Cyclic Sieving Phenomenon for the Generalized Cluster Complexes

Sen－Peng Eu
游森棚
speu＠nuk．edu．tw

University of Kaohsiung，Taiwan
高雄大學

- Part of this work is done during my visit at School of Mathematics, University of Minnesota.
- To appear in Advances in Applied Mathematics, jointed with T.Fu.
- This work is mentioned by V. Reiner in his invited talk in 2007 AMSMAA annual meeting under the title "A new Combinatorics"

Outline of the talk

- Cyclic Sieving Phenomenon
- Cluster complex and Generalized Cluster complex
- The result in type A, idea of proof.
- More Results
- Discussion and Open Problems

Cyclic Sieving Phenomenon

- The notion is by Reiner, Stanton, White (JCTA, 2005)
- $X:=$ a combinatorial structures
- $X(q) \in \mathbb{Z}[q], X(1)=|X|$
- $C:=$ a cyclic group acting on X, where $|C|=n$.
- $(X, X(q), C)$ exhibits CSP $:=$ for every $c \in C$,

$$
[X(q)]_{q=\omega}=|\{x \in X: c(x)=x\}|,
$$

where ω is a root of 1 , of the same multiplicative order as c.

- Equivalently, write

$$
X(q) \equiv a_{0}+a_{1} q+\ldots a_{n-1} q^{n-1}\left(\bmod q^{n}-1\right)
$$

then $a_{k}=$ orbits whose stablizer order divides k.

Cyclic Sieving Phenomenon

- For example,
- $X:=\Delta$-dissections of a regular hexagon.
- $X(q)=\frac{1}{[5]}\left[\begin{array}{l}8 \\ 4\end{array}\right]=q^{12}+q^{10}+q^{9}+2 q^{8}+q^{7}+2 q^{6}+q^{5}+2 q^{4}+q^{3}+q^{2}+1$
- $C:=\mathbb{Z}_{6}$

- Let $c=3 \in \mathbb{Z}_{6}$ (turn 180°). Then $\omega=-1$.
$[X(q)]_{q=-1}=6=\mid\left\{x \in X: x\right.$ looks the same when turn $\left.180^{\circ}\right\} \mid$.
- There is much information hidden in the generating function.

Cyclic Sieving Phenomenon

- Equivalently,

$$
\begin{aligned}
X(q): & =q^{12}+q^{10}+q^{9}+2 q^{8}+q^{7}+2 q^{6}+q^{5}+2 q^{4}+q^{3}+q^{2}+1 \\
& \equiv 4+1 q+3 q^{2}+2 q^{3}+3 q^{4}+1 q^{5} \bmod q^{6}-1
\end{aligned}
$$

$4=\#$ orbits
$1=\#$ orbits whose stablizer order divides 1
$3=\#$ orbits whose stablizer order divides 2
$2=\#$ orbits whose stablizer order divides $3 \ldots$ etc.

CSP on dissections

Theorem. (Reiner, Stanton, White, 2005)

- $X:=$ triangulation of $(n+2)$-gon.
- $X(q):=\frac{1}{[n+1]_{q}}\left[\begin{array}{c}2 n \\ n\end{array}\right]_{q}$.
- $C:=$ cyclic group of order $n+2$, by rotation.

Then $(X, X(q), C)$ exhibits CSP.

- It still works when using fewer diagonals....

CSP on dissections

Theorem. (Reiner, Stanton, White, 2005)

- $X:=$ dissections of $(n+2)$-gon using k diagonals.
$\cdot X(q):=\frac{1}{[k+1]_{q}}\left[\begin{array}{c}n+k+1 \\ k\end{array}\right]_{q}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}$.
- $C:=$ cyclic group of order $n+2$, by rotation.

Then $(X, X(q), C)$ exhibits CSP.

- We will see, this is the type $A_{n-1}, s=1$ case of our results.
- In our language,
k-faces of the cluster complex $\Delta^{1}\left(A_{n-1}\right)$ exhibits CSP.
- What is the cluster complex $\Delta^{1}(\Phi)$?
- What is the generalized cluster complex $\Delta^{s}(\Phi)$?

Cluster Complex $\Delta(\Phi)$

- Developed by Fomin and Zelevinsky(2002, Ann. Math.).

