Cyclic Sieving Phenomenon for the Generalized Cluster Complexes

Sen-Peng Eu 游森棚

speu@nuk.edu.tw

University of Kaohsiung, Taiwan 高雄大學

CSP for Generalized Cluster Complexes – p.1/39

- Part of this work is done during my visit at School of Mathematics, University of Minnesota.
- To appear in Advances in Applied Mathematics, jointed with T.Fu.
- This work is mentioned by V. Reiner in his invited talk in 2007 AMS-MAA annual meeting under the title "A new Combinatorics"

Outline of the talk

- Cyclic Sieving Phenomenon
- Cluster complex and Generalized Cluster complex
- The result in type A, idea of proof.
- More Results
- Discussion and Open Problems

Cyclic Sieving Phenomenon

- The notion is by Reiner, Stanton, White (JCTA, 2005)
- $\cdot X :=$ a combinatorial structures
- $\cdot X(q) \in \mathbb{Z}[q], X(1) = |X|$
- $\cdot C :=$ a cyclic group acting on X, where |C| = n.
- (X, X(q), C) exhibits CSP := for every $c \in C$,

$$[X(q)]_{q=\omega} = |\{x \in X : c(x) = x\}|,$$

where ω is a root of 1, of the same multiplicative order as c.

• Equivalently, write

$$X(q) \equiv a_0 + a_1 q + \dots a_{n-1} q^{n-1} (\mod q^n - 1),$$

then a_k = orbits whose stablizer order divides k.

Cyclic Sieving Phenomenon

- For example,
- $\cdot X := \Delta$ -dissections of a regular hexagon.
- $X(q) = \frac{1}{[5]} \begin{bmatrix} 8 \\ 4 \end{bmatrix} = q^{12} + q^{10} + q^9 + 2q^8 + q^7 + 2q^6 + q^5 + 2q^4 + q^3 + q^2 + 1$ $C := \mathbb{Z}_6$

- Let $c = 3 \in \mathbb{Z}_6$ (turn 180°). Then $\omega = -1$. $[X(q)]_{q=-1} = 6 = |\{x \in X : x \text{ looks the same when turn } 180^\circ\}|.$
- There is much information hidden in the generating function.

Cyclic Sieving Phenomenon

• Equivalently,

$$X(q): = q^{12} + q^{10} + q^9 + 2q^8 + q^7 + 2q^6 + q^5 + 2q^4 + q^3 + q^2 + 1$$

$$\equiv 4 + 1q + 3q^2 + 2q^3 + 3q^4 + 1q^5 \mod q^6 - 1$$

4 = # orbits

1 = # orbits whose stablizer order divides 1

3 = # orbits whose stablizer order divides 2

2 = # orbits whose stablizer order divides 3... etc.

CSP on dissections

Theorem. (Reiner, Stanton, White, 2005)

$$\begin{array}{l} \cdot X := \text{triangulation of } (n+2)\text{-gon.} \\ \cdot X(q) := \frac{1}{[n+1]_q} \begin{bmatrix} 2n \\ n \end{bmatrix}_q. \\ \cdot C := \text{cyclic group of order } n+2, \text{ by rotation.} \end{array}$$

Then (X, X(q), C) exhibits CSP.

• It still works when using fewer diagonals....

CSP on dissections

Theorem. (Reiner, Stanton, White, 2005)

$$\begin{array}{l} \cdot \ X := \text{dissections of } (n+2)\text{-gon using } k \text{ diagonals.} \\ \cdot \ X(q) := \frac{1}{[k+1]_q} {n+k+1 \brack k}_q {n-1 \brack k}_q. \\ \cdot \ C := \text{cyclic group of order } n+2, \text{ by rotation.} \end{array}$$

Then (X, X(q), C) exhibits CSP.

- We will see, this is the type A_{n-1} , s = 1 case of our results.
- In our language,

k-faces of the cluster complex $\Delta^1(A_{n-1})$ exhibits CSP.

- What is the cluster complex $\Delta^1(\Phi)$?
- What is the generalized cluster complex $\Delta^{s}(\Phi)$?

Cluster Complex $\Delta(\Phi)$

• Developed by Fomin and Zelevinsky(2002, Ann. Math.).

