Noncommutative Monomial Symmetric Functions

Lenny Tevlin

Physics Department, Yeshiva University 500 West 185th Street, New York, N.Y. 10033 U.S.A.

FPSAC 2007, Nankai University, Tianjin, China, July 2 - 6

Noncommutative Monomial Symmetric Functions – p. 1/3

monomial	$m_{oldsymbol{\lambda}}$
power sums	p_n and $p_{oldsymbol{\lambda}}$
elementary	e_n and $e_{oldsymbol{\lambda}}$
complete	h_n and $h_{oldsymbol{\lambda}}$

monomial	$m_{oldsymbol{\lambda}}$
power sums	p_n and $p_{oldsymbol{\lambda}}$
elementary	e_n and $e_{oldsymbol{\lambda}}$
complete	h_n and $h_{oldsymbol{\lambda}}$
Schur	${}^{S}\boldsymbol{\lambda}$

monomial	$m_{oldsymbol{\lambda}}$	M_I
power sums	p_n and $p_{oldsymbol{\lambda}}$	
elementary	e_n and $e_{oldsymbol{\lambda}}$	
complete	h_n and h_{λ}	
Schur	$^{S}oldsymbol{\lambda}$	

Classical Symmetric Functions Noncommutative m_{λ} M^{I} s_{λ} R_{I}

	Classical Symmetric	Functions	Noncommutative
٩	$m_{oldsymbol{\lambda}}$		M^{I}
	$s_{oldsymbol{\lambda}}$		R_I
	$s_{\lambda} = \sum_{\kappa} K_{\lambda\kappa} m_{\kappa},$	R_I	$=\sum_{J} K_{IJ} M^{J}$
	where all $K_{\boldsymbol{\lambda}\boldsymbol{\kappa}} \in \mathbb{N}$	are all K_I	J also nonnegative?

Is there a noncommutative analog of of Cauchy identity and a corresponding scalar product?

$$\sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y) = \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) = \sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x) p_{\lambda}(y)$$

Plan of the talk:

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).
- Noncommutative Monomial Symmetric Functions.

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).
- Noncommutative Monomial Symmetric Functions.
- Noncommutative Fundamental Symmetric Functions.

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).
- Noncommutative Monomial Symmetric Functions.
- Noncommutative Fundamental Symmetric Functions.
- Expansion of Ribbon Schur Functions in Monomial and Fundamental Bases.

- Compositions.
- Quasideterminants (Gelfand, Retakh (1991)).
- Noncommutative Symmetric Functions (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)).
- Noncommutative Monomial Symmetric Functions.
- Noncommutative Fundamental Symmetric Functions.
- Expansion of Ribbon Schur Functions in Monomial and Fundamental Bases.
- A Noncommutative Cauchy Identity and Noncommutative Pairing.

A composition is ordered set of integers: $I = (i_1, \ldots, i_n)$. The sum of all parts is denoted by |I|, and the number of parts – by $\ell(I)$.

A composition is ordered set of integers: $I = (i_1, \ldots, i_n)$. The sum of all parts is denoted by |I|, and the number of parts – by $\ell(I)$.

 $I = (3, 1, 1, 4, 2), |I| = 11, \ell(I) = 5$

A composition is ordered set of integers: $I = (i_1, \ldots, i_n)$. The sum of all parts is denoted by |I|, and the number of parts – by $\ell(I)$. For a composition I define a **reverse** composition $\overline{I} = (i_n, \ldots, i_1)$. For instance, if I = (3, 1, 1, 4, 2), then $\overline{I} = (2, 4, 1, 1, 3)$.

A composition is ordered set of integers: $I = (i_1, \ldots, i_n)$. The sum of all parts is denoted by |I|, and the number of parts – by $\ell(I)$. Parts of a **conjugate** composition \tilde{I} can be read from the diagram of the composition I from left to right and from bottom to top:

I = (3, 1, 1, 4, 2) $\widetilde{I} = (1, 2, 1, 1, 4, 1, 1)$

Reverse refinement order.

Let $I = (i_1, \ldots, i_n), J = (j_1, \ldots, j_k), |J| = |I|$ then *I* is said to be greater in the **reverse refinement order** (or, simply, **finer**) than *J*,

$$I \succ J$$

if every part of *J* can be obtained by summing some consecutive parts of *I*:

 $J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$

Reverse refinement order.

Let $I = (i_1, \ldots, i_n), J = (j_1, \ldots, j_k), |J| = |I|$ then *I* is said to be greater in the **reverse refinement order** (or, simply, **finer**) than *J*,

$$I \succ J$$

if every part of *J* can be obtained by summing some consecutive parts of *I*:

 $J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$ For instance, $(3, 3, 2) = (3, 1 + 2, 2) \prec (3, 1, 2, 2)$,

Reverse refinement order.

