A talk given at the 19th Annual International Conference on Formal Power Series and Algebraic Combin. (Tianjin, July 4, 2007)

AN ADDITIVE THEOREM RELATED
 TO LATIN TRANSVERSALS

Zhi-Wei Sun
Department of Mathematics
Nanjing University
Nanjing 210093, P. R. China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

1. Hall's Theorem and Snevily's Conjecture

Let $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$. Any cyclic group of order n is isomorphic to the additive group $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ of residue classes modulo n. If n is odd, then

$$
1+1,2+2, \ldots, n+n
$$

are pairwise incongruent modulo n and hence they form a complete system of residues modulo n.

Let $a_{1}, \ldots, a_{n} \in \mathbb{Z}$. If $a_{1}+1, \ldots, a_{n}+n$ form a complete system of residues modulo n, then

$$
\sum_{i=1}^{n}\left(a_{i}+i\right) \equiv 1+\cdots+n(\bmod n)
$$

and hence $\sum_{i=1}^{n} a_{i} \equiv 0(\bmod n)$.

Cramer's Conjecture. Let a_{1}, \ldots, a_{n} be integers with

$$
a_{1}+\cdots+a_{n} \equiv 0(\bmod n) .
$$

Then there is a permutation $\sigma \in S_{n}$ such that $a_{\sigma(1)}+1, \ldots, a_{\sigma(n)}+n$ form a complete system of residues modulo n.

In 1952 M. Hall [Proc. Amer. Math. Soc.] obtained an extension of Cramer's conjecture.
M. Hall's theorem. Let $G=\left\{b_{1}, \ldots, b_{n}\right\}$ be an additive abelian group, and let a_{1}, \ldots, a_{n} be elements of G with $a_{1}+\cdots+a_{n}=0$. Then there exists a permutation $\sigma \in S_{n}$ such that $\left\{a_{\sigma(1)}+b_{1}, \ldots, a_{\sigma(n)}+b_{n}\right\}=G$.

Observation. If $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ are incongruent modulo n with $a_{1}+\cdots+$ $a_{n} \equiv 0(\bmod n)$, then n divides $0+1+\cdots+(n-1)=n(n-1) / 2$ and hence n is odd.

Motivated by M. Hall's theorem and the above observation, in 1999 H. Snevily [Amer. Math. Monthly] raised the following nice conjecture.

Snevily's Conjecture. Let G be an additive abelian group with $|G|$ odd. Let A and B be subsets of G with cardinality $n \in \mathbb{Z}^{+}$. Then there is a numbering $\left\{a_{i}\right\}_{i=1}^{n}$ of the elements of A and a numbering $\left\{b_{i}\right\}_{i=1}^{n}$ of the elements of B such that the sums $a_{1}+b_{1}, \ldots, a_{n}+b_{n}$ are distinct.

Note that an abelian group of even order has an element g of order 2 and hence we don't have the described result for $A=B=\{0, g\}$.

In our opinion, Snevily's conjecture belongs to the central part of combinatorial number theory due to its simplicity and beauty.

After your serious attempt to prove Snevily's conjecture, you will realize that the conjecture is very sophisticated and challenging.

Let M be an $n \times n$ matrix. A line of M is a row or a column of $M . M$ is called a Latin square over a set S of cardinality n if all its entries come from the set S and no line of which contains an element more than once. A transversal of the matrix M is a collection of n cells no two of which lie in the same line. A Latin transversal of M is a transversal whose cells contain no repeated element.

If $G=\left\{a_{1}, \ldots, a_{n}\right\}$ is an additive group, then the matrix $M=\left(a_{i}+\right.$ $\left.a_{j}\right)_{1 \leqslant i, j \leqslant n}$ formed by the Cayley addition table is a Latin square over G.

