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Abstract. The author illustrates several results from the theory of elliptic curves, as well as the theory
of chip-firing games on graphs. More specifically, in both of these cases, we obtain analogues of cyclotomic
polynomials with several combinatorial and number theoretic properties. We also provide an analysis of
zeta functions which highlights the connections between these two disparate fields.

Résumé. L’auteur illustre plusieurs résultats de la théorie de courbes elliptiques, aussi bien que la théorie
de jeux de chip-firing sur des graphiques. Plus spécifiquement, en tous les deux cas, nous obtenons des
analogues des polynômes cyclotomiques avec plusieurs propriétés théorétiques combinatoires et de nombre.
Nous fournissons également une analyse des fonctions de zéta qui accentue les raccordements entre ces deux
champs disparates.

1. Introduction

The theory of elliptic curves is quite rich, arising in both complex analysis and number theory. In
particular, they can be given a group structure using the tangent-chord method or the divisor class group of
algebraic geometry [11]. This property makes them not only geometric but also algebraic objects and allows
them to be used for cryptographic purposes [15].

In [8], the author started an exploration of elliptic curves from a combinatorial viewpoint. For a given
elliptic curve E defined over a finite field Fq, we let Nk = #E(Fqk) where Fqk is a kth degree extension of
the finite field Fq. Because the zeta function for E, i.e.

exp

(

∑

k≥1

Nk

k
tk

)

=
1 − (1 + q − N1)t + qt2

(1 − t)(1 − qt)
,

only depends on q and N1, the sequence {Nk} only depends on those numbers as well. More specifically,
we observe that these bivariate expressions for Nk are in fact polynomials with integer coefficients, which
alternate in sign with respect to the power of N1 [2].

This motivated the main topic of [8], which was the search for a combinatorial interpretation of these
coefficients. One such interpretation involved spanning trees of a certain family of graphs, and to better
describe these, we introduce some graph theory terminology. The wheel graph Wk is defined to be the cycle
graph on k vertices with the addition of one extra vertex which is adjacent to all other vertices. A spanning
tree of such a graph is a connected subgraph which includes all k + 1 of the vertices but does not contain
any cycles. In particular, such a tree consists of a sequence of disconnected arcs along the rim, in addition
to a series of spokes emanating out from the central vertex. Furthermore, we define the (q, t)-wheel graph
as a directed multi-graph version of the wheel graph. Each spoke is replaced with 2t directed edges, with
half going towards the hub, and half going away from it. Also, each edge between two adjacent rim vertices
is replaced with q + 1 directed edges. Out of these edges, q of them are oriented clockwise, and the last one
goes counter-clockwise.
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Let Wk(q, t) denote the number of rooted directed spanning trees of (q, t)-wheel graph on k + 1 vertices,
which are rooted at the central hub. We get the following equality, which relates Wk(q, t) to the Nk’s, thus
giving a combinatorial description of the coefficients.

Theorem 1.

−Wk(q, t)|t=−N1 = Nk

for all k ≥ 1.

Proof. See [8] for three different proofs of this result. We will summarize the third such proof in
Section 2.3. �

This motivates a closer examination of the relationship between points on an elliptic curve E over Fqk and
spanning trees on the wheel graph Wk.

In this write-up we continue this journey. An elliptic curve E has an abelian group structure, and
indeed the set of spanning trees of a graph also has a natural abelian group structure. Here we study
one isomorphic to the critical group of the graph, which has ties to the theory of chip-firing games and
abelian sandpile models of dynamical systems. While in [8], we focused on the relationship between the
integer sequences {Nk} and {Wk(q, N1)}, here we compare these two group structures, illustrating that the
connections between elliptic curves and spanning trees run even deeper than earlier observed. Numerous
theorems which are true for elliptic curve groups have analogues in terms of critical groups of the (q, t)-wheel
graph.

Additionally the theory of critical groups will also allow us to re-interpret the group elements as the set
of admissible words for a primitive circuit in a specific non-deterministic finite automaton. As an application,
we will then compare the zeta function of an elliptic curve and the zeta function of the corresponding cyclic
language.

2. Determinantal formula for Nk

We will shortly describe more fully the relationship between the group structure of elliptic curves and
critical groups, but first illustrate a couple applications of Theorem 1. These results will be useful later on
when comparing the groups, and additionally are interesting for their own sake. Our first application is a
determinantal formula for Nk by utilizing the Matrix-Tree theorem [13].

