Aspects of Rational Universal Characters

Soichi OKADA
(Nagoya University)
FPSAC07
Tianjin, Jul. 5, 2007

1. Rational Universal Characters

- Definition
- Formulae
- Representation Theory

2. Rational Universal Characters and Kawanaka's q-Cauchy Identity
3. Rational Universal Characters and Painlevé Equations

Schur Functions

Let $\Lambda(X)$ be the ring of symmetric functions in the variables X, and $s_{\lambda}(X)$ denote the Schur function corresponding to a partition λ Jacobi-Trudi identity :

$$
s_{\lambda}(X)=\operatorname{det}\left(h_{\lambda_{i}-i+j}(X)\right)=\operatorname{det}\left(e_{\lambda_{i}-i+j}(X)\right)
$$

Cauchy identity:

$$
\sum_{\lambda} s_{\lambda}(X) s_{\lambda}(Y)=\prod_{i, j} \frac{1}{1-x_{i} y_{j}}
$$

Littlewood-Richardson coefficients :

$$
s_{\mu}(X) \cdot s_{\nu}(X)=\sum_{\lambda} \operatorname{LR}_{\mu, \nu}^{\lambda} s_{\lambda}(X)
$$

with non-negative integers $\mathrm{LR}_{\mu, \nu}^{\lambda}$.

Bi-determinant expression :

$$
s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}}
$$

Bernstein operators: If we define operators B_{m} by

$$
\sum_{m \in \mathbb{Z}} B_{m} z^{m}=\exp \left(\sum_{k=1}^{\infty} \frac{p_{k}}{k} z^{k}\right) \exp \left(-\sum_{k=1}^{\infty} \frac{p_{k}^{\perp}}{k} z^{-k}\right)
$$

where p_{k}^{\perp} denotes the adjoint operator of the multiplication by p_{k}, then we have

$$
s_{\lambda}(X)=B_{\lambda_{1}} B_{\lambda_{2}} \cdots B_{\lambda_{l(\lambda)}}(1) .
$$

Representation Theory of $\mathrm{GL}_{N}(\mathbb{C})$:

The Schur function $s_{\lambda}\left(x_{1}, \cdots, x_{N}\right)$ is the character of the irreducible polynomial representation of the general linear group $\mathbf{G L} L_{N}(\mathbb{C})$ with highest weight

$$
\left(\lambda_{1}, \cdots, \lambda_{l(\lambda)}, 0, \cdots, 0\right)
$$

And

$$
s_{\lambda}\left(1, q, q^{2}, \cdots, q^{N-1}\right)=q^{n(\lambda)} \prod_{x \in \lambda} \frac{1-q^{N+c(x)}}{1-q^{h(x)}},
$$

where $c(x)$ and $h(x)$ are the content and the hooklength respectively.
Remark: The (isomorphism classes of) finite dimensional irreducible representations of the algebraic group $\mathbf{G L}_{N}(\mathbb{C})$ are indexed by nonincreasing sequence of integers

$$
\left(\gamma_{1}, \cdots, \gamma_{N}\right) \quad\left(\gamma_{1} \geq \cdots \geq \gamma_{N}\right)
$$

Representation Theory of \mathfrak{S}_{n} :

The irreducible representations of the symmetric group \mathfrak{S}_{n} of n letters are indexed by partitions of n.

$$
\begin{aligned}
\operatorname{Irr} \mathfrak{S}_{n} & \longleftrightarrow \mathcal{P}_{n} \\
S^{\lambda} & \longleftrightarrow \lambda
\end{aligned}
$$

Let $K_{0}\left(\mathfrak{S}_{n}\right)$ be the Grothendieck group of the category of finite dimensional representations of \mathfrak{S}_{n}, and put

$$
K_{0}\left(\mathfrak{S}_{\bullet}\right)=\bigoplus_{n \geq 0} K_{0}\left(\mathfrak{S}_{n}\right)
$$

By using the natural embedding $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \hookrightarrow \mathfrak{S}_{m+n}$, we can define a graded algebra structure on $K_{0}\left(\mathfrak{S}_{\bullet}\right)$. And, it follows from the Frobenius formula that, as graded algebras,

$$
\begin{aligned}
K_{0}\left(\mathfrak{S}_{\bullet}\right) & \cong \Lambda \\
{\left[S^{\lambda}\right] } & \longleftrightarrow s_{\lambda}
\end{aligned}
$$

Rational Universal Characters

Definition of Rational Universal Characters (Koike)
For a pair of partitions (λ, μ) with $l(\lambda) \leq p$ and $l(\mu) \leq q$, put

$$
s_{[\lambda, \mu]}(X, Y)=\operatorname{det}\left(\frac{\left(h_{\mu_{q+1-i}+i-j}(Y)\right)_{1 \leq i \leq q, 1 \leq j \leq p+q}}{\left(h_{\lambda_{i}-i+j-q}(X)\right)_{1 \leq i \leq p, 1 \leq j \leq p+q}}\right), \quad \in \Lambda(X) \otimes \Lambda(Y),
$$

and call it the rational universal character.