Let $I = (i_1, \ldots, i_n), J = (j_1, \ldots, j_k), |J| = |I|$ then *I* is said to be greater in the **reverse refinement order** (or, simply, **finer**) than *J*,

$$I \succ J$$

if every part of *J* can be obtained by summing some consecutive parts of *I*:

 $J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$ For instance, $(3, 3, 2) = (3, 1 + 2, 2) \prec (3, 1, 2, 2)$,

Two Multiplications.

For two compositions $I = (i_1, \ldots, i_{r-1}, i_r)$ and $J = (j_1, j_2, \ldots, j_s)$ one defines two multiplications

$$I \triangleright J = (i_1, \dots, i_{r-1}, i_r + j_1, j_2, \dots, j_s),$$

with $\ell(I \triangleright J) = \ell(I) + \ell(J) - 1$
and

 $I \cdot J = (i_1, \dots, i_r, j_1, \dots, j_s),$ with $\ell(I \cdot J) = \ell(I) + \ell(J)$

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries a_{ij} and commutative off-diagonal entries b_j is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$\begin{array}{ccccccc} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{array}$$

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries a_{ij} and commutative off-diagonal entries b_j is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$\begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{31}$$

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries a_{ij} and commutative off-diagonal entries b_j is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$\begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{31} - \frac{a_{32}a_{11}}{b_1}$$
$$\begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \end{vmatrix}$$

 a_{31}

 a_{32}
Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries a_{ij} and commutative off-diagonal entries b_j is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$\begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{31} - \frac{a_{32}a_{11}}{b_1} - \frac{a_{33}a_{21}}{b_2}$$

$$11 \quad b_1 \quad 0 \\ a_{11} \quad b_1 \quad 0 \\ a_{11} \quad b_1 \quad 0 \\ a_{21} \quad a_{22} \quad b_2 \\ \hline a_{31} \quad a_{32} \quad a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix}$$

 \boldsymbol{a}

 \mathcal{A}

 \boldsymbol{a}

Quasideterminants.

A quasideterminant (with respect to the bottom left element) of an almost-triangular matrix with free entries a_{ij} and commutative off-diagonal entries b_j is a sum of all weighted paths starting at the bottom row, ending at the first column, taking north \uparrow and east \leftarrow steps and making eastward turns only at the off-diagonal entries.

$$\begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{31} - \frac{a_{32}a_{11}}{b_1} - \frac{a_{33}a_{21}}{b_2} + \frac{a_{33}a_{22}a_{11}}{b_1b_2}$$

$$\begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & b_1 & 0 \\ a_{21} & a_{22} & b_2 \\ \hline a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Noncommutative Symmetric Functions: plan of the review.

Everything is in place to introduce the object of interest : the algebra of noncommutative symmetric functions **NSym**.

Power sums.

Noncommutative Symmetric Functions: plan of the review.

Everything is in place to introduce the object of interest : the algebra of noncommutative symmetric functions **NSym**.

Power sums.

Elementary and complete (homogeneous) symmetric functions.

Noncommutative Symmetric Functions: plan of the review.

Everything is in place to introduce the object of interest : the algebra of noncommutative symmetric functions **NSym**.

Power sums.

Elementary and complete (homogeneous) symmetric functions.

Noncommutative Symmetric Functions: power sums.

In the original paper, (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)), took noncommutative elementary symmetric functions as generators of **NSym**.

Noncommutative Symmetric Functions: power sums.

In the original paper, (Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon (1994)), took noncommutative elementary symmetric functions as generators of **NSym**. Consider a set of non-commutative power sums (of the first kind) $\Psi^{I} = \Psi_{i_{1}} \cdot \ldots \cdot \Psi_{i_{n}}$ as generators. As a particular realization, one can consider a (possibly infinite) set of non-commuting variables: $x_{1}, \ldots, x_{n}, \ldots$. Then

$$\Psi_n = \sum_i x_i^n$$

(In particular when all variables are declared to be commutative, $\Psi_n \rightarrow p_n$.)

NSym: elementary and homogeneous.

Define **elementary symmetric** functions Λ_n :

$$\Lambda_n = \frac{(-1)^{n-1}}{n} \begin{vmatrix} \Psi_1 & 1 & 0 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \Psi_{n-1} & \Psi_{n-2} & \dots & n-1 \\ \hline \Psi_n & \Psi_{n-1} & \dots & \Psi_1 \end{vmatrix}$$

NSym: elementary and homogeneous.