From a Root system $\Phi \rightsquigarrow$ construct a cluster complex $\Delta(\Phi)$

- Step 1: Take a root system Φ , consider the ground set $\Phi_{\geq -1}$. Step 2: Define two involutions τ_{\pm} on $\Phi_{\geq -1}$. Step 3: Define a cyclic group $\Gamma := \langle \tau_{-} \tau_{+} \rangle$ acting on $\Phi_{\geq -1}$. Step 4: Define compatibility of roots under the action of Γ
- **Step 5**: Define the **Cluster complex** $\Delta(\Phi)$ by compatibility.
- Take $\Phi = A_2$ as an example.

Step 1: The ground set

Step 1: Ground set:

$$\Phi_{\geq -1} := \Phi_{>0} \cup \Phi_{=-1},$$

 $\Phi_{>0}$:= positive roots, $\Phi_{=-1}$:=negative simple roots

 A_2 :

Step 2: Two involutions τ_{\pm} **on** $\Phi_{\geq -1}$

Step 2: Define the involutions $\tau_{\pm} : \Phi_{\geq -1} \to \Phi_{\geq -1}$ by

$$\tau_{\epsilon}(\alpha) = \begin{cases} \alpha & \text{if } \alpha = -\alpha_i, \text{ for } i \in I_{-\epsilon}, \\ \left(\prod_{i \in I_{\epsilon}} s_i\right)(\alpha) & \text{otherwise,} \end{cases}$$
for $\epsilon \in \{+, -\}.$

 A_2 :

Step 3: cyclic group Γ acting on $\Phi_{\geq -1}$

Step 3: Define cyclic group $\Gamma := \langle \tau_- \tau_+ \rangle$, acting on $\Phi_{\geq -1}$ A_2 :

Which has a combinatorial model:

Step 4: Define compatibility

Step 4: Define compatibility (i) $-\alpha_i \sim \beta \iff$ expansion of β does not involve α_i . (ii) $\alpha \sim \beta \iff \Gamma(\alpha) \sim \Gamma(\beta)$;

Exactly the 'noncrossing diagonals'!

Step 5: Cluster complex $\Delta(\Phi)$

Step 5: Define the **Cluster complex** $\Delta(\Phi)$ by compatibility.

 $A_2: \Delta(A_2)$

Step 5: Cluster complex $\Delta(\Phi)$

• $\Delta(A_3)$ and its dual complex.

• $\Delta(A_{n-1})$ is the dual complex of the associahedron.

Step 5: Cluster complex $\Delta(\Phi)$

• dual complex of $\Delta(B_3)$

• $\Delta(B_{n-1})$ is the dual complex of the cyclohedron.

Generalized Cluster complex $\Delta(\Phi)$

• Developed by Fomin and Reading (Int. Math. Res. Notices, 2005).

Root system Φ and $s \rightsquigarrow$ generalized cluster complex $\Delta^s(\Phi)$

- The Steps 1-5 are similar.
- What is s?
 - \cdot 1 set of simple negative roots.
 - $\cdot s$ sets of positive roots.

•
$$A_3, s = 3$$

Generalized Cluster complex $\Delta^s(\Phi)$

• $\Delta^2(A_2)$

- We will consider all types, for all s, and all k-dim faces.
- Our Goal: k-faces of $\Delta^{s}(\Phi)$ exhibits CSP.....

$\Delta^s(A_{n-1})$

- In type A_{n-1} , combinatorial model realized in dissections.
- \cdot (sn + 2)-gon.
- \cdot A-diagnoal = diagonal.
- \cdot compatible = noncrossing diagonal.
- Type A, s = 2, n = 3, k = 2. These are 2-faces of $\Delta^2(A_2)$:

$$\frac{1}{k+1}\binom{sn+k+1}{k}\binom{n-1}{k}$$

CSP on $\Delta^{s}(A_{n-1})$

Theorem. (Eu, Fu, 2007)

$$\begin{split} \cdot X &:= k \text{-faces of } \Delta^s(A_{n-1}). \\ \cdot X(q) &:= \frac{1}{[k+1]_q} \begin{bmatrix} sn+k+1 \\ k \end{bmatrix}_q \begin{bmatrix} n-1 \\ k \end{bmatrix}_q. \\ \cdot C &:= \text{cyclic group of order } sn+2, \text{ by rotation.} \end{split}$$

Then (X, X(q), C) exhibits CSP.