$$
\begin{aligned}
& s_{[\lambda, \mu]}(X, Y)
\end{aligned}
$$

It is clear from this definition that

$$
\begin{aligned}
& s_{[\lambda, \eta]}(X, Y)=s_{\lambda}(X), \\
& s_{[\emptyset, \mu]}(X, Y)=s_{\mu}(Y) .
\end{aligned}
$$

Example :

$$
\begin{aligned}
& s_{[(1),(1)]}(X, Y)=\operatorname{det}\left(\begin{array}{c}
h_{1}(Y) \\
h_{0}(X) \\
h_{0}(Y) \\
h_{1}(X)
\end{array}\right)=h_{1}(X) h_{1}(Y)-1, \\
& s_{[(2,1),(1,1)]}(X, Y)=\operatorname{det}\left(\begin{array}{cccc}
h_{1}(Y) & 1 & 0 & 0 \\
h_{2}(Y) & h_{1}(Y) & 1 & 0 \\
1 & h_{1}(X) & h_{2}(X) & h_{3}(X) \\
0 & 0 & 1 & h_{1}(X)
\end{array}\right) .
\end{aligned}
$$

Cauchy identity for Rational Universal Characters Theorem (Koike)

$$
\sum_{\lambda, \mu} s_{[\lambda, \mu]}(X, Y) s_{\lambda}(U) s_{\mu}(V)=\frac{\prod_{j, k}\left(1-u_{j} v_{k}\right)}{\prod_{i, j}\left(1-x_{i} u_{j}\right) \prod_{i, k}\left(1-y_{i} v_{k}\right)}
$$

Proposition

$$
\begin{aligned}
& s_{[\lambda, \mu]}(X, Y)=\sum_{\xi, \eta}\left(\sum_{\tau}(-1)^{|\tau|} \mathrm{LR}_{\tau, \xi}^{\lambda} \mathrm{LR}_{t_{\tau, \eta}}^{\mu}\right) s_{\xi}(X) s_{\eta}(Y), \\
& s_{\lambda}(X) s_{\mu}(Y)=\sum_{\xi, \eta}\left(\sum_{\tau} \mathrm{LR}_{\tau, \xi}^{\lambda} \mathrm{LR}_{\tau, \eta}^{\mu}\right) s_{[\xi, \eta]}(X, Y) .
\end{aligned}
$$

Corollary $\quad\left\{s_{[\lambda, \mu]}\right\}_{\lambda, \mu}$ forms a basis of $\Lambda(X) \otimes \Lambda(Y)$.

Structure Constants w.r.t. Rational Universal Characters

Proposition

$$
s_{[\xi, \eta]}(X, Y) \cdot s_{[\sigma, \tau]}(X, Y)=\sum_{\lambda, \mu} M_{[\xi, \eta],[\sigma, \tau]}^{[\lambda, \mu]} s_{[\lambda, \mu]}(X, Y)
$$

with

$$
\begin{array}{r}
M_{[\xi, \eta],[\sigma, \tau]}^{[\lambda, \mu]} \\
=\sum_{\alpha, \beta, \gamma, \delta}\left(\sum_{\kappa} \operatorname{LR}_{\kappa, \alpha}^{\xi} \operatorname{LR}_{\kappa, \beta}^{\tau}\right)\left(\sum_{\pi} \operatorname{LR}_{\pi, \gamma}^{\eta} \operatorname{LR}_{\pi, \delta}^{\sigma}\right) \operatorname{LR}_{\alpha, \delta}^{\lambda} \operatorname{LR}_{\beta, \gamma}^{\mu} \\
\end{array}
$$

Duality

Proposition Let $\tilde{\omega}: \Lambda(X) \otimes \Lambda(Y) \longrightarrow \Lambda(X) \otimes \Lambda(Y)$ be an algebra automorphism defined by

$$
\tilde{\omega}\left(h_{k}(X)\right)=e_{k}(X), \quad \tilde{\omega}\left(h_{k}(Y)\right)=e_{k}(Y)
$$

Then we have

$$
\tilde{\omega}\left(s_{[\lambda, \mu]}(X, Y)\right)=s_{\left[t \lambda,{ }_{\mu}\right]}(X, Y)
$$

Corollary For a pair of partitions (λ, μ) with $l\left({ }^{(} \lambda\right) \leq p$ and $l\left({ }^{t} \mu\right) \leq q$, we have

$$
s_{[\lambda, \mu]}(X, Y)=\operatorname{det}\left(\frac{\left(e_{\mu_{\mu_{q+1-i}+i-j}}(Y)\right)_{1 \leq i \leq q, 1 \leq j \leq p+q}}{}\right)
$$

