NESTED SET COMPLEXES OF DOWLING LATTICES AND COMPLEXES OF DOWLING TREES

Emanuele Delucchi Università di Pisa

FPSAC'07, July 2.-6. Nankai University, Tianjin, P.R. of China

TRIVIA

For a finite set P with a partial order < (i.e., a poset):

 $\Delta(P)$ is the simplicial complex with vertex set P and simplices given by the totally ordered subsets (*chains*) of P.

 $\widetilde{\Delta}(P):=\Delta(\overline{P})$, where \overline{P} is P with the unique maximal and minimal element removed, if P has any.

TRIVIA

For a finite set P with a partial order < (i.e., a poset):

 $\Delta(P)$ is the simplicial complex with vertex set P and simplices given by the totally ordered subsets (*chains*) of P.

 $\widetilde{\Delta}(P) := \Delta(\overline{P})$, where \overline{P} is P with the unique maximal and minimal element removed, if P has any.

 Π_n is the lattice of partitions of $[n] = \{1, 2, \dots, n\}$ ordered by refinement.

TRIVIA

For a finite set P with a partial order < (i.e., a poset):

 $\Delta(P)$ is the simplicial complex with vertex set P and simplices given by the totally ordered subsets (*chains*) of P.

 $\widetilde{\Delta}(P):=\Delta(\overline{P})$, where \overline{P} is P with the unique maximal and minimal element removed, if P has any.

 Π_n is the lattice of partitions of $[n] = \{1, 2, \dots, n\}$ ordered by refinement.

Writing $\alpha = A_0 |A_1| \cdots |A_k|$ for the partition $\biguplus_{i=1}^k A_i = [n]$, $\alpha \leq \alpha' \iff$ for all i there is j s.t. $A_i \subseteq A_j'$.

Let a finite group G and a natural number n>0 be given.

Let a finite group G and a natural number n > 0 be given.

Define ${}^nG:=\{0\}\cup([n]\times G)$, and consider the action $G\circlearrowright{}^nG;\quad g:(i,h)\mapsto(i,gh),\quad 0\mapsto 0.$

Let a finite group G and a natural number n > 0 be given.

Define ${}^nG:=\{0\}\cup([n]\times G)$, and consider the action $G\circlearrowright{}^nG;\quad g:(i,h)\mapsto(i,gh),\quad 0\mapsto0.$

Definition. A partition $\sigma = \sigma_0 \mid \sigma_1 \mid \cdots \mid \sigma_k$ of nG , where $0 \in \sigma_0$, is called G-symmetric (n-)partition if \circlearrowright induces an action of G on the blocks such that the orbit of every σ_i with i > 0 has length |G|.

$$\sigma := \begin{cases} 0, & (3, id) \\ & (3, g) \\ & (3, g^2) \end{cases} \quad \begin{cases} (1, id), (6, g) \} & \{(2, id) \} & \{(4, id), (5, g^2) \} \\ & \{(1, g), (6, g^2) \} & \{(2, g) \} & \{(4, g), (5, id) \} \\ & \{(1, g^2), (6, id) \} & \{(2, g^2) \} & \{(4, g^2), (5, g) \} \end{cases}$$

Let a finite group G and a natural number n > 0 be given.

Define ${}^nG:=\{0\}\cup([n] imes G)$, and consider the action $G\circlearrowright{}^nG;\quad g:(i,h)\mapsto(i,gh),\quad 0\mapsto 0.$

Definition. A partition $\sigma = \sigma_0 \mid \sigma_1 \mid \cdots \mid \sigma_k$ of nG , where $0 \in \sigma_0$, is called G-symmetric (n-)partition if \circlearrowright induces an action of G on the blocks such that the orbit of every σ_i with i > 0 has length |G|.

Is the associated partition of $[n] \cup \{0\}$

[Dowling '71]

Definition. The Dowling lattice $Q_n(G)$ is the set of G-symmetric partitions, partially ordered by refinement:

$$\sigma \leq \sigma' \iff$$
 for all i there is j s.t. $\sigma_i \subseteq \sigma'_j$.

[Dowling '71]

Definition. The Dowling lattice $Q_n(G)$ is the set of G-symmetric partitions, partially ordered by refinement:

$$\sigma \leq \sigma' \iff$$
 for all i there is j s.t. $\sigma_i \subseteq \sigma'_j$.