Another Form of Snevily's Conjecture. Let $G=\left\{a_{1}, \ldots, a_{N}\right\}$ be an additive abelian group with $|G|=N$ odd, and let M be the Latin square $\left(a_{i}+a_{j}\right)_{1 \leqslant i, j \leqslant N}$ formed by the Cayley addition table. Then any $n \times n$ submatrix of M contains a Latin transversal.

In 1967 H. J. Ryser conjectured that every Latin square of odd order has a Latin transversal. Another conjecture of Brualdi states that every Latin square of order n has a partial Latin transversal of size $n-1$. These conjectures remain open.

2. Snevily's Conjecture for \mathbb{Z}_{p}

In 2000 N. Alon [Israel J. Math.] was able to prove Snevily's conjecture for \mathbb{Z}_{p} with p an odd prime, via the following powerful tool.

Combinatorial Nullstellensatz (Alon, 1999). Let A_{1}, \ldots, A_{n} be finite subsets of a field F with $\left|A_{i}\right|>k_{i} \geqslant 0$ for $i=1, \ldots, n$. If the total degree of $f\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ is $k_{1}+\cdots+k_{n}$ and the coefficient of the monomial $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ in $f\left(x_{1}, \ldots, x_{n}\right)$ is nonzero, then $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$ for some $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$.

Alon made use of the fact that \mathbb{Z}_{p} is a field when p is an odd prime.

Theorem 1 (N. Alon, 2000). Let p be an odd prime and let $b_{1}, \ldots, b_{n} \in$ \mathbb{Z}_{p} with $n<p$. If $a_{1}, \ldots, a_{n} \in \mathbb{Z}_{p}$ are distinct, then there is $\sigma \in S_{n}$ such that $a_{\sigma(1)}+b_{1}, \ldots, a_{\sigma(n)}+b_{n}$ are distinct.

Proof. Let A_{1}, \ldots, A_{n} be the set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of cardinality n. We want to find distinct $x_{1} \in A_{1}, \ldots, x_{n} \in A_{n}$ such that $x_{1}+b_{1}, \ldots, x_{n}+b_{n}$ are distinct. In view of the Combinatorial Nullstellensatz, it suffices to
note that

$$
\begin{aligned}
& {\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right] \prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)\left(x_{j}+b_{j}-x_{i}-b_{i}\right) } \\
= & {\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right] \prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)^{2} } \\
= & {\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right](-1)^{\binom{n}{2}}\left|x_{i}^{n-j}\right|_{1 \leqslant i, j \leqslant n}\left|x_{i}^{j-1}\right|_{1 \leqslant i, j \leqslant n} } \\
= & {\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right](-1)^{\binom{n}{2}} \sum_{\sigma \in S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} x_{i}^{n-\sigma(i)} \sum_{\tau \in S_{n}} \varepsilon(\tau) \prod_{i=1}^{n} x_{i}^{\tau(i)-1} } \\
= & (-1)^{\binom{n}{2}} \sum_{\sigma \in S_{n}} \varepsilon(\sigma)^{2} e=(-1)^{\binom{n}{2}} n!e \neq 0 \quad(\text { since } n<p),
\end{aligned}
$$

where $\varepsilon(\sigma)$ denotes the sign of $\sigma \in S_{n}$ which is 1 or -1 according as σ is even or odd, and e stands for the multiplicative identity of the field $F=\mathbb{Z}_{p}$.

Remark 1. (a) For an odd composite number $n>0$, we cannot use Alon's idea to prove Snevily's conjecture for the additive cyclic group \mathbb{Z}_{n} since \mathbb{Z}_{n} is not a field. (b) In Alon's proof of Theorem 1, it does not matter whether b_{1}, \ldots, b_{n} are distinct or not.
3. Snevily's Conjecture for \mathbb{Z}_{n} With n odd

In 2001 Dasgupta, Károlyi, Serra and Szegedy [Israel J. Math.] succeeded in proving Snevily's conjecture for cyclic groups of odd order. Their first important observation is that a cyclic group of odd order n can be viewed as a subgroup of the multiplicative group of a field of characteristic 2.