Another Determinant Expression

Theorem (cf. El Samra-King) For a pair of partitions (λ, μ), take an integer f satisfying $f \geq l(\lambda), l\left({ }^{t} \mu\right)$. Then we have

$$
\begin{aligned}
& s_{[\lambda, \mu]}(X, Y) \\
& \quad=(-1)^{f(f-1) / 2} \operatorname{det}\left(s_{\left[\left(\lambda_{i}-i+f\right),\left(1^{\mu_{\mu}-j+f}\right)\right]}(X, Y)\right)_{1 \leq i, j \leq f} .
\end{aligned}
$$

Remark: For two non-negative integers a and b, we have

$$
s_{\left[(a),\left(1^{b}\right)\right]}(X, Y)=\sum_{k}(-1)^{k} h_{a-k}(X) e_{b-k}(Y) .
$$

Vertex Operators

Theorem (Tsuda) If we define operators $B_{n}^{+}, B_{n}^{-}(n \in \mathbb{Z})$ by

$$
\begin{aligned}
& \sum_{n \in \mathbb{Z}} B_{n}^{+} z^{n}=\exp (\left.\sum_{k \geq 1}\left(\frac{p_{k}(X)}{k}-\frac{p_{k}(Y)^{\perp}}{k}\right) z^{k}\right) \\
& \cdot \exp \left(-\sum_{k \geq 1} \frac{p_{k}(X)^{\perp}}{k} z^{-k}\right), \\
& \sum_{n \in \mathbb{Z}} B_{n}^{-} z^{-n}=\exp \left(\sum_{k \geq 1}\left(\frac{p_{y}(X)}{k}-\frac{p_{k}(X)^{\perp}}{k}\right) z^{-k}\right) \\
& \cdot \exp \left(-\sum_{k \geq 1} \frac{p_{k}(Y)^{\perp}}{k} z^{k}\right),
\end{aligned}
$$

then we have

$$
s_{[\lambda, \mu]}(X, Y)=B_{\lambda_{1}}^{+} B_{\lambda_{2}}^{+} \cdots B_{\lambda_{l(\lambda)}}^{+} B_{\mu_{1}}^{-} B_{\mu_{2}}^{-} \cdots B_{\mu_{l(\mu)}}^{-}(1)
$$

Remark: $\left[B_{m}^{+}, B_{n}^{-}\right]=0$.
Tsuda uses these vertex operators to introduce a series of non-linear differential equations of infinite order, called the UC hierarchy, which can be regarded as an extension of the KP hierarchy. And he shows that the rational universal characters are solutions to the UC hierarchy.

Representation Theory of $\mathbf{G L}_{N}(\mathbb{C})$

If $l(\lambda)+l(\mu) \leq N$, then

$$
s_{[\lambda, \mu]}\left(x_{1}, \cdots, x_{N}, 0, \cdots ; x_{1}^{-1}, \cdots, x_{N}^{-1}, 0, \cdots\right)
$$

is the character of the irreducible rational representation of $\mathbf{G L}_{N}(\mathbb{C})$ with highest weight

$$
\gamma=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l(\lambda)}, 0, \cdots, 0,-\mu_{l(\mu)}, \cdots,-\mu_{2},-\mu_{1}\right)
$$

Equivalently,

$$
s_{[\lambda, \mu]}\left(x_{1}, \cdots, x_{N} ; x_{1}^{-1}, \cdots, x_{N}^{-1}\right)=\frac{\operatorname{det}\left(x_{i}^{\gamma_{j}+n-j}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}} .
$$

Example :

Example: If $\lambda=\mu=\square$, then

$$
s_{[\square, \square]}(X, Y)=h_{1}(X) h_{1}(Y)-1 .
$$

On the other hand, the irreducible rational representation of $\mathbf{G L}_{N}(\mathbb{C})$ with highest weight $(1,0, \cdots, 0,-1)$ is the representation on

$$
\mathfrak{s l}_{N}(\mathbb{C})=\left\{A \in \mathbf{M}_{N}(\mathbb{C}): \operatorname{tr}(A)=0\right\},
$$

where $\mathbf{G L}_{N}(\mathbb{C})$ acts on $\mathfrak{s l}_{N}(\mathbb{C})$ by $g \cdot A=g A g^{-1}$. And the character of this representation is

$$
\sum_{i \neq j} x_{i} x_{j}^{-1}+N-1=\left(\sum_{i=1}^{N} x_{i}\right) \cdot\left(\sum_{j=1}^{N} x_{j}^{-1}\right)-1 .
$$

q-Dimenstion Formula

Theorem
(El Samra-King) Suppose that $l(\lambda)+l(\mu) \leq N$. If we substitute
$x_{i}=\left\{\begin{array}{ll}q^{(N+1) / 2-i} & (1 \leq i \leq N) \\ 0 & (i>N)\end{array}, \quad y_{i}= \begin{cases}q^{-(N+1) / 2+i} & (1 \leq i \leq N) \\ 0 & (i>N)\end{cases}\right.$
then we have

