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Introduction

Cluster algebras are a class of commutative

rings equipped with a distinguished set of

generators grouped into overlapping subsets

(clusters) of the same finite cardinality.

Cluster algebras were introduced in [S.F.-A.Z.,

JAMS 15 (2002)] as an algebraic/combinatorial

tool for the study of total positivity and dual

canonical bases in semisimple algebraic groups.

In recent years, cluster-algebraic structures

have been identified and explored in several

mathematical disciplines, including:

• Lie theory and quantum groups;

• Quiver representations;

• Poisson geometry and Teichmüller theory;

• Algebraic and geometric combinatorics.
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Plan

This talk will survey the most basic notions

and results of the theory of cluster algebras

from a combinatorial perspective.

1. Prototypical example

2. Fundamentals of general theory

3. Cluster algebras of finite type

4. Cluster combinatorics

5. Cluster algebras and triangulated surfaces

Unless stated otherwise, results are joint with

Andrei Zelevinsky (Northeastern University).
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1. Prototypical example

Many cluster algebras arise as coordinate rings

of classical algebraic varieties. A case in point

is the cluster algebra An defined as follows.

An is a commutative ring generated over C by
(

n+3
2

)

generators xa, where a runs over all sides

and diagonals of a convex (n+3)-gon.

r r

r r

r
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Ptolemy relations

The generators xa are subject to
(

n+3
4

)

defining

relations, called the Ptolemy relations:

xe xe′ = xa xc + xb xd . (∗)
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The algebra An is isomorphic to the homo-

geneous coordinate ring of the Grassmannian

Gr2,n+3 of 2-dimensional subspaces in Cn+3,

with respect to its Plücker embedding.

(Identify the generators xa with the Plücker

coordinates on Gr2,n+3; then (∗) become the

Grassmann-Plücker relations.)
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Clusters

Let T be a triangulation of our (n + 3)-gon

by n non-crossing diagonals. The cluster x(T )

is the n-element set of generators xa corre-

sponding to the diagonals of T . The extended

cluster x̃(T ) is the set of 2n + 3 generators

corresponding to the sides and diagonals of T .

Cluster monomials

A cluster monomial is any monomial in the

elements of some extended cluster x̃(T ).

The following result can be traced back to clas-

sical 19th century literature on invariant theory.

Theorem 1 Cluster monomials form an addi-

tive basis of An .
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Flips

Triangulations/clusters are related to each other

by flips. The graph of flips is the 1-skeleton of

the n-dimensional associahedron, also known

as the Stasheff polytope.
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Birational maps. Ambient field

Let us associate to each triangulation T a field

of rational functions in 2n+3 variables:

F(T ) = C(x̃(T )).

Naturally associated to each flip T → T ′ is a

birational isomorphism F(T ) → F(T ′) defined by

xe′ =
xa xc + xb xd

xe
.
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The diagram of all such isomorphisms commutes.

Consequently, all fields F(T ) can be identified

with a canonical ambient field F ⊃ An.
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Laurent phenomenon. Positivity

Theorem 2 Each generator xa is a Laurent

polynomial in the elements of a given extended

cluster x̃(T ). All these Laurent polynomials

have positive integer coefficients.
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Towards a general theory

Our next goal is to generalize this example,

and in particular Theorems 1 and 2.

This will require axiomatizing

• the combinatorics of clusters and

• the algebra of birational maps between them.

Main idea: The entire structure of clusters

and birational exchanges is uniquely determined,

in a canonical fashion, by a certain integer

matrix B̃ = B̃(T ) which encodes the combi-

natorics of an arbitrary triangulation T .
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Matrices B̃(T )

Label the diagonals of a triangulation T by

the numbers 1, . . . , n. Label the sides of the

(n+3)-gon by n+1, . . . ,2n+3 = m.

Let B̃ = B̃(T ) = (bij) be the m × n integer

matrix with rows labeled by [1, m], columns

labeled by [1, n], and entries describing signed

adjacencies between the sides and diagonals.
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Ptolemy relations in terms of B̃

For a diagonal of T labeled k, let xk denote the

corresponding generator of An. The Ptolemy

relation associated with flipping that diagonal

can now be written as

xk x′k =
∏

bik>0

x
bik
i +

∏

bik<0

x
−bik
i .

Flips in terms of B̃

We say that an m × n matrix B̃′ = (b′ij) is

obtained from a matrix B̃ by matrix mutation

in direction k ∈ [1, n], and write B̃′ = µk(B̃), if

b′ij =











−bij if i = k or j = k;

bij +
|bik|bkj + bik|bkj|

2
otherwise.