From a Root system $\Phi \rightsquigarrow$ construct a cluster complex $\Delta(\Phi)$
Step 1: Take a root system Φ, consider the ground set $\Phi_{\geq-1}$.
Step 2: Define two involutions $\tau_{ \pm}$on $\Phi_{\geq-1}$.
Step 3: Define a cyclic group $\Gamma:=\left\langle\tau_{-} \tau_{+}\right\rangle$acting on $\Phi_{\geq-1}$.
Step 4: Define compatibility of roots under the action of Γ Step 5: Define the Cluster complex $\Delta(\Phi)$ by compatibility.

- Take $\Phi=A_{2}$ as an example.

Step 1: The ground set

Step 1: Ground set:

$$
\Phi_{\geq-1}:=\Phi_{>0} \cup \Phi_{=-1},
$$

$\Phi_{>0}:=$ positive roots, $\Phi_{=-1}:=$ negative simple roots
A_{2} :

Step 2: Two involutions $\tau_{ \pm}$on $\Phi_{\geq-1}$

Step 2: Define the involutions $\tau_{ \pm}: \Phi_{\geq-1} \rightarrow \Phi_{\geq-1}$ by

$$
\tau_{\epsilon}(\alpha)= \begin{cases}\alpha & \text { if } \alpha=-\alpha_{i}, \text { for } i \in I_{-\epsilon} \\ \left(\prod_{i \in I_{\epsilon}} s_{i}\right)(\alpha) & \text { otherwise }\end{cases}
$$

for $\epsilon \in\{+,-\}$.
A_{2} :

Step 3: cyclic group Γ acting on $\Phi_{\geq-1}$

Step 3: Define cyclic group $\Gamma:=\left\langle\tau_{-} \tau_{+}\right\rangle$, acting on $\Phi_{\geq-1}$
A_{2} :

Which has a combinatorial model:

Step 4: Define compatibility

Step 4: Define compatibility
(i) $-\alpha_{i} \sim \beta \Longleftrightarrow$ expansion of β does not involve α_{i}.
(ii) $\alpha \sim \beta \Longleftrightarrow \Gamma(\alpha) \sim \Gamma(\beta)$;
A_{2} :

Exactly the 'noncrossing diagonals'!

Step 5: Cluster complex $\Delta(\Phi)$

Step 5: Define the Cluster complex $\Delta(\Phi)$ by compatibility.

$$
A_{2}: \Delta\left(A_{2}\right)
$$

Step 5: Cluster complex $\Delta(\Phi)$

- $\Delta\left(A_{3}\right)$ and its dual complex.

- $\Delta\left(A_{n-1}\right)$ is the dual complex of the associahedron.

Step 5: Cluster complex $\Delta(\Phi)$

- dual complex of $\Delta\left(B_{3}\right)$

- $\Delta\left(B_{n-1}\right)$ is the dual complex of the cyclohedron.

Generalized Cluster complex $\Delta(\Phi)$

- Developed by Fomin and Reading (Int. Math. Res. Notices, 2005).

Root system Φ and $s \rightsquigarrow$ generalized cluster complex $\Delta^{s}(\Phi)$

- The Steps 1-5 are similar.
- What is s ?
- 1 set of simple negative roots.
- s sets of positive roots.
- $A_{3}, s=3$

Generalized Cluster complex $\Delta^{s}(\Phi)$

- $\Delta^{2}\left(A_{2}\right)$

- We will consider all types, for all s, and all k-dim faces.
- Our Goal: k-faces of $\Delta^{s}(\Phi)$ exhibits CSP.....

$$
\Delta^{s}\left(A_{n-1}\right)
$$

- In type A_{n-1}, combinatorial model realized in dissections.
- $(s n+2)$-gon.
- A-diagnoal $=$ diagonal.
- compatible $=$ noncrossing diagonal.
- Type A, $s=2, n=3, k=2$. These are 2 -faces of $\Delta^{2}\left(A_{2}\right)$:

CSP on $\Delta^{s}\left(A_{n-1}\right)$

Theorem. (Eu, Fu, 2007)

- $X:=k$-faces of $\Delta^{s}\left(A_{n-1}\right)$.
$\cdot X(q):=\frac{1}{[k+1]_{q}}\left[\begin{array}{c}s n+k+1 \\ k\end{array}\right]_{q}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}$.
- $C:=$ cyclic group of order $s n+2$, by rotation.

