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Abstract. A grid polygon is a polygon whose vertices are points of a grid. We define an injective
map between permutations of length n and a subset of grid polygons on n vertices, which we call

consecutive-minima polygons. By the kernel method, we enumerate sets of permutations whose
consecutive-minima polygons satisfy specific geometric conditions. We deal with 2-variate and
3-variate generating functions.

1. Introduction

The enumeration of permutations that satisfy certain constraints has recently attracted interest
(see e.g. [1, 3, 4, 7, 8, 12, 13, 14, 15]). In particular, permutation patterns have been extensively
studied over the last decade (see for instance [4] and references therein). The tools involved in these
works include generating trees (with either one or two labels), combinatorial approaches, recurrences
relations, enumeration schemes, scanning elements algorithms, etc.

Permutations are traditionally associated to a number of combinatorial and algebraic objects,
like matrices, trees, posets, graphs, etc. (see e.g. [5, 11]). The purpose of this work is to begin
a study of the interplay between permutations and polygons. A practical motivation comes from
computational geometry, where the complexity of algorithms for polygons is an important subject
[6]. Of course, it is intuitive that imposing combinatorial constraints on geometric objects com-
monly reduces generality; on the other side, techniques from combinatorics may provide a fertile
background for the design of algorithms, even if the analysis is restricted to toy-cases.

Here we associate permutations to a subset of the grid polygons and enumerate sets of per-
mutations whose polygons satisfy specific geometric conditions. Clearly, there are many potential
ways to associate permutations to polygons. Each way presumably has a special feature which
helps to underline some particular property of the permutations. If we want to keep a one-to-one
correspondence, this arbitrariness is materialized in two points:

• Of all possible polygons associated to a given permutation, we choose the one with a fixed
extremal property, for example, the polygon with minimum area or perimeter.

• We decide how to construct a polygon according to some chosen rule. The rule should
guarantee the association of each permutation to a single polygon, unequivocally.
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We opt here for the second approach, as it is formalized in what follows. A grid of side n is
an n × n array containing n2 points, n in each row and each column. The distance between two
closest points in the same row or in the same column is usually taken to be 1 unit. A permutation
of length n is a complete ordering of the elements of the set [n] = {1, ..., n}. We associate a grid of
side n, denoted by Lπ, to a permutation π of length n. If the permutation takes i to j = πi, we
mark the point (i, j) of the grid, that is the point in the row i and the column j. For example, the
grid Lπ represented in Figure 1 is associated to the permutation π = 4523176.
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Figure 1. The grid L4523176 and the consecutive-minima polygon P4523176.

A grid polygon on n vertices is a polygon whose vertices are n points of a grid. A permutation
polygon on n vertices is a grid polygon with the following properties: the side of the grid is n;
in every row and every column of the grid there is one and only one vertex of the polygon. It is
intuitive to observe that a permutation can be associated to more than one polygon depending on
how we connect the marked points of the grid. Let Lπ be a grid of side n of a permutation π.

• A point (i, j) is said to be a left-right minimum of Lπ if there is no point (i′, j′) of Lπ

such that i′ < i and j′ < j.
• A point (i, j) is said to be a right-left minimum of Lπ if there is no point (i′, j′) of Lπ

such that i′ > i and j′ < j.
• A point (i, j) is said to be a source of Lπ if either i = 1, i = n, or (i, j) is not a left-right

minimum or a right-left-minimum.

We say that two points (i, j) and (i′, j′) of the grid Lπ (resp. of the set of left-right minima,
right-left minima, sources) are consecutive if there is no point (a, b) in the set of (resp. left-right
minima’s, right-left minima’s, sources) such that i < a < i′ or i′ < a < i. For example, the left-
right-minima of L4523176 are (1, 4), (3, 2) and (5, 1); the right-left-minima are (7, 6) and (5, 1); the
sources are (1, 4), (2, 5), (4, 3), (6, 7), and (7, 6) (see Figure 1).

Definition 1.1. A consecutive-minima polygon (in what follows just polygon) of a permutation
π, denoted by Pπ, is a permutation polygon in which two vertices a = (i, j) and b = (i′, j′), i < i′,
are connected if one of the following conditions is satisfied:

• a and b are consecutive left-right minima of Lπ;
• a and b are consecutive right-left-minima of Lπ;
• a and b are consecutive sources of Lπ.

In such a context (a, b) is called an edge of Pπ.