Define **elementary symmetric** functions Λ_n :

$$\Lambda_n = \frac{(-1)^{n-1}}{n} \begin{vmatrix} \Psi_1 & 1 & 0 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \Psi_{n-1} & \Psi_{n-2} & \dots & n-1 \\ \hline \Psi_n & \Psi_{n-1} & \dots & \Psi_1 \end{vmatrix}$$

and **complete symmetric** functions S_n :

$$S_{n} = \frac{1}{n} \begin{vmatrix} \Psi_{1} & -(n-1) & 0 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \Psi_{n-1} & \Psi_{n-2} & \dots & \dots & -1 \\ \hline \Psi_{n} & \Psi_{n-1} & \dots & \dots & \Psi_{1} \end{vmatrix}$$

NSym: ribbon Schur functions.

For every composition $I = (i_1, \ldots, i_n)$ ribbon Schur functions are defined as

$$R_{I} = (-1)^{\ell(I)-1} \begin{vmatrix} S_{i_{n}} & 1 & 0 & \dots & \dots \\ S_{i_{n}+i_{n-1}} & S_{i_{n-1}} & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{i_{n}+\dots+i_{2}} & S_{i_{n-1}+\dots+i_{2}} & \dots & S_{i_{2}} & 1 \\ \hline S_{i_{n}+\dots+i_{1}} & S_{i_{n-1}+\dots+i_{1}} & \dots & \dots & S_{i_{1}} \end{vmatrix}$$

NSym: ribbon Schur functions.

For every composition $I = (i_1, \ldots, i_n)$ ribbon Schur functions are defined as

$$R_{I} = (-1)^{\ell(I)-1} \begin{vmatrix} S_{i_{n}} & 1 & 0 & \dots & \dots \\ S_{i_{n}+i_{n-1}} & S_{i_{n-1}} & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{i_{n}+\dots+i_{2}} & S_{i_{n-1}+\dots+i_{2}} & \dots & S_{i_{2}} & 1 \\ \hline S_{i_{n}+\dots+i_{1}} & S_{i_{n-1}+\dots+i_{1}} & \dots & \dots & S_{i_{1}} \end{vmatrix}$$

Remarkably, the multiplication of ribbon Schur is very simple:

$$R_I \cdot R_J = R_{I \cdot J} + R_{I \triangleright J}$$

Recall that in the classical theory there is a map ω such that

Recall that in the classical theory there is a map ω such that

 $\omega(p_{\lambda}) = (-1)^{\ell(\lambda) - |\lambda|} p_{\lambda}$

Recall that in the classical theory there is a map ω such that

$$\omega(p_{\lambda}) = (-1)^{\ell(\lambda) - |\lambda|} p_{\lambda}$$

 $\omega(m_{\lambda}) = f_{\lambda}$, where f_{λ} is the **forgotten** symmetric function

Recall that in the classical theory there is a map ω such that

$$\omega(p_{\lambda}) = (-1)^{\ell(\lambda) - |\lambda|} p_{\lambda}$$

 $\omega(m_{\lambda}) = f_{\lambda}$, where f_{λ} is the **forgotten** symmetric function
 $\omega(s_{\lambda}) = s_{\lambda'}$, where λ' is the partition conjugate to λ

Recall that in the classical theory there is a map ω such that

$$\omega(p_{\lambda}) = (-1)^{\ell(\lambda) - |\lambda|} p_{\lambda}$$

 $\omega(m_{\lambda}) = f_{\lambda}$, where f_{λ} is the **forgotten** symmetric function
 $\omega(s_{\lambda}) = s_{\lambda'}$, where λ' is the partition conjugate to λ

In the noncommutative setting can also introduce a map ω such that:

$$\omega\left(\Psi^{I}\right) = (-1)^{\ell(I) - |I|} \Psi^{\overline{I}}$$

Recall that in the classical theory there is a map ω such that

$$\omega(p_{\lambda}) = (-1)^{\ell(\lambda) - |\lambda|} p_{\lambda}$$

 $\omega(m_{\lambda}) = f_{\lambda}$, where f_{λ} is the **forgotten** symmetric function
 $\omega(s_{\lambda}) = s_{\lambda'}$, where λ' is the partition conjugate to λ

In the noncommutative setting can also introduce a map ω such that:

$$\omega\left(\Psi^{I}\right) = (-1)^{\ell(I) - |I|} \Psi^{\overline{I}}$$

Under this map,

$$\omega\left(\Lambda_n\right) = S_n$$

and

$$\omega\left(R_{I}\right)=R_{I}\tilde{}$$

At this point I would like introduce new personae in **NSym**:

Noncommutative monomial (and forgotten) symmetric functions.

At this point I would like introduce new personae in **NSym**:

Noncommutative monomial (and forgotten) symmetric functions.

Noncommutative fundamental symmetric functions.

At this point I would like introduce new personae in **NSym**:

Noncommutative monomial (and forgotten) symmetric functions.

Noncommutative fundamental symmetric functions.

Expansion of ribbon Schur functions in the monomial and fundamental bases.