Then $(X, X(q), C)$ exhibits CSP.

- Note that $X(q)$ is the natural q-analogue.
- When $s=1$, it is Reiner, Stanton, White's result.

Idea of Proof

- Check the definition of CSP, LHS=RHS.

$$
[X(q)]_{q=\omega}=|\{x \in X: c(x)=x\}| .
$$

- LHS is easy, once we have a correct $X(q)$.
- Not always the natural q-analogue.
- Hence, it not so easy.
- RHS is not easy, we count \# elements invariant under d-fold rotation.
- By using bijective argument.
- Once we have $X(q)$, it is not so un-easy.
- Take $\Delta^{s}\left(A_{n-1}\right)$ as an example.

LHS, A_{n-1}

For LHS,

- Take $X(q):=\frac{1}{[k+1]_{q}}\left[\begin{array}{c}n+k+1 \\ k\end{array}\right]_{q}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}$.
- We use the lemma $\left[\begin{array}{c}m+k-1 \\ k\end{array}\right]_{q=\omega}=\left\{\begin{array}{cl}\left(\frac{m+k}{d}-1\right. \\ \left.\frac{k}{d}\right) & \text { if } d \mid k, \\ 0 & \text { otherwise. }\end{array}\right.$
- The result is

$$
[X(q)]_{q=\omega}=\left\{\begin{array}{cl}
\binom{\frac{s n+k+1}{2}}{\frac{k+1}{2}}\binom{\frac{n-2}{2}}{\frac{k-1}{2}} & \text { if } d=2, k \text { odd, and } n \text { even } \\
\binom{\frac{s n+2+k}{d}-1}{\frac{k}{d}}\binom{\left\lfloor\frac{n-1}{d}\right\rfloor}{\frac{k}{d}} & \text { if } d \geq 2 \text { and } d \mid k, \\
0 & \text { otherwise. }
\end{array}\right.
$$

RHS, A_{n-1}

For RHS,

- We count number of dissections with $(s n+2)$-gon, k diagonal, and is invariant under d-fold rotation.
- Case 1: If it has a center line $\rightsquigarrow d=2$, $s n+2$ is even, k odd.
- Simple recurrence.

$$
\frac{s n+2}{2} \cdot G\left(s, \frac{n}{2}, \frac{k-1}{2} ; 1\right)=\binom{\frac{s n+k+1}{2}}{\frac{k+1}{2}}\binom{\frac{n-2}{2}}{\frac{k-1}{2}}
$$

- Case 2: If it has no center line $\rightsquigarrow d \geq 2, d \mid k$
- Biject to $\left\{(\mu, \nu) \mid \mu \in A(m, k), \nu \in B(m, k), m=\frac{n-1-r}{d}\right\}$,

$$
\begin{aligned}
& A(m, k)=\left\{\left(a_{1}, \ldots, a_{\frac{k}{d}}\right): 1 \leq a_{1} \leq \cdots \leq a_{\frac{k}{d}} \leq b\right\} \\
& B(m, k)=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{m}\right) \in\{0,1\}^{m}: \text { exactly } \frac{k}{d} \text { entries } \epsilon_{j}=1\right\} .
\end{aligned}
$$

RHS, A_{n-1}, cont.

- For example, this will map to $((3,8),(0,1,1))$

- LHS=RHS, and we are done.

$$
\Delta^{s}\left(B_{n}\right)
$$

- In type B_{n}, combinatorial model realized in dissections.
- $(s(2 n)+2)$-gon.
- a B-diagonal $=$ a symmetric pair, or a 2 -colored antipodal.
- compatible $=$ noncrossing diagonal.
- Type B, $s=1, n=3, k=1$. These are 1-faces of $\Delta^{1}\left(B_{3}\right)$:

$$
\binom{s n+k}{k}\binom{n}{k}
$$

CSP on $\Delta^{s}\left(B_{n}\right)$

Theorem. (Eu, Fu, 2007)

- $X:=k$-faces of $\Delta^{s}\left(B_{n}\right)$.
$\cdot X(q):=\left[\begin{array}{c}s n+k \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{l}n \\ k\end{array}\right]_{q^{2}}$
- $C:=$ cyclic group of order $2 s n+2$, by rotation.

