Non-commutative extensions of classical determinantal identities

Matjaž Konvalinka and Igor Pak FPSAC'07, Tianjin

July 3, 2007

Overview

1 Examples of determinantal identities
2 Non-commutative determinantal identities
3 Matrix inverse formula
4 MacMahon master theorem
5 Sylvester's determinantal identity
6 References

Matrix inverse formula

Determinantal identities

Overview
Examples

Theorem

For a complex invertible matrix $A=\left(a_{i j}\right)_{m \times m}$, we have

$$
\left(A^{-1}\right)_{i j}=(-1)^{i+j} \frac{\operatorname{det} A^{i j}}{\operatorname{det} A} .
$$

Matrix inverse formula

We know that

$$
(I-A)^{-1}=I+A+A^{2}+\ldots
$$

so

$$
\left((I-A)^{-1}\right)_{i j}=\delta_{i j}+a_{i j}+\sum_{k} a_{i k} a_{k j}+\ldots
$$

We can rephrase the matrix inverse formula as follows:

$$
\operatorname{det}(I-A) \cdot\left(\delta_{i j}+a_{i j}+\sum_{k} a_{i k} a_{k j}+\ldots\right)=(-1)^{i+j} \operatorname{det}(I-A)^{j i}
$$

Matrix inverse formula

Matrix inverse formula says that two power series in $a_{i j}$ are the same, provided that the variables commute.

MacMahon master theorem

Overview

Theorem (MacMahon 1916)

Let $A=\left(a_{i j}\right)_{m \times m}$ be a complex matrix, and let x_{1}, \ldots, x_{m} be a set of variables. Denote by $G(\mathbf{r})$ the coefficient of $x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}$ in

$$
\prod_{i=1}^{m}\left(a_{i 1} x_{1}+\ldots+a_{i m} x_{m}\right)^{r_{i}}
$$

Let t_{1}, \ldots, t_{m} be another set of variables, and $T=\left(\delta_{i j} t_{i}\right)_{m \times m}$. Then

$$
\sum_{\mathbf{r} \geq 0} G(\mathbf{r}) \mathbf{t}^{\mathbf{r}}=\frac{1}{\operatorname{det}(I-T A)} .
$$

MacMahon master theorem

The coefficient of $x^{2} y^{0} z^{2}$ in $(y+z)^{2}(x+z)^{0}(x+y)^{2}$ is 1 , and the coefficient of $x^{2} y^{3} z^{1}$ in $(y+z)^{2}(x+z)^{3}(x+y)^{1}$ is 3. On the other hand, for

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad T=\left(\begin{array}{ccc}
t & 0 & 0 \\
0 & u & 0 \\
0 & 0 & v
\end{array}\right)
$$

we have

$$
\begin{aligned}
& \frac{1}{\operatorname{det}(I-T A)}=\frac{1}{1-t u-t v-u v-2 t u v}= \\
& =1+\ldots+t^{2} u^{0} v^{2}+\ldots+3 t^{2} u^{3} v^{1}+\ldots
\end{aligned}
$$

MacMahon master theorem

We can take $a_{i j}$ to be variables; each $G(\mathbf{r})$ is then a finite sum of monomials in $a_{i j}$. By taking $t_{1}=\ldots=t_{m}=1$, MacMahon master theorem gives

$$
\sum_{r \geq 0} G(\mathbf{r})=\frac{1}{\operatorname{det}(I-A)} .
$$

Since $\operatorname{det}(I-A)=1-a_{11}-\ldots-a_{m m}+a_{11} a_{22}+\ldots$, the right-hand side is also a power series in $a_{i j}$'s.

MacMahon master theorem

We can take $a_{i j}$ to be variables; each $G(\mathbf{r})$ is then a finite sum of monomials in $a_{i j}$. By taking $t_{1}=\ldots=t_{m}=1$, MacMahon master theorem gives

$$
\sum_{r \geq 0} G(\mathbf{r})=\frac{1}{\operatorname{det}(I-A)}
$$

Since $\operatorname{det}(I-A)=1-a_{11}-\ldots-a_{m m}+a_{11} a_{22}+\ldots$, the right-hand side is also a power series in $a_{i j}$'s.

