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Permutation Statistics

Eulerian polynomial

An(t) :=
∑

σ∈Sn

tdes(σ) =
∑

σ∈Sn

texc(σ)

S3 des exc
123 0 0

132 1 1

213 1 1

231 1 2

312 1 1

321 2 1

A3(t) = 1 + 4t + t2



Permutation Statistics

Eulerian polynomial

An(t) :=
∑

σ∈Sn

tdes(σ) =
∑

σ∈Sn

texc(σ)

Exponential generating function:∑
n≥0

An(t)
zn

n!
=

1− t

ez(t−1) − t



Permutation Statistics

q-analogs ∑
σ∈Sn

qinv(σ) =
∑

σ∈Sn

qmaj(σ) = [n]q!

where [n]q := 1 + q + · · ·+ qn−1 and [n]q! := [n]q[n − 1]q · · · [1]q

S3 inv maj
123 0 0

132 1 2

213 1 1

231 2 2

312 2 1

321 3 3

1 + 2q + 2q2 + q3 = (1 + q + q2)(1 + q)



q-Eulerian polynomials

Ainv,des
n (q, t) :=

∑
σ∈Sn

qinv(σ)tdes(σ)

Amaj,des
n (q, t) :=

∑
σ∈Sn

qmaj(σ)tdes(σ)

Ainv,exc
n (q, t) :=

∑
σ∈Sn

qinv(σ)texc(σ)

Amaj,exc
n (q, t) :=

∑
σ∈Sn

qmaj(σ)texc(σ)



q-Eulerian polynomials

Theorem (Stanley 1976)∑
n≥0

Ainv,des
n (q, t)

zn

[n]q!
=

1− t

Expq(z(t − 1))− t

where

Expq(z) :=
∑
n≥0

q(n
2)zn

[n]q!

Theorem (Shareshian & MW 2006)∑
n≥0

Amaj,exc
n (q, t)

zn

[n]q!
=

(1− tq) expq(z)

expq(ztq)− tq expq(z)

where

expq(z) :=
∑
n≥0

zn

[n]q!
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Symmetric Function Generalization

H(z) :=
∑

n≥0 hnz
n, where hn is the nth complete homogeneous

symmetric function in x1, x2, . . . .

(1− t)H(z)

H(zt)− tH(z)y
xi := qi−1

z := z(1− q)
t := qt

y
xi := qi−1

z := z(1− q)
t := qt

∑
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Symmetric Function Generalization

For σ ∈ Sn, let σ̄ be obtained by placing bars above each
excedance.

5̄3̄146̄2

View σ̄ as a word over ordered alphabet

{1̄ < 2̄ < · · · < n̄ < 1 < 2 < · · · < n}.

Define
DEX(σ) := DES(σ̄)

DEX(531462) = DES(5̄.3̄14.6̄2) = {1, 4}

∑
i∈DEX(σ)

i = maj(σ)− exc(σ)
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Symmetric Function Generalization

For T ⊆ [n − 1], quasisymmetric function

FT (x1, x2, . . . ) :=
∑

s1 ≥ · · · ≥ sn
i ∈ T ⇒ si > si+1

xs1 . . . xsn

From theory of quasisymmetric functions we have

FT (1, q, q2, . . . ) =
q

P
T

(1− q)(1− q2) . . . (1− qn)

Hence

FDEX(σ)(1, q, q2, . . . ) =
qmaj(σ)−exc(σ)

(1− q)(1− q2) . . . (1− qn)



Symmetric Function Generalization

By setting xi := qi−1 and z := z(1− q) in∑
n≥0

∑
σ∈Sn

FDEX(σ)t
exc(σ)zn

we get ∑
n≥0

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ) zn

[n]q!

Now set t := qt to get∑
n≥0

Amaj,exc
n (q, t)

zn

[n]q!



Symmetric Function Generalization

H(z) :=
∑

n≥0 hnz
n, where hn is the nth complete homogeneous

symmetric function in x1, x2, . . . .