Then $(X, X(q), C)$ exhibits CSP.

$$
\Delta^{s}\left(D_{n}\right)
$$

- In type D_{n}, combinatorial model realized in dissections.
- $(s(2 n-2)+2)$-gon.
- a D-diagnoal $=$ a B-diagonal, or a 2 -color antipodal.
- compatible $=$ complicated.
- Type D, $s=3, n=2, k=2$. These are 2-faces of $\Delta^{3}\left(D_{2}\right)$:

$$
\binom{s(n-1)+k}{k}\binom{n}{k}+\binom{s(n-1)+k-1}{k}\binom{n-2}{k-2}
$$

CSP on $\Delta^{s}\left(D_{n}\right)$

Theorem. (Eu, Fu, 2007)

- $X:=k$-faces of $\Delta^{s}\left(D_{n}\right)$.
$\cdot X(q):=\left[\begin{array}{c}s(n-1)+k \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q^{2}}+\left[\begin{array}{c}s(n-1)+k \\ k\end{array}\right]_{q^{2}}\left[\begin{array}{c}n-2 \\ k-1\end{array}\right]_{q^{2}} \cdot q^{n}$

$$
+\left[\begin{array}{c}
s(n-1)+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
s(n-1)+k-1 \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]_{q^{2}} \cdot q^{n} .
$$

- $C:=$ cyclic group of order $2 s(n-1)+2$, by rotation.

Then $(X, X(q), C)$ exhibits CSP.

$$
\Delta^{s}\left(I_{2}(a)\right)
$$

- In type $I_{2}(a)$, combinatorial model realized in graphs on the plane.
- $(s a+2)$-vertices.
- $(s+1)$-regular graphs.
- Type $I_{2}(a)$, these are $\Delta^{2}\left(I_{2}(5)\right)$ and $\Delta^{2}\left(I_{2}(4)\right)$.

(a)

(b)

CSP on $\Delta^{s}\left(I_{2}(a)\right)$

Theorem. (Eu, Fu, 2007)

- $X:=$ edge set of the graphs $\Delta^{s}\left(I_{2}(a)\right)$.
$\cdot X(q):=\frac{[s a+2]_{q}}{[2]_{q}} \cdot \frac{[s a+a]_{q}}{[a]_{q}}$
- C := cyclic group of order $s a+2$, by rotation.

Then $(X, X(q), C)$ exhibits CSP.

Exceptional Types

- For Exceptional types $E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}$, we have no combinatorial models. (We will have, see Reading's lecture.)

We still can form the $\Delta^{s}(\Phi)$,
We still can investigate the orbits under rotation for k-faces, We still can check if CSP holds.

- These can be done by computer, once we have
- $X:=\Delta^{s}(\Phi)$
- $X(q):=$?????
- cyclic group $:=\mathbb{Z}_{\text {sh+2 }}$
- So far we can only check the facets for $s=1$ in the exceptional types.

Results summary

	A_{n}	B_{n}	D_{n}	$E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}$	$I_{2}(a)$
$\forall s$	\bullet	\bullet	\bullet	$s=1$, some $s \geq 2$	\bullet
$\forall \operatorname{dim}$	\bullet	\bullet	\bullet	Facets ok, some k	\bullet

Generalized Catalan Numbers

Since all facets when $s=1$ in all types have CSP,...

- Let

$$
\operatorname{Cat}(\Phi):=\prod_{i=1}^{n} \frac{h+e_{i}+1}{e_{i}+1}
$$

be the generalized Catalan numbers. We have proved the following:
Theorem. (Eu, Fu, 2007)

- $X:=$ facets of $\Delta(\Phi)$
$\cdot X(q)=\operatorname{Cat}(\Phi, q):=\prod_{i=1}^{n} \frac{\left[h+e_{i}+1\right]_{q}}{\left[e_{i}+1\right]_{q}}$
- $C:=\mathbb{Z}_{h+2}$

Then $(X, X(q), C)$ exhibits CSP.