At this point I would like introduce new personae in **NSym**:

Noncommutative monomial (and forgotten) symmetric functions.

Noncommutative fundamental symmetric functions.

Expansion of ribbon Schur functions in the monomial and fundamental bases.

A Noncommutative Cauchy identity and noncommutative pairing.

Noncommutative Monomial Symmetric Functions.

Define **noncommutative monomial symmetric function** corresponding to a composition $I = (i_1, ..., i_n)$ as a quasideterminant of an n by n matrix:

where n is the length of I.

Noncommutative Monomial Symmetric Functions.

Define **noncommutative monomial symmetric function** corresponding to a composition $I = (i_1, ..., i_n)$ as a quasideterminant of an *n* by *n* matrix:

$$M^{I} = \frac{(-1)^{n-1}}{n} \begin{vmatrix} \Psi_{i_{n}} & 1 & 0 & \dots & 0 & 0 \\ \Psi_{i_{n-1}+i_{n}} & \Psi_{i_{n-1}} & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \Psi_{i_{2}+\dots+i_{n}} & \dots & \dots & \dots & \Psi_{i_{2}} & n-1 \\ \hline \Psi_{i_{1}+\dots+i_{n}} & \dots & \dots & \dots & \Psi_{i_{1}+i_{2}} & \Psi_{i_{1}} \end{vmatrix}$$

where n is the length of I. In particular

$$M^{1^n} = \Lambda_n$$

where Λ_n is an elementary symmetric function.

Noncommutative Forgotten Symmetric Functions.

Also define **noncommutative forgotten symmetric function** corresponding to a composition $I = (i_1, ..., i_n)$ as an *n* by *n* quasideterminant:

Noncommutative Forgotten Symmetric Functions.

Also define **noncommutative forgotten symmetric function** corresponding to a composition $I = (i_1, ..., i_n)$ as an *n* by *n* quasideterminant:

In particular

$$F^{1^n} = S_n$$

where S_n a homogeneous symmetric function.

First of all, analogously to the classical case, $\omega \left(M^{I} \right) = (-1)^{|I| - \ell(I)} F^{\overline{I}};$

First of all, analogously to the classical case, $\omega \left(M^{I} \right) = (-1)^{|I| - \ell(I)} F^{\overline{I}};$ Secondly, $F^{I} = \sum_{J \leq I} M^{J}$, in particular $S_{n} = \sum_{|I| = n} M^{I};$

First of all, analogously to the classical case, $\omega (M^{I}) = (-1)^{|I| - \ell(I)} F^{\overline{I}};$ Secondly, $F^{I} = \sum_{J \leq I} M^{J}$, in particular $S_{n} = \sum_{|I|=n} M^{I};$ The multiplication of M^{I} :

$$M^J \cdot M^I = \sum_{K \preceq J} \binom{\ell(I) + \ell(K)}{\ell(J)} M^{K \cdot I} + \binom{\ell(I) + \ell(K) - 1}{\ell(J)} M^{K \triangleright I}$$

First of all, analogously to the classical case, $\omega (M^{I}) = (-1)^{|I| - \ell(I)} F^{\overline{I}};$ Secondly, $F^{I} = \sum_{J \leq I} M^{J}$, in particular $S_{n} = \sum_{|I| = n} M^{I};$ The multiplication of M^{I} :

$$M^J \cdot M^I = \sum_{K \leq J} \binom{\ell(I) + \ell(K)}{\ell(J)} M^{K \cdot I} + \binom{\ell(I) + \ell(K) - 1}{\ell(J)} M^{K \triangleright I}$$

Commutative limit of M^I , i.e. $\Psi_n \rightarrow p_n$:

$$m_{\lambda} = \sum_{I=\sigma(\lambda)} M^{I},$$

where the sum is over all distinct permutations of parts of λ .

For every composition *I* one can define, by analogy with Gessel's fundamental quasi-symmetric functions, **fundamental noncommutative** symmetric function

$$L^I = \sum_{J \succeq I} M^J$$

For every composition *I* one can define, by analogy with Gessel's fundamental quasi-symmetric functions, **fundamental noncommutative** symmetric function

$$L^I = \sum_{J \succeq I} M^J$$

In particular, $L^{1^n} = \Lambda_n = R_{1^n}$ and $L^n = S_n = R_n$.

For every composition *I* one can define, by analogy with Gessel's fundamental quasi-symmetric functions, **fundamental noncommutative** symmetric function

$$L^I = \sum_{J \succeq I} M^J$$

In particular, $L^{1^n} = \Lambda_n = R_{1^n}$ and $L^n = S_n = R_n$. Under the involution $\omega(L^I) = L^{\tilde{I}}$.