$$
=\prod_{(i, j) \in \lambda}^{{ }^{s}[\lambda, \mu]} \frac{\left[N-{ }^{t} \mu_{i}-{ }^{t} \lambda_{j}+i+j-1\right]}{\left[h_{\lambda}(i, j)\right]} \prod_{(k, l) \in \mu} \frac{\left[N+\mu_{k}+\lambda_{l}-k-l+1\right]}{\left[h_{\mu}(k, l)\right]}
$$

where we use the notation

$$
[k]=q^{k / 2}-q^{-k / 2}
$$

Representation Theory of Rational Brauer algebras

These algebras are defined and studied by Benkart-Chakrabarti-Halverson-Leduc-Lee-Stroomer.
Let m, n be non-negative integers. A (m, n)-diagram is a graph with $2(m+n)$ vertices arranged in two rows of equal lengths and $(m+n)$ edges, satisfying the following three conditions:

- each vertex is incident to exactly one edge,
- each horizontal edge begins and ends on opposite side of the wall,
- no vertical edge crosses the wall,
where the wall is placed between the m-th and $(m+1)$-th columns.
Let $D_{m, n}$ be the set of all (m, n)-diagrams.

Example : $m=5, n=3$.

Let $\mathcal{B}_{m, n}^{x}$ be the $\mathbb{C}(x)$ vector space with basis $D_{m, n}$. Then we can define an associative algebra structure on $\mathcal{B}_{m, n}^{x}$ by concatenating two diagrams and replacing each loop by x. We call this algebra the rational Brauer algebra. (Similarly, we can define a \mathbb{C}-algebra $\mathcal{B}_{m, n}^{\alpha}$ for $\alpha \in \mathbb{C}$.)

Example :

$$
X^{W / 2}
$$

Schur-Weyl type Duality
Let $V=\mathbb{C}^{N}$ be the vector representation of $\mathbf{G L}_{N}(\mathbb{C})$ and consider the mixed tensor representation

$$
T^{m, n}=V^{\otimes m} \otimes\left(V^{*}\right)^{\otimes n}
$$

Theorem (BCHLLS) There exist an algebra homomorphism

$$
\phi: \mathcal{B}_{m, n}^{N} \longrightarrow \operatorname{End}_{\mathbf{G L}_{N}(\mathbb{C})}\left(T^{m, n}\right)
$$

such that $\mathcal{B}_{m, n}^{N}$ and $\mathbf{G L} \mathbf{L}_{N}(\mathbb{C})$ form a dual pair in $\operatorname{End}\left(T^{m, n}\right)$, i.e.,

$$
\begin{aligned}
& \operatorname{End}_{\mathbf{G L}_{N}(\mathbb{C})}\left(T^{m, n}\right)=\phi\left(\mathcal{B}_{m, n}^{N}\right) \\
& \operatorname{End}_{\mathcal{B}_{m, n}^{N}}\left(T^{m, n}\right)=\left\langle\mathbf{G L}_{N}(\mathbb{C})\right\rangle
\end{aligned}
$$

Moreover, if $N \geq m+n$, then ϕ is an isomorphism.

Theorem (BCHLLS) The rational Brauer algebra $\mathcal{B}_{m, n}^{x}$ is a semisimple $\mathbb{C}(x)$ algebra and the irreducible representations are indexed by triples (λ, μ, k) with $\lambda \vdash m-k$ and $\mu \vdash n-k$.

$$
\begin{aligned}
& \operatorname{Irr} \mathcal{B}_{m, n}^{x} \longleftrightarrow\{(\lambda, \mu, k): \lambda \vdash m-k, \mu \vdash n-k\} \\
& V^{\lambda, \mu, k} \longleftrightarrow \\
&(\lambda, \mu, k)
\end{aligned}
$$

Let $K_{0}\left(\mathcal{B}_{m, n}^{x}\right)$ be the Grothendieck group of the category of finite dimensional $\mathcal{B}_{m, n}^{x}$-modules and put

$$
K_{0}\left(\mathcal{B}_{\bullet, \bullet}^{x}\right)=\bigoplus_{m, n \geq 0} K_{0}\left(\mathcal{B}_{m, n}^{x}\right)
$$

Then we can use the canonical embedding $D_{m, n} \times D_{p, q} \hookrightarrow D_{m+p, n+q}$ to define a bi-graded algebra structure on $K_{0}\left(\mathcal{B}_{\bullet}^{x}, \mathbf{\bullet}\right)$.

