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Questions to be asked:

Classical Symmetric Functions Noncommutative
mλ M I

sλ RI

sλ =
∑

κ
Kλκmκ, RI =

∑
J KIJMJ

where all Kλκ ∈ N are all KIJ also nonnegative?

Is there a noncommutative analog of of Cauchy identity
and a corresponding scalar product?

∑

λ

mλ(x)hλ(y) =
∑

λ

sλ(x)sλ(y) =
∑

λ

z−1
λ

pλ(x)pλ(y)
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Compositions.

Quasideterminants (Gelfand, Retakh (1991)).

Noncommutative Symmetric Functions (Gelfand, Krob,
Lascoux, Leclerc, Retakh, Thibon (1994)).

Noncommutative Monomial Symmetric Functions.

Noncommutative Fundamental Symmetric Functions.

Expansion of Ribbon Schur Functions in Monomial and
Fundamental Bases.

A Noncommutative Cauchy Identity and
Noncommutative Pairing.
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Compositions, their Reverses and Conjugates.

A composition is ordered set of integers: I = (i1, . . . , in).
The sum of all parts is denoted by |I|, and the number of
parts – by ℓ(I).

I = (3, 1, 1, 4, 2), |I| = 11, ℓ(I) = 5

I =
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Compositions, their Reverses and Conjugates.

A composition is ordered set of integers: I = (i1, . . . , in).
The sum of all parts is denoted by |I|, and the number of
parts – by ℓ(I). For a composition I define a reverse
composition I = (in, . . . , i1).
For instance, if I = (3, 1, 1, 4, 2), then I = (2, 4, 1, 1, 3).
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Compositions, their Reverses and Conjugates.

A composition is ordered set of integers: I = (i1, . . . , in).
The sum of all parts is denoted by |I|, and the number of
parts – by ℓ(I). Parts of a conjugate composition Ĩ can
be read from the diagram of the composition I from left to
right and from bottom to top:

I = (3, 1, 1, 4, 2) Ĩ = (1, 2, 1, 1, 4, 1, 1)

I = Ĩ =
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Reverse refinement order.

Let I = (i1, . . . , in), J = (j1, . . . , jk), |J | = |I| then I is said to
be greater in the reverse refinement order (or, simply,
finer ) than J ,

I ≻ J

if every part of J can be obtained by summing some
consecutive parts of I:
J = (i1 + . . . + ip1

, . . . , ips−1+1 + . . . + ips
, . . . , ipk−1+1 + . . . + in)
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Two Multiplications.

For two compositions I = (i1, . . . , ir−1, ir) and
J = (j1, j2, . . . , js) one defines two multiplications

I ⊲ J = (i1, . . . , ir−1, ir + j1, j2, . . . , js),

with ℓ(I ⊲ J) = ℓ(I) + ℓ(J)− 1

and

I · J = (i1, . . . , ir, j1, . . . , js),

with ℓ(I · J) = ℓ(I) + ℓ(J)
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Quasideterminants.

A quasideterminant (with respect to the bottom left
element) of an almost-triangular matrix with free entries aij

and commutative off-diagonal entries bj is a sum of all
weighted paths starting at the bottom row, ending at the first
column, taking north ↑ and east← steps and making
eastward turns only at the off-diagonal entries.

∣∣∣∣∣∣∣

a11 b1 0

a21 a22 b2

a31 a32 a33

∣∣∣∣∣∣∣
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Noncommutative Symmetric Functions: plan of the review.

Everything is in place to introduce the object of interest :
the algebra of noncommutative symmetric functions NSym .
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Noncommutative Symmetric Functions: power sums.

In the original paper, (Gelfand, Krob, Lascoux, Leclerc,
Retakh, Thibon (1994)), took noncommutative elementary
symmetric functions as generators of NSym .
Consider a set of non-commutative power sums (of the first
kind) ΨI = Ψi1 · . . . ·Ψin as generators.
As a particular realization, one can consider a (possibly
infinite) set of non-commuting variables: x1, . . . , xn, . . ..
Then

Ψn =
∑

i

xn
i

(In particular when all variables are declared to be
commutative, Ψn → pn.)
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NSym: elementary and homogeneous.

