Noncommutative Monomial Symmetric Functions
 Lenny Tevlin

Physics Department, Yeshiva University 500 West 185th Street, New York, N.Y. 10033 U.S.A.

FPSAC 2007, Nankai University, Tianjin, China, July 2-6

Classical

Classical Quasi-symmetric Noncommutative

monomial
 $m_{\boldsymbol{\lambda}}$

Classical Quasi-symmetric Noncommutative

$$
\begin{array}{cc}
\text { monomial } & m_{\boldsymbol{\lambda}} \\
\text { power sums } & p_{n} \text { and } p_{\boldsymbol{\lambda}}
\end{array}
$$

Classical Quasi-symmetric Noncommutative

monomial m_{λ}
power sums p_{n} and $p_{\boldsymbol{\lambda}}$
elementary e_{n} and e_{λ}
complete h_{n} and $h_{\boldsymbol{\lambda}}$

Classical Quasi-symmetric Noncommutative

monomial m_{λ}
power sums p_{n} and $p_{\boldsymbol{\lambda}}$
elementary e_{n} and e_{λ}
complete h_{n} and $h_{\boldsymbol{\lambda}}$

Classical Quasi-symmetric Noncommutative

monomial

$$
m_{\boldsymbol{\lambda}} \quad M_{I}
$$

power sums $\quad p_{n}$ and $p_{\boldsymbol{\lambda}}$
elementary e_{n} and e_{λ}
complete h_{n} and $h_{\boldsymbol{\lambda}}$

$$
s_{\boldsymbol{\lambda}}
$$

Classical Quasi-symmetric Noncommutative

monomial

$$
m_{\boldsymbol{\lambda}} \quad M_{I}
$$

power sums $\quad p_{n}$ and $p_{\boldsymbol{\lambda}}$
elementary e_{n} and $e_{\boldsymbol{\lambda}}$
complete h_{n} and h_{λ}
Schur $s_{\boldsymbol{\lambda}}$
fundamental L_{I}

Classical Quasi-symmetric Noncommutative

$$
\begin{array}{ccc}
\text { monomial } & m_{\boldsymbol{\lambda}} & M_{I} \\
\text { power sums } & p_{n} \text { and } p_{\boldsymbol{\lambda}} & \\
\text { elementary } & e_{n} \text { and } e_{\boldsymbol{\lambda}} & \\
\text { complete } & h_{n} \text { and } h_{\boldsymbol{\lambda}} & \\
\text { Schur } & s_{\boldsymbol{\lambda}} & \Lambda_{n} \text { and } \Lambda^{I} \\
& & \\
\text { fundamental } & & L_{I}
\end{array}
$$

Classical Quasi-symmetric Noncommutative
monomial

$$
m_{\boldsymbol{\lambda}} \quad M_{I}
$$power sums $\quad p_{n}$ and $p_{\boldsymbol{\lambda}}$elementary $\quad e_{n}$ and $e_{\boldsymbol{\lambda}}$

Ψ_{n} and Ψ^{I}

$$
\Lambda_{n} \text { and } \Lambda^{I}
$$complete $\quad h_{n}$ and $h_{\boldsymbol{\lambda}}$

$$
S_{n} \text { and } S^{I}
$$

Schur
$s_{\boldsymbol{\lambda}}$
fundamentalL_{I}

Classical Quasi-symmetric Noncommutative
monomial

$$
m_{\boldsymbol{\lambda}} \quad M_{I}
$$power sums $\quad p_{n}$ and $p_{\boldsymbol{\lambda}}$elementary $\quad e_{n}$ and $e_{\boldsymbol{\lambda}}$

complete h_{n} and h_{λ}Schur
s_{λ}
Ψ_{n} and $\Psi^{I}$$\Lambda_{n}$ and Λ^{I}
S_{n} and S^{I}
fundamentalL_{I}

Classical Quasi-symmetric Noncommutative
monomial m_{λ} M_{I}power sums $\quad p_{n}$ and $p_{\boldsymbol{\lambda}}$
Ψ_{n} and Ψ^{I}elementary $\quad e_{n}$ and $e_{\boldsymbol{\lambda}}$

$$
\Lambda_{n} \text { and } \Lambda^{I}
$$complete $\quad h_{n}$ and $h_{\boldsymbol{\lambda}}$

$$
S_{n} \text { and } S^{I}
$$Schur

$$
s_{\boldsymbol{\lambda}}
$$

Questions to be asked:

Questions to be asked:

Classical Symmetric Functions Noncommutative

-

$$
\begin{array}{cc}
m_{\boldsymbol{\lambda}} & M^{I} \\
s_{\boldsymbol{\lambda}} & R_{I}
\end{array}
$$

Questions to be asked:

Classical Symmetric Functions

Noncommutative

m_{λ}
M^{I}
R_{I}

$$
\begin{gathered}
s_{\boldsymbol{\lambda}}=\sum_{\kappa} K_{\boldsymbol{\lambda} \kappa} m_{\kappa}, \\
\text { where all } K_{\boldsymbol{\lambda} \kappa} \in \mathbb{N}
\end{gathered}
$$

Questions to be asked:

Classical Symmetric Functions Noncommutative

$$
\begin{array}{rc}
m_{\boldsymbol{\lambda}} & M^{I} \\
s_{\boldsymbol{\lambda}} & R_{I} \\
s_{\boldsymbol{\lambda}}=\sum_{\boldsymbol{\kappa}} K_{\boldsymbol{\lambda} \boldsymbol{\kappa}} m_{\boldsymbol{\kappa}}, & R_{I}=\sum_{J} K_{I J} M^{J} \\
\text { where all } K_{\boldsymbol{\lambda} \boldsymbol{\kappa}} \in \mathbb{N} & \text { are all } K_{I J} \text { also nonnegative? }
\end{array}
$$

Questions to be asked:

Classical Symmetric Functions Noncommutative
-

$m_{\boldsymbol{\lambda}}$	M^{I}
$s_{\boldsymbol{\lambda}}$	R_{I}

$$
s_{\boldsymbol{\lambda}}=\sum_{\kappa} K_{\boldsymbol{\lambda} \kappa} m_{\kappa}
$$

$$
R_{I}=\sum_{J} K_{I J} M^{J}
$$

where all $K_{\lambda \kappa} \in \mathbb{N}$ are all $K_{I J}$ also nonnegative?