MacMahon master theorem

Determinantal identities

Overview
Examples
Non-
commutative
extensions
Matrix inverse
formula
MacMahon
master
theorem
Sylvester's
identity
References

MacMahon master theorem says that two power series in $a_{i j}$ are the same, provided that the variables commute.

Sylvester's determinantal identity

Theorem (Sylvester's identity)

Let $A=\left(a_{i j}\right)_{m \times m}$ be a complex matrix; take $n<i, j \leq m$ and define

$$
\begin{gathered}
A_{0}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right), a_{i *}=\left(\begin{array}{lll}
a_{i 1} & \cdots & a_{i n}
\end{array}\right), a_{* j}=\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{n j}
\end{array}\right), \\
b_{i j}=\operatorname{det}\left(\begin{array}{cc}
A_{0} & a_{* j} \\
a_{i *} & a_{i j}
\end{array}\right), \quad B=\left(b_{i j}\right)_{n+1 \leq i, j \leq m}
\end{gathered}
$$

Then

$$
\operatorname{det} A \cdot\left(\operatorname{det} A_{0}\right)^{m-n-1}=\operatorname{det} B .
$$

Sylvester's determinantal identity

Determinantal identities

If we take $n=1$ and $m=3$, the Sylvester's identity says that

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \cdot a_{11}=\left|\begin{array}{ll}
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| & \left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right| \\
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| & \left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|
\end{array}\right| .
$$

Sylvester's determinantal identity

Determinantal identities

Overview
Examples

Non

commutative
extensions
Matrix inverse
formula
MacMahon
master
theorem
Sylvester's identity

References

Sylvester's determinantal identity says that two power series in $a_{i j}$ are the same, provided that the variables commute.

Non-commutative extensions

- Do these (or similar) identities hold when the variables are not commutative?
■ Can we find combinatorial proofs of these identities?
■ Can we add parameters and find natural q-analogues?

(otherwise I would be talking about something else)

Non-commutative extensions

Determinantal

 identities■ Do these (or similar) identities hold when the variables are not commutative?
■ Can we find combinatorial proofs of these identities?
■ Can we add parameters and find natural q-analogues?

Yes!

(otherwise I would be talking about something else)

Previous work

■ D. Foata, A Noncommutative Version of the Matrix Inversion Formula, Adv. Math. 31 (1979), 330-349
$■$ S. Garoufalidis, T. Tq Lê and D. Zeilberger, The Quantum MacMahon Master Theorem, to appear in Proc. Natl. Acad. of Sci.
■ Yu. I. Manin, Multiparameter quantum deformations of the linear supergroup, Comm. Math. Phys. 123 (1989), 163-175

Non-commutative extensions

Determinantal

 identitiesOverview
Examples
Non-
commutative extensions

Matrix inverse
formula
MacMahon
master
theorem
Sylvester's identity

References

Commutative variables:

$$
a_{i k} a_{j l}=a_{j j} a_{i k} \text { for all } i, j, k, l
$$

Cartier-Foata and right-quantum matrices

Cartier-Foata:

Right-quantum:

$$
\begin{aligned}
a_{j l} a_{i k} & =a_{i k} a_{j l} \quad \text { for all } i<j, k<l \\
a_{j l} a_{i k} & =a_{i k} a_{j l} \quad \text { for all } i<j, k>l \\
a_{j k} a_{i k} & =a_{i k} a_{j k} \quad \text { for all } i<j
\end{aligned}
$$

$$
\begin{aligned}
a_{j k} a_{i k} & =a_{i k} a_{j k} \text { for all } i<j \\
a_{i k} a_{j l}-a_{j k} a_{i l} & =a_{j l} a_{i k}-a_{i l} a_{j k} \quad \text { for all } i<j, k<l
\end{aligned}
$$

