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Triangulations

Let Cn be a regular n-gon.
A triangulation of Cn is a subdivision of Cn into triangles, using
diagonals that do not cross.
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Every triangulation of Cn has exactly n − 3 diagonals.

The number of triangulations of Cn is

Cn−2 =
1

n − 1

(

2n − 4

n − 2

)

,

where Cm is the m-th Catalan number.
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Dyck paths

A Dyck path is a lattice path from (0, 0) to a point on the diagonal y = x

with steps N = (0, 1) and E = (1, 0) that never goes below this
diagonal.
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Dyck paths

A Dyck path is a lattice path from (0, 0) to a point on the diagonal y = x

with steps N = (0, 1) and E = (1, 0) that never goes below this
diagonal.

If (m, m) is the final point, we call m the size of the path.

Let Dm be the set of Dyck paths of size m. Then, |Dm| = Cm.
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A bijection between triangulations and Dyck paths
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For each j = 3, 4, . . . , n:

draw an N step,

draw as many E steps as diagonals of the form (i, j) with i < j.
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A bijection between triangulations and Dyck paths
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For each j = 3, 4, . . . , n:

draw an N step,

draw as many E steps as diagonals of the form (i, j) with i < j.

Draw an E step at the end.
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Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.
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Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

We could have defined a triangulation of Cn as a maximal set of
diagonals with no 2-crossings.
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Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

We could have defined a triangulation of Cn as a maximal set of
diagonals with no 2-crossings.

Definition. A k-triangulation of Cn is a maximal set of diagonals with no

(k + 1)-crossings.
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a 2-triangulation
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Facts about generalized triangulations

All the diagonals connecting vertices at distance ≤ k belong to every
k-triangulation.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance ≤ k belong to every
k-triangulation. We ignore such diagonals.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance ≤ k belong to every
k-triangulation. We ignore such diagonals.
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Theorem (Nakamigawa, Dress-Koolen-Moulton).

Every k-triangulation of Cn has exactly k(n − 2k − 1) diagonals.

This 2-triangulation has

2(8 − 2 · 2 − 1) = 6 diagonals.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance ≤ k belong to every
k-triangulation. We ignore such diagonals.
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Theorem (Nakamigawa, Dress-Koolen-Moulton).

Every k-triangulation of Cn has exactly k(n − 2k − 1) diagonals.

This 2-triangulation has

2(8 − 2 · 2 − 1) = 6 diagonals.

Theorem (Jonsson). The number of k-triangulations of Cn is

det(Cn−i−j)
k
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Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples

(P1, P2, . . . , Pk) of Dyck paths of size n − 2k such that each Pi never goes

below Pi+1 is given by the same determinant det(Cn−i−j)
k
i,j=1.
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Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples

(P1, P2, . . . , Pk) of Dyck paths of size n − 2k such that each Pi never goes

below Pi+1 is given by the same determinant det(Cn−i−j)
k
i,j=1.

Problem: Find a bijection between k-triangulations and k-tuples of
non-crossing Dyck paths.
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Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples

(P1, P2, . . . , Pk) of Dyck paths of size n − 2k such that each Pi never goes

below Pi+1 is given by the same determinant det(Cn−i−j)
k
i,j=1.

Problem: Find a bijection between k-triangulations and k-tuples of
non-crossing Dyck paths.

k = 1 −→ known

k = 2 −→ we will see it next

k ≥ 3 −→ open problem
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2-triangulations

We represent a 2-triangulation as an array:
5 6 7 843
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2-triangulations

We represent a 2-triangulation as an array:
5 6 7 843
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The purple crosses appear in any 2-triangulation, and they can’t be
part of any 3-crossing.
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2-triangulations

We represent a 2-triangulation as an array:

8
1
2
3
4
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1
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4 5 6 7

The purple crosses appear in any 2-triangulation, and they can’t be
part of any 3-crossing.

We omit them for simplicity.

Now there are exactly 2n − 10 diagonals.

FPSAC 2007, Tianjin, China – p.8



The bijection: introduction

We will construct a bijection between 2-triangulations and pairs of
non-crossing Dyck paths.

