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Triangulations

Let ¢,, be a regular n-gon.
A triangulation of ¢, is a subdivision of €,, into triangles, using
diagonals that do not cross.

38 1

5 4

® Every triangulation of ¢,, has exactly n — 3 diagonals.
$® The number of triangulations of &, is

1 2n — 4
Ch_2 = )
’ n—l(n—Q)

where C,,, 1s the m-th Catalan number.
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Dyck paths

A Dyck path is a lattice path from (0, 0) to a point on the diagonal y = x
with steps N = (0,1) and E = (1,0) that never goes below this
diagonal.
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Dyck paths

A Dyck path is a lattice path from (0, 0) to a point on the diagonal y = x
with steps N = (0,1) and E = (1,0) that never goes below this
diagonal.

If (m,m) is the final point, we call m the size of the path.
Let D,,, be the set of Dyck paths of size m. Then, |D,,| = C,,.
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A bijection between triangulations and Dyck paths

5 4
Foreach j =3,4,....n:
® draw an N step,

® draw as many FE steps as diagonals of the form (4, j) with ¢ < j.
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A bijection between triangulations and Dyck paths

5 4
Foreach j =3,4,....n:
® draw an N step,

® draw as many FE steps as diagonals of the form (4, j) with ¢ < j.
Draw an E step at the end.
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Generalized triangulations

Definition. A j-crossing is a set of 7 diagonals where any two of them cross.
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Generalized triangulations

Definition. A j-crossing is a set of 7 diagonals where any two of them cross.

We could have defined a triangulation of ¢,, as a maximal set of
diagonals with no 2-crossings.
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Generalized triangulations

Definition. A j-crossing is a set of 7 diagonals where any two of them cross.

We could have defined a triangulation of ¢,, as a maximal set of
diagonals with no 2-crossings.

Definition. A k-triangulation of ¢,, is a maximal set of diagonals with no
(k + 1)-crossings.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance < k belong to every
k-triangulation.

7 ~s -

~
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Facts about generalized triangulations

All the diagonals connecting vertices at distance < k belong to every
k-triangulation. We ignore such diagonals.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance < k belong to every
k-triangulation. We ignore such diagonals.
8 1

This 2-triangulation has

2(8—-2-2—1) = 6 diagonals.
3

5 4

Theorem (Nakamigawa, Dress-Koolen-Moulton).

Every k-triangulation of €, has exactly k(n — 2k — 1) diagonals.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance < k belong to every

k-triangulation. We ignore such diagonals.
8 1

This 2-triangulation has

2(8—-2-2—1) = 6 diagonals.
3

5 4

Theorem (Nakamigawa, Dress-Koolen-Moulton).

Every k-triangulation of €, has exactly k(n — 2k — 1) diagonals.

Theorem (Jonsson). The number of k-triangulations of &,, is

Cn—2 Cn-z ... Crn—k Crn—k—1

iy Cn—3 Cn—a ... Cu_p1 Ch_p_o
det(Cri—i—j)i j=1 =

Cr—k-1 Ch_k—2 ... Chopgr1 Ch_2g
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Non-crossing Dyck paths

Theorem (Lindstrém, Gessel-Viennot). The number of k-tuples

(P1, Ps, ..., Py) of Dyck paths of size n — 2k such that each P; never goes

below P; 1 is given by the same determinant det(C),—;—_;)

k
,J=1
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Non-crossing Dyck paths

Theorem (Lindstrém, Gessel-Viennot). The number of k-tuples

(P1, Ps, ..., Py) of Dyck paths of size n — 2k such that each P; never goes

k

below P; 1 is given by the same determinant det(Cn_i_j)i’jzl.

Problem: Find a bijection between k-triangulations and k-tuples of
non-crossing Dyck paths.

FPSAC 2007, Tianjin, China — p.7



Non-crossing Dyck paths

Theorem (Lindstrém, Gessel-Viennot). The number of k-tuples

(P1, Ps, ..., Py) of Dyck paths of size n — 2k such that each P; never goes

k

below P; 1 is given by the same determinant det(Cn_i_j)i’jzl.

Problem: Find a bijection between k-triangulations and k-tuples of
non-crossing Dyck paths.

®» k=1 — known
® k=2 — we will see it next
® L >3 — open problem
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2-triangulations

We represent a 2-triangulation as an array:

8 1 2345678
TN, 1
L7 L\2 2
7\\ // / 3
,\/ /\’ 4
/ , \\ 5
6 \\\w. /’/// ] 6
\ :/\’\/\ // I

5 4
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We represent a 2-triangulation as an array:

2345678

~NOoO O h~ WN P

2-triangulations

The purple crosses appear in any 2-triangulation, and they can’t be
part of any 3-crossing.
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2-triangulations

We represent a 2-triangulation as an array:
8 1

45678

O wWNPEF

5 4
The purple crosses appear in any 2-triangulation, and they can’t be
part of any 3-crossing.

We omit them for simplicity.

Now there are exactly 2n — 10 diagonals.
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The bijection: introduction

We will construct a bijection between 2-triangulations and pairs of
non-crossing Dyck paths.