If T ′ is obtained from T by a flip replacing a

diagonal labeled k, then B̃(T ′) = µk(B̃(T )).
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2. Fundamentals of general theory

Seeds

Let 0 < n ≤ m. Let F be a field of rational

functions over C in m independent variables.

A seed in F is a pair (x̃, B̃), where

• x̃ = {x1, . . . , xm} is a set of algebraically

independent generators of F;

• B̃ = (bij) is an m × n integer matrix of

rank n whose n×n submatrix B = (bi,j)i,j≤n

is skew-symmetrizable.

We call B the exchange matrix of the seed (x̃, B̃).

The set x = {x1, . . . , xn} ⊂ x̃ is the cluster.

Each seed is defined up to a relabeling of

elements of x together with the corresponding

relabeling of rows and columns of B̃.

A matrix B̃(T ) associated with a triangulation

T satisfies these conditions, with m = 2n + 3.

Hence (x̃(T ), B̃(T )) is an example of a seed.
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Seed mutations

Let (x̃, B̃) be a seed as above. Let 1 ≤ k ≤ n,

so that xk is an element of the cluster x ⊂ x̃.

By analogy with the Ptolemy relations, we set:

x̃k = x̃ − {xk} ∪ {x′k} ,

where

x′k =

∏

bik>0
x

bik
i +

∏

bik<0
x
−bik
i

xk
∈ F .

We also set

B̃′ = µk(B̃) .

It is easy to check that (x̃′, B̃′) is again a seed.

We say that (x̃′, B̃′) is obtained from (x̃, B̃) by

a seed mutation in direction k. Applying the

same mutation to (x̃′, B̃′) recovers (x̃, B̃).
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Mutation equivalence

Seeds (x̃, B̃) and (x̃′, B̃′) are called mutation-

equivalent if (x̃′, B̃′) can be obtained from (x̃, B̃)

by a sequence of seed mutations.
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Cluster algebra

Let S be a mutation equivalence class of seeds.

All seeds (x̃, B̃)∈S share the same set c= x̃−x.

Fix a ground ring R sandwiched between Z[c]

and C[c±1].

Let X = X (S) denote the union of all clusters x

in all the seeds in S. The elements of X are

called cluster variables.

The cluster algebra A(S) associated with S

is the R-subalgebra of the ambient field F

generated by all cluster variables: A(S) = R[X ].

In our running example, taking R = C[c], we

recover A(S) = An = C[Gr2,n+3].

(Strictly speaking, the above definition is that

of a cluster algebra of geometric type.)
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Examples

Theorem 3 [J.Scott, Proc. LMS 92 (2006)]

The homogeneous coordinate ring of every

Grassmannian Grk(C
r) has a natural cluster

algebra structure.

Conjecturally, this extends to any homogeneous

space G/P , and any Schubert variety therein.

(Proved for G/P ’s in G = SLm(C) by C.Geiss,

B.Leclerc, and J.Schröer [math.RT/0609138].)

Theorem 4 The coordinate ring of any affine

base space G/N is a cluster algebra.
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Laurent phenomenon for cluster algebras

Theorem 5 Every cluster variable is a Laurent

polynomial in the elements of any extended

cluster.

It is conjectured (and in many instances proved)

that all such Laurent polynomials have positive

coefficients.

Theorem 5 is a special case of the main result

in [S.F.-A.Z., Adv. in Appl. Math. 28 (2002)],

which we used to prove a conjecture of D.Gale

and R.Robinson on integrality of generalized

Somos sequences, and conjectures by J.Propp

on the cube and octahedron recurrences.
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Cluster monomials

A cluster monomial is a monomial in cluster

variables all of which belong to the same cluster.

Conjecture 6 The cluster monomials are lin-

early independent over the ground ring R.

Many special cases have been proved.

In examples of geometric origin, we expect the

cluster monomials to form part of the suitably

defined dual canonical basis in A.
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3. Cluster algebras of finite type

A cluster algebra A(S) is of finite type if the

mutation equivalence class S is finite. Equiva-

lently, there are finitely many cluster variables.

Conjecture 7 The cluster monomials form an

additive basis of a cluster algebra if and only if

it is of finite type.