Given a 2-triangulation, first we give an algorithm to color half of the
crosses blue and the other half red.
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columns:

blocks: 1 2 3 4 5 6 7 8 9 10

At each iteration, one cross will be colored red and another blue, and
two blocks will be merged.
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The bijection (part I): coloring stage
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4 5 6 7 8 9 10 11 12 13 14
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columns:

blocks: 1 2 3 4 5 6 7 8 9 10

r = 10

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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columns:

blocks: 1 2 3 4 5 6 7 8 9 10

r = 10

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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columns:

blocks: 1 2 3 4 5 6 7 9 10

r = 10

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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4 5 6 7 8 9 10 11 12 13 14
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columns:

blocks: 1 2 3 4 5 6 7

r = 10

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

columns:

5 6 7 98

4 5 6 7 8 9 10 11 12 13 14
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blocks: 1 2 3 4

r = 9

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

7

2 3 4 5 6 8

columns:

7
4 5 6 7 8 9 10 11 12 13 14
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r = 7

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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blocks: 1 2 3 4
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r = 6

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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blocks: 1 2 3

columns:
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4 5 6 7 8 9 10 11 12 13 14
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r = 4

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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columns:

7
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4 5 6 7 8 9 10 11 12 13 14

r = 2

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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7
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4 5 6 7 8 9 10 11 12 13 14

r = 2

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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blocks: 32
4 5 6 7 8 9 10 11 12 13 14

r = 2

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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columns:

7

2

blocks: 1

4 5 6 7 8 9 10 11 12 13 14

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part II): from colored crosses to paths
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αi := # blue crosses in column i

βi := # red crosses in column i
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The bijection (part II): from colored crosses to paths
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P

Q

αi := # blue crosses in column i

βi := # red crosses in column i

Define

P = NEα5NEα6 · · ·NEαn−1NEαnE

Q = NEβ4NEβ5 · · ·NEβn−2NEβn−1E
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A generating tree for 2-triangulations

How the bijection is obtained:

Construct a generating tree for 2-triangulations.

Construct a generating tree for pairs of non-crossing Dyck paths.

Give an isomorphism between the generating trees.

(1,0)

(0,1,1) (0,1) (1,0)

(0,0)

(0,2,2)(0,1,2,1) (1,1,2) (0,2) (1,1) (2,0) (0,1,2) (0,2) (1,1) (2,0) (0,2,1) (1,1,1) (0,1)
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A generating tree for 2-triangulations

How the bijection is obtained:

Construct a generating tree for 2-triangulations.

Construct a generating tree for pairs of non-crossing Dyck paths.

Give an isomorphism between the generating trees.

(1,0)

(0,1,1) (0,1) (1,0)

(0,0)

(0,2,2)(0,1,2,1) (1,1,2) (0,2) (1,1) (2,0) (0,1,2) (0,2) (1,1) (2,0) (0,2,1) (1,1,1) (0,1)

Generating rule:

(d1, d2, . . . , ds) −→
{(i, dj − i + 1, dj+1 + 1, dj+2, . . . , ds) : 1 ≤ j ≤ s − 1, 0 ≤ i ≤ dj}

∪ {(i, ds − i + 1) : 0 ≤ i ≤ ds + 1}.
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A generating tree for pairs of non-crossing Dyck paths

The nodes at level ℓ represent pairs of paths of size ℓ + 1.

FPSAC 2007, Tianjin, China – p.13



The two generating trees are isomorphic

We can give generating rules for 2-triangulations and for pairs of Dyck
paths that yield isomorphic generating trees.
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The two generating trees are isomorphic

We can give generating rules for 2-triangulations and for pairs of Dyck
paths that yield isomorphic generating trees.

The bijection we described is the one induced by the isomorphism of
generating trees.
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Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron , whose vertices correspond to
1-triangulations and whose edges correspond to diagonal flips.
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Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron , whose vertices correspond to
1-triangulations and whose edges correspond to diagonal flips.

For k-triangulations, we also have diagonal flips:

Fact: If we remove any diagonal, there a unique way to put it back to
get another k-triangulation.
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Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron , whose vertices correspond to
1-triangulations and whose edges correspond to diagonal flips.

For k-triangulations, we also have diagonal flips:

Fact: If we remove any diagonal, there a unique way to put it back to
get another k-triangulation.

Open problem: Is there a polytope whose vertices correspond to
k-triangulations and whose edges correspond to diagonal flips?
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Open problem 1: Polytope of k-triangulations

It should be a simple polytope of dimension k(n − 2k − 1).

For example, for k = 2 and n = 7, the graph of diagonal flips is

It can be realized as a a cyclic polytope in dimension 4, whose
3-dimensional facets are
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Open problem 2: Bijection for arbitrary k

Is there an analogous bijection between k-triangulations and k-tuples
of non-crossing Dyck paths, for k ≥ 3?
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Open problem 2: Bijection for arbitrary k

Is there an analogous bijection between k-triangulations and k-tuples
of non-crossing Dyck paths, for k ≥ 3?

Partial progress:

The same idea of splitting
columns can be used to con-
struct a generating tree for k-
triangulations.

However, it is not clear what is the corresponding operation to
generate children of a k-tuple of Dyck paths that would give an
isomorphic generating tree.
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