Define elementary symmetric functions Λn:

Λn =
(−1)n−1

n

∣∣∣∣∣∣∣∣∣∣

Ψ1 1 0 . . . . . .
...

...
...

...
...

Ψn−1 Ψn−2 . . . . . . n− 1

Ψn Ψn−1 . . . . . . Ψ1

∣∣∣∣∣∣∣∣∣∣
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NSym: elementary and homogeneous.

Define elementary symmetric functions Λn:

Λn =
(−1)n−1

n

∣∣∣∣∣∣∣∣∣∣

Ψ1 1 0 . . . . . .
...

...
...

...
...

Ψn−1 Ψn−2 . . . . . . n− 1

Ψn Ψn−1 . . . . . . Ψ1

∣∣∣∣∣∣∣∣∣∣

and complete symmetric functions Sn:

Sn =
1

n

∣∣∣∣∣∣∣∣∣∣

Ψ1 −(n− 1) 0 . . . . . .
...

...
...

...
...

Ψn−1 Ψn−2 . . . . . . −1

Ψn Ψn−1 . . . . . . Ψ1

∣∣∣∣∣∣∣∣∣∣
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NSym: ribbon Schur functions.

For every composition I = (i1, . . . , in) ribbon Schur
functions are defined as

RI = (−1)ℓ(I)−1

∣∣∣∣∣∣∣∣∣∣∣∣

Sin 1 0 . . . . . .

Sin+in−1
Sin−1

1 0 . . .
...

...
...

...
...

Sin+...+i2 Sin−1+...+i2 . . . Si2 1

Sin+...+i1 Sin−1+...+i1 . . . . . . Si1

∣∣∣∣∣∣∣∣∣∣∣∣
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...
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...
...
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∣∣∣∣∣∣∣∣∣∣∣∣

Remarkably, the multiplication of ribbon Schur is very
simple:

RI ·RJ = RI·J + RI⊲J
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Involution.

Recall that in the classical theory there is a map ω such that

ω(pλ) = (−1)ℓ(λ)−|λ|pλ

ω(mλ) = fλ, where fλ is the forgotten symmetric function

ω(sλ) = sλ
′ , where λ

′ is the partition conjugate to λ

In the noncommutative setting can also introduce a map ω

such that:
ω

(
ΨI

)
= (−1)ℓ(I)−|I|ΨI

Under this map,
ω (Λn) = Sn

and
ω (RI) = RI ˜
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Noncommutative Monomial and Fundamental Functions.

At this point I would like introduce new personae in NSym :

Noncommutative monomial (and forgotten) symmetric
functions.
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Noncommutative Monomial and Fundamental Functions.

At this point I would like introduce new personae in NSym :

Noncommutative monomial (and forgotten) symmetric
functions.

Noncommutative fundamental symmetric functions.

Expansion of ribbon Schur functions in the monomial
and fundamental bases.

A Noncommutative Cauchy identity and
noncommutative pairing.
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Noncommutative Monomial Symmetric Functions.

Define noncommutative monomial symmetric function
corresponding to a composition I = (i1, . . . , in) as a
quasideterminant of an n by n matrix:

M I =
(−1)n−1

n

∣∣∣∣∣∣∣∣∣∣∣∣

Ψin 1 0 . . . 0 0

Ψin−1+in Ψin−1
2 . . . 0 0

...
...

...
...

...
...

Ψi2+...+in . . . . . . . . . Ψi2 n− 1

Ψi1+...+in . . . . . . . . . Ψi1+i2 Ψi1

∣∣∣∣∣∣∣∣∣∣∣∣

where n is the length of I.

Noncommutative Monomial Symmetric Functions – p. 15/32



Noncommutative Monomial Symmetric Functions.

