Dual graded graphs for Kac-Moody algebras
 by Thomas Lam and Mark Shimozono

Harvard University and Virginia Tech
July, 2007 at FPSAC, Tianjin

Outline

Dual graded graphs: pairs of graphs invented by Fomin which encode insertion (Robinson-Schensted) algorithms. "Weighted" versions of Stanley's differential posets.

Kac-Moody algebras: generalization of Lie algebras depending on a Cartan matrix and possessing combinatorial data such as weights, Weyl group, ...

Our Aim: For each Kac-Moody algebra \mathfrak{g} with Weyl group W we produce dual graded graphs $\left(\Gamma_{s}, \Gamma_{w}\right)$ with:
vertex set: the Weyl group W, and
edges: "weighted" versions of the strong and weak orders of W.
This construction depends on the choice of a dominant integral weight and a positive central element of \mathfrak{g}.

Graded graphs

Definition: A weighted directed graph $\Gamma=(V, E)$ is graded if there is a height function $h: V \rightarrow \mathbb{Z}$ so that if $(v, w) \in E$ then $h(w)=h(v)+1$. Let $m(v, w) \in \mathbb{Z}_{\geq 0}$ denote the weight of the edge (v, w).

If Γ is a graded graph, we define up and down linear operators on $\prod_{v \in V} \mathbb{Z} . v$ by

$$
U_{\Gamma}(v)=\sum_{(v, w) \in E} m(v, w) w
$$

and

$$
D_{\Gamma}(v)=\sum_{(w, v) \in E} m(w, v) w
$$

We will always assume Γ is locally finite so that these operators make sense when extended by linearity and continuity.

Young's Lattice

Figure 1: Young's lattice \mathbb{Y} as a graded graph.

Dual graded graphs:

Definition: A pair (Γ, Γ^{\prime}) of graded graphs is dual if they have the same vertex set and

$$
D_{\Gamma^{\prime}} U_{\Gamma}-U_{\Gamma} D_{\Gamma^{\prime}}=r \mathrm{Id}
$$

for some integer $r \in \mathbb{Z}_{\geq 0}$, called the differential coefficient.
Example: Young's Lattice \mathbb{Y}. The pair (\mathbb{Y}, \mathbb{Y}) is dual with differential coefficient 1. For example,

$$
\begin{aligned}
D U(\square)= & D(\square \square)+D(\square)=(\square)+(\square \square+\square) \\
= & 2 \square \square+\square \\
& U D(\square)=U(\square)=\square \square+\square .
\end{aligned}
$$

Tableaux and paths in dual graded graphs.

Assumption: Our graded graph Γ has a unique source (or minimum element) $\hat{0}$ with $h(\hat{0})=n$.

Definition: A tableau of shape v is a path

$$
\hat{0}=v_{0} \rightarrow_{m_{1}} v_{1} \rightarrow_{m_{2}} v_{2} \rightarrow_{m_{3}} \cdots \rightarrow_{m_{n}} v_{n}=v
$$

in Γ where each edge $v_{i} \rightarrow v_{i+1}$ has been marked with an integer m_{i+1} between 1 and $m\left(v_{i}, v_{i+1}\right)$. We may think of there being $m(v, w)$ edges joining v to w, so the marking represents the choice of one such edge. Example: In Young's lattice \mathbb{Y}

$$
\hat{0} \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \square \square \rightarrow \square \square \square \square \square \square \square \square
$$

corresponds to

\[

\]

Robinson-Schensted identity

Let f_{Γ}^{v} denote the number of tableau of shape v.
Theorem (Fomin): Suppose $\left(\Gamma, \Gamma^{\prime}\right)$ is a pair of dual graded graphs with differential coefficient r. Then

$$
\begin{equation*}
\sum_{v: h(v)=n} f_{\Gamma}^{v} f_{\Gamma^{\prime}}^{v}=r^{n} n! \tag{1}
\end{equation*}
$$

Furthermore, a set of local bijections in $\left(\Gamma, \Gamma^{\prime}\right)$ will give an algorithmic proof of (1).

Example: In Young's lattice \mathbb{Y} we have

$$
\sum_{\lambda:|\lambda|=n}\left(f_{\mathbb{Y}}^{\lambda}\right)^{2}=n!
$$

Some known dual graded graphs and insertions

Γ	Γ^{\prime}	Insertion
Young's lattice \mathbb{Y}	\mathbb{Y}	Robinson-Schensted
Fibonacci poset $\mathbb{F} \mathbb{Y}$	$\mathbb{F} \mathbb{Y}$	Fibonacci
Shifted Young's lattice $\mathbb{S Y}$	Marked $\mathbb{S Y}$	Shifted insertion
Marked strong order on cores	Weak order on cores	LLMS insertion