Given a 2-triangulation, first we give an algorithm to color half of the
crosses blue and the other half red.

coumns: 4 5 6 7 8 91011121314
blockss 1 2 3 4 5 6 7 8 91011

© 00 ~NO O & WN P

=
o

=
=

At each iteration, one cross will be colored red and another blue, and
two blocks will be merged.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blocks 1 2 3 4 5 6 7 8 91011

© 00 N O Ol & WDN P
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blockss 1 2 3 4 5 6 7 8 910
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Repeat until all crosses have been colored:
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blockss 1 2 3 4 5 6 7 8 910
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Repeat until all crosses have been colored:
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blocks 1 2 3 4 5 6 7 8 9
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blockss 1 2 3 4 5 6 7 8
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Repeat until all crosses have been colored:
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blocks 1 2 3 4 5 6 7
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Repeat until all crosses have been colored:
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

columns. 4 5 6 7 8 9 1011 12 13 14
blocks 1 2 3 4 5 6
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Repeat until all crosses have been colored:
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blocks: 1 2 3 4 5
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Repeat until all crosses have been colored:

>

9
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
1 2 3 4
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Repeat until all crosses have been colored:
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blocks: 1 2 3
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Repeat until all crosses have been colored:
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

coumns. 4 5 6 7 8 9 1011 12 13 14
blocks: 1 2

© 00 N O Ol & WDN P
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Repeat until all crosses have been colored:
® Letr be the largest index so that row r has a cross in block r.

® Color blue the leftmost uncolored cross in block r.

® Merge blocks »r — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

® Color red the rightmost uncolored cross in the merged block.
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The bijection (part Il): from colored crosses to paths

4 5 6 7 8 910111213 14

© 0O NO Ol A WDN P

=
o

=
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a; := # blue crosses in column 7
[; ;= # red crosses in column ¢
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The bijection (part Il): from colored crosses to paths

4 56 7 8 91011121314
L JJ_LL
2
3 P
4
5 .
; [ o
8 -
10 |
11
a; := # blue crosses in column 7
f; := # red crosses in column ¢
Define
P = NEYNE* .. NE" I NE*F

NEPsNEPs ... NEPr—2NEP—1 B

O
|
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A generating tree for 2-triangulations

How the bijection is obtained:

® Construct a generating tree for 2-triangulations.

® Construct a generating tree for pairs of non-crossing Dyck paths.
® Give an isomorphism between the generating trees.

©0) L_
]
0L)] 0,) (1,0)

T NS A

(0,1,2,1) 022 L1 @112 0,2) (1,2) (2,0) (0,1,2) 0,2) (1,1) (2,0) 021 L1 @111 (0,2) (1,0)

M AN AN NN N AN N AN N N N AN
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A generating tree for 2-triangulations

How the bijection is obtained:
® Construct a generating tree for 2-triangulations.

® Construct a generating tree for pairs of non-crossing Dyck paths.
® Give an isomorphism between the generating trees.

©0) L_
]
0L)] 0,) (1,0)

T NS A

(0,1,2,1) 022 L1 @112 0,2) (1,2) (2,0) (0,1,2) 0,2) (1,1) (2,0) 021 L1 @111 (0,2) (1,0)

M AN A N N N M N N N N M AN
Generating rule:

{(i,dj—i+1,dj_|_1—}—1,dj+2,...,ds) 1< <s—1, Ogigdj}

di,ds,...,ds) —
(17 2 ) ) — U{(G,ds —i+1) : 0<i<ds+1}.
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A generating tree for pairs of non-crossing Dyck paths

-

T
o [ =
TS TS VS
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The nodes at level ¢ represent pairs of paths of size ¢ + 1.



The two generating trees are isomorphic

We can give generating rules for 2-triangulations and for pairs of Dyck
paths that yield isomorphic generating trees.
gl

/\

I_

TS U N
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T
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S T NS

R e el
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The two generating trees are isomorphic

We can give generating rules for 2-triangulations and for pairs of Dyck
paths that yield isomorphic generating trees.
gl

/\

I_

TS U N

NN N
r
e
ol [ H

S T NS

STCFEd ST PP EE Y

NN N NN NN N NN N A

The bijection we described is the one induced by the isomorphism of
generating trees.
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Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron , whose vertices correspond to
1-triangulations and whose edges correspond to diagonal flips.

FPSAC 2007, Tianjin, China — p.15



Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron , whose vertices correspond to

1-triangulations and whose edges correspond to diagonal flips.

For k-triangulations, we also have diagonal flips:

<

Fact: If we remove any diagonal, there a unigue way to put it back to

get another k-triangulation.
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Open problem 1: Polytope of k-triangulations

For 1-triangulations, we have diagonal flips:

There is a polytope, the associahedron , whose vertices correspond to
1-triangulations and whose edges correspond to diagonal flips.

For k-triangulations, we also have diagonal flips:

o <
Fact: If we remove any diagonal, there a unigue way to put it back to
get another k-triangulation.

Open problem: IS there a polytope whose vertices correspond to
k-triangulations and whose edges correspond to diagonal flips?
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Open problem 1: Polytope of k-triangulations

It should be a simple polytope of dimension k(n — 2k — 1).

For example, for k£ = 2 and n = 7, the graph of diagonal flips is

It can be realized as a a cyclic polytope in dimension 4, whose

3-dimensional facets are

(

X
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Open problem 2: Bijection for arbitrary &

Is there an analogous bijection between k-triangulations and k-tuples
of non-crossing Dyck paths, for £ > 37
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Open problem 2: Bijection for arbitrary &

Is there an analogous bijection between k-triangulations and k-tuples
of non-crossing Dyck paths, for £ > 37

Partial progress:

The same idea of splitting

P columns can be used to con-
struct a generating tree for k-

triangulations.

® However, it is not clear what is the corresponding operation to

generate children of a k-tuple of Dyck paths that would give an
Isomorphic generating tree.
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