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e Part of this work 1s done during my visit at School of Mathematics,

University of Minnesota.

e To appear in Advances in Applied Mathematics, jointed with T.Fu.

e This work 1s mentioned by V. Reiner in his invited talk in 2007 AMS-

MAA annual meeting under the title “A new Combinatorics”
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Outline of the talk

e Cyclic Sieving Phenomenon

e Cluster complex and Generalized Cluster complex
e The result in type A, idea of proof.
e More Results

e Discussion and Open Problems
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I Cyclic Sieving Phenomenon

. e The notion is by Reiner, Stanton, White (JCTA, 2005)
- X :=a combinatorial structures
- X(q) € Z[q), X(1) = | X|

- C := acyclic group acting on X, where |C| = n.

e (X, X(q),C) exhibits CSP := for every c € C,

(X (@]g=w = Wz € Xt c(z) = 2},

where w 1s a root of 1, of the same multiplicative order as c.

e Equivalently, write
X(q) =ap+aiq+...a,_1¢" H(modg™ — 1),
then a; = orbits whose stablizer order divides k.
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Cyclic Sieving Phenomenon

e For example,

- X := A-dissections of a regular hexagon.
- X(q) = g [4] = ¢ +¢" 0+ +2¢° +4" +2¢°+¢° +2¢" + P +¢° +1

T 500ed

oletc=3 € Zg (turn 180°). Then w = —1.
(X (q)]q=—1 = 6 = [{r € X : x looks the same when turn 180°}|.

e There 1s much information hidden in the generating function.
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Cyclic Sieving Phenomenon

e Equivalently,

Xq): = ¢“*4+¢"++28+¢"+2° + P+ 2  + ¢+ # + 1
44 1g+ 3¢* + 2¢° + 3¢ + 1¢° mod ¢° — 1

SOV E DY
INASEISY
15

4 = # orbits
1 = # orbits whose stablizer order divides 1

[SESSY

[ NED
[ NID

3 = # orbits whose stablizer order divides 2

2 = £ orbits whose stablizer order divides 3... etc.
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CSP on dissections

Theorem. (Reiner, Stanton, White, 2005)

- X := triangulation of (n + 2)-gon.

- Xla) = [n+11]q lzﬂq'

- C := cyclic group of order n + 2, by rotation.

Then (X, X (q), C') exhibits CSP.

e [t still works when using fewer diagonals....
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CSP on dissections

Theorem. (Reiner, Stanton, White, 2005)

- X := dissections of (n + 2)-gon using k diagonals.

) = [kil]q [n+llz+1]q[n;1]q.

- C := cyclic group of order n + 2, by rotation.

Then (X, X (q), C') exhibits CSP.

e We will see, this is the type A,,_ 1, s = 1 case of our results.
e In our language,

k-faces of the cluster complex A'(A,,_1) exhibits CSP.
e What is the cluster complex Al(P)?
e What is the generalized cluster complex A*($)?
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Cluster Complex A(P)

e Developed by Fomin and Zelevinsky (2002, Ann. Math.).
From a Root system ® ~~ construct a cluster complex A(®P)

Step 1: Take a root system @, consider the ground set ®>_;.
Step 2: Define two involutions 74 on ®>_;.

Step 3: Define a cyclic group I' := (7_7 ) acting on ®>_;.
Step 4: Define compatibility of roots under the action of I
Step 5: Define the Cluster complex A(P) by compatibility.

e Take ¢ = A, as an example.

&) + -
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Step 1: The ground set

Step 1: Ground set:

P> =P U D=y,

® - o:= positive roots, ¢__{:=negative simple roots

AQZ

0.5) o+ 0
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Step 2: Two involutions 7. on ¢~ _;

Step 2: Define the involutions 7+ : ®>_; — ®>_4 by

)
o ifoo = —q, fori e I_,,

Te() = 4
(ILics. si) (o) otherwise,

\

fore € {+, —}.

AQI

_|_

B + — + —
C—OC1<—> oy -—» O;+0,), - 0, - —0, D
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Step 3: cyclic group ' acting on ¢~

Step 3: Define cyclic group I' := (7_7), acting on ¢>_;
AQI

TN

ol +0 053

B + - + -
C—OCIH o) - O;+0, - 0, - —0, D -0y (0]
>~

Which has a combinatorial model:
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Step 4: Define compatibility

Step 4: Define compatibility

(i) —a; ~ B <= expansion of 3 does not involve «;.
(i)a~fF <<= I'(a) ~T(F);

A

—(Xl“' (XQ OC1+OC2 ~061 —OC2~—O(,1 062~061+062 0(,1~—062

Exactly the ‘noncrossing diagonals’!
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Step 5: Cluster complex A(P)

Step 5: Define the Cluster complex A(®) by compatibility.

