
Formal Power Series and Algebraic Combinatorics
Nankai University, Tianjin, China, 2007

Involutions avoiding the class of permutations
in Sk with prefix 12

W. M. B. Dukes & Toufik Mansour

Abstract. An involution π is said to be τ -avoiding if it does not contain any subsequence having all
the same pairwise comparisons as τ . This paper concerns the enumeration of involutions which avoid

a set Ak of subsequences increasing both in number and in length at the same time. Let Ak be the
set of all the permutations 12π3 . . . πk of length k. For k = 3 the only subsequence in Ak is 123 and
the 123-avoiding involutions of length n are enumerated by the central binomial coefficients

( n
bn/2c

)
.

For k = 4 we give a combinatorial explanation that shows the number of involutions of length n

avoiding A4 is the same as the number of symmetric Schröder paths of length n− 1. For each k ≥ 3

we determine the generating function for the number of involutions avoiding the subsequences in
Ak, according to length, first entry and number of fixed points.

1. Introduction

Let [d] denote a totally ordered alphabet on d letters, and let Sn denote the set of permutations of
[n] = {1, . . . , n}, written in one-line notation, and suppose π ∈ Sn. We write |π| to denote the length of
π, namely n, and for all i ∈ [n], we write πi to denote the i-th element of π. Let α = α1 . . . αm ∈ [p1]m,
β = β1 . . . βm ∈ [p2]m. We say that α is order-isomorphic to β if for all 1 ≤ i < j ≤ m one has αi < αj

if and only if βi < βj . For two permutations π ∈ Sn and τ ∈ Sk, an occurrence of τ in π is a
subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that (πi1 , . . . , πik

) is order-isomorphic to τ ; in such
a context τ is usually called the pattern. We say that π avoids τ , or is τ -avoiding, if there is no
occurrence of τ in π. A natural generalization of single pattern avoidance is subset avoidance, that
is, we say that π ∈ Sn avoids a subset T ⊆ Sk if π avoids all τ ∈ T . The set of all τ -avoiding (resp.
T -avoiding) permutations of length n is denoted Sn(τ) (resp. Sn(T )).

Several authors have considered the case of general k in which T enjoys various algebraic properties.
Barcucci et al. [2] treat the case of permutations avoiding the collection of permutations in Sk that
have suffix (k−1)k. Adin and Roichman [1] look at the case where T is a Kazhdan–Lusztig cell of Sk,
or, equivalently, a Knuth equivalence class (see [12, Vol. 2, Ch. A1]). Mansour and Vainshtein [10]
consider the situation where T is a maximal parabolic subgroup of Sk. In the current paper an
analogous result is established for pattern-avoiding involutions. Simion and Schmidt [11] considered
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the first cases of pattern-avoiding involutions, which was continued in Gouyou-Beauchamps [5] and
Gessel [6] for increasing patterns, and subsequently in Guibert’s Ph.D. thesis [7].

Kremer [8, Corollary 9] has shown that |Sn(1243, 2143)|, the number of permutations in Sn that avoid
both 1243 and 2143, is given by rn−1, for all n ≥ 0, where rn is the n-th Schröder number, defined by
r0 = 1 and rn = rn−1 +

∑n
i=1 ri−1rn−i for n ≥ 1. As a result, for all n ≥ 0, the set Sn+1(1243, 2143)

is in bijection with the set of Schröder paths of length n. These are the lattice paths from (0, 0) to
(n, n) which contain only east E = (1, 0), north N = (0, 1), and diagonal D = (1, 1) steps and which
do not pass below the line y = x. A symmetric Schröder path of length n is a Schröder path of length
n which is symmetric about the line x + y = n.

We say π is an involution whenever ππi
= i for all i ∈ [n]. We denote by In and In the set of involutions

in Sn and its cardinality, respectively. We say that i is a fixed point of a permutation π if πi = i.
Define Jn(p) to be the polynomial

∑n
j=0 In;jp

j , where In;j is the number of involutions in In with j

fixed points. For example, J0(p) = 1, J1(p) = p, J2(p) = 1 + p2, and J3(p) = 3p + p3. It is not hard
to see that the polynomial Jn(p) satisfies the recurrence relation Jn(p) = pJn−1(p) + (n− 1)Jn−2(p),
n ≥ 1, with the initial condition J0(p) = 1. The exponential generating function for the sequence
Jn(p) is given by epx+x2/2.

The main result of this paper can be formulated as follows. Let Ak be the class of permutations in
Sk with prefix 12, that is,

Ak = {π1π2 . . . πk ∈ Sk | π1 = 1, π2 = 2}.
Theorem 1.1. Let k ≥ 2. Then the generating function for the number of Ak-avoiding involutions of
length n with m fixed points is given by∑

n≥0

∑
π∈In

xnp#fixed points in π =
k−3∑
j=0

Jj(p)xj − xk−3

2
Jk−2(p)

(
p + (p(k − 3)x2 − 2x− p)u0(x)

)
−xk−4

2
Jk−3(p)

(
x + p− (x3(k − 3)− px2(k − 1) + x + p)u0(x)

)
,

where u0(x) = 1/
√

1− 2(k − 1)x2 + (k − 3)2x4.

