
ON EULER’S DIFFERENCE TABLE

FANJA RAKOTONDRAJAO

Abstract. In this paper we study Euler’s difference table and its derivate

over symmetric group. We will give some combinatorial interpretations to
the relations defining them as well as their generating functions.

Résumé. Nous étudions dans ce papier la différence table d’Euler et sa dérivée

sur le groupe groupe symétrique. Nous donnerons des interprétations combi-
natoires de leurs relations de récurrence ainsi que leurs fonctions génératrices.

1. Introduction

The classical derangement numbers (or the numbers of permutations without
fixed points) are always treated as a special case of permutations with the statistic
fixed points. Many authors studied in depth these numbers [2], [3], [5], [7], [8],
[9], [10], [11], [13], [15]. We will study in this paper a new statistic called k-
succession over the symmetric group that will generalise the derangement theory.
This statistic will give a combinatorial interpretation to the coefficients of the
difference table (ek

n)0≤k≤n introduced by Euler [1], [4].

ek
n

k = 0 1 2 3 4 5
n = 0 0!

1 0 1!
2 1 1 2!
3 2 3 4 3!
4 9 11 14 18 4!
5 44 53 64 78 96 5!

The coefficients ek
n of this table are defined by

en
n = n! and ek−1

n = ek
n − ek−1

n−1.

We will then study the numbers dk
n which are obtained from the numbers ek

n by
dividing them by k!. We obtain then the following table for some first values of
the numbers dk

n

dk
n

k = 0 1 2 3 4 5
n = 0 1

1 0 1
2 1 1 1
3 2 3 2 1
4 9 11 7 3 1
5 44 53 32 13 4 1
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By a simple computation, we can find that the numbers dk
n satisfy the following

recurrences {
dk

k = 1
dk

n = (n− 1)dk
n−1 + (n− k − 1)dk

n−2 for n > k ≥ 0.

We could find that not only the coefficients of the first column of these tables,
that is the values of ek

n and dk
n for k = 0, are the derangement numbers dn but the

relation defining the coefficients of each column

ck
n = (n− 1)ck

n−1 + (n− k − 1)ck
n−2,

where the letter c can be replaced by d or e, generalises the well-known relation
of derangement numbers dn = (n − 1)(dn−1 + dn−2). We will give a combina-
torial interpretation to each recurrence relation defining the number ek

n+k,m of
permutations over n + k objects having m numbers of k-successions as well as its
generating function. Kreweras [6] studied the numbers sn which are the numbers
e1
n and we will generalise his result . Let us denote by [n] the interval {1 2 · · ·n},

by σ a permutation of the symmetric group Sn. In this paper, we will use the
linear notation σ = σ(1)σ(2) · · ·σ(n) and the notation of the decomposition in a
product of disjoint cycles to write a permutation σ.

Definition 1.1. We say that the integer i is a k-succession for a permutation σ
of the symmetric group Sn if σ(i) = i + k.

Remark 1.2. A fixed point of the permutation σ is a 0-succession of the permuta-
tion σ and a succession of the permutation σ is a 1-succession of the permutation
σ.

We will denote by ek
n,m the number of permutations of the symmetric group Sn

having m numbers of k-successions and by ek
n the number of permutations of the

symmetric group Sn without k-successions.

Example 1.3. For n = 10, the permutation σ = (1253)(478)(69)(10) has 2 num-
bers of 1-successions which are 1 and 7, 3 of 3-successions which are 2, 4 and 6 and
has 1 of 0-succession (or a fixed point) which is 10. The followings are the first
sets of permutations without 1-successions

E1
1 = {(1)},

E1
2 = {(1)(2)},

E1
3 = {(1)(2)(3), (13)(2), (132)},

E1
4 = {(1)(2)(3)(4), (13)(2)(4), (14)(2)(3), (1)(24)(3), (132)(4), (13)(24),

(143)(2), (142)(3), (1324), (1432), (1)(243)}.
Definition 1.4. We say that a permutation σ is a k-fixed-points-permutation if for
all integers i in the interval [k], σp(i) /∈ [k] \ {i} for all integer p and Fix(σ) ⊆ [k].