A22 A(AQ)
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I Step 5: Cluster complex A(P)

. e A(As3) and its dual complex.

e A(A,_1) is the dual complex of the associahedron.
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Step 5: Cluster complex A(P)

e dual complex of A(Bj3)

P

PN
é\@/g ®\®/ s

\é\(:%

—

e A(B,,_1) is the dual complex of the cyclohedron.
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Generalized Cluster complex A(P)

e Developed by Fomin and Reading (Int. Math. Res. Notices, 2005).
Root system ® and s ~~ generalized cluster complex A®(®)

e The Steps 1-5 are similar.
e What 1s s?
- 1 set of simple negative roots.

- § sets of positive roots.
® Ag, s =3
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Generalized Cluster complex A*(P)

o A? (Ag)

DENG

5
T

e We will consider all types, for all s, and all £-dim faces.
e Our Goal: k-faces of A*(®) exhibits CSP.....

)
-
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A® (An—l)

e In type A, _1, combinatorial model realized in dissections.
- (sn + 2)-gon.
- A-diagnoal = diagonal.

- compatible = noncrossing diagonal.

e Type A, s = 2,n = 3, k = 2. These are 2-faces of A%(Aj):
QA AD
NILIZINIS

k;L_H (sn—l—kk—i—l) (n;l)
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CSP on AS(A,_;)
Theorem. (Eu, Fu, 2007)

- X := k-faces of A%(A,_1).

) = [kjl]q [sn +kk+1]q[n;1]q.

- C := cyclic group of order sn + 2, by rotation.

Then (X, X (q), C') exhibits CSP.

e Note that X (q) is the natural g-analogue.

e When s = 1, it 1s Reiner, Stanton, White’s result.
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Idea of Proof

e Check the definition of CSP, LHS=RHS.

X (Dlg=w = 1z € X 2 c(x) = z}].

e LHS is easy, once we have a correct X (q).
- Not always the natural g-analogue.

- Hence, 1t not so easy.

e RHS is not easy, we count # elements invariant under d-fold rotation.
- By using bijective argument.

- Once we have X (q), it is not so un-easy.

e Take A®(A,,_1) as an example.
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LHS, A, |

For LHS,

e Take X (q) : . [Sn+kk+1] q [ngl] q

" TR+

e We use the lemma [m+,f -1 = 4

J e

e The result 1s

X (@]g=w =

if d = 2, k odd, and n even

) if d > 2 and d|k,

otherwise.
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‘I RHS, 4, ;

m For RHS,

e We count number of dissections with (sn + 2)-gon, k diagonal,

and 1s invariant under d-fold rotation.

e Case 1: If it has a center line ~~ d = 2, sn + 2 1s even, k odd.

- Simple recurrence.

+h+1 =
sn+21;8ﬁak—%l _ (T2 %T,
5 ) T e e

e Case 2: If it has no center line ~~ d > 2, d|k

- Biject to {(u, v)|p € A(m, k),v € B(m,k),m = ==},

A(m, k) ={(a1,...,ax): 1< a1 <--- < ar < b},
d

SH

B(m,k) = {(e1,...,em) € {0,1}" : exactly £ entries ¢; = 1}.
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RHS, A,,_1, cont.

e For example, this will map to ((3,8), (0,1, 1))

I &

(d)

e . HS=RHS, and we are done.
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e In type B,,, combinatorial model realized in dissections.
- (s(2n) 4 2)-gon.
- a B-diagonal = a symmetric pair, or a 2-colored antipodal.

A*(By,)
.l

- compatible = noncrossing diagonal.

e Type B, s = 1,n = 3, k = 1. These are 1-faces of A!(Bj3):

(") ()
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CSP on A*(B,)

Theorem. (Eu, Fu, 2007)

- X := k-faces of A*(B,,).

o=

- C := cyclic group of order 2sn + 2, by rotation.

Then (X, X (q), C') exhibits CSP.
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A*(Dn)
e In type D,,, combinatorial model realized in dissections.
- (s(2n — 2) 4 2)-gon.

- a D-diagnoal = a B-diagonal, or a 2-color antipodal.

- compatible = complicated.

e Type D, s = 3,n = 2, k = 2. These are 2-faces of A3(D>):
3y ’j
e
L
2’/ i3 2
3k 2
AV
4 1

("G + TR G
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CSP on A*(D,,)

Theorem. (Eu, Fu, 2007)

- X := k-faces of A*(D,,).
X ()= [ LM et e e

+[ k”““] (k2] ot [S("_lifk_l] [ia)
- C := cyclic group of order 2s(n — 1) + 2, by rotation.