Marked strong tableau: \begin{tabular}{|l|l|l|}
\hline 1^{*} \& 2^{*}

\hline 3^{*} \& 4

\hline 3^{*} \&

\hline 4^{*} \& Weak tableau: | 1 | 3 |
| :--- | :--- |
| 2 | 2 |
| | 3 |

\hline \multicolumn{2}{|c|}{4}

\hline
\end{tabular}

Kac-Moody algebras

A Kac-Moody algebra $\mathfrak{g}(A)$ depends on a Cartan matrix

$$
A=\left(a_{i j}\right)_{i \in I}
$$

of integers where I is some indexing set.
The Weyl group W of $\mathfrak{g}(A)$ is a Coxeter group with generators $\left\{s_{i} \mid i \in I\right\}$ and relations

$$
s_{i}^{2}=1 \quad\left(s_{i} s_{j}\right)^{m_{i j}}=1
$$

for some $m_{i j} \in\{2,3,4,6, \infty\}$.
Other data:

1. roots $\alpha \in R$
2. simple roots $\left\{\alpha_{i} \mid i \in I\right\}$
3. simple coroots $\left\{\alpha_{i}^{\vee} \mid i \in I\right\}$
4. weights lattice P
5. fundamental weights $\omega_{i} \in P$

Strong and weak orders

Strong and weak orders are two partial orders on W.
The length $\ell(w)$ of $w \in W$ is the length of shortest expression of w in terms of the s_{i}.

Left weak order: transitive closure \prec of the relations

$$
v \prec s_{i} v \text { whenever } \ell\left(s_{i} v\right)=\ell(v)+1
$$

A reflection $s_{\alpha} \in W$ is an element conjugate to a generator s_{i}. They are labeled by real roots $\alpha \in R^{\text {re }}$.

Strong (Bruhat) order: transitive closure $<$ of the cover relations

$$
v \lessdot w \text { if } w=v s_{\alpha} \text { and } \ell(w)=\ell(v)+1
$$

The strong graph Γ_{s}

Pick a dominant integral weight $\Lambda \in P$.
Vertex set: Elements $w \in W$
Grading: $h=\ell: W \rightarrow \mathbb{Z}_{\geq 0}$
Edges: For each cover $v \lessdot w$ in the strong order set

$$
m(v, w)=\left\langle\alpha^{\vee}, \Lambda\right\rangle
$$

where $w=v s_{\alpha}$. This number $m(v, w)$ will always be a nonnegative integer.

Tableaux in Γ_{s} are called strong tableaux.
Every coroot α^{\vee} is a integral linear combination of simple coroots $\left\{\alpha_{i}^{\vee} \mid i \in I\right\}$. The function $\alpha^{\vee} \mapsto\left\langle\alpha^{\vee}, \Lambda\right\rangle$ is linear, so is determined by its value on simple coroots.

The weak graph Γ_{w}

Pick a positive central element

$$
K=\sum_{i} a_{i} \alpha_{i}^{\vee} \in Z_{+}(\mathfrak{g}(A))
$$

Central: $\left\langle K, \alpha_{i}\right\rangle=0$ for each $i \in I$
Positive: $a_{i} \geq 0$.
Vertex set: Elements $w \in W$
Grading: $h=\ell: W \rightarrow \mathbb{Z}_{\geq 0}$
Edges: Each cover $v \prec w=s_{i} v$ in the left weak order is weighted by

$$
n(v, w)=\left\langle K, \omega_{i}\right\rangle=a_{i} .
$$

Tableaux in Γ_{w} are called weak tableaux.

Main Theorem

The strong and weak graphs $\left(\Gamma_{s}, \Gamma_{w}\right)$ form a pair of dual graded graphs with differential coefficient $r=\langle K, \Lambda\rangle$.

Corollary: Strong and weak tableaux satisfy

$$
\sum_{\ell(w)=n} f_{\text {strong }}^{w} f_{\text {weak }}^{w}=n!
$$

The minimum element of $\left(\Gamma_{s}, \Gamma_{w}\right)$ is the identity id.

Basic Properties

1. If \mathfrak{g} is a finite dimensional simple Lie algebra then the construction produces nothing (since the center $Z(\mathfrak{g})=0$).
2. The richest example seems to be the case of the affine Lie algebras in which case there is a canonical central element $K_{\text {can }}$.
3. The construction is compatible with restriction to parabolics quotients W / W_{J} for $J \subset I$.
4. The construction is compatible with folding of Kac-Moody algebras: when $\mathfrak{g}(A)$ can be embedded into $\mathfrak{g}(B)$ as the fixed points of an automorphism.

Affine Schubert Calculus

Let K be a simple and simply-connected compact group and ΩK denote the based-loops into K.