We will denote by Dk
n the set of k-fixed-points-permutations of the symmetric

group Sn.

Example 1.5. We have
D0

1 = {}, D1
1 = {1},

D0
2 = D1

2 = {21}, D2
2 = {12}.

D0
3 = {231, 312}, D1

3 = {132, 231, 312}, D2
3 = {132, 312}, D3

3 = {123}.
Remark 1.6. The permutation 12 · · · k is the only k-fixed-points-permutation of
the symmetric group Sk.
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2. k-succession distribution over symmetric group

Theorem 2.1. For all integers k ≥ 0 and n ≥ m ≥ 0, we have

ek
n+k,m =

(
n

m

)
ek
n+k−m.

Proof. For each subset A of [n] = {1, . . . , n} of order m, the number of permuta-
tions π ∈ Sn+k with set of k-successions A is equal to the number of permutations
σ ∈ Sn+k−m (ie equal to ek

n+k−m). To see this, remove the numbers π(a) = a+k,
a ∈ A, from π(1)π(2) · · ·π(n) and standardise to get σ(1)σ(2) · · ·σ(n + k − m).
More formally, let us take the order preserving bijections ι : [n+k]\A → [n+k−m]
and ν : [n + k] \ (A + k) → [n + k − m] where A + k = {a + k : a ∈ A} and we
define σ(i) = ν ◦ π ◦ ι−1(i) for all i ∈ [n + k −m]. Notice that the permutation σ
has no k-successions: if an integer i ∈ [n+k−m] were a k-succession for σ, that is
σ(i) = ν ◦π◦ι−1(i) = i+k, then we would have π◦ι−1(i) = ν−1(i+k) = ι−1(i)+k
the integer ι−1(i) would be a k-succession for the permutation π which contradicts
the fact that we remove all the k-successions of the permutation π. Notice also
that the inverse map σ 7→ π is defined by{

π(i) = ν−1 ◦ σ ◦ ι(i) for all i ∈ [n + k] \A

π(a) = a + k otherwise.

�

Corollary 2.2. For all integers k ≥ 0 and n ≥ m ≥ 1, we have

nek
n+k−1,m−1 = mek

n+k,m.

Proof. By the equations ek
n+k,m =

(
n

m

)
ek
n+k−m and

ek
n+k−1,m−1 =

(
n− 1
m− 1

)
ek
n+k−m from the previous theorem, we obtain the result.

�

Proposition 2.3. For n ≥ k and n− k ≥ m ≥ 0, we have

ek
n,m = ek

n−1,m−1 + (n− 1−m)ek
n−1,m + (m + 1)ek

n−1,m+1.

Proof. Notice that all permutation σ′ in the set Sn is obtained from a permutation
σ in Sn−1 by multiplying σ on the left by a transposition (i n) for an integer
i ∈ [n]. Notice also that if the integer i is a k-succession for σ, then when we
multiply σ by the transposition (i n) on the left, we delete a k-succession for σ′.
Now let us look for the various cases for the integer i

(1) If i = n − k, then the permutation σ′ = (i n)σ has a new k-succession
which is the integer i itself.

(2) If the integer i is a k-succession of the permutation σ, then the permutation
σ′ = (i n)σ has one fewer k-successions than the permutation σ.

(3) If the integer i is not a k-succession of the permutation σ and i 6= n − k,
then the permutation σ′ = (i n)σ has the same number of k-successions
as the permutation σ.

It follows straightforwardly that we obtain all the permutations in the set Ek
n having

m numbers of k-successions by considering all the permutation σ indicated in the
following three cases and by multiplying them by the appropriate transposition
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(1) σ ∈ Sn−1 having m− 1 numbers of k-successions and the only possibility
for the choice of transposition by which multiply σ is the transposition
(n− k n).

(2) σ ∈ Sn−1 having m numbers of k-successions and there exist n − 1 − m
possibilities for the choice of the transposition: the transpositions (i n)
where the integer i is not a k-succession of the permutation σ and which
is not equal to n− k.

(3) σ ∈ Sn−1 having m + 1 numbers of k-successions and there exist m + 1
possibilities for the choice of the transposition: the transpositions (i n)
where the integer i is a k-succession of the permutation σ.