- Is there a noncommutative analog of of Cauchy identity and a corresponding scalar product?

$$
\sum_{\boldsymbol{\lambda}} m_{\boldsymbol{\lambda}}(x) h_{\boldsymbol{\lambda}}(y)=\sum_{\boldsymbol{\lambda}} s_{\boldsymbol{\lambda}}(x) s_{\boldsymbol{\lambda}}(y)=\sum_{\boldsymbol{\lambda}} z_{\boldsymbol{\lambda}}^{-1} p_{\boldsymbol{\lambda}}(x) p_{\boldsymbol{\lambda}}(y)
$$

Plan of the talk:

- Compositions.

Plan of the talk:

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).

Plan of the talk:

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).

Plan of the talk:

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).
- Noncommutative Monomial Symmetric Functions.

Plan of the talk:

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).
- Noncommutative Monomial Symmetric Functions.
- Noncommutative Fundamental Symmetric Functions.

Plan of the talk:

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).
- Noncommutative Monomial Symmetric Functions.
- Noncommutative Fundamental Symmetric Functions.
- Expansion of Ribbon Schur Functions in Monomial and Fundamental Bases.

Plan of the talk:

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).
- Noncommutative Monomial Symmetric Functions.
- Noncommutative Fundamental Symmetric Functions.
- Expansion of Ribbon Schur Functions in Monomial and Fundamental Bases.
- A Noncommutative Cauchy Identity and Noncommutative Pairing.

Compositions, their Reverses and Conjugates.

Compositions, their Reverses and Conjugates.

A composition is ordered set of integers: $I=\left(i_{1}, \ldots, i_{n}\right)$. The sum of all parts is denoted by $|I|$, and the number of parts - by $\ell(I)$.

Compositions, their Reverses and Conjugates.

A composition is ordered set of integers: $I=\left(i_{1}, \ldots, i_{n}\right)$. The sum of all parts is denoted by $|I|$, and the number of parts - by $\ell(I)$.

$$
I=(3,1,1,4,2),|I|=11, \ell(I)=5
$$

Compositions, their Reverses and Conjugates.

A composition is ordered set of integers: $I=\left(i_{1}, \ldots, i_{n}\right)$. The sum of all parts is denoted by $|I|$, and the number of parts - by $\ell(I)$. For a composition I define a reverse composition $\bar{I}=\left(i_{n}, \ldots, i_{1}\right)$.
For instance, if $I=(3,1,1,4,2)$, then $\bar{I}=(2,4,1,1,3)$.

Compositions, their Reverses and Conjugates.

A composition is ordered set of integers: $I=\left(i_{1}, \ldots, i_{n}\right)$. The sum of all parts is denoted by $|I|$, and the number of parts - by $\ell(I)$. Parts of a conjugate composition \widetilde{I} can be read from the diagram of the composition I from left to right and from bottom to top:

$$
I=(3,1,1,4,2) \quad \widetilde{I}=(1,2,1,1,4,1,1)
$$

$\widetilde{I}=$

Reverse refinement order.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is said to be greater in the reverse refinement order (or, simply, finer) than J,

$$
I \succ J
$$

if every part of J can be obtained by summing some consecutive parts of I :
$J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$

Reverse refinement order.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is said to be greater in the reverse refinement order (or, simply, finer) than J,

$$
I \succ J
$$

if every part of J can be obtained by summing some consecutive parts of I :
$J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$
For instance, $(3,3,2)=(3,1+2,2) \prec(3,1,2,2)$,

Reverse refinement order.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is said to be greater in the reverse refinement order (or, simply, finer) than J,

$$
I \succ J
$$

if every part of J can be obtained by summing some consecutive parts of I :
$J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$
For instance, $(3,3,2)=(3,1+2,2) \prec(3,1,2,2)$,

Two Multiplications.

For two compositions $I=\left(i_{1}, \ldots, i_{r-1}, i_{r}\right)$ and $J=\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ one defines two multiplications

$$
\begin{aligned}
& I \triangleright J=\left(i_{1}, \ldots, i_{r-1}, i_{r}+j_{1}, j_{2}, \ldots, j_{s}\right), \\
& \text { with } \ell(I \triangleright J)=\ell(I)+\ell(J)-1 \\
& \text { and }
\end{aligned}
$$

$$
I \cdot J=\left(i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}\right),
$$

$$
\text { with } \ell(I \cdot J)=\ell(I)+\ell(J)
$$

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries $a_{i j}$ and commutative off-diagonal entries b_{j} is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries $a_{i j}$ and commutative off-diagonal entries b_{j} is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{31}
$$

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries $a_{i j}$ and commutative off-diagonal entries b_{j} is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{31}-\frac{a_{32} a_{11}}{b_{1}}
$$

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries $a_{i j}$ and commutative off-diagonal entries b_{j} is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{31}-\frac{a_{32} a_{11}}{b_{1}}-\frac{a_{33} a_{21}}{b_{2}}
$$

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \quad\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries $a_{i j}$ and commutative off-diagonal entries b_{j} is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{31}-\frac{a_{32} a_{11}}{b_{1}}-\frac{a_{33} a_{21}}{b_{2}}+\frac{a_{33} a_{22} a_{11}}{b_{1} b_{2}}
$$

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \quad\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \quad\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Noncommutative Symmetric Functions: plan of the review.

Everything is in place to introduce the object of interest : the algebra of noncommutative symmetric functions NSym.

- Power sums.

Noncommutative Symmetric Functions: plan of the review.

Everything is in place to introduce the object of interest : the algebra of noncommutative symmetric functions NSym.

- Power sums.
- Elementary and complete (homogeneous) symmetric functions.

Noncommutative Symmetric Functions: plan of the review.

Everything is in place to introduce the object of interest : the algebra of noncommutative symmetric functions NSym.

