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PARTITIONS

A partition is a nonincreasing finite sequence of positive integers
M>X>...> 0, >0

Partitions label irreducible representations of symmetric group on
A1+ X+ ...+ A, letters.

6+5+2+1=14
44+434242+241=14
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FRENCH CONVENTION
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Dimension of a representation=number of Young tableaux.
Hook formula

Hu hij
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RUSSIAN CONVENTION

Restriction of a representation S14 | Se.

The multiplicity is the number of ways to erase boxes.
cf experiment.
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LARGE SYMMETRIC GROUPS

Normalized characters x»(u) = T;(i?(()\“)))
1 = fixed conjugacy class of Soo = UpS,
N=>\ Ai/N — «; Xi/N — S

xa(1) = xaog() for a factor representation of Si.

Thoma /Vershik/Kerov theory — representation theory of Soo
terms of Sy for N — oc.

n

For "most” Young diagrams A\; = o(N) and xx(u) — 0.
In this regime representation theory of symmetric groups is
governed by free probability.
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FREE COMPRESSION

X = UDU*
D=diagonal N x N matrix, eigenvalues D, ..., Dy.
U=random Haar unitary N x N matrix.

1

— Tr

ZD —>N—>oo/Xk,U(dX)

0<p<1, XP=pN x pN upper corner of X

T (X)) oy / Xk lP) ()

pN
p(P)=free compression of 1, depends only on  and p
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FREE CUMULANTS

Gu(z) = [ Fxmldx) =

1
o

>ope1 27" [ X p(dx)
POREE S

o
R,(u) = free cumulants (D. Voiculescu, R. Spelcher
Free cumulants are polynomial functions of moments

Ku;(Gu(Z)) = Gu(Ku(Z)) =

NII—‘

=0
) of u.

M, = [ x"u(dx)

Conversely moments are polynomial functions of free cumulants
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FREE COMPRESSION

The free compression of a measure is obtained by the rule

Ra( M(p))

-1
= p"Ro(11)
Since free cumulants determine the measure, this determines ,u( ).
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Example: p = 3(do + 1)

Random matrix model: compute the spectrum of ;1,1 where

MMy, M>= orthogonal projections on random subspaces of
dimensions N/2.

(1/2) _ dx

a my/x(1 — x)

arcsine distribution

Histogram with a 400 x 400 random matrix.
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X1

yi X2

2. X3 ¥z X4
A diagram may be identified with a function w(x) such that

lw(x)| = |x| for x >>1

w(x) =)l < [x =yl
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TRANSITION MEASURE OF A DIAGRAM

X1

yi X2

Y2 X3

Y3 Xa
(S.Kerov) there exists a unique probability measure m,, such that

n n—1
[ Ok —yi)
My = ) o ke = 5
? kz_:l Xk [Tizk Ok = xi)
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X1 1 X 2. X3 ¥3
m,, gives the decomposition of w T Sp11.

X4

o(u) = (w(u) — |uf)/2
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R,(w)= the free cumulants of the diagram.

Remark w +— m,, can be extended to 1-Lipschitz maps.
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ASYMPTOTIC EVALUATION OF CHARACTERS

A = Young diagram with g boxes, A ~ ,/qu.

Number of rows and columns = O(,/q)
X = normalized character of \.

clo

xa(o) = q_|0|/2(H Rielr2(w) + O(g71)

|o|= length of o w.r.t generating set of all transpositions
the product is over cycles of o.
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ASYMPTOTIC OF RESTRICTION

w= continuous diagram, 0 < t < 1,
define w; by

Ro(wt) = t" 1Ry (w)

The restriction of A to S, X Sq_p, C 54 splits into irreducible

@ cﬁ‘y [u] ® [v]  (Littlewood-Richarson rule).