The construction was inspired by the study of the dual Hopf algebras $H_{*}(\Omega K)$ and $H^{*}(\Omega K)$, together with their Schubert bases $\left\{\xi_{w}\right\}$ and $\left\{\xi^{w}\right\}$. Roughly speaking, the up and down operators correspond to the affine Chevalley rules in homology and cohomology. These are combinatorial rules for multiplication by the unique Schubert class $\xi_{s_{0}}\left(\right.$ or $\left.\xi^{s_{0}}\right)$ in degree 2, written in the Schubert basis.
Thus "duality" of graded graphs corresponds to the pairing

$$
H_{*}(\Omega K) \otimes H^{*}(\Omega K) \rightarrow \mathbb{Z}
$$

Hope: Our dual graded graphs can be related to Kac-Moody Schubert calculus. More precisely, semistandard generalizations of our tableaux should represent Schubert classes.

Remark: there is a general way to obtain dual graded graphs from dual Hopf algebras (independently discovered by Hivert-Nzeutchap and L.-Shimozono.)

LLMS insertion

LLMS = Lam-Lapointe-Morse-Shimozono

1. In type $\mathfrak{g}=\tilde{A}_{n-1}^{(1)}$, picking a local bijection one recovers the standard case of LLMS insertion.
2. Taking $n \rightarrow \infty$ we obtain the usual Robinson-Schensted insertion. (Alternatively take $\mathfrak{g}=A_{\infty}$.)
3. If we fold $\mathfrak{g}(A)=\tilde{C}_{n}^{(1)}$ into $\mathfrak{g}(B)=\tilde{A}_{2 n-1}^{(1)}$ we obtain from LLMS insertion an explicit insertion algorithm for $\tilde{C}_{n}^{(1)}$.
4. Taking $n \rightarrow \infty$ we obtain shifted insertion. (Alternatively take $\mathfrak{g}=$ C_{∞}.)

Open Problem: construct explicit insertion algorithms for all Kac-Moody dual graded graphs.

Cores

Definition: A n-core is a partition from which a n-ribbon cannot be removed.

Example: A 3-core:

Not a 3-core:

Weak and strong tableaux in the case $\mathfrak{g}=\tilde{A}_{n-1}^{(1)}($ LLMS $)$

In the case $\mathfrak{g}=\tilde{A}_{n-1}^{(1)}$, weak and strong tableaux can be identified with nested sequences of n-cores. Weak tableaux have no markings (since $\left.K_{\text {can }}=\sum_{i} \alpha_{i}^{\vee}\right)$ but strong tableaux are marked.

A marked strong tableau:

A weak tableau:

w	$n=3$	$n=\infty$
1234	$\begin{array}{\|l\|l\|} \hline 3 & 4 \\ \hline 1^{*} 2^{*} & 3^{*} \end{array} 4^{*} \begin{array}{\|l\|l\|l\|} \hline 3 & 4 & 4 \\ \hline & 2 & 3 \\ \hline \end{array}$	1 2 3 4 1 2 3 4
1243	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 3 & 4^{*} \\ \hline 1^{*} & 2^{*} & 3^{*} \\ \hline \end{array}$	4 4 1 2 3 1 1 2
1324	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 3^{*} & 4 \\ \hline 1^{*} & 2^{*} & 3 & 4^{*} & 3 \\ \hline \end{array}$	
1342	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 3^{*} & 4^{*} & & \begin{array}{\|l\|l\|l\|l\|l\|} \hline & 3 & 4 \\ \hline 1^{*} & 2^{*} & 3 & 4 & 1 \end{array} 2 & 3 \\ \hline \end{array}$	3 1 2 4 1 2
1423	$$	4 1 2 3 1 2 4
1432	$\begin{array}{\|l\|l\|l\|l\|} \hline 4^{*} & & \frac{4}{4} & \\ \hline 3^{*} & & \frac{3}{3} & \\ \hline 1^{*} & 2^{*} & 3 & 1 \\ \hline & 2 \mid & 3 \\ \hline \end{array}$	4 4 3 $\frac{3}{3}$ 1 2 1 2 1 1 2

2134	$\begin{array}{\|l\|l\|l\|l\|} \hline 3 & \begin{array}{\|l\|l\|} \hline 3 & \\ \hline 2^{*} & \\ \hline 1^{*} & 3^{*} \\ \hline \end{array} 4^{*} & 1 & 3 \\ \hline \end{array}$	2 2 1 3 4 1 3
2143		$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 2 & 4 & 2 & 4 \\ \hline 1 & 1 & 1 & 3 \\ \hline \end{array}$
2314		$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 2 & & & \begin{array}{ll} 3 & \\ \hline 1 & 3 \end{array} & \\ \hline 1 & 1 & 2 & 4 & 4 \\ \hline \end{array}$
2341		$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline 2 & & \\ \hline 1 & 4 & \\ \hline 1 & 2 & \\ \hline \end{array}$
2413	$\begin{array}{\|l\|l\|l\|l\|} \hline 3 \\ \hline 2^{*} & \left.\begin{array}{\|l\|l\|l\|} \hline 4 \\ \hline 1^{*} & \\ \hline \end{array} 3^{*} \right\rvert\, 4^{*} & 1 & 2 \\ \hline \end{array}$	2 4 3 4 1 3 1 2
2431		