Theorem 2 (Dasgupta, Károlyi, Serra and Szegedy, 2001). Let G be a cyclic group of odd order m. If $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ are two subsets of G with cardinality n. Then, for some $\sigma \in S_{n}$, the sums $a_{\sigma(1)}+b_{1}, \ldots, a_{\sigma(n)}+b_{n}$ are distinct.

Proof. As $2^{\varphi(m)} \equiv 1(\bmod m)$, the multiplicative group of the finite field F with order $2^{\varphi(m)}$ has a cyclic subgroup of order m which is isomorphic to G. Thus, we may simply view G as a subgroup of the multiplicative group $F^{*}=F \backslash\{0\}$.

In light of the Combinatorial Nullstellensatz, it suffices to show that

$$
c:=\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right] \prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)\left(b_{j} x_{j}-b_{i} x_{i}\right) \neq 0 .
$$

c depends on b_{1}, \ldots, b_{n} so that the condition $\prod_{1 \leqslant i<j \leqslant n}\left(b_{j}-b_{i}\right) \neq 0$ might be helpful.

Observe that

$$
\begin{gathered}
\prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)\left(b_{j} x_{j}-b_{i} x_{i}\right)=(-1)^{\binom{n}{2}}\left|x_{i}^{n-j}\right|_{1 \leqslant i, j \leqslant n}\left|b_{i}^{j-1} x_{i}^{j-1}\right|_{1 \leqslant i, j \leqslant n} \\
=(-1)^{\binom{n}{2}} \sum_{\sigma \in S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} x_{i}^{n-\sigma(i)} \sum_{\tau \in S_{n}} \varepsilon(\tau) \prod_{i=1}^{n} b_{i}^{\tau(i)-1} x_{i}^{\tau(i)-1} .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
(-1)^{\binom{n}{2}} c & =\sum_{\sigma \in S_{n}} \varepsilon(\sigma)^{2} \prod_{i=1}^{n} b_{i}^{\sigma(i)-1}=\operatorname{per}\left(\left(b_{i}^{j-1}\right)_{1 \leqslant i, j \leqslant n}\right) \\
& =\sum_{\sigma \in S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} b_{i}^{\sigma(i)-1} \quad(\text { because } \operatorname{ch}(F)=2) \\
& =\left|b_{j}^{i-1}\right|_{1 \leqslant i, j \leqslant n}=\prod_{1 \leqslant i<j \leqslant n}\left(b_{j}-b_{i}\right) \neq 0 \text { (Vandermonde) } .
\end{aligned}
$$

In 2003 Sun [J. Combin. Theory Ser. A] obtained some further extensions of the Dasgupta-Károlyi-Serra-Szegedy result via restricted sums in a field. Here are two basic observations of Sun:
(1) Any finitely generated abelian group with the torsion subgroup

$$
\operatorname{Tor}(G)=\{g \in G: g \text { has a finite order }\}
$$

cyclic is isomorphic to a subgroup of the multiplicative group of nonzero complex numbers.
(2) In Theorem 2, instead of the condition that $|G|$ is odd, we may just require that all elements of B have odd order.

In 2004 W. D. Gao and D. J. Wang [Israel J. Math.] studied Snevily's conjecture for abelian p-groups by using the DKSS method and group rings.

Snevily's conjecture for elementarily abelian groups \mathbb{Z}_{p}^{k} remains open.

4. The speaker's New Discovery

Let b_{1}, \ldots, b_{n} be elements of a field F. In Section 3, we noted that

$$
\begin{aligned}
& {\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right]\left|\left(b_{i} x_{i}\right)^{j-1}\right|_{1 \leqslant i, j \leqslant n} \prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)} \\
& \quad=(-1)^{\binom{n}{2}} \operatorname{per}\left(\left(b_{i}^{j-1}\right)_{1 \leqslant i, j \leqslant n}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left.\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right] \operatorname{per}\left(\left(b_{i} x_{i}\right)^{j-1}\right)_{1 \leqslant i, j \leqslant n}\right) \prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right) \\
& \quad=(-1)^{\binom{n}{2}} \operatorname{det}\left(\left(b_{i}^{j-1}\right)_{1 \leqslant i, j \leqslant n}\right)=(-1)^{\binom{n}{2}} \prod_{1 \leqslant i<j \leqslant n}\left(b_{j}-b_{i}\right) .
\end{aligned}
$$