�

3. Numbers ek
n+k

We will give in section the two different relations satisfied by the numbers ek
n

of permutations without k-successions.

3.1. Recurrence relations. Notice the set Dn of derangements or permutations
without fixed points is equal to E0

n,0. This first relation is a generalization of the
well-known relation on derangement numbers dn = (n− 1)(dn−1 + dn−2).

Theorem 3.1 (First relation). The numbers ek
n satisfy the following recurrence

relation
ek
n = (n− 1)ek

n−1 + (n− 1− k)ek
n−2, n ≥ k ≥ 0.

To give a combinatorial proof of this theorem, we need the following definition
and its property.

Definition 3.2. For a given nonnegative integer k, let us consider the k-transformation
ϑ : [n− k − 1]×Sn−2 → Sn defined as below.
For each pair (j, σ) ∈ [n− k − 1]×Sn−2, we define the permutation σ′ = ϑ(j, σ)
such that

σ′(i) =



σ(i) if i < j and σ(i) < j + k

σ(i) + 1 if i < j and σ(i) ≥ j + k

n if i = j

σ(i− 1) if i > j and σ(i− 1) < j + k

σ(i− 1) + 1 if i > j and σ(i− 1) ≥ j + k

j + k if i = n

Proposition 3.3. The k-transformation ϑ perserves the number of k-successions,
that is, if the permutation σ has m numbers of k-successions, then the permutation
σ′ = ϑ(j, σ) has m numbers of k-successions also.

Proof. Notice that if the integer i is a k-succession for the permutation σ, then
σ′(i) = i + k if i < j or σ′(i + 1) = σ(i) + 1 = i + k + 1 if i ≥ j. �

Proof of the Theorem 3.1. Let Ek
n be the set of permutations over n objects with-

out k-successions. We obtain all permutation σ′ of the set Ek
n

• either by multiplying a permutation σ of the set Ek
n−1 on the left by a

transposition (i n) for an integer i ∈ [n] and i 6= n−k. There exist n− 1
possibilities of choice of the transposition (i n).

• or from a pair (j, σ) of the set [n− k − 1]× Ek
n−2 by the k-transformation

ϑ.
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We deduce then that the numbers ek
n satisfy the relation

ek
n = (n− 1)ek

n−1 + (n− 1− k)ek
n−2, n ≥ k.

�

Remark 3.4. For 0 ≤ n ≤ k, all permutations of the set Sn do not have a k-
succession, that is ek

n = n! for 0 ≤ n < k.

The following relation is the way Euler [1], [4] defined the difference table.

Theorem 3.5 (Second Relation). For n ≥ k, we have

ek
n = ek−1

n−1 + ek−1
n .

To prove this theorem, we need the following definitions as well as their prop-
erties.

Definition 3.6 (k-Vertical translation.). A k-vertical translation of the permuta-
tion σ of the symmetric group Sn−1 is the permutation σ′ of the symmetric group
Sn defined as below

σ′(i) =

 σ(i) + 1 if i 6= σ−1(k − 1)
1 if i = σ−1(k − 1)
k if i = n

Proposition 3.7. For a given permutation σ′ in the symmetric group Sn such
that σ′(n) = k, we define the permutation σ of the symmetric group Sn−1 which is
the antecedant of the permutation σ′ by the k-vertical translation in the following
way

σ(i) =
{

σ′(i)− 1 if i 6= σ′−1(1)
k − 1 if i = σ′−1(1)

Definition 3.8 (Horizontal translation). A horizontal translation of the permu-
tation σ of the symmetric group Sn is the permutation σ′ of the symmetric group
Sn defined as below

σ′(i) =
{

σ(i + 1) for i = 1, . . . , n− 1
σ(1) if i = n

Proposition 3.9. For a given permutation σ′ in the symmetric group Sn such
that σ′(n) 6= k, we define the permutation σ of the symmetric group Sn which is
the antecedant of the permutation σ′ by the horizontal translation in the following
way

σ(i) =
{

σ′(i− 1) for i = 2, . . . , n
σ′(n) if i = 1

Lemma 3.10. The k-vertical translation of the permutation σ ∈ Ek−1
n−1 is a per-

mutation of the set Ek
n.