Theorem. [Dowling '71] $Q_n(G)$ is a geometric, supersolvable lattice. $\widetilde{\Delta}(Q_n(G))$ is homotopy equivalent to a wedge of

$$(|G|+1)(2|G|+1)\cdots((n-1)|G|+1)$$

spheres of dimension (n-2).

Example. Two comparable elements in $\mathcal{Q}_3(\mathbb{Z}_3)$.

$$\sigma := \begin{cases} 0, & (2,id) & (3,id) \\ & (2,g) & (3,g) \\ & (2,g^2) & (3,g^2) \end{cases} \begin{cases} \{(1,id),(4,g^2),(5,g),(6,g)\} \\ \{(1,g),(4,id),(5,g^2),(6,g^2)\} \\ \{(1,g^2),(4,g),(5,id),(6,id)\} \end{cases}$$

$$\sigma' := \begin{cases} 0, & (3,id) \\ & (3,g) \\ & (3,g^2) \end{cases} \quad \begin{cases} \{(1,id),(6,g)\} & \{(2,id)\} & \{(4,id),(5,g^2)\} \\ & \{(1,g),(6,g^2)\} & \{(2,g)\} & \{(4,g),(5,id)\} \\ & \{(1,g^2),(6,id)\} & \{(2,g^2)\} & \{(4,g^2),(5,g)\} \end{cases}$$

Remark. If $\sigma \leq \sigma'$, then $\underline{\sigma} \leq \underline{\sigma'}$ in Π_{n+1}

Remark. If $\sigma \leq \sigma'$, then $\underline{\sigma} \leq \underline{\sigma'}$ in Π_{n+1}

Lemma. [Dowling '71] For every $\sigma = \sigma_0 |\sigma_1| \cdots |\sigma_k \in \mathcal{Q}_n(G)$ with associated partition $\underline{\sigma} = S_0 |S_1| \cdots |S_\ell$, we have

$$Q_n(G)_{\geq \sigma} \simeq Q_k(G)$$

and

$$Q_n(G)_{\leq \sigma} \simeq Q_{|S_0|-1}(G) \times \Pi_{|S_1|} \times \cdots \times \Pi_{|S_\ell|}.$$

Remark. If $\sigma \leq \sigma'$, then $\underline{\sigma} \leq \underline{\sigma'}$ in Π_{n+1}

Lemma. [Dowling '71] For every $\sigma = \sigma_0 |\sigma_1| \cdots |\sigma_k \in \mathcal{Q}_n(G)$ with associated partition $\underline{\sigma} = S_0 |S_1| \cdots |S_\ell$, we have

$$Q_n(G)_{\geq \sigma} \simeq Q_k(G)$$

and

$$Q_n(G)_{\leq \sigma} \simeq Q_{|S_0|-1}(G) \times \Pi_{|S_1|} \times \cdots \times \Pi_{|S_\ell|}.$$

In particular, the subposet given by all elements having $\sigma_0 = \{0\}$ is a lower ideal of $\mathcal{Q}_n(G)$.

THE POSET $Q_n^0(G)$

[Hultman '06]

Definition. Let $\mathcal{Q}_n^0(G)$ be the subposet of $\mathcal{Q}_n(G)$ given by the partitions with trivial zero-block σ_0 . Thus, for $\sigma \in \mathcal{Q}_n^0(G)$ we will let $\underline{\sigma} \in \sigma_n$.

Remark. In Hultman's definition $\hat{0} \notin \mathcal{Q}_n^0(G)$. Our choice makes $\mathcal{Q}_n^0(G)$ a meet-semilattice.

THE POSET $Q_n^0(G)$

[Hultman '06]

Definition. Let $\mathcal{Q}_n^0(G)$ be the subposet of $\mathcal{Q}_n(G)$ given by the partitions with trivial zero-block σ_0 . Thus, for $\sigma \in \mathcal{Q}_n^0(G)$ we will let $\underline{\sigma} \in \sigma_n$.

Remark. In Hultman's definition $\hat{0} \notin \mathcal{Q}_n^0(G)$. Our choice makes $\mathcal{Q}_n^0(G)$ a meet-semilattice.

