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Schur Functions
Let Λ(X) be the ring of symmetric functions in the variables X, and

sλ(X) denote the Schur function corresponding to a partition λ

Jacobi–Trudi identity :

sλ(X) = det
(
hλi−i+j(X)

)
= det

(
etλi−i+j(X)

)
.

Cauchy identity :
∑

λ

sλ(X)sλ(Y ) =
∏

i,j

1

1− xiyj
.

Littlewood–Richardson coefficients :

sµ(X) · sν(X) =
∑

λ

LRλµ,ν sλ(X)

with non-negative integers LRλµ,ν.



Bi-determinant expression :

sλ(x1, · · · , xn) =
det
(
x
λj+n−j
i

)
1≤i,j≤n

det
(
x
n−j
i

)
1≤i,j≤n

.

Bernstein operators : If we define operators Bm by

∑

m∈Z
Bmz

m = exp



∞∑

k=1

pk
k
zk


 exp


−

∞∑

k=1

p⊥k
k
z−k


 ,

where p⊥k denotes the adjoint operator of the multiplication by pk, then
we have

sλ(X) = Bλ1
Bλ2
· · ·Bλl(λ)

(1).



Representation Theory of GLN (C) :

The Schur function sλ(x1, · · · , xN ) is the character of the irreducible
polynomial representation of the general linear group GLN (C) with high-
est weight

(λ1, · · · , λl(λ), 0, · · · , 0).

And

sλ(1, q, q2, · · · , qN−1) = qn(λ)
∏

x∈λ

1− qN+c(x)

1− qh(x)
,

where c(x) and h(x) are the content and the hooklength respectively.

Remark : The (isomorphism classes of) finite dimensional irreducible
representations of the algebraic group GLN (C) are indexed by non-
increasing sequence of integers

(γ1, · · · , γN ) (γ1 ≥ · · · ≥ γN ).



Representation Theory of Sn :

The irreducible representations of the symmetric group Sn of n letters
are indexed by partitions of n.

Irr Sn ←→ Pn
Sλ ←→ λ

Let K0(Sn) be the Grothendieck group of the category of finite dimen-
sional representations of Sn, and put

K0(S•) =
⊕

n≥0

K0(Sn).

By using the natural embedding Sm ×Sn ↪→ Sm+n, we can define a
graded algebra structure on K0(S•). And, it follows from the Frobenius
formula that, as graded algebras,

K0(S•) ∼= Λ

[Sλ] ←→ sλ



Rational Universal Characters



Definition of Rational Universal Characters (Koike)

For a pair of partitions (λ, µ) with l(λ) ≤ p and l(µ) ≤ q, put

s[λ,µ](X,Y ) = det




(
hµq+1−i+i−j(Y )

)
1≤i≤q,1≤j≤p+q

(
hλi−i+j−q(X)

)
1≤i≤p,1≤j≤p+q




∈ Λ(X)⊗ Λ(Y ),

and call it the rational universal character.



s[λ,µ](X,Y )

= det




hµq(Y )
. . .

. . .
hµ2(Y ) hµ2−1(Y ) hµ2−2(Y )
hµ1+1(Y ) hµ1(Y ) hµ1−1(Y )

hλ1−1(X) hλ1(X) hλ1+1(X)
hλ2−2(X) hλ2−1(X) hλ2(X)

. . .
. . .

hλp(X)




.



It is clear from this definition that

s[λ,∅](X,Y ) = sλ(X),

s[∅,µ](X,Y ) = sµ(Y ).

Example :

s[(1),(1)](X,Y ) = det

(
h1(Y ) h0(Y )
h0(X) h1(X)

)
= h1(X)h1(Y )− 1,

s[(2,1),(1,1)](X,Y ) = det




h1(Y ) 1 0 0
h2(Y ) h1(Y ) 1 0

1 h1(X) h2(X) h3(X)
0 0 1 h1(X)


 .



