A bijection between 2-triangulations and pairs of non-crossing Dyck paths

Sergi Elizalde
sergi.elizalde@dartmouth.edu
Dartmouth College

Let \mathfrak{C}_{n} be a regular n-gon.
A triangulation of \mathfrak{C}_{n} is a subdivision of \mathfrak{C}_{n} into triangles, using diagonals that do not cross.

- Every triangulation of \mathfrak{C}_{n} has exactly $n-3$ diagonals.
- The number of triangulations of \mathfrak{C}_{n} is

$$
C_{n-2}=\frac{1}{n-1}\binom{2 n-4}{n-2}
$$

where C_{m} is the m-th Catalan number.

Dyck paths

A Dyck path is a lattice path from $(0,0)$ to a point on the diagonal $y=x$ with steps $N=(0,1)$ and $E=(1,0)$ that never goes below this diagonal.

Dyck paths

A Dyck path is a lattice path from $(0,0)$ to a point on the diagonal $y=x$ with steps $N=(0,1)$ and $E=(1,0)$ that never goes below this diagonal.

If (m, m) is the final point, we call m the size of the path.
Let \mathcal{D}_{m} be the set of Dyck paths of size m. Then, $\left|\mathcal{D}_{m}\right|=C_{m}$.

A bijection between triangulations and Dyck paths

For each $j=3,4, \ldots, n$:

- draw an N step,
- draw as many E steps as diagonals of the form (i, j) with $i<j$.

A bijection between triangulations and Dyck paths

For each $j=3,4, \ldots, n$:

- draw an N step,
- draw as many E steps as diagonals of the form (i, j) with $i<j$.

Draw an E step at the end.

Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

We could have defined a triangulation of \mathfrak{C}_{n} as a maximal set of diagonals with no 2 -crossings.

Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

We could have defined a triangulation of \mathfrak{C}_{n} as a maximal set of diagonals with no 2 -crossings.

Definition. A k-triangulation of \mathfrak{C}_{n} is a maximal set of diagonals with no $(k+1)$-crossings.

a 2 -triangulation

Facts about generalized triangulations

All the diagonals connecting vertices at distance $\leq k$ belong to every k-triangulation.

Facts about generalized triangulations

All the diagonals connecting vertices at distance $\leq k$ belong to every k-triangulation. We ignore such diagonals.

Facts about generalized triangulations

All the diagonals connecting vertices at distance $\leq k$ belong to every k-triangulation. We ignore such diagonals.

This 2-triangulation has
$2(8-2 \cdot 2-1)=6$ diagonals.

Theorem (Nakamigawa, Dress-Koolen-Moulton).
Every k-triangulation of \mathfrak{C}_{n} has exactly $k(n-2 k-1)$ diagonals.

Facts about generalized triangulations

All the diagonals connecting vertices at distance $\leq k$ belong to every k-triangulation. We ignore such diagonals.

This 2-triangulation has
$2(8-2 \cdot 2-1)=6$ diagonals.

Theorem (Nakamigawa, Dress-Koolen-Moulton).
Every k-triangulation of \mathfrak{C}_{n} has exactly $k(n-2 k-1)$ diagonals.
Theorem (Jonsson). The number of k-triangulations of \mathfrak{C}_{n} is

$$
\operatorname{det}\left(C_{n-i-j}\right)_{i, j=1}^{k}=\left|\begin{array}{ccccc}
C_{n-2} & C_{n-3} & \ldots & C_{n-k} & C_{n-k-1} \\
C_{n-3} & C_{n-4} & \ldots & C_{n-k-1} & C_{n-k-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C_{n-k-1} & C_{n-k-2} & \ldots & C_{n-2 k+1} & C_{n-2 k}
\end{array}\right|
$$

Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples
$\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of Dyck paths of size $n-2 k$ such that each P_{i} never goes below P_{i+1} is given by the same determinant $\operatorname{det}\left(C_{n-i-j}\right)_{i, j=1}^{k}$.

Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples
$\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of Dyck paths of size $n-2 k$ such that each P_{i} never goes below P_{i+1} is given by the same determinant $\operatorname{det}\left(C_{n-i-j}\right)_{i, j=1}^{k}$.

Problem: Find a bijection between k-triangulations and k-tuples of non-crossing Dyck paths.

Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples
$\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of Dyck paths of size $n-2 k$ such that each P_{i} never goes below P_{i+1} is given by the same determinant $\operatorname{det}\left(C_{n-i-j}\right)_{i, j=1}^{k}$.