The proof is given in Section 3. Theorem 1.1 with k = 3 and p = 1 shows the generating function
for the number 123-avoiding involutions of length n to be 2x

2x−1+
√

1−4x2 =
∑

n≥0

(
n

bn/2c
)
xn (see [11]).

Moreover, Theorem 1.1 with k = 3 and p = 0 gives the number of 123-avoiding involutions of length
2n without fixed points to be 1

2

(
n

bn/2c
)
. Also, Theorem 1.1 with k = 4 and p = 1 gives the generating

function for the number {1234, 1243}-avoiding involutions of length n to be 1−x
2 + 1+x

2

√
1+2x−x2

1−2x−x2 . In
Section 2 we give a combinatorial explanation for this result and prove that the number {1234, 1243}-
avoiding involutions of length n is the same as the number of symmetric Schröder paths of length
n− 1.

2. Symmetric Schröder paths and {1234, 1243}-avoiding involutions

In this section we give a combinatorial explanation for why the number of symmetric Schröder paths of
length n (for definition, see below) is the same as the number of {1234, 1243}-avoiding involutions on
n+1 elements. This explanation is via the existence of a bijection between the two sets. The bijection
is in fact the composition of three bijections which are explained in the following three subsections.
Unfortunately the composition does not appear to reduce to one that has a simple description.
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2.1. Schröder paths and {1243, 2143}-avoiding involutions. The involutions in In(1243, 2143)
may be related to Schröder paths via the bijection ϕ in Egge and Mansour [4], which we now describe.

Let Sn be the set of all Schröder paths from (0, 0) to (n, n) and SSn the subcollection which are
symmetric about the line x+y = n. For such a path p ∈ Sn let us select a sequence of diagonals (parallel
to y = x and passing through the points (0.5, 0.75) of the unit squares with integer coordinates) that
are contained within (and on) the bounded region between p and the line y = x in the following
manner;

Let p be a Schröder path p from (0, 0) to (n, n) and si be the transposition (i, i + 1).

Step 1: If a square with integer coordinates (i− 1,m− 1), (i, m− 1), (i− 1,m) and (i,m) has
interior point (i− 0.5,m− 0.25) within the region between the path and the line y = x then
earmark this square and label it si. Let j = 1.

Step 2: Choose the rightmost earmarked square that is not yet marked (with label sk, say)
and suppose one may see (to the south-west) as far as a square with label sl, where l ≤ k of
course. Mark both these squares and all those in-between. Let σj = sksk−1 . . . sl. If there
are no further earmarked squares then go to step 3. Otherwise increase j by 1 and repeat.

Step 3: Let ϕ(p) = σj . . . σ2σ1(n + 1, n, . . . , 1).

Example 2.1. Consider the path p ∈ S6 in the diagram.

2 3 4 61 5
The green points show those squares that have been earmarked. We have σ1 = s6s5, σ2 = s4s3s2s1,
σ3 = s3s2s1 and σ4 = s2. So

ϕ(p) = σ4σ3σ2σ1(7, 6, 5, 4, 3, 2, 1)
= s2 s3s2s1 s4s3s2s1 s6s5(7, 6, 5, 4, 3, 2, 1)
= (5, 2, 4, 6, 7, 1, 3).

We generalise our notation slightly. If π ∈ Sn and A = [a1, a2, . . . , an] is an increasing sequence of
numbers, then let π ← A be the sequence (ba1 , . . . , ban

) in which bai
= aπi

for all 1 ≤ i ≤ n and
all other positions are left empty. Note that (π1, . . . , πn) ← [1, . . . , n] = π. We use ∪ to denote the
‘filling up’ of the (possibly) empty spaces in such a sequence by transpositions. (The reason for this
is that we wish to end up with a sequence which will be a permutation, and the ← operation does
not necessarily guarantee a permutation.)

Example 2.2. We have (1, 4, 2, 3, 5, 6)← [1, 2, 4, 5, 6, 7] = (1, 5, , 2, 4, 6, 7) and so
((1, 4, 2, 3, 5, 6)← [1, 2, 4, 5, 6, 7]) ∪ (3, 8) = (1, 5, 8, 2, 4, 6, 7, 3).
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Proposition 2.3.
(i) For all n ≥ 2 and p = Dp′D ∈ SSn,

ϕ(Dp′D) = (ϕ(p′)← [2, . . . , n]) ∪ (1, n + 1).

