q-Eulerian Polynomials: Excedance Number and Major Index

John Shareshian \& Michelle Wachs

q-Eulerian Polynomials: Excedance Number and Major Index

John Shareshian \& Michelle Wachs

$$
\sum_{n \geq 0} A_{n}^{\mathrm{maj}, \operatorname{exc}}(q, t) \frac{z^{n}}{[n]_{q}!}=\frac{(1-t q) \exp _{q}(z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
$$

q-Eulerian Polynomials: Excedance Number and Major Index

John Shareshian \& Michelle Wachs

$$
\sum_{n \geq 0} A_{n}^{\mathrm{maj}, \operatorname{exc}}(q, t) \frac{z^{n}}{[n]_{q}!}=\frac{(1-t q) \exp _{q}(z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
$$

Specialization of symmetric function identity

Permutation Statistics

Eulerian polynomial

$$
A_{n}(t):=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{des}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{exc}(\sigma)}
$$

\mathfrak{S}_{3}	des	exc
123	0	0
132	1	1
213	1	1
231	1	2
312	1	1
321	2	1

$$
A_{3}(t)=1+4 t+t^{2}
$$

Permutation Statistics

Eulerian polynomial

$$
A_{n}(t):=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{des}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{exc}(\sigma)}
$$

Exponential generating function:

$$
\sum_{n \geq 0} A_{n}(t) \frac{z^{n}}{n!}=\frac{1-t}{e^{z(t-1)}-t}
$$

Permutation Statistics

q-analogs

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)}=[n]_{q}!
$$

where $[n]_{q}:=1+q+\cdots+q^{n-1}$ and $[n]_{q}!:=[n]_{q}[n-1]_{q} \cdots[1]_{q}$

\mathfrak{S}_{3}	inv	maj
123	0	0
132	1	2
213	1	1
231	2	2
312	2	1
321	3	3

$$
1+2 q+2 q^{2}+q^{3}=\left(1+q+q^{2}\right)(1+q)
$$

q -Eulerian polynomials

$$
\begin{aligned}
A_{n}^{\mathrm{inv}, \mathrm{des}}(q, t) & :=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)} t^{\operatorname{des}(\sigma)} \\
A_{n}^{\mathrm{maj}, \mathrm{des}}(q, t) & :=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{des}(\sigma)} \\
A_{n}^{\mathrm{inv}, \operatorname{exc}}(q, t) & :=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)} t^{\operatorname{exc}(\sigma)} \\
A_{n}^{\mathrm{maj}, \operatorname{exc}}(q, t) & :=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{exc}(\sigma)}
\end{aligned}
$$

q-Eulerian polynomials

Theorem (Stanley 1976)

$$
\sum_{n \geq 0} A_{n}^{\mathrm{inv}, \mathrm{des}}(q, t) \frac{z^{n}}{[n]_{q}!}=\frac{1-t}{\operatorname{Exp}_{q}(z(t-1))-t}
$$

where

$$
\operatorname{Exp}_{q}(z):=\sum_{n \geq 0} \frac{q^{\binom{n}{2}} z^{n}}{[n]_{q}!}
$$

q-Eulerian polynomials

Theorem (Stanley 1976)

$$
\sum_{n \geq 0} A_{n}^{\mathrm{inv}, \mathrm{des}}(q, t) \frac{z^{n}}{[n]_{q}!}=\frac{1-t}{\operatorname{Exp}_{q}(z(t-1))-t}
$$

where

$$
\operatorname{Exp}_{q}(z):=\sum_{n \geq 0} \frac{q^{\binom{n}{2}} z^{n}}{[n]_{q}!}
$$

Theorem (Shareshian \& MW 2006)

$$
\sum_{n \geq 0} A_{n}^{\text {maj,exc }}(q, t) \frac{z^{n}}{[n]_{q}!}=\frac{(1-t q) \exp _{q}(z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
$$

where

$$
\exp _{q}(z):=\sum_{n \geq 0} \frac{z^{n}}{[n]_{q}!}
$$

Symmetric Function Generalization

$$
\sum_{n \geq 0} A_{n}^{\mathrm{maj}, \operatorname{exc}}(q, t) \frac{z^{n}}{[n]_{q}!}=\frac{(1-t q) \exp _{q}(z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
$$