Cauchy identity for Rational Universal Characters

Theorem (Koike)

∑

λ,µ

s[λ,µ](X,Y )sλ(U)sµ(V ) =

∏
j,k(1− ujvk)∏

i,j(1− xiuj)
∏
i,k(1− yivk)

.

Proposition

s[λ,µ](X,Y ) =
∑

ξ,η

(∑
τ

(−1)|τ | LRλτ,ξ LR
µ
tτ,η

)
sξ(X)sη(Y ),

sλ(X)sµ(Y ) =
∑

ξ,η

(∑
τ

LRλτ,ξ LR
µ
τ,η

)
s[ξ,η](X,Y ).

Corollary {s[λ,µ]}λ,µ forms a basis of Λ(X)⊗ Λ(Y ).



Structure Constants w.r.t. Rational Universal Characters

Proposition

s[ξ,η](X,Y ) · s[σ,τ ](X,Y ) =
∑

λ,µ

M
[λ,µ]
[ξ,η],[σ,τ ]

s[λ,µ](X,Y )

with

M
[λ,µ]
[ξ,η],[σ,τ ]

=
∑

α,β,γ,δ

(∑
κ

LR
ξ
κ,α LRτκ,β

)(∑
π

LR
η
π,γ LRσπ,δ

)
LRλα,δ LR

µ
β,γ

∈ N.



Duality

Proposition Let ω̃ : Λ(X)⊗ Λ(Y ) −→ Λ(X)⊗ Λ(Y ) be an algebra
automorphism defined by

ω̃(hk(X)) = ek(X), ω̃(hk(Y )) = ek(Y ).

Then we have

ω̃
(
s[λ,µ](X,Y )

)
= s[tλ,tµ](X,Y ).

Corollary For a pair of partitions (λ, µ) with l(tλ) ≤ p and l(tµ) ≤ q,
we have

s[λ,µ](X,Y ) = det




(
etµq+1−i+i−j(Y )

)
1≤i≤q,1≤j≤p+q

(
etλi−i+j−q(X)

)
1≤i≤p,1≤j≤p+q


 .



Another Determinant Expression

Theorem (cf. El Samra–King) For a pair of partitions (λ, µ), take an
integer f satisfying f ≥ l(λ), l(tµ). Then we have

s[λ,µ](X,Y )

= (−1)f (f−1)/2 det

(
s

[(λi−i+f ),(1
tµj−j+f )]

(X,Y )

)

1≤i,j≤f
.

Remark : For two non-negative integers a and b, we have

s[(a),(1b)](X,Y ) =
∑

k

(−1)kha−k(X)eb−k(Y ).



Vertex Operators

Theorem (Tsuda) If we define operators B+
n , B−n (n ∈ Z) by

∑

n∈Z
B+
n z

n = exp


∑

k≥1

(
pk(X)

k
− pk(Y )⊥

k

)
zk




· exp


−

∑

k≥1

pk(X)⊥
k

z−k

 ,

∑

n∈Z
B−n z−n = exp


∑

k≥1

(
py(X)

k
− pk(X)⊥

k

)
z−k




· exp


−

∑

k≥1

pk(Y )⊥
k

zk


 ,



then we have

s[λ,µ](X,Y ) = B+
λ1
B+
λ2
· · ·B+

λl(λ)
B−µ1

B−µ2
· · ·B−µl(µ)

(1).

Remark : [B+
m, B

−
n ] = 0.

Tsuda uses these vertex operators to introduce a series of non-linear
differential equations of infinite order, called the UC hierarchy, which can
be regarded as an extension of the KP hierarchy. And he shows that the
rational universal characters are solutions to the UC hierarchy.



Representation Theory of GLN (C)
If l(λ) + l(µ) ≤ N , then

s[λ,µ](x1, · · · , xN , 0, · · · ;x−1
1 , · · · , x−1

N , 0, · · · )
is the character of the irreducible rational representation of GLN (C)
with highest weight

γ = (λ1, λ2, · · · , λl(λ), 0, · · · , 0,−µl(µ), · · · ,−µ2,−µ1).