(ii) For all n ≥ 1 and p = Np′E ∈ SSn where p′ ∈ SSn, ϕ(p) = (ϕ(p′) , n + 1).
(iii) For all n ≥ 0 and p = NqEp′Nq⊥E ∈ SSn, where q ∈ Sm−2, p ∈ SSn−2m and Nq⊥E is the
reflection of NqE from (n−m,n−m) to (n, n), we have

ϕ(p) = σ(qp′q⊥){1, . . . ,m, m + 2, . . . , n} ∪ (n + 1,m + 1)

= (ϕ(qp′q⊥)← [1, . . . ,m, m + 2, . . . , n]) ∪ (n + 1,m + 1).

Proof. (i) If the path begins and ends with D, then s1 and sn will occur nowhere in the
collections of σj ’s. Thus the entries in positions 1 and n+1 in (n+1, n, . . . , 1) will remain unchanged.

(ii) In this case, σ1 = snsn−1 · · · s1 and sn will occur nowhere in σ2, . . . , σk. So ϕ(p) = σk · · ·σ2(n, n−
1, . . . , 1, n + 1) = σk · · ·σ2(n, n− 1, . . . , 1), n + 1 = (ϕ(p′), n + 1).

(iii) Let us suppose that p = NqEp′Nq⊥E ∈ SSn where q ∈ Sm−2, p ∈ SSn−2m and q⊥ ∈ Sm−2 is
the reflection of q,where m ≤ bn/2c. Let σ1, . . . , σj be the strings of si’s constructed from the Nq⊥E
region of p, σj+1, . . . , σk the strings constructed from the p′ region and σk+1, . . . , σk + j the strings
constructed from the NqE region. (Symmetry guarantees this latter collection has the same number
of σ’s as the first.)

Let σ′ = σj · · ·σ1, σ′′ = σk · · ·σj+1 and σ′′′ = σk+j · · ·σk+1. It is clear that σ1 = sn · · · sn−m+1 and
σk+1 = σm · · ·σ1. Since the path has been partitioned into 3 distinct non-overlapping regions, σ′ may
operate only on positions n −m + 1 to n + 1 (inclusive) of a permutation, σ′′ may operate only on
positions m + 1 to n−m + 1 (inclusive) and σ′′′ may operate only on positions 1 to m + 1 (inclusive.)
This gives

ϕ(p)
= σ′′′σ′′σ′(n + 1, n, . . . , 1)
= σ′′′σ′′σj · · ·σ2(n + 1, . . . ,m + 2,m, . . . , 1,m + 1)
= σ′′′σ′′(n + 1, . . . ,m + 2, a1, . . . , am,m + 1),

where ai ∈ [1,m],
= σ′′′(n + 1, . . . , n−m + 2, b1, . . . , bn−2m+1, a2, . . . , am,m + 1)
= σk+j · · ·σk+2(n, . . . , n−m + 2, b1, n + 1, b2 . . . , bn−2m+1, a2, . . . , am,m + 1)
= (c1, . . . , cm, n + 1, b2 . . . , bn−2m+1, a2, . . . , am,m + 1).

It is routine to check that this is the same as

(σ(qp′q⊥)← [1, . . . ,m, m + 2, . . . , n]) ∪ (n + 1,m + 1)

where ∪(n+1,m+1) signifies inserting n+1 between positions m and m+1 of the resulting sequences
and inserting m+1 as a suffix (i.e. (n+1,m+1) is a transposition in the resulting permutation.) �

Proposition 2.4. For all p ∈ SSn we have ϕ(p) ∈ In+1(1243, 2143).

Proof. In [4] the map ϕ : Sn → Sn+1(1243, 2143) was shown to be a bijection. Thus we need
only show that if p ∈ SSn then ϕ(p) is an involution. This is easily done via induction. For the base
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case, ϕ(∅) = (1), ϕ(D) = (2, 1) and ϕ(NE) = (1, 2) so that our proposition holds for all p ∈ SS0 and
SS1. Suppose the proposition holds for all p ∈ SSi and 0 ≤ i < n. Fix p ∈ SSn.

• If p begins with a diagonal step then p ends with a diagonal step so by Proposition 2.3(i)
ϕ(p) = (ϕ(p′)← [2, . . . , n])∪(1, n+1). This will be an involution since ϕ(p′) is an involution.
• If p = Np′E then by Proposition 2.3(ii), ϕ(p) = ϕ(p′), n + 1. Since p′ ∈ SSn−1, ϕ(p′) is an

involution and hence p is also an involution.
• If p = NqEp′Nq⊥E then by Proposition 2.3(iii)

ϕ(p) = (ϕ(qp′q⊥)← [1, . . . ,m, m + 2, . . . , n]) ∪ (n + 1,m + 1).

Since qp′q⊥ ∈ SSn−2 we have that ϕ(qp′q⊥) is an involution on [1, . . . , n−2], and hence ϕ(p)
is also an involution.