Symmetric Function Generalization

$H(z):=\sum_{n \geq 0} h_{n} z^{n}$, where h_{n} is the nth complete homogeneous symmetric function in x_{1}, x_{2}, \ldots.

$$
\begin{aligned}
& \frac{(1-t) H(z)}{H(z t)-t H(z)} \\
& \left\lvert\, \begin{array}{cl}
x_{i} & :=q^{i-1} \\
z & :=z(1-q) \\
t & :=q t
\end{array}\right.
\end{aligned}
$$

$$
\sum_{n \geq 0} A_{n}^{\mathrm{maj}, \operatorname{exc}}(q, t) \frac{z^{n}}{[n]_{q}!}=\frac{(1-t q) \exp _{q}(z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
$$

Symmetric Function Generalization

$H(z):=\sum_{n \geq 0} h_{n} z^{n}$, where h_{n} is the nth complete homogeneous symmetric function in x_{1}, x_{2}, \ldots.

$$
\begin{array}{ccc}
? & =\frac{(1-t) H(z)}{H(z t)-t H(z)} \\
\left\lvert\, \begin{array}{lll}
x_{i} & :=q^{i-1} & \\
z & :=z(1-q) & \\
t & :=q t & \\
x_{i} & :=q^{i-1} \\
z & :=z(1-q) \\
t & :=q t
\end{array}\right. \\
\sum_{n \geq 0} A_{n}^{\operatorname{maj}, \operatorname{exc}}(q, t) \frac{z^{n}}{[n]_{q}!} & =\frac{(1-t q) \exp _{q}(z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
\end{array}
$$

Symmetric Function Generalization

For $\sigma \in \mathfrak{S}_{n}$, let $\bar{\sigma}$ be obtained by placing bars above each excedance.

$$
\overline{5} \overline{3} 14 \overline{6} 2
$$

View $\bar{\sigma}$ as a word over ordered alphabet

$$
\{\overline{1}<\overline{2}<\cdots<\bar{n}<1<2<\cdots<n\} .
$$

Define

$$
\operatorname{DEX}(\sigma):=\operatorname{DES}(\bar{\sigma})
$$

$\operatorname{DEX}(531462)=\operatorname{DES}(\overline{5} . \overline{3} 14 . \overline{6} 2)=\{1,4\}$

Symmetric Function Generalization

For $\sigma \in \mathfrak{S}_{n}$, let $\bar{\sigma}$ be obtained by placing bars above each excedance.

$$
\overline{5} \overline{3} 14 \overline{6} 2
$$

View $\bar{\sigma}$ as a word over ordered alphabet

$$
\{\overline{1}<\overline{2}<\cdots<\bar{n}<1<2<\cdots<n\} .
$$

Define

$$
\operatorname{DEX}(\sigma):=\operatorname{DES}(\bar{\sigma})
$$

$$
\operatorname{DEX}(531462)=\operatorname{DES}(\overline{5} . \overline{3} 14 . \overline{6} 2)=\{1,4\}
$$

$$
\sum_{i \in \operatorname{DEX}(\sigma)} i=\operatorname{maj}(\sigma)-\operatorname{exc}(\sigma)
$$

Symmetric Function Generalization

For $T \subseteq[n-1]$, quasisymmetric function

$$
F_{T}\left(x_{1}, x_{2}, \ldots\right):=\sum_{\substack{s_{1} \geq \cdots \geq s_{n}}}^{\sum_{i \in T \Rightarrow s_{i}>s_{i+1}} x_{s_{1}} \ldots x_{s_{n}}}
$$

From theory of quasisymmetric functions we have

$$
F_{T}\left(1, q, q^{2}, \ldots\right)=\frac{q^{\sum T}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}
$$