Theorem. [Hultman'06] The complex $\widetilde{\Delta}(\mathcal{Q}_n^0(G))$ has the homotopy type of a wedge of

$$(|G|-1)(2|G|-1)\cdots((n-1)|G|-1)$$

spheres of dimension n-2.

G-SYMMETRIC PHYLOGENETIC TREES

[Hultman '06]

A G-tree is a rooted tree with leaves labelled bijectively by elements of $[n] \times G$.

G-SYMMETRIC PHYLOGENETIC TREES

[Hultman '06]

A G-tree is a rooted tree with leaves labelled bijectively by elements of $[n] \times G$.

Definition. A G-symmetric phylogenetic tree is a G-tree satisfying:

- (1) Every internal vertex (except the root) has degree ≥ 3 .
- (2) The tree is invariant under 🖰.
- (3) For all $g, h \in G$, $g \neq h$, and $i \in [n]$, the shortest path connecting (i, g) to (i, h) contains the root.

A \mathbb{Z}_2 -symmetric phylogenetic tree with n=3:

THE COMPLEX \mathcal{T}_n^G

[Hultman '06]

Definition. Let \mathcal{T}_n^G denote the set of G-symmetric phylogenetic trees.

If t is an inner edge of a $T \in \mathcal{T}_n^G$, we define the contraction of its orbit o(t):

THE COMPLEX \mathcal{T}_n^G

[Hultman '06]

Definition. Let \mathcal{T}_n^G denote the set of G-symmetric phylogenetic trees.

If t is an inner edge of a $T \in \mathcal{T}_n^G$, we define the contraction of its orbit o(t):

With the contraction of inner orbits as boundary operation, \mathcal{T}_n^G is a pure simplicial complex of dimension n-2.

Definition. Let \mathcal{T}_n^G denote the set of G-symmetric phylogenetic trees.

If t is an inner edge of a $T \in \mathcal{T}_n^G$, we define the contraction of its orbit o(t):

With the contraction of inner orbits as boundary operation, \mathcal{T}_n^G is a pure simplicial complex of dimension n-2.

Theorem. [Hultman '06] There is a homotopy equivalence

$$\widetilde{\Delta}(\mathcal{Q}_n^0(G)) \simeq \mathcal{T}_n^G.$$

COMPLEXES OF TREES

Definition. The complex of (philogenetic) trees T_N is the abstract simplicial complex of rooted trees on N leaves with vertex degrees at least 3, except possibly for the root vertex.

 T_1 is a face of T_2 if T_1 is obtained from T_2 by a contraction of some set of internal edges.

Amongst other: [Billera, Holmes, Vogtmann '01] [Robinson, Whitehouse '96] [Trappmann, Ziegler '98] [Ardila, Klivans '06]

. . .

COMPLEXES OF TREES

Definition. The complex of (phylogenetic) trees T_N is the abstract simplicial complex of rooted trees on N leaves with vertex degrees at least 3, except possibly for the root vertex.

 T_1 is a face of T_2 if T_1 is obtained from T_2 by a contraction of some set of internal edges.

Theorem. [Feichtner '04] $\Delta(\Pi_N)$ can be obtained from \mathcal{T}_N by a sequence of stellar subdivisions.

BUILDING SETS

[De Concini, Procesi '95], [Feichtner, Kozlov '01]

 \mathcal{L} : finite meet-semilattice.

Definition. $\mathcal{G} \subseteq \mathcal{L}_{>\hat{0}}$ is a building set if for any $x \in \mathcal{L}_{>\hat{0}}$ and $\max \mathcal{G}_{\leq x} = \{g_1, \dots, g_k\}$, there exists an isomorphism

$$\varphi_x: \prod_{i=1}^k [\hat{0}, g_i] \to [\hat{0}, x]; \qquad \bigoplus_{\widehat{0}}^{g_1} \times \bigoplus_{\widehat{0}}^{g_2} \times \bigoplus_{\widehat{0}}^{g_3} \cong \bigoplus_{\widehat{0}}^{g_3} \times \bigoplus_{\widehat{0}}^{g_3$$

BUILDING SETS

[De Concini, Procesi '95], [Feichtner, Kozlov '01]

 \mathcal{L} : finite meet-semilattice.