�

Example 2.5. Consider p ∈ SS8 in the diagram;

This path is of the form p = NqEp′Nq⊥E where q = D ∈ S1 and p′ = NNEDNEE ∈ SS4. So
ϕ(p) = (ϕ(DNNEDNEED)← [1, 2, 4, 5, 6, 7, 8])∪(9, 3). The path deconstruction process described in
the proof yields; ϕ(DNNEDNEED) = (ϕ(NNEDNEE)← [2, 3, 4, 5, 6])∪(1, 7); ϕ(NNEDNEE) =
ϕ(NEDNE) ∪ (5, 5) and ϕ(NEDNE) = (ϕ(D)← [1, 3]) ∪ (4, 2) = (3, 4, 1, 2).

Beginning with the last expression and systematically replacing each in its preceding expression gives;
ϕ(NNEDNEE) = (3, 4, 1, 2, 5), ϕ(DNNEDNEED) = ((3, 4, 1, 2, 5) ← [2, 3, 4, 5, 6]) ∪ (1, 7) =
(7, 4, 5, 2, 3, 6, 1) and finally ϕ(p) = ((7, 4, 5, 2, 3, 6, 1)← [1, 2, 4, 5, 6, 7, 8])∪(9, 3) = (8, 5, 9, 6, 2, 4, 7, 1, 3).

Proposition 2.6. For all n ≥ 0, ϕ : SSn → In+1(1243, 2143) is a bijection.

Proof. This is routine since ϕ : Sn → Sn+1(1243, 2143) is surjective. We need only show that
to every involution π in the image of ϕ, ϕ−1(π) ∈ SSn. If we have π ∈ In+1(1243, 2143) then we may
construct the unique path p ∈ SSn recursively according the three separate cases:

• If n + 1 is a fixed point of π, then p = Dp′D for some p′ ∈ SSn−2. Repeat the procedure for
the permutation (π1, . . . , πn) to determine p′.
• If (1, n + 1) is a transposition of π, then π = (n + 1)π′1 and p = Np′E where p′ ∈ SSn−1.

Repeat the procedure for the permutation (π2 − 1, π3 − 1, . . . , πn − 1) to determine p′.
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• If (m + 1, n + 1) is a transposition of π for some 1 < m < n, then p = NqEp′Nq⊥E where
q ∈ Sm−1, p′ ∈ SSn−2m. Repeat the procedure for the permutation α = (α1, . . . , αn−1) ∈
In−3 where

αi =


πi if i ≤ m and πi < m + 1,
πi − 1 if i ≤ m and πi > m + 1,
πi−1 if i > m + 1 and πi < m + 1,
πi−1 − 1 if i > m + 1 and πi > m + 1.

Note that once one has determined r = P1P2 · · · , where Pi ∈ {N,E, D}, such that ϕ(r) =
α then q is the suffix of r which comprises of those steps (∈ {N,E, D}) from (0, 0) to
(m−1,m−1), p′ is the subsequent sequence of steps from (m−1,m−1) to (n−m+1, n−m+1)
and q⊥ is the remaining collection.

�

2.2. The bijection Φ2 : In(1243, 2143) 7→ In(2134, 2143). Given π ∈ In(2134, 2143), let Φ2(π) =
(n+1−πn, n+1−πn−1, . . . , n+1−π1). Clearly Φ2 : In(1243, 2143)→ In(2134, 2143). It is a bijection
since Φ2 is the well known reverse-complement map and Φ−1

2 = Φ2.

2.3. The bijection Φ1 : In(1234, 1243) 7→ In(2134, 2143). Given π ∈ In(1234, 1243) let us
concentrate on occurrences of the patterns 2134,2143. Let Aπ = ∅. If (πi(1), πi(2), πi(3), πi(4)) is an
occurrence of the pattern 2134 in π then insert entries i(1), i(2) into Aπ. Do likewise for the pattern
2143. Let Aπ = {i(1), i(2), . . . , i(t)} be the resulting collection of all such indices.

Lemma 2.7. Given π ∈ In(1234, 1243) with sequence Aπ = {i(1), i(2), . . . , i(t)} as outlined above,
πi(1) > πi(2) > · · · > πi(t).

Proof. Without loss of generality let us hinge our argument around the pattern 1234. Assume
there exists a < b such that πi(a) < πi(b). The value i(b) is in the sequence Aπ for a reason: either
there are indices a′, c, d such that a′ < i(b) < c < d and πa′ , πi(b), πc, πd is an occurrence of 2134 or
i(b) < a′ < b < c and πi(b), πa′ , πc, πd is an occurrence of 2134.

If a′ < i(b) < c < d and πa′ , πi(b), πc, πd is an occurrence of 2134 then since a < b, πi(a), πi(b), πc, πd is
an occurrence of 1234 in π. This cannot be the case since π is 1234 avoiding.

