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1. Hall’s Theorem and Snevily’s Conjecture

Let n ∈ Z+ = {1, 2, 3, . . . }. Any cyclic group of order n is isomorphic

to the additive group Zn = Z/nZ of residue classes modulo n. If n is odd,

then

1 + 1, 2 + 2, . . . , n + n

are pairwise incongruent modulo n and hence they form a complete system

of residues modulo n.

Let a1, . . . , an ∈ Z. If a1 + 1, . . . , an + n form a complete system of

residues modulo n, then

n∑
i=1

(ai + i) ≡ 1 + · · ·+ n (mod n)

and hence
∑n

i=1 ai ≡ 0 (mod n).
1
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Cramer’s Conjecture. Let a1, . . . , an be integers with

a1 + · · ·+ an ≡ 0 (mod n).

Then there is a permutation σ ∈ Sn such that aσ(1) +1, . . . , aσ(n) +n form

a complete system of residues modulo n.

In 1952 M. Hall [Proc. Amer. Math. Soc.] obtained an extension of

Cramer’s conjecture.

M. Hall’s theorem. Let G = {b1, . . . , bn} be an additive abelian group,

and let a1, . . . , an be elements of G with a1 + · · · + an = 0. Then there

exists a permutation σ ∈ Sn such that {aσ(1) + b1, . . . , aσ(n) + bn} = G.

Observation. If a1, . . . , an ∈ Z are incongruent modulo n with a1 + · · ·+

an ≡ 0 (mod n), then n divides 0 + 1 + · · · + (n − 1) = n(n − 1)/2 and

hence n is odd.

Motivated by M. Hall’s theorem and the above observation, in 1999 H.

Snevily [Amer. Math. Monthly] raised the following nice conjecture.

Snevily’s Conjecture. Let G be an additive abelian group with |G| odd.

Let A and B be subsets of G with cardinality n ∈ Z+. Then there is a

numbering {ai}n
i=1 of the elements of A and a numbering {bi}n

i=1 of the

elements of B such that the sums a1 + b1, . . . , an + bn are distinct.

Note that an abelian group of even order has an element g of order 2

and hence we don’t have the described result for A = B = {0, g}.

In our opinion, Snevily’s conjecture belongs to the central part of com-

binatorial number theory due to its simplicity and beauty.
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After your serious attempt to prove Snevily’s conjecture, you will realize

that the conjecture is very sophisticated and challenging.

Let M be an n× n matrix. A line of M is a row or a column of M . M

is called a Latin square over a set S of cardinality n if all its entries come

from the set S and no line of which contains an element more than once.

A transversal of the matrix M is a collection of n cells no two of which

lie in the same line. A Latin transversal of M is a transversal whose cells

contain no repeated element.

If G = {a1, . . . , an} is an additive group, then the matrix M = (ai +

aj)16i,j6n formed by the Cayley addition table is a Latin square over G.

Another Form of Snevily’s Conjecture. Let G = {a1, . . . , aN} be an

additive abelian group with |G| = N odd, and let M be the Latin square

(ai + aj)16i,j6N formed by the Cayley addition table. Then any n × n

submatrix of M contains a Latin transversal.

In 1967 H. J. Ryser conjectured that every Latin square of odd order

has a Latin transversal. Another conjecture of Brualdi states that every

Latin square of order n has a partial Latin transversal of size n−1. These

conjectures remain open.



4 ZHI-WEI SUN

2. Snevily’s Conjecture for Zp

In 2000 N. Alon [Israel J. Math.] was able to prove Snevily’s conjecture

for Zp with p an odd prime, via the following powerful tool.

Combinatorial Nullstellensatz (Alon, 1999). Let A1, . . . , An be finite

subsets of a field F with |Ai| > ki > 0 for i = 1, . . . , n. If the total degree

of f(x1, . . . , xn) ∈ F [x1, . . . , xn] is k1 + · · ·+ kn and the coefficient of the

monomial xk1
1 · · ·xkn

n in f(x1, . . . , xn) is nonzero, then f(a1, . . . , an) 6= 0

for some a1 ∈ A1, . . . , an ∈ An.

Alon made use of the fact that Zp is a field when p is an odd prime.

Theorem 1 (N. Alon, 2000). Let p be an odd prime and let b1, . . . , bn ∈

Zp with n < p. If a1, . . . , an ∈ Zp are distinct, then there is σ ∈ Sn such

that aσ(1) + b1, . . . , aσ(n) + bn are distinct.