Theorem As bi-graded algebras,

$$
\begin{aligned}
K_{0}\left(\mathcal{B}_{\bullet, \bullet \bullet}^{x}\right) & \cong(\Lambda(X) \otimes \Lambda(Y))[t] \\
{\left[V^{\lambda, \mu, k}\right] } & \longleftrightarrow s_{[\lambda, \mu]}(X, Y ; t) t^{k}
\end{aligned}
$$

where the grading on the right-hand side is given by

$$
\operatorname{deg} h_{k}(X)=(k, 0), \quad \operatorname{deg} h_{k}(Y)=(0, k), \quad \operatorname{deg} t=(1,1)
$$

Also $s_{[\lambda, \mu]}(X, Y ; t)$ is defined by

$$
\sum_{\lambda, \mu} s_{[\lambda, \mu]}(X, Y ; t) s_{\lambda}(U) s_{\mu}(V)=\frac{\prod_{j, k}\left(1-t u_{j} v_{k}\right)}{\prod_{i, j}\left(1-x_{i} u_{j}\right) \prod_{i, k}\left(1-y_{i} v_{k}\right)}
$$

Remark : $s_{[\lambda, \mu]}(X, Y ; 1)$ is the rational universal character.

Rational Universal Characters and
 Kawanaka's q-Cauchy Identity

Notation
For two partitions λ and μ, we define

$$
\begin{aligned}
h_{\lambda, \mu}(i, j) & =\lambda_{i}+{ }^{t} \mu_{j}-i-j+1 \\
n(\lambda, \mu) & =\sum_{(i, j) \in \lambda-\mu}\left({ }^{t} \lambda_{j}-i\right)
\end{aligned}
$$

and

$$
J_{\lambda, \mu}(t)=t^{n(\lambda, \mu)} \prod_{x \in \lambda} \frac{1+t^{h_{\lambda, \mu}(x)}}{1-t^{h_{\lambda}(x)}} \cdot t^{n(\mu, \lambda)} \prod_{x \in \mu} \frac{1+t^{h_{\mu, \lambda}(x)}}{1-t^{h_{\mu}(x)}}
$$

Note that the hook length is given by

$$
h_{\lambda}(i, j)=h_{\lambda, \lambda}(i, j)
$$

Kawanaka's q-Cauchy Identity

Theorem (Kawanaka)

$$
\begin{aligned}
\prod_{i=1}^{\infty} \frac{\left(-u_{i} q ; q^{2}\right)_{\infty}\left(-v_{i} q ; q^{2}\right)_{\infty}}{\left(u_{i} q ; q^{2}\right)_{\infty}\left(v_{i} q ; q^{2}\right)_{\infty}} & \prod_{i, j=1}^{\infty} \frac{1}{1-u_{i} v_{j}} \\
& =\sum_{\lambda, \mu} q^{|\lambda-\mu|+|\mu-\lambda|} J_{\lambda, \mu}\left(q^{2}\right) s_{\lambda}(U) s_{\mu}(V)
\end{aligned}
$$

where

$$
(a ; q)_{\infty}=\prod_{r \geq 0}\left(1-a q^{r}\right)
$$

If we put $q=0$, then this reduces to the classical Cauchy identity

$$
\prod_{i, j} \frac{1}{1-u_{i} v_{j}}=\sum_{\lambda} s_{\lambda}(U) s_{\lambda}(V)
$$

Kawanaka's motivation is an explicit computation of a q-FrobeniusSchur indicator for imprimitive complex reflection groups $G=G(m, p, n)$:

$$
\Psi_{G}(\chi, q)=\frac{1}{\# G} \sum_{w \in G} \chi\left(w^{2}\right) \frac{\operatorname{det}(1+q \rho(w))}{\operatorname{det}(1-q \rho(w))}
$$

where $\rho: G \rightarrow \mathbf{G L}_{n}(\mathbb{C})$ is the reflection representation and χ is an irreducible character of G.

Kawanaka's proof uses the induction on the number of the variables in X. Ishikawa-Wakayama provides another proof by giving a determinant expression of $q^{|\lambda-\mu|+|\mu-\lambda|} J_{\lambda, \mu}\left(q^{2}\right)$ and applying the Cauchy-Binet formula. However both of two proofs are complicated.

Proof: We give a proof of the dual form of the Kawanaka's q-Cauchy identity

$$
\begin{aligned}
\prod_{i=1}^{\infty} \frac{\left(-u_{i} q ; q^{2}\right)_{\infty}\left(-v_{i} q ; q^{2}\right)_{\infty}}{\left(u_{i} q ; q^{2}\right)_{\infty}\left(v_{i} q ; q^{2}\right)_{\infty}} & \prod_{i, j=1}^{\infty}\left(1+u_{i} v_{j}\right) \\
& =\sum_{\lambda, \mu} q^{|\lambda-\mu|+\left|\mu-{ }^{t} \lambda\right|} J_{\lambda, \mu}\left(q^{2}\right) s_{\lambda}(U) s_{\mu}(V)
\end{aligned}
$$

