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• Part of this work is done during my visit at School of Mathematics,
University of Minnesota.

• To appear in Advances in Applied Mathematics, jointed with T.Fu.

• This work is mentioned by V. Reiner in his invited talk in 2007 AMS-

MAA annual meeting under the title “A new Combinatorics"

CSP for Generalized Cluster Complexes – p.2/39



Outline of the talk

• Cyclic Sieving Phenomenon

• Cluster complex and Generalized Cluster complex

• The result in type A, idea of proof.

• More Results

• Discussion and Open Problems
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Cyclic Sieving Phenomenon

• The notion is by Reiner, Stanton, White (JCTA, 2005)
· X :=a combinatorial structures
· X(q) ∈ Z[q], X(1) = |X|

· C := a cyclic group acting on X , where |C| = n.

• (X,X(q), C) exhibits CSP := for every c ∈ C,

[X(q)]q=ω = |{x ∈ X : c(x) = x}|,

where ω is a root of 1, of the same multiplicative order as c.

• Equivalently, write
X(q) ≡ a0 + a1q + . . . an−1q

n−1(modqn − 1),

then ak = orbits whose stablizer order divides k.
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Cyclic Sieving Phenomenon

• For example,
· X := ∆-dissections of a regular hexagon.
·X(q) = 1

[5]

[

8
4

]

= q12+q10+q9+2q8+q7+2q6+q5+2q4+q3+q2+1

· C := Z6

• Let c = 3 ∈ Z6 (turn 180◦). Then ω = −1.
[X(q)]q=−1 = 6 = |{x ∈ X : x looks the same when turn 180◦}|.

• There is much information hidden in the generating function.
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Cyclic Sieving Phenomenon

• Equivalently,

X(q) : = q12 + q10 + q9 + 2q8 + q7 + 2q6 + q5 + 2q4 + q3 + q2 + 1

≡ 4 + 1q + 3q2 + 2q3 + 3q4 + 1q5 mod q6 − 1

2

1

2

3

4 = # orbits
1 = # orbits whose stablizer order divides 1

3 = # orbits whose stablizer order divides 2

2 = # orbits whose stablizer order divides 3... etc.
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CSP on dissections

Theorem. (Reiner, Stanton, White, 2005)

· X := triangulation of (n + 2)-gon.

· X(q) :=
1

[n + 1]q

[

2n

n

]

q

.

· C := cyclic group of order n + 2, by rotation.

Then (X,X(q), C) exhibits CSP.

• It still works when using fewer diagonals....
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CSP on dissections

Theorem. (Reiner, Stanton, White, 2005)

· X := dissections of (n + 2)-gon using k diagonals.

· X(q) :=
1

[k + 1]q

[

n + k + 1

k

]

q

[

n − 1

k

]

q

.

· C := cyclic group of order n + 2, by rotation.

Then (X,X(q), C) exhibits CSP.

• We will see, this is the type An−1 , s = 1 case of our results.
• In our language,

k-faces of the cluster complex ∆1(An−1) exhibits CSP.
• What is the cluster complex ∆1(Φ)?
• What is the generalized cluster complex ∆s(Φ)?
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Cluster Complex ∆(Φ)

• Developed by Fomin and Zelevinsky(2002, Ann. Math.).

From a Root system Φ construct a cluster complex ∆(Φ)

Step 1: Take a root system Φ, consider the ground set Φ≥−1.
Step 2: Define two involutions τ± on Φ≥−1.
Step 3: Define a cyclic group Γ := 〈τ−τ+〉 acting on Φ≥−1.
Step 4: Define compatibility of roots under the action of Γ

Step 5: Define the Cluster complex ∆(Φ) by compatibility.

• Take Φ = A2 as an example.

+

1

2α
s1 s2

−

α
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Step 1: The ground set

Step 1: Ground set:

Φ≥−1 := Φ>0 ∪ Φ=−1,

Φ>0:= positive roots, Φ=−1:=negative simple roots

A2:

11−α

α2

−α2

α1 α2+

α
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Step 2: Two involutions τ± on Φ≥−1

Step 2: Define the involutions τ± : Φ≥−1 → Φ≥−1 by

τε(α) =







α if α = −αi, for i ∈ I−ε,
(
∏

i∈Iε
si

)

(α) otherwise,

for ε ∈ {+,−}.