Then (X, X (g), C) exhibits CSP.
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A*(Iy(a))

e In type I5(a), combinatorial model realized in graphs on the plane.

- (sa + 2)-vertices.

- (s + 1)-regular graphs.

e Type I5(a), these are A%(15(5)) and A%(15(4)).
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CSP on A*(I5(a))

Theorem. (Eu, Fu, 2007)

- X := edge set of the graphs A*(Ix3(a)).
X(q) = [sa + 2], [sa+ al,

2] lalg
- C := cyclic group of order sa + 2, by rotation.

Then (X, X (g), C) exhibits CSP.
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Exceptional Types

e For Exceptional types Fg, F7, Eig, Fy, Hs, Hy, we have no

combinatorial models. (We will have, see Reading’s lecture.)

We still can form the A%(®),
We still can investigate the orbits under rotation for k-faces,
We still can check it CSP holds.

e These can be done by computer, once we have

- X = A%(D) OK
- X (q) :=77777 NOT OK
- cyclic group := Zgp 2 OK

e So far we can only check the facets for s = 1 in the exceptional types.
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Results summary

An Bn Dn E67E77E87F47H37H4 IQ(CL)

Vs ° ° ° s =1, some s > 2 °

Y dim ° ° ° Facets ok, some k °
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Generalized Catalan Numbers

Since all facets when s = 1 in all types have CSP....
o [ct

h—+e +1
Cat(®
il;Il e; +1

be the generalized Catalan numbers. We have proved the following:

Theorem. (Eu, Fu, 2007)
- X := facets of A(D)

h + e
. X(q) = Cat(®, q) H et
1=1

-C = Zh_|_2
Then (X, X (q), C') exhibits CSP.
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For larger s

Putting s into picture...
o Let

Cat!®)(®) :=

ﬁ3h+ei‘|‘1
. e; +1
1=1

be the generalized? Catalan numbers.

Conjecture. (Reiner, Stanton, White)
- X := facets of A(P)
mn

[sh + e;
 X(q) = Cat®(@,q) : H”e &
1=1

- C= Zsh—i—Q
Then (X, X (q), C') exhibits CSP.

e Note that we have proved the case A,,_1, By, Dy, I2(a).
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For larger s, and any k-faces

We want to do more...
o ct

Cat!?) (@) := 777
be the generalized? k-face numbers.

Conjecture. (An ill-posed problem)
- X := any k-faces of A(P)

- X(q) =777

O i= ZLisnyo

Then (X, X(q), C) exhibits CSP.

e Note that we have proved the case A,,_1, By, Dy, I2(a).

e So far we do almost nothing on the exceptional types.
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Discussion

A, | By | Dy, | Eg,E7,Eg, Fy,Hs, Hy | I5(a)

S o o o | s=1,(&somes > 2) o

dim || e ° ° mainly facets °

What’s the obstacle(s)?
e For s > 1 and facets, we have no systematic method.
- § can be very big, too many points.

- How can you check on computer, say, s = 10000, and F'g?

e For k-faces of exceptional types, it is worse... we even have no X (q).
- The g-nify of counting formulae does not work.

- Sometimes it 1s even not polynomial.
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I Discussion

. An Bn Dn E67E77E87F47H37H4 IQ(a')
S ° ° o | s=1, (& some s > 2) °
dim || e ° ° mainly facets °

e The X (q) is not easily known, e.g. D,,.
e In Type D,,, we find four g-analogues perfoming CSP.

X(Q) _ [S(n_k1)+k] 2 [n;?} . 4+ [S(n—kl)—Fk] . [z:ﬂ 2 ) (1 + qn)

H T @ ]+ PR B
also works!
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Discussion

An Bn Dn E67E77E87F47H37H4 IQ(a')

S ° ° o | s=1, (& some s > 2) °

dim || e ° ° mainly facets °

e Fomin & Reading gave a formula for faces:

n sh+e;+1
fiu(®,s) = c(P, k, s) <k> 1]
L(e;)<k
where ¢(®, k, s) and L(e;) are case-by-case functions.
e The natural g-analogue does not work, even in s = 1.

e That is, when k < n, we have no X (¢) in exceptional types.
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Open Questions:

So here comes the open problems:

Open Question: What (and Where) is the genuine X (q)?

Conjecture: With this X (q), then (X, X (q),C) has CSP.

Open Question: Give a more conceptual united proof. Maybe invariant

theory?

Thanks for your listening.

Welcome any discussions and future collaborations.
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