Theorem 2. Let M1 = [−N1], M2 =

[

1 + q − N1 −1 − q
−1 − q 1 + q − N1

]

, and for k ≥ 3, let Mk be the k-by-k

“three-line” circulant matrix
















1 + q − N1 −1 0 . . . 0 −q
−q 1 + q − N1 −1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . −q 1 + q − N1 −1 0
0 . . . 0 −q 1 + q − N1 −1
−1 0 . . . 0 −q 1 + q − N1

















.

Then the sequence of integers Nk = #E(Fqk) satisfies the relation

Nk = − detMk

for all k ≥ 1. We obtain an analogous determinantal formula for Wk(q, t), in fact Wk(q, t) = detMk|N1=−t.

We provide two proofs of this theorem, one which relies on graph theory, and one which introduces a
new sequence of polynomials which have intriguing number theoretic and combinatorial properties.

2.1. First proof of Theorem 2: Via graph theory. We appeal to the directed multi-graph version
of the Matrix-Tree Theorem to count the number of spanning trees of (q, t)-Wk with root given as the hub.



ELLIPTIC CURVE GROUPS AND CHIP-FIRING GAMES 3

We obtain Laplacian matrix

L =





















1 + q + t −1 0 . . . 0 −q −t
−q 1 + q + t −1 0 . . . 0 −t
. . . . . . . . . . . . . . . . . . −t
0 . . . −q 1 + q + t −1 0 −t
0 . . . 0 −q 1 + q + t −1 −t
−1 0 . . . 0 −q 1 + q + t −t
−t −t −t . . . −t −t kt





















where the last row and column correspond to the hub vertex, which happens to be the root. By the Matrix-
Tree theorem, the number of directed rooted spanning trees is detL0 where L0 is matrix L with the last row
and last column deleted. We have the identities

Nk = −Wk(q,−N1)

Mk = L0

∣

∣

∣

∣

t=−N1

and thus

Wk(q, t) = detL0 implies

−Wk(q,−N1) = − detL0

∣

∣

∣

∣

t=−N1

so we get

Nk = − detMk.

Thus we have proven Theorem 2.

2.2. Combinatorial aspects of matrix Mk. The matrices Mk each have an especially elegant Smith
normal form. Recall that such a form is unchanged by

(1) Multiplication of a row or a column by −1.
(2) Addition of an integer multiple of a row or column to another.
(3) Swapping of two rows or two columns.

Proposition 1. For any specific choice of integers q and N1, the Smith normal form of Mk is an integral
diagonal matrix with (k − 2) or (k − 1) ones on the diagonal. More generally, if we preserve q and N1 as
variables, then the Smith normal form of Mk is equivalent to a matrix with (k − 2) ones on the diagonal,
followed by a 2-by-2 block whose entries consist of integral polynomials in q and N1. All other entries are
zero.

Proof. To begin, we note after permuting rows cyclically and multiplying through all rows by (−1)
that we get

Mk ≡

















1 0 . . . 0 q −1 − q + N1

−1 − q + N1 1 0 . . . 0 q
q −1 − q + N1 1 0 . . . 0

. . . . . . . . . . . . . . . . . .

. . . 0 q −1 − q + N1 1 0
0 . . . 0 q −1 − q + N1 1

















.

Since this matrix is lower-triangular with ones on the diagonal, besides the upper-right corner of three,
we can add a multiple of the first row to the second and third rows, respectively, and obtain a new matrix
with vector

V = [1, 0, 0, . . . , 0]T

as the first column. Since we can add multiples of columns to one another as well, we also obtain a matrix
with vector V T as the first row.

This new matrix will again be lower triangular with ones along the diagonal, except for nonzero entries
in four spots in the last two columns of rows two and three. By the symmetry and sparseness of this matrix,
we can continue this process, which will always shift the nonzero block of four in the last two columns down
one row. This process will terminate with a block diagonal matrix consisting of (k − 2) 1-by-1 blocks of
element 1 followed by a single 2-by-2 block which will be more complicated. �
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One can go further than Proposition 1 and explicitly construct the entries in the last two rows and
columns. For this analysis, we use a slight variant of the bivariate Fibonacci polynomials as defined in [8].

Definition 1. The (2k + 1)st Fibonacci polynomial is

Ek(q, N1) = (−1)k
∑

S⊆{1,2,...,2k−2} : S∩(S
(2k−1)
1 −{1})=φ

q# even elements in S (−N1)
k−#S .