Equivalently,

s[λ,µ](x1, · · · , xN ;x−1
1 , · · · , x−1

N ) =
det
(
x
γj+n−j
i

)
1≤i,j≤n

det
(
x
n−j
i

)
1≤i,j≤n

.



Example :

(5, 4, 1, 0, 0,−2,−3)←→ ←→ λ = (5, 4, 1)
µ = (3, 2)



Example : If λ = µ = �, then

s[�,�](X,Y ) = h1(X)h1(Y )− 1.

On the other hand, the irreducible rational representation of GLN (C)
with highest weight (1, 0, · · · , 0,−1) is the representation on

slN (C) = {A ∈MN (C) : tr(A) = 0},
where GLN (C) acts on slN (C) by g · A = gAg−1. And the character
of this representation is

∑

i 6=j
xix
−1
j + N − 1 =




N∑

i=1

xi


 ·




N∑

j=1

x−1
j


− 1.



q-Dimenstion Formula

Theorem (El Samra–King) Suppose that l(λ) + l(µ) ≤ N . If we
substitute

xi =

{
q(N+1)/2−i (1 ≤ i ≤ N)

0 (i > N)
, yi =

{
q−(N+1)/2+i (1 ≤ i ≤ N)

0 (i > N)

then we have

s[λ,µ]

=
∏

(i,j)∈λ

[N − tµi − tλj + i + j − 1]

[hλ(i, j)]

∏

(k,l)∈µ

[N + µk + λl − k − l + 1]

[hµ(k, l)]
.

where we use the notation

[k] = qk/2 − q−k/2.



Representation Theory of Rational Brauer algebras

These algebras are defined and studied by Benkart–Chakrabarti–Halverson–
Leduc–Lee–Stroomer.

Let m, n be non-negative integers. A (m,n)-diagram is a graph with
2(m + n) vertices arranged in two rows of equal lengths and (m + n)
edges, satisfying the following three conditions:

• each vertex is incident to exactly one edge,

• each horizontal edge begins and ends on opposite side of the wall,

• no vertical edge crosses the wall,

where the wall is placed between the m-th and (m + 1)-th columns.
Let Dm,n be the set of all (m,n)-diagrams.



Example : m = 5, n = 3.

Let Bxm,n be the C(x) vector space with basis Dm,n. Then we can
define an associative algebra structure on Bxm,n by concatenating two
diagrams and replacing each loop by x. We call this algebra the rational
Brauer algebra. (Similarly, we can define a C-algebra Bαm,n for α ∈ C.)



Example :





x



Schur–Weyl type Duality
Let V = CN be the vector representation of GLN (C) and consider

the mixed tensor representation

Tm,n = V ⊗m ⊗ (V ∗)⊗n.
Theorem (BCHLLS) There exist an algebra homomorphism

φ : BNm,n −→ EndGLN (C)(T
m,n),

such that BNm,n and GLN (C) form a dual pair in End(Tm,n), i.e.,

EndGLN (C)(T
m,n) = φ(BNm,n),

EndBNm,n(Tm,n) = 〈GLN (C)〉.
Moreover, if N ≥ m + n, then φ is an isomorphism.



Theorem (BCHLLS) The rational Brauer algebra Bxm,n is a semisimple
C(x) algebra and the irreducible representations are indexed by triples
(λ, µ, k) with λ ` m− k and µ ` n− k.

IrrBxm,n ←→ {(λ, µ, k) : λ ` m− k, µ ` n− k}
V λ,µ,k ←→ (λ, µ, k)

Let K0(Bxm,n) be the Grothendieck group of the category of finite
dimensional Bxm,n-modules and put

K0(Bx•,•) =
⊕

m,n≥0

K0(Bxm,n).

Then we can use the canonical embedding Dm,n×Dp,q ↪→ Dm+p,n+q

to define a bi-graded algebra structure on K0(Bx•,•).