Define noncommutative monomial symmetric function
corresponding to a composition I = (i1, . . . , in) as a
quasideterminant of an n by n matrix:

M I =
(−1)n−1

n

∣∣∣∣∣∣∣∣∣∣∣∣

Ψin 1 0 . . . 0 0

Ψin−1+in Ψin−1
2 . . . 0 0

...
...

...
...

...
...

Ψi2+...+in . . . . . . . . . Ψi2 n− 1

Ψi1+...+in . . . . . . . . . Ψi1+i2 Ψi1

∣∣∣∣∣∣∣∣∣∣∣∣

where n is the length of I. In particular

M1n

= Λn

where Λn is an elementary symmetric function.
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Noncommutative Forgotten Symmetric Functions.

Also define noncommutative forgotten symmetric
function corresponding to a composition I = (i1, . . . , in) as
an n by n quasideterminant:

F I =
1

n

∣∣∣∣∣∣∣∣∣∣∣∣

Ψin −(n− 1) 0 . . . 0 0

Ψin−1+in Ψin−1
−(n− 2) . . . 0 0

...
...

...
...

...
...

Ψi2+...+in . . . . . . . . . Ψi2 −1

Ψi1+...+in . . . . . . . . . Ψi1+i2 Ψi1

∣∣∣∣∣∣∣∣∣∣∣∣
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Noncommutative Forgotten Symmetric Functions.

Also define noncommutative forgotten symmetric
function corresponding to a composition I = (i1, . . . , in) as
an n by n quasideterminant:

F I =
1

n

∣∣∣∣∣∣∣∣∣∣∣∣

Ψin −(n− 1) 0 . . . 0 0

Ψin−1+in Ψin−1
−(n− 2) . . . 0 0

...
...

...
...

...
...

Ψi2+...+in . . . . . . . . . Ψi2 −1

Ψi1+...+in . . . . . . . . . Ψi1+i2 Ψi1

∣∣∣∣∣∣∣∣∣∣∣∣

In particular
F 1n

= Sn

where Sn a homogeneous symmetric function.
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Properties of Monomial Symmetric Functions.

First of all, analogously to the classical case,
ω

(
M I

)
= (−1)|I|−ℓ(I)F I ;
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Properties of Monomial Symmetric Functions.

First of all, analogously to the classical case,
ω

(
M I

)
= (−1)|I|−ℓ(I)F I ;

Secondly, F I =
∑

J�I MJ , in particular Sn =
∑

|I|=n M I ;
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Properties of Monomial Symmetric Functions.

First of all, analogously to the classical case,
ω

(
M I

)
= (−1)|I|−ℓ(I)F I ;

Secondly, F I =
∑

J�I MJ , in particular Sn =
∑

|I|=n M I ;

The multiplication of M I :

MJ ·M I =
∑

K�J

(
ℓ(I) + ℓ(K)

ℓ(J)

)
MK·I +

(
ℓ(I) + ℓ(K)− 1

ℓ(J)

)
MK⊲I

Noncommutative Monomial Symmetric Functions – p. 17/32



Properties of Monomial Symmetric Functions.

First of all, analogously to the classical case,
ω

(
M I

)
= (−1)|I|−ℓ(I)F I ;

Secondly, F I =
∑

J�I MJ , in particular Sn =
∑

|I|=n M I ;

The multiplication of M I :

MJ ·M I =
∑

K�J

(
ℓ(I) + ℓ(K)

ℓ(J)

)
MK·I +

(
ℓ(I) + ℓ(K)− 1

ℓ(J)

)
MK⊲I

Commutative limit of M I , i.e. Ψn → pn:

mλ =
∑

I=σ(λ)

M I ,

where the sum is over all distinct permutations of parts of λ.
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Fundamental Noncommutative Symmetric Functions.