Definition. $\mathcal{G} \subseteq \mathcal{L}_{>\hat{0}}$ is a building set if for any $x \in \mathcal{L}_{>\hat{0}}$ and $\max \mathcal{G}_{< x} = \{g_1, \dots, g_k\}$, there exists an isomorphism

$$\varphi_x: \prod_{i=1}^k [\hat{0}, g_i] \to [\hat{0}, x]; \qquad \bigoplus_{\hat{0}}^{g_1} \times \bigoplus_{\hat{0}}^{g_2} \times \bigoplus_{\hat{0}}^{g_3} \cong \bigoplus_{\hat{0}}^{g_3} \times \bigoplus_{\hat{0}}^{g_3$$

 $\mathcal{G}:=\mathcal{L}_{>\hat{0}}$ is the *maximal* building set $\mathcal{G}:=\mathcal{I}=\left\{x\in\mathcal{L}_{>\hat{0}}\mid x \text{ is irreducible }
ight\}$ is the *minimal* building set.

Example. For Π_n , \mathcal{I} is the set of one-nonsingleton-block partitions.

NESTED SET COMPLEXES

[De Concini, Procesi '95], [Feichtner, Kozlov '01]

Definition. Let $\mathcal{G} \subseteq \mathcal{L}_{>\hat{0}}$ be a building set. $U \subset \mathcal{G}$ is a nested set if for any incomparable elements $x_1, \ldots, x_t \in U$, $t \geq 2$,

 $x_1 \vee \cdots \vee x_t$ exists, and is not an element of \mathcal{G} .

 $\mathcal{N}(\mathcal{L},\mathcal{G})$: the abstract simplicial complex of nested sets.

NESTED SET COMPLEXES

[De Concini, Procesi '95], [Feichtner, Kozlov '01]

Definition. Let $\mathcal{G} \subseteq \mathcal{L}_{>\hat{0}}$ be a building set. $U \subset \mathcal{G}$ is a nested set if for any incomparable elements $x_1, \ldots, x_t \in U$, $t \geq 2$,

 $x_1 \vee \cdots \vee x_t$ exists, and is not an element of \mathcal{G} .

 $\mathcal{N}(\mathcal{L},\mathcal{G})$: the abstract simplicial complex of nested sets.

If $\hat{1} \in \mathcal{G} \subset \mathcal{L}$, $\mathcal{N}(\mathcal{L}, \mathcal{G})$ is a cone with apex $\hat{1}$. Its base is $\widetilde{\mathcal{N}}(\mathcal{L}, \mathcal{G})$.

NESTED SET COMPLEXES

[De Concini, Procesi '95], [Feichtner, Kozlov '01]

Definition. Let $\mathcal{G} \subseteq \mathcal{L}_{>\hat{0}}$ be a building set. $U \subset \mathcal{G}$ is a nested set if for any incomparable elements $x_1, \ldots, x_t \in U$, $t \geq 2$,

 $x_1 \vee \cdots \vee x_t$ exists, and is not an element of \mathcal{G} .

 $\mathcal{N}(\mathcal{L},\mathcal{G})$: the abstract simplicial complex of nested sets.

If $\hat{1} \in \mathcal{G} \subset \mathcal{L}$, $\mathcal{N}(\mathcal{L}, \mathcal{G})$ is a cone with apex $\hat{1}$. Its base is $\widetilde{\mathcal{N}}(\mathcal{L}, \mathcal{G})$.

Remark. For $\mathcal{G} = \mathcal{L}_{>\hat{0}}$, $\mathcal{N}(\mathcal{L}, \mathcal{G}) = \Delta(\mathcal{L}_{>\hat{0}})$ and $\widetilde{\mathcal{N}}(\mathcal{L}, \mathcal{G}) = \widetilde{\Delta}(\mathcal{L})$.

Example. We have $U \in \mathcal{N}(\Pi_n, \mathcal{I})$ if, and only if,

for any $\alpha, \alpha' \in U$, either $A \cap A' = \emptyset$ or $A \subset A'$ or $A' \subset A$.

where A (A') is the only nonsingleton block of α (α')

STELLAR SUBDIVISIONS

Theorem. [Feichtner, Müller '03; Čukić, D. '05] Let \mathcal{L} be a meet-semilattice, $\mathcal{H} \subseteq \mathcal{G}$ building sets of \mathcal{L} . The simplicial complex $\mathcal{N}(\mathcal{L},\mathcal{G})$ is obtained from $\mathcal{N}(\mathcal{L},\mathcal{H})$ by a sequence of stellar subdivisions .