So i(b) < a′ < b < c and πi(b), πa′ , πc, πd is an occurrence of 2134. But since a < b, i(a) < i(b) and
πi(a), πi(b), πc, πd will therefore be an occurrence of 1234. Again, this cannot be so since π is 1234
avoiding, hence have πi(a) > πi(b). �

Definition 2.8. Let π ∈ In(1234, 1243). If π contains no occurrence of the patterns 2134 and 2143
then let Φ1(π) = π. Otherwise let Aπ = {i(1), . . . , i(t)} be the sequence associated with the 1 and 2’s
of occurrences of 2134 and 2143 in π as mentioned above. Let Φ1(π) = α1 · · ·αn where

(1) αj = πj for all j 6∈ Aπ, and

(2) let F be the largest Ferrers board (oriented as in Example 2.10) which is contained in the region
strictly south west of every point of π not in Aπ. The points {(i(1), αi(1)), . . . , (i(t), αi(t))} are con-
tained in F . In this board, recursively (in a lexicographic order) replace every occurrence of 21 by 12.
Let {(i(1), βi(1)), . . . , (i(t), βi(t))} be the outcome. Finally let αi(j) = βi(j) for all 1 ≤ j ≤ t.
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Note that in (2) an occurrence of 21 in F in this case means the smallest rectangle containing both
points of the 21 pattern must also be contained in the Ferrers board F . This definition is a particular
instance of the bijective map φ? from Bousquet-Mélou and Steingŕımsson [3]. The nature of the map
is to iteratively replace occurrences of a monotone pattern in a Ferrers board so that upon termination
there are no such occurrences.

Proposition 2.9. The map Φ1 : In(1234, 1243)→ In(2134, 2143) is a bijection.

Proof. Let us first show the map Φ1 is well defined. Given π ∈ In(1234, 1243), suppose, without
loss of generality, there is an occurrence of 2134 in Φ1(π) = α1 . . . αn. We assume Aπ is non-empty,
for otherwise there would certainly be no occurrences of 2134 and 2143 in Φ1(π) since Φ1(π) = π. Let
us further suppose the lexicographically first occurrence of 2134 in Φ(π) is at (a, b, c, d), i.e. αaαbαcαd

is such that αb < αa < αc < αd.

We note that, in this setting, at least one of {a, b, c, d} must be contained in Aπ, as otherwise one
would have a 2134 pattern in π whose existence was not recorded.

If d ∈ Aπ = {i(1), . . . , i(t)} then it follows that π−1(αa), π−1(αb), π−1(αc) ∈ Aπ. Furthermore, since
πi(1) > · · · > πi(t), we must have that π−1(αa), π−1(αb), π−1(αc) > d. Since operation (2) above was
able to move the entries of αa, αb and αc in π to the left of αd in Φ1(π), the rules of exchange on the
Ferrers board would have replaced every occurrence of 21 by 12. This is not the case since αa > αb.
Hence d 6∈ Aπ. A similar argument shows that c 6∈ Aπ.

The situation is that either (a) a, b ∈ Aπ, (b) a ∈ Aπ, b 6∈ Aπ or (c) a 6∈ Aπ, b ∈ Aπ.

For case (a), we have πa > πb and the map Φ1 will make αa ≥ πa, αb ≥ πb, αc = πc and αd = πd.
Note that αb < αa < αc < αd. Since αa αb is an occurrence of 21 in Φ1(π), there is some j 6∈ Aπ

such that a < j < b and πa > πj > πb. The action of Φ1 will ensure that αa > αj > αb. This means
that αa αj αc αd is an occurrence of 2134 in Φ1(π) which is lexicographically smaller than αa αb αc αd.
Hence case (a) is impossible.

For case (b), we have a ∈ Aπ, b, c, d 6∈ Aπ. Then αa ≥ πa and αaπbπcπd is an occurrence of 2134 in
Φ1(π). But since αa ≥ πa either πa > πb or πa < πb. If πa > πb then πa πb πc πd is an occurrence of
2134 in π which would mean that both a and b are in Aπ. Since this is not the case we must have
that πa < πb but this implies πa πb πc πd is an occurrence of 1234 in π. Hence case (b) is impossible.

A similar argument shows (c) cannot be true either. Hence Φ1(π) does not contain the pattern 2134.
Similar reasoning shows this to be the case for the pattern 2143 also.

To show that Φ1 is injective, the inverse bijection f : In(2134, 2143) → In(1234, 1243) of Φ1 may be
defined by: let π ∈ In(2134, 2143). If π contains no occurrence of the patterns 1234 and 1243 then
let f(π) = π. Otherwise let Bπ = {i(1), . . . , i(t)} be the sequence associated with the 1 and 2’s of
occurrences of 1234 and 1243 in π. Let f(π) = β1 · · ·βn where

(1) βj = πj if j 6∈ Bπ and

(2) let F be the largest Ferrers board which is contained in the region strictly south west of every point
of π not in Bπ. The points {(i(1), βi(1)), . . . , (i(t), βi(t))} are contained in F . In this board, recursively
(in a lexicographic order) replace every occurrence of 12 by 21. Let {(i(1), γi(1)), . . . , (i(t), γi(t))} be
the outcome. Now set βi(j) = γi(j) for all 1 ≤ j ≤ t.