Theorem 3 (Sun, 2006). Let A, B and $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three subsets of a field F with cardinality n. Then there is a numbering $\left\{a_{i}\right\}_{i=1}^{n}$ of the elements of A and a numbering $\left\{b_{i}\right\}_{i=1}^{n}$ of the elements of B such that $a_{1} b_{1} c_{1}, \ldots, a_{n} b_{n} c_{n}$ are distinct.

Proof. Since

$$
\begin{aligned}
& \left.\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right] \operatorname{per}\left(\left(c_{i} x_{i}\right)^{j-1}\right)_{1 \leqslant i, j \leqslant n}\right) \prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right) \\
& \quad=(-1)^{\binom{n}{2}} \prod_{1 \leqslant i<j \leqslant n}\left(c_{j}-c_{i}\right) \neq 0
\end{aligned}
$$

by the Combinatorial Nullstellensatz there are distinct $b_{1}, \ldots, b_{n} \in B$ such that $\operatorname{per}\left(\left(\left(b_{i} c_{i}\right)^{j-1}\right)_{1 \leqslant i, j \leqslant n}\right) \neq 0$. As

$$
\begin{gathered}
{\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right]\left|\left(b_{i} c_{i} x_{i}\right)^{j-1}\right|_{1 \leqslant i, j \leqslant n} \prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)} \\
=(-1)^{\binom{n}{2}} \operatorname{per}\left(\left(\left(b_{i} c_{i}\right)^{j-1}\right)_{1 \leqslant i, j \leqslant n}\right) \neq 0
\end{gathered}
$$

by the Combinatorial Nullstellensatz there are distinct $a_{1}, \ldots, a_{n} \in A$ such that

$$
\left|\left(a_{i} b_{i} c_{i}\right)^{j-1}\right|_{1 \leqslant i, j \leqslant n}=\prod_{1 \leqslant i<j \leqslant n}\left(a_{j} b_{j} c_{j}-a_{i} b_{i} c_{i}\right) \neq 0
$$

We can restate Theorem 3 in the following form.
Theorem 4. Let G be any additive abelian group with cyclic torsion subgroup, and let A_{1}, \ldots, A_{m} be arbitrary subsets of G with cardinality $n \in$ \mathbb{Z}^{+}, where m is odd. Then the elements of $A_{i}(1 \leqslant i \leqslant m)$ can be listed in a suitable order $a_{i 1}, \ldots, a_{i n}$, so that all the sums $\sum_{i=1}^{m} a_{i j}(1 \leqslant j \leqslant n)$ are distinct. In other words, for a certain subset A_{m+1} of G with $\left|A_{m+1}\right|=n$, there is a matrix $\left(a_{i j}\right)_{1 \leqslant i \leqslant m+1,1 \leqslant j \leqslant n}$ such that $\left\{a_{i 1}, \ldots, a_{i n}\right\}=A_{i}$ for all $i=1, \ldots, m+1$ and the column sum $\sum_{i=1}^{m+1} a_{i j}$ vanishes for every $j=1, \ldots, n$.

Remark 2. (1) In Theorem 4 we don't assume that $|G|$ is odd.
(2) Theorem 4 in the case $m=3$ is essential; the result for $m=5,7, \ldots$ can be obtained by repeated use of the case $m=3$.