- Note that X(q) is the natural q-analogue.
- When s = 1, it is Reiner, Stanton, White's result.

Idea of Proof

• Check the definition of CSP, LHS=RHS.

$$[X(q)]_{q=\omega} = |\{x \in X : c(x) = x\}|.$$

- LHS is easy, once we have a correct X(q).
 - \cdot Not always the natural q-analogue.
 - \cdot Hence, it not so easy.
- RHS is not easy, we count # elements invariant under d-fold rotation.
 - \cdot By using bijective argument.
 - \cdot Once we have X(q), it is not so un-easy.
- Take $\Delta^{s}(A_{n-1})$ as an example.

LHS, A_{n-1}

For LHS, • Take $X(q) := \frac{1}{[k+1]_q} {sn+k+1 \brack k}_q {n-1 \brack k}_q$. • We use the lemma ${m+k-1 \brack k}_{q=\omega} = \begin{cases} \left(\frac{m+k}{d}-1\right) & \text{if } d|k, \\ 0 & \text{otherwise.} \end{cases}$

• The result is

$$[X(q)]_{q=\omega} = \begin{cases} \begin{pmatrix} \frac{sn+k+1}{2} \\ \frac{k+1}{2} \end{pmatrix} \begin{pmatrix} \frac{n-2}{2} \\ \frac{k-1}{2} \end{pmatrix} & \text{if } d = 2, k \text{ odd, and } n \text{ even} \\ \begin{pmatrix} \frac{sn+2+k}{d} - 1 \\ \frac{k}{d} \end{pmatrix} \begin{pmatrix} \lfloor \frac{n-1}{d} \rfloor \\ \frac{k}{d} \end{pmatrix} & \text{if } d \ge 2 \text{ and } d|k, \\ 0 & \text{otherwise.} \end{cases}$$

RHS, A_{n-1}

For RHS,

- We count number of dissections with (sn + 2)-gon, k diagonal, and is invariant under d-fold rotation.
- Case 1: If it has a center line → d = 2, sn + 2 is even, k odd.
 Simple recurrence.

$$\frac{sn+2}{2} \cdot G\left(s, \frac{n}{2}, \frac{k-1}{2}; 1\right) = \binom{\frac{sn+k+1}{2}}{\frac{k+1}{2}} \binom{\frac{n-2}{2}}{\frac{k-1}{2}},$$

• Case 2: If it has no center line $\rightsquigarrow d \ge 2$, d|k \cdot Biject to $\{(\mu, \nu) | \mu \in A(m, k), \nu \in B(m, k), m = \frac{n-1-r}{d}\},$

$$A(m,k) = \{(a_1, \dots, a_{\frac{k}{d}}) : 1 \le a_1 \le \dots \le a_{\frac{k}{d}} \le b\},\$$

$$B(m,k) = \{(\epsilon_1, \dots, \epsilon_m) \in \{0,1\}^m : \text{ exactly } \frac{k}{d} \text{ entries } \epsilon_j = 1\}.$$

RHS, A_{n-1} , cont.

• For example, this will map to ((3, 8), (0, 1, 1))

• LHS=RHS, and we are done.

$\Delta^s(B_n)$

- In type B_n , combinatorial model realized in dissections. $\cdot (s(2n) + 2)$ -gon.
- \cdot a *B*-diagonal = a symmetric pair, or a 2-colored antipodal.
- \cdot compatible = noncrossing diagonal.
- Type B, s = 1, n = 3, k = 1. These are 1-faces of $\Delta^1(B_3)$:

$$\binom{sn+k}{k}\binom{n}{k}$$

CSP on $\Delta^s(B_n)$

Theorem. (Eu, Fu, 2007)

$$\begin{array}{l} \cdot X := k \text{-faces of } \Delta^s(B_n). \\ \cdot X(q) := \begin{bmatrix} sn+k \\ k \end{bmatrix}_{q^2} \begin{bmatrix} n \\ k \end{bmatrix}_{q^2} \\ \cdot C := \text{cyclic group of order } 2sn+2, \text{ by rotation.} \end{array}$$

Then (X, X(q), C) exhibits CSP.