For every composition *I* one can define, by analogy with Gessel's fundamental quasi-symmetric functions, **fundamental noncommutative** symmetric function

$$L^I = \sum_{J \succeq I} M^J$$

In particular, $L^{1^n} = \Lambda_n = R_{1^n}$ and $L^n = S_n = R_n$. Under the involution $\omega(L^I) = L^{\tilde{I}}$. Multiplication of fundamental symmetric functions when I = (n) (or dually $J = 1^n$):

$$L^n \cdot L^J = \sum_{M \succeq J} \binom{n + \ell(J) - 1}{\ell(M)} L^{n \cdot M} + \binom{n + \ell(J) - 1}{\ell(M) - 1} L^{n \triangleright M}$$

Expansion of ribbon Schur in the monomial basis.

Since both R_I and M^I (as well as L^I) are linear bases of **NSym**, consider expanding one basis into another.

Expansion of ribbon Schur in the monomial basis.

Since both R_I and M^I (as well as L^I) are linear bases of **NSym**, consider expanding one basis into another. For instance,

$$R_I = \sum_J K_{IJ} M^J,$$

where K_{IJ} may be called noncommutative Kostka numbers.

Expansion of ribbon Schur in the monomial basis.

Since both R_I and M^I (as well as L^I) are linear bases of **NSym**, consider expanding one basis into another. For instance,

$$R_I = \sum_J K_{IJ} M^J,$$

where K_{IJ} may be called noncommutative Kostka numbers. As an example,

$$R_{121} = 5M^{1^4} + 3M^{21^2} + 3M^{121} + M^{31}$$
Expansion of ribbon Schur in the monomial basis.

Since both R_I and M^I (as well as L^I) are linear bases of **NSym**, consider expanding one basis into another. For instance,

$$R_I = \sum_J K_{IJ} M^J,$$

where K_{IJ} may be called noncommutative Kostka numbers. **Conjecture 1**

Noncommutative Kostka numbers are nonnegative integers.

Expansion of ribbon Schur in the monomial basis.

Since both R_I and M^I (as well as L^I) are linear bases of **NSym**, consider expanding one basis into another. For instance,

$$R_I = \sum_J K_{IJ} M^J,$$

where K_{IJ} may be called noncommutative Kostka numbers. **Conjecture 1**

Noncommutative Kostka numbers are nonnegative integers. **Example.**

$$R_{k,1^r} = \binom{k+r-1}{r} \sum_{|I|=k} M^{I \cdot 1^r}$$

Sketch of calculation: Consider the expansion in M^I of $S_n\Lambda_r$ and the fact that $S_n\Lambda_r = R_{k,1^r} + R_{k+1,1^{r-1}}$.

Expanding in the fundamental basis,

$$R_I = \sum_J G_{IJ} L^J,$$

where G_{IJ} may be called Kostka-Gessel numbers.

Expanding in the fundamental basis,

$$R_I = \sum_J G_{IJ} L^J,$$

where G_{IJ} may be called Kostka-Gessel numbers. As an example,

$$R_{121} = 2L^{21^2} + 2L^{121} + L^{31}$$

Expanding in the fundamental basis,

$$R_I = \sum_J G_{IJ} L^J,$$

where G_{IJ} may be called Kostka-Gessel numbers. **Conjecture 2**

Kostka-Gessel numbers are nonnegative integers.

Expanding in the fundamental basis,

$$R_I = \sum_J G_{IJ} L^J,$$

where G_{IJ} may be called Kostka-Gessel numbers. Conjecture 2

Kostka-Gessel numbers are nonnegative integers.

Note 1: Only nonnegativity in the above conjectures requires proof. The fact that these numbers are integers follows from rules of multiplication of M^I s and L^I s respectively.

Note 2: Nonnegativity of Kostka-Gessel numbers implies that of noncommutative Kostka numbers.

Examples of expansions of R_I in L^J .

Example.

$$R_{k,1^r} = \binom{k+r-1}{r} L^{k,1^r}$$

Examples of expansions of R_I in L^J .

Example.

$$R_{k,1^r} = \binom{k+r-1}{r} L^{k,1^r}$$

Example.

$$R_{nm} = \sum_{M \succeq (m)} \binom{n}{\ell(M)} L^{n \cdot M} + \sum_{M \succ (m)} \binom{n}{\ell(M) - 1} L^{n \triangleright M}$$

Sketch of the calculation:

$$R_{nm} = S_n S_m - S_{n+m} = L^n \cdot L^m - L^{n \triangleright m}$$

Proposition.

Given two noncommutative alphabets X and Y, the following identity is true:

$$\sum_{I} M^{I}(X)S^{I}(Y) = \sum_{I} L^{I}(X)R_{I}(Y)$$

Proposition.

