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Specialization of symmetric function identity



Permutation Statistics

Eulerian polynomial

An(t) == Z pdes(o) _ Z rexc(o)

ceS, ceS,

’(‘53‘des‘exc‘
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Permutation Statistics

Eulerian polynomial

An(t) == Z pdes(o) _ Z rexc(o)

ceS, ceS,

Exponential generating function:

z" 1—1¢t
ZA"(t)ﬁ = o) ¢

n>0



Permutation Statistics

g-analogs
Z qan(O') _ Z qmaJ(U) — [”]q!

O’GGn Ue@n

where [n]g :=14+qg+ -+ q" ! and [n]g! := [n]g[n —1lg---[1]q

’ Gs3 ‘inv ‘ mayj ‘

123 0 0
132 1 1 2
213 | 1 1
231 | 2 2
312 | 2 1
321 | 3 3

1429+2¢°+¢°=(1+qg+¢*)(1+q)



g-Eulerian polynomials

Ainnv,deS(q’ t) — Z qinv(a) tdes(o)

ceS,

A;ﬂaLdeS(q, t) — Z qmaj(a) ¢des(o)
Ueen

Ainnv,exc(q’ t) — Z qinv(o) texc(a)
U€6n

All;llaj,eXC(q’ t) - Z qmaj(g) texc(a)
O’Ge)n



g-Eulerian polynomials

Theorem (Stanley 1976)

. zn 1-—t
Alnnv,des gt —
%% (@O0 = Bepg = D)) — ¢

where




g-Eulerian polynomials

Theorem (Stanley 1976)

z" 1—t

inv, des
DA O = Bl D)
where 0
N\ 92
Bxbq(2) = >0 [n]g!

Theorem (Shareshian & MW 2006)

ZAm aj, ex( q z" (1 _ tq) equ(z)
= ’ [n]q equ(th) — tqexpy(2)

e = Y o

n>0

where

A\




Symmetric Function Generalization

(1 — tq) expy(2)
expy(ztq) — tgexp,(2)

. zn
Amaj,exc ¢ _
E n (qa ) [”]q!

n>0



Symmetric Function Generalization

H(z) :=)_,>0 hnz", where hy, is the nth complete homogeneous
symmetric function in xq, xo, . ...

(1 —t)H(2)
H(zt) — tH(z)
X = q"_1
z =2z(1-q)
t =aqt

z0 (1 — tq) expy(2)

> Ao o 2 -

n>0 [ ] ! equ(th) - tlepq(Z)




Symmetric Function Generalization

H(z) :=)_,>0 hnz", where hy, is the nth complete homogeneous
symmetric function in xq, xo, . ...

: (- M)
' H(zt) — tH(z)

xi =gt xi =gt

z =2z(1-q) z =2(1-q)
t =qt t =qt

maj,exc - (1-tq) equ(z)
nzz:oAn (q7 )[ ] . equ(th)_tqequ(z)



Symmetric Function Generalization

For o0 € G,, let & be obtained by placing bars above each
excedance.
531462

View & as a word over ordered alphabet

{1<2<---<hA<l1l<2<---<n}
Define
DEX(c) := DES(7)

DEX(531462) = DES(5.314.62) = {1, 4}



Symmetric Function Generalization

For o0 € G,, let & be obtained by placing bars above each
excedance.
531462

View & as a word over ordered alphabet

{1<2<---<hA<l1l<2<---<n}
Define
DEX(c) := DES(7)

DEX(531462) = DES(5.314.62) = {1, 4}

Z i = maj(c) — exc(o)

ieDEX (o)




Symmetric Function Generalization

For T C [n — 1], quasisymmetric function

Fr(xi,xo,...):= Z Xsy - -+ Xs,

SL> 0t 2 5n
i €T = s> si41

From theory of quasisymmetric functions we have
g=7
(I1-9)(1-4¢%)...(1—q")

FT(l’qaqzw"):

Hence

maj(o)—exc(o)

q
1-9)(1-4¢?)...(1—q")

FDEX(O’)(17 q, q2’ . ) =



Symmetric Function Generalization

~land z:=z(1—q) in

Z Z FDEX(U)texc(a)zn

n>00e6,

By setting x;j :=¢q

we get

z Z qmaj(cr exc(o)texc(a)[zl

n>00€ei6,

Now set t := gt to get

D AR(q, 1) 0 ] _

n>0




Symmetric Function Generalization

H(z) := 3,50 hnz", where h, is the nth complete homogeneous
symmetric function in xg,xo, . ...