Proof. Let A1, . . . , An be the set A = {a1, . . . , an} of cardinality n. We

want to find distinct x1 ∈ A1, . . . , xn ∈ An such that x1 + b1, . . . , xn + bn

are distinct. In view of the Combinatorial Nullstellensatz, it suffices to
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note that

[xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)(xj + bj − xi − bi)

=[xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)2

=[xn−1
1 · · ·xn−1

n ](−1)(
n
2)|xn−j

i |16i,j6n|xj−1
i |16i,j6n

=[xn−1
1 · · ·xn−1

n ](−1)(
n
2)

∑
σ∈Sn

ε(σ)
n∏

i=1

x
n−σ(i)
i

∑
τ∈Sn

ε(τ)
n∏

i=1

x
τ(i)−1
i

=(−1)(
n
2)

∑
σ∈Sn

ε(σ)2e = (−1)(
n
2)n!e 6= 0 (since n < p),

where ε(σ) denotes the sign of σ ∈ Sn which is 1 or −1 according as σ

is even or odd, and e stands for the multiplicative identity of the field

F = Zp.

Remark 1. (a) For an odd composite number n > 0, we cannot use Alon’s

idea to prove Snevily’s conjecture for the additive cyclic group Zn since

Zn is not a field. (b) In Alon’s proof of Theorem 1, it does not matter

whether b1, . . . , bn are distinct or not.
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3. Snevily’s Conjecture for Zn with n odd

In 2001 Dasgupta, Károlyi, Serra and Szegedy [Israel J. Math.] suc-

ceeded in proving Snevily’s conjecture for cyclic groups of odd order. Their

first important observation is that a cyclic group of odd order n can

be viewed as a subgroup of the multiplicative group of a field of

characteristic 2.

Theorem 2 (Dasgupta, Károlyi, Serra and Szegedy, 2001). Let G be a

cyclic group of odd order m. If A = {a1, . . . , an} and B = {b1, . . . , bn}

are two subsets of G with cardinality n. Then, for some σ ∈ Sn, the sums

aσ(1) + b1, . . . , aσ(n) + bn are distinct.

Proof. As 2ϕ(m) ≡ 1 (mod m), the multiplicative group of the finite field

F with order 2ϕ(m) has a cyclic subgroup of order m which is isomorphic

to G. Thus, we may simply view G as a subgroup of the multiplicative

group F ∗ = F \ {0}.

In light of the Combinatorial Nullstellensatz, it suffices to show that

c := [xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)(bjxj − bixi) 6= 0.

c depends on b1, . . . , bn so that the condition
∏

16i<j6n(bj−bi) 6= 0 might

be helpful.

Observe that∏
16i<j6n

(xj − xi)(bjxj − bixi) = (−1)(
n
2)|xn−j

i |16i,j6n|bj−1
i xj−1

i |16i,j6n

= (−1)(
n
2)

∑
σ∈Sn

ε(σ)
n∏

i=1

x
n−σ(i)
i

∑
τ∈Sn

ε(τ)
n∏

i=1

b
τ(i)−1
i x

τ(i)−1
i .
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Therefore

(−1)(
n
2)c =

∑
σ∈Sn

ε(σ)2
n∏

i=1

b
σ(i)−1
i = per((bj−1

i )16i,j6n)

=
∑

σ∈Sn

ε(σ)
n∏

i=1

b
σ(i)−1
i (because ch(F ) = 2)

=|bi−1
j |16i,j6n =

∏
16i<j6n

(bj − bi) 6= 0 (Vandermonde).

In 2003 Sun [J. Combin. Theory Ser. A] obtained some further exten-

sions of the Dasgupta-Károlyi-Serra-Szegedy result via restricted sums in

a field. Here are two basic observations of Sun:

(1) Any finitely generated abelian group with the torsion subgroup

Tor(G) = {g ∈ G : g has a finite order}

cyclic is isomorphic to a subgroup of the multiplicative group of nonzero

complex numbers.

(2) In Theorem 2, instead of the condition that |G| is odd, we may just

require that all elements of B have odd order.

In 2004 W. D. Gao and D. J. Wang [Israel J. Math.] studied Snevily’s

conjecture for abelian p-groups by using the DKSS method and group

rings.

Snevily’s conjecture for elementarily abelian groups Zk
p remains open.
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4. The speaker’s New Discovery

Let b1, . . . , bn be elements of a field F . In Section 3, we noted that

[xn−1
1 · · ·xn−1

n ]|(bixi)j−1|16i,j6n

∏
16i<j6n

(xj − xi)

= (−1)(
n
2)per((bj−1

i )16i,j6n).