Given two noncommutative alphabets X and Y, the following identity is true:

$$\sum_{I} M^{I}(X)S^{I}(Y) = \sum_{I} L^{I}(X)R_{I}(Y)$$

Then define a noncommutative pairing in **NSym** by requiring that M^I and S^I are dual to each other.

$$\langle M^I | S^J \rangle = \delta_{IJ},$$

it follows that

$$\langle L^I | R_J \rangle = \delta_{IJ}$$

Some properties of the pairing.

Furthermore, ω is an isometry, i.e. for any two functions $H, G \in \mathbf{NSym}$

 $\langle \omega(H) | \omega(G) \rangle = \langle H | G \rangle$

Some properties of the pairing.

Furthermore, ω is an isometry, i.e. for any two functions $H, G \in \mathbf{NSym}$

$\langle \omega(H) | \omega(G) \rangle = \langle H | G \rangle$

$$\langle \Psi^{I} | \Psi^{J} \rangle = \sum_{J \leq M \leq I} (-1)^{\ell(M) - \ell(J)} lp(M, J) \prod_{k=1}^{\ell(M)} (\ell(M) - k + 1)^{p_{k} - p_{k-1}},$$

where p_k are such that for each M

 $M = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{k-1}+1} + \ldots + i_{p_k}, \ldots, i_{p_s} + \ldots + i_n)$

In particular

$$\langle \Psi^{I} | \Psi^{I} \rangle = \left(\prod_{k=1}^{\ell(I)} i_{k}\right) \ell(I)!$$

Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about nonnegativity of noncommutative Kostka numbers and Kostka-Gessel numbers can be restated as follows:

Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about nonnegativity of noncommutative Kostka numbers and Kostka-Gessel numbers can be restated as follows:

Conjecture 1.

$$\langle R_I | S^J \rangle = K_{IJ} \ge 0$$

Kostka and Kostka-Gessel numbers and pairing.

With help of the pairing, both of conjectures about nonnegativity of noncommutative Kostka numbers and Kostka-Gessel numbers can be restated as follows:

Conjecture 1.

$$\langle R_I | S^J \rangle = K_{IJ} \ge 0$$

Conjecture 2.

```
\langle R_I | R_J \rangle = G_{IJ} \ge 0
```

A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

$$\sum_{|\boldsymbol{\lambda}|=n} X^{\ell(\boldsymbol{\lambda})-1} m_{\boldsymbol{\lambda}} = \sum_{k=0}^{n-1} s_{n-k,1^k} \left(X - 1 \right)^k$$

A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

$$\sum_{|\boldsymbol{\lambda}|=n} X^{\ell(\boldsymbol{\lambda})-1} m_{\boldsymbol{\lambda}} = \sum_{k=0}^{n-1} s_{n-k,1^k} \left(X - 1 \right)^k$$

There is a noncommutative version of this identity:

$$\sum_{|I|=n} X^{\ell(I)-1} M^{I} = \sum_{k=0}^{n-1} R_{1^{k},n-k} (X-1)^{k}$$

A noncommutative identity.

In the Exercise 10, Ch. I, §5 of Macdonald, it is shown that

$$\sum_{|\boldsymbol{\lambda}|=n} X^{\ell(\boldsymbol{\lambda})-1} m_{\boldsymbol{\lambda}} = \sum_{k=0}^{n-1} s_{n-k,1^k} \left(X - 1 \right)^k$$

There is a noncommutative version of this identity:

$$\sum_{|I|=n} X^{\ell(I)-1} M^{I} = \sum_{k=0}^{n-1} R_{1^{k},n-k} (X-1)^{k}$$
$$\Psi_{n} = \sum_{k=0}^{n-1} (-1)^{k} R_{1^{k},n-k} \text{ and } \sum_{|I|=n} L^{I} = \sum_{k=0}^{n-1} R_{1^{k}n-k}$$
$$\text{at } X = 0 \text{ (GKLLRT, 1994); } \text{ at } X = 2 \text{ (B.-C.-V. Ung, 1998)}$$

Classical Quasi-symmetric Noncommutative

Classical Quasi-symmetric Noncommutative

monomial	$m_{oldsymbol{\lambda}}$	M_I	M^{I}
power sums	p_n and $p_{oldsymbol{\lambda}}$	Ψ_I	Ψ_n and Ψ^I
elementary	e_n and $e_{oldsymbol{\lambda}}$	Λ_I	Λ_n and Λ^I
complete	h_n and $h_{oldsymbol{\lambda}}$	S_I	S_n and S^I
Schur	${}^{S}\boldsymbol{\lambda}$	R_I	R^{I}
fundamental		L_I	

● Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion: $\Psi_n(X,Y) = \sum_k X^n + (-1)^{n-1} \sum_k Y^n$

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion: $\Psi_n(X,Y) = \sum_k X^n + (-1)^{n-1} \sum_k Y^n$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion: $\Psi_n(X,Y) = \sum_k X^n + (-1)^{n-1} \sum_k Y^n$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.
 F. Hivert, J.-C. Novelli, and J.-Y. Thibon have found a combinatorial interpretation of Kostka-Gessel numbers.