Theorem As bi-graded algebras,

K0(Bx•,•) ∼= (Λ(X)⊗ Λ(Y ))[t]

[V λ,µ,k] ←→ s[λ,µ](X,Y ; t)tk

where the grading on the right-hand side is given by

deg hk(X) = (k, 0), deg hk(Y ) = (0, k), deg t = (1, 1).

Also s[λ,µ](X,Y ; t) is defined by

∑

λ,µ

s[λ,µ](X,Y ; t)sλ(U)sµ(V ) =

∏
j,k(1− tujvk)∏

i,j(1− xiuj)
∏
i,k(1− yivk)

.

Remark : s[λ,µ](X,Y ; 1) is the rational universal character.



Rational Universal Characters
and

Kawanaka’s q-Cauchy Identity



Notation
For two partitions λ and µ, we define

hλ,µ(i, j) = λi + tµj − i− j + 1,

n(λ, µ) =
∑

(i,j)∈λ−µ
(tλj − i),

and

Jλ,µ(t) = tn(λ,µ)
∏

x∈λ

1 + thλ,µ(x)

1− thλ(x)
· tn(µ,λ)

∏
x∈µ

1 + thµ,λ(x)

1− thµ(x)
.

Note that the hook length is given by

hλ(i, j) = hλ,λ(i, j).



Kawanaka’s q-Cauchy Identity

Theorem (Kawanaka)

∞∏

i=1

(−uiq; q2)∞(−viq; q2)∞
(uiq; q2)∞(viq; q2)∞

∞∏

i,j=1

1

1− uivj
=
∑

λ,µ

q|λ−µ|+|µ−λ|Jλ,µ(q2)sλ(U)sµ(V ),

where
(a; q)∞ =

∏

r≥0

(1− aqr).

If we put q = 0, then this reduces to the classical Cauchy identity
∏

i,j

1

1− uivj
=
∑

λ

sλ(U)sλ(V ).



Kawanaka’s motivation is an explicit computation of a q-Frobenius–
Schur indicator for imprimitive complex reflection groupsG = G(m, p, n):

ΨG(χ, q) =
1

#G

∑

w∈G
χ(w2)

det(1 + qρ(w))

det(1− qρ(w))
,

where ρ : G → GLn(C) is the reflection representation and χ is an
irreducible character of G.

Kawanaka’s proof uses the induction on the number of the variables
in X. Ishikawa–Wakayama provides another proof by giving a determi-
nant expression of q|λ−µ|+|µ−λ|Jλ,µ(q2) and applying the Cauchy–Binet
formula. However both of two proofs are complicated.



Proof : We give a proof of the dual form of the Kawanaka’s q-Cauchy
identity

∞∏

i=1

(−uiq; q2)∞(−viq; q2)∞
(uiq; q2)∞(viq; q2)∞

∞∏

i,j=1

(1 + uivj)

=
∑

λ,µ

q|
tλ−µ|+|µ−tλ|Jtλ,µ(q2)sλ(U)sµ(V ).

Consider a homomorphism π : Λ(X)⊗Λ(Y ) −→ Q(a1/2, q1/2) defined
by

π(hk(X)) = π(hk(Y )) =

k∏

i=1

[a; i− 1]

[i]
(k ≥ 1),

where

[k] = qk/2 − q−k/2, and [a; k] = a1/2qk/2 − a−1/2q−k/2.



The q-binomial theorem gives

π


∏

i

1

1− xiu


 =

(a1/2q1/2u; q)∞
(a−1/2q1/2u; q2)∞

.

And, by using El Samra–King’s q-dimension formula, we see that

π(s[λ,µ](X,Y ))

=
∏

(i,j)∈λ

[a;−tµi − tλj + i + j − 1]

[hλ(i, j)]

∏

(k,l)∈µ

[a;µk + λl − k − l + 1]

[hµ(k, l)]
.