A2:
+

−α α1 α1 α2+ α2 −α2

− − −+ +
1
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Step 3: cyclic group Γ acting on Φ≥−1

Step 3: Define cyclic group Γ := 〈τ−τ+〉, acting on Φ≥−1

A2:

+
−α α1 α1 α2+ α2 −α2

− − −+ +
1

1 α2+

−α2

α2

α11−α

α

Which has a combinatorial model:

2

1−α

α1 α2+

α1

α2

−α
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Step 4: Define compatibility

Step 4: Define compatibility
(i) −αi ∼ β ⇐⇒ expansion of β does not involve αi.
(ii) α ∼ β ⇐⇒ Γ(α) ∼ Γ(β);

A2:

~−α α2 −α2 1−α α1 −α2α1α1 α2+ α2 α1 α2+~ ~ ~~1

Exactly the ‘noncrossing diagonals’!
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Step 5: Cluster complex ∆(Φ)

Step 5: Define the Cluster complex ∆(Φ) by compatibility.

A2: ∆(A2)
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Step 5: Cluster complex ∆(Φ)

• ∆(A3) and its dual complex.

• ∆(An−1) is the dual complex of the associahedron.
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Step 5: Cluster complex ∆(Φ)

• dual complex of ∆(B3)

• ∆(Bn−1) is the dual complex of the cyclohedron.
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Generalized Cluster complex ∆(Φ)

• Developed by Fomin and Reading (Int. Math. Res. Notices, 2005).

Root system Φ and s generalized cluster complex ∆s(Φ)

• The Steps 1-5 are similar.
• What is s?

· 1 set of simple negative roots.
· s sets of positive roots.

• A3, s = 3

1

3

−α2

−α1

α 23
1

α 23
2

α 23
3

4

8

11

−α

CSP for Generalized Cluster Complexes – p.17/39



Generalized Cluster complex ∆s(Φ)

• ∆2(A2)

• We will consider all types, for all s, and all k-dim faces.
• Our Goal: k-faces of ∆s(Φ) exhibits CSP.....
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∆s(An−1)

• In type An−1, combinatorial model realized in dissections.
· (sn + 2)-gon.
· A-diagnoal = diagonal.
· compatible = noncrossing diagonal.

• Type A, s = 2, n = 3, k = 2. These are 2-faces of ∆2(A2):

4 5

6

7

81

2

3

4 5

6

7

81

2

3

1
k+1

(

sn+k+1
k

)(

n−1
k

)
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CSP on ∆s(An−1)

Theorem. (Eu, Fu, 2007)

· X := k-faces of ∆s(An−1).

· X(q) :=
1

[k + 1]q

[

sn + k + 1

k

]

q

[

n − 1

k

]

q

.

· C := cyclic group of order sn + 2, by rotation.

Then (X,X(q), C) exhibits CSP.

• Note that X(q) is the natural q-analogue.
• When s = 1, it is Reiner, Stanton, White’s result.
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Idea of Proof

• Check the definition of CSP, LHS=RHS.

[X(q)]q=ω = |{x ∈ X : c(x) = x}|.

• LHS is easy, once we have a correct X(q).
· Not always the natural q-analogue.
· Hence, it not so easy.

• RHS is not easy, we count # elements invariant under d-fold rotation.
· By using bijective argument.
· Once we have X(q), it is not so un-easy.

• Take ∆s(An−1) as an example.

CSP for Generalized Cluster Complexes – p.21/39



LHS, An−1

For LHS,
• Take X(q) := 1

[k+1]q

[

sn+k+1
k

]

q

[

n−1
k

]

q
.

• We use the lemma
[

m+k−1
k

]

q=ω
=







(
m+k

d
−1

k
d

)

if d|k,

0 otherwise.