For example, the polygon Pπ for all π ∈ S4 is represented in Figure 2. In the next sections we
will deal with several questions about the number of polygons on n vertices that satisfy a certain
set of conditions. In order to do so, we first need to give some further definition. Let P be a
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Figure 2. The consecutive-minima polygons on 4 vertices.

polygon, an edge ((i, j), (i′, j′)), i < i′, of P is said to be increasing (resp. decreasing) if j < j′

(resp. j > j′). A path of P is a sequence (a0, a1), (a1, a2), . . . , (as−1, as) of edges of P . A face of P
is either a maximal path of increasing edges or a maximal path of decreasing edges. For example,
there are exactly 4, 16, 4 polygons on 4 vertices of exactly two, three, four faces, respectively. This
can be observed in Figure 2.

A polygon is said to be k-faces if it has exactly k faces. We will present an explicit formula for
the number of k-faces polygons on n, where k = 2, 3, 4. It seems to be a challenging question to
find an explicit formula for any k.

The technique considered in this paper makes use of generating functions to convert recurrence
relations to functional equations which are then solved by the kernel method as described in [2]. It
may be interesting to remark that the kernel method is a routine approach when dealing with 2-
variate generating functions. However, for functional equations with more than two variables there
is no systematic approach. Bousquet-Mélou [3] enumerates four different pattern avoiding classes
of permutations by using the kernel method with 3-variate generating functions. We suggest here
another class, namely the square permutations, see Section 5. To these permutations corresponds
a functional equation defining 3-variate generating functions. Interestingly, such permutations are
not immediately related to pattern avoidance.

The remainder of the paper is composed of five sections. In Section 2, we make some general
observations about consecutive-minima polygons. We characterize convex polygons and enumerate
polygons on n vertices with maximum number of faces. In Section 3, 4 and 5, we enumerate 2-faces,
3-faces and 4-faces polygons, respectively. Section 6 is a list of open problems.
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2. Some general observations

2.1. Convexity. A polygon is convex if the internal angle formed at each vertex is smaller
than 180◦. Give a sequence a1, a2, . . . , an, we say that the subsequence ai1 , . . . , aim

with i1 < i2 <
· · · < im is fast-growing if

aij
− aij+1

ij − ij+1
<

aij+1
− aij+2

ij+1 − ij+2
,

for any j = 1, 2, . . . ,m − 2, and slow-growing if

aij
− aij+1

ij − ij+1
>

aij+1
− aij+2

ij+1 − ij+2
,

for any j = 1, 2, . . . ,m − 2.
The consecutive-minima polygon Pπ is convex if and only if

• the subsequence of left-right-minima of π is fast-growing;
• the subsequence of right-left-maxima of π is fast-growing;
• the subsequence Lπ of the sources of π is slow-growing.

2.2. Number of faces. The number of 1-face polygons on n vertices is exactly 2, that is
the polygons corresponding to the two permutations 12 . . . n and n . . . 1. The number of different
consecutive-minima polygon on n vertices is exactly n. To clarify this observation, let P be any
consecutive-minima polygon on n vertices, such that k is maximal if each face is a segment con-
necting two vertices, and thus k ≤ n. It is not difficult to show that there exists at least one k-face
consecutive-minima polygon for any k = 1, 2, . . . , n. Let

φ2k = 2436587 . . . (2k − 2)(2k − 3)(2k)(2k + 1)(2k + 2) . . . n1(2k − 1)

and

φ2k+1 = 2436587 . . . (2k)(2k − 1)1(2k + 1)(2k + 2) . . . n

be two permutations of length n for all k ≥ 2, φ1 = 123 . . . n, φ2 = 13245 . . . n, and φ3 = 2134 . . . n,
then we can see that Pφk′ has exactly k′-faces. Hence, for any n ≥ 4 we have n different consecutive-
minima polygon on n vertices.

What about permutations with maximum number of faces? Let π be a permutation of length
n ≥ 3. Since the maximum number of faces of Pπ is n, one of the following holds:

(1) π is an alternating permutation (π is said to be alternating if either π1 > π2 < π3 > π4 <
· · ·πn or π1 < π2 > π3 < π4 > · · ·πn) such that π1 = 1 and πn = 2;

(2) π is an alternating permutation such that π1 = 2 and πn = 1;
(3) Removing the letter πi = 1, 2 ≤ i ≤ n − 1, from π then

(π1 − 1) . . . (πi−1 − 1)(πi+1 − 1) . . . (πn − 1)

is a permutation satisfying either (1) or (2).