∑
n≥0

∑
σ∈Sn

FDEX(σ)t
exc(σ)rfix(σ)zn =

(1− t)H(rz)

H(zt)− tH(z)y
xi := qi−1

z := z(1− q)
t := qt

y
xi := qi−1

z := z(1− q)
t := qt∑

n≥0

Amaj,exc,fix
n (q, t, r)

zn

[n]q!
=

(1− tq) expq(rz)

expq(ztq)− tq expq(z)



Symmetric Function Generalization

Theorem (Shareshian and MW, 2006)

Let
Qn,j ,k :=

∑
σ ∈ Sn

exc(σ) = j
fix(σ) = k

FDEX(σ)

Then ∑
n≥0

n−1∑
j=0

n∑
k=0

Qn,j ,k t j rkzn =
(1− t)H(rz)

H(zt)− tH(z)



Another specialization of
∑

Qn,j ,k t jr kzn = (1−t)H(rz)
H(zt)−tH(z)

Two ways to specialize the quasisymmetric functions:

FT (1, q, q2, . . . ) =
q

P
T

(q; q)n

∑
m≥0

FT (1, q, . . . , qm−1)pm =
p|T |+1q

P
T

(p; q)n+1
.

where

(a; q)n :=

{
1 if n = 0

(1− a)(1− aq) · · · (1− aqn−1) if n ≥ 1.



Another specialization of
∑

Qn,j ,k t jr kzn = (1−t)H(rz)
H(zt)−tH(z)

First specialization:
∑

DEX(σ) = maj(σ)− exc(σ).

Theorem (Shareshian and MW, 2006)∑
n≥0

Amaj,exc,fix
n (q, t, r)

zn

[n]q!
=

(1− tq) expq(rz)

expq(ztq)− tq expq(z)
.

Second specialization:

|DEX(σ)| =

{
des(σ) if σ(1) = 1

des(σ)− 1 otherwise

Theorem (Foata-Han (2007), Gessel-Reutenauer (1993) t=1)∑
n≥0

Amaj,exc,fix,des
n (q, t, r , p)

zn

(p; q)n+1
=

=
∑
m≥0

pm (1− tq)(z ; q)m(ztq; q)m
((z ; q)m − tq(ztq; q)m)(zr ; q)m+1

,
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Steps of the Proof of
∑

Qn,j ,k t jr kzn = (1−t)H(rz)
H(zt)−tH(z)

1. Modification of bijection of Gessel and Reutenauer, which
takes compatible pairs to ornaments, is used to give
alternative characterization of Qn,j ,k

2. Bijection from ornaments to banners, using Lyndon
decomposition, is used to give another alternative
characterization of Qn,j ,k

3. Generalization of bijection of Stembridge is used to show
Qn,j ,k satisfies recurrence relation, which yields generating
function.
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Step 1 - Bicolored necklaces and ornaments

A bicolored necklace is a primitive circular word over alphabet

{1, 1, 2, 2, . . . }

such that if size > 1

a blue letter is followed by letter greater than or equal in value

a red letter is followed by a letter less than or equal in value

Necklaces of size 1 are blue.

2

3

2

3

3

2

4

3

3

2 3

necklaces not necklaces



Step 1 - Bicolored necklaces and ornaments

An ornament of type λ is a multiset of necklaces whose necklace
sizes form partition λ

3

2

4

3

3

2

4

2

3

2

2

22

type = (5, 4, 4) weight = x7
2x4

3x2
4

Let Rλ,j = set of ornaments of type λ with j red letters.



Step 1 - Bicolored necklaces and ornaments

Theorem (Shareshian and MW)

For λ ` n, define

Qλ,j :=
∑

σ ∈ Sn

exc(σ) = j
λ(σ) = λ

FDEX(σ)

Then
Qλ,j =

∑
R∈Rλ,j

wt(R)

FDEX(σ) =
∑

s1 ≥ · · · ≥ sn
i ∈ DEX(σ) ⇒ si > si+1

xs1 . . . xsn
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Step 1 - Bicolored necklaces and ornaments

For λ ` n and j = 0, . . . , n − 1, let

Comλ,j := {(σ, s) : σ ∈ Sn, λ(σ) = λ, exc(σ) = j , s is σ-compat}.

Bijection φ : Comλ,j → Rλ,j

Let σ = 45162387 and s = (7, 7, 7, 5, 5, 4, 2, 2).

1 write σ in cycle form,

σ = (1, 4, 6, 3)(2, 5), (7, 8).

