For some l, $\dim R(0;l) = \dim R(1;l) = \dim R(2;l) = \cdots$.

$$G^{\frown} \quad R(0;l), \qquad R(1;l), \qquad \cdots, \qquad R(l-1;l)$$

$$G^{\frown} \quad \operatorname{Ind} z(0;l), \quad \operatorname{Ind} z(1;l), \quad \cdots, \quad \operatorname{Ind} z(l-1;l)$$

$$\cup \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$H^{\frown} \quad z(0;l), \qquad z(1;l), \quad \cdots, \quad z(l-1;l), \qquad (\dim z(i;l) = \dim z(j;l))$$

We can prove it by $(H, \{ z(i;l) \})$ providing the picture.

In the case when

- $G = S_m$: the symmetric group,
- $R = R_{\mu} = \bigoplus_{i} R_{\mu}^{i}$: the Springer module, where μ is a partition whose multiplicities are divisible by l,

$$\dim R_\mu(0;l)=\dim R_\mu(1;l)=\dim R_\mu(2;l)=\cdots,$$
 where $R_\mu(k;l)=igoplus_i R_\mu^{il+k}.$

- $H = S_{\mu} \rtimes C_{\mu,l}$, where
 - $-S_{\mu}$: the Young subgroup,
 - $-C_{\mu,l}=\langle a_{\mu,l} \rangle$: some l-th cyclic group.
- ullet z(i,l): the following 1-dimensional representation:

where ζ_l is the primitive root of unity.

- $\bullet \ \dim z(i;l) = \dim z(j;l)$
 - Clear by the definition of z(i;l).
- Ind $z(i;l) \simeq R(i;l)$
 - They showed the coincidence of their characters.
 - To show the fact, they explicitly calculated values $Q^\mu_\rho(\zeta^i_l)$ of Green polynomial at roots of unity.

By their result,

• $Q^{\mu}_{o}(\zeta^{i}_{l})$ is an nonnegative integer.

So we have the following questions:

- Does the number have a combinatorial presentation?
 (Describe as a number of some combinatorial objects.)
- What do the combinatorial objects mean?

Fix the following:

• l: a positive integer.

$$-$$
 Let $l = 3$.

• μ : a partition of m whose multiplicities are divisible by l.

- Let
$$\mu = (3^3, 2^3) \vdash 15$$
.

• ρ : a partition of m.

- Let
$$\rho = (6, 6, 3) \vdash 15$$
.

A (ρ, l) -tableau on μ is a filling satisfying:

- · weakly increasing for each row.
- the number of boxes where i lies is ρ_i .
- the boxes where i lies form a rectangle of height l.

Example The following are (ρ, l) -tableaux on μ :

	1	1	3	***************************************
	1	1	3	
	1	1	3	ŀ
	2	2		,
***************************************	2	2		
	2	2		

2	2	3
2	2	3
2	2	3
1	1	,
1	1	
1	1	

A marked (ρ, l) -tableau on μ is a diagram obtained

- from a (ρ, l) -tableau on μ
- by putting * on one of left-most boxes where i lies for each i.

Example The following are marked (ρ, l) -tableaux:

1*	1	3*	1	1	1	3*	1	1	3*	1*	1	3*	1	1	3*	1	1	3*]
1	1	3		1*	1	3	1	1	3	1	1	3	1*	1	3	1	1	3	
1	1	3		1	1	3	1*	1	3	1	1	3	1	1	3	1*	1	3	
2*	2		,	2*	2		2*	2		2	2		2	2	-	2	2		,
2	2		Ì	2	2		2	2		2*	1 .		2*	2		2*	2		
2	2			2	2		2	2		2	2		2	2	•	2	2		

Theorem For $\sigma \in S_m$ of cycle type ρ ,

$$\sum_{k\in\mathbb{Z}/t\mathbb{Z}}\zeta_{l}^{k}\operatorname{Char}\left(R^{\mu}(k;l)\right)(\sigma)=\left|\left\{\right.\operatorname{marked}\left(\rho,l\right)\text{-tableaux on }\mu\left.\right\}\right|.$$

$$\mathbf{Remark} \ \ Q^{\mu}_{\rho}(\zeta_l) = \sum_{k \in \mathbb{Z}/l\mathbb{Z}} \zeta^k_l \operatorname{Char} \left(R^{\mu}(k;l) \right) (\sigma)$$

Lemma For an integer j and $\sigma \in S_m$ of cycle type ρ ,

$$\sum_{k \in \mathbb{Z}/l\mathbb{Z}} \zeta_l^k \operatorname{Char}\left(R_{\mu}(k;l)\right)(\sigma) = \left|\left\{ \ \{T\} \colon \text{a tabloid on } \mu \,\middle|\, \sigma\{T\} = \{T\}a_{\mu,l}^{-j} \ \right\}\right|.$$

Lemma For an integer j and $\sigma \in S_m$ of cycle type ρ ,

$$\{ \text{ marked } (\rho,l) \text{-tableaux on } \mu \ \} \overset{1:1}{\longleftrightarrow} \left\{ \ \{T\} \text{: a tabloid on } \mu \ \middle| \ \sigma\{T\} = \{T\} a_{\mu,l}^{-j} \ \right\}.$$