Consider a homomorphism $\pi: \Lambda(X) \otimes \Lambda(Y) \longrightarrow \mathbb{Q}\left(a^{1 / 2}, q^{1 / 2}\right)$ defined by

$$
\pi\left(h_{k}(X)\right)=\pi\left(h_{k}(Y)\right)=\prod_{i=1}^{k} \frac{[a ; i-1]}{[i]} \quad(k \geq 1)
$$

where

$$
[k]=q^{k / 2}-q^{-k / 2}, \quad \text { and } \quad[a ; k]=a^{1 / 2} q^{k / 2}-a^{-1 / 2} q^{-k / 2} .
$$

The q-binomial theorem gives

$$
\pi\left(\prod_{i} \frac{1}{1-x_{i} u}\right)=\frac{\left(a^{1 / 2} q^{1 / 2} u ; q\right)_{\infty}}{\left(a^{-1 / 2} q^{1 / 2} u ; q^{2}\right)_{\infty}}
$$

And, by using El Samra-King's q-dimension formula, we see that

$$
\begin{aligned}
& \pi\left(s_{[\lambda, \mu]}(X, Y)\right) \\
& =\prod_{(i, j) \in \lambda} \frac{\left[a ;-{ }^{t} \mu_{i}-{ }^{t} \lambda_{j}+i+j-1\right]}{\left[h_{\lambda}(i, j)\right]} \prod_{(k, l) \in \mu} \frac{\left[a ; \mu_{k}+\lambda_{l}-k-l+1\right]}{\left[h_{\mu}(k, l)\right]} .
\end{aligned}
$$

By applying π to the both hand sides of the Cauchy identity for rational universal characters

$$
\sum_{\lambda, \mu} s_{[\lambda, \mu]}(X, Y) s_{\lambda}(U) s_{\mu}(V)=\frac{\prod_{j, k}\left(1-u_{j} v_{k}\right)}{\prod_{i, j}\left(1-x_{i} u_{j}\right) \prod_{i, k}\left(1-y_{i} v_{k}\right)},
$$

we have

$$
\begin{array}{r}
\sum_{\lambda, \mu}\left(\prod_{(i, j) \in \lambda} \frac{\left[a ;-{ }^{t} \mu_{i}-{ }^{t} \lambda_{j}+i+j-1\right]}{\left[h_{\lambda}(i, j)\right]} \prod_{(k, l) \in \mu} \frac{\left[a ; \mu_{k}+\lambda_{l}-k-l+1\right]}{\left[h_{\mu}(k, l)\right]}\right) \\
\times s_{\lambda}(U) s_{\mu}(V) \\
=\prod_{i=1}^{\infty} \frac{\left(a^{1 / 2} q^{1 / 2} u_{i} ; q\right)_{\infty}\left(a^{1 / 2} q^{1 / 2} v_{i} ; q\right)_{\infty}}{\left(a^{-1 / 2} q^{1 / 2} u_{i} ; q\right)_{\infty}\left(a^{-1 / 2} q^{1 / 2} v_{i} ; q\right)_{\infty}} \prod_{i, j}\left(1-u_{i} v_{j}\right)
\end{array}
$$

By replacing

$$
a^{1 / 2} \mapsto \sqrt{-1} a^{1 / 2}, \quad u_{i} \mapsto \sqrt{-1} u_{i}, \quad v_{i} \mapsto \sqrt{-1} v_{i}
$$

and then substituting $a=1$, it turns out that the proof of Kawanaka's q-Cauchy identity is reduced to proof of the following lemma.

Lemma

$$
\begin{array}{r}
(-1)^{|\lambda|+|\mu|} \prod_{(i, j) \in \lambda} \frac{\left[{ }^{t} \mu_{i}+{ }^{t} \lambda_{j}-i-j+1\right]_{+}}{\left[h_{\lambda}(i, j)\right]} \prod_{(k, l) \in \mu} \frac{\left[\mu_{k}+\lambda_{l}-k-l+1\right]_{+}}{\left[h_{\mu}(k, l)\right]} \\
=q^{\left(\left|{ }^{t} \lambda-\mu\right|+\left|\mu-{ }^{t} \lambda\right|\right) / 2} J_{t}{ }_{\lambda, \mu}\left(q^{2}\right) .
\end{array}
$$

where

$$
[k]_{+}=q^{k / 2}+q^{-k / 2}
$$

The proof of this Lemma is reduced to showing
$\sum_{(i, j) \in \lambda}\left(\lambda_{i}-{ }^{t} \mu_{i}\right)+\sum_{(k, l) \in \mu}\left({ }^{t} \mu_{l}-\lambda_{l}\right)$

Rational Universal Characters and Painlevé-type equations

Painlevé equations

The Painlevé equations are non-linear ordinary differential equations of 2 nd order, which were discovered by P. Painlevé around 1900 in his study of algebraic differential equations $y^{\prime \prime}=R\left(t, y, y^{\prime}\right)$ without movable singularities (branching points).
Example: The fifth Painlevé equation P_{V} is

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}= & \left(\frac{1}{2 y}+\frac{1}{y-1}\right)\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t} \\
& +\frac{(y-1)^{2}}{2 t^{2}}\left(\kappa_{\infty}^{2} y-\frac{\kappa_{0}^{2}}{y}\right)-(\theta+1) \frac{y}{t}-\frac{y(y+1)}{2(y-1)}
\end{aligned}
$$

where $\kappa_{\infty}, \kappa_{0}$ and θ are parameters.

