Catalan lattices and realizers of triangulations

Olivier Bernardi - Centre de Recerca Matemàtica Joint work with Nicolas Bonichon

FPSAC, Tianjin, July 2007

Question [Chapoton] :

Why does the number of intervals in the Tamari lattice of size n equal the number of triangulations of size n?

Question [Chapoton] :

Why does the number of intervals in the Tamari lattice of size n equal the number of triangulations of size n?

Question [Chapoton] :

Why does the number of intervals in the Tamari lattice of size n equal the number of triangulations of size n?

Broader picture :

Stanley intervals

 \longleftrightarrow 6(2n)!(2n+2)! n!(n+1)!(n+2)!(n+3)!

Realizers of triangulations.

Tamari intervals

 $\longleftrightarrow \\ \frac{2(4n+1)!}{(n+1)!(3n+2)!}$

Triangulations.

Kreweras intervals

Stack triangulations.

Broader picture :

Stanley intervals

 $\frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}$

Realizers of triangulations. [Bonichon '02]

Tamari intervals

 $\longleftrightarrow \\ \frac{2(4n+1)!}{(n+1)!(3n+2)!}$

Triangulations.

Kreweras intervals

 $\longleftrightarrow \frac{1}{2n+1} \binom{3n}{n}$

Stack triangulations. [Edelman '82]

Catalan lattices

Dyck paths

A Dyck path is made of +1, -1 steps, starts from 0, remains non-negative and ends at 0.

There are $C_n = \frac{1}{n+1} \binom{2n}{n}$ Dyck paths of size n (length 2n).

Catalan objects

Stanley lattice

The relation of being above defines the Stanley lattice on the set of Dyck paths of size n.

Hasse Diagram n = 4:

Tamari lattice

The Tamari lattice is defined on the set of binary trees of size n (n nodes).

Tamari lattice

The Tamari lattice is defined on the set of binary trees of size n (n nodes).

The covering relation corresponds to right-rotation.

Tamari lattice

The Tamari lattice is defined on the set of binary trees of size n (n nodes).

The covering relation corresponds to right-rotation.

Hasse Diagram n = 4:

Kreweras lattice

The Kreweras lattice is defined on the set of non-crossing partitions of $\{1, \ldots, n\}$.

Kreweras lattice

The Kreweras lattice is defined on the set of non-crossing partitions of $\{1, \ldots, n\}$.

Kreweras relation corresponds to refinement:

Hasse Diagram n = 4:

Stanley, Tamari and Kreweras

[Knuth 06] The Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice.

Triangulations and realizers

Maps

A map is a connected planar graph embedded in the sphere and considered up to homeomorphism.

Maps

A map is a connected planar graph embedded in the sphere and considered up to homeomorphism.

A map is rooted by distinguishing a corner.

Triangulations

A map is a triangulation if every face has degree 3.

Triangulations

A map is a triangulation if every face has degree 3.

A triangulation of size n has n internal vertices, 3n internal edges, 2n + 1 internal triangles.

Realizers [Schnyder 89,90]

Example:

Realizers [Schnyder 89,90]

Example:

Realizers [Schnyder 89,90]

Example:

A realizer is a partition of the internal edges in 3 trees satisfying the Schnyder condition:

Lattice of realizers

Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94]:

For any triangulation, the set of realizers is non-empty and can be endowed with a lattice structure.

Lattice of realizers

Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94]: For any triangulation, the set of realizers is non-empty and

can be endowed with a lattice structure.

Bijections

Stanley intervals \iff Realizers.

- Tamari intervals \iff Minimal realizers.
- Kreweras intervals \iff Minimal and maximal realizers.

From realizers to pairs of Dyck paths

From realizers to pairs of Dyck paths

• *P* is the Dyck path associated to the blue tree.

From realizers to pairs of Dyck paths

• Q is the Dyck path $NS^{\beta_1} \dots NS^{\beta_n}$, where β_i is the number of red ingoing edges incident to the vertex u_i , $i = 1 \dots n$.

Bijection

Theorem: The mapping Ψ is a bijection between realizers of size n and pairs of non-crossing Dyck paths of size n.

Bijection

Theorem: The mapping Ψ is a bijection between realizers of size n and intervals in the n^{th} Stanley lattice.