For larger s

Putting s into picture...

- Let

$$
\mathrm{Cat}^{(s)}(\Phi):=\prod_{i=1}^{n} \frac{s h+e_{i}+1}{e_{i}+1}
$$

be the generalized ${ }^{2}$ Catalan numbers.
Conjecture. (Reiner, Stanton, White)

- $X:=$ facets of $\Delta(\Phi)$
$\cdot X(q)=\operatorname{Cat}^{(s)}(\Phi, q):=\prod_{i=1}^{n} \frac{\left[s h+e_{i}+1\right]_{q}}{\left[e_{i}+1\right]_{q}}$
- $C:=\mathbb{Z}_{s h+2}$

Then $(X, X(q), C)$ exhibits CSP.

- Note that we have proved the case $A_{n-1}, B_{n}, D_{n}, I_{2}(a)$.

For larger s, and any k-faces

We want to do more...

- Let

$$
\operatorname{Cat}_{k}^{(s)}(\Phi):=? ? ?
$$

be the generalized ${ }^{2} k$-face numbers.
Conjecture. (An ill-posed problem)

- $X:=$ any k-faces of $\Delta(\Phi)$
- $X(q)=? ? ?$
- $C:=\mathbb{Z}_{s h+2}$

Then $(X, X(q), C)$ exhibits CSP.

- Note that we have proved the case $A_{n-1}, B_{n}, D_{n}, I_{2}(a)$.
- So far we do almost nothing on the exceptional types.

Discussion

	A_{n}	B_{n}	D_{n}	$E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}$	$I_{2}(a)$
s	\bullet	\bullet	\bullet	$s=1,(\&$ some $s \geq 2)$	\bullet
dim	\bullet	\bullet	\bullet	mainly facets	\bullet

What's the obstacle(s)?

- For $s>1$ and facets, we have no systematic method.
. s can be very big, too many points.
- How can you check on computer, say, $s=10000$, and E_{8} ?
- For k-faces of exceptional types, it is worse... we even have no $X(q)$.
- The q-nify of counting formulae does not work.
- Sometimes it is even not polynomial.

Discussion

	A_{n}	B_{n}	D_{n}	$E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}$	$I_{2}(a)$
s	\bullet	\bullet	\bullet	$s=1,(\&$ some $s \geq 2)$	\bullet
dim	\bullet	\bullet	\bullet	mainly facets	\bullet

- The $X(q)$ is not easily known, e.g. D_{n}.
- In Type D_{n}, we find four q-analogues perfoming CSP.

$$
\begin{aligned}
X(q)= & {\left[\begin{array}{c}
s(n-1)+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
n-2 \\
k
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
s(n-1)+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{l}
n-2 \\
k-1
\end{array}\right]_{q^{2}} \cdot\left(1+q^{n}\right) } \\
& +\left[\begin{array}{c}
s(n-1)+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{l}
n-2 \\
k-2
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
s(n-1)+k-1 \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{l}
n-2 \\
k-2
\end{array}\right]_{q^{2}} \cdot q^{n}
\end{aligned}
$$

also works!

Discussion

	A_{n}	B_{n}	D_{n}	$E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}$	$I_{2}(a)$
s	\bullet	\bullet	\bullet	$s=1,(\&$ some $s \geq 2)$	\bullet
dim	\bullet	\bullet	\bullet	mainly facets	\bullet

- Fomin \& Reading gave a formula for faces:

$$
f_{k}(\Phi, s)=c(\Phi, k, s)\binom{n}{k} \prod_{L\left(e_{i}\right) \leq k} \frac{s h+e_{i}+1}{e_{i}+1}
$$

where $c(\Phi, k, s)$ and $L\left(e_{i}\right)$ are case-by-case functions.

- The natural q-analogue does not work, even in $s=1$.
- That is, when $k<n$, we have no $X(q)$ in exceptional types.

Open Questions:

So here comes the open problems:

Open Question: What (and Where) is the genuine $X(q)$?
Conjecture: With this $X(q)$, then $(X, X(q), C)$ has CSP.

Open Question: Give a more conceptual united proof. Maybe invariant theory?

Thanks for your listening.
Welcome any discussions and future collaborations.