For every composition I one can define, by analogy with
Gessel’s fundamental quasi-symmetric functions,
fundamental noncommutative symmetric function

LI =
∑

J�I

MJ

Noncommutative Monomial Symmetric Functions – p. 18/32



Fundamental Noncommutative Symmetric Functions.

For every composition I one can define, by analogy with
Gessel’s fundamental quasi-symmetric functions,
fundamental noncommutative symmetric function

LI =
∑

J�I

MJ

In particular, L1n

= Λn = R1n and Ln = Sn = Rn.
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Fundamental Noncommutative Symmetric Functions.

For every composition I one can define, by analogy with
Gessel’s fundamental quasi-symmetric functions,
fundamental noncommutative symmetric function

LI =
∑

J�I

MJ

In particular, L1n

= Λn = R1n and Ln = Sn = Rn.
Under the involution ω

(
LI

)
= LĨ .
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Fundamental Noncommutative Symmetric Functions.

For every composition I one can define, by analogy with
Gessel’s fundamental quasi-symmetric functions,
fundamental noncommutative symmetric function

LI =
∑

J�I

MJ

In particular, L1n

= Λn = R1n and Ln = Sn = Rn.
Under the involution ω

(
LI

)
= LĨ .

Multiplication of fundamental symmetric functions when
I = (n) (or dually J = 1n):

Ln · LJ =
∑

M�J

(
n + ℓ(J)− 1

ℓ(M)

)
Ln·M +

(
n + ℓ(J)− 1

ℓ(M)− 1

)
Ln⊲M
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Expansion of ribbon Schur in the monomial basis.

Since both RI and M I (as well as LI) are linear bases of
NSym , consider expanding one basis into another.
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Expansion of ribbon Schur in the monomial basis.

Since both RI and M I (as well as LI) are linear bases of
NSym , consider expanding one basis into another. For
instance,

RI =
∑

J

KIJMJ ,

where KIJ may be called noncommutative Kostka numbers.
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Expansion of ribbon Schur in the monomial basis.

Since both RI and M I (as well as LI) are linear bases of
NSym , consider expanding one basis into another. For
instance,

RI =
∑

J

KIJMJ ,

where KIJ may be called noncommutative Kostka numbers.
As an example,

R121 = 5M14

+ 3M212

+ 3M121 + M31
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Expansion of ribbon Schur in the monomial basis.

Since both RI and M I (as well as LI) are linear bases of
NSym , consider expanding one basis into another. For
instance,

RI =
∑

J

KIJMJ ,

where KIJ may be called noncommutative Kostka numbers.
Conjecture 1
Noncommutative Kostka numbers are nonnegative integers.
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Expansion of ribbon Schur in the monomial basis.

Since both RI and M I (as well as LI) are linear bases of
NSym , consider expanding one basis into another. For
instance,

RI =
∑

J

KIJMJ ,

where KIJ may be called noncommutative Kostka numbers.
Conjecture 1
Noncommutative Kostka numbers are nonnegative integers.
Example.

Rk,1r =

(
k + r − 1

r

) ∑

|I|=k

M I·1r

Sketch of calculation: Consider the expansion in M I of
SnΛr and the fact that SnΛr = Rk,1r + Rk+1,1r−1.
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Expansion of ribbon Schur in the fundamental basis.

Expanding in the fundamental basis,

RI =
∑

J

GIJLJ ,

where GIJ may be called Kostka-Gessel numbers.
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Expansion of ribbon Schur in the fundamental basis.

Expanding in the fundamental basis,

RI =
∑

J

GIJLJ ,

where GIJ may be called Kostka-Gessel numbers.
As an example,

R121 = 2L212

+ 2L121 + L31

Noncommutative Monomial Symmetric Functions – p. 20/32



Expansion of ribbon Schur in the fundamental basis.

Expanding in the fundamental basis,

RI =
∑

J

GIJLJ ,

where GIJ may be called Kostka-Gessel numbers.
Conjecture 2
Kostka-Gessel numbers are nonnegative integers.
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Expansion of ribbon Schur in the fundamental basis.