Hence

$$
F_{\operatorname{DEX}(\sigma)}\left(1, q, q^{2}, \ldots\right)=\frac{q^{\operatorname{maj}(\sigma)-\operatorname{exc}(\sigma)}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}
$$

Symmetric Function Generalization

By setting $x_{i}:=q^{i-1}$ and $z:=z(1-q)$ in

$$
\sum_{n \geq 0} \sum_{\sigma \in \mathfrak{S}_{n}} F_{\mathrm{DEX}(\sigma)} t^{\operatorname{exc}(\sigma)} z^{n}
$$

we get

$$
\sum_{n \geq 0} \sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)-\operatorname{exc}(\sigma)} t^{\operatorname{exc}(\sigma)} \frac{z^{n}}{[n]_{q}!}
$$

Now set $t:=q t$ to get

$$
\sum_{n \geq 0} A_{n}^{\text {maj, exc }}(q, t) \frac{z^{n}}{[n]_{q}!}
$$

Symmetric Function Generalization

$H(z):=\sum_{n \geq 0} h_{n} z^{n}$, where h_{n} is the nth complete homogeneous symmetric function in x_{1}, x_{2}, \ldots.

$$
\begin{aligned}
\sum_{n \geq 0} \sum_{\sigma \in \mathfrak{S}_{n}} F_{\operatorname{DEX}(\sigma)} t^{\operatorname{exc}(\sigma)} r^{\operatorname{fix}(\sigma)} z^{n} & =\frac{(1-t) H(r z)}{H(z t)-t H(z)} \\
\left\lvert\, \begin{array}{ll}
x_{i} & :=q^{i-1} \\
z & :=z(1-q) \\
t & :=q t
\end{array}\right. & \left\lvert\, \begin{array}{cl}
x_{i} & :=q^{i-1} \\
z & :=z(1-q) \\
t & :=q t
\end{array}\right. \\
\sum_{n \geq 0} A_{n}^{\operatorname{maj}, \operatorname{exc}, f i x}(q, t, r) \frac{z^{n}}{[n]_{q}!} & =\frac{(1-t q) \exp _{q}(r z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
\end{aligned}
$$

Symmetric Function Generalization

Theorem (Shareshian and MW, 2006)

Let

$$
Q_{n, j, k}:=\sum_{\substack{\sigma \in \mathfrak{S}_{n} \\ \operatorname{exc}(\sigma)=j \\ \operatorname{fix}(\sigma)=k}} F_{\operatorname{DEX}(\sigma)}
$$

Then

$$
\sum_{n \geq 0} \sum_{j=0}^{n-1} \sum_{k=0}^{n} Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}
$$

Another specialization of $\sum Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}$

Two ways to specialize the quasisymmetric functions:

$$
F_{T}\left(1, q, q^{2}, \ldots\right)=\frac{q^{\sum T}}{(q ; q)_{n}}
$$

$$
\sum_{m \geq 0} F_{T}\left(1, q, \ldots, q^{m-1}\right) p^{m}=\frac{p^{|T|+1} q^{\sum T}}{(p ; q)_{n+1}}
$$

where

$$
(a ; q)_{n}:= \begin{cases}1 & \text { if } n=0 \\ (1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) & \text { if } n \geq 1\end{cases}
$$

Another specialization of $\sum Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}$

First specialization: $\sum \operatorname{DEX}(\sigma)=\operatorname{maj}(\sigma)-\operatorname{exc}(\sigma)$.
Theorem (Shareshian and MW, 2006)

$$
\sum_{n \geq 0} A_{n}^{\mathrm{maj}, \operatorname{exc}, \mathrm{fix}}(q, t, r) \frac{z^{n}}{[n]_{q}!}=\frac{(1-t q) \exp _{q}(r z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
$$

Another specialization of $\sum Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}$

First specialization: $\sum \operatorname{DEX}(\sigma)=\operatorname{maj}(\sigma)-\operatorname{exc}(\sigma)$.