Surjectivity follows easily from Bousquet-Mélou and Steingŕımsson [3, Theorem 1] since the sizes of
In(1234, 1243) and In(2134, 2143) are equal. �
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Example 2.10. Let π = (11, 8, 6, 12, 10, 3, 7, 2, 9, 5, 1, 4). Then Aπ = {2, 3, 6, 8}. Now the Ferrers
board containing the 21’s of π is transformed as:

This results in Φ1(π) = (11, 2, 8, 12, 10, 6, 7, 3, 9, 5, 1, 4).

Theorem 2.11. The map f = Φ−1
1 ◦ Φ2 ◦ ϕ : SSn−1 7→ In(1234, 1243) is a bijection.

Proof. From Proposition 2.6, Section 2.2 and Proposition 2.9 we have bijections ϕ : SSn−1 7→
In(1243, 2143), Φ2 : In(1243, 2143) 7→ In(2134, 2143) and Φ−1

1 : In(2134, 2143) 7→ In(1234, 1243).
The composition f = Φ−1

1 ◦ Φ2 ◦ ϕ is therefore a bijection f : SSn−1 7→ In(1234, 1243). �

We note that it would be nice to have a direct bijection between the set In+1(1234, 1243) of involutions
of length n avoiding both 1234 and 1243, and the set SSn of Schröder paths of length n, or even between
the set of permutations Sn+1(1234, 1243) and the set Sn of Schröder paths of length n.

3. Proof of Theorem 1.1

To present the proof of Theorem 1.1, we must first consider the enumeration problem for the number
Fk-avoiding involutions according to length and number of fixed points, where Fk is the set of all
permutations σ ∈ Sk with σ1 = 1.

3.1. Involutions avoiding Fk. In this subsection we present an explicit formula for the number
of involutions that avoid all the patterns in Fk. To do so we require some new notation. Define fk(n)
to be the number of involutions π ∈ In(Fk). Given t ∈ [n], we also define

fk;m(n; t) = #{π ∈ In(Fk) | π1 = t and π contains m fixed points}.

Let fk(n; t) = fk(n, p; t) and fk(n) = fk(n, p) be the polynomials
∑n

m=0 fk;m(n; t)pm and
∑n

t=1 fk(n; t),
respectively. We denote by Fk(x, p) the generating function for the sequence fk(n, p), that is Fk(x, p) =∑

n≥0 fk(n, p)xn.

Theorem 3.1. We have

Fk(x, p) =
k−2∑
j=0

Jj(p)xj +
xk−1

1− (k − 1)x2
((k − 1)Jk−2(p)x + Jk−1(p)).

Moreover, the number of involutions of length k + 2n (resp. k + 2n− 1) that avoid all the patterns in
Fk is given by (k − 1)n+1Ik−2 (resp. (k − 1)nIk−1), for all n ≥ 0.

Proof. Let π ∈ Sn be a permutation that avoids all patterns in Fk. We have π1 ≥ n + 2 − k.
Thus π ∈ In(Fk) with π1 = t ≥ n + 2− k if and only if π2 . . . πt−1πt+1 . . . πn is an involution on the
numbers 2, . . . , t − 1, t + 1, . . . , n that avoids all the patterns in Fk. Hence, fk(n; j) = fk(n − 2) for
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all j = n + 2− k, n + 3− k, . . . , n, and fk(n, j) = 0 for all j = 1, 2, . . . , n + 1− k, where n ≥ k. Thus,
for n ≥ k,

fk(n) = (k − 1)fk(n− 2).
Using the initial conditions fk(j) = Jj(p), j = 1, 2, . . . , k−1, we find that fk(k+2j) = (k−1)j+1Jk−1(p)
and fk(k + 2j − 1) = (k − 1)jJk−2(p) for all j ≥ 0. Rewriting these formulas in terms of generating
functions we obtain

Fk(x, p) =
k−2∑
j=0

Jj(p)xj +
xk−1

1− (k − 1)x2
((k − 1)Jk−2(p)x + Jk−1(p)),

as claimed. �

3.2. Involutions avoiding Ak. In this subsection we prove Theorem 1.1. In order to do this,
define gk(n) to be the number of involutions π ∈ In(Ak) and given t1, t2, . . . , tm ∈ N, we also define

gk(n; t1, t2, . . . , tm) = #{π1 . . . πn ∈ In(Ak) | π1 . . . πm = t1 . . . tm}.