• The result is

[X(q)]q=ω =



































(sn+k+1
2

k+1
2

)(n−2
2

k−1
2

)

if d = 2, k odd, and n even

(sn+2+k
d

− 1
k
d

)(

bn−1
d

c
k
d

)

if d ≥ 2 and d|k,

0 otherwise.
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RHS, An−1

For RHS,
• We count number of dissections with (sn + 2)-gon, k diagonal,
and is invariant under d-fold rotation.

• Case 1: If it has a center line d = 2, sn + 2 is even, k odd.
· Simple recurrence.

sn + 2

2
· G

(

s,
n

2
,
k − 1

2
; 1

)

=

( sn+k+1
2

k+1
2

)(n−2
2

k−1
2

)

,

• Case 2: If it has no center line d ≥ 2, d|k

· Biject to {(µ, ν)|µ ∈ A(m,k), ν ∈ B(m,k),m = n−1−r
d

},

A(m,k) = {(a1, . . . , a k
d

) : 1 ≤ a1 ≤ · · · ≤ a k
d

≤ b},

B(m,k) = {(ε1, . . . , εm) ∈ {0, 1}m : exactly k
d

entries εj = 1}.
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RHS, An−1, cont.

• For example, this will map to ((3, 8), (0, 1, 1))

(d)
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• LHS=RHS, and we are done.
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∆s(Bn)

• In type Bn, combinatorial model realized in dissections.
· (s(2n) + 2)-gon.
· a B-diagonal = a symmetric pair, or a 2-colored antipodal.
· compatible = noncrossing diagonal.

• Type B, s = 1, n = 3, k = 1. These are 1-faces of ∆1(B3):
4

3

2

1

3

4

1

2

4

3

2

1
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1

2
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1
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sn+k
k

)(

n
k

)
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CSP on ∆s(Bn)

Theorem. (Eu, Fu, 2007)

· X := k-faces of ∆s(Bn).

· X(q) :=

[

sn + k

k

]

q2

[

n

k

]

q2

· C := cyclic group of order 2sn + 2, by rotation.

Then (X,X(q), C) exhibits CSP.
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∆s(Dn)

• In type Dn, combinatorial model realized in dissections.
· (s(2n − 2) + 2)-gon.
· a D-diagnoal = a B-diagonal, or a 2-color antipodal.
· compatible = complicated.

• Type D, s = 3, n = 2, k = 2. These are 2-faces of ∆3(D2):
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3

2

1

4

3

1

2

4

3

2

1

4

3

1

2

4

(

s(n−1)+k
k

)(

n
k

)

+
(

s(n−1)+k−1
k

)(

n−2
k−2

)
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CSP on ∆s(Dn)

Theorem. (Eu, Fu, 2007)

· X := k-faces of ∆s(Dn).
· X(q) :=

[

s(n−1)+k
k

]

q2

[

n−1
k

]

q2+
[

s(n−1)+k
k

]

q2

[

n−2
k−1

]

q2
· qn

+
[

s(n−1)+k
k

]

q2

[

n−2
k−2

]

q2
+

[

s(n−1)+k−1
k

]

q2

[

n−2
k−2

]

q2
· qn.

· C := cyclic group of order 2s(n − 1) + 2, by rotation.

Then (X,X(q), C) exhibits CSP.
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∆s(I2(a))

• In type I2(a), combinatorial model realized in graphs on the plane.
· (sa + 2)-vertices.
· (s + 1)-regular graphs.

• Type I2(a), these are ∆2(I2(5)) and ∆2(I2(4)).

(a) (b)
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7

9
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CSP on ∆s(I2(a))

Theorem. (Eu, Fu, 2007)

· X := edge set of the graphs ∆s(I2(a)).

· X(q) :=
[sa + 2]q

[2]q
·
[sa + a]q

[a]q
· C := cyclic group of order sa + 2, by rotation.

Then (X,X(q), C) exhibits CSP.
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Exceptional Types

• For Exceptional types E6, E7, E8, F4,H3,H4, we have no
combinatorial models. (We will have, see Reading’s lecture.)

We still can form the ∆s(Φ),
We still can investigate the orbits under rotation for k-faces,
We still can check if CSP holds.