Similarly,

[xn−1
1 · · ·xn−1

n ]per((bixi)j−1)16i,j6n)
∏

16i<j6n

(xj − xi)

= (−1)(
n
2) det((bj−1

i )16i,j6n) = (−1)(
n
2)

∏
16i<j6n

(bj − bi).

Theorem 3 (Sun, 2006). Let A, B and C = {c1, . . . , cn} be three subsets

of a field F with cardinality n. Then there is a numbering {ai}n
i=1 of the

elements of A and a numbering {bi}n
i=1 of the elements of B such that

a1b1c1, . . . , anbncn are distinct.

Proof. Since

[xn−1
1 · · ·xn−1

n ]per((cixi)j−1)16i,j6n)
∏

16i<j6n

(xj − xi)

= (−1)(
n
2)

∏
16i<j6n

(cj − ci) 6= 0,

by the Combinatorial Nullstellensatz there are distinct b1, . . . , bn ∈ B such

that per(((bici)j−1)16i,j6n) 6= 0. As

[xn−1
1 · · ·xn−1

n ]|(bicixi)j−1|16i,j6n

∏
16i<j6n

(xj − xi)

= (−1)(
n
2)per(((bici)j−1)16i,j6n) 6= 0,
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by the Combinatorial Nullstellensatz there are distinct a1, . . . , an ∈ A

such that

|(aibici)j−1|16i,j6n =
∏

16i<j6n

(ajbjcj − aibici) 6= 0.

We can restate Theorem 3 in the following form.

Theorem 4. Let G be any additive abelian group with cyclic torsion sub-

group, and let A1, . . . , Am be arbitrary subsets of G with cardinality n ∈

Z+, where m is odd. Then the elements of Ai (1 6 i 6 m) can be listed in

a suitable order ai1, . . . , ain, so that all the sums
∑m

i=1 aij (1 6 j 6 n) are

distinct. In other words, for a certain subset Am+1 of G with |Am+1| = n,

there is a matrix (aij)16i6m+1, 16j6n such that {ai1, . . . , ain} = Ai for

all i = 1, . . . , m + 1 and the column sum
∑m+1

i=1 aij vanishes for every

j = 1, . . . , n.

Remark 2. (1) In Theorem 4 we don’t assume that |G| is odd.

(2) Theorem 4 in the case m = 3 is essential; the result for m = 5, 7, . . .

can be obtained by repeated use of the case m = 3.

Example 1. The group G in Theorem 4 cannot be replaced by an arbitrary

abelian group. To illustrate this, we look at the Klein quaternion group

Z2 ⊕ Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}

and its subsets

A1 = {(0, 0), (0, 1)}, A2 = {(0, 0), (1, 0)}, A3 = · · · = Am = {(0, 0), (1, 1)},
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where m > 3 is odd. For i = 1, . . . , m let ai, a
′
i be a list of the two elements

of Ai, then

m∑
i=1

(ai + a′i) = (0, 1) + (1, 0) + (m− 2)(1, 1) = (0, 0)

and hence
∑m

i=1 ai = −
∑m

i=1 a′i =
∑m

i=1 a′i.

Recall that a line of an n× n matrix is a row or column of the matrix.

We define a line of an n× n× n cube in a similar way. A Latin cube over

a set S of cardinality n is an n× n× n cube whose entries come from the

set S and no line of which contains a repeated element. A transversal of

an n× n× n cube is a collection of n cells no two of which lie in the same

line. A Latin transversal of a cube is a transversal whose cells contain no

repeated element.

Corollary 1. Let N be any positive integer. For the N×N×N Latin cube

over Z/NZ formed by the Cayley addition table, each n × n × n subcube

with n 6 N contains a Latin transversal.

Conjecture 1 (Sun, 2006). Every n× n× n Latin cube contains a Latin

transversal.

Note that Conjecture 1 does not imply Theorem 3 since an n × n × n

subcube of a Latin cube might have more than n distinct entries.

In Theorem 4 the condition 2 - m is indispensable. Let G be an additive

cyclic group of even order n. Then G has a unique element g of order 2

and hence a 6= −a for all a ∈ G \ {0, g}. Thus
∑

a∈G a = 0 + g = g. For
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each i = 1, . . . , m let ai1, . . . , ain be a list of the n elements of G. If those∑m
i=1 aij with 1 6 j 6 n are distinct, then∑

a∈G

a =
n∑

j=1

m∑
i=1

aij =
m∑

i=1

n∑
j=1

aij = m
∑
a∈G

a,

hence (m− 1)g = (m− 1)
∑

a∈G a = 0 and therefore m is odd.