Lemma 3.2. Let k ≥ 3. For all 3 ≤ t ≤ n + 1− k,

gk(n; t) = (k − 2)gk(n− 2; t− 1) +
t−2∑
j=1

gk(n− 2; j),

with the initial conditions gk(n; 1) = fk−1(n− 1), gk(n; 2) = fk−1(n− 2), and gk(n; t) = gk(n− 2) for
all t = n + 2− k, n + 3− k, . . . , n.

Proof. Let π be any involution of length n that avoids all patterns in Ak with π1 = t. Now let
us consider all possible values of t. If t = 1 then π ∈ In(Ak) if and only if (π2−1)(π3−1) . . . (πn−1) ∈
In−1(Fk−1). If t = 2 then π ∈ In(Ak) if and only if (π3 − 2)(π4 − 2) . . . (πn − 2) ∈ In−2(Fk−1). Now
assume that 3 ≤ t ≤ n + 1− k, then from the above definitions

gk(n; t) = gk(n; t, 1) + . . . + gk(n; t, t− 1) + gk(n; t, t + 1) + · · ·+ gk(n; t, n).

But any involution π satisfying π1 < π2 ≤ n + 2 − k contains a pattern from the set Ak (see the
subsequence of the letters π1, π2, n + 3− k, n + 4− k, . . . , n in π). Thus gk(n; t, r) = 0 for all t < r ≤
n + 2− k and so

gk(n; t) = gk(n; t, 1) + . . . + gk(n; t, t− 1) + gk(n; t, n + 3− k) + · · ·+ gk(n; t, n).

Also, if π is an involution in In with π1 = t and π2 = r ≥ n + 3 − k, then the entry r does not
appear in any occurrence of τ ∈ Ak in π. Thus, there exists a bijection between the set of involutions
π ∈ In(Ak) with π1 = t and π2 = r ≥ n + 3 − k and the set of involutions π′ ∈ In−2(Ak) with
π′ = t− 1. Therefore gk(n; t, r) = gk(n− 2; t− 1) which gives

gk(n; t) = gk(n; t, 1) + . . . + gk(n; t, t− 1) + (k − 2)gk(n− 2; t− 1).

Also, if π is an involution in In with π1 = t, π2 = r < t and if ta2 . . . ak is an occurrence of a pattern
from the set Ak in π, then ra2 . . . ak is an occurrence of a pattern from the set Ak in π. Thus, there
exists a bijection between the set of involutions π ∈ In(Ak) with π1 = t and π2 = r < t and the set
of involutions π′ ∈ In−2(Ak) with π′1 = r − 1. Therefore gk(n; t, r) = gk(n− 2; r − 1) which gives

gk(n; t) = (k − 2)gk(n− 2; t− 1) +
∑t−2

j=1 gk(n− 2; j),

as required. Finally, if π is an involution in In with π1 = t ≥ n + 2 − k, then the entry t does
not appear in any occurrence of τ ∈ Ak in π. Thus, there exists a bijection between the set of
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involutions π ∈ In(Ak) with π1 = t ≥ n + 2− k and the set of involutions π′ ∈ In−2(Ak). Therefore
gk(n; t) = gk(n− 2), as claimed. �

Let Gk(n; v) be the polynomial
∑n

t=1 gk(n; t)vt−1. Rewriting the above lemma in terms of the poly-
nomials Gk(n; v) we have the following recurrence relation.

Lemma 3.3. Let k ≥ 3. For all n ≥ k,

Gk(n; v) = fk−1(n− 1) + vfk−1(n− 2)− v(k − 2)fk−1(n− 3)
+
(

v2

1−v + (k − 2)v
)

Gk(n− 2; v)− vn

1−v Gk(n− 2; 1) + vn−1

1−v

(
k − 2 + v−v3−k

1−v

)
Gk(n− 4; 1),

where Gk(n; v) = In−1 + v−vn

1−v In−2 for all n = 0, 1, . . . , k − 1.

Proof. Lemma 3.2 gives

Gk(n; v) = fk−1(n− 1) + vfk−1(n− 2) +
∑n−k

t=2 vt
(
(k − 2)Gk(n− 2; t) +

∑t−1
j=1 Gk(n− 2; j)

)
+
(∑n−1

t=n+1−k vt
)

Gk(n− 2; 1)

= fk−1(n− 1) + vfk−1(n− 2) + v2

1−v (Gk(n− 2; v)−Gk(n− 4; 1)
∑n−3

j=n−1−k vj)
−vn+1−k

1−v (Gk(n− 2; 1)− (k − 1)Gk(n− 4; 1)) + vn+1−k−vn

1−v Gk(n− 2; 1)

+(k − 2)v
(
Gk(n− 2; v)− fk−1(n− 3)−Gk(n− 4; 1)

∑n−3
j=n−k vj

)
,

which is equivalent to

Gk(n; v) = fk−1(n− 1) + vfk−1(n− 2)− v(k − 2)fk−1(n− 3)
+
(

v2

1−v + (k − 2)v
)

Gk(n− 2; v)− vn

1−v Gk(n− 2; 1) + vn−1

1−v

(
k − 2 + v−v3−k

1−v

)
Gk(n− 4; 1).