This sum is over sets S with no (linearly) consecutive elements.

With these bivariate Fibonacci polynomials Ek in mind, we can identity the polynomials occurring in
the 2-by-2 block.

Theorem 3. The Smith normal form of Mk is equivalent to

















1 0 . . . 0 0 0
0 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 0
0 0 . . . 0 qEk−1/N1 − 1 −qEk/N1

0 0 . . . 0 Ek/N1 −Ek+1/N1 − 1

















.

Note that this 2-by-2 block will reduce to

[

m1 0
0 m2

]

such that m1|m2 as integers once q and N1 are evaluated

as specific numbers.

Proof. We consider a recursive argument by comparing the Fibonacci recurrence with identities arising
from reduction to Smith normal form. Details given in [8]. �

2.3. Second proof of Theorem 2 and introduction to Elliptic Cyclotomic polynomials. Al-
ternatively, we note that we can factor

Nk = 1 + qk − αk
1 − αk

2

using the fact that q = α1α2. Consequently,

Nk = (1 − αk
1)(1 − αk

2)

and we can factor each of these two terms using cyclotomic polynomials. We recall that (1 − xk) factors as

1 − xk =
∏

d|k
Cycd(x)

where Cycd(x) is a monic irreducible polynomial with integer coefficients. We can similarly factor Nk as

Nk =
∏

d|k
Cycd(α1)Cycd(α2).

These factors are therefore bivariate analogues of the cyclotomic polynomials, and we will refer to them
henceforth as elliptic cyclotomic polynomials, denoted as ECycd. More specifically

Definition 2. We define the elliptic cyclotomic polynomials to be the sequence of polynomials in vari-
ables q and N1 such that for d ≥ 1,

ECycd = Cycd(α1)Cycd(α2),

where α1 and α2 are the two roots of

T 2 − (1 + q − N1)T + q.

We verify that they can be expressed in terms of q and N1 by the following proposition.

Proposition 2. Writing down ECycd in terms of q and N1 yields irreducible bivariate polynomials with
integer coefficients.
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Proof. Integrality follows from the Fundamental Theorem of Symmetric Functions that states that a
symmetric polynomial with integer coefficients can be rewritten as an integral polynomial in e1, e2, . . . . In
this case, Cycd(α1)Cycd(α2) is a symmetric polynomial in two variables so e1 = α1 + α2 = 1 + q − N1,
e2 = α1α2 = q, and ek = 0 for all k ≥ 3. Thus we obtain an expression for ECycd as a polynomial in q and
N1 with integer coefficients. For the proof of why these are irreducible, see [8]. �

We can factor Nk, i.e. the ECycd’s even further, if we no longer require our expressions to be integral.

Nk =

k
∏

j=1

(1 − α1ω
j
k)(1 − α2ω

j
k)(1)

=

k
∏

j=1

(1 − (α1 + α2)ω
j
k + (α1α2)ω

2j
k )(2)

= (−1)

k
∏

j=1

(−ωk−j
k )(1 − (1 + q − N1)ω

j
k + (q)ω2j

k )(3)

= −
k

∏

j=1

(

(1 + q − N1) − qωj
k − ωk−j

k

)

.(4)

Furthermore, the eigenvalues of a circulant matrix are well-known, and involve roots of unity analogous to
the expression precisely given by (2). (For example Loehr, Warrington, and Wilf [6] provide an analysis of a
more general family of three-line-circulant matrices from a combinatorial perspective. Using their notation,
our result can be stated as

Nk = Φk,2(1 + q − N1,−q)

where Φp,q(x, y) =
∏p

j=1(1 − xωj − yωqj) and ω is a primitive pth root of unity. It is unclear how our
combinatorial interpretation of Nk, in terms of spanning trees, relates to theirs, which involves permutation
enumeration.) In particular, we prove Theorem 2 since detMk equals the product of Mk’s eigenvalues, which
are precisely given as the k factors of −Nk in equation (2). This argument gives us a proof of Theorem 1 as
well.

The sequence of elliptic cyclotomic polynomials motivates several avenues for further exploration. For
example, the author has been able to show that they have degrees in q and in N1 equal to the degrees of
the ordinary cyclotomic polynomials (for k ≥ 2), and has investigated their values at formal evaluations of
N1 such as N1 = 0 or 2q + 2 [8]. Another tie to ordinary cyclotomic polynomials is demonstrated by the
following remarkable geometric interpretation of the elliptic cyclotomic polynomials.