By applying π to the both hand sides of the Cauchy identity for rational
universal characters
∑

λ,µ

s[λ,µ](X,Y )sλ(U)sµ(V ) =

∏
j,k(1− ujvk)∏

i,j(1− xiuj)
∏
i,k(1− yivk)

,



we have

∑

λ,µ


 ∏

(i,j)∈λ

[a;−tµi − tλj + i + j − 1]

[hλ(i, j)]

∏

(k,l)∈µ

[a;µk + λl − k − l + 1]

[hµ(k, l)]




×sλ(U)sµ(V )

=

∞∏

i=1

(a1/2q1/2ui; q)∞(a1/2q1/2vi; q)∞
(a−1/2q1/2ui; q)∞(a−1/2q1/2vi; q)∞

∏

i,j

(1− uivj).

By replacing

a1/2 7→ √−1a1/2, ui 7→
√−1ui, vi 7→

√−1vi.

and then substituting a = 1, it turns out that the proof of Kawanaka’s
q-Cauchy identity is reduced to proof of the following lemma.



Lemma

(−1)|λ|+|µ|
∏

(i,j)∈λ

[tµi + tλj − i− j + 1]+

[hλ(i, j)]

∏

(k,l)∈µ

[µk + λl − k − l + 1]+
[hµ(k, l)]

= q(|tλ−µ|+|µ−tλ|)/2Jtλ,µ(q2).

where
[k]+ = qk/2 + q−k/2.

The proof of this Lemma is reduced to showing
∑

(i,j)∈λ
(λi − tµi) +

∑

(k,l)∈µ
(tµl − λl)

= |tλ− µ| + |µ− tλ| + 2n(tλ, µ) + 2n(µ, tλ).



Rational Universal Characters and Painlevé-type equations



Painlevé equations

The Painlevé equations are non-linear ordinary differential equations
of 2nd order, which were discovered by P. Painlevé around 1900 in his
study of algebraic differential equations y′′ = R(t, y, y′) without movable
singularities (branching points).

Example : The fifth Painlevé equation PV is

d2y

dt2
=

(
1

2y
+

1

y − 1

)(
dy

dt

)2

− 1

t

dy

dt

+
(y − 1)2

2t2

(
κ2∞y −

κ2
0

y

)
− (θ + 1)

y

t
− y(y + 1)

2(y − 1)
,

where κ∞, κ0 and θ are parameters.



It was known that the Painlevé equations admit algebraic or rational
solutions for special values of parameters, which are obtained by special-
izing Schur functions. These specializations of Schur functions are called
Yablonskii–Vorob’ev polynomials, Okamoto Polynomials, and Umemura
polynomials. And these special polynomials are interesting from the com-
binatorial point of view.

In 2002, Masuda–Ohta–Kajiwara found a family of rational solutions of
the fifth Painlevé equation PV, which are described in terms of rational
universal characters.



Theorem (Masuda–Ohta–Kajiwara) For non-negative integers m and
n, we define Sm,n(t, s) to be the specialization of

s[(n,n−1,··· ,1),(m,m−1,··· ,1)]

obtained by substituting

pk(X) 7−→ −t
2
k + (2s−m + n), pk(Y ) 7−→ t

2
k + (2s−m + n).

Then

y =
Sm,n−1(t, s)Sm−1,n(t, s)

Sm−1,n(t, s− 1)Sm,n−1(t, s + 1)

gives a rational solution of PV with the parameters

κ∞ = s, κ0 = s−m + n, θ = m + n− 1.

Several Painlevé-type equations have algebraic or rational solutions ob-
tained by specializing rational universal characters.



Algebraic solutions of q-PVI

The sixth q-Painlevé equation q-PVI is the following system of q-
difference equations:

f · f = b7b8
(g + b5)(g + b6)

(g + b7)(g + b8)
, g · g = b3b4

(f + b1)(f + b2)

(f + b3)(f + b4)
,

where f and g are the unknown functions in variables a0, a1, · · · , a5 with
a0a1a

2
2a

2
3a4a5 = q, and

f = f (· · · , qa2, q
−1a3, · · · ), g = g(· · · , q−1a2, qa3, · · · ).