Expanding in the fundamental basis,

RI =
∑

J

GIJLJ ,

where GIJ may be called Kostka-Gessel numbers.
Conjecture 2
Kostka-Gessel numbers are nonnegative integers.

Note 1: Only nonnegativity in the above conjectures
requires proof. The fact that these numbers are integers
follows from rules of multiplication of M Is and LIs
respectively.
Note 2: Nonnegativity of Kostka-Gessel numbers implies
that of noncommutative Kostka numbers.
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Examples of expansions of RI in LJ .

Example.

Rk,1r =

(
k + r − 1

r

)
Lk,1r
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Examples of expansions of RI in LJ .

Example.

Rk,1r =

(
k + r − 1

r

)
Lk,1r

Example.

Rnm =
∑

M�(m)

(
n

ℓ(M)

)
Ln·M +

∑

M≻(m)

(
n

ℓ(M)− 1

)
Ln⊲M

Sketch of the calculation:

Rnm = SnSm − Sn+m = Ln · Lm − Ln⊲m
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Noncommutative Cauchy identity and pairing.

Proposition.
Given two noncommutative alphabets X and Y , the
following identity is true:

∑

I

M I(X)SI(Y ) =
∑

I

LI(X)RI(Y )
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Noncommutative Cauchy identity and pairing.

Proposition.
Given two noncommutative alphabets X and Y , the
following identity is true:

∑

I

M I(X)SI(Y ) =
∑

I

LI(X)RI(Y )

Then define a noncommutative pairing in NSym by
requiring that M I and SI are dual to each other.

〈M I |SJ 〉 = δIJ ,

it follows that
〈LI |RJ〉 = δIJ

Noncommutative Monomial Symmetric Functions – p. 22/32



Some properties of the pairing.

Furthermore, ω is an isometry, i.e. for any two functions
H,G ∈ NSym

〈ω(H)|ω(G)〉 = 〈H|G〉
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Some properties of the pairing.

Furthermore, ω is an isometry, i.e. for any two functions
H,G ∈ NSym

〈ω(H)|ω(G)〉 = 〈H|G〉

〈ΨI |ΨJ 〉 =
∑

J�M�I

(−1)ℓ(M)−ℓ(J)lp(M,J)

ℓ(M)∏

k=1

(ℓ(M)−k+1)pk−pk−1 ,

where pk are such that for each M

M = (i1 + . . . + ip1
, . . . , ipk−1+1 + . . . + ipk

, . . . , ips
+ . . . + in)

In particular

〈ΨI |ΨI〉 =




ℓ(I)∏

k=1

ik


 ℓ(I)!
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Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about
nonnegativity of noncommutative Kostka numbers and
Kostka-Gessel numbers can be restated as follows:
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Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about
nonnegativity of noncommutative Kostka numbers and
Kostka-Gessel numbers can be restated as follows:

Conjecture 1.
〈RI |S

J 〉 = KIJ ≥ 0
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Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about
nonnegativity of noncommutative Kostka numbers and
Kostka-Gessel numbers can be restated as follows:

Conjecture 1.
〈RI |S

J 〉 = KIJ ≥ 0

Conjecture 2.
〈RI |RJ〉 = GIJ ≥ 0
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A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

∑

|λ|=n

Xℓ(λ)−1mλ =
n−1∑

k=0

sn−k,1k (X − 1)k
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A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

∑

|λ|=n

Xℓ(λ)−1mλ =
n−1∑

k=0

sn−k,1k (X − 1)k

There is a noncommutative version of this identity:

∑

|I|=n

Xℓ(I)−1M I =
n−1∑

k=0

R1k,n−k(X − 1)k
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A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

∑

|λ|=n

Xℓ(λ)−1mλ =
n−1∑

k=0

sn−k,1k (X − 1)k

There is a noncommutative version of this identity:

