The combinatorics of associated Hermite polynomials

Dan Drake

University of Minnesota

FPSAC 2007 • Tianjin, China

Outline

(1) Model for the associated Hermites and their moments
(2) Proof of orthogonality \& L^{2} norm
(3) Other models for the moments

Outline

(1) Model for the associated Hermites and their moments

(2) Proof of orthogonality \& L^{2} norm

(3) Other models for the moments

Hermite polynomials: definition

The Hermite polynomials satisfy

$$
H_{n+1}(x)=x H_{n}(x)-n H_{n-1}(x),
$$

$H_{-1}(x)=0, H_{0}(x)=1$. They're orthogonal with respect to a certain weight:

$$
\int H_{n}(x) H_{m}(x) e^{-x^{2} / 2} d x= \begin{cases}0 & n \neq m \\ n! & n=m\end{cases}
$$

The quantities

$$
\mu_{n}:=\int x^{n} e^{-x^{2} / 2} d x
$$

are called the moments.

Model for usual Hermites \& moments

Recursion suggests a combinatorial model for $H_{n+1}(x)$ as incomplete matchings on $[n+1]$:

$$
H_{n+1}(x)=x H_{n}(x)-n H_{n-1}(x),
$$

Either:

- vertex $n+1$ is fixed, with weight x, or
- we connect vertex $n+1$ to any of the n vertices to the left with an edge of weight -1 ,
then recursively fill in the remaining n (respectively, $n-1$) vertices with the same sort of weighted matching.

Example: building an incomplete matching

Part of a matching that will contribute to $H_{8}(x)$:

Vertex 5 might be left fixed (weight x) or be connected to one of the two vertices to its left (weight -1).

Moments for usual Hermites

The nth moment μ_{n} is the number of complete matchings on n vertices, so $\mu_{2 n+1}=0$ and $\mu_{2 n}=(2 n-1)(2 n-3) \cdots 3 \cdot 1$.

Can be found via Viennot's general combinatorial theory of OP (moments are weighted Motzkin paths) or by uniqueness of moments.

Associated Hermites: definition and model

The associated Hermite polynomials are defined by a small shift in the recursion:

$$
H_{n+1}(x ; c)=x H_{n}(x ; c)-(n+c) H_{n-1}(x ; c)
$$

with the same initial conditions.
We interpret the " $+c$ " as meaning that a special choice of the edge may have weight -1 or $-c$. We'll use the rightmost available vertex.

Doing so means that edges that nest no fixed points or edges and have no left crossings may have weight -1 or $-c$; other edges have weight -1 .

Example: weighted matching for $H_{7}(x ; c)$

A matching that contributes $(-1)^{3} x$ and $(-1)^{2}(-c) x$ to $H_{7}(x ; c)$, which equals
$x^{7}+(6 c-21) x^{5}+\left(10 c^{2}-70 c+105\right) x^{3}+\left(4 c^{3}-42 c^{2}+128 c-105\right) x$

Moments of associated Hermites

The moment $\mu_{n}(c)$ for the associated Hermite polynomials are generating function for certain weighted complete matchings.

Using a recursive building process like before, and interpreting the $+c$ as being the rightmost available vertex, we have:
$\mu_{n}(c)$ is the g.f. for complete matchings on n vertices, where edges with no right crossings may have weight 1 or c.

Outline

(1) Model for the associated Hermites and their moments

(2) Proof of orthogonality \& L^{2} norm

(3) Other models for the moments

How to prove orthogonality?

$H_{n}(x ; c) H_{m}(x ; c)$
pairs of weighted partial matchings on $[n] \sqcup[m]$ vertices, with black edges weight
-1 or $-c$
$\int H_{n}(x ; c) H_{m}(x ; c) d \mu$
complete matchings, with black edges weight -1 or $-c$ and fixed points replaced by complete matching from the moments, with green edges weight +1 or $+c$

Call those objects paired matchings. Want an involution on paired matchings with no fixed points when $n \neq m$ to prove orthogonality.