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion: $\Psi_n(X,Y) = \sum_k X^n + (-1)^{n-1} \sum_k Y^n$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.
- Recall that in the classical theory, $s_{\lambda} = \sum_{\kappa \leq \lambda} m_{\kappa}$, where \geq is the dominance order.

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion: $\Psi_n(X,Y) = \sum_k X^n + (-1)^{n-1} \sum_k Y^n$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.
- Is there a notion of order that stipulates which M^{I} (or/and L^{I}) occur in the ribbon Schur expansion?

- Every noncommutative generalization of power sums (for instance, power sums of the second kind, Φ) generates its own family of noncommutative symmetric functions.
- Super-symmetric functions can be generalized to the noncommutative setting in the same fashion: $\Psi_n(X,Y) = \sum_k X^n + (-1)^{n-1} \sum_k Y^n$
- Combinatorial and representation-theoretic interpretation of noncommutative Kostka and Kostka-Gessel numbers.
- Is there a notion of order that stipulates which M^{I} (or/and L^{I}) occur in the ribbon Schur expansion?
- What are proper generalizations of the noncommutative theory to the q and q, t settings?

Let $I = (i_1, \ldots, i_n), J = (j_1, \ldots, j_k), |J| = |I|$ then *I* is said to be no less than *J* in the **reverse refinement order**,

$$I \succeq J$$

if every part of *J* can be obtained by summing some consecutive parts of *I*:

 $J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$

Let $I = (i_1, \ldots, i_n), J = (j_1, \ldots, j_k)$, |J| = |I| then I is said to be no less than J in the **reverse refinement order**,

 $I \succeq J$

if every part of *J* can be obtained by summing some consecutive parts of *I*:

 $J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$ If $J \leq I$, a special notation is reserved for the product of last parts of decomposition of I relative to J: $lp(I, J) = \prod_{k=1}^{\ell(J)} i_{p_k}$

Let $I = (i_1, \ldots, i_n), J = (j_1, \ldots, j_k)$, |J| = |I| then I is said to be no less than J in the **reverse refinement order**,

 $I \succeq J$

if every part of *J* can be obtained by summing some consecutive parts of *I*:

 $J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$ If $J \leq I$, a special notation is reserved for the product of last parts of decomposition of I relative to J: $lp(I, J) = \prod_{k=1}^{\ell(J)} i_{p_k}$ For instance, $(3, 3, 2) \leq (3, 1, 2, 2)$

Let $I = (i_1, \ldots, i_n), J = (j_1, \ldots, j_k), |J| = |I|$ then *I* is said to be no less than *J* in the **reverse refinement order**,

 $I \succ J$

if every part of J can be obtained by summing some consecutive parts of I:

 $J = (i_1 + \ldots + i_{p_1}, \ldots, i_{p_{s-1}+1} + \ldots + i_{p_s}, \ldots, i_{p_{k-1}+1} + \ldots + i_n)$ If $J \leq I$, a special notation is reserved for the product of last parts of decomposition of I relative to J: $lp(I, J) = \prod_{k=1}^{\ell(J)} i_{p_k}$ $(3, 3, 2) \leq (3, 1, 2, 2), lp((3122), (332)) = i_1 \cdot i_3 \cdot i_4 = 3 \cdot 2 \cdot 2.$

Quasideterminants.

The **quasideterminant** of an $n \times n$ almost triangular matrix with free entries a_{ij} and integers b_i on the off-diagonal is polynomial in its entries and can be written as:

An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix with off-diagonal elements $-b_{n-1}, \ldots, -b_1$ and a sum of quasideterminants of the same matrix with off-diagonal elements b_1, \ldots, b_{n-1} .

An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix with off-diagonal elements $-b_{n-1}, \ldots, -b_1$ and a sum of quasideterminants of the same matrix with off-diagonal elements b_1, \ldots, b_{n-1} . Let an operator T_j act on Q_n by simultaneously removing $(j + 1)^{\text{th}}$ column and j^{th} row (the column and row that intersect at the off-diagonal element b_j). And for a partition $J = (j_1, j_2, \ldots, j_k)$ define $T_J = \prod_{s=1}^k T_{j_s}$.

An identity between quasideterminants.