$\Delta^s(D_n)$

- In type D_n , combinatorial model realized in dissections.
- · (s(2n-2)+2)-gon.
- \cdot a *D*-diagnoal = a *B*-diagonal, or a 2-color antipodal.
- \cdot compatible = complicated.
- Type D, s = 3, n = 2, k = 2. These are 2-faces of $\Delta^3(D_2)$:

$$\binom{s(n-1)+k}{k}\binom{n}{k} + \binom{s(n-1)+k-1}{k}\binom{n-2}{k-2}$$

CSP for Generalized Cluster Complexes – p.27/39

CSP on $\Delta^s(D_n)$

Theorem. (Eu, Fu, 2007)

$$\begin{split} \cdot X &:= k \text{-faces of } \Delta^s(D_n).\\ \cdot X(q) &:= {s(n-1)+k \brack q^2} {n-1 \brack k}_{q^2} + {s(n-1)+k \brack q^2} {n-2 \brack k-1}_{q^2} \cdot q^n\\ &+ {s(n-1)+k \brack q^2} {n-2 \brack k-2}_{q^2} + {s(n-1)+k-1 \brack k}_{q^2} {n-2 \brack k-2}_{q^2} \cdot q^n.\\ \cdot C &:= \text{cyclic group of order } 2s(n-1) + 2, \text{ by rotation.} \end{split}$$

Then (X, X(q), C) exhibits CSP.

$\Delta^s(I_2(a))$

- In type $I_2(a)$, combinatorial model realized in graphs on the plane.
- \cdot (sa + 2)-vertices.
- \cdot (s + 1)-regular graphs.
- Type $I_2(a)$, these are $\Delta^2(I_2(5))$ and $\Delta^2(I_2(4))$.

CSP on $\Delta^s(I_2(a))$

Theorem. (Eu, Fu, 2007)

$$\begin{array}{l} \cdot X := \text{edge set of the graphs } \Delta^s(I_2(a)). \\ \cdot X(q) := \frac{[sa+2]_q}{[2]_q} \cdot \frac{[sa+a]_q}{[a]_q} \\ \cdot C := \text{cyclic group of order } sa+2, \text{ by rotation.} \end{array}$$

Then (X, X(q), C) exhibits CSP.

Exceptional Types

• For Exceptional types $E_6, E_7, E_8, F_4, H_3, H_4$, we have no combinatorial models. (We will have, see Reading's lecture.)

We still can form the $\Delta^s(\Phi)$, We still can investigate the orbits under rotation for k-faces, We still can check if CSP holds.

- These can be done by computer, once we have
- $\begin{array}{ll} \cdot X := \Delta^s(\Phi) & \text{OK} \\ \cdot X(q) :=???? & \text{NOT OK} \\ \cdot \text{ cyclic group} := \mathbb{Z}_{sh+2} & \text{OK} \end{array}$
- So far we can only check the facets for s = 1 in the exceptional types.

Results summary

	A_n	B_n	D_n	$E_6, E_7, E_8, F_4, H_3, H_4$	$I_2(a)$
$\forall s$	•	•	•	$s = 1$, some $s \ge 2$	•
∀dim	•	•	•	Facets ok, some k	•

Generalized Catalan Numbers

Since all facets when s = 1 in all types have CSP,...

• Let

$$\operatorname{Cat}(\Phi) := \prod_{i=1}^{n} \frac{h + e_i + 1}{e_i + 1}$$

be the generalized Catalan numbers. We have proved the following:

Theorem. (Eu, Fu, 2007) $\cdot X := \text{facets of } \Delta(\Phi)$ $\cdot X(q) = \text{Cat}(\Phi, q) := \prod_{i=1}^{n} \frac{[h + e_i + 1]_q}{[e_i + 1]_q}$ $\cdot C := \mathbb{Z}_{h+2}$ Then (X, X(q), C) exhibits CSP.

For larger s

Putting s into picture...