Theorem 4.

ECycd =

∣

∣

∣

∣

Ker

(

Cycd(π)

)

: E(Fq) → E(Fq)

∣

∣

∣

∣

where π denotes the Frobenius map, and Cycd(π) is an element of End(E) = End(E(Fq)).

Proof. See [8] �

3. Introduction to chip-firing games

We now switch topics and discuss some fundamental results from the theory of chip-firing games on
graphs. The main source for these details is [1], though there is an extensive literature on the subject. At
first glance, this topic might appear totally unrelated to elliptic curves, but we will shortly flesh out the
connection. Given a directed (loop-less) graph G, we define a configuration C to be a vector of nonnegative
integers, with a coordinate for each vertex of the graph. Thus we let Ci denote the integer corresponding to
vertex vi. One can think of this assignment as a collection of chips placed on each of the vertices. We say
that a given vertex vi can fire if the number of chips it holds, Ci, is greater than or equal to its out-degree. If
so, firing leads to a new configuration where a chip travels along each outgoing edge incident to vi. Thus we
obtain a configuration C′ where C′

j = Cj + d(vi, vj) and C′
i = Ci − d(vi). Here d(vi, vj) equals the number

of directed edges from vi to vj , and d(vi) is the out-degree of vi, which of course equals
∑

j 6=i d(vi, vj).

Many interesting problems arise from this definition. For example, it can be shown [4] that the set of
configurations reachable from an initial choice of a vector forms a distributive lattice. For the purposes of
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relating this topic to an elliptic curve, we will consider a variant of the standard chip-firing game, known as
the dollar game. In the dollar game, we have the same set-up as before with three changes.

(1) We designate one vertex v0 to be the bank, and allow C0 to be negative. All the other Ci’s still
must be nonnegative.

(2) To limit extraneous configurations, we presume that the sum
∑#V −1

i=0 Ci = 0. (Thus in particular,
C0 will be non-positive.)

(3) The bank, i.e. vertex v0, is only allowed to fire if no other vertex can fire. Note that since we now
allow C0 to be negative, v0 is allowed to fire even when it is smaller than its outdegree, and thus
this rule completely determines when v0 can fire.

With this set-up in mind, we define a configuration to be stable if v0 is the only vertex that can fire. We
define a configuration C to be recurrent if there is firing sequence which will lead back to C. Note that this
will necessarily require the use of v0 firing. We call a configuration critical if it is both stable and recurrent.

Theorem 5. [1] For any initial configuration satisfying rules (1) and (2) above,there exists a unique
critical configuration that can be reached by a firing sequence, subject to rule (3).

We define the critical group of graph G, with respect to vertex v0 to be the set of critical configura-
tions, with addition given by C1⊕C2 = C1 + C2. Here + signifies the usual pointwise vector addition and C3

represents the unique critical configuration reachable from C3. When v0 is understood, we will abbreviate
this group as the critical group of graph G, and denote it as C(G).

Theorem 6. [1] C(G) is in fact an abelian (associative) group.

4. Connection to Elliptic Curves

We note an alternative definition of the critical group that gives it a form closer to the Picard group or
Jacobian of an algebraic variety. Recall that divisors on elliptic curve E over Fq are formal integral linear

combinations of points on E(Fp) which are invariant under Frobenius automorphism π which fixes finite field
Fq (q = pk). We consider relations of the form D =

∑

i niPi ∼ 0 whenever D is the divisor of a rational
function. For an elliptic curve, this includes relations generated by those of the form P + Q + R− 3P∞ ∼ 0.
Furthermore, for elliptic curves, the Abel-Jacobi map provides an isomorphism between the set of equivalence
classes [P −P∞] and the set of points P ∈ E(Fq). We thus encode all of these relations as a matrix, L0, and

then the Picard group or Jacobian of the Elliptic Curve is given as Z#E(Fq)

/

Im L0.