- Power sums.
- Elementary and complete (homogeneous) symmetric functions.
- Ribbon Schur functions.

Noncommutative Symmetric Functions: power sums.

In the original paper, (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)), took noncommutative elementary symmetric functions as generators of NSym.

Noncommutative Symmetric Functions: power sums.

In the original paper, (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)), took noncommutative elementary symmetric functions as generators of NSym.
Consider a set of non-commutative power sums (of the first kind) $\Psi^{I}=\Psi_{i_{1}} \cdot \ldots \cdot \Psi_{i_{n}}$ as generators.
As a particular realization, one can consider a (possibly infinite) set of non-commuting variables: $x_{1}, \ldots, x_{n}, \ldots$. Then

$$
\Psi_{n}=\sum_{i} x_{i}^{n}
$$

(In particular when all variables are declared to be commutative, $\Psi_{n} \rightarrow p_{n}$.)

NSym: elementary and homogeneous.

Define elementary symmetric functions Λ_{n} :

$$
\Lambda_{n}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{ccccc}
\Psi_{1} & 1 & 0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{n-1} & \Psi_{n-2} & \ldots & \ldots & n-1 \\
\Psi_{n} & \Psi_{n-1} & \ldots & \ldots & \Psi_{1}
\end{array}\right|
$$

NSym: elementary and homogeneous.

Define elementary symmetric functions Λ_{n} :

$$
\Lambda_{n}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{ccccc}
\Psi_{1} & 1 & 0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{n-1} & \Psi_{n-2} & \ldots & \ldots & n-1 \\
\Psi_{n} & \Psi_{n-1} & \ldots & \ldots & \Psi_{1}
\end{array}\right|
$$

and complete symmetric functions S_{n} :

$$
S_{n}=\frac{1}{n}\left|\begin{array}{ccccc}
\Psi_{1} & -(n-1) & 0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{n-1} & \Psi_{n-2} & \ldots & \ldots & -1 \\
\Psi_{n} & \Psi_{n-1} & \ldots & \ldots & \Psi_{1}
\end{array}\right|
$$

NSym: ribbon Schur functions.

For every composition $I=\left(i_{1}, \ldots, i_{n}\right)$ ribbon Schur functions are defined as

$$
R_{I}=(-1)^{\ell(I)-1}\left|\begin{array}{ccccc}
S_{i_{n}} & 1 & 0 & \ldots & \ldots \\
S_{i_{n}+i_{n-1}} & S_{i_{n-1}} & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
S_{i_{n}+\ldots+i_{2}} & S_{i_{n-1}+\ldots+i_{2}} & \ldots & S_{i_{2}} & 1 \\
S_{i_{n}+\ldots+i_{1}} & S_{i_{n-1}+\ldots+i_{1}} & \ldots & \ldots & S_{i_{1}}
\end{array}\right|
$$

NSym: ribbon Schur functions.

For every composition $I=\left(i_{1}, \ldots, i_{n}\right)$ ribbon Schur functions are defined as

$$
R_{I}=(-1)^{\ell(I)-1}\left|\begin{array}{ccccc}
S_{i_{n}} & 1 & 0 & \ldots & \ldots \\
S_{i_{n}+i_{n-1}} & S_{i_{n-1}} & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
S_{i_{n}+\ldots+i_{2}} & S_{i_{n-1}+\ldots+i_{2}} & \ldots & S_{i_{2}} & 1 \\
S_{i_{n}+\ldots+i_{1}} & S_{i_{n-1}+\ldots+i_{1}} & \ldots & \ldots & S_{i_{1}}
\end{array}\right|
$$

Remarkably, the multiplication of ribbon Schur is very simple:

$$
R_{I} \cdot R_{J}=R_{I \cdot J}+R_{I \triangleright J}
$$

Involution.

Recall that in the classical theory there is a map ω such that

Involution.

Recall that in the classical theory there is a map ω such that

$$
\omega\left(p_{\boldsymbol{\lambda}}\right)=(-1)^{\ell(\boldsymbol{\lambda})-|\boldsymbol{\lambda}|_{p_{\boldsymbol{\lambda}}}}
$$

Involution.

Recall that in the classical theory there is a map ω such that
$\omega\left(p_{\boldsymbol{\lambda}}\right)=(-1)^{\ell(\boldsymbol{\lambda})-|\boldsymbol{\lambda}|_{p_{\boldsymbol{\lambda}}}}$
$\omega\left(m_{\boldsymbol{\lambda}}\right)=f_{\boldsymbol{\lambda}}$, where $f_{\boldsymbol{\lambda}}$ is the forgotten symmetric function

Involution.

Recall that in the classical theory there is a map ω such that
$\omega\left(p_{\boldsymbol{\lambda}}\right)=(-1)^{\ell(\boldsymbol{\lambda})-|\boldsymbol{\lambda}|_{p_{\boldsymbol{\lambda}}}}$
$\omega\left(m_{\lambda}\right)=f_{\boldsymbol{\lambda}}$, where f_{λ} is the forgotten symmetric function $\omega\left(s_{\boldsymbol{\lambda}}\right)=s_{\boldsymbol{\lambda}^{\prime}}$, where $\boldsymbol{\lambda}^{\prime}$ is the partition conjugate to $\boldsymbol{\lambda}$

Involution.

Recall that in the classical theory there is a map ω such that
$\omega\left(p_{\boldsymbol{\lambda}}\right)=(-1)^{\ell(\boldsymbol{\lambda})-|\boldsymbol{\lambda}|_{\boldsymbol{p}_{\boldsymbol{\lambda}}}}$
$\omega\left(m_{\lambda}\right)=f_{\boldsymbol{\lambda}}$, where $f_{\boldsymbol{\lambda}}$ is the forgotten symmetric function $\omega\left(s_{\boldsymbol{\lambda}}\right)=s_{\boldsymbol{\lambda}^{\prime}}$, where $\boldsymbol{\lambda}^{\prime}$ is the partition conjugate to $\boldsymbol{\lambda}$

In the noncommutative setting can also introduce a map ω such that:

$$
\omega\left(\Psi^{I}\right)=(-1)^{\ell(I)-|I|} \Psi^{\bar{I}}
$$

Involution.