It was known that the Painlevé equations admit algebraic or rational solutions for special values of parameters, which are obtained by specializing Schur functions. These specializations of Schur functions are called Yablonskii-Vorob'ev polynomials, Okamoto Polynomials, and Umemura polynomials. And these special polynomials are interesting from the combinatorial point of view.

In 2002, Masuda-Ohta-Kajiwara found a family of rational solutions of the fifth Painlevé equation P_{V}, which are described in terms of rational universal characters.

Theorem (Masuda-Ohta-Kajiwara) For non-negative integers m and n, we define $S_{m, n}(t, s)$ to be the specialization of

$$
s_{[(n, n-1, \cdots, 1),(m, m-1, \cdots, 1)]}
$$

obtained by substituting

$$
p_{k}(X) \longmapsto-\frac{t}{2} k+(2 s-m+n), \quad p_{k}(Y) \longmapsto \frac{t}{2} k+(2 s-m+n) .
$$

Then

$$
y=\frac{S_{m, n-1}(t, s) S_{m-1, n}(t, s)}{S_{m-1, n}(t, s-1) S_{m, n-1}(t, s+1)}
$$

gives a rational solution of P_{V} with the parameters

$$
\kappa_{\infty}=s, \quad \kappa_{0}=s-m+n, \quad \theta=m+n-1
$$

Several Painlevé-type equations have algebraic or rational solutions obtained by specializing rational universal characters.

Algebraic solutions of $q-P_{\mathrm{VI}}$
The sixth q-Painlevé equation q - P_{VI} is the following system of q difference equations:

$$
f \cdot \bar{f}=b_{7} b_{8} \frac{\left(g+b_{5}\right)\left(g+b_{6}\right)}{\left(g+b_{7}\right)\left(g+b_{8}\right)}, \quad g \cdot \underline{g}=b_{3} b_{4} \frac{\left(f+b_{1}\right)\left(f+b_{2}\right)}{\left(f+b_{3}\right)\left(f+b_{4}\right)},
$$

where f and g are the unknown functions in variables $a_{0}, a_{1}, \cdots, a_{5}$ with $a_{0} a_{1} a_{2}^{2} a_{3}^{2} a_{4} a_{5}=q$, and

$$
\bar{f}=f\left(\cdots, q a_{2}, q^{-1} a_{3}, \cdots\right), \quad \underline{g}=g\left(\cdots, q^{-1} a_{2}, q a_{3}, \cdots\right) .
$$

(The ratio a_{2} / a_{3} plays the role of an independent variable and the other a_{i} 's are parameters.) Also b_{1}, \cdots, b_{8} are defined by
$b_{1}=a_{3}^{2} a_{4}^{-1} a_{5}, \quad b_{2}=a_{3}^{2} a_{4}^{3} a_{5}, \quad b_{3}=a_{3}^{-2} a_{4}^{-1} a_{5}, \quad b_{4}=a_{3}^{-2} a_{4}^{-1} a_{5}^{-3}$,
$b_{5}=a_{0}^{-1} a_{1} a_{2}^{-2}, \quad b_{6}=a_{0}^{-1} a_{1}^{-3} a_{2}^{-2}, \quad b_{7}=a_{0}^{-1} a_{1} a_{2}^{2}, \quad b_{8}=a_{0}^{3} a_{1} a_{2}^{2}$.

Let $R_{[\lambda, \mu]}(\xi, \eta, \zeta, q)$ be the specialization of the rational universal character $s_{[\lambda, \mu]}$ obtained by substituting

$$
\begin{aligned}
& p_{n}(X) \longmapsto \frac{\eta^{n}+\xi^{n}-(-\zeta)^{n}-(-\zeta)^{-n}}{1-q^{2 n}}, \\
& p_{n}(Y) \longmapsto \frac{\eta^{-n}+\xi^{-n}-(-\zeta)^{n}-(-\zeta)^{-n}}{1-q^{-2 n}} .
\end{aligned}
$$

Remark

$$
\sum_{k \geq 0} R_{\left[\left(1^{k}\right), \emptyset\right]}(\xi, \eta, \zeta, q) t^{k}=\frac{\left(-\eta t,-\zeta t ; q^{2}\right)_{\infty}}{\left(\xi t, \xi^{-1} t ; q^{2}\right)_{\infty}}
$$

so $R_{\left[\left(1^{k}\right), \eta\right]}(\xi, \eta, \zeta, q)$ is essentially the Al-Salam-Chihara polynomial.

