The Alternating Sign Matrix Polytope

Jessica Striker
jessica@math.umn.edu

University of Minnesota

What is an alternating sign matrix?

Alternating sign matrices (ASMs) are square matrices with the following properties:

What is an alternating sign matrix?

Alternating sign matrices (ASMs) are square matrices with the following properties:

- entries $\in\{0,1,-1\}$
- the sum of the entries in each row and column equals 1
- nonzero entries in each row and column alternate in sign

Examples of ABMs

- $n=3$

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Examples of ASMs

- $n=4$

$$
\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

What is a polytope?

A polytope can be defined in two equivalent ways ...

What is a polytope?

A polytope can be defined in two equivalent ways ...

- ... as the convex hull of a finite set of points

What is a polytope?

A polytope can be defined in two equivalent ways ...

- ... as the convex hull of a finite set of points
- ... as the bounded intersection of finitely many closed halfspaces.

What is a polytope?

A polytope can be defined in two equivalent ways ...

- ... as the convex hull of a finite set of points
- ... as the bounded intersection of finitely many closed halfspaces.

Thus a polytope can be specified by a set of points or by a set of linear inequalities.

Examples of polytopes

- The nth Birkhoff polytope $\left(B_{n}\right)$, defined as the convex hull of n-by- n permutation matrices.

Examples of polytopes

- The nth Birkhoff polytope $\left(B_{n}\right)$, defined as the convex hull of n-by- n permutation matrices.
- The permutohedron related to a vector z (with distinct coordinates), defined as the convex hull of the permutations of the coordinates of z. Denote this polytope as P_{z}.

Examples of polytopes

- The nth Birkhoff polytope $\left(B_{n}\right)$, defined as the convex hull of n-by- n permutation matrices.
- The permutohedron related to a vector z (with distinct coordinates), defined as the convex hull of the permutations of the coordinates of z. Denote this polytope as P_{z}.

Note that the permutohedron is the image of the Birkhoff polytope under the projection $\phi_{z}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}^{n}$ defined by $\phi_{z}(X)=z X$.

Definition of $A S M_{n}$

The alternating sign matrix polytope $A S M_{n}$ is defined as the convex hull of n-by- n alternating sign matrices.

Quick comparison of $A S M_{n}$ and B_{n}

$$
B_{n} \quad A S M_{n}
$$

Dimension
$(n-1)^{2}$
$(n-1)^{2}$

Inequality rows and columns sum to 1
Description entries ≥ 0 partial sums ≥ 0

Vertices
n !

$$
\prod_{j=0}^{n-1} \frac{(3 j+1)!}{(n+j)!}
$$

Facets
n^{2}
$4\left[(n-2)^{2}+1\right]$

Inequality description of B_{n}

Theorem (Birkhoff-von Neumann). B_{n} consists of all n-by- n real matrices X satisfying:

$$
\begin{aligned}
& x_{i j} \geq 0, \quad \forall 1 \leq i, j \leq n \\
& \sum_{i=1}^{n} x_{i j}=1, \quad \forall 1 \leq j \leq n \\
& \sum_{j=1}^{n} x_{i j}=1, \quad \forall 1 \leq i \leq n
\end{aligned}
$$

Such matrices are called (nonnegative) doubly stochastic matrices.

Inequality description of B_{n}

Proof by example:

Inequality description of B_{n}

Proof by example:

$$
\left(\begin{array}{rrr}
.5 & .2 & .3 \\
0 & .4 & .6 \\
.5 & .4 & .1
\end{array}\right)
$$

Inequality description of B_{n}

Proof by example:

$$
\left(\begin{array}{rrr}
.5 & .2 & .3 \\
0 & .4 & .6 \\
.5 & .4 & .1
\end{array}\right)
$$

Inequality description of B_{n}

Proof by example:

$$
\left(\begin{array}{rrr}
.5 & .2 & .3 \\
0 & .4 & .6 \\
.5 & .4 & .1
\end{array}\right)
$$

Inequality description of B_{n}

Proof by example:

$$
\left(\begin{array}{rrr}
.5 & .2 & .3 \\
0 & .4 & .6 \\
.5 & .4 & .1
\end{array}\right)
$$

Inequality description of B_{n}

Proof by example:

$$
\left(\begin{array}{rrr}
.5 & .2 & .3 \\
0 & .4 & .6 \\
.5 & .4 & .1
\end{array}\right)
$$

Inequality description of B_{n}

Proof by example:

$$
\left(\begin{array}{rrr}
.5 & .2 & .3 \\
0 & .4 & .6 \\
.5 & .4 & .1
\end{array}\right)=\frac{2}{3}\left(\begin{array}{rrr}
.7 & 0 & .3 \\
0 & .4 & .6 \\
.3 & .6 & .1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{rrr}
.1 & .6 & .3 \\
0 & .4 & .6 \\
.9 & 0 & .1
\end{array}\right)
$$

Inequality description of $A S M_{n}$

Theorem (S_). $A S M_{n}$ consists of all n-by- n real matrices X with:

$$
\begin{gathered}
0 \leq \sum_{i=1}^{i^{\prime}} x_{i j} \leq 1, \quad \forall 1 \leq i^{\prime} \leq n \\
0 \leq \sum_{j=1}^{j^{\prime}} x_{i j} \leq 1, \quad \forall 1 \leq j^{\prime} \leq n \\
\sum_{i=1}^{n} x_{i j}=1, \quad \forall 1 \leq j \leq n \\
\sum_{j=1}^{n} x_{i j}=1, \quad \forall 1 \leq i \leq n
\end{gathered}
$$