Recall that in the classical theory there is a map ω such that
$\omega\left(p_{\boldsymbol{\lambda}}\right)=(-1)^{\ell(\boldsymbol{\lambda})-|\boldsymbol{\lambda}|_{p_{\boldsymbol{\lambda}}}}$
$\omega\left(m_{\boldsymbol{\lambda}}\right)=f_{\boldsymbol{\lambda}}$, where $f_{\boldsymbol{\lambda}}$ is the forgotten symmetric function $\omega\left(s_{\boldsymbol{\lambda}}\right)=s_{\boldsymbol{\lambda}^{\prime}}$, where $\boldsymbol{\lambda}^{\prime}$ is the partition conjugate to $\boldsymbol{\lambda}$

In the noncommutative setting can also introduce a map ω such that:

$$
\omega\left(\Psi^{I}\right)=(-1)^{\ell(I)-|I|} \Psi^{\bar{I}}
$$

Under this map,

$$
\omega\left(\Lambda_{n}\right)=S_{n}
$$

and

$$
\omega\left(R_{I}\right)=R_{I^{\sim}}
$$

Noncommutative Monomial and Fundamental Functions.

At this point I would like introduce new personae in NSym:

- Noncommutative monomial (and forgotten) symmetric functions.

Noncommutative Monomial and Fundamental Functions.

At this point I would like introduce new personae in NSym:

- Noncommutative monomial (and forgotten) symmetric functions.
- Noncommutative fundamental symmetric functions.

Noncommutative Monomial and Fundamental Functions.

At this point I would like introduce new personae in NSym:

- Noncommutative monomial (and forgotten) symmetric functions.
- Noncommutative fundamental symmetric functions.
- Expansion of ribbon Schur functions in the monomial and fundamental bases.

Noncommutative Monomial and Fundamental Functions.

At this point I would like introduce new personae in NSym:

- Noncommutative monomial (and forgotten) symmetric functions.
- Noncommutative fundamental symmetric functions.
- Expansion of ribbon Schur functions in the monomial and fundamental bases.
- A Noncommutative Cauchy identity and noncommutative pairing.

Noncommutative Monomial Symmetric Functions.

Define noncommutative monomial symmetric function corresponding to a composition $I=\left(i_{1}, \ldots, i_{n}\right)$ as a quasideterminant of an n by n matrix:

$$
M^{I}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{cccccc}
\Psi_{i_{n}} & 1 & 0 & \ldots & 0 & 0 \\
\Psi_{i_{n-1}+i_{n}} & \Psi_{i_{n-1}} & 2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{i_{2}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{2}} & n-1 \\
\Psi_{i_{1}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{1}+i_{2}} & \Psi_{i_{1}}
\end{array}\right|
$$

where n is the length of I.

Noncommutative Monomial Symmetric Functions.

Define noncommutative monomial symmetric function corresponding to a composition $I=\left(i_{1}, \ldots, i_{n}\right)$ as a quasideterminant of an n by n matrix:

$$
M^{I}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{cccccc}
\Psi_{i_{n}} & 1 & 0 & \ldots & 0 & 0 \\
\Psi_{i_{n-1}+i_{n}} & \Psi_{i_{n-1}} & 2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{i_{2}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{2}} & n-1 \\
\Psi_{i_{1}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{1}+i_{2}} & \Psi_{i_{1}}
\end{array}\right|
$$

where n is the length of I. In particular

$$
M^{1^{n}}=\Lambda_{n}
$$

where Λ_{n} is an elementary symmetric function.

Noncommutative Forgotten Symmetric Functions.

Also define noncommutative forgotten symmetric function corresponding to a composition $I=\left(i_{1}, \ldots, i_{n}\right)$ as an n by n quasideterminant:

$$
F^{I}=\frac{1}{n}\left|\begin{array}{cccccc}
\Psi_{i_{n}} & -(n-1) & 0 & \ldots & 0 & 0 \\
\Psi_{i_{n-1}+i_{n}} & \Psi_{i_{n-1}} & -(n-2) & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{i_{2}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{2}} & -1 \\
\Psi_{i_{1}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{1}+i_{2}} & \Psi_{i_{1}}
\end{array}\right|
$$

Noncommutative Forgotten Symmetric Functions.

Also define noncommutative forgotten symmetric function corresponding to a composition $I=\left(i_{1}, \ldots, i_{n}\right)$ as an n by n quasideterminant:

$$
F^{I}=\frac{1}{n}\left|\begin{array}{cccccc}
\Psi_{i_{n}} & -(n-1) & 0 & \ldots & 0 & 0 \\
\Psi_{i_{n-1}+i_{n}} & \Psi_{i_{n-1}} & -(n-2) & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{i_{2}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{2}} & -1 \\
\Psi_{i_{1}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{1}+i_{2}} & \Psi_{i_{1}}
\end{array}\right|
$$

In particular

$$
F^{1^{n}}=S_{n}
$$

where S_{n} a homogeneous symmetric function.

Properties of Monomial Symmetric Functions.

First of all, analogously to the classical case,

$$
\omega\left(M^{I}\right)=(-1)^{|I|-\ell(I)} F^{\bar{I}}
$$

Properties of Monomial Symmetric Functions.

First of all, analogously to the classical case,

$$
\omega\left(M^{I}\right)=(-1)^{|I|-\ell(I)} F^{\bar{I}} ;
$$

Secondly, $F^{I}=\sum_{J \preceq I} M^{J}$, in particular $S_{n}=\sum_{|I|=n} M^{I}$;

Properties of Monomial Symmetric Functions.

First of all, analogously to the classical case,

$$
\omega\left(M^{I}\right)=(-1)^{|I|-\ell(I)} F^{\bar{I}} ;
$$

Secondly, $F^{I}=\sum_{J \preceq I} M^{J}$, in particular $S_{n}=\sum_{|I|=n} M^{I}$;
The multiplication of M^{I} :

$$
M^{J} \cdot M^{I}=\sum_{K \preceq J}\binom{\ell(I)+\ell(K)}{\ell(J)} M^{K \cdot I}+\binom{\ell(I)+\ell(K)-1}{\ell(J)} M^{K \triangleright I}
$$

Properties of Monomial Symmetric Functions.