Cartier-Foata \Rightarrow right-quantum

q-Cartier-Foata and q-right-quantum matrices

q-Cartier-Foata:

$$
\begin{aligned}
a_{j l} a_{i k} & =a_{i k} a_{j l} \quad \text { for all } i<j, k<l \\
a_{j l} a_{i k} & =q^{2} a_{i k} a_{j l} \quad \text { for all } i<j, k>I \\
a_{j k} a_{i k} & =q a_{i k} a_{j k} \quad \text { for all } i<j
\end{aligned}
$$

q-right-quantum:

$$
\begin{aligned}
a_{j k} a_{i k} & =q a_{i k} a_{j k} \text { for all } i<j \\
a_{i k} a_{j l}-q^{-1} a_{j k} a_{i l} & =a_{j l} a_{i k}-q a_{i l} a_{j k} \text { for all } i<j, k<l
\end{aligned}
$$

q-Cartier-Foata $\Rightarrow q$-right-quantum

q-Cartier-Foata and q-right-quantum matrices

q-Cartier-Foata:

$$
\begin{aligned}
a_{j l} a_{i k} & =q_{k l}^{-1} a_{i j} a_{i k} a_{j l} \text { for all } i<j, k<l \\
a_{j l} a_{i k} & =q_{i j} q_{l k} a_{i k} a_{j l} \text { for all } i<j, k>l \\
a_{j k} a_{i k} & =q_{i j} a_{i k} a_{j k} \text { for all } i<j
\end{aligned}
$$

q-right-quantum:

$$
\begin{aligned}
a_{j k} a_{i k} & =q_{i j} a_{i k} a_{j k} \text { for all } i<j \\
a_{i k} a_{j l}-q_{i j}^{-1} a_{j k} a_{i l} & =q_{k I} a_{i j}^{-1} a_{j l} a_{i k}-q_{k l} a_{i l} a_{j k} \text { for all } i<j, k<l
\end{aligned}
$$

\mathbf{q}-Cartier-Foata $\Rightarrow \mathbf{q}$-right-quantum

Non-commutative determinant

Determinantal identities

Overview
Examples
Non-
commutative extensions

Matrix inverse
formula
MacMahon
master
theorem
Sylvester's identity

References

Given a matrix $A=\left(a_{i j}\right)_{m \times m}$ with not necessarily commuting entries, we can define its:

■ determinant by

$$
\operatorname{det} A=\sum_{\sigma \in S_{m}}(-1)^{\operatorname{inv}(\sigma)} a_{\sigma_{1} 1} \cdots a_{\sigma_{m} m}
$$

- q-determinant by

- q-determinant by

Non-commutative determinant

Determinantal identities

Overview
Examples
Non-
commutative extensions

Matrix inverse
formula
MacMahon
master
theorem
Sylvester's identity

References

Given a matrix $A=\left(a_{i j}\right)_{m \times m}$ with not necessarily commuting entries, we can define its:

■ determinant by

$$
\operatorname{det} A=\sum_{\sigma \in S_{m}}(-1)^{\operatorname{inv}(\sigma)} a_{\sigma_{1} 1} \cdots a_{\sigma_{m} m}
$$

■ q-determinant by

$$
\operatorname{det}_{q} A=\sum_{\sigma \in S_{m}}(-q)^{-i n v \sigma} a_{\sigma_{1} 1} \cdots a_{\sigma_{m} m}
$$

- q-determinant by

Non-commutative determinant

Determinantal

 identitiesOverview
Examples
Non-
commutative extensions

Matrix inverse

formula

MacMahon
master
theorem
Sylvester's identity

References

Given a matrix $A=\left(a_{i j}\right)_{m \times m}$ with not necessarily commuting entries, we can define its:
\square determinant by

$$
\operatorname{det} A=\sum_{\sigma \in S_{m}}(-1)^{\operatorname{inv}(\sigma)} a_{\sigma_{1}} \cdots a_{\sigma_{m} m}
$$

■ q-determinant by

$$
\operatorname{det}_{q} A=\sum_{\sigma \in S_{m}}(-q)^{-i \operatorname{inv} \sigma} a_{\sigma_{1} 1} \cdots a_{\sigma_{m} m}
$$

■ q-determinant by

$$
\operatorname{det}_{\mathbf{q}} A=\sum_{\sigma \in S_{m}}\left(\prod_{(i, j) \in \mathcal{I}(\sigma)}\left(-q_{\sigma_{j} \sigma_{i}}\right)^{-1}\right) a_{\sigma_{1} 1} \cdots a_{\sigma_{m} m}
$$