Problem: Find a bijection between k-triangulations and k-tuples of non-crossing Dyck paths.

- $k=1 \longrightarrow$ known
- $k=2 \longrightarrow$ we will see it next
- $k \geq 3 \longrightarrow$ open problem

We represent a 2 -triangulation as an array:

2-triangulations

We represent a 2 -triangulation as an array:

The purple crosses appear in any 2-triangulation, and they can't be part of any 3 -crossing.

We represent a 2 -triangulation as an array:

The purple crosses appear in any 2-triangulation, and they can't be part of any 3 -crossing.

We omit them for simplicity.
Now there are exactly $2 n-10$ diagonals.

The bijection: introduction

We will construct a bijection between 2 -triangulations and pairs of non-crossing Dyck paths.

Given a 2-triangulation, first we give an algorithm to color half of the crosses blue and the other half red.

At each iteration, one cross will be colored red and another blue, and two blocks will be merged.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part II): from colored crosses to paths

$\alpha_{i}:=\#$ blue crosses in column i
$\beta_{i}:=$ \# red crosses in column i

The bijection (part II): from colored crosses to paths

$\alpha_{i}:=\#$ blue crosses in column i
$\beta_{i}:=$ \# red crosses in column i
Define

$$
\begin{aligned}
P & =N E^{\alpha_{5}} N E^{\alpha_{6}} \cdots N E^{\alpha_{n-1}} N E^{\alpha_{n}} E \\
Q & =N E^{\beta_{4}} N E^{\beta_{5}} \cdots N E^{\beta_{n-2}} N E^{\beta_{n-1}} E
\end{aligned}
$$

A generating tree for 2-triangulations

How the bijection is obtained:

- Construct a generating tree for 2-triangulations.
- Construct a generating tree for pairs of non-crossing Dyck paths.
- Give an isomorphism between the generating trees.

A generating tree for 2-triangulations

How the bijection is obtained:

- Construct a generating tree for 2-triangulations.
- Construct a generating tree for pairs of non-crossing Dyck paths.
- Give an isomorphism between the generating trees.

Generating rule:
$\left(d_{1}, d_{2}, \ldots, d_{s}\right) \longrightarrow \begin{aligned} & \left\{\left(i, d_{j}-i+1, d_{j+1}+1, d_{j+2}, \ldots, d_{s}\right): 1 \leq j \leq s-1,0 \leq i \leq d_{j}\right\} \\ & \cup\left\{\left(i, d_{s}-i+1\right): 0 \leq i \leq d_{s}+1\right\} .\end{aligned}$

A generating tree for pairs of non-crossing Dyck paths

The nodes at level ℓ represent pairs of paths of size $\ell+1$.

The two generating trees are isomorphic

We can give generating rules for 2-triangulations and for pairs of Dyck paths that yield isomorphic generating trees.

The two generating trees are isomorphic

We can give generating rules for 2-triangulations and for pairs of Dyck paths that yield isomorphic generating trees.

The bijection we described is the one induced by the isomorphism of generating trees.

Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron, whose vertices correspond to 1-triangulations and whose edges correspond to diagonal flips.

Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron, whose vertices correspond to 1 -triangulations and whose edges correspond to diagonal flips.

For k-triangulations, we also have diagonal flips:

Fact: If we remove any diagonal, there a unique way to put it back to get another k-triangulation.

Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron, whose vertices correspond to 1 -triangulations and whose edges correspond to diagonal flips.

For k-triangulations, we also have diagonal flips:

Fact: If we remove any diagonal, there a unique way to put it back to get another k-triangulation.
Open problem: Is there a polytope whose vertices correspond to k-triangulations and whose edges correspond to diagonal flips?

Open problem 1: Polytope of k-triangulations

It should be a simple polytope of dimension $k(n-2 k-1)$.
For example, for $k=2$ and $n=7$, the graph of diagonal flips is

It can be realized as a a cyclic polytope in dimension 4, whose 3-dimensional facets are

Open problem 2: Bijection for arbitrary k

Is there an analogous bijection between k-triangulations and k-tuples of non-crossing Dyck paths, for $k \geq 3$?

Open problem 2: Bijection for arbitrary k

Is there an analogous bijection between k-triangulations and k-tuples of non-crossing Dyck paths, for $k \geq 3$?

Partial progress:

The same idea of splitting columns can be used to construct a generating tree for k triangulations.

- However, it is not clear what is the corresponding operation to generate children of a k-tuple of Dyck paths that would give an isomorphic generating tree.