Example 1. The group G in Theorem 4 cannot be replaced by an arbitrary abelian group. To illustrate this, we look at the Klein quaternion group

$$
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1)\}
$$

and its subsets
$A_{1}=\{(0,0),(0,1)\}, A_{2}=\{(0,0),(1,0)\}, A_{3}=\cdots=A_{m}=\{(0,0),(1,1)\}$,
where $m \geqslant 3$ is odd. For $i=1, \ldots, m$ let a_{i}, a_{i}^{\prime} be a list of the two elements of A_{i}, then

$$
\sum_{i=1}^{m}\left(a_{i}+a_{i}^{\prime}\right)=(0,1)+(1,0)+(m-2)(1,1)=(0,0)
$$

and hence $\sum_{i=1}^{m} a_{i}=-\sum_{i=1}^{m} a_{i}^{\prime}=\sum_{i=1}^{m} a_{i}^{\prime}$.

Recall that a line of an $n \times n$ matrix is a row or column of the matrix. We define a line of an $n \times n \times n$ cube in a similar way. A Latin cube over a set S of cardinality n is an $n \times n \times n$ cube whose entries come from the set S and no line of which contains a repeated element. A transversal of an $n \times n \times n$ cube is a collection of n cells no two of which lie in the same line. A Latin transversal of a cube is a transversal whose cells contain no repeated element.

Corollary 1. Let N be any positive integer. For the $N \times N \times N$ Latin cube over $\mathbb{Z} / N \mathbb{Z}$ formed by the Cayley addition table, each $n \times n \times n$ subcube with $n \leqslant N$ contains a Latin transversal.

Conjecture 1 (Sun, 2006). Every $n \times n \times n$ Latin cube contains a Latin transversal.

Note that Conjecture 1 does not imply Theorem 3 since an $n \times n \times n$ subcube of a Latin cube might have more than n distinct entries.

In Theorem 4 the condition $2 \nmid m$ is indispensable. Let G be an additive cyclic group of even order n. Then G has a unique element g of order 2 and hence $a \neq-a$ for all $a \in G \backslash\{0, g\}$. Thus $\sum_{a \in G} a=0+g=g$. For
each $i=1, \ldots, m$ let $a_{i 1}, \ldots, a_{i n}$ be a list of the n elements of G. If those $\sum_{i=1}^{m} a_{i j}$ with $1 \leqslant j \leqslant n$ are distinct, then

$$
\sum_{a \in G} a=\sum_{j=1}^{n} \sum_{i=1}^{m} a_{i j}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=m \sum_{a \in G} a
$$

hence $(m-1) g=(m-1) \sum_{a \in G} a=0$ and therefore m is odd.
Combining Theorem 4 with [Su03, Theorem 1.1(ii)], we obtain the following consequence.

Corollary 2. Let G be any additive abelian group with cyclic torsion subgroup, and let A_{1}, \ldots, A_{m} be subsets of G with cardinality $n \in \mathbb{Z}^{+}$, where m is even. Suppose that all the elements of A_{m} have odd order. Then the elements of $A_{i}(1 \leqslant i \leqslant m)$ can be listed in a suitable order $a_{i 1}, \ldots, a_{i n}$, so that all the sums $\sum_{i=1}^{m} a_{i j}(1 \leqslant j \leqslant n)$ are distinct.

As an essential result, Theorem 3 or 4 might have various potential applications in additive number theory and combinatorial designs.

A direct proof of Theorem 4 involves the following lemma.
Lemma 1. Let R be a commutative ring with identity, and let $a_{i j} \in R$ for $i=1, \ldots, m$ and $j=1, \ldots, n$, where $m \in\{3,5, \ldots\}$. The we have the identity

$$
\begin{gathered}
\sum_{\sigma_{1}, \ldots, \sigma_{m-1} \in S_{n}} \varepsilon\left(\sigma_{1} \cdots \sigma_{m-1}\right) \prod_{1 \leqslant i<j \leqslant n}\left(a_{m j} \prod_{s=1}^{m-1} a_{s \sigma_{s}(j)}-a_{m i} \prod_{s=1}^{m-1} a_{s \sigma_{s}(i)}\right) \\
=\prod_{1 \leqslant i<j \leqslant n}\left(a_{1 j}-a_{1 i}\right) \cdots\left(a_{m j}-a_{m i}\right) .
\end{gathered}
$$