2 color letters that are followed (cyclicly) by larger letters red
and letters that are singletons or are followed by smaller
letters blue,

(1, 4, 6, 3)(2, 5)(7, 8).

3 replace each i by si , we have the ornament

(7, 5, 4, 7)(7, 5)(2, 2).
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Steps of the Proof of
∑

Qn,j ,k t jr kzn = (1−t)H(rz)
H(zt)−tH(z)

1. Modification of bijection of Gessel and Reutenauer which
takes compatible pairs to ornaments is used to give alternative
characterization of Qn,j ,k

=⇒ 2. Bijection from ornaments to banners using Lyndon
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characterization of Qn,j ,k

3. Generalization of bijection of Stembridge is used to show
Qn,j ,k satisfies recurrence relation, which yields generating
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Step 2 - Banners

A banner is a word over alphabet

{1, 1, 2, 2, . . . }

such that

blue letter is followed by letter greater than or equal in value
or is last

red letter is followed by a letter less than or equal in value

Example:
22757547



Step 2 - Banners

A Lyndon word over an ordered alphabet is a word that is strictly
lexicographically larger than all its circular rearrangements.

The Lyndon factorization of a word over an ordered alphabet is a
factorization into a weakly lexicographically increasing sequence of
Lyndon words.

The Lyndon type λ(w) of a word w is the partition whose parts
are the lengths of the words in its Lyndon factorization.

Use the ordering 1 < 1 < 2 < 2 < . . . for our alphabet.
Example:

λ(22757547) = λ(22 · 75 · 7547) = 4, 2, 2



Step 2 - Banners

Theorem (Shareshian and MW)

Let Bλ,j = the set of banners of Lyndon type λ with j red letters.
Then there is a weight-preserving bijection

Bλ,j → Rλ,j .

Consequently

Qλ,j =
∑

b∈Bλ,j

wt(b)

22757547 7→ 22 · 75 · 7547 7→ (2, 2) (7, 5) (7, 5, 4, 7)
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Step 3 - Recurrence Relation

Using ornaments one can easily show that the formula

∑
n≥0

n−1∑
j=0

n∑
k=0

Qn,j ,k t j rkzn =
(1− t)H(rz)

H(zt)− tH(z)

is equivalent to

∑
n≥0

n−1∑
j=0

Qn,j ,0 t jzn =
1− t

H(zt)− tH(z)

which is equivalent to recurrence relation

Qn,j ,0 =
∑

0 ≤ m ≤ n − 2
j + m − n < i < j

Qm,i ,0hn−m



Step 3 - Recurrence Relation

From Steps 1 and 2 we have

Qn,j ,0 =
∑

b∈Bn,j

wt(b)

where
Bn,j :=

⋃
λ ` n

λ has no parts of size 1

Bλ,j

Theorem (Shareshian and MW)

For all n ≥ 2, there is a bijection

γ : Bn,j →
⋃

0 ≤ m ≤ n − 2
j + m − n < i < j

Bm,i × {(a1 ≤ · · · ≤ an−m) : ai ∈ Z+}



Connection with Toric Varieties

Let Xn be the toric variety associated with the Coxeter complex of
Sn. The action of Sn on Xn induces a representation of Sn on
H2j(Xn).

Theorem (Procesi, Stanley 1989)∑
n≥0

n−1∑
j=0

chH2j(Xn) t jzn =
(1− t)H(z)

H(zt)− tH(z)
,

where ch is the Frobenius characteristic,

Theorem (Shareshian and MW)

chH2j(Xn) = Qn,j :=
n∑

k=0

Qn,j ,k



Representation on Rees product

Action of Sn on boolean algebra Bn induces an action of Sn on
maximal open intervals In,j := (0̂, ([n], j)) of Rees product
(Bn−{0̂})∗Cn, which induces a representation of Sn on H̃n−2(In,j)

Theorem (Shareshian and MW)

1 +
∑
n≥1

n−1∑
j=0

chH̃n−2(In,j+1) t jzn =
(1− t)E (z)

E (zt)− tE (z)
,

where E (z) =
∑

n≥0 enz
n and en is the nth elementary symmetric

function.

Corollary

chH̃n−2(In,j+1) = ωQn,j

and
H2j(Xn) ∼=Sn H̃n−2(In,j+1)⊗ sgn