STELLAR SUBDIVISIONS

Theorem. [Feichtner, Müller '03; Čukić, D. '05] Let \mathcal{L} be a meet-semilattice, $\mathcal{H} \subseteq \mathcal{G}$ building sets of \mathcal{L} . The simplicial complex $\mathcal{N}(\mathcal{L},\mathcal{G})$ is obtained from $\mathcal{N}(\mathcal{L},\mathcal{H})$ by a sequence of stellar subdivisions .

Note: The abstract simplicial complexes $\mathcal{N}(\mathcal{L},\mathcal{G})$, $\mathcal{N}(\mathcal{L},\mathcal{H})$ are homeomorphic: there are geometric realizations $|K_{\mathcal{G}}|$ of $\mathcal{N}(\mathcal{L},\mathcal{G})$ and $|K_{\mathcal{H}}|$ of $\mathcal{N}(\mathcal{L},\mathcal{H})$ with a PL-homeomorphism $\phi:|K_{\mathcal{G}}|\to |K_{\mathcal{H}}|$.

SUBDIVISION OF \mathcal{T}_n^G

Recall the partition lattice Π_n with its minimal building set \mathcal{I} .

Definition. Let
$$\mathcal{I}^G := \{ \sigma \in \mathcal{Q}_n^0(G) \mid \underline{\sigma} \in \mathcal{I} \}.$$

Since lower intervals in $\mathcal{Q}_n^0(G)$ have one factor for every block,

 \mathcal{I}^G is the minimal building set of $\mathcal{Q}_n^0(G)$.

Theorem. [D. '06] The simplicial complexes $\mathcal{N}(\mathcal{Q}_n^0(G), \mathcal{I}^G)$ and \mathcal{T}_n^G are isomorphic.

Corollary.
$$\mathcal{T}_n^G \overset{sss}{\leadsto} \widetilde{\Delta}(\mathcal{Q}_n^0(G)).$$

WHAT ABOUT $Q_n(G)$?

Recall that, for $\sigma = \sigma_0 |\sigma_1| \cdots |\sigma_k \in \mathcal{Q}_n(G)$, we have an isomorphism

$$Q_n(G)_{\leq \sigma} \xrightarrow{\sim} Q_{\frac{|\sigma_0|-1}{|G|}}(G) \times \Pi_{|\underline{\sigma}_1|} \times \cdots \times \Pi_{|\underline{\sigma}_{\ell}|}.$$

Thus, the minimal building set of $Q_n(G)$ is

$$\mathcal{J}^G := \{ \sigma \in \mathcal{Q}_n(G) | |\underline{\sigma}_j| > 1 \text{ for only one } j \}.$$

WHAT ABOUT $Q_n(G)$?

Recall that, for $\sigma = \sigma_0 |\sigma_1| \cdots |\sigma_k \in \mathcal{Q}_n(G)$, we have an isomorphism

$$Q_n(G)_{\leq \sigma} \xrightarrow{\sim} Q_{\frac{|\sigma_0|-1}{|G|}}(G) \times \Pi_{|\underline{\sigma}_1|} \times \cdots \times \Pi_{|\underline{\sigma}_{\ell}|}.$$

Thus, the minimal building set of $Q_n(G)$ is

$$\mathcal{J}^G := \{ \sigma \in \mathcal{Q}_n(G) | |\underline{\sigma}_j| > 1 \text{ for only one } j \}.$$

Remark. We have $\mathcal{J}^G \cap \mathcal{Q}_n^0(G) = \mathcal{I}^G$. Moreover:

- If $X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$, then $X \cap \mathcal{I}^G \in \mathcal{N}(\mathcal{Q}_n^0(G), \mathcal{I}^G)$, and
- ullet $X\setminus \mathcal{I}^G$ is a chain .
- $\mathcal{N}(\mathcal{Q}_n^0(G), \mathcal{I}^G) \subset \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$.

DOWLING TREES?

Natural question: "is" $\mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$ some 'bigger' complex of trees containing $\mathcal{N}(\mathcal{Q}_n^0(G), \mathcal{I}^G) = \mathcal{T}_n^G$?

DOWLING TREES?