Combining Theorem 4 with [Su03, Theorem 1.1(ii)], we obtain the fol-

lowing consequence.

Corollary 2. Let G be any additive abelian group with cyclic torsion sub-

group, and let A1, . . . , Am be subsets of G with cardinality n ∈ Z+, where

m is even. Suppose that all the elements of Am have odd order. Then the

elements of Ai (1 6 i 6 m) can be listed in a suitable order ai1, . . . , ain,

so that all the sums
∑m

i=1 aij (1 6 j 6 n) are distinct.

As an essential result, Theorem 3 or 4 might have various potential

applications in additive number theory and combinatorial designs.

A direct proof of Theorem 4 involves the following lemma.

Lemma 1. Let R be a commutative ring with identity, and let aij ∈ R

for i = 1, . . . , m and j = 1, . . . , n, where m ∈ {3, 5, . . . }. The we have the

identity∑
σ1,... ,σm−1∈Sn

ε(σ1 · · ·σm−1)
∏

16i<j6n

(
amj

m−1∏
s=1

asσs(j) − ami

m−1∏
s=1

asσs(i)

)
=

∏
16i<j6n

(a1j − a1i) · · · (amj − ami).

We can extend Theorem 4 via restricted sumsets in a field. The additive

order of the multiplicative identity of a field F is either infinite or a prime;
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we call it the characteristic of F and denote it by ch(F ). There are various

results on restricted sumsets of the type

{a1 + · · ·+ an : a1 ∈ A1, . . . , an ∈ An and P (a1, . . . , an) 6= 0},

where A1, . . . , An ⊆ F and P (x1, . . . , xn) ∈ F [x1, . . . , xn]. See, e.g.,

Alon-Nathanson-Ruzsa [J. Number Theory, 1996], Qing-Hu Hou and Z.

W. Sun [Acta Arith. 2002], Z. W. Sun [J. Combin. Theory, 2003], H. Pan

and Z.W. Sun [Israel J. Math. 2006].

Theorem 5. Let k,m, n be positive integers with k − 1 > m(n − 1), and

let F be a field with ch(F ) > max{mn, (k − 1 − m(n − 1))n}. Assume

that c1, . . . , cn ∈ F are distinct, and A1, . . . , An, B1, . . . , Bn are subsets

of F with |A1| = · · · = |An| = k and |B1| = · · · = |Bn| = n. Let

Sij ⊆ F with |Sij | < 2m for all 1 6 i < j 6 n. Then there are distinct

b1 ∈ B1, . . . , bn ∈ Bn such that the restricted sumset

S = {a1 + · · ·+ an : ai ∈ Ai, ai − aj 6∈ Sij and aibici 6= ajbjcj if i < j}

has at least (k − 1−m(n− 1))n + 1 elements.

When k = n, m = 1 and Sij = {0}, Theorem 5 yields Theorem 3 or 4.
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Now we state another extension of Theorem 4.

Theorem 6. Let G be an additive abelian group with cyclic torsion sub-

group. Let h, k, l, m, n be positive integers with k − 1 > m(n − 1) and

l−1 > h(n−1). Assume that c1, . . . , cn ∈ G are distinct, and A1, . . . , An

and B1, . . . , Bn are subsets of G with |A1| = · · · = |An| = k and |B1| =

· · · = |Bn| = l. Then, for any sets S and T with |S| 6 (k−1)n−(m+1)
(
n
2

)
and |T | 6 (l − 1)n − (h + 1)

(
n
2

)
, there are a1 ∈ A1, . . . , an ∈ An, b1 ∈

B1, . . . , bn ∈ Bn such that {a1, . . . , an} 6∈ S, {b1, . . . , bn} 6∈ T , and also

ai + bi + ci 6= aj + bj + cj , mai 6= maj , hbi 6= hbj if 1 6 i < j 6 n.

Theorem 3 follows from Theorem 6 in the case k = l = n, h = m = 1

and S = T = ∅.

The speaker’s results in this talk are contained in a paper available

from http://arxiv.org/abs/math.CO/0610981 or the speaker’s home-

page http://math.nju.edu.cn/∼zwsun.

The topic here involves combinatorics as well as number the-

ory and algebra. I do like such problems which are not of pure

combinatorial interest.


