conjecture (M.) The generating function W(t) for walks in the quarter plane with steps from $S \subseteq \{0, \pm 1\}x\{0, \pm 1\}$ is holonomic iff one of the following holds:

- 1. The condition reduces to a half plane condition
- 2. S has x- or y- axis symmetry
- 3. S = reverse(S)

reverse(
$$\leftarrow$$
)= \rightarrow

$$reflect(\leftarrow)= \downarrow$$

5.
$$S=\{\leftarrow \sqrt{7}\}$$
 (Kreweras) or $S=reverse$ (Kreweras)

How are Kreweras and reverse (Kreweras)" combinatorial"? Rotational symmetry in the triangular lattice.

Evidence (part 1)

- ▶ All known + conjectured "nice" cases
 - square lattice
 - diamond lattice
 - triangular lattice
 - step sets of cardinality 3
 - -

Evidence (part 2)

Isomorphism classes for cardinality 3 step sets in the quarter plane

	\(\)							
rat								
alg	0	0	0	0	0 0	0 0		

Recall our two theorems

Theorem 1. (M.+Rechnitzer)

Theorem 2. (M.+Rechnitzer)

Is it difficult to prove these theorems?

$$Q(x,y;t) = \sum a_{ij}(n) x^i y^j t^n$$

Proving Thm 1: S= {□□□N|

$$Q(x,y;t) = \sum a_{ij}(n) x^i y^j t^n$$

A walk is a shorter walk and a step.

$$Q(x,y) = 1 + t \left(xy + \frac{x}{y} + \frac{y}{x}\right) Q(x,y) - t \frac{x}{y} Q(x,0) - t \frac{y}{x} Q(0,y)$$

$$Q(x,y;t) = \sum a_{ij}(n) x^i y^j t^n$$

A walk is a shorter walk and a step.

$$Q(x,y) = 1 + t \left(xy + \frac{x}{y} + \frac{y}{x}\right) Q(x,y) - t \frac{x}{y} Q(x,0) - t \frac{y}{x} Q(0,y)$$

Kernel version:

$$K(x,y)Q(x,y) = xy - tx^2Q(x,0) - ty^2Q(0,y)$$

$$Q(x,y;t) = \sum a_{ij}(n) x^i y^j t^n$$

A walk is a shorter walk and a step.

$$Q(x,y) = 1 + t \left(xy + \frac{x}{y} + \frac{y}{x}\right) Q(x,y) - t \frac{x}{y} Q(x,0) - t \frac{y}{x} Q(0,y)$$

Kernel version:

$$K(x,y)Q(x,y) = xy - tx^2Q(x,0) - ty^2Q(0,y)$$

Roots of K(x,y) are special:

$$Q(x,y;t) = \sum a_{ij}(n) x^i y^j t^n$$

A walk is a shorter walk and a step.

$$Q(x,y) = 1 + t\left(xy + \frac{x}{y} + \frac{y}{x}\right)Q(x,y) - t\frac{x}{y}Q(x,0) - t\frac{y}{x}Q(0,y)$$

Kernel version:

$$K(x,y)Q(x,y) = xy - tx^2Q(x,0) - ty^2Q(0,y)$$

Roots of K(x,y) are special:

1. Satisfy a nice recurrence

$$Y_1(x)^{-1} + Y_{-1}(x)^{-1} = (xt)^{-1}$$

$$Q(x,y;t) = \sum a_{ij}(n) x^i y^j t^n$$

A walk is a shorter walk and a step.

$$Q(x,y) = 1 + t \left(xy + \frac{x}{y} + \frac{y}{x}\right) Q(x,y) - t \frac{x}{y} Q(x,0) - t \frac{y}{x} Q(0,y)$$

Kernel version:

$$K(x,y)Q(x,y) = xy - tx^2Q(x,0) - ty^2Q(0,y)$$

Roots of K(x,y) are special:

1. Satisfy a nice recurrence

$$Y_1(x)^{-1} + Y_{-1}(x)^{-1} = (xt)^{-1}$$

2. Forms an infinite group of power series

$$Y_1(Y_{-1}(x)) = x$$
 $Y_n(x) = Y_1(Y_{n-1}(x)) = xt^n + ...$

The iterated kernel method

$$K(x,y)Q(x,y) = xy - tx^2Q(x,0) - ty^2Q(0,y)$$

• Using $K(Y_n(x), Y_{n+1}(x)) = 0$ and the above equation, we show that

$$tQ(x,0)=\sum_n (-1)^n Y_n(x)Y_{n+1}(x)$$

▶ We substitute x=1, and rearrange (1) to get

$$W(t) = Q(1, 1; t) = \frac{2\sum (-1)^{n} Y_{n}(1; t) Y_{n+1}(1; t)}{1-3t}$$

July 2, 2007 Walks in the quarter plane Marni Mishna Simon Fraser University

$$W(t) = Q(1,1;t) = \frac{2\sum (-1)^n Y_n(1;t) Y_{n+1}(1;t)}{1-3t}$$

$$W(t) = Q(1,1;t) = \frac{2\sum (-1)^n Y_n(1;t) Y_{n+1}(1;t)}{1-3t}$$

$$W(t) = Q(1,1;t) = \frac{2\sum (-1)^n Y_n(1;t) Y_{n+1}(1;t)}{1-3t}$$

$$W(t) = Q(1, 1; t) = \frac{2\sum (-1)^n Y_n(1; t) Y_{n+1}(1; t)}{1-3t}$$

- 1. Simple pole at 1/3 (dominant)
- 2. Singularities from Y_n
 - These singularities are distinct.
- 3. Divergence of the sum
 - Aside from poles, no divergence.
 - The radius of convergence of Q(1,1) is bounded.