(The ratio a2/a3 plays the role of an independent variable and the other
ai’s are parameters.) Also b1, · · · , b8 are defined by

b1 = a2
3a
−1
4 a5, b2 = a2

3a
3
4a5, b3 = a−2

3 a−1
4 a5, b4 = a−2

3 a−1
4 a−3

5 ,

b5 = a−1
0 a1a

−2
2 , b6 = a−1

0 a−3
1 a−2

2 , b7 = a−1
0 a1a

2
2, b8 = a3

0a1a
2
2.



Let R[λ,µ](ξ, η, ζ, q) be the specialization of the rational universal char-
acter s[λ,µ] obtained by substituting

pn(X) 7−→ ηn + ξn − (−ζ)n − (−ζ)−n
1− q2n

,

pn(Y ) 7−→ η−n + ξ−n − (−ζ)n − (−ζ)−n
1− q−2n

.

Remark ∑

k≥0

R[(1k),∅](ξ, η, ζ, q)t
k =

(−ηt,−ζt; q2)∞
(ξt, ξ−1t; q2)∞

,

so R[(1k),∅](ξ, η, ζ, q) is essentially the Al-Salam–Chihara polynomial.



Using R[λ,µ](ξ, η, ζ, q), we define ρi (i = 0, 1, 2, 3) as follows:

ρ0 = R[δ(m−1),δ(n−1)](ξ, η, ζ, q),

ρ1 = R[δ(m),δ(n−1)](ξ, η, q
−2ζ, q),

ρ2 = R[δ(m),δ(n)](ξ, η, ζ, q),

ρ3 = R[δ(m−1),δ(n)](ξ, η, q
−2ζ, q),

where

δ(k) = (k, k − 1, · · · , 1) if k ≥ 0,

δ(k) = δ(−k − 1) if k < 0.



Theorem (Tsuda–Masuda) The pair

f =
ρ1(ξ, η, ζ, q) · ρ3(q−1ξ, q−1ζ, qη, q)

ρ1(q−1ξ, q−1ζ, qη, q) · ρ3(ξ, η, ζ, q)
,

g =
ρ0(ξ, η, ζ, q) · ρ2(q−1ξ, q−1ζ, qη, q)

ρ0(q−1ξ, q−1ζ, qη, q) · ρ2(ξ, η, ζ, q)

give an algebraic solution of sixth q-Painlev’e equation q-PVI with

ξ = a2a3, η =
a2

a3
, ζ =

a0a1a2

a3a4a5
q,

and
a0

a1
= qm−n, a4

a5
= qm+n.



Positivity of Tsuda–Masuda polynomials

Consider

P[λ,µ](ξ, η, ζ, q)

= ξ|λ|+|µ|η|µ|ζ |µ|q−2|ν|∏

b∈λ
(1− q2hλ(b))

∏
c∈µ

(q2hµ(c) − 1)

·R[λ,µ](ξ, η, ζ, q),

where
νi = max(0, tµi − λi)

Conjecture (Tsuda) P[λ,µ](ξ, η, ζ, q) is a polynomial in ξ, η, ζ and

q2 with non-negative integer coefficients :

P[λ,µ](ξ, η, ζ, q) ∈ N[ξ, η, ζ, q2].



Theorem Conjecture is true if either λ or µ is the empty partition ∅.
P[λ,∅], and P[∅,µ] ∈ N[ξ, η, ζ, q2].

More generally, let R̃[λ,µ] be the specialization of s[λ,µ] obtained by
substituting

pn(X) 7−→
∑
xni −

∑
(−yj)n

1− qn

pn(Y ) 7−→
∑
x−ni −

∑
(−yj)−n

1− q−n
Theorem ∏

b∈λ
(1− qh(b)) · R̃[λ,∅] ∈ N[x1, · · · , y1, · · · , q].