Proof. Let σ ∈ Sn−1 a permutation without (k − 1)-successions, that is, for all
integer j ≤ n−k then σ(j) 6= j +k−1. The permutation σ′ which is the k-vertical
translation of the permutation σ defined in Definition 3.6 has no k-succession, that
is, for all integer j ≤ n− k then σ′(j) 6= j + k. �

Lemma 3.11. The horizontal translation of the permutation σ ∈ Ek−1
n is a per-

mutation of the set Ek
n.
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Proof. Let σ ∈ Sn a permutation without (k − 1)-successions, that is, for all
integer j ≤ n − k then σ(j) 6= j + k − 1. The permutation σ′ which is the
horizontal translation of the permutation σ defined in Definition 3.8 do not have
a k-succession, that is, for all integer j ≤ n− k then σ′(j) 6= j + k. �

Proof of the Theorem 3.5. All permutation σ′ in the set Ek
n is obtained by a per-

mutation σ in the set Ek−1
n−1 ∪ Ek−1

n by the following transformation

(1) If the permutation σ is an element of the set Ek−1
n−1 , then the permutation

σ′ is the k-vertical translation of the permutation σ.
(2) If the permutation σ is an element of the set Ek−1

n , then the permutation
σ′ is the horizontal translation of the permutation σ.

For the inverse transformation, notice that if the permutation σ′ ∈ Ek
n such that

σ′(n) = k has no k-successions, then the permutation σ is an element of the set
Ek−1

n−1 defined by Proposition 3.7 and has no (k − 1)-successions by Lemma 3.10
and in other cases, the permutation σ is an element of the set Ek−1

n defined by
Proposition 3.9 and has no (k − 1)-successions by Lemma 3.11. �

4. Numbers dk
n

4.1. First relation of the numbers dk
n.

Theorem 4.1. For 0 ≤ k ≤ n− 1, we have

dk
n = (n− 1)dk

n−1 + (n− k − 1)dk
n−2.

Proof. Let us consider the map ϕ : Dk
n → [n − 1] × Dk

n−1 ∪ [n − k − 1] × Dk
n−2

which associates to each permutation σ a pair (m,σ′) = ϕ(σ) defined as follows

(1) If the integer n is in a cycle of length greater or equal to 3, or the length of
the cycle which contains the integer n is equal to 2 and σ(n) ≤ k, then the
integer m is equal to σ−1(n) and the permutation σ′ is obtained from the
permutation σ by removing the integer n from his cycle. The permutation
σ′ is indeed an element of the set Dk

n−1.
(2) If the length of the cycle which contains the integer n is equal to 2 and

σ(n) > k, then the integer m is equal to σ(n) and the permutation σ′ is
obtained from the permutation σ by removing the cycle (σ(n), n) and then
decreasing by 1 all integers between σ(n)+ 1 and n− 1 in each cycle. The
permutation σ′ is indeed an element of the set Dk

n−2.

The map ϕ is bijective. Notice that a pair (m,σ′) in the image ϕ(Dk
n) is contained

either in the set of all pairs of [n − 1] × Dk
n−1 if the integer n lies in a cycle of

length greater than 2 or equal to 2 and δ(n) ≤ k , or in the set of all pairs of
[n−k−1]×Dk

n−2 if the integer n lies in a cycle of length equal to 2 and δ(n) > k.
So it remains to prove that there exists a map ϕ̃ that

• associates an element Dk
n where the integer n lies in a cycle of length

greater than 2 or equal to 2 and the integer n lies in a cycle which contains
an integer less or equal to k with every pair of [n− 1]×Dk

n−1.
• associates an element Dk

n where the integer n lies in a cycle of length equal
to 2 and the integer n lies in a cycle which contains an integer greater than
k with every pair of [n− k − 1]×Dk

n−2.
• is the inverse of ϕ.

We define the permutation σ = ϕ̃(m,σ′) of the set Dk
n
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• either by inserting the integer n in a cycle of the permutation σ′ after the
integer m ∈ [n − 1] if σ′ is an element of the set Dk

n−1. In such case, the
integer n lies in a cycle of length greater to 2 or in a transposition and
σ(n) ≤ k.