Let En be the the number of alternating permutations of length n (see [10, A000111] and
references therein). Thus the number of permutations satisfying either (1) or (2) is exactly En−2 if
n is odd, otherwise it is 0. Hence, we can state the following result.

Proposition 2.1. The number of polygons on n vertices with maximum number of faces (n
faces) is given by 2En−2 if n odd, and 2(n − 2)En−3 if n even.
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3. Enumeration of two faces polygons

A permutation is said to be parallel if its polygon has exactly two faces. For instance, there
are 4 parallel permutations of length 4, namely 1234, 1324, 4231 and 4321. We denote the set of
all parallel permutations of length n by Pn.

We say that a permutation π = π1π2 · · ·πn ∈ Sn avoids τ = τ1τ2 . . . τk ∈ Sk (or τ -avoiding) if
there no subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that πip

< πiq
if and only if τp < τq for all

1 ≤ p < q ≤ k. For example, the permutation 4132 avoids 231 but it does not avoid 123. For any
pattern τ we write Sn(τ) to denote the permutations of Sn which avoid τ .

We will count the number of parallel permutations π ∈ Sn whose faces are both increasing,
that is π1 = 1 and πn = n. This number can then be doubled to find the total number of parallel
permutations in Sn. On the other hand, it is easy to check that π = π1π2 · · ·πn is a parallel
permutation with two increasing faces if and only if π avoids 321, π1 = 1 and πn = n. Using [11,
Exercise 6.19(ee)], we obtain the following result.

Theorem 3.1. The number of parallel permutations π of length n is 2
n−1

(

2n−4
n−2

)

, for all n ≥ 2.

4. Enumeration of three faces polygons

A permutation π is said to be triangular if it begins at letter 1 and its polygon Pπ has at most 3
faces. For example, there exist 1, 1, 2, 6, 20 triangular permutations of length 1, 2, 3, 4, 5, respectively.
We denote the set of all triangular permutations of length n by Tn. Given a1, a2, . . . , ad ∈ N, we
define

tn;a1,a2,...,ad
= #{π1π2 . . . πn ∈n| π1π2 . . . πd = a1a2 . . . ad},

The cardinality of the set Tn is denoted by tn.

Theorem 4.1. The number of triangular permutations of length n + 2 is
(

2n
n

)

. Moreover, the

ordinary generating function t(v;x) =
∑

n≥2

∑n
a=2 tn;1,ava−2xn is given by

x2(1 − v)(1 − xv)2

(1 − 2xv)(1 − v + xv2)
+

x3

1 − v + xv2
· 1√

1 − 4x
.

Proof. From the definitions, we have that

tn = tn;1 = tn;1,2 + tn;1,3 + · · · + tn;1,n.

For all a = 3, 4, . . . , n − 1,

(4.1) tn;1,a = tn;1,a,2 +

n
∑

j=a+1

tn;1,a,j = tn−1;1,a−1 +

n
∑

j=a+1

tn−1;1,j−1 =

n−1
∑

j=a−1

tn−1;1,j ,

with the initial conditions tn;1,2 = tn−1;1 and tn;1,n = 2n−3. To see that

(4.2) tn;1,n = 2n−3

we consider the following equation tn;1,n = tn;1,n,2+tn;1,n,n−1 = tn−1;1,n−1+tn−1;1,n−1 = 2tn−1;1,n−1

for all n ≥ 4, and t3;1,3 = 1 which implies that tn;1,n = 2n−3 as claimed. To see (4.1), let
π = π1π2 · · ·πn be any triangular permutation such that π1 = 1 and π2 = a, and let us consider
the possibly values of π3. Since π has at most three faces we obtain that either π3 = 2 or π3 ≥ π2:

• In the case π3 = 2 we have that π is a triangular permutation if and only if

π′ = 1(a − 1)(π4 − 1) · · · (πn − 1)

is a triangular permutation.
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• In the case π3 = j > a we have that π is a triangular permutation if and only if

π′ = 1(j − 1)π′
4 · · ·π′

n

is a triangular permutation, where π′
i = πi if πi ≤ a − 1, otherwise π′

i = πi − 1.