First of all, analogously to the classical case,

$$
\omega\left(M^{I}\right)=(-1)^{|I|-\ell(I)} F^{\bar{I}} ;
$$

Secondly, $F^{I}=\sum_{J \preceq I} M^{J}$, in particular $S_{n}=\sum_{|I|=n} M^{I}$;
The multiplication of M^{I} :
$M^{J} \cdot M^{I}=\sum_{K \preceq J}\binom{\ell(I)+\ell(K)}{\ell(J)} M^{K \cdot I}+\binom{\ell(I)+\ell(K)-1}{\ell(J)} M^{K \triangleright I}$
Commutative limit of M^{I}, i.e. $\Psi_{n} \rightarrow p_{n}$:

$$
m_{\boldsymbol{\lambda}}=\sum_{I=\sigma(\boldsymbol{\lambda})} M^{I},
$$

where the sum is over all distinct permutations of parts of $\boldsymbol{\lambda}$.

Fundamental Noncommutative Symmetric Functions.

For every composition I one can define, by analogy with Gessel's fundamental quasi-symmetric functions, fundamental noncommutative symmetric function

$$
L^{I}=\sum_{J \succeq I} M^{J}
$$

Fundamental Noncommutative Symmetric Functions.

For every composition I one can define, by analogy with Gessel's fundamental quasi-symmetric functions, fundamental noncommutative symmetric function

$$
L^{I}=\sum_{J \succeq I} M^{J}
$$

In particular, $L^{1^{n}}=\Lambda_{n}=R_{1^{n}} \quad$ and $L^{n}=S_{n}=R_{n}$.

Fundamental Noncommutative Symmetric Functions.

For every composition I one can define, by analogy with Gessel's fundamental quasi-symmetric functions, fundamental noncommutative symmetric function

$$
L^{I}=\sum_{J \succeq I} M^{J}
$$

In particular, $L^{1^{n}}=\Lambda_{n}=R_{1^{n}}$ and $L^{n}=S_{n}=R_{n}$.
Under the involution $\omega\left(L^{I}\right)=L^{\tilde{I}}$.

Fundamental Noncommutative Symmetric Functions.

For every composition I one can define, by analogy with Gessel's fundamental quasi-symmetric functions, fundamental noncommutative symmetric function

$$
L^{I}=\sum_{J \succeq I} M^{J}
$$

In particular, $L^{1^{n}}=\Lambda_{n}=R_{1^{n}} \quad$ and $L^{n}=S_{n}=R_{n}$.
Under the involution $\omega\left(L^{I}\right)=L^{\tilde{I}}$.
Multiplication of fundamental symmetric functions when $I=(n)$ (or dually $J=1^{n}$):

$$
L^{n} \cdot L^{J}=\sum_{M \succeq J}\binom{n+\ell(J)-1}{\ell(M)} L^{n \cdot M}+\binom{n+\ell(J)-1}{\ell(M)-1} L^{n \triangleright M}
$$

Expansion of ribbon Schur in the monomial basis.

Since both R_{I} and M^{I} (as well as L^{I}) are linear bases of NSym, consider expanding one basis into another.

Expansion of ribbon Schur in the monomial basis.

Since both R_{I} and M^{I} (as well as L^{I}) are linear bases of NSym, consider expanding one basis into another. For instance,

$$
R_{I}=\sum_{J} K_{I J} M^{J}
$$

where $K_{I J}$ may be called noncommutative Kostka numbers.

Expansion of ribbon Schur in the monomial basis.

Since both R_{I} and M^{I} (as well as L^{I}) are linear bases of NSym, consider expanding one basis into another. For instance,

$$
R_{I}=\sum_{J} K_{I J} M^{J}
$$

where $K_{I J}$ may be called noncommutative Kostka numbers. As an example,

$$
R_{121}=5 M^{1^{4}}+3 M^{21^{2}}+3 M^{121}+M^{31}
$$

Expansion of ribbon Schur in the monomial basis.

Since both R_{I} and M^{I} (as well as L^{I}) are linear bases of NSym, consider expanding one basis into another. For instance,

$$
R_{I}=\sum_{J} K_{I J} M^{J}
$$

where $K_{I J}$ may be called noncommutative Kostka numbers. Conjecture 1
Noncommutative Kostka numbers are nonnegative integers.

Expansion of ribbon Schur in the monomial basis.

Since both R_{I} and M^{I} (as well as L^{I}) are linear bases of NSym, consider expanding one basis into another. For instance,

$$
R_{I}=\sum_{J} K_{I J} M^{J}
$$

where $K_{I J}$ may be called noncommutative Kostka numbers. Conjecture 1
Noncommutative Kostka numbers are nonnegative integers. Example.

$$
R_{k, 1^{r}}=\binom{k+r-1}{r} \sum_{|I|=k} M^{I \cdot 1^{r}}
$$

Sketch of calculation: Consider the expansion in M^{I} of $S_{n} \Lambda_{r}$ and the fact that $S_{n} \Lambda_{r}=R_{k, 1^{r}}+R_{k+1,1^{r-1}}$.

Expansion of ribbon Schur in the fundamental basis.

Expanding in the fundamental basis,

$$
R_{I}=\sum_{J} G_{I J} L^{J},
$$

where $G_{I J}$ may be called Kostka-Gessel numbers.

Expansion of ribbon Schur in the fundamental basis.

Expanding in the fundamental basis,

$$
R_{I}=\sum_{J} G_{I J} L^{J},
$$

where $G_{I J}$ may be called Kostka-Gessel numbers.
As an example,

$$
R_{121}=2 L^{21^{2}}+2 L^{121}+L^{31}
$$

Expansion of ribbon Schur in the fundamental basis.

Expanding in the fundamental basis,

$$
R_{I}=\sum_{J} G_{I J} L^{J},
$$

where $G_{I J}$ may be called Kostka-Gessel numbers.
Conjecture 2
Kostka-Gessel numbers are nonnegative integers.