• or by creating the transposition (m,n) with k < m ≤ n − 2 and then
increasing by 1 all integers between m and n − 2 in each cycle of the
permutation σ′ if the permutation σ′ is an element of the set Dk

n−2. In
such case, the integer n is in a transposition and σ(n) > k.

The map ϕ̃ is the inverse of the map ϕ. �

Corollary 4.2. The number dk
n equals the cardinality of the set of k-fixed-points-

permutations in the symmetric group Sn.

4.2. Second relation of the numbers dk
n. We will give another relation satisfied

by the numbers dk
n which is easily deduced from the generating function, but we

will give its combinatorial interpretation.

Definition 4.3. Let us consider the map ϑ : Dk−1
n−1 ∪ Dk−1

n → [k] × Dk
n which

associates to a permutation σ a pair (m,σ′) = ϑ(σ) defined as below
(1) If σ ∈ Dk−1

n−1, then the integer m is equal to k and the permutation σ′

is obtained from the permutation σ by creating the cycle (k) and then
by increasing by 1 all integers greater or equal to k in each cycle of the
permutation σ.

(2) If σ ∈ Dk−1
n , then the integer m is equal to the smallest integer in the cycle

which contains the integer k and the permutation σ′ is obtained from the
permutation σ by removing the word k σ(k) · · ·σ−1(m) and then creating
the cycle (k σ(k) · · ·σ−1(m)).

Proposition 4.4. The map ϑ is a bijection.

Proof. The map ϑ is injective. It suffices to show that ϑ is surjective. Let us look
at various cases of the pair (m,σ′).

(1) If m = k and σ′(k) = k, then we define the permutation σ by deleting
the cycle (k) and then decreasing by 1 all integers greater than k in each
cycle. It follows straightforwardly that the permutation σ is an element
of the set Dk−1

n−1.

(2) If m = k and σ′(k) 6= k, then σ = σ′ and σ ∈ Dk−1
n .

(3) If m 6= k, then the permutation σ is obtained from the permutation
σ′ by removing the cycle which contains k and then inserting the word
kσ′(k)σ′2(k) · · · in the cycle which contains the integer m just before the
integer σ′−1(m). The permutation σ is indeed an element of the set Dk−1

n .

It is impossible by construction of the map ϑ that m = k and the integer k is in
the same cycle as an integer smaller than k. �

Theorem 4.5. For all integers 1 ≤ k ≤ n, we have

kdk
n = dk−1

n−1 + dk−1
n .

Proof. By the bijection ϑ, we have

#Dk−1
n−1 + #Dk−1

n = #[k]×Dk
n,

that is,
kdk

n = dk−1
n−1 + dk−1

n .

�
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4.3. Third relation for the numbers dk
n. The following unexpected relation is

a generalization of the famous relation on derangement numbers and a bijective
proof will be given.

Theorem 4.6. For all integers 0 ≤ k ≤ n− 1, one has

ndk
n−1 = dk

n + dk−1
n−2.

Proof. Let us consider the map ς : [n] ×Dk
n−1 → Dk

n ∪Dk−1
n−2 which associates to

a pair (m,σ) a permutation σ′ = ς((m,σ)) defined in the following ways
(1) If m < n, then the permutation σ′ is obtained from the permutation σ

by inserting the integer n in the cycle which contains m just before the
integer m itself. The permutation σ′ is indeed an element of the set Dk

n.
(2) If m = n and σ(1) 6= 1, then the permutation σ′ = ς((n, σ)) is obtained

from the permutation σ by removing the integer σ(1) and then creating
the cycle (n σ(1)). The permutation σ′ is indeed an element of the set
Dk

n and σ′(n) > k.
(3) If m = n and σ(1) = 1, then the permutation σ′ = ς((n, σ)) is obtained

from the permutation σ by removing the cycle (1) and then by decreas-
ing by 1 all integers in each cycle. It follows straightforwardly that the
permutation σ′ is an element of the set Dk

n−2.
The map ς is a bijection. The map ς is injective. It suffices to show that ς is
surjective. Let us look at various cases of the permutation σ′.