Theorem (Shareshian and MW, 2006)

$$
\sum_{n \geq 0} A_{n}^{\mathrm{maj}, \operatorname{exc}, \mathrm{fix}}(q, t, r) \frac{z^{n}}{[n]_{q}!}=\frac{(1-t q) \exp _{q}(r z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
$$

Second specialization:

$$
|\operatorname{DEX}(\sigma)|= \begin{cases}\operatorname{des}(\sigma) & \text { if } \sigma(1)=1 \\ \operatorname{des}(\sigma)-1 & \text { otherwise }\end{cases}
$$

Another specialization of $\sum Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}$

First specialization: $\sum \operatorname{DEX}(\sigma)=\operatorname{maj}(\sigma)-\operatorname{exc}(\sigma)$.

Theorem (Shareshian and MW, 2006)

$$
\sum_{n \geq 0} A_{n}^{\mathrm{maj}, \operatorname{exc}, \mathrm{fix}}(q, t, r) \frac{z^{n}}{[n]_{q}!}=\frac{(1-t q) \exp _{q}(r z)}{\exp _{q}(z t q)-t q \exp _{q}(z)}
$$

Second specialization:

$$
|\operatorname{DEX}(\sigma)|= \begin{cases}\operatorname{des}(\sigma) & \text { if } \sigma(1)=1 \\ \operatorname{des}(\sigma)-1 & \text { otherwise }\end{cases}
$$

Theorem (Foata-Han (2007), Gessel-Reutenauer (1993) t=1)

$$
\begin{aligned}
\sum_{n \geq 0} & A_{n}^{\mathrm{maj}, \text { exc,fix, des }}(q, t, r, p) \frac{z^{n}}{(p ; q)_{n+1}}= \\
= & \sum_{m \geq 0} p^{m} \frac{(1-t q)(z ; q)_{m}(z t q ; q)_{m}}{\left((z ; q)_{m}-t q(z t q ; q)_{m}\right)(z r ; q)_{m+1}}
\end{aligned}
$$

Steps of the Proof of $\sum Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}$

1. Modification of bijection of Gessel and Reutenauer, which takes compatible pairs to ornaments, is used to give alternative characterization of $Q_{n, j, k}$
2. Bijection from ornaments to banners, using Lyndon decomposition, is used to give another alternative characterization of $Q_{n, j, k}$
3. Generalization of bijection of Stembridge is used to show $Q_{n, j, k}$ satisfies recurrence relation, which yields generating function.

Steps of the Proof of $\sum Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}$

\Longrightarrow 1. Modification of bijection of Gessel and Reutenauer, which takes compatible pairs to ornaments, is used to give alternative characterization of $Q_{n, j, k}$
2. Bijection from ornaments to banners, using Lyndon decomposition, is used to give another alternative characterization of $Q_{n, j, k}$
3. Generalization of bijection of Stembridge is used to show $Q_{n, j, k}$ satisfies recurrence relation, which yields generating function.

Step 1 - Bicolored necklaces and ornaments

A bicolored necklace is a primitive circular word over alphabet

$$
\{1,1,2,2, \ldots\}
$$

such that if size >1

- a blue letter is followed by letter greater than or equal in value
- a red letter is followed by a letter less than or equal in value Necklaces of size 1 are blue.

necklaces

not necklaces
(3)

三

Step 1 - Bicolored necklaces and ornaments

An ornament of type λ is a multiset of necklaces whose necklace sizes form partition λ

$$
\text { type }=(5,4,4) \quad \text { weight }=x_{2}^{7} x_{3}^{4} x_{4}^{2}
$$

Let $\mathcal{R}_{\lambda, j}=$ set of ornaments of type λ with j red letters.