Example: paired matching

One paired matching contributing to $\int H_{5}(x ; c) H_{3}(x ; c) d \mu$:

An involution to prove orthogonality

In a paired matching on $[n] \sqcup[m]$, assume $n \geq m$, put the n vertices to the left of the m vertices.

Orthogonality involution
Find the leftmost edge that nests no other edges and flip its color.

If $n \neq m$, there's always such an edge. If $n=m$, all paired matchings cancel except those in which there's no "homogeneous" edges.

L^{2} norm is $(c+1)_{n}$

Above involution shows $\int H_{n}(x ; c)^{2} d \mu$ is the generating function for paired matchings with only green edges going from left set of vertices to right set.

This is counting permutations by left-to-right maxima, whose generating function is $(c+1)_{n}=(c+1)(c+2) \cdots(c+n)$.

Outline

(1) Model for the associated Hermites and their moments

(2) Proof of orthogonality \& L^{2} norm
(3) Other models for the moments

Other models for the moments

Take the moments of the associated Hermites and set $c=1$.

$$
\begin{array}{l|l}
\mu_{0}=1 & 1 \\
\mu_{2}=1+c & 2 \\
\mu_{4}=3+5 c+2 c^{2} & 10 \\
\mu_{6}=15+32 c+22 c^{2}+5 c^{3} & 74 \\
\mu_{8}=105+260 c+234 c^{2}+93 c^{3}+14 c^{4} & 706 \\
\mu_{10}=945+2589 c+2750 c^{2}+1450 c^{3}+386 c^{4}+42 c^{5} & 8162
\end{array}
$$

The sequence on the right is OEIS A000698.

Connected matchings

For rest of talk: weight moments with "leftmost available" weighting: nonnested edges eligible for weight 1 or c.

A connected matching is a (complete) matching in which every vertex (except the first and last) is nested by some edge.

Theorem
$\mu_{n}(c)$ is also the g.f. for connected matchings on $n+2$ points, with nonnested edges weight c except the edge containing the leftmost vertex.

Connected matchings \leftrightarrow complete matchings

To a matching on n vertices (with "nonnested 1 or c " weighting), add vertices 0 and $n+1$ and connect them with an edge of weight 1 . Then tailswap right to left with edges of weight c.

This is a weight-preserving bijection.

Connected matchings \leftrightarrow complete matchings

Step 1:

Connected matchings \leftrightarrow complete matchings

Step 2:

Connected matchings \leftrightarrow complete matchings

Step 3:

Rooted maps

A map is a connected graph along with an embedding into an orientable surface. Loops and multiple edges are allowed. A rooted map is a map in which one edge has been directed.

We'll give every vertex in a rooted map weight c except the vertex adjacent to the root edge.

Theorem
$\mu_{n}(c)$ is the generating function for rooted maps with n edges, weighted as above.

Rooted maps \leftrightarrow connected matchings

A bijection from rooted maps to connected matchings from Ossona de Mendez and Rosenstiehl happens to preserve weight!

corresponds to $(1,5)(2,11)(3,9)(4,12)(6,7)(8,10)$.

Oscillating tableaux

An oscillating tableau is a walk in the Hasse diagram of the Young lattice, starting and ending at the empty partition.

Oscillating tableaux \leftrightarrow complete matchings

Weight an oscillating tableau by: entries that appear in the first columns of a shape may have weight 1 or c. Then:

Theorem
$\mu_{n}(c)$ is the generating function for weighted oscillating tableaux of length n.

Summary

- combinatorial model for the associated Hermite polynomials which generalizes that of the ordinary Hermite polynomials in a nice way;
- involution that proves orthogonality and L^{2} norm;
- weight-preserving bijections between complete matchings on n vertices and...
- connected matchings on $n+2$ vertices,
- rooted maps with n edges,
- oscillating tableaux of length n.

Thank you

谢谢

Slides and abstract available from www.math.umn.edu/~drake/fpsac