(1) If the permutation σ′ is an element of the set Dk
n and the cycle which

contains n is different of the transposition (n σ′(n)) where σ′(n) > k,
then the couple (m,σ) is defined by m = σ′−1(n) and the permutation σ
is obtained by removing the integer n from the cycle containing it.

(2) If the permutation σ′ is an element of the set Dk
n and the cycle which

contains n is a transposition (n σ′(n)) where σ′(n) > k , then the couple
(m,σ) is defined by m = n and the permutation σ is obtained by removing
the cycle (n σ′(n)) and inserting the integer σ′(n) in the cycle which
contains the integer 1 just after 1.

(3) If the permutation σ′ is an element of the set Dk−1
n−2, then the couple (m,σ)

is defined by m = n and the permutation σ is obtained by increasing by 1
all the integers in each cycle of the permutation σ′ and then creating the
new cycle (1).

�

Remark 4.7. If we set d−1
−1 = 1 and d−1

n−1 + d−1
n = 0d0

n, that is, d−1
n−1 + d−1

n = 0,
then we obtain

d0
n + d−1

n−2 = nd0
n−1.

We will give a combinatorial interpretation of this relation directly on derange-
ments in the following section.

5. The famous dn = ndn−1 + (−1)n

Notice that the set Dn of derangements or permutations without fixed points
is equal to the set D0

n.

Definition 5.1. Let us define the critical derangement ∆n = (1 2)(3 4) · · · (n −
1 n) if the integer n is even and the sets

• En = {∆n} if the integer n is even and En = ∅ otherwise,
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• Fn = {(n, ∆n−1)} if the integer n is odd and Fn = ∅ otherwise.
Let τ : [n]×Dn−1 \ Fn → Dn \ En be the map which associates to a pair (i, δ) a
permutation δ′ = τ((i, δ)) defined as below:

(1) If the integer i < n, then the permutation δ′ = δ(i n). In other words,
the permutation δ′ is obtained from the permutation δ by inserting the
integer n in the cycle which contains the integer i just after the integer i.

(2) If the integer i = n, then let p be the smallest integer such that the
transpositions (1 2), (3 4), . . . , (2p− 1 2p) are cycles of the permutation δ
and the transposition (2p + 1 2p + 2) is not.
(a) If δ(2p + 1) = 2p + 2, then the permutation δ′ is obtained from the

permutation δ by removing the integer 2p + 1 from the cycle which
contains it, and then creating the new cycle (2p + 1 n).

(b) If δ(2p + 1) 6= 2p + 2, then we have to distinguish the following two
cases:

(i) If the length of the cycle which contains the integer 2p + 1
is equal to 2, then the permutation δ′ is obtained from the
permutation δ by removing the cycle (2p + 1 δ(2p + 1)), and
then inserting the integer 2p+1 in the cycle which contains the
integer 2p + 2 just before the integer 2p + 2 and creating the
new cycle (δ(2p + 1) n).

(ii) If the length of the cycle which contains the integer 2p + 1 is
greater than 2, then then the permutation δ′ is obtained from
the permutation δ by removing the integer δ(2p + 1) and then
creating the new cycle (δ(2p + 1) n).

Proposition 5.2. The map τ is bijective.

Proof. Notice that the only pair (i, δ) which is not defined by the map τ is the pair
(n, ∆n−1) if the integer n−1 is even. Notice also that the image τ([n−1]×Dn−1)
is contained in the set of all derangements Dn where the integer n lies in a cycle
of length greater or equal to 3 and the image τ({n} ×Dn−1 \ Fn) is contained in
the set of all derangements Dn where the integer n lies in a cycle of length equal
to 2. So we only need to show that there exists a map ζ that

• associates an element of [n− 1]×Dn−1 with every derangement of Dn in
which the integer n lies in a cycle of length greater or equal to 3.

• associates an element of {n} ×Dn−1 \ Fn with every derangement of Dn

in which the integer n lies in a cycle of length 2.
• is the inverse of τ .

It is straightforward to verify that the map ζ is defined as follows.
(1) If the integer n lies in a cycle of length greater or equal to 3, then ζ(δ)

is the pair (i, δ′) where i = δ−1(n) and the permutation δ′ is obtained by
removing the integer n from the derangement δ. The permutation δ′ is a
derangement of Dn−1 and the integer i is smaller than n.