Step 1 - Bicolored necklaces and ornaments

Theorem (Shareshian and MW)
For $\lambda \vdash n$, define

$$
Q_{\lambda, j}:=\sum_{\substack{\sigma \in \mathfrak{S}_{n} \\ \operatorname{exc}(\sigma)=j \\ \lambda(\sigma)=\lambda}} F_{\operatorname{DEX}(\sigma)}
$$

Then

$$
Q_{\lambda, j}=\sum_{R \in \mathcal{R}_{\lambda, j}} w t(R)
$$

Step 1 - Bicolored necklaces and ornaments

Theorem (Shareshian and MW)
For $\lambda \vdash n$, define

$$
Q_{\lambda, j}:=\sum_{\substack{\sigma \in \mathfrak{S}_{n} \\ \operatorname{exc}(\sigma)=j \\ \lambda(\sigma)=\lambda}} F_{\operatorname{DEX}(\sigma)}
$$

Then

$$
Q_{\lambda, j}=\sum_{R \in \mathcal{R}_{\lambda, j}} w t(R)
$$

$$
F_{\operatorname{DEX}(\sigma)}=\sum_{\substack{s_{1} \geq \cdots \geq s_{n} \\ i \in \operatorname{DEX}(\sigma) \Rightarrow s_{i}>s_{i+1}}} x_{s_{1}} \ldots x_{s_{n}}
$$

Step 1 - Bicolored necklaces and ornaments

For $\lambda \vdash n$ and $j=0, \ldots, n-1$, let
$\operatorname{Com}_{\lambda, j}:=\left\{(\sigma, s): \sigma \in \mathfrak{S}_{n}, \lambda(\sigma)=\lambda, \operatorname{exc}(\sigma)=j, s\right.$ is σ-compat $\}$. Bijection $\phi: \operatorname{Com}_{\lambda, j} \rightarrow \mathcal{R}_{\lambda, j}$

Let $\sigma=45162387$ and $s=(7,7,7,5,5,4,2,2)$.
(1) write σ in cycle form,

$$
\sigma=(1,4,6,3)(2,5),(7,8)
$$

(2) color letters that are followed (cyclicly) by larger letters red and letters that are singletons or are followed by smaller letters blue,

$$
(1,4,6,3)(2,5)(7,8)
$$

(3) replace each i by s_{i}, we have the ornament
\square

Step 1 - Bicolored necklaces and ornaments

For $\lambda \vdash n$ and $j=0, \ldots, n-1$, let
$\operatorname{Com}_{\lambda, j}:=\left\{(\sigma, s): \sigma \in \mathfrak{S}_{n}, \lambda(\sigma)=\lambda, \operatorname{exc}(\sigma)=j, s\right.$ is σ-compat $\}$. Bijection $\phi: \operatorname{Com}_{\lambda, j} \rightarrow \mathcal{R}_{\lambda, j}$

Let $\sigma=45162387$ and $s=(7,7,7,5,5,4,2,2)$.
(1) write σ in cycle form,

$$
\sigma=(1,4,6,3)(2,5),(7,8)
$$

(2) color letters that are followed (cyclicly) by larger letters red and letters that are singletons or are followed by smaller letters blue,

$$
(1,4,6,3)(2,5)(7,8)
$$

(3) replace each i by s_{i}, we have the ornament
\square

Step 1 - Bicolored necklaces and ornaments

For $\lambda \vdash n$ and $j=0, \ldots, n-1$, let
$\operatorname{Com}_{\lambda, j}:=\left\{(\sigma, s): \sigma \in \mathfrak{S}_{n}, \lambda(\sigma)=\lambda, \operatorname{exc}(\sigma)=j, s\right.$ is σ-compat $\}$. Bijection $\phi: \operatorname{Com}_{\lambda, j} \rightarrow \mathcal{R}_{\lambda, j}$

Let $\sigma=45162387$ and $s=(7,7,7,5,5,4,2,2)$.
(1) write σ in cycle form,

$$
\sigma=(1,4,6,3)(2,5),(7,8)
$$

(3) color letters that are followed (cyclicly) by larger letters red and letters that are singletons or are followed by smaller letters blue,

$$
(1,4,6,3)(2,5)(7,8)
$$

(3) replace each i by s_{i}, we have the ornament
\square

Step 1 - Bicolored necklaces and ornaments

For $\lambda \vdash n$ and $j=0, \ldots, n-1$, let
$\operatorname{Com}_{\lambda, j}:=\left\{(\sigma, s): \sigma \in \mathfrak{S}_{n}, \lambda(\sigma)=\lambda, \operatorname{exc}(\sigma)=j, s\right.$ is σ-compat $\}$. Bijection $\phi: \operatorname{Com}_{\lambda, j} \rightarrow \mathcal{R}_{\lambda, j}$