Natural question: "is" $\mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$ some 'bigger' complex of trees containing $\mathcal{N}(\mathcal{Q}_n^0(G), \mathcal{I}^G) = \mathcal{T}_n^G$?

For example, consider the nested

set

$$U := \left\{ \{0, 1, \overline{1}, 2, \overline{2}\} | \{3\} | \{\overline{3}\}, \\ \{0\} | \{1, \overline{2}\} | \{\overline{1}, 2\} | \{3\} | \{\overline{3}\} \right\}$$
 in $\mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$.

The formal definition is now at hand.

DOWLING TREES!

Recall G-trees from before.

Definition. A Dowling tree is a G-tree with some distinguished vertices, called 0-vertices, satisfying:

- (0) The subgraph of the 0-vertices is a path starting at the root.
- (1) Every internal vertex (except the root) has degree ≥ 3 .
- (2) The tree is invariant under \bigcirc , which fixes the 0-vertices.
- (3) For all $g, h \in G$, $g \neq h$, and $i \in [n]$, the shortest path connecting (i,g) to (i,h) contains exactly one 0-vertex.

The set of Dowling trees is denoted $\mathcal{T}_n(G)$.

THE COMPLEX $\mathcal{T}_n(G)$

Definition. A Dowling tree is a G-tree with some distinguished vertices, called 0-vertices, satisfying:

- (0) The subgraph of the 0-vertices is a path starting at the root.
- (1) Every internal vertex (except the root) has degree ≥ 3 .
- (2) The tree is invariant under \bigcirc , which fixes the 0-vertices.
- (3) For all $g, h \in G$, $g \neq h$, and $i \in [n]$, the shortest path connecting (i, g) to (i, h) contains exactly one 0-vertex.

Remark. The operation of contracting an orbit of inner edges is still well defined, and makes $\mathcal{T}_n(G)$ into a simplicial complex.

Theorem. [D.'06] The simplicial complexes $\widetilde{\mathcal{N}}(\mathcal{Q}_n(G), \mathcal{J}^G)$ and $\mathcal{T}_n(G)$ are isomorphic.

...in particular,
$$T_n(G) \overset{sss}{\leadsto} \widetilde{\Delta}(\mathcal{Q}_n(G))$$
.

For $X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$, let $X_0 := X \setminus \mathcal{I}^G$, $X_1 := X \cap \mathcal{I}^G$.

Recall that X_0 'is' a chain $x_1 \subset x_2 \subset \cdots \subset x_m$ of 'zero blocks'.

$$\mathcal{K}_m := \{ X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G) \mid X_0 \le m \}.$$

For
$$X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$$
, let $X_0 := X \setminus \mathcal{I}^G$, $X_1 := X \cap \mathcal{I}^G$.

Recall that X_0 'is' a chain $x_1 \subset x_2 \subset \cdots \subset x_m$ of 'zero blocks'.

$$\mathcal{K}_m := \{ X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G) \mid X_0 \le m \}.$$

Let
$$x_0 := \{0\}$$
, $x_{m+1} := [n]$, and $p_i := |x_{i+1} \setminus x_i|$ for $0 \le i \le m$

Fix X_0 . Then X_1 can contain any nested set of partitions whose nonsingleton blocks are contained into one of the $x_i \setminus x_{i+1}$'s.

For
$$X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$$
, let $X_0 := X \setminus \mathcal{I}^G$, $X_1 := X \cap \mathcal{I}^G$.

Recall that X_0 'is' a chain $x_1 \subset x_2 \subset \cdots \subset x_m$ of 'zero blocks'.

$$\mathcal{K}_m := \{ X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G) \mid X_0 \le m \}.$$

Let
$$x_0 := \{0\}$$
, $x_{m+1} := [n]$, and $p_i := |x_{i+1} \setminus x_i|$ for $0 \le i \le m$

Fix X_0 . Then X_1 can contain any nested set of partitions whose nonsingleton blocks are contained into one of the $x_i \setminus x_{i+1}$'s.

Fix X_1 Any $U \cup X_1$ with $U \subset X_0$ is nested.

For
$$X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G)$$
, let $X_0 := X \setminus \mathcal{I}^G$, $X_1 := X \cap \mathcal{I}^G$.