Non-commutative determinant

Determinantal identities

Overview
Examples
Non-
commutative extensions

Matrix inverse

formula

MacMahon
master
theorem
Sylvester's identity

References
$\square \operatorname{det}(I-A)=\sum_{J \subseteq[m]}(-1)^{|J|} \operatorname{det} A_{J}$
$\square \operatorname{det}_{q}(I-A)=\sum_{J \subseteq[m]}(-1)^{|J|} \operatorname{det}_{q} A_{J}$
$\square \operatorname{det}_{\mathbf{q}}(I-A)=\sum_{J \subseteq[m]}(-1)^{|J|} \operatorname{det}_{\mathbf{q}} A_{J}$

Matrix inverse formula

Determinantal identities

Overview
Examples
Non
commutative
extensions
Matrix inverse formula

MacMahon
master
theorem
Sylvester's identity

References

Theorem

If $A=\left(a_{i j}\right)_{m \times m}$ is a Cartier-Foata or right-quantum matrix, we have

$$
\left(\frac{1}{I-A}\right)_{i j}=(-1)^{i+j} \cdot \frac{1}{\operatorname{det}(I-A)} \cdot \operatorname{det}(I-A)^{i i}
$$

for all i, j.

Matrix inverse formula - q-cases

MacMahon master
theorem
Sylvester's identity

References

Theorem

If $A=\left(a_{i j}\right)_{m \times m}$ is a q-Cartier-Foata or a q-right-quantum matrix, we have

$$
\left(\frac{1}{I-A_{[j]}}\right)_{i j}=(-1)^{i+j} \frac{1}{\operatorname{det}_{q}(I-A)} \cdot \operatorname{det}_{q}(I-A)^{j i}
$$

for all i, j, where

$$
A_{[i j]}=\left(\begin{array}{cccccc}
q^{-1} a_{11} & \cdots & q^{-1} a_{1 j} & a_{1, j+1} & \cdots & a_{1 m} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
q^{-1} a_{i-1,1} & \cdots & q^{-1} a_{i-1, j} & a_{i-1, j+1} & \cdots & a_{i-1, m} \\
a_{i 1} & \cdots & a_{i j} & q a_{i, j+1} & \cdots & q a_{i, m} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m j} & q a_{m, j+1} & \cdots & q a_{m m}
\end{array}\right)
$$

Matrix inverse formula - q-cases

Theorem

If $A=\left(a_{i j}\right)_{m \times m}$ is a \mathbf{q}-Cartier-Foata matrix or a q-right-quantum matrix, we have

$$
\left(\frac{1}{I-A_{[j]}}\right)_{i j}=(-1)^{i+j} \frac{1}{\operatorname{det}_{\mathbf{q}}(I-A)} \cdot \operatorname{det}_{\mathbf{q}}(I-A)^{j i}
$$

for all i, j, where $A_{[i j]}$ is given by a similar formula (involving $\left.a_{i j}, q_{i j}\right)$.

Language of paths

What is the coefficient of $x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}$ in

$$
\left(a_{11} x_{1}+\ldots+a_{1 m} x_{m}\right)^{r_{1}} \cdots\left(a_{m 1} x_{1}+\ldots+a_{m m} x_{m}\right)^{r_{m}}
$$

where $a_{i j}$ are (not necessarily commuting) variables and x_{i} commute with $a_{i j}$'s and each other?

Language of paths

It is the sum of all monomials

so that $*$ represents $1 r_{1}$ times, $2 r_{2}$ times, etc.
We call such a monomial an ordered sequence or o-sequence of type $\left(r_{1}, \ldots, r_{m}\right)$.

Language of paths

Represent the variable $a_{i j}$ as a step from height i to height j, and a monomial $a_{i_{1} j_{1}} \cdots a_{i n j_{n}}$ as a concatenation of steps.

For example, $a_{23} a_{14} a_{22} a_{41} a_{13}$ becomes

Language of paths

An o-sequence of type $\left(r_{1}, \ldots, r_{m}\right)$ is represented by a concatenation of steps so that starting heights are non-decreasing and so that each i appears r_{i} times as a starting height and r_{i} times as an ending height.