Returning to the theory of chip-firing games, the literature for this subject occasionally uses the terms
Picard group or Jacobian for the critical group as well. Let Z#V be the set of divisors on the set of vertices V .
That is, we consider formal integral (possibly negative) linear combinations of v1 through v#V . Alternatively
we can think of these as the set of homomorphisms from V to Z or integral vectors of length #V . Let L
represent the Laplacian matrix for directed graph G, that is Lii = d(vi) and Li,j = −d(vi, vj). The Laplacian
will be a singular matrix with a nontrivial nullspace. However, if we take the minor which omits the row and
column corresponding to v0, then we get a nonsingular matrix L0. The critical group of the graph (V, E)

is isomorphic to Z#V −1

/

Im L0. Among other things, this implies by the Matrix-Tree Theorem that |C(G)|
equals the number of spanning trees in G. Since Nk = −Wk(q,−N1), we turn our attention to the critical
group of the (q, t)-wheel graph for q ≥ 0 and t ≥ 1.

While it is easier to describe the group structure in terms of critical configuration vectors or as a cokernel,
we do indeed have a bijection between spanning trees and critical configurations, and thus one could define
the group structure directly on (colored) spanning trees.

Theorem 7. There exists an explicit bijection between critical configurations and spanning trees (at
least in the case of the directed (q, t)-wheel multi-graph). This map induces an isomorphism of groups.

Specifically pick one of the vertices on the rim to be v1, and label v2 through vk clockwise. Label the
central hub as v0. For i between 1 and k, if 1 ≤ Ci ≤ q, then fill in the arc between vi−1 and vi, labeling it
with the number Ci. (In the case of i = 1 we use the arc between vk and v1 instead.) If 1 + q ≤ Ci ≤ q + t
then fill in the spoke between v0 and vi and label it with number Ci. After filling in the edges as indicated we
will get a subgraph of a spanning tree. To complete this subgraph to a tree, fill in additional arcs using the



ELLIPTIC CURVE GROUPS AND CHIP-FIRING GAMES 7

following rule: one may fill in an arc from vi−1 to vi, and label it with a q, if and only if Ci ∈ {1+q, . . . , q+t}.
In other words, if Ci = 0 then this will contribute no arc nor a spoke.

Proof. We defer the proof of this theorem until Section 5 where we precisely describe which critical
configurations actually arise. It will then be clear that the list of configurations that show up as the image
of a spanning tree, and the list of possible critical configurations, are equivalent. Since the described map is
injective by construction, we have the desired bijection. �

4.1. Group Structure. We now return to the main topic at hand, namely elliptic curves. An elliptic
curve over a finite field has a well-known group structure. In fact, it is the product of at most two cyclic
groups. One way to prove this is by showing that for gcd(N, p) = 1, the [N ]-torsion subgroup of E(Fp) (also
denoted as E[N ]) is isomorphic to Z/NZ × Z/NZ and that E[pr] is either 0 or Z/prZ.

Since we know that the critical group of graphs are also abelian groups, this motivates the question:
what is the group decomposition of the C(G)’s? The case of a simple wheel graph Wk was explicitly found
to be [1]

Z/LkZ × Z/LkZ or Z/Fk−1Z × Z/5Fk−1Z

depending on whether k is odd or even, respectively. Here Lk is the kth Lucas number and Fk is the kth
Fibonacci number.

Determining such structures of critical groups has been the subject of several papers recently, e.g. [3, 7],
and a common tool is the Smith normal form of the Laplacian. Fortunately, we already know the Smith
normal form for the case we care about, namely for the (q, t)-wheel graphs. Using Theorem 3, (in fact
Proposition 1 is sufficient), we show

Theorem 8. C(Wk(q, N1)) is isomorphic to at most two cyclic groups, a property that this sequence of
critical groups shares with the family of elliptic curve groups over finite fields.

In addition to a presentation for C(Wk(q, N1)), we also get a more explicit presentation of E(Fqk) in
certain cases.

Theorem 9. If E(Fq) ∼= Z/N1Z, as opposed to the product of two cyclic groups, and End(E) ∼= Z[π],
then

E(Fk
q ) ∼= Zk

/

MkZk

for all k ≥ 1. That is, E(Fqk) is the cokernel of the image of Mk. Furthermore, there exists a point

P ∈ E(Fqk) with property πm(P ) 6= P for all 1 < m < k such that we can take Zk as being generated by

{P, π(P ), . . . , πk−1(P )} under this presentation.

Proof. A theorem of Lenstra [5] says that an ordinary elliptic curve over Fq has a group structure in
terms of its endomorphism ring, namely,

E(Fqk) ∼= End(E)

/

(πk − 1).