Z Z FDEX gexce (o) ﬁx(a) _ (1 — t)H(I’Z)
ol H(zt) — tH(z)
xi =q* xi =qt
z =2z(1-q) z =2z(1-q)
t =qt t =qt
2" (1-tq)expy(rz)

Amaj,exc,ﬁx(q’ t, r) —
% " [”]q! equ(th) —1tq equ(Z)



Symmetric Function Generalization

Theorem (Shareshian and MW, 2006)

Let
Qnjk = Z FpEX (o)
o€ G,
exc(o) =j
fix(o) = k
Then .
n—1 n
; 1-t)H
Qo kg — (L= D)
, ’ H(zt) — tH(z)
n>0 j=0 k=0




(1—t)H(rz)
H(zt)—tH(z)

Another specialization of > @, x t/rkz" =

Two ways to specialize the quasisymmetric functions:

ST
q
FT 17q7q27"' = 7N
( ) (q:9)n
[T|+1 > T
> Fr(lq,....q" )p" = %-
m>0 P: 4)n+1

where

(2;q) ._{1 ifn=0
1 qd)n = (1_2)(1_aq)(1_aqn—1) |fn21



Another specialization of > @, x t/rkz" =

First specialization: ) DEX(c) = maj(c) — exc(o).
Theorem (Shareshian and MW, 2006)

n
> At 1) 2
nZO [n]CI

(1 — tq) expy(rz)

expg(2tq) — tqexpy(z)’




Another specialization of > @, x t/rkz" =

First specialization: ) DEX(c) = maj(c) — exc(o).
Theorem (Shareshian and MW, 2006)

n
> At 1) 2
nZO [n]CI

(1 — tq) expy(rz)

expg(2tq) — tqexpy(z)’

Second specialization:

DEX(0)| = des(o) if o(1) =1

"~ ldes(c) —1 otherwise



Another specialization of > @, x t/rkz" =

First specialization: ) DEX(c) = maj(c) — exc(o).
Theorem (Shareshian and MW, 2006)

n
> At 1) 2
nZO [n]CI

(1 — tq) expy(rz)

expg(2tq) — tqexpy(z)’

Second specialization:
d if o(1)=1
DEX(0)| = es(o) if o( )
des(o) —1 otherwise

Theorem (Foata-Han (2007), Gessel-Reutenauer (1993) t=1)

Z Aznaj,exc,ﬁx,des(q’ t,r, p)Z—n —
>0 (pv q)n+1

(1 —tq)(z; @)m(2tq; @)m
((z:iq

)m — tq(2tq; @)m)(2r; @) mi1’

m>0



Steps of the Proof of Y @, x t/rkz" =

1. Modification of bijection of Gessel and Reutenauer, which
takes compatible pairs to ornaments, is used to give
alternative characterization of @, «

2. Bijection from ornaments to banners, using Lyndon
decomposition, is used to give another alternative
characterization of Qp «

3. Generalization of bijection of Stembridge is used to show
(n,j i satisfies recurrence relation, which yields generating
function.
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Step 1 - Bicolored necklaces and ornaments

A bicolored necklace is a primitive circular word over alphabet
{1,1,2,2,...}

such that if size > 1
@ a blue letter is followed by letter greater than or equal in value
@ a red letter is followed by a letter less than or equal in value

Necklaces of size 1 are blue.

® Yo & 0@
(@ @

necklaces not necklaces



Step 1 - Bicolored necklaces and ornaments

An ornament of type A is a multiset of necklaces whose necklace
sizes form partition A

type = (5,4, 4) weight = xJ x5 x2

Let R, = set of ornaments of type A with j red letters.
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Theorem (Shareshian and MW)
For A\ & n, define

Q) = Z FpEX(0)

g€ G,
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Step 1 - Bicolored necklaces and ornaments

Theorem (Shareshian and MW)
For A\ & n, define

Q) = Z FpEX(0)

g€ G,
exc(o) =

Ao) =X

Then

S1 > 2> 5
i € DEX(0) = s; > si+1



Step 1 - Bicolored necklaces and ornaments

For AFnandj=0,...,n—1, let
Comy j := {(0,s) : 0 € &p, AN(0) = A\, exc(o) =, 5 is o-compat}.

Bijection ¢ : Com) ; — R
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o = (1,4,6,3)(2,5), (7,8).
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letters blue,

(1,4,6,3)(2,5)(7,8).