Let $\sigma=45162387$ and $s=(7,7,7,5,5,4,2,2)$.
(1) write σ in cycle form,

$$
\sigma=(1,4,6,3)(2,5),(7,8)
$$

(2) color letters that are followed (cyclicly) by larger letters red and letters that are singletons or are followed by smaller letters blue,

$$
(1,4,6,3)(2,5)(7,8)
$$replace each i by s_{i}, we have the ornament $(7,5,4,7)(7,5)(2,2)$

Step 1 - Bicolored necklaces and ornaments

For $\lambda \vdash n$ and $j=0, \ldots, n-1$, let
$\operatorname{Com}_{\lambda, j}:=\left\{(\sigma, s): \sigma \in \mathfrak{S}_{n}, \lambda(\sigma)=\lambda, \operatorname{exc}(\sigma)=j, s\right.$ is σ-compat $\}$. Bijection $\phi: \operatorname{Com}_{\lambda, j} \rightarrow \mathcal{R}_{\lambda, j}$

Let $\sigma=45162387$ and $s=(7,7,7,5,5,4,2,2)$.
(1) write σ in cycle form,

$$
\sigma=(1,4,6,3)(2,5),(7,8)
$$

(2) color letters that are followed (cyclicly) by larger letters red and letters that are singletons or are followed by smaller letters blue,

$$
(1,4,6,3)(2,5)(7,8)
$$

(3) replace each i by s_{i}, we have the ornament

$$
(7,5,4,7)(7,5)(2,2)
$$

Steps of the Proof of $\sum Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}$

1. Modification of bijection of Gessel and Reutenauer which takes compatible pairs to ornaments is used to give alternative characterization of $Q_{n, j, k}$
\Longrightarrow 2. Bijection from ornaments to banners using Lyndon decomposition is used to give another alternative characterization of $Q_{n, j, k}$
2. Generalization of bijection of Stembridge is used to show $Q_{n, j, k}$ satisfies recurrence relation, which yields generating function.

Step 2 - Banners

A banner is a word over alphabet

$$
\{1,1,2,2, \ldots\}
$$

such that

- blue letter is followed by letter greater than or equal in value or is last
- red letter is followed by a letter less than or equal in value

Example:
22757547

Step 2 - Banners

A Lyndon word over an ordered alphabet is a word that is strictly lexicographically larger than all its circular rearrangements.

The Lyndon factorization of a word over an ordered alphabet is a factorization into a weakly lexicographically increasing sequence of Lyndon words.

The Lyndon type $\lambda(w)$ of a word w is the partition whose parts are the lengths of the words in its Lyndon factorization.

Use the ordering $1<1<2<2<\ldots$ for our alphabet. Example:

$$
\lambda(22757547)=\lambda(22 \cdot 75 \cdot 7547)=4,2,2
$$

Step 2 - Banners

Theorem (Shareshian and MW)

Let $\mathcal{B}_{\lambda, j}=$ the set of banners of Lyndon type λ with j red letters.
Then there is a weight-preserving bijection

$$
\mathcal{B}_{\lambda, j} \rightarrow \mathcal{R}_{\lambda, j} .
$$

Consequently

$$
Q_{\lambda, j}=\sum_{b \in \mathcal{B}_{\lambda, j}} w t(b)
$$

$$
22757547 \mapsto 22 \cdot 75 \cdot 7547 \mapsto(2,2)(7,5)(7,5,4,7)
$$

Steps of the Proof of $\sum Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}$

1. Modification of bijection of Gessel and Reutenauer which takes compatible pairs to ornaments is used to give alternative characterization of $Q_{n, j, k}$
2. Bijection from ornaments to banners using Lyndon decomposition is used to give another alternative characterization of $Q_{n, j, k}$
\Longrightarrow 3. Generalization of bijection of Stembridge is used to show $Q_{n, j, k}$ satisfies recurrence relation, which yields generating function.