Summing over all possibly values of π3 we obtain (4.1). To solve (4.1), we need to define tn(v) =
∑n

a=2 tn;1,ava−2. Thus, multiplying the above recurrence relation by va−2 and summing over a =
3, 4, . . . , n − 1 we obtain that

tn(v) = tn−1(1) + 2n−3vn−2 +

n−1
∑

a=3

n−1
∑

j=a−1

tn−1;1,jv
a−2,

which is equivalent to

tn(v) = tn−1(1) + 2n−4vn−2 +
v

1 − v
(tn−1(1) − vtn−1(v)),

for n ≥ 4. Let t(v;x) =
∑

n≥2 tn(v)xn. Multiplying the above recurrence relation with xn, summing

over all possibly n ≥ 4, and using the initial conditions t2(v) = 1 and t3(v) = 1 + v, we obtain the
following functional equation

t(v;x) =
xv

1 − v
(t(1;x) − vt(v;x)) + xt(1;x) − (1 − xv)2x2

1 − 2xv
,

which is equivalent to
(

1 +
xv2

1 − v

)

t(v;x) =
x

1 − v
t(1;x) − (1 − xv)2x2

1 − 2xv
.

This type of equation can be solved using the kernel method. Substitute v = 1−
√

1−4x
2x in the above

functional equation to get t(1;x) = x2

√
1−4x

, that is, the number of triangular permutations of length

n is exactly
(

2n−4
n−2

)

, as required. Moreover, substituting the expression of t(1;x) in the functional

equation, we get an explicit formula for t(v;x), as claimed. �

As a corollary of Theorem 3.1 and Theorem 4.1 we get the following.

Corollary 4.2. The number of polygons on n vertices with exactly three faces is

4(n − 2)

n − 1

(

2n − 4

n − 2

)

,

for all n ≥ 2.

Proof. Theorem 3.1 and Theorem 4.1 give that the number of permutations π of length n
that begin at letter 1 and its polygon Pπ has exactly three faces is n−2

n−1

(

2n−4
n−2

)

. If Pπ has exactly

three faces then also Pπ′ and Pπ′′ have exactly three faces, where π′ is the complement of π and
π′′ is the reversal of π. (Recall that the reversal of a permutation π1π2 . . . πn is πn . . . π2π1; the
complement of is the permutation (n + 1 − π1)(n + 1 − π2) . . . (n + 1 − πn)). From this fact, we
obtain that the number of polygons on n vertices with exactly three faces is four times the number
of permutations π of length n that begin at letter 1 and whose polygon Pπ has exactly three faces.

This number is 4(n−2)
n−1

(

2n−4
n−2

)

, as required. �
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5. Enumeration of four faces polygons

A permutation π is said to be square if the subsequence of the sources of Lπ lies on at most
two faces of Pπ. For example, there exists 1, 2, 6, 24, 104, 464, 2088 square permutations of length
1, 2, 3, 4, 5, 6, 7, respectively. We denote the set of all square permutations of length n by Qn. Given
a1, a2, . . . , ad ∈ N, we define

qn;a1,a2,...,ad
= #{π1π2 . . . πn ∈ Qn | π1π2 . . . πd = a1a2 . . . ad},

The cardinality of the set set Qn by qn. Clearly, a triangular permutation is a square permutation.
We derive an explicit formula for the number of square permutations of length n as follows.

Theorem 5.1. The ordinary generating function for the number of square permutations of
length n is given by

1 + x +
2(1 − 3x)x2

(1 − 4x)2
− 4x3

(1 − 4x)3/2
.

Moreover, the number of square permutations of length n is

2(n + 2)4n−3 − 4(2n − 5)

(

2n − 6

n − 3

)

,

for all n ≥ 3.

Proof. From the symmetry arising in the construction of square permutations we have that
for all n ≥ a > b ≥ 1,

(5.1) qn;a,b = qn;n+1−a,n+1−b and qn;a,b = qn;b,a.

Define Qn(u, v) =
∑n

a=1

∑n
b=1 qn;a,bv

a−1ub−1, for all n ≥ 2, and Q(u, v;x) =
∑

n≥0 Qn(v, u)xn to

be the ordinary generating function for the sequence Qn(u, v). Thus, (5.1) gives

(5.2) Q(v, u;x) = Q′(v, u;x) + Q′(u, v;x),

where

Q′(u, v;x) =
∑

n≥2

Q′
n(v, u)xn =

∑

n≥2

xn
n
∑

a=2

a−1
∑

b=1

qn;a,bv
a−1ub−1.

To find an explicit formula for Q′(1, 1;x), which leads us to explicit formula for Q(1, 1, ;x), the
ordinary generating function for the number of square permutations of length n, we need to divide
the generating function Q′(u, v;x) into three parts. For all n ≥ a > b ≥ 1, define

A(v;x) =
∑

n≥2 An(v)xn =
∑

n≥2 xn
∑n

a=2 qn;a,1v
a−1,

B(v;x) =
∑

n≥2 Bn(v)xn =
∑

n≥3 xn
∑n−1

b=2 qn;n,bv
b−1,

C(v, u;x) =
∑

n≥2 Cn(u, v)xn =
∑

n≥4 xn
∑n−1

a=3

∑i−1
b=2 qn;a,bv

a−1ub−1.

