<u>Tableaux combinatorics</u> of the asymmetric exclusion process

Lauren K. Williams, Harvard University Sylvie Corteel, Université Paris-Sud and CNRS

Program

1. Background on a model from statistical mechanics: the asymmetric exclusion process (PASEP)

2. Background on the combinatorics: J-diagrams and permutation tableaux

- 3. Main result: the relationship between 1 and 2.
- 4. The PASEP can be lifted to a Markov chain on permutations
- 5. Applications and connections to other things ...

PASEP model

The partially asymmetric exclusion process is a model for a system of interacting particles hopping left and right on a one-dimensional lattice of n sites.

New particles can enter the lattice from the left, and particles can exit from the right.

• The model is *partially asymmetric* in the sense that the probability of a particle jumping left is q times the probability of jumping right.

• *Exclusion:* at most one particle on each site

We'll depict particles as \bullet or 1 and empty sites as \circ or 0.

PASEP model

- Introduced by Spitzer in 1970
- A model for diffusion of particles, traffic jams, queuing problems
- Studied primarily by mathematical physicists (more than 250 papers on arXiv) but more recently by combinatorialists (Shapiro, Zeilberger, Brak, Corteel, Essam, Rechnitzer, Duchi, Schaeffer,...)
- Later today: related talk by Viennot.

PASEP model

Let B_n be the set of all 2^n words in the language $\{\circ, \bullet\}^*$. The PASEP is the Markov process on B_n with transition probabilities:

• If
$$X = A \bullet \circ B$$
 and $Y = A \circ \bullet B$ then $P_{X,Y} = \frac{1}{n+1}$ and $P_{Y,X} = \frac{q}{n+1}$.

• If
$$X = \circ B$$
 and $Y = \bullet B$ then $P_{X,Y} = \frac{\alpha}{n+1}$.

• If
$$X = B \bullet$$
 and $Y = B \circ$ then $P_{X,Y} = \frac{\beta}{n+1}$.

• Otherwise
$$P_{X,Y} = 0$$
 for $Y \neq X$ and $P_{X,X} = 1 - \sum_{X \neq Y} P_{X,Y}$.

Stationary Distribution of the ASEP model

The ASEP has a unique stationary distribution – that is, it has a unique left eigenvector of the transition matrix associated with eigenvalue 1. This is called the steady state.

(Solve for prob.'s, say when $\alpha = \beta = 1$.)

J-diagrams and permutation tableaux

Definition: A J-diagram is a partition $\lambda = (\lambda_1, \dots, \lambda_n)$ (where $\lambda_i \ge 0$) together with a filling with 0's and 1's such that:

• There is no 0 which has a 1 above it in the same column *and* a 1 to its left in the same row.

1	1	0	0
0	0	1	0
1	1	1	1
0	0	1	

J-diagrams and permutation tableaux

• J-diagrams were introduced by Postnikov and shown to correspond to cells in the totally nonnegative part of the Grassmannian.

• Also, these objects were simultaneously introduced by Cauchon (*Cauchon diagrams*) for the study of primes in quantized coordinate rings of square matrices

• As we will see, they are related to the asymmetric exclusion process.

Permutation tableaux

Definition: We say that a J-diagram is a *permutation tableau* if:

• Each column of the rectangle contains at least one 1.

Bijection from perm-tableaux to permutations (Postnikov, Steingrimsson-Williams):

q-Eulerian numbers

Define the weight $wt(\mathcal{T})$ of a permutation tableau \mathcal{T} to be the number of 1's minus the number of columns.

Define $\hat{E}_{k,n}(q) = \sum_{\mathcal{T}} q^{wt(\mathcal{T})}$, summing over all perm-tableaux \mathcal{T} with k rows and n - k columns.

Theorem(W.):

$$\hat{E}_{k,n}(q) = q^{k-k^2} \sum_{i=0}^{k-1} (-1)^i [k-i]_q^n q^{ki-k} \left(\binom{n}{i} q^{k-i} + \binom{n}{i-1} \right).$$

Additionally, $\hat{E}_{k,n}(q)$ specializes at q = -1, 0, 1 to binomial numbers, Narayana numbers, and Eulerian numbers.