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master

theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master

theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master

theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon
master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon
master
theorem
Sylvester's
identity
References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon
master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon
master
theorem
Sylvester's
identity
References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon
master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon
master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula
MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master

theorem

Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

A bijection

Determinantal

 identities
Overview

Examples

Non-

commutative
extensions
Matrix inverse formula

MacMahon master
theorem
Sylvester's identity

References

Path sequences

Determinantal

 identitiesA path sequence or p-sequence is a concatenation of a lattice path from $(0,1)$ to $\left(x_{1}, 1\right)$ that never goes below $y=1$ or above $y=m$, a lattice path from $\left(x_{1}, 2\right)$ to $\left(x_{2}, 2\right)$ that never goes below $y=2$ or above $y=m$, a lattice path from $\left(x_{2}, 3\right)$ to $\left(x_{3}, 3\right)$ that never goes below $y=3$ or above $y=m$, etc.

Path sequences

Determinantal

 identitiesOverview
Examples
Non-
commutative
extensions
Matrix inverse

formula

MacMahon master theorem

Sylvester's
identity
References

We have established a bijection φ from the set of 0 -sequences to the set of p -sequences so that $\varphi(\alpha)$ is a rearrangement of α.

Classical MacMahon master theorem

Determinantal identities

Overview
Examples
Non-
commutative
extensions
Matrix inverse
formula
MacMahon master
theorem
Sylvester's identity

References

The sum of all paths from 1 to 1 is given by

$$
\left(I+A+A^{2}+\ldots\right)_{11}=\left(\frac{1}{I-A}\right)_{11}
$$

the sum of all paths from 2 to 2 that avoid 1 is given by

etc.

Classical MacMahon master theorem

MacMahon master theorem

Sylvester's identity

References

The sum of all paths from 1 to 1 is given by

$$
\left(I+A+A^{2}+\ldots\right)_{11}=\left(\frac{1}{I-A}\right)_{11},
$$

the sum of all paths from 2 to 2 that avoid 1 is given by

$$
\left(\frac{1}{I-A^{11}}\right)_{22},
$$

etc.

Classical MacMahon master theorem

Determinantal identities

Overview

Examples
Non
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Therefore the sum of all p-sequences is given by

$$
\left(\frac{1}{I-A}\right)_{11}\left(\frac{1}{I-A^{11}}\right)_{22}\left(\frac{1}{I-A^{12,12}}\right)_{33} \cdots \frac{1}{1-a_{m m}}
$$

This finishes the proof of MacMahon master theorem.

Classical MacMahon master theorem

Determinantal identities

Overview

Examples
Non
commutative
extensions
Matrix inverse
formula
MacMahon master theorem

Sylvester's identity

References

Therefore the sum of all p-sequences is given by

$$
\begin{gathered}
\left(\frac{1}{I-A}\right)_{11}\left(\frac{1}{I-A^{11}}\right)_{22}\left(\frac{1}{I-A^{12,12}}\right)_{33} \cdots \frac{1}{1-a_{m m}} \\
=\frac{\operatorname{det}(I-A)^{11}}{\operatorname{det}(I-A)} \cdot \frac{\operatorname{det}(I-A)^{12,12}}{\operatorname{det}(I-A)^{11}} \cdots \frac{1}{1-a_{m m}}
\end{gathered}
$$

This finishes the proof of MacMahon master theorem.

Classical MacMahon master theorem

Therefore the sum of all p-sequences is given by

$$
\begin{gathered}
\left(\frac{1}{I-A}\right)_{11}\left(\frac{1}{I-A^{11}}\right)_{22}\left(\frac{1}{I-A^{12,12}}\right)_{33} \cdots \frac{1}{1-a_{m m}} \\
=\frac{\operatorname{det}(I-A)^{11}}{\operatorname{det}(I-A)} \cdot \frac{\operatorname{det}(I-A)^{12,12}}{\operatorname{det}(I-A)^{11}} \cdots \frac{1}{1-a_{m m}} \\
=\frac{1}{\operatorname{det}(I-A)}
\end{gathered}
$$

This finishes the proof of MacMahon master theorem.