$$W(t) = Q(1, 1; t) = \frac{2\sum (-1)^n Y_n(1; t) Y_{n+1}(1; t)}{1-3t}$$

- 1. Simple pole at 1/3 (dominant)
- 2. Singularities from Y_n
 - These singularities are distinct.
- 3. Divergence of the sum
 - Aside from poles, no divergence.
 - The radius of convergence of Q(1,1) is bounded.

$$W(t) = Q(1, 1; t) = \frac{2\sum (-1)^n Y_n(1; t) Y_{n+1}(1; t)}{1-3t}$$

- 1. Simple pole at 1/3 (dominant)
- 2. Singularities from Y_n
 - These singularities are distinct.
- 3. Divergence of the sum
 - Aside from poles, no divergence.
 - The radius of convergence of Q(1,1) is bounded.

The singularities of W(t) are 1/3 and the singularities of the Y_n , hence they are infinite in number and W(t) is not holonomic.

Where are the singularities?

The singularities of Yn(1;t) are the solutions to

$$z^{2n} + z^{-2n} + z^2 + z^{-2} = 4$$

inside the unit circle.

Asymptotic result

Theorem (M.+Rechnitzer): The number of lattice paths of length n with steps from {▷↗↘} confined to the quarter plane is asymptotic to

$$\alpha 3^{n} + O(8^{n/2})$$

where

$$\alpha = 1 - 2\sum_{\substack{n \ge 0 \\ u > 0}} \frac{(-1)^n}{F_{2n}F_{2n+2}} = 0.1731788...$$

Other non-holonomic class?

Conjecture (M.+ Laferrière) Walks with steps $\{\rightarrow \uparrow \downarrow \downarrow \}$ in wedge bounded by $y = \pm mx$ centered on x-axis has non-holonomic generating function.

Evidence

Combinatorial similarity to {▷↗↘} in ¼ plane.

Bi-variate GF counting walks ending on x=k:

- $B(t, u) = \sum_k B_k(t)u^k$
- B_k(t) is rational and as k increases, poles fill unit circle.

Hints of non-holonomicity

 $B_k^{(m)}(t)$ counts walks in the wedge bounded by $y=\pm mx$.

$$B^{(m)}(t, u) = \sum_k B_k^{(m)}(t)u^k$$

shows evidence of
being non-holonomic,
as does

$$B^{(m)}(t) = B^{(m)}(t,1)$$

Combinatorial criteria

Conjecture (M.) The generating function W(t) for walks in the quarter plane with steps from $S \subseteq \{0, \pm 1\}x\{0, \pm 1\}$

is holonomic iff one of the following holds:

- 1. The condition reduces to a half plane condition
- 2. S has x- or y- axis symmetry

3.
$$S = reverse(S)$$

reverse(
$$\leftarrow$$
)= \rightarrow

$$reflect(\leftarrow)=\downarrow$$

5.
$$S=\{\leftarrow \sqrt{3}\}$$
 (Kreweras) or $S=reverse$ (Kreweras)

Any indications on how to prove this?

The group of the walk

To each step set S we define G(S), a group of transformations which fix the polynomial

$$K(x,y;t) = 1 - t \sum_{(i,j) \in S} x^i y^j$$

Motivation: Fayolle+lasnogordski+Malyshev

e.g.
$$S=\{\leftarrow \rightarrow \uparrow \downarrow\} = \{(-1,0), (1,0), (0,1), (0,-1)\}$$

$$K(x, y; t) = 1 - t(x + y + 1/x + 1/y)$$

$$\mathsf{G}(\mathsf{S}) = \left\langle \underbrace{(x,y) \to (1/y,x)}_{\tau_\mathsf{x}}, \underbrace{(x,y) \to (y,1/x)}_{\tau_\mathsf{y}} \right\rangle$$

Key Observation: Only (+ all) known or hypothesized holonomic classes have a finite group.

Key Observation: Only (+ all) known or hypothesized holonomic classes have a finite group.

Idea: Perhaps this is important.

Key Observation: Only (+ all) known or hypothesized holonomic classes have a finite group.

Idea: Perhaps this is important.

Key Observation: Only (+ all) known or hypothesized holonomic classes have a finite group.

Idea: Perhaps this is important.

F+I+M give reasons why the group is finite.

Key Observation: Only (+ all) known or hypothesized holonomic classes have a finite group.

Idea: Perhaps this is important.

F+I+M give reasons why the group is finite.

Can they be interpreted in generating function language or combinatorial terms?

Projects and goals

- Prove the holonomy of the Gessel walks
- Prove the conjecture and "combinatorialize" F+I+M approach to quarter plane
- Classify walks in other wedges (with Laferrière):
 - Strategies for "OR" constraints
- Consider other infinite Cayley graphs
- Prove that miracles don't exist- rather understand precisely when they do.

merci beaucoup!