There is an identity between a quasideterminant of a matrix with off-diagonal elements $-b_{n-1}, \ldots, -b_1$ and a sum of quasideterminants of the same matrix with off-diagonal elements b_1, \ldots, b_{n-1} . Let an operator T_j act on Q_n by simultaneously removing $(j + 1)^{\text{th}}$ column and j^{th} row (the column and row that intersect at the off-diagonal element b_j). And for a partition $J = (j_1, j_2, \ldots, j_k)$ define $T_J = \prod_{s=1}^k T_{j_s}$. Then the following identity is true

$$\frac{1}{n}Q_n(-(n-1),\ldots,-1) = \sum_J \frac{(-1)^{n-\ell(J)-1}}{n-\ell(J)} T_J Q_n(1,\ldots,n-1),$$

where the sum is over all subsets $J \subseteq [1, 2, \dots, n-1]$.
Example of the kaleidoscopic identity.

Consider a four by four quasideterminant Q_4 and its kaleidoscopic expansion:

$$\begin{aligned} \frac{1}{4} \begin{vmatrix} a_{11} & -3 & 0 & 0 \\ a_{21} & a_{22} & -2 & 0 \\ a_{31} & a_{32} & a_{33} & -1 \\ \hline a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} &= \left(-\frac{1}{4}T_{\emptyset} + \frac{1}{3}\left(T_{1} + T_{2} + T_{3}\right) - \frac{1}{2}\left(T_{1}T_{2} + T_{1}T_{3} + T_{2}T_{3}\right) + \right. \\ \left. +T_{1}T_{2}T_{3}T_{4}\right)Q_{4} &= -\frac{1}{4} \begin{vmatrix} a_{11} & 1 & 0 & 0 \\ a_{21} & a_{22} & 2 & 0 \\ a_{31} & a_{32} & a_{33} & 3 \\ \hline a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{21} & 1 & 0 \\ a_{31} & a_{33} & 2 \\ \hline a_{41} & a_{43} & a_{44} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 & 0 \\ a_{31} & a_{32} & 2 \\ \hline a_{41} & a_{42} & a_{43} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 & 0 \\ a_{31} & a_{33} & 2 \\ \hline a_{41} & a_{42} & a_{44} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 & 0 \\ a_{31} & a_{32} & 2 \\ \hline a_{41} & a_{42} & a_{44} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 & 0 \\ a_{21} & a_{22} & 2 \\ \hline a_{41} & a_{42} & a_{43} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{12} & 1 \\ \hline a_{41} & a_{43} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{12} & 1 \\ \hline a_{41} & a_{43} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{41} & a_{42} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & 1 \\ \hline a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a_{11} & a_{12} \end{vmatrix} + \frac{1}{3} \begin{vmatrix} a$$

Quasideterminants in the commutative limit:

If one sets all a_{ij} to be commutative, then the quasideterminant becomes a ratio of the determinant of the same matrix to the minor obtained by crossing out the first column and the last row:

$$Q_{n} = \begin{vmatrix} a_{11} & b_{1} & 0 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{j1} & a_{j2} & \dots & b_{j} & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix} = \frac{\begin{vmatrix} a_{11} & b_{1} & 0 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots \\ a_{j1} & a_{j2} & \dots & b_{j} & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix}$$

Commutative limit of M^I .

Recall that there is an imbedding of $\mathbf{Sym} \hookrightarrow \mathbf{QSym},$ in particular

$$m_{\boldsymbol{\lambda}} = \sum_{I \sim \boldsymbol{\lambda}} M_{I},$$

where $I \sim \lambda$ means all compositions I that can be obtained by permuting parts of a partition λ .

In the commutative limit, the sum of M^I with $I \sim \lambda$ goes over to the **augmented monomial** symmetric function:

$$u_{\lambda}m_{\lambda} = \sum_{I=\sigma(\lambda)} M^{I},$$

where $u_{\lambda} = \prod_{i \ge 1} m_i(\lambda)!$ with $m_i(\lambda)$ being the number of parts of λ equal to *i* and the sum is over **all** permutations of parts of λ .

The third part of Cauchy identity.

$$M^{I} = \sum_{J \leq I} \frac{(-1)^{\ell(I) - \ell(J)}}{\prod_{k=0}^{s-1} (\ell(I) - p_{k})} \Psi^{J}, \text{ where } s = \ell(J)$$

And

$$S^{I} = \sum_{K \succeq I} \frac{1}{\pi_{u}(K, I)} \Psi^{K}$$

Therefore

$$\sum_{I} M^{I}(X) S^{I}(Y) = \sum_{I, \ K \succeq I \succeq J} \frac{(-1)^{\ell(I) - \ell(J)}}{\prod_{k=0}^{\ell(J) - 1} (\ell(I) - p_k) \pi_u(K, I)} \Psi^{J}(X) \Psi^{K}(Y)$$

From noncommutative pairing to the Hall scalar product.

$$\sum_{I} M^{I} S^{I} \to \sum_{I} M^{I} h^{I} = \sum_{\lambda} \left(\sum_{I=\sigma(\lambda)} M^{I} \right) h_{\lambda} = \sum_{\lambda} m_{\lambda} h_{\lambda}$$