Give a weight ¢, dim(u) dim(v) to the pair (u,v).
Then as g — oo and p/q — t, almost all pairs (u, ) (rescaled by

Va),

become close to (w,wi—t).
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Square diagram

my, = %(6—1 + 61)

EXAMPLE

/2

1/2 Compression of the square diagram

dx

my/x(1—x)
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Asymptotic of induction of representations

Sp X 5q T Sptq

can be interpreted in terms of sums of independent random
matrices and free convolution.
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FROBENIUS FORMULA FOR CHARACTERS OF CYCLES
A= (A1 > A > ...)=partition of n,

p(z)=[[E-N—-n+i)

20z~ 1)/p(2) = 1/Gy(z + 1~ 1) = Hiy(z +n— 1)
Frobenius’ formula is

(ck=cycle of order k, xx(c) = Tr(pa(0))

Tr(or ()

(mixaler) = —%[2‘1] z(z=1)...(z = k+ 1)p(z = k)/¢(2).

one gets

z
1
(mMixa(ck) = —;[Z |Hx(z+n—1)...Hx(z+n—k)
Using the invariance of the residue under translation of the variable

(Mixa(ex) =

—%[2_1] Ha(2)... Ha(z — k + 1).
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KEROV POLYNOMIALS

Consider the formal power series

H(z) =z - Z Bz .
j=2

Define
2

- —%[Z_I]H(z) o H(z— k4 1)
Rt = — [z H(2)"
p

The expression of X in terms of the R;’s is given by Kerov's
polynomials.

Kerov's polynomials express normalized characters of cycles in
terms of free cumulants of Young diagrams.
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ANOTHER FORM OF THE FORMULA (Goulden, Rattan, 2005)

Use invariance of residue under change of variables
z=G(() =+,

jgl—f and

[271f(2) =

to get

[¢1u (O)F (u(€))

e <)H<<+Z S (e
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=Ry + R

= Rs +5R3

= R + 15R, + 5R3 + 8R,

= R; + 35Rs5 + 35R3R, + 84R;3

= Rg + TORs + 84R4 Ry + 56R3 + 14R3 + 469R, + 224R3 + 180R,

= Ry + 126R; + 169R5 R, + 252R4 Rs + 30R3 R2
+1869Rs + 3392R3 R, + 3044R;
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GEOMETRY OF SYMMETRIC GROUPS
Cayley graph of S,: (w1, m2) edge if and only if w7,
transposition.

1

d(o1,02) = |0102_1| = n — |{cycles of 0102_1}|

(12)

@
\ (129)
[

(23)

e

S
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./

Cayley Graph of Ss

(132)
/ ‘
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INTERVALS IN THE SYMMETRIC GROUPS
An interval in the Cayley graph

[r1,m2] = {0 |d(m1,0) + d(o,m2) = d(m1,m)}
(12)

(123)

(1234)

Theinterval [e,(1234)]
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{1,2,...,n}.

NONCROSSING PARTITIONS AND FREE CUMULANTS
[e, (1234...n)] ~ NC(n)= lattice of noncrossing partitions of

5

M, = Z R,

Moments and free cumulants are related by (Speicher)
meNC(n)

R, = Z /1([77'7 CH])Mﬂ'
weNC(n)
Re =11 R

Me =] My
pem pem
=

[m]
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distance to (12345678)

Y7 = Rg+T70Rs +84R4Ry +56R2 + 14R3 4 469R, + 224R3 4 180R;,
e 70 469 180
28

180
196

490

469
490
Project

ion of the Cayley graph of S,

196 o

28

(12345678)

distanceto e
The coefficient of Rxy11_2/ in X is equal to the number of cycles
c € Sk, of length k, such that (12...k)c™! has k — 2/ cycles
(Stanley 2001, B. 2001).
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2g = Ry + 126R7 + 169R5 Ry 4+ 252R4R3 + 30R3R22

+1869Rs + 3392R3 R, + 3044R;
1. The coefficient of
R2...REin £y, with k =2h + 3k + ...+ sls + 1 is equal to

(k+1)2k4(k )(/2+ +/) H(J

(Sniady 2004; Goulden and Rattan 2005).

2. (Goulden and Rattan 2005) The coefficient of R} in ¥p;13 is
1
510 i(i +1)3( +2)3(i + 3)(2i + 3)

3. (V. Féray, 2007) The coefficient of R;R; in X is the number of
o = c1¢p such that (12...k)o~! has j + | — 2 cycles, and among

these cycles at least j have an element in common with ¢; and /
with c. s s - =
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Positivity conjecture (Kerov 2000): all coefficients are
nonnegative.

Recent proof (still under checking) by V. Féray (May 2007), using
Stanley’s polynomials, and a signed covering of the symmetric
group.

Y7 = Rg+70Rs +84R4 Ry +56R3 + 14R3 + 469R, + 224R3 + 180R,
distance to (12345678)

e 70 469 180
28 180

196

4% 469

490

Projection of the Cayley graph of S, 70

28

(12345678)

distanceto e
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