Expansion of ribbon Schur in the fundamental basis.

Expanding in the fundamental basis,

$$
R_{I}=\sum_{J} G_{I J} L^{J},
$$

where $G_{I J}$ may be called Kostka-Gessel numbers.
Conjecture 2
Kostka-Gessel numbers are nonnegative integers.
Note 1: Only nonnegativity in the above conjectures requires proof. The fact that these numbers are integers follows from rules of multiplication of $M^{I} \mathrm{~S}$ and $L^{I} \mathrm{~S}$ respectively. Note 2: Nonnegativity of Kostka-Gessel numbers implies that of noncommutative Kostka numbers.

Examples of expansions of R_{I} in L^{J}.

Example.

$$
R_{k, 1^{r}}=\binom{k+r-1}{r} L^{k, 1^{r}}
$$

Examples of expansions of R_{I} in L^{J}.

Example.

$$
R_{k, 1^{r}}=\binom{k+r-1}{r} L^{k, 1^{r}}
$$

Example.

$$
R_{n m}=\sum_{M \succeq(m)}\binom{n}{\ell(M)} L^{n \cdot M}+\sum_{M \succ(m)}\binom{n}{\ell(M)-1} L^{n \triangleright M}
$$

Sketch of the calculation:

$$
R_{n m}=S_{n} S_{m}-S_{n+m}=L^{n} \cdot L^{m}-L^{n \triangleright m}
$$

Noncommutative Cauchy identity and pairing.

Proposition.

Given two noncommutative alphabets X and Y, the following identity is true:

$$
\sum_{I} M^{I}(X) S^{I}(Y)=\sum_{I} L^{I}(X) R_{I}(Y)
$$

Noncommutative Cauchy identity and pairing.

Proposition.

Given two noncommutative alphabets X and Y, the following identity is true:

$$
\sum_{I} M^{I}(X) S^{I}(Y)=\sum_{I} L^{I}(X) R_{I}(Y)
$$

Then define a noncommutative pairing in NSym by requiring that M^{I} and S^{I} are dual to each other.

$$
\left\langle M^{I} \mid S^{J}\right\rangle=\delta_{I J},
$$

it follows that

$$
\left\langle L^{I} \mid R_{J}\right\rangle=\delta_{I J}
$$

Some properties of the pairing.

Furthermore, ω is an isometry, i.e. for any two functions $H, G \in \mathbf{N S y m}$

$$
\langle\omega(H) \mid \omega(G)\rangle=\langle H \mid G\rangle
$$

Some properties of the pairing.

Furthermore, ω is an isometry, i.e. for any two functions $H, G \in \mathbf{N S y m}$

$$
\langle\omega(H) \mid \omega(G)\rangle=\langle H \mid G\rangle
$$

$$
\left\langle\Psi^{I} \mid \Psi^{J}\right\rangle=\sum_{J \preceq M \preceq I}(-1)^{\ell(M)-\ell(J)} l p(M, J) \prod_{k=1}^{\ell(M)}(\ell(M)-k+1)^{p_{k}-p_{k-1}},
$$

where p_{k} are such that for each M

$$
M=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{p_{k}}, \ldots, i_{p_{s}}+\ldots+i_{n}\right)
$$

In particular

$$
\left\langle\Psi^{I} \mid \Psi^{I}\right\rangle=\left(\prod_{k=1}^{\ell(I)} i_{k}\right) \ell(I)!
$$

Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about nonnegativity of noncommutative Kostka numbers and Kostka-Gessel numbers can be restated as follows:

Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about nonnegativity of noncommutative Kostka numbers and Kostka-Gessel numbers can be restated as follows:

Conjecture 1.

$$
\left\langle R_{I} \mid S^{J}\right\rangle=K_{I J} \geq 0
$$

Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about nonnegativity of noncommutative Kostka numbers and Kostka-Gessel numbers can be restated as follows:

Conjecture 1.

$$
\left\langle R_{I} \mid S^{J}\right\rangle=K_{I J} \geq 0
$$

Conjecture 2.

$$
\left\langle R_{I} \mid R_{J}\right\rangle=G_{I J} \geq 0
$$

A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

$$
\sum_{|\boldsymbol{\lambda}|=n} X^{\ell(\boldsymbol{\lambda})-1} m_{\boldsymbol{\lambda}}=\sum_{k=0}^{n-1} s_{n-k, 1^{k}}(X-1)^{k}
$$

A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

$$
\sum_{|\boldsymbol{\lambda}|=n} X^{\ell(\boldsymbol{\lambda})-1} m_{\boldsymbol{\lambda}}=\sum_{k=0}^{n-1} s_{n-k, 1^{k}}(X-1)^{k}
$$

There is a noncommutative version of this identity:

$$
\sum_{|I|=n} X^{\ell(I)-1} M^{I}=\sum_{k=0}^{n-1} R_{1^{k}, n-k}(X-1)^{k}
$$

A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

$$
\sum_{|\boldsymbol{\lambda}|=n} X^{\ell(\boldsymbol{\lambda})-1} m_{\boldsymbol{\lambda}}=\sum_{k=0}^{n-1} s_{n-k, 1^{k}}(X-1)^{k}
$$

There is a noncommutative version of this identity:

$$
\begin{aligned}
& \sum_{|I|=n} X^{\ell(I)-1} M^{I}=\sum_{k=0}^{n-1} R_{1^{k}, n-k}(X-1)^{k} \\
& \Psi_{n}=\sum_{k=0}^{n-1}(-1)^{k} R_{1^{k}, n-k} \text { and } \sum_{|I|=n} L^{I}=\sum_{k=0}^{n-1} R_{1^{k} n-k} \\
& \text { at } X=0 \text { (GKLLRT, 1994); at } X=2 \text { (B.-C.-V. Ung, 1998) }
\end{aligned}
$$