(2) If the integer n lies in a cycle of length equal to 2, then let p the smaller
nonnegative integer such that (1 2), (3 4), . . . , (2p−1 2p) are cycles of the
derangement δ and the transposition (2p + 1 2p + 2) is not.
(a) If δ(n) = 2p+1, then ζ(δ) is the pair (n, δ′) where the permutation δ′

is obtained from the derangement δ by deleting the cycle (n 2p+1)
and then inserting the integer 2p + 1 in the cycle which contains the
integer 2p + 2 just before the integer 2p + 2.
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In other words, we have
δ = (12)(34) · · · (2p− 1 2p)(2p + 1 n)(2p + 2 . . .) · · · and
δ′ = (12)(34) · · · (2p− 1 2p)(2p + 1 2p + 2 . . .) · · · .

(b) If δ(2p + 1) 6= n, then we have to distinguish the following two cases:
(i) If δ(2p + 1) 6= 2p + 2, then ζ(δ) is the pair (n, δ′) where the

permutation δ′ is obtained from the derangement δ by deleting
the cycle (n δ(n)) and then inserting the integer δ(n) in the
cycle which contains the integer 2p + 1 just before the integer
2p + 1.
In other words, we have
δ = (12)(34) · · · (2p− 1 2p)(2p + 1 . . .) · · · (δ(n) n) · · · and
δ′ = (12)(34) · · · (2p− 1 2p)(2p + 1 . . . δ(n)) · · · .

(ii) If δ(2p + 1) = 2p + 2, then ζ(δ) is the pair (n, δ′) where the
permutation δ′ is obtained from the derangement δ by deleting
the cycle (n δ(n)) and the integer 2p + 1 and then creating
the new cycle (2p + 1 δ(n)).
In other words, we have
δ = (12)(34) · · · (2p−1 2p)(2p+1 2p+2 . . .) · · · (δ(n) n) · · ·
and
δ′ = (12)(34) · · · (2p− 1 2p)(2p + 1 δ(n))(2p + 2 . . .) · · · .

Notice that the derangement ∆n, if the integer n is even, is the only derangement
which is not defined by the map ζ. �

Corollary 5.3. If the integer n is even, then we have

dn = ndn−1 + 1.

If the integer n is odd, then we have

dn + 1 = ndn−1.

6. Generating functions

6.1. Generating of the difference table and its derivate.

Proposition 6.1. The generating function E(k)(u) =
∑
n≥0

ek
n+k

un

n!
of the numbers

ek
n+k for a fixed integer k satisfies the following differential equation

(1− u)E(k)′ = (k + u)E(k)

with the initial condition E(k)(0) = k!.

Proof. This differential equation could be deduced from the recurrence relation

ek
n+k = (n + k − 1)ek

n−1+k + (n− 1)ek
n−2+k.

The initial condition is due to the fact that ek
k = k!. �

Theorem 6.2. The generating function E(k)(u) =
∑
n≥0

ek
n+k

un

n!
of the numbers

ek
n+k for a fixed integer k has the closed form

E(k)(u) = k!
exp(−u)

(1− u)k+1
.
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Proof. The function k!
exp(−u)

(1− u)k+1
satisfy the differential equation in Proposition

6.1 as well as the initial condition. �

Corollary 6.3. The generating function D(k)(u) =
∑
n≥0

dk
n+k

un

n!
of the numbers

dk
n+k for a fixed integer k has the closed form

D(k)(u) =
exp(−u)

(1− u)k+1
.

Theorem 6.4. The generating function E(x, u) =
∑
k≥0

∑
n≥0

ek
n+k

xk

k!
un

n!
of the num-

bers ek
n+k has the closed form

E(x, u) =
exp(−u)
1− x− u

.

Proof. We already have ∑
n≥0

ek
n+k

un

n!
= k!

exp(−u)
(1− u)k+1

by Theorem 6.2, and then∑
k≥0

∑
n≥0

ek
n+k

xk

k!
un

n!
=

∑
k≥0

xk exp(−u)
(1− u)k+1

is easily computed and gives the result. �

Corollary 6.5. The generating function D(x, u) =
∑
k≥0

∑
n≥0

dk
n+kxk un

n!
of the num-

bers dk
n+k has the closed form

D(x, u) =
exp(−u)
1− x− u

.