∑

|I|=n

Xℓ(I)−1M I =
n−1∑

k=0

R1k,n−k(X − 1)k

Ψn =
n−1∑

k=0

(−1)kR1k,n−k and
∑

|I|=n

LI =
n−1∑

k=0

R1kn−k

at X = 0 (GKLLRT, 1994); at X = 2 (B.-C.-V. Ung, 1998)
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Names Classical Quasi-symmetric Noncommutative

monomial mλ MI M I

power sums pn and pλ Ψn and ΨI

elementary en and eλ Λn and ΛI

complete hn and hλ Sn and SI

Schur sλ RI

fundamental LI LI
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Names Classical Quasi-symmetric Noncommutative

monomial mλ MI M I

power sums pn and pλ ΨI Ψn and ΨI

elementary en and eλ ΛI Λn and ΛI

complete hn and hλ SI Sn and SI

Schur sλ RI RI

fundamental LI LI
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Comments and Questions:
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Comments and Questions:

Every noncommutative generalization of power sums (for
instance, power sums of the second kind, Φ) generates
its own family of noncommutative symmetric functions.
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Comments and Questions:

Every noncommutative generalization of power sums (for
instance, power sums of the second kind, Φ) generates
its own family of noncommutative symmetric functions.

Super-symmetric functions can be generalized to the
noncommutative setting in the same fashion:
Ψn(X,Y ) =

∑
k Xn + (−1)n−1

∑
k Y n
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Comments and Questions:

Every noncommutative generalization of power sums (for
instance, power sums of the second kind, Φ) generates
its own family of noncommutative symmetric functions.

Super-symmetric functions can be generalized to the
noncommutative setting in the same fashion:
Ψn(X,Y ) =

∑
k Xn + (−1)n−1

∑
k Y n

Combinatorial and representation-theoretic interpretation
of noncommutative Kostka and Kostka-Gessel numbers.
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Comments and Questions:

Every noncommutative generalization of power sums (for
instance, power sums of the second kind, Φ) generates
its own family of noncommutative symmetric functions.

Super-symmetric functions can be generalized to the
noncommutative setting in the same fashion:
Ψn(X,Y ) =

∑
k Xn + (−1)n−1

∑
k Y n

Combinatorial and representation-theoretic interpretation
of noncommutative Kostka and Kostka-Gessel numbers.
F. Hivert, J.-C. Novelli, and J.-Y. Thibon have found a
combinatorial interpretation of Kostka-Gessel numbers.
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Comments and Questions:

Every noncommutative generalization of power sums (for
instance, power sums of the second kind, Φ) generates
its own family of noncommutative symmetric functions.

Super-symmetric functions can be generalized to the
noncommutative setting in the same fashion:
Ψn(X,Y ) =

∑
k Xn + (−1)n−1

∑
k Y n

Combinatorial and representation-theoretic interpretation
of noncommutative Kostka and Kostka-Gessel numbers.

Recall that in the classical theory, sλ =
∑

κ≤λ
mκ, where

≥ is the dominance order.
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Comments and Questions:

Every noncommutative generalization of power sums (for
instance, power sums of the second kind, Φ) generates
its own family of noncommutative symmetric functions.

Super-symmetric functions can be generalized to the
noncommutative setting in the same fashion:
Ψn(X,Y ) =

∑
k Xn + (−1)n−1

∑
k Y n

Combinatorial and representation-theoretic interpretation
of noncommutative Kostka and Kostka-Gessel numbers.

Is there a notion of order that stipulates which M I (or/and
LI ) occur in the ribbon Schur expansion?
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Comments and Questions:

Every noncommutative generalization of power sums (for
instance, power sums of the second kind, Φ) generates
its own family of noncommutative symmetric functions.

Super-symmetric functions can be generalized to the
noncommutative setting in the same fashion:
Ψn(X,Y ) =

∑
k Xn + (−1)n−1

∑
k Y n

Combinatorial and representation-theoretic interpretation
of noncommutative Kostka and Kostka-Gessel numbers.