Classical Quasi-symmetric Noncommutative
monomial$m_{\lambda}$$M_{I}$power sums p_{n} and $p_{\boldsymbol{\lambda}}$$\Psi_{n}$ and Ψ^{I}elementary $\quad e_{n}$ and $e_{\boldsymbol{\lambda}}$$\Lambda_{n}$ and Λ^{I}complete $\quad h_{n}$ and $h_{\boldsymbol{\lambda}}$$S_{n}$ and S^{I}
Schur $s_{\boldsymbol{\lambda}}$

Classical Quasi-symmetric Noncommutative
monomial m_{λ}
M_{I}

power sums $\quad p_{n}$ and $p_{\boldsymbol{\lambda}} \quad \Psi_{I}$
Ψ_{n} and Ψ^{I}
elementary
e_{n} and $e_{\boldsymbol{\lambda}} \quad \Lambda_{I}$
Λ_{n} and Λ^{I}
complete
h_{n} and $h_{\boldsymbol{\lambda}} \quad S_{I}$
S_{n} and S^{I}

Schur

$$
s_{\boldsymbol{\lambda}}
$$

R_{I}

$$
R^{I}
$$

Comments and Questions:

Comments and Questions:

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.

Comments and Questions:

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion:
$\Psi_{n}(X, Y)=\sum_{k} X^{n}+(-1)^{n-1} \sum_{k} Y^{n}$

Comments and Questions:

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion:
$\Psi_{n}(X, Y)=\sum_{k} X^{n}+(-1)^{n-1} \sum_{k} Y^{n}$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.

Comments and Questions:

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion:
$\Psi_{n}(X, Y)=\sum_{k} X^{n}+(-1)^{n-1} \sum_{k} Y^{n}$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers. F. Hivert, J.-C. Novelli, and J.-Y. Thibon have found a combinatorial interpretation of Kostka-Gessel numbers.

Comments and Questions:

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion:
$\Psi_{n}(X, Y)=\sum_{k} X^{n}+(-1)^{n-1} \sum_{k} Y^{n}$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.
- Recall that in the classical theory, $s_{\boldsymbol{\lambda}}=\sum_{\kappa \leq \boldsymbol{\lambda}} m_{\kappa}$, where \geq is the dominance order.

Comments and Questions:

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion:
$\Psi_{n}(X, Y)=\sum_{k} X^{n}+(-1)^{n-1} \sum_{k} Y^{n}$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.
- Is there a notion of order that stipulates which M^{I} (or/and L^{I}) occur in the ribbon Schur expansion?

Comments and Questions:

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion:
$\Psi_{n}(X, Y)=\sum_{k} X^{n}+(-1)^{n-1} \sum_{k} Y^{n}$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.
- Is there a notion of order that stipulates which M^{I} (or/and L^{I}) occur in the ribbon Schur expansion?
- What are proper generalizations of the noncommutative theory to the q and q, t settings?

Reverse refinement order.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is said to be no less than J in the reverse refinement order,

$$
I \succeq J
$$

if every part of J can be obtained by summing some consecutive parts of I :
$J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$

Reverse refinement order.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is said to be no less than J in the reverse refinement order,

$$
I \succeq J
$$

if every part of J can be obtained by summing some consecutive parts of I : $J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$ If $J \preceq I$, a special notation is reserved for the product of last parts of decomposition of I relative to $J: l p(I, J)=\prod_{k=1}^{\ell(J)} i_{p_{k}}$

Reverse refinement order.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is said to be no less than J in the reverse refinement order,

$$
I \succeq J
$$

if every part of J can be obtained by summing some consecutive parts of I : $J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$ If $J \preceq I$, a special notation is reserved for the product of last parts of decomposition of I relative to $J: l p(I, J)=\prod_{k=1}^{\ell(J)} i_{p_{k}}$ For instance, $(3,3,2) \preceq(3,1,2,2)$

Reverse refinement order.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is said to be no less than J in the reverse refinement order,

$$
I \succeq J
$$

if every part of J can be obtained by summing some consecutive parts of I :
$J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$ If $J \preceq I$, a special notation is reserved for the product of last parts of decomposition of I relative to $J: l p(I, J)=\prod_{k=1}^{\ell(J)} i_{p_{k}}$ $(3,3,2) \preceq(3,1,2,2), \operatorname{lp}((3122),(332))=i_{1} \cdot i_{3} \cdot i_{4}=3 \cdot 2 \cdot 2$.

$$
\begin{aligned}
& p_{1}=1 \\
& p_{2}=3 \\
& p_{3}=4
\end{aligned}
$$

Quasideterminants.

The quasideterminant of an $n \times n$ almost triangular matrix with free entries $a_{i j}$ and integers b_{i} on the off-diagonal is polynomial in its entries and can be written as:

$$
\begin{aligned}
& Q_{n}=\left|\begin{array}{ccccccc}
a_{11} & b_{1} & 0 & \ldots & \ldots & \ldots & \ldots \\
a_{21} & a_{22} & b_{2} & 0 & \ldots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{j 1} & a_{j 2} & \ldots & a_{j j} & b_{j} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n-1} & a_{n-1} 2 & \ldots & \ldots & \ldots & \ldots & a_{n-1} \\
a_{n 1} & a_{n 2} & \ldots & a_{n j} & \ldots & \ldots & a_{n n}
\end{array}\right|= \\
& =\sum_{n \geq j_{1}>\ldots>j_{k}>1}(-1)^{k+1} a_{n j_{1}} b_{j_{1}-1}^{-1} a_{j_{1}-1} j_{2} b_{j_{2}-1}^{-1} a_{j_{2}-1} j_{3} \ldots b_{j_{k}-1}^{-1} a_{j_{k}-11}
\end{aligned}
$$

An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix with off-diagonal elements $-b_{n-1}, \ldots,-b_{1}$ and a sum of quasideterminants of the same matrix with off-diagonal elements b_{1}, \ldots, b_{n-1}.

An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix with off-diagonal elements $-b_{n-1}, \ldots,-b_{1}$ and a sum of quasideterminants of the same matrix with off-diagonal elements b_{1}, \ldots, b_{n-1}. Let an operator T_{j} act on Q_{n} by simultaneously removing $(j+1)^{\text {th }}$ column and $j^{\text {th }}$ row (the column and row that intersect at the off-diagonal element b_{j}). And for a partition $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ define
$T_{J}=\prod_{s=1}^{k} T_{j_{s}}$.