• These can be done by computer, once we have
· X := ∆s(Φ) OK
· X(q) :=????? NOT OK
· cyclic group := Zsh+2 OK

• So far we can only check the facets for s = 1 in the exceptional types.
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Results summary

An Bn Dn E6, E7, E8, F4,H3,H4 I2(a)

∀s • • • s = 1, some s ≥ 2 •

∀ dim • • • Facets ok, some k •
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Generalized Catalan Numbers

Since all facets when s = 1 in all types have CSP,...
• Let

Cat(Φ) :=
n

∏

i=1

h + ei + 1

ei + 1

be the generalized Catalan numbers. We have proved the following:

Theorem. (Eu, Fu, 2007)
· X := facets of ∆(Φ)

· X(q) = Cat(Φ, q) :=
n

∏

i=1

[h + ei + 1]q
[ei + 1]q

· C := Zh+2

Then (X,X(q), C) exhibits CSP.
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For larger s

Putting s into picture...
• Let

Cat(s)(Φ) :=
n

∏

i=1

sh + ei + 1

ei + 1

be the generalized2 Catalan numbers.

Conjecture. (Reiner, Stanton, White)
· X := facets of ∆(Φ)

· X(q) = Cat(s)(Φ, q) :=

n
∏

i=1

[sh + ei + 1]q
[ei + 1]q

· C := Zsh+2

Then (X,X(q), C) exhibits CSP.

• Note that we have proved the case An−1, Bn, Dn, I2(a).
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For larger s, and any k-faces

We want to do more...
• Let

Cat(s)k (Φ) := ???

be the generalized2 k-face numbers.

Conjecture. (An ill-posed problem)
· X := any k-faces of ∆(Φ)

· X(q) =???

· C := Zsh+2

Then (X,X(q), C) exhibits CSP.

• Note that we have proved the case An−1, Bn, Dn, I2(a).

• So far we do almost nothing on the exceptional types.

CSP for Generalized Cluster Complexes – p.35/39



Discussion

An Bn Dn E6, E7, E8, F4,H3,H4 I2(a)

s • • • s = 1, (& some s ≥ 2) •

dim • • • mainly facets •

What’s the obstacle(s)?
• For s > 1 and facets, we have no systematic method.

· s can be very big, too many points.
· How can you check on computer, say, s = 10000, and E8?

• For k-faces of exceptional types, it is worse... we even have no X(q).
· The q-nify of counting formulae does not work.
· Sometimes it is even not polynomial.
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Discussion

An Bn Dn E6, E7, E8, F4,H3,H4 I2(a)

s • • • s = 1, (& some s ≥ 2) •

dim • • • mainly facets •

• The X(q) is not easily known, e.g. Dn.
• In Type Dn, we find four q-analogues perfoming CSP.

X(q) =
[

s(n−1)+k
k

]

q2

[

n−2
k

]

q2 +
[

s(n−1)+k
k

]

q2

[

n−2
k−1

]

q2
· (1 + qn)

+
[

s(n−1)+k
k

]

q2

[

n−2
k−2

]

q2
+

[

s(n−1)+k−1
k

]

q2

[

n−2
k−2

]

q2
· qn

also works!
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Discussion

An Bn Dn E6, E7, E8, F4,H3,H4 I2(a)

s • • • s = 1, (& some s ≥ 2) •

dim • • • mainly facets •

• Fomin & Reading gave a formula for faces:

fk(Φ, s) = c(Φ, k, s)

(

n

k

)

∏

L(ei)≤k

sh + ei + 1

ei + 1
,

where c(Φ, k, s) and L(ei) are case-by-case functions.
• The natural q-analogue does not work, even in s = 1.
• That is, when k < n, we have no X(q) in exceptional types.
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Open Questions:

So here comes the open problems:

Open Question: What (and Where) is the genuine X(q)?

Conjecture: With this X(q), then (X,X(q), C) has CSP.

Open Question: Give a more conceptual united proof. Maybe invariant
theory?

Thanks for your listening.
Welcome any discussions and future collaborations.
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