Clearly, for all n ≥ 2, Q′
n(v, u) = Cn(v, u) + vn−1Bn(u) + An(v) and then

(5.3) Q′(u, v;x) = C(v, u;x) +
1

v
B(u;xv) + A(v;x).

Expression for A(v;x): First, we find an explicit formula for the ordinary generating function
A(v;x). From the definitions and (5.1), we have that

qn;2,1 = qn−1;1 =
∑n−1

b=2 qn−1;1,b =
∑n−1

b=2 qn−1;b,1 = An−1(1),

qn;a,1 = qn;a,1,2 +
∑n

b=a+1 qn;a,1,b = qn−1;a−1,1 +
∑n

b=a+1 qn−1;1,b−1 =
∑n−1

b=a−1 qn−1;b,1,
qn;n,1 = qn;n,1,2 + qn;n,1,n−1 = 2qn−1;n−1,1.
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Using q3;3,1 = 1 and the recurrence relation for the sequence qn;n,1, we obtain that, for all n ≥ 3,

(5.4) qn;n,1 = 2n−3.

Multiplying by va−1 and summing over all a = 3, 4, . . . , n − 1, we obtain that

An(v) = vAn−1(1) +
∑n−1

a=3 va−1
∑n−1

j=a−1 qn−1;j,1 + qn;n,1v
n−1,

= vAn−1(1) +
∑n−2

a=2 qn−1;a,1
v2−vi+1

1−v + v2−vn−1

1−v qn−1;n−1,1 + qn;n,1v
n−1.

Then (5.4) leads us to

An(v) = vAn−1(1) +
v2

1 − v
(An−1(1) − 2n−4 − An−1(v) + 2n−4vn−2) + 2n−4 v2 − vn−1

1 − v
+ 2n−3vn−1,

which is equivalent to

An(v) = vAn−1(v) +
v2

1 − v
(An−1(1) − An−1(v)) + 2n−4vn−4,

for all n ≥ 4, with initial conditions A2(v) = v and A3(v) = v + v2. Writing the above recurrence
relation in terms of generating functions,

A(v;x) − (v + v2)x3 − vx2 = vx(A(1;x) − x2) +
xv2

1 − v
(A(1;x) − x2 − A(v;x) + vx2) +

v3x4

1 − 2vx
.

Equivalently,
(

1 +
v2x

1 − v

)

A(v;x) = vx2 +
v3x4

1 − 2vx
+

vx

1 − v
A(1;x).

This type of equation can be solved systematically using the kernel method. We substitute v =
1−

√
1−4x

2x in the above functional equation to get A(1;x) = x2

√
1−4x

and then

(5.5) A(v;x) =
1

1 − v + v2x

(

v(1 − v)x2 +
v3(1 − v)x4

1 − 2vx
+

vx3

√
1 − 4x

)

.

Expression for B(v;x): Using the symmetry on the set of square permutations, see (5.1), we
obtain that

B(v;x) =
∑

n≥3

xn
n−1
∑

j=2

qn;j,nvj−1 =
∑

n≥3

xn
n−1
∑

j=2

qn;n+1−j,1v
j−1 =

∑

n≥3

xn
n−1
∑

j=2

qn;j,1v
n−j ,

and from the definition of the generating function A(v;x) together with (5.4),

B(v;x) =
1

v
A(1/v; vx) − x2(1 − x)

1 − 2x
.

It follows that

(5.6) B(v;x) =
vx3(1 − x)

(1 − 2x)(1 − v − x)
− x3v2

(1 − v − x)
√

1 − 4vx
.
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Expression for C(v, u;x): From the definitions and (5.1), for all n − 1 ≥ a > b ≥ 2,

qn;a,b =
b−1
∑

j=1

qn;a,b,j +
n
∑

j=a+1

qn;a,b,j

=
b−1
∑

j=1

qn−1;a−1,j +
n
∑

j=a+1

qn−1;j−1,b

=
b−1
∑

j=1

qn−1;a−1,j +
n−1
∑

j=a

qn−1;j,b.