Note: there are also two interpretations for this polynomial in terms of permutations.

Corteel's result

Theorem (Corteel): Let $\alpha = \beta = 1$. In the steady state, the probability that the PASEP model with n sites is in a configuration with precisely k particles is:

$$\frac{\hat{E}_{k+1,n+1}(q)}{Z_n}$$

Here, Z_n is the *partition function* for the model – the sum of the probabilities of all possible states.

Question: Corteel's result doesn't say anything about the *location* of the particles. How can we refine this result?

Refinement

There is a easy bijection between words τ in $\{0,1\}^n$ and partitions of semiperimeter n+1 (where each column has length at least one):

This associates the partition $\lambda(\tau)$ to τ .

Theorem (Corteel, W). In the steady state, the probability that the PASEP is in configuration τ is: $\frac{\sum_{\mathcal{T}} q^{wt(\mathcal{T})}}{Z_n}$ where the sum is over all permutation tableaux of shape $\lambda(\tau)$.

Example

State	Partition	Perm Tableaux	Weight	Probability
$\bullet \bullet$			$q^0 = 1$	1/(q+5)
$\bigcirc ullet$		1	$q^0 = 1$	1/(q+5)
$\bigcirc \bigcirc$		1 1	$q^0 = 1$	1/(q+5)
		$\begin{array}{c cccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}$	q +2	(q+2)/(q+5)

Further Refinement

Now want α and β to be general. Two more definitions ...

Given a permutation tableaux \mathcal{T} , let $f(\mathcal{T})$ be the number of 1's in the first row of \mathcal{T} .

We say that a 0 of \mathcal{T} is *restricted* if it lies below some 1. And we say that a row is *unrestricted* if it does not contain a restricted 0. Let $u(\mathcal{T})$ be the number of unrestricted rows of \mathcal{T} minus 1.

1	1	0	0
0	0	1	0
1	1	1	1
0	0	1	

Above, $f(\mathcal{T}) = 2$ and $u(\mathcal{T}) = 1$.

Refined Theorem

Theorem (Corteel, W). In the steady state, the probability that the PASEP is in configuration τ is $\frac{\sum_{\mathcal{T}} q^{wt(\mathcal{T})} \alpha^{-f(\mathcal{T})} \beta^{-u(\mathcal{T})}}{Z_n}$, where the sum ranges over all permutation tableaux \mathcal{T} of shape λ .

How to prove this: the matrix ansatz

Let $P_n(\tau_1, \ldots, \tau_n)$ denote the probability that in the steady state, the PASEP model is in configuration τ . Define unnormalized weights $f_n(\tau_1, \ldots, \tau_n)$, which are equal to the $P_n(\tau_1, \ldots, \tau_n)$ up to a constant:

$$P_n(\tau_1,\ldots,\tau_n)=f_n(\tau_1,\ldots,\tau_n)/Z_n,$$

where Z_n is the partition function $\sum_{\tau} f_n(\tau_1, \ldots, \tau_n)$.

Theorem: (Derrida, Evans, Hakim, Pasquier) Suppose that D and E are matrices, V is a column vector, and W is a row vector, such that:

$$DE - qED = D + E$$
$$DV = \frac{1}{\beta}V$$
$$WE = \frac{1}{\alpha}W$$

Lauren K. Williams

Then

$$f_n(\tau_1, \dots, \tau_n) = W(\prod_{i=1}^n (\tau_i D + (1 - \tau_i)E))V.$$

Lauren K. Williams

Proof of main result – when $\alpha = \beta = 1$

(General proof uses same idea, just more variables.)

Idea: find D, E, V, W satisfying the relations of the ansatz such that products of D's and E's enumerate permutation tableaux.

Let D be the (infinite) upper triangular matrix (d_{ij}) such that $d_{i,i+1} = 1$ and $d_{i,j} = 0$ for $j \neq i+1$.