Recall that X_0 'is' a chain $x_1 \subset x_2 \subset \cdots \subset x_m$ of 'zero blocks'.

$$\mathcal{K}_m := \{ X \in \mathcal{N}(\mathcal{Q}_n(G), \mathcal{J}^G) \mid X_0 \le m \}.$$

Let
$$x_0 := \{0\}$$
, $x_{m+1} := [n]$, and $p_i := |x_{i+1} \setminus x_i|$ for $0 \le i \le m$

Fix X_0 . Then X_1 can contain any nested set of partitions whose nonsingleton blocks are contained into one of the $x_i \setminus x_{i+1}$'s.

Fix X_1 Any $U \cup X_1$ with $U \subset X_0$ is nested.

Lemma. [D.'06] The link of X_0 in \mathcal{K}_m is

$$lk_{\mathcal{K}_m}(X_0) = \widetilde{\Delta}(B_m) * \widetilde{\Delta}(\mathcal{Q}_{p_1}^0(G)) * \cdots * \widetilde{\Delta}(\mathcal{Q}_{p_m}^0(G)).$$

(remember: $lk_{\mathcal{K}_m}(X_0) = \widetilde{\Delta}(B_m) * \widetilde{\Delta}(\mathcal{Q}_{p_1}^0(G)) * \cdots * \widetilde{\Delta}(\mathcal{Q}_{p_m}^0(G)).$)

(remember: $lk_{\mathcal{K}_m}(X_0) = \widetilde{\Delta}(B_m) * \widetilde{\Delta}(\mathcal{Q}_{p_1}^0(G)) * \cdots * \widetilde{\Delta}(\mathcal{Q}_{p_m}^0(G)).$)

 $\widetilde{\Delta}(\mathcal{Q}_n^0(G))$ is a wedge of $\prod_{j=1}^{n-1}(j|G|-1)$ spheres S^{n-2} .

(remember: $lk_{\mathcal{K}_m}(X_0) = \widetilde{\Delta}(B_m) * \widetilde{\Delta}(\mathcal{Q}_{p_1}^0(G)) * \cdots * \widetilde{\Delta}(\mathcal{Q}_{p_m}^0(G)).$)

 $\widetilde{\Delta}(\mathcal{Q}_n^0(G))$ is a wedge of $\prod_{j=1}^{n-1}(j|G|-1)$ spheres S^{n-2} .

For $Y = x_0 \subset x_1 \subset \cdots \subset x_{m+1}$ as before, let

$$q_i^Y := \prod_{j=1}^{p_i-1} (j|G|-1), \qquad Q(Y) := q_1^Y q_2^Y \cdots q_m^Y$$

Theorem. [D.'06] $lk_{\mathcal{K}_m}(Y)$ is a wedge of Q(Y) spheres of dimension (m-3), and all these spheres bound in \mathcal{K}_m .

(remember:
$$lk_{\mathcal{K}_m}(X_0) = \widetilde{\Delta}(B_m) * \widetilde{\Delta}(\mathcal{Q}_{p_1}^0(G)) * \cdots * \widetilde{\Delta}(\mathcal{Q}_{p_m}^0(G)).$$
)

$$\widetilde{\Delta}(\mathcal{Q}_n^0(G))$$
 is a wedge of $\prod_{j=1}^{n-1}(j|G|-1)$ spheres S^{n-2} .

For
$$Y = x_0 \subset x_1 \subset \cdots \subset x_{m+1}$$
 as before, let

$$q_i^Y := \prod_{j=1}^{p_i-1} (j|G|-1), \qquad Q(Y) := q_1^Y q_2^Y \cdots q_m^Y$$

Theorem. [D.'06] $lk_{\mathcal{K}_m}(Y)$ is a wedge of Q(Y) spheres of dimension (m-3), and all these spheres bound in \mathcal{K}_m .

Thus, every chain $Y \in \widetilde{\Delta}(B_n)$ indexes a simplex that contributes Q(Y) times to the difference between the number of spheres in the homotopy types of $\mathcal{Q}_n^0(G)$ and $\mathcal{Q}_n(G)$.

For $Y = x_0 \subset x_1 \subset \cdots \subset x_{m+1}$ as before, let

$$q_i^Y := \prod_{j=1}^{p_i-1} (j|G|-1), \qquad Q(Y) := q_1^Y q_2^Y \cdots q_m^Y$$

Theorem. [D.'06] $lk_{\mathcal{K}_m}(Y)$ is a wedge of Q(Y) spheres of dimension (m-3), and all these spheres bound in \mathcal{K}_m .