Thus, for all n ≥ 5,

Cn(v, u) =
n−1
∑

a=3

a−1
∑

b=2

(

b−1
∑

j=1

qn−1;a−1,j +
n−1
∑

j=a

qn−1;j,b

)

va−1ub−1

=
n−2
∑

a=2

a−1
∑

b=1

qn−1;a,b
uj−ui

1−u vi +
n−1
∑

a=3

a−1
∑

b=2

qn−1;a,b
vj−vi

1−v uj−1.

Therefore, by the definition of the sequences An(v), Bn(v) and Cn(n, u) together with (5.1), for all
n ≥ 5,

Cn(v, u)
= vu

1−u (Cn−1(v, u) − Cn−1(vu, 1)) + v
1−v (Cn−1(1, vu) − Cn−1(v, u))

+ v
1−v (Bn−1(vu) − vn−2Bn−1(u)) + uv

1−u (An−1(v) − An−1(vu)) − 2n−4 uvn−1(1−un−2)
1−u .

By converting the above recurrence relation in terms of generating functions with the use of the
initial condition C4(v, u) = 2uv2 (this holds immediately from the definitions), we can write

C(v, u;x) = 2uv2x4 + vux
1−u (C(v, u;x) − C(vu, 1;x)) + vx

1−v (C(1, vu;x) − C(v, u;x))

+ vx
1−v (B(vu;x) − vux3) − v

1−v (B(u; vx) − v3ux3)

+ vux
1−u (A(v;x) − vx2 − v(1 + v)x3) − vux

1−u (A(vu;x) − vux2 − vu(1 + vu)x3)

− 2v4ux5

(1−2vx)(1−u) + 2v4u4x5

(1−2vux)(1−u) .

It is well known that this type of functional equations with several variables are in general very
hard to solve (see e.g. [3]). However, in our case, we are able to find an explicit formula for the
ordinary generating function C(1, 1;x), as it is described below.

Explicit formula for C(1, 1;x): Substituting u = v−1 in the above functional equation gives

C(v, v−1;x)
= 2vx4 − vx

1−v (C(v, v−1;x) − C(1, 1;x)) + vx
1−v (C(1, 1;x) − C(v, v−1;x))

+ vx
1−v (B(1;x) − x3) − x

1−v (B(v−1; vx) − v2x3) − vx
1−v (A(v;x) − vx2 − v(1 + v)x3)

+ vx
1−v (A(1;x) − x2 − 2x3) + 2v4x5

(1−2vx)(1−v) − 2vx5

(1−2x)(1−v) .

This is equivalent to
(

1 + 2vx
1−v

)

C(v, v−1;x)

= −(1 + x + vx)vx3 + 2vx
1−v C(1, 1;x) + vx

1−v B(1;x) − x
1−v B(v−1; vx)

− vx
1−v A(v;x) + vx

1−v A(1;x) + 2v4x5

(1−2vx)(1−v) − 2vx5

(1−2x)(1−v) ,
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By taking v = 1
1−2x and using (5.5) and (5.6),

C(1, 1;x) =
2(3x − 1)x2

(1 − 4x)3/2
+

2x2(1 − 7x + 15x2 − 8x3)

(1 − 2x)/(1 − 4x)2
.

Explicit formula for Q(1, 1;x): Equations (5.3), (5.5) and (5.6) give an explicit formula for

Q′(1, 1;x), namely Q′(1, 1;x) = (1−3x)x2

(1−4x)2 − 2x3

(1−4x)3/2 . Hence, by (5.2), we obtain that Q(1, 1;x) =

2Q′(1, 1;x) and the ordinary generating function for the number of square permutations of length
n is given by 1 + x + 2Q′(1, 1;x) (1 for the empty permutation and x for the permutation of length
1), as required. �

Corollary 5.2. The number of polygons on n vertices with four faces such that the sources
of the polygon lies on exactly two faces is given by

2(n + 2)4n−3 − 2(n + 1)

(

2n − 4

n − 3

)

.

Proof. The formula is obtained directly from Theorem 5.1 and Corollary 4.2. �

6. Open problems

In this paper we have used a technique based on the kernel method to solve functional equations
for enumerating k-faces polygons on n vertices, where k = 2, 3, 4. The results suggest the following
problems:

• The most important question in our context is to find an explicit formula for the number
of k-faces polygons on n vertices for any k.

• Can we find a combinatorial interpretations for the formula

2(n + 2)4n−3 − 2(n + 1)

(

2n − 4

n − 3

)

,

the number of square permutations of length n.
• All questions about geometric properties of consecutive-minima polygons remain open (for

example, maximal perimeter, maximal area, number of different polygons up to symme-
tries, etc.).
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