Classical MacMahon master theorem

Therefore the sum of all p-sequences is given by

$$
\begin{gathered}
\left(\frac{1}{I-A}\right)_{11}\left(\frac{1}{I-A^{11}}\right)_{22}\left(\frac{1}{I-A^{12,12}}\right)_{33} \cdots \frac{1}{1-a_{m m}} \\
=\frac{\operatorname{det}(I-A)^{11}}{\operatorname{det}(I-A)} \cdot \frac{\operatorname{det}(I-A)^{12,12}}{\operatorname{det}(I-A)^{11}} \cdots \frac{1}{1-a_{m m}} \\
=\frac{1}{\operatorname{det}(I-A)}
\end{gathered}
$$

This finishes the proof of MacMahon master theorem.

Cartier-Foata master theorem

Since:
$■$ the bijection φ never switches steps that begin at the same height, and
■ the matrix inverse formula holds for Cartier-Foata matrices,
the same proof gives the following theorem.

Cartier-Foata master theorem

Since:
\square the bijection φ never switches steps that begin at the same height, and
■ the matrix inverse formula holds for Cartier-Foata matrices,
the same proof gives the following theorem.

Cartier-Foata master theorem

Theorem (Cartier-Foata master theorem)

Let $A=\left(a_{i j}\right)_{m \times m}$ be a Cartier-Foata matrix. Denote by $G(\mathbf{r})$ the coefficient of $x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}$ in

$$
\prod_{i=1}^{m}\left(a_{i 1} x_{1}+\ldots+a_{i m} x_{m}\right)^{r_{i}}
$$

Then

$$
\sum_{\mathbf{r} \geq 0} G(\mathbf{r})=\frac{1}{\operatorname{det}(I-A)}
$$

Right-quantum master theorem

MacMahon master
theorem
Sylvester's
identity
References

Can we extend the theorem to the case when A is right-quantum?

Right-quantum master theorem

Determinantal identities

Overview
Examples
Non-
commutative
extensions
Matrix inverse

formula

MacMahon master
theorem
Sylvester's
identity
References

Yes, but we need something extra for the proof.

Right-quantum master theorem

Determinantal identities

Overview
Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Since

$$
a_{j k} a_{i k}=a_{i k} a_{j k}
$$

we can switch steps that end on the same height:

Right-quantum master theorem

Determinantal identities

Overview
Examples
Non-
commutative
extensions
Matrix inverse
formula
MacMahon master
theorem
Sylvester's
identity
References

Since

$$
a_{j k} a_{i k}=a_{i k} a_{j k}
$$

we can switch steps that end on the same height:

Right-quantum master theorem

Determinantal identities

Overview
Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

But since

$$
a_{i k} a_{j l}+a_{i l} a_{j k}=a_{j l} a_{i k}+a_{j k} a_{i l},
$$

we have to make other switches simultaneously, in pairs:

Right-quantum master theorem

Determinantal identities

Overview
Examples
Non-
commutative
extensions
Matrix inverse
formula
MacMahon master theorem

Sylvester's identity

References

But since

$$
a_{i k} a_{j l}+a_{i l} a_{j k}=a_{j l} a_{i k}+a_{j k} a_{i l},
$$

we have to make other switches simultaneously, in pairs:

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identitiesOverview
Examples
Non-
commutative
extensions
Matrix inverse formula
MacMahon master theorem
Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identitiesOverview
Examples
Non-
commutative
extensions
Matrix inverse formula
MacMahon master theorem
Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identitiesOverview
Examples
Non-
commutative
extensions
Matrix inverse formula
MacMahon master theorem
Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identitiesOverview
Examples
Non-
commutative
extensions
Matrix inverse formula
MacMahon master theorem
Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

References

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

~

Right-quantum master theorem

Determinantal

 identities
Overview

Examples
Non-
commutative
extensions
Matrix inverse formula

MacMahon master theorem

Sylvester's identity

Right-quantum master theorem

Theorem (right-quantum master theorem)
Let $A=\left(a_{i j}\right)_{m \times m}$ be a right-quantum matrix. Denote by $G(\mathbf{r})$ the coefficient of $x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}$ in

$$
\prod_{i=1}^{m}\left(a_{i 1} x_{1}+\ldots+a_{i m} x_{m}\right)^{r_{i}}
$$

Then

$$
\sum_{\mathbf{r} \geq 0} G(\mathbf{r})=\frac{1}{\operatorname{det}(I-A)}
$$

Weighted analogue

If we assume that

$$
x_{j} x_{i}=q x_{i} x_{j} \text { for all } i<j
$$

that A is q-right-quantum and that x_{i} 's commute with $a_{i j}$'s, then careful bookkeeping of the weights shows the following.