That is, D is the matrix

$$\left(\begin{array}{cccccccc} 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \end{array}\right)$$

Let E be the (infinite) lower triangular matrix (e_{ij}) such that for $j \leq i, e_{ij} = \sum_{r=0}^{j-1} {i-j+r \choose r} q^r = \frac{[i]^{(i-j)}}{(i-j)!}$. (Otherwise $e_{ij} = 0$). Here, $[i]^{(k)}$ represents the kth derivative of [i] with respect to q.

That is, E is the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \dots \\ 1 & [2] & 0 & 0 & 0 & \dots \\ 1 & [3]' & [3] & 0 & 0 & \dots \\ 1 & \frac{[4]''}{2} & [4]' & [4] & 0 & \dots \\ 1 & \frac{[5]'''}{6} & \frac{[5]''}{2} & [5]' & [5] & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix},$$

Let W be the (row) vector (1, 0, 0, ...) and V be the (column) vector (1, 1, 1, ...).

Then DE - qED = D + E, DV = V, WE = W. Furthermore, $W(\prod_{i=1}^{n} (\tau_i D + (1 - \tau_i)E))V$ enumerates permutation tableaux of shape $\lambda(\tau)$.

So by the result of Derrida et al, the generating function for permutation tableaux of a given shape $\lambda(\tau)$ corresponds exactly to the probability that in the steady state, the PASEP is in configuration τ .

Comments

Our first proof of the theorem was algebraic and used the "matrix ansatz." It left us wondering ...

Question: what is the role of the permutation tableaux in this model and can one "lift" the PASEP to a chain on permutation tableaux – in such a way that the steady state probability of being at a particular tableaux \mathcal{T} is

$$\frac{q^{wt(\mathcal{T})}\alpha^{-f(\mathcal{T})}\beta^{-u(\mathcal{T})}}{Z_n}?$$

Inspiration from work of Duchi and Schaeffer, who proved a similar statement in the q = 0 case for the Catalan-enumerated "complete configurations."

Lauren K. Williams

Applications: recurrences for ASEP ...

Theorem (Brak, Corteel, Rechnitzer, Essam): Steady state probabilities of the PASEP obey the following recurrence:

$$f_{n}(\tau_{1},\tau_{2},\ldots,\tau_{j-1},\bullet,\circ,\tau_{j+2},\ldots,\tau_{n}) = f_{n-1}(\tau_{1},\tau_{2},\ldots,\tau_{j-1},\bullet,\tau_{j+2},\ldots,\tau_{n}) + qf_{n}(\tau_{1},\tau_{2},\ldots,\tau_{j-1},\circ,\bullet,\tau_{j+2},\ldots,\tau_{n}) + f_{n-1}(\tau_{1},\ldots,\tau_{j-1},\circ,\tau_{j+2},\ldots,\tau_{n}).$$

We get a new and much simpler picture proof of this result:

Applications: monotonicity results ...

Def: Let $\tau, \tau' \in \{0, 1\}^n$ be two states of the PASEP which contain exactly k particles. We define the partial order \prec by $\tau \prec \tau'$ if and only if $\lambda(\tau) \subset \lambda(\tau')$.

Proposition (Corteel, W). Let $\alpha = \beta = 1$. Suppose that $\tau \prec \tau'$, and let $d := |\lambda(\tau')| - |\lambda(\tau)|$. Then $f_n(\tau') - f_n(\tau)$ is a non-negative polynomial. In other words, as one moves up the partial order \prec , the coefficients of $f_n(\tau)$ monotonically increase.

Proposition (Steingrimsson, W). Let $\alpha = \beta = 1$. If d < n/2, then $f_n(\bullet^{d+1} \circ^{n-d-1}) - f_n(\bullet^d \circ^{n-d})$ is a non-negative polynomial. As a corollary, the most probable state of the PASEP is $\bullet^{n/2} \circ^{n/2}$.

Questions/ Future directions

- Is there a connection with total positivity?
- Can one exploit connection with totally non-negative Grassmannian?
- Generalizations to several types of particles?
- Link with orthogonal polynomials?