Step 3 - Recurrence Relation

Using ornaments one can easily show that the formula

$$
\sum_{n \geq 0} \sum_{j=0}^{n-1} \sum_{k=0}^{n} Q_{n, j, k} t^{j} r^{k} z^{n}=\frac{(1-t) H(r z)}{H(z t)-t H(z)}
$$

is equivalent to

$$
\sum_{n \geq 0} \sum_{j=0}^{n-1} Q_{n, j, 0} t^{j} z^{n}=\frac{1-t}{H(z t)-t H(z)}
$$

which is equivalent to recurrence relation

$$
Q_{n, j, 0}=\sum_{\substack{0 \leq m \leq n-2 \\ j+m-n<i<j}} Q_{m, i, 0} h_{n-m}
$$

Step 3 - Recurrence Relation

From Steps 1 and 2 we have

$$
Q_{n, j, 0}=\sum_{b \in \mathcal{B}_{n, j}} w t(b)
$$

where

$$
\mathcal{B}_{n, j}:=\bigcup_{\substack{\lambda \vdash n \\ \lambda \text { has no parts of size } 1}}^{\bigcup_{\lambda, j}}
$$

Theorem (Shareshian and MW)

For all $n \geq 2$, there is a bijection

$$
\gamma: \mathcal{B}_{n, j} \rightarrow \bigcup_{\substack{0 \leq m \leq n-2 \\ j+m-n<i<j}} \mathcal{B}_{m, i} \times\left\{\left(a_{1} \leq \cdots \leq a_{n-m}\right): a_{i} \in \mathbb{Z}^{+}\right\}
$$

Connection with Toric Varieties

Let X_{n} be the toric variety associated with the Coxeter complex of \mathfrak{S}_{n}. The action of \mathfrak{S}_{n} on X_{n} induces a representation of \mathfrak{S}_{n} on $H^{2 j}\left(X_{n}\right)$.

Theorem (Procesi, Stanley 1989)

$$
\sum_{n \geq 0} \sum_{j=0}^{n-1} \operatorname{ch} H^{2 j}\left(X_{n}\right) t^{j} z^{n}=\frac{(1-t) H(z)}{H(z t)-t H(z)}
$$

where ch is the Frobenius characteristic,

Theorem (Shareshian and MW)

$$
\operatorname{ch} H^{2 j}\left(X_{n}\right)=Q_{n, j}:=\sum_{k=0}^{n} Q_{n, j, k}
$$

Representation on Rees product

Action of \mathfrak{S}_{n} on boolean algebra B_{n} induces an action of \mathfrak{S}_{n} on maximal open intervals $I_{n, j}:=(\hat{0},([n], j))$ of Rees product $\left(B_{n}-\{\hat{0}\}\right) * C_{n}$, which induces a representation of \mathfrak{S}_{n} on $\tilde{H}_{n-2}\left(I_{n, j}\right)$

Theorem (Shareshian and MW)

$$
1+\sum_{n \geq 1} \sum_{j=0}^{n-1} \operatorname{ch} \tilde{H}_{n-2}\left(I_{n, j+1}\right) t^{j} z^{n}=\frac{(1-t) E(z)}{E(z t)-t E(z)}
$$

where $E(z)=\sum_{n \geq 0} e_{n} z^{n}$ and e_{n} is the nth elementary symmetric function.

Corollary

$$
\operatorname{ch} \tilde{H}_{n-2}\left(I_{n, j+1}\right)=\omega Q_{n, j}
$$

and

$$
H^{2 j}\left(X_{n}\right) \cong \mathfrak{S}_{n} \tilde{H}_{n-2}\left(I_{n, j+1}\right) \otimes \operatorname{sgn}
$$