• Let

$$\operatorname{Cat}^{(s)}(\Phi) := \prod_{i=1}^{n} \frac{sh + e_i + 1}{e_i + 1}$$

be the generalized 2 Catalan numbers.

Conjecture. (Reiner, Stanton, White) $\cdot X := \text{facets of } \Delta(\Phi)$ $\cdot X(q) = \text{Cat}^{(s)}(\Phi, q) := \prod_{i=1}^{n} \frac{[sh + e_i + 1]_q}{[e_i + 1]_q}$ $\cdot C := \mathbb{Z}_{sh+2}$ Then (X, X(q), C) exhibits CSP.

• Note that we have proved the case A_{n-1} , B_n , D_n , $I_2(a)$.

For larger *s***, and any** *k***-faces**

We want to do more...

• Let

$$\operatorname{Cat}_k^{(s)}(\Phi) := ???$$

be the generalized 2 k-face numbers.

Conjecture. (An ill-posed problem)

- $\cdot X := any k$ -faces of $\Delta(\Phi)$
- $\cdot X(q) = ???$

$$\cdot C := \mathbb{Z}_{sh+2}$$

Then (X, X(q), C) exhibits CSP.

- Note that we have proved the case A_{n-1} , B_n , D_n , $I_2(a)$.
- So far we do almost nothing on the exceptional types.

Discussion

	A_n	B_n	D_n	$E_6, E_7, E_8, F_4, H_3, H_4$	$I_2(a)$
S	•	•	•	$s = 1$, (& some $s \ge 2$)	•
dim	•	•	•	mainly facets	•

What's the obstacle(s)?

- For s > 1 and facets, we have no systematic method.
 - \cdot s can be very big, too many points.
 - · How can you check on computer, say, s = 10000, and E_8 ?
- For k-faces of exceptional types, it is worse... we even have no X(q).
 - \cdot The q-nify of counting formulae does not work.
 - Sometimes it is even not polynomial.

Discussion

	A_n	B_n	D_n	$E_6, E_7, E_8, F_4, H_3, H_4$	$I_2(a)$
S	•	•	•	$s = 1$, (& some $s \ge 2$)	•
dim	•	●	•	mainly facets	•

- The X(q) is not easily known, e.g. D_n .
- In Type D_n , we find four q-analogues perfoming CSP.

$$X(q) = \begin{bmatrix} s(n-1)+k \\ k \end{bmatrix}_{q^2} \begin{bmatrix} n-2 \\ k \end{bmatrix}_{q^2} + \begin{bmatrix} s(n-1)+k \\ k \end{bmatrix}_{q^2} \begin{bmatrix} n-2 \\ k-1 \end{bmatrix}_{q^2} \cdot (1+q^n)$$
$$+ \begin{bmatrix} s(n-1)+k \\ k \end{bmatrix}_{q^2} \begin{bmatrix} n-2 \\ k-2 \end{bmatrix}_{q^2} + \begin{bmatrix} s(n-1)+k-1 \\ k \end{bmatrix}_{q^2} \begin{bmatrix} n-2 \\ k-2 \end{bmatrix}_{q^2} \cdot q^n$$

also works!

Discussion

	A_n	B_n	D_n	$E_6, E_7, E_8, F_4, H_3, H_4$	$I_2(a)$
S	•	•	•	$s = 1$, (& some $s \ge 2$)	•
dim	•	•	•	mainly facets	•

• Fomin & Reading gave a formula for faces:

$$f_k(\Phi, s) = c(\Phi, k, s) \binom{n}{k} \prod_{\substack{L(e_i) \le k}} \frac{sh + e_i + 1}{e_i + 1},$$

where $c(\Phi, k, s)$ and $L(e_i)$ are case-by-case functions.

- The natural q-analogue does not work, even in s = 1.
- That is, when k < n, we have no X(q) in exceptional types.

Open Questions:

So here comes the open problems:

Open Question: What (and Where) is the genuine X(q)?

Conjecture: With this X(q), then (X, X(q), C) has CSP.

Open Question: Give a more conceptual united proof. Maybe invariant theory?

Thanks for your listening. Welcome any discussions and future collaborations.