We can extend Theorem 4 via restricted sumsets in a field. The additive order of the multiplicative identity of a field F is either infinite or a prime;
we call it the characteristic of F and denote it by $\operatorname{ch}(F)$. There are various results on restricted sumsets of the type

$$
\left\{a_{1}+\cdots+a_{n}: a_{1} \in A_{1}, \ldots, a_{n} \in A_{n} \text { and } P\left(a_{1}, \ldots, a_{n}\right) \neq 0\right\}
$$

where $A_{1}, \ldots, A_{n} \subseteq F$ and $P\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$. See, e.g., Alon-Nathanson-Ruzsa [J. Number Theory, 1996], Qing-Hu Hou and Z. W. Sun [Acta Arith. 2002], Z. W. Sun [J. Combin. Theory, 2003], H. Pan and Z.W. Sun [Israel J. Math. 2006].

Theorem 5. Let k, m, n be positive integers with $k-1 \geqslant m(n-1)$, and let F be a field with $\operatorname{ch}(F)>\max \{m n,(k-1-m(n-1)) n\}$. Assume that $c_{1}, \ldots, c_{n} \in F$ are distinct, and $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ are subsets of F with $\left|A_{1}\right|=\cdots=\left|A_{n}\right|=k$ and $\left|B_{1}\right|=\cdots=\left|B_{n}\right|=n$. Let $S_{i j} \subseteq F$ with $\left|S_{i j}\right|<2 m$ for all $1 \leqslant i<j \leqslant n$. Then there are distinct $b_{1} \in B_{1}, \ldots, b_{n} \in B_{n}$ such that the restricted sumset

$$
S=\left\{a_{1}+\cdots+a_{n}: a_{i} \in A_{i}, a_{i}-a_{j} \notin S_{i j} \text { and } a_{i} b_{i} c_{i} \neq a_{j} b_{j} c_{j} \text { if } i<j\right\}
$$

has at least $(k-1-m(n-1)) n+1$ elements.
When $k=n, m=1$ and $S_{i j}=\{0\}$, Theorem 5 yields Theorem 3 or 4 .

Now we state another extension of Theorem 4.
Theorem 6. Let G be an additive abelian group with cyclic torsion subgroup. Let h, k, l, m, n be positive integers with $k-1 \geqslant m(n-1)$ and $l-1 \geqslant h(n-1)$. Assume that $c_{1}, \ldots, c_{n} \in G$ are distinct, and A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} are subsets of G with $\left|A_{1}\right|=\cdots=\left|A_{n}\right|=k$ and $\left|B_{1}\right|=$ $\cdots=\left|B_{n}\right|=l$. Then, for any sets S and T with $|S| \leqslant(k-1) n-(m+1)\binom{n}{2}$ and $|T| \leqslant(l-1) n-(h+1)\binom{n}{2}$, there are $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}, b_{1} \in$ $B_{1}, \ldots, b_{n} \in B_{n}$ such that $\left\{a_{1}, \ldots, a_{n}\right\} \notin S,\left\{b_{1}, \ldots, b_{n}\right\} \notin T$, and also

$$
a_{i}+b_{i}+c_{i} \neq a_{j}+b_{j}+c_{j}, m a_{i} \neq m a_{j}, h b_{i} \neq h b_{j} \quad \text { if } 1 \leqslant i<j \leqslant n .
$$

Theorem 3 follows from Theorem 6 in the case $k=l=n, h=m=1$ and $S=T=\emptyset$.

The speaker's results in this talk are contained in a paper available from http://arxiv.org/abs/math.CO/0610981 or the speaker's homepage http://math.nju.edu.cn/~zwsun.

The topic here involves combinatorics as well as number theory and algebra. I do like such problems which are not of pure combinatorial interest.