An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix with off-diagonal elements $-b_{n-1}, \ldots,-b_{1}$ and a sum of quasideterminants of the same matrix with off-diagonal elements b_{1}, \ldots, b_{n-1}. Let an operator T_{j} act on Q_{n} by simultaneously removing $(j+1)^{\text {th }}$ column and $j^{\text {th }}$ row (the column and row that intersect at the off-diagonal element b_{j}). And for a partition $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ define
$T_{J}=\prod_{s=1}^{k} T_{j_{s}}$.
Then the following identity is true

$$
\frac{1}{n} Q_{n}(-(n-1), \ldots,-1)=\sum_{J} \frac{(-1)^{n-\ell(J)-1}}{n-\ell(J)} T_{J} Q_{n}(1, \ldots, n-1),
$$

where the sum is over all subsets $J \subseteq[1,2, \ldots, n-1]$.

Example of the kaleidoscopic identity.

Consider a four by four quasideterminant Q_{4} and its kaleidoscopic expansion:
$\frac{1}{4}\left|\begin{array}{cccc}a_{11} & -3 & 0 & 0 \\ a_{21} & a_{22} & -2 & 0 \\ a_{31} & a_{32} & a_{33} & -1 \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right|=\left(-\frac{1}{4} T_{\emptyset}+\frac{1}{3}\left(T_{1}+T_{2}+T_{3}\right)-\frac{1}{2}\left(T_{1} T_{2}+T_{1} T_{3}+T_{2} T_{3}\right)+\right.$
$\left.+T_{1} T_{2} T_{3} T_{4}\right) Q_{4}=-\frac{1}{4}\left|\begin{array}{cccc}a_{11} & 1 & 0 & 0 \\ a_{21} & a_{22} & 2 & 0 \\ a_{31} & a_{32} & a_{33} & 3 \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right|+\frac{1}{3}\left|\begin{array}{ccc}a_{21} & 1 & 0 \\ a_{31} & a_{33} & 2 \\ a_{41} & a_{43} & a_{44}\end{array}\right|+\frac{1}{3}\left|\begin{array}{cc}a_{11} & 1 \\ a_{31} & a_{32} \\ \hline a_{41} & 2 \\ a_{42} & a_{44}\end{array}\right|$
$+\frac{1}{3}\left|\begin{array}{ccc}a_{11} & 1 & 0 \\ a_{21} & a_{22} & 2 \\ \mid a_{41} & a_{42} & a_{43}\end{array}\right|-\frac{1}{2}\left|\begin{array}{cc}a_{31} & 1 \\ a_{41} & a_{44}\end{array}\right|-\frac{1}{2}\left|\begin{array}{cc}a_{12} & 1 \\ a_{41} & a_{43}\end{array}\right|-\frac{1}{2}\left|\begin{array}{cc}a_{11} & 1 \\ a_{41} & a_{42}\end{array}\right|+a_{41}$

Quasideterminants in the commutative limit:

If one sets all $a_{i j}$ to be commutative, then the quasideterminant becomes a ratio of the determinant of the same matrix to the minor obtained by crossing out the first column and the last row:

$$
Q_{n}=\left|\begin{array}{ccccc}
a_{11} & b_{1} & 0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{j 1} & a_{j 2} & \ldots & b_{j} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & \ldots & \ldots & \ldots & a_{n n}
\end{array}\right|=\frac{\left|\begin{array}{ccccc}
a_{11} & b_{1} & 0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{j 1} & a_{j 2} & \ldots & b_{j} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & \ldots & \ldots & \ldots & a_{n n}
\end{array}\right|}{\frac{\prod_{i=1}^{n-1} b_{i}}{}}
$$

Commutative limit of M^{I}.

Recall that there is an imbedding of $\operatorname{Sym} \hookrightarrow$ QSym, in particular

$$
m_{\lambda}=\sum_{I \sim \lambda} M_{I},
$$

where $I \sim \boldsymbol{\lambda}$ means all compositions I that can be obtained by permuting parts of a partition λ.
In the commutative limit, the sum of M^{I} with $I \sim \boldsymbol{\lambda}$ goes over to the augmented monomial symmetric function:

$$
u_{\boldsymbol{\lambda}} m_{\boldsymbol{\lambda}}=\sum_{I=\sigma(\boldsymbol{\lambda})} M^{I}
$$

where $u_{\boldsymbol{\lambda}}=\prod_{i \geq 1} m_{i}(\boldsymbol{\lambda})$! with $m_{i}(\boldsymbol{\lambda})$ being the number of parts of λ equal to i and the sum is over all permutations of parts of λ.

The third part of Cauchy identity.

$$
M^{I}=\sum_{J \preceq I} \frac{(-1)^{\ell(I)-\ell(J)}}{\prod_{k=0}^{s-1}\left(\ell(I)-p_{k}\right)} \Psi^{J}, \text { where } s=\ell(J)
$$

And

$$
S^{I}=\sum_{K \succeq I} \frac{1}{\pi_{u}(K, I)} \Psi^{K}
$$

Therefore

$$
\sum_{I} M^{I}(X) S^{I}(Y)=\sum_{I, K \succeq I \succeq J} \frac{(-1)^{\ell(I)-\ell(J)}}{\prod_{k=0}^{\ell(J)-1}\left(\ell(I)-p_{k}\right) \pi_{u}(K, I)} \Psi^{J}(X) \Psi^{K}(Y)
$$

From noncommutative pairing to the Hall scalar product.

$$
\sum_{I} M^{I} S^{I} \rightarrow \sum_{I} M^{I} h^{I}=\sum_{\lambda}\left(\sum_{I=\sigma(\boldsymbol{\lambda})} M^{I}\right) h_{\lambda}=\sum_{\boldsymbol{\lambda}} m_{\boldsymbol{\lambda}} h_{\boldsymbol{\lambda}}
$$