Using $R_{[\lambda, \mu]}(\xi, \eta, \zeta, q)$, we define $\rho_{i}(i=0,1,2,3)$ as follows:

$$
\begin{aligned}
\rho_{0} & =R_{[\delta(m-1), \delta(n-1)]}(\xi, \eta, \zeta, q), \\
\rho_{1} & =R_{[\delta(m), \delta(n-1)]}\left(\xi, \eta, q^{-2} \zeta, q\right), \\
\rho_{2} & =R_{[\delta(m), \delta(n)]}(\xi, \eta, \zeta, q), \\
\rho_{3} & =R_{[\delta(m-1), \delta(n)]}\left(\xi, \eta, q^{-2} \zeta, q\right),
\end{aligned}
$$

where

$$
\begin{gathered}
\delta(k)=(k, k-1, \cdots, 1) \quad \text { if } k \geq 0, \\
\delta(k)=\delta(-k-1) \quad \text { if } k<0 .
\end{gathered}
$$

Theorem (Tsuda-Masuda) The pair

$$
\begin{aligned}
& f=\frac{\rho_{1}(\xi, \eta, \zeta, q) \cdot \rho_{3}\left(q^{-1} \xi, q^{-1} \zeta, q \eta, q\right)}{\rho_{1}\left(q^{-1} \xi, q^{-1} \zeta, q \eta, q\right) \cdot \rho_{3}(\xi, \eta, \zeta, q)}, \\
& g=\frac{\rho_{0}(\xi, \eta, \zeta, q) \cdot \rho_{2}\left(q^{-1} \xi, q^{-1} \zeta, q \eta, q\right)}{\rho_{0}\left(q^{-1} \xi, q^{-1} \zeta, q \eta, q\right) \cdot \rho_{2}(\xi, \eta, \zeta, q)}
\end{aligned}
$$

give an algebraic solution of sixth q-Painlev'e equation q - P_{VI} with

$$
\xi=a_{2} a_{3}, \quad \eta=\frac{a_{2}}{a_{3}}, \quad \zeta=\frac{a_{0} a_{1} a_{2}}{a_{3} a_{4} a_{5}} q,
$$

and

$$
\frac{a_{0}}{a_{1}}=q^{m-n}, \quad \frac{a_{4}}{a_{5}}=q^{m+n}
$$

Positivity of Tsuda-Masuda polynomials
Consider

$$
\begin{aligned}
& P_{[\lambda, \mu]}(\xi, \eta, \zeta, q) \\
& \quad=\xi^{|\lambda|+|\mu|} \eta^{|\mu|} \zeta^{|\mu|} q^{-2|\nu|} \prod_{b \in \lambda}\left(1-q^{2 h_{\lambda}(b)}\right) \prod_{c \in \mu}\left(q^{2 h_{\mu}(c)}-1\right) \\
& \cdot R_{[\lambda, \mu]}(\xi, \eta, \zeta, q),
\end{aligned}
$$

where

$$
\nu_{i}=\max \left(0,{ }^{t} \mu_{i}-\lambda_{i}\right)
$$

Conjecture (Tsuda) $P_{[\lambda, \mu]}(\xi, \eta, \zeta, q)$ is a polynomial in ξ, η, ζ and q^{2} with non-negative integer coefficients:

$$
P_{[\lambda, \mu]}(\xi, \eta, \zeta, q) \in \mathbb{N}\left[\xi, \eta, \zeta, q^{2}\right]
$$

Theorem Conjecture is true if either λ or μ is the empty partition \emptyset.

$$
P_{[\lambda, \emptyset]}, \quad \text { and } \quad P_{[\emptyset, \mu]} \in \mathbb{N}\left[\xi, \eta, \zeta, q^{2}\right] .
$$

More generally, let $\widetilde{R}_{[\lambda, \mu]}$ be the specialization of $s_{[\lambda, \mu]}$ obtained by substituting

$$
\begin{aligned}
p_{n}(X) & \longmapsto \frac{\sum x_{i}^{n}-\sum\left(-y_{j}\right)^{n}}{1-q^{n}} \\
p_{n}(Y) & \longmapsto \frac{\sum x_{i}^{-n}-\sum\left(-y_{j}\right)^{-n}}{1-q^{-n}}
\end{aligned}
$$

Theorem

$$
\prod_{b \in \lambda}\left(1-q^{h(b)}\right) \cdot \widetilde{R}_{[\lambda, \emptyset]} \in \mathbb{N}\left[x_{1}, \cdots, y_{1}, \cdots, q\right] .
$$