To find the value of Gk(n; v) for n ≤ k − 1, let π be any involution with π1 = t. If t = 1 then
there are In−1 involutions, whereas if t > 1 there are In−2 involutions, hence Gk(n; v) = v0In−1 +∑n

t=2 vt−1In−2 = In−1 + v−vn

1−v In−2, as required. �

Lemma 3.3 can be generalised as follows; let gk;m(n; t) be the number of involutions π ∈ In(Ak)
such that π1 = t and π contains exactly m fixed points. Define Gk(n; t; p) =

∑n
m=0 gk;m(n; t)pm and

Gk(n; v, p) =
∑n

t=1 Gk(n; t; p)vt−1. Using the same arguments as those in the proofs of Lemma 3.2
and Lemma 3.3, while carefully considering the number of fixed points, we have the following result.

Lemma 3.4. Let k ≥ 3. For all n ≥ k,

Gk(n; v, p)
= pfk−1(n− 1) + vfk−1(n− 2)− pv(k − 2)fk−1(n− 3) +

(
v2

1−v + (k − 2)v
)

Gk(n− 2; v, p)

− vn

1−v Gk(n− 2; 1, p) + vn−1

1−v

(
k − 2 + v−v3−k

1−v

)
Gk(n− 4; 1, p),

where Gk(n; v, p) = pJn−1(p) + v−vn

1−v Jn−2(p) for all n = 0, 1, . . . , k − 1.

Let Gk(x, v, p) =
∑

n≥0 Gk(n; v, p)xn be the generating function for the sequence Gk(n; v, p). Define
Ji(v, p) to be the polynomial

∑
dtrv

tpr where dtr is the number of involutions π ∈ Ii such that
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π1 = t + 1 and π contains exactly r fixed points. Rewriting the recurrence relation in the statement
of Lemma 3.4 in terms of generating functions we obtain

Gk(x, v, p)

=
k−1∑
j=0

Jj(v, p)xj + px

(
Fk−1(x, p)−

k−2∑
j=0

Jj(p)xj

)
+ vx2

(
Fk−1(x, p)−

k−3∑
j=0

Jj(p)xj

)

−(k − 2)pvx3

(
Fk−1(x, p)−

k−4∑
j=0

Jj(p)xj

)
− v2x2

1−v

(
Gk(xv, 1, p)−

k−3∑
j=0

Jj(p)(xv)j

)

+vx2
(

v
1−v + k − 2

)(
Gk(x, v, p)−

k−3∑
j=0

Jj(v, p)xj

)

+ (k−2)v3x4

1−v

(
Gk(xv, 1, p)−

k−5∑
j=0

Jj(p)(xv)j

)
− x4(1−vk−2)

vk−6(1−v)2

(
Gk(xv, 1, p)−

k−5∑
j=0

Jj(p)(xv)j

)
,

which is equivalent to(
1− x2

1−v − (k − 2)x2

v

)
Gk(x/v, v, p)

= − x2

1−v

(
1− (k − 2)x2

v + x2(1−vk−2)
vk−2(1−v)

)
Gk(x, 1, p)

+
k−1∑
j=0

Jj(v, p)xj

vj + px
v

(
Fk−1(x/v, p)−

k−2∑
j=0

Jj(p)xj

vj

)
+ x2

v

(
Fk−1(x/v, p)−

k−3∑
j=0

Jj(p)xj

vj

)

−(k − 2)px3

v2

(
Fk−1(x/v, p)−

k−4∑
j=0

Jj(p)xj

vj

)
+ x2

1−v

k−3∑
j=0

Jj(p)xj

−x2

v

(
v

1−v + k − 2
) k−3∑

j=0

Jj(v, p)xj

vj − (k−2)x4

v(1−v)

k−5∑
j=0

Jj(p)xj + x4(1−vk−2)
vk−2(1−v)2

k−5∑
j=0

Jj(p)xj .

To solve this functional equation, we substitute

v := v0 =
1
2

(
1 + (k − 3)x2 +

√
1− 2(k − 1)x2 + (k − 3)2x4

)
,

where v0 is the root of the coefficient of Gk(x/v, v, p) above, into the above functional equation, that
is, 1 − x2

1−v0
− (k − 2)x2

v0
= 0. Since Jj(v, p) = pJj−1(p) + v−vj

1−v Jj−2(p) for all j = 1, 2, . . . , k − 1 and
J0(v, p) = 1, it is routine to show (via some rather tedious algebraic manipulation) that we obtain
Theorem 1.1.
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