Thus, every chain $Y \in \widetilde{\Delta}(B_n)$ indexes a simplex that contributes Q(Y) times to the difference between the number of spheres in the homotopy types of $\mathcal{Q}_n^0(G)$ and $\mathcal{Q}_n(G)$.

Corollary. For every $k \geq 1$ and $n \geq 2$,

$$\prod_{j=1}^{n} (jk+1) - \prod_{j=1}^{n} (jk-1) = \sum_{\omega \in \widetilde{\Delta}(B_n)} \prod_{j=1}^{n} (jk-1)^{h(\sigma,j)},$$

where $h(\omega, j)$ is the height of the j-th row in the Young tableau of the partition determined by ω .

RELATED TOPICS I

Theorem. [Feichtner, Sturmfels '05] Let \mathcal{L} be a geometric lattice, \mathcal{M} the associated matroid.

Suppose that, for every irreducible $x \in \mathcal{L}$ and every y < x, the interval [y,x] is irreducible. Then, the Bergman fan of \mathcal{M} equals the reduced nested set complex $\widetilde{\mathcal{N}}(\mathcal{L},\mathcal{I})$.

RELATED TOPICS I

Theorem. [Feichtner, Sturmfels '05] Let \mathcal{L} be a geometric lattice, \mathcal{M} the associated matroid.

Suppose that, for every irreducible $x \in \mathcal{L}$ and every y < x, the interval [y,x] is irreducible. Then, the Bergman fan of \mathcal{M} equals the reduced nested set complex $\widetilde{\mathcal{N}}(\mathcal{L},\mathcal{I})$.

If $\mathcal{L} = \mathcal{Q}_n(G)$, the irreducibles are the $\sigma \in \mathcal{J}^G$. So let $\sigma \in \mathcal{J}^G$ and consider any $\sigma' \leq \sigma$. Say $\underline{\sigma}'$ has k blocks. Then either $[\sigma', \sigma] \simeq \Pi_k$ (if $0 \notin S$) or else $[\sigma', \sigma] \simeq \mathcal{Q}_k$.

Corollary. [D'06] The Bergman complex of the Dowling geometry equals the corresponding complex of Dowling trees.

RELATED TOPICS II

Gottlieb & Wachs ['00] defined a complex of rooted forests $\mathcal{F}(n,G)$ with leaves labelled by elements of nG . These forests are used to encode generators of the multilinear component of the enveloping algebra of the fixed point subalgebra of the free Lie superalgebra on $[n] \times G$ on the one side, and of the cohomology of $\mathcal{Q}_n(G)$ on the other side.

RELATED TOPICS II

Gottlieb & Wachs ['00] defined a complex of rooted forests $\mathcal{F}(n,G)$ with leaves labelled by elements of nG . These forests are used to encode generators of the multilinear component of the enveloping algebra of the fixed point subalgebra of the free Lie superalgebra on $[n] \times G$ on the one side, and of the cohomology of $\mathcal{Q}_n(G)$ on the other side.

Remark. There is a natural isomorphism of simplicial complexes

$$\mathcal{F}(n,G) \simeq \mathcal{T}_n(G)$$
.

RELATED TOPICS II

Gottlieb & Wachs ['00] defined a complex of rooted forests $\mathcal{F}(n,G)$ with leaves labelled by elements of nG . These forests are used to encode generators of the multilinear component of the enveloping algebra of the fixed point subalgebra of the free Lie superalgebra on $[n] \times G$ on the one side, and of the cohomology of $\mathcal{Q}_n(G)$ on the other side.

Remark. There is a natural isomorphism of simplicial complexes

$$\mathcal{F}(n,G) \simeq \mathcal{T}_n(G)$$
.

Lemma. [Ardila, Wachs] $\mathcal{F}(n,G)$ equals the Bergman complex of the Dowling lattice.

MOREOVER,

Zaslavsky ['89, '91, ...] developed a theory of biased graphs as a matroidal generalization of Dowling lattices. In that context, the poset $\mathcal{Q}_n^0(G)$ has a natural counterpart: the so-called *semilattice of balanced flats*.