Is there a notion of order that stipulates which M I (or/and
LI ) occur in the ribbon Schur expansion?

What are proper generalizations of the noncommutative
theory to the q and q, t settings?
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Reverse refinement order.

Let I = (i1, . . . , in), J = (j1, . . . , jk), |J | = |I| then I is said to
be no less than J in the reverse refinement order ,

I � J

if every part of J can be obtained by summing some
consecutive parts of I:
J = (i1 + . . . + ip1

, . . . , ips−1+1 + . . . + ips
, . . . , ipk−1+1 + . . . + in)

Noncommutative Monomial Symmetric Functions – p. 28/32



Reverse refinement order.

Let I = (i1, . . . , in), J = (j1, . . . , jk), |J | = |I| then I is said to
be no less than J in the reverse refinement order ,

I � J

if every part of J can be obtained by summing some
consecutive parts of I:
J = (i1 + . . . + ip1

, . . . , ips−1+1 + . . . + ips
, . . . , ipk−1+1 + . . . + in)

If J � I, a special notation is reserved for the product of last

parts of decomposition of I relative to J : lp(I, J) =
∏ℓ(J)

k=1 ipk
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Reverse refinement order.

Let I = (i1, . . . , in), J = (j1, . . . , jk), |J | = |I| then I is said to
be no less than J in the reverse refinement order ,

I � J

if every part of J can be obtained by summing some
consecutive parts of I:
J = (i1 + . . . + ip1

, . . . , ips−1+1 + . . . + ips
, . . . , ipk−1+1 + . . . + in)

If J � I, a special notation is reserved for the product of last

parts of decomposition of I relative to J : lp(I, J) =
∏ℓ(J)

k=1 ipk

For instance, (3, 3, 2) � (3, 1, 2, 2)
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Reverse refinement order.

Let I = (i1, . . . , in), J = (j1, . . . , jk), |J | = |I| then I is said to
be no less than J in the reverse refinement order ,

I � J

if every part of J can be obtained by summing some
consecutive parts of I:
J = (i1 + . . . + ip1

, . . . , ips−1+1 + . . . + ips
, . . . , ipk−1+1 + . . . + in)

If J � I, a special notation is reserved for the product of last

parts of decomposition of I relative to J : lp(I, J) =
∏ℓ(J)

k=1 ipk

(3, 3, 2) � (3, 1, 2, 2), lp((3122), (332)) = i1 · i3 · i4 = 3 · 2 · 2.

p1 = 1
p2 = 3
p3 = 4

≺
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Quasideterminants.

The quasideterminant of an n× n almost triangular matrix
with free entries aij and integers bi on the off-diagonal is
polynomial in its entries and can be written as:

Qn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 b1 0 . . . . . . . . . . . .

a21 a22 b2 0 . . . . . . . . .
...

...
...

...
...

...
...

aj1 aj2 . . . ajj bj 0 . . .
...

...
...

...
...

...
...

an−1 1 an−1 2 . . . . . . . . . . . . bn−1

an1 an2 . . . anj . . . . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
∑

n≥j1>...>jk>1

(−1)k+1anj1b
−1
j1−1aj1−1 j2b

−1
j2−1aj2−1 j3 . . . b−1

jk−1ajk−1 1
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An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix
with off-diagonal elements −bn−1, . . . ,−b1 and a sum of
quasideterminants of the same matrix with off-diagonal
elements b1, . . . , bn−1 .
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An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix
with off-diagonal elements −bn−1, . . . ,−b1 and a sum of
quasideterminants of the same matrix with off-diagonal
elements b1, . . . , bn−1 . Let an operator Tj act on Qn by
simultaneously removing (j + 1)th column and jth row (the
column and row that intersect at the off-diagonal element
bj). And for a partition J = (j1, j2, . . . , jk) define

TJ =
∏k

s=1 Tjs
.
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An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix
with off-diagonal elements −bn−1, . . . ,−b1 and a sum of
quasideterminants of the same matrix with off-diagonal
elements b1, . . . , bn−1 . Let an operator Tj act on Qn by
simultaneously removing (j + 1)th column and jth row (the
column and row that intersect at the off-diagonal element
bj). And for a partition J = (j1, j2, . . . , jk) define

TJ =
∏k

s=1 Tjs
.