The classification of cluster algebras of finite

type turns out to be completely parallel to the

classical Cartan-Killing classification of semi-

simple Lie algebras and finite root systems.
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Dynkin diagrams of finite

crystallographic root systems

An (n ≥ 1) t t t t t t t t

Bn (n ≥ 2) <t t t t t t t t

Cn (n ≥ 3) >t t t t t t t t

Dn (n ≥ 4)
HHH

©©
©t t t t t t t

t

t

E6

t

t t t t t

E7

t

t t t t t t

E8

t

t t t t t t t

F4 >t t t t

G2 t t>
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Bi-partition of a Dynkin diagram

Let A = (aij) be an n × n Cartan matrix of

finite type. Let ε : [1, n] → {1,−1} be a sign

function such that aij < 0 =⇒ ε(i) = −ε(j).

u

u u u u u u u
1

−1

−1 1 −1 1 −1 1

Let B(A) = (bij) be the skew-symmetrizable

matrix defined by

bij =







0 if i = j;

ε(i) aij if i 6= j.
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Finite type classification

Theorem 8 A cluster algebra A is of finite

type if and only if the exchange matrix at some

seed of A is of the form B(A), where A is a

Cartan matrix of finite type.

The type of the Cartan matrix A in the Cartan-

Killing nomenclature is uniquely determined

by the cluster algebra A, and is called the

cluster type of A.

The cluster algebra An of our running example

has cluster type An .
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Cluster types of some coordinate rings

The symmetry exhibited by the cluster type of

a cluster algebra is usually not apparent at all

from its geometric realization.

C[Gr(2, n+3)] An

C[Gr(3,6)] D4

C[Gr(3,7)] E6

C[Gr(3,8)] E8

C[SL3/N ] A1

C[SL4/N ] A3

C[SL5/N ] D6

C[Sp4/N ] B2

C[SL2] A1

C[SL3] D4

(beyond this table—infinite types)
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4. Cluster combinatorics

Cluster complex

The underlying combinatorics of a cluster

algebra A of finite type is encoded by the

cluster complex ∆(A), the simplicial complex

on the ground set of all cluster variables whose

maximal simplices are the clusters.

Theorem 9 [F.Chapoton-S.F.-A.Z.]

The cluster complex of a cluster algebra of

finite type is the dual simplicial complex of a

simple convex polytope.

This polytope is the generalized associahedron

of the appropriate Cartan-Killing type. In types

An and Bn, we recover, respectively, Stasheff’s

associahedron and Bott-Taubes’ cyclohedron.

25



Enumerative results

Let A be a cluster algebra of finite type. Let

Φ be a finite crystallographic root system of

the corresponding Cartan-Killing type.

Theorem 10 The number of cluster variables

in A (=the number of facets of a generalized

associahedron) is equal to the number of roots

in Φ that are either positive or negative simple.

Theorem 11 The number of clusters in A

(=the number of vertices of a generalized

associahedron) is equal to

N(Φ)=
n
∏

i=1

ei + h+1

ei +1
,

where e1, . . . , en are the exponents of Φ, and h

is the Coxeter number.
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Catalan combinatorics of arbitrary type

The numbers N(Φ) can be viewed as gener-

alizations of the Catalan numbers to arbitrary

Cartan-Killing type. Besides clusters, they are

known to enumerate a variety of combinatorial

objects related to the root system Φ:

• ad-nilpotent ideals in a Borel subalgebra of

a semisimple Lie algebra;

• antichains in the root poset;

• regions of the Shi arrangement contained

in the fundamental chamber;

• orbits of the Weyl group action on the

quotient Q/(h + 1)Q of the root lattice;

• conjugacy classes of elements x of a semisim-

ple Lie group which satisfy xh+1 = 1;

• non-crossing partitions of the appropriate

type.
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5. Cluster algebras and triangulated surfaces

Cluster-algebraic structures associated with

triangulated surfaces were discovered in:

V.V.Fock and A.B.Goncharov,

Publ. Math. IHES 103 (2006),

M.Gekhtman, M.Shapiro, and A.Vainshtein,

Duke Math. J. 127 (2005).

Let S be a connected oriented surface with

boundary. Fix a finite non-empty set M of

marked points in the closure of S.

An arc in (S,M) is a non-selfintersecting curve

in S connecting marked points in M and not

passing through M. Each arc is considered up

to isotopy rel M, and must not cut out an

unpunctured monogon or digon.
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Arc complex
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Flips on a surface

Maximal collections of compatible arcs form

triangulations of (S,M). Triangulations are

connected by flips.

The notion of a signed adjacency matrix B̃(T )

can be generalized to triangulations of surfaces.

Under flips, such matrices change according to

the general mutation rules, as before.
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Cluster variables

Let us associate a formal variable to every arc.

Each triangulation gives rise to a cluster. Flips

correspond to birational maps, which form a

commuting diagram. This leads to a family

of cluster-algebraic structures associated with

the given bordered surface with marked points.

The cluster variables in a resulting cluster

algebra generalize Penner’s coordinates on the

decorated Teichmüller space, also known as

lambda-lengths.

With M.Shapiro and D.Thurston, we explic-

itly described the cluster complex associated

with an arbitrary bordered surface (S,M), and

determined its homotopy type and growth rate.
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