6.2. Generating function of the k-succession distribution over symmetric
group. We will give in this section the generating function

Ẽ(t, x, u) =
∑
k≥0

∑
n≥0

∑
n≥m≥0

ek
n+k,mtm

xk

k!
un

n!

of the numbers ek
n+k,m.

Proposition 6.6. The generating function

Ẽ(k)(t, u) =
∑
n≥0

∑
n≥m≥0

ek
n+k,mtm

un

n!

of the numbers ek
n+k,m for a fixed nonnegative integer k satisfies the following

partial differential equation

uẼ(k) =
∂Ẽ(k)

∂t
with the initial condition

Ẽ(k)(0, u) = E(k)(u) = k!
exp(−u)

(1− u)k+1
.
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Proof. This partial differential equation can easily be deduced from the relation in
Theorem 2.2 and the initial condition is due to the fact that for t = 0, the function
Ẽ(k)(0, u) is the generating function E(k)(u) of the numbers ek

n+k which is given
in Theorem 6.2. �

Theorem 6.7. The generating function

Ẽ(k)(t, u) =
∑
n≥0

∑
n≥m≥0

ek
n+k,mtm

un

n!

of the numbers ek
n+k,m for a fixed nonnegative integer k has the closed form

Ẽ(k)(t, u) = k!
expu(t− 1)
(1− u)(k+1)

.

Proof. The partial diffirential equation in Proposition 6.6 is easily computed and
has the solution

f(u) exp(tu).

The initial condition defines the function f(u) and gives the result. �

Theorem 6.8. The generating function

Ẽ(t, x, u) =
∑
k≥0

∑
n≥0

∑
n≥m≥0

ek
n+k,mtm

xk

k!
un

n!

of the numbers ek
n+k,m has the closed form

Ẽ(t, x, u) =
expu(t− 1)
1− x− u

.

Proof. We already have∑
n≥0

∑
n≥m≥0

ek
n+k,mtm

un

n!
= k!

expu(t− 1)
(1− u)(k+1)

by Theorem 6.7. Then∑
k≥0

∑
n≥0

∑
n≥m≥0

ek
n+k,mtm

xk

k!
un

n!
=

∑
k≥0

expu(t− 1)
(1− u)(k+1)

xk

is easily computed and gives the result. �

7. Explicit formula for the number ek
n+k,m

We will generalise in this section the inclusion-exclusion relation of the derange-
ment numbers [13] and the relation established by Kreweras for e1

n [6].

Theorem 7.1. The number ek
n+k has the closed formula

ek
n+k = n!

n∑
p=0

(−1)p(n + k − p)!
p!(n− p)!

.

Proof. The Theorem 2.1 yields

(n + k)! =
n∑

m=0

ek
n+k,m =

n∑
m=0

(
n

m

)
ek
n+k−m.
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Using Inclusion-Exclusion, we get

ek
n+k =

n∑
p=0

(−1)n−p

(
n

p

)
(p + k)!.

�

Corollary 7.2. The number dk
n has the closed formula

dk
n =

k∑
i=0

(−1)i

(
n− k

i

)
(n− i)!

k!
.

Remark 7.3. (1) For k = 0, we obtain the well-known relation of the derange-
ment numbers

dn = n!
n∑

p=0

(−1)p

p!
.

(2) for k = 1, we obtain the explicit formula for the number of permutations
of the symmetric group Sn without successions established by Kreweras
[6]

sn = (n− 1)!
n∑

p=0

(−1)p(n− p)
p!

.

Theorem 7.4. For k ≥ 0 and n ≥ m ≥ 0, we have

ek
n+k,m =

n!
m!

n−m∑
p=0

(−1)p(n + k −m− p)!
p!(n−m− p)!

.

Proof. Applying Theorem 7.1 and Theorem 2.1 again, we obtain

ek
n+k,m =

(
n

m

)
ek
n−m+k =

(
n

m

) n−m∑
p=0

(−1)n−m−p

(
n−m

p

)
(p + k)!.

�
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