Then the following identity is true

1

n
Qn(−(n− 1), . . . ,−1) =

∑

J

(−1)n−ℓ(J)−1

n− ℓ(J)
TJQn(1, . . . , n− 1),

where the sum is over all subsets J ⊆ [1, 2, . . . , n− 1].
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Example of the kaleidoscopic identity.

Consider a four by four quasideterminant Q4 and its
kaleidoscopic expansion:

1

4

∣∣∣∣∣∣∣∣∣∣∣

a11 −3 0 0

a21 a22 −2 0

a31 a32 a33 −1

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣

=

(
−

1

4
T∅ +

1

3
(T1 + T2 + T3) −

1

2
(T1T2 + T1T3 + T2T3) +

+T1T2T3T4) Q4 = −
1

4

∣∣∣∣∣∣∣∣∣∣∣

a11 1 0 0

a21 a22 2 0

a31 a32 a33 3

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣

+
1

3

∣∣∣∣∣∣∣∣

a21 1 0

a31 a33 2

a41 a43 a44

∣∣∣∣∣∣∣∣
+

1

3

∣∣∣∣∣∣∣∣

a11 1 0

a31 a32 2

a41 a42 a44

∣∣∣∣∣∣∣∣
+

+
1

3

∣∣∣∣∣∣∣∣

a11 1 0

a21 a22 2

a41 a42 a43

∣∣∣∣∣∣∣∣
−

1

2

∣∣∣∣∣∣
a31 1

a41 a44

∣∣∣∣∣∣
−

1

2

∣∣∣∣∣∣
a12 1

a41 a43

∣∣∣∣∣∣
−

1

2

∣∣∣∣∣∣
a11 1

a41 a42

∣∣∣∣∣∣
+ a41
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Quasideterminants in the commutative limit:

If one sets all aij to be commutative, then the
quasideterminant becomes a ratio of the determinant of the
same matrix to the minor obtained by crossing out the first
column and the last row:

Qn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 b1 0 . . . . . .
...

...
...

...
...

aj1 aj2 . . . bj 0
...

...
...

...
...

an1 . . . . . . . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 b1 0 . . . . . .
...

...
...

...
...

aj1 aj2 . . . bj 0
...

...
...

...
...

an1 . . . . . . . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
∏n−1

i=1 bi
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Commutative limit of M I .

Recall that there is an imbedding of Sym →֒ QSym, in
particular

mλ =
∑

I∼λ

MI ,

where I ∼ λ means all compositions I that can be obtained
by permuting parts of a partition λ.
In the commutative limit, the sum of M I with I ∼ λ goes
over to the augmented monomial symmetric function:

uλmλ =
∑

I=σ(λ)

M I ,

where uλ =
∏

i≥1 mi(λ)! with mi(λ) being the number of
parts of λ equal to i and the sum is over all permutations of
parts of λ.
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The third part of Cauchy identity.

M I =
∑

J�I

(−1)ℓ(I)−ℓ(J)

∏s−1
k=0(ℓ(I)− pk)

ΨJ , where s = ℓ(J)

And

SI =
∑

K�I

1

πu(K, I)
ΨK

Therefore

∑

I

M I(X)SI(Y )=
∑

I, K�I�J

(−1)ℓ(I)−ℓ(J)

∏ℓ(J)−1
k=0 (ℓ(I)− pk)πu(K, I)

ΨJ(X)ΨK(Y )
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From noncommutative pairing to the Hall scalar product.

∑

I

M ISI →
∑

I

M IhI =
∑

λ




∑

I=σ(λ)

M I


 hλ =

∑

λ

mλhλ
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