Bijection

Stanley intervals \iff Realizers

Theorem: The mapping Ψ induces a bijection between minimal realizers of size n and intervals in the n^{th} Tamari lattice.

Theorem: The mapping Ψ induces a bijection between minimal realizers of size n and intervals in the n^{th} Tamari lattice.

Corollary: We obtain a bijection between triangulations of size n and intervals in the n^{th} Tamari lattice.

Tamari intervals \iff Minimal realizers

Tamari intervals↔Minimal realizers↔Triangulations

Theorem: The mapping Ψ induces a bijection between minimal and maximal realizers of size n and intervals in the n^{th} Kreweras lattice.

Theorem: The mapping Ψ induces a bijection between minimal and maximal realizers of size n and intervals in the n^{th} Kreweras lattice.

Proposition: A triangulation has a unique realizer if and only if it is stack.

Theorem: The mapping Ψ induces a bijection between minimal and maximal realizers of size n and intervals in the n^{th} Kreweras lattice.

Proposition: A triangulation has a unique realizer if and only if it is stack.

Corollary: We obtain a bijection between stack triangulations (\Leftrightarrow ternary trees) of size *n* and intervals in the *n*th Kreweras lattice.

Kreweras intervals \iff Minimal and maximal realizers

Kreweras intervals \iff Minimal and maximal realizers \iff Stack triangulations (\Leftrightarrow Ternary trees)

Elements of proofs

Claim : The image of any realizer is a pair of non-crossing Dyck paths.

Claim : The image of any realizer is a pair of non-crossing Dyck paths.

Key property :

The path Q is above the path P.

Red outgoing half-edges appear before red ingoing helf-edges around the blue tree.

Inverse mapping

(P, Q)

Step 1: Construct the blue tree (using P).

Step 2: Add red ingoing and outgoing half-edges (using Q).

Step 3: Match ingoing and outgoing half-edges.

Claim : There is a unique way of matching ingoing and outgoing half-edges. This creates a tree.

Inverse mapping (P,Q)

Step 4: Construct the green tree.

July 2007

Claim : There is a unique green tree completing the realizer.

Inverse mapping

(P, Q)

Step 5: Close the map.

Chose a good bijection binary-trees → Dyck paths.

- Chose a good bijection binary-trees \mapsto Dyck paths.
- Characterize the covering relation of the Tamari lattice in terms of Dyck paths.

- Chose a good bijection binary-trees \mapsto Dyck paths.
- Characterize the covering relation of the Tamari lattice in terms of Dyck paths.
- Characterize the minimal realizers [Bonichon et al.].

- Chose a good bijection binary-trees \mapsto Dyck paths.
- Characterize the covering relation of the Tamari lattice in terms of Dyck paths.
- Characterize the minimal realizers [Bonichon et al.].
- Make an induction on $\Delta(P, Q)$ to prove that P and Q are comparable in the Tamari lattice if and only if the realizer $\Phi(P, Q)$ is minimal.

• Chose a good bijection non-crossing partitions \mapsto Dyck paths.

- Chose a good bijection non-crossing partitions \mapsto Dyck paths.
- Characterize the covering relation of the Kreweras lattice in terms of Dyck paths.

- Chose a good bijection non-crossing partitions \mapsto Dyck paths.
- Characterize the covering relation of the Kreweras lattice in terms of Dyck paths.
- Characterize the minimal and maximal realizers [Bonichon et al.].

- Chose a good bijection non-crossing partitions \mapsto Dyck paths.
- Characterize the covering relation of the Kreweras lattice in terms of Dyck paths.
- Characterize the minimal and maximal realizers [Bonichon et al.].

• Make an induction on $\Delta(P, Q)$ to prove that P and Q are comparable in the Kreweras lattice if and only if the realizer $\Phi(P, Q)$ is minimal and maximal.

- \bullet Chose a good bijection non-crossing partitions \mapsto Dyck paths.
- Characterize the covering relation of the Kreweras lattice in terms of Dyck paths.
- Characterize the minimal and maximal realizers [Bonichon et al.].
- Make an induction on $\Delta(P, Q)$ to prove that P and Q are comparable in the Kreweras lattice if and only if the realizer $\Phi(P, Q)$ is minimal and maximal.
- Prove that a triangulation has a unique realizer if and only if it is stack.

Thanks.