Weighted analogue

Determinantal identities

Overview
Examples
Non
commutative
extensions
Matrix inverse
formula
MacMahon master theorem

Sylvester's identity

References

Theorem (q-right-quantum master theorem)
Denote the coefficient of $x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}$ in

$$
\prod_{i=1}^{m}\left(a_{i 1} x_{1}+\ldots+a_{i m} x_{m}\right)^{r_{i}}
$$

by $G(\mathbf{r})$. Then

$$
\sum_{\mathbf{r} \geq 0} G(\mathbf{r})=\frac{1}{\operatorname{det}_{q}(I-A)}
$$

Multiparameter analogue

Determinantal

 identitiesOverview
Examples
Non-
commutative
extensions
Matrix inverse

formula

MacMahon master
theorem
Sylvester's
identity
References

If we assume that

$$
x_{j} x_{i}=q_{i j} x_{i} x_{j} \text { for all } i<j,
$$

that A is \mathbf{q}-right-quantum and that x_{i} 's commute with $a_{i j}$'s, then we have the following.

Multiparameter analogue

Determinantal identities

Overview
Examples
Non-
commutative
extensions
Matrix inverse

formula

MacMahon master theorem

Sylvester's identity

References

Theorem (\mathbf{q}-right-quantum master theorem)
Denote the coefficient of $x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}$ in

$$
\prod_{i=1}^{m}\left(a_{i 1} x_{1}+\ldots+a_{i m} x_{m}\right)^{r_{i}}
$$

by $G(\mathbf{r})$. Then

$$
\sum_{\mathbf{r} \geq 0} G(\mathbf{r})=\frac{1}{\operatorname{det}_{\mathbf{q}}(I-A)}
$$

Non-commutative Sylvester's identity

Sylvester's identity

References

Similar techniques prove the following theorem.

Non-commutative Sylvester's identity

Theorem (q-right-quantum Sylvester's theorem)

Let $A=\left(a_{i j}\right)_{m \times m}$ be a q-right-quantum matrix, and choose $n<m$. Let $A_{0}, a_{i *}, a_{* j}$ be defined as above, and let

$$
\begin{gathered}
c_{i j}^{\mathbf{q}}=-\operatorname{det}_{\mathbf{q}}^{-1}\left(I-A_{0}\right) \cdot \operatorname{det}_{\mathbf{q}}\left(\begin{array}{cc}
I-A_{0} & -\boldsymbol{a}_{* j} \\
-\mathbf{a}_{i *} & -\mathbf{a}_{i j}
\end{array}\right), \\
C^{\mathbf{q}}=\left(c_{i j}^{\mathbf{q}}\right)_{n+1 \leq i, j \leq m} .
\end{gathered}
$$

Suppose $q_{i j}=q_{i^{\prime} j^{\prime}}$ for all $i, i^{\prime} \leq n$ and $j, j^{\prime}>n$. Then

$$
\operatorname{det}_{\mathbf{q}}^{-1}\left(I-A_{0}\right) \cdot \operatorname{det}_{\mathbf{q}}(I-A)=\operatorname{det}_{\mathbf{q}}\left(I-C^{\mathbf{q}}\right)
$$

References

■ M. Konvalinka and I. Pak, Non-commutative extensions of MacMahon's Master Theorem, to appear in Adv. Math.

■ M. Konvalinka, Non-commutative Sylvester's determinantal identity, Electron. J. Combin., vol. 14 (2007), Article 42
\square M. Konvalinka, A generalization of Foata's fundamental transformation and its applications to the right-quantum algebra, preprint (2007)