Step 1 - Bicolored necklaces and ornaments

For AFnandj=0,...,n—1, let
Comy j := {(0,s) : 0 € &p, AN(0) = A\, exc(o) =, 5 is o-compat}.

Bijection ¢ : Com) ; — R

Let 0 = 45162387 and s = (7,7,7,5,5,4,2,2).
@ write o in cycle form,
o=1(1,4,6,3)(2,5),(7,8).

@ color letters that are followed (cyclicly) by larger letters red
and letters that are singletons or are followed by smaller
letters blue,

(1,4,6,3)(2,5)(7,8).

© replace each i by s;, we have the ornament

(7,5,4,7)(7,5)(2,2).



Steps of the Proof of Y @, x t/rkz" =

1. Modification of bijection of Gessel and Reutenauer which
takes compatible pairs to ornaments is used to give alternative
characterization of Qp «

— 2. Bijection from ornaments to banners using Lyndon
decomposition is used to give another alternative
characterization of Qp «

3. Generalization of bijection of Stembridge is used to show
(n,j i satisfies recurrence relation, which yields generating
function.



Step 2 - Banners

A banner is a word over alphabet
{1,1,2,2,...}

such that

@ blue letter is followed by letter greater than or equal in value
or is last

o red letter is followed by a letter less than or equal in value

Example:
22757547



Step 2 - Banners

A Lyndon word over an ordered alphabet is a word that is strictly
lexicographically larger than all its circular rearrangements.

The Lyndon factorization of a word over an ordered alphabet is a
factorization into a weakly lexicographically increasing sequence of
Lyndon words.

The Lyndon type A(w) of a word w is the partition whose parts
are the lengths of the words in its Lyndon factorization.

Use the ordering 1 <1 <2 <2 < ... for our alphabet.
Example:

N(22757547) = (22 - 75 - 7547) = 4,2,2



Step 2 - Banners

Theorem (Shareshian and MW)

Let By j = the set of banners of Lyndon type A with j red letters.
Then there is a weight-preserving bijection

BAJ — R)\’j.
Consequently
Q= Y wt(b)
bEBA’j

22757547 +— 22 - 75 - 7547 — (2,2)(7,5)(7,5,4,7)



Steps of the Proof of Y @, x t/rkz" =

1. Modification of bijection of Gessel and Reutenauer which
takes compatible pairs to ornaments is used to give alternative
characterization of Qp «

2. Bijection from ornaments to banners using Lyndon
decomposition is used to give another alternative
characterization of Qp «

= 3. Generalization of bijection of Stembridge is used to show
(n,j i satisfies recurrence relation, which yields generating
function.



Step 3 - Recurrence Relation

Using ornaments one can easily show that the formula
n—1 n
: 1—t)H(rz
DD Qujutlrke" = U nitz)
_ ’ H(zt) — tH(z)
n>0 j=0 k=0
is equivalent to
n—1
; 1—1¢
D) DIHIEIRS St
pe s H(zt) — tH(z)
which is equivalent to recurrence relation
QnJ,O = Z Qm,i,Ohnfm

0<m<n-2
j+tm—n<i<j



Step 3 - Recurrence Relation

From Steps 1 and 2 we have

where

AFn
A has no parts of size 1

Theorem (Shareshian and MW)

For all n > 2, there is a bijection

v:Bnj— U Bmix{(a1 < <ap_m):a€Zt}
0<m<n-2
j+m—n<i<j




Connection with Toric Varieties

Let X, be the toric variety associated with the Coxeter complex of

S,,. The action of &, on X, induces a representation of &, on
H%(X,).

Theorem (Procesi, Stanley 1989)

ZSChHZJ(Xn) Hn — (1-t)H(z)

= H(zt) — tH(z)

where ch is the Frobenius characteristic,

\

Theorem (Shareshian and MW)

chHY (Xp) = Qnj =Y Qnjk

k=0

A\




Representation on Rees product

Action of &,, on boolean algebra B, induces an action of G, on
maximal open intervals /, ; := (0, ([n],/)) of Rees product
(B, —{0}) * C,, which induces a representation of &, on H,_2(I,,)

Theorem (Shareshian and MW)

(1 - t)E(2)

n—1
1 Wi, o(l, i1 2" = =2\
+Zlgo 2t 027 = B e ()

where E(z) = )" ,~,enz" and e, is the nth elementary symmetric
function.

| A

Corollary
Chl:ln—2(/n,j+1) = an,j

and

H (X,) =6, 'Eln—2(/n,j+1) ® sgn