Inequality description of $A S M_{n}$

$$
\left(\begin{array}{rrrrr}
0 & .4 & .5 & .1 & 0 \\
.4 & -.4 & .5 & 0 & .5 \\
.6 & .4 & -.3 & -.1 & .4 \\
0 & .3 & -.3 & .9 & .1 \\
0 & .3 & .6 & .1 & 0
\end{array}\right)
$$

Inequality description of $A S M_{n}$

$$
\left(\begin{array}{rrrrr}
0 & .4 & .5 & .1 & 0 \\
.4 & -.4 & .5 & 0 & .5 \\
.6 & .4 & -.3 & -.1 & .4 \\
0 & .3 & -.3 & .9 & .1 \\
0 & .3 & .6 & .1 & 0
\end{array}\right)
$$

Row partial sums Column partial sums

$$
\left(\begin{array}{rrrrr}
0 & .4 & .9 & 1 & 1 \\
.4 & 0 & .5 & .5 & 1 \\
.6 & 1 & .7 & .6 & 1 \\
0 & .3 & 0 & .9 & 1 \\
0 & .3 & .9 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{rrrrr}
0 & .4 & .5 & .1 & 0 \\
.4 & 0 & 1 & .1 & .5 \\
1 & .4 & .7 & 0 & .9 \\
1 & .7 & .4 & .9 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Projection to the permutohedron

Theorem (S_). Let $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be a strictly increasing (or decreasing) vector and X an n-by-n ASM. Then $\phi_{z}(X)=z X$ is in the convex hull of the permutations of $\left\{z_{1}, z_{2}, z_{3}, \ldots, z_{n}\right\}$ so that $\phi_{z}\left(A S M_{n}\right)=P_{z}$. That is, matrix multiplication by a strictly monotone vector z projects $A S M_{n}$ onto P_{z}.
Thus under this projection, $A S M_{n}$ and B_{n} are mapped to the same permutohedron.

Simple flow grids

$$
\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Facets and vertices

Using simple flow grids we can prove the following theorems:

Facets and vertices

Using simple flow grids we can prove the following theorems:

- The vertices of $A S M_{n}$ are the alternating sign matrices.

Facets and vertices

Using simple flow grids we can prove the following theorems:

- The vertices of $A S M_{n}$ are the alternating sign matrices.
- $A S M_{n}$ has $4\left[(n-2)^{2}+1\right]$ facets.

Facets and vertices

Using simple flow grids we can prove the following theorems:

- The vertices of $A S M_{n}$ are the alternating sign matrices.
- $A S M_{n}$ has $4\left[(n-2)^{2}+1\right]$ facets.
- The number of facets of $A S M_{n}$ on which an ASM A lies is given by

$$
\begin{cases}2(n-1)(n-2)+2, & \text { if } A \text { has two corner 1's } \\ 2(n-1)(n-2)+1, & \text { if } A \text { has one corner } 1 \\ 2(n-1)(n-2), & \text { otherwise }\end{cases}
$$

Face lattice of B_{n}

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Face lattice of B_{n}

A graph G is called elementary if every edge is a member of some perfect matching of G.

Face lattice of B_{n}

A graph G is called elementary if every edge is a member of some perfect matching of G.
Theorem (Billera and Sarangarajan, 1994). The face lattice of the Birkhoff polytope is isomorphic to the lattice of elementary subgraphs of $K_{n, n}$ ordered by inclusion.

Face lattice of B_{n}

A graph G is called elementary if every edge is a member of some perfect matching of G.
Theorem (Billera and Sarangarajan, 1994). The face lattice of the Birkhoff polytope is isomorphic to the lattice of elementary subgraphs of $K_{n, n}$ ordered by inclusion.
Corollary (Billera and Sarangarajan, 1994). The graphs representing edges of B_{n} are the elementary subgraphs of $K_{n, n}$ which have exactly one cycle.

Face lattice of $A S M_{n}$

An elementary flow grid G is a directed graph on an n-by- n array of vertices such that the edge set of G is the union of the edge sets of simple flow grids.

Face lattice of $A S M_{n}$

An elementary flow grid G is a directed graph on an n-by- n array of vertices such that the edge set of G is the union of the edge sets of simple flow grids.
Theorem (S_). The face lattice of $A S M_{n}$ is isomorphic to the lattice of all $n \times n$ elementary flow grids ordered by inclusion.

Face lattice of $A S M_{n}$

Given an elementary flow grid G, define a doubly directed region as a collection of cells in G completely bounded by double directed edges but containing no double directed edges in the interior.

Face lattice of $A S M_{n}$

Given an elementary flow grid G, define a doubly directed region as a collection of cells in G completely bounded by double directed edges but containing no double directed edges in the interior.
Corollary (S_). The m-dimensional faces of $A S M_{n}$ are represented by the elementary flow grids in which the number of doubly directed regions equals m. In particular, the edges of $A S M_{n}$ are represented by elementary flow grids containing exactly one cycle (which is traversable in both directions).

Face lattice of $A S M_{n}$

The elementary flow grid corresponding to an edge of $A S M_{5}$

Face lattice of $A S M_{n}$

The elementary flow grid corresponding to a 3-dimensional face of $A S M_{5}$