Wittman [17] gives an explicit description of the possibilities for End(E), given q and E(Fq). It is well
known, e.g. [11], that the endomorphism ring in the ordinary case is an order in an imaginary quadratic
field. This means that

End(E) ∼= Og = Z ⊕ gδZ

for some g ∈ Z≥0 and δ =
√

D or 1+
√

D
2 according to d’s residue modulo 4. Wittman shows that for a curve

E with conductor f , the possible g’s that occur satisfy g|f as well as

n1 = gcd(a − 1, g/f).

The conductor f and constant a are computed by rewriting the Frobenius map as π = a + fδ, and n1 is the
unique positive integer such that E(Fq) ∼= Z/n1Z × Z/n2Z (n1|n2).

We focus here on the case when g = f and End(E) ∼= Z[π]. In particular, n1 must be equal to one
in this case, and so the condition that End(E) = Z[π] is actually a sufficient hypothesis. Since E(Fqk) ∼=
Z[π]/(1 − πk) in this case, we get

E(Fqk) ∼= Z[x]/(x2 − (1 + q − N1)x + q, xk − 1)
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with x transcendent over Q. Thus

E(Fqk) ∼= Z{1, x, x2, . . . , xk−1}
/

(

x2 − (1 + q − N1)x + q, x3 − (1 + q − N1)x
2 + qx, . . . , xk−1 − (1 + q − N1)x

k−2 + qxk−3,

1 − (1 + q − N1)x
k−1 + qxk−2, x − (1 + q − N1) + qxk−1

)

and using matrix Mk, as defined above, we obtain the desired presentation for E(Fqk) in this case. �

Question 1. What can we say in the case of another endomorphism ring, or the case when E(Fq) is
not cyclic?

4.2. Analogues of Elliptic Cyclotomic polynomials. We found for elliptic curves that ECycd(q, N1)
counted the number of points in the kernel of the isogeny Cycd(π) where π is the Frobenius isogeny. Since

Nk =
∏

d|k
ECycd(q, N1)

and Wk(q, t) = −Nk

∣

∣

∣

∣

N1→−t

, it also makes sense to consider the decomposition

Wk(q, t) =
∏

d|k
WCycd(q, t)

where WCycd(q, t) = −ECycd|N1→−t. A few of the first several WCycd(q, t)’s are given below:

WCyc1 = t

WCyc2 = t + 2(1 + q)

WCyc3 = t2 + (3 + 3q)t + 3(1 + q + q2)

WCyc4 = t2 + (2 + 2q)t + 2(1 + q2)

WCyc5 = t4 + (5 + 5q)t3 + (10 + 15q + 10q2)t2 + (10 + 15q + 15q2 + 10q3)t + 5(1 + q + q2 + q3 + q4)

WCyc6 = t2 + (1 + q)t + (1 − q + q2)

WCyc8 = t4 + (4 + 4q)t3 + (6 + 8q + 6q2)t2 + (4 + 4q + 4q2 + 4q3)t + 2(1 + q4)

WCyc9 = t6 + (6 + 6q)t5 + (15 + 24q + 15q2)t4 + (21 + 36q + 36q2 + 21q3)t3

+ (18 + 27q + 27q2 + 27q3 + 18q4)t2 + (9 + 9q + 9q2 + 9q3 + 9q4 + 9q5)t + 3(1 + q3 + q6)

WCyc10 = t4 + (3 + 3q)t3 + (4 + 3q + 4q2)t2 + (2 + q + q2 + 2q3)t + (1 − q + q2 − q3 + q4)

WCyc12 = t4 + (4 + 4q)t3 + (5 + 8q + 5q2)t2 + (2 + 2q + 2q2 + 2q3)t + (1 − q2 + q4)

We ask the same question as before, namely does there exist a combinatorial or geometric interpretation
of these polynomials. Indeed, we consider the following properties of the C(Wk(q, t))’s that allow us to derive
an analogous result.

Proposition 3. The identity map is an injective group homomorphism between C(Wk1(q, t)) and C(Wk2(q, t))
whenever k1|k2. More precisely, we let C(Wk1(q, t)) embed into C(Wk2(q, t)) by letting w ∈ C(Wk1(q, t)) map

to the word www . . . w ∈ C(Wk2(q, t)) using k2

k1
copies of w.

Define ρ to be the rotation map on C(Wk(q, t)). If we consider elements of the critical group to be config-
uration vectors, then we mean circular rotation of the elements to the right. On the other hand, ρ acts by
rotating the rim vertices of Wk clockwise if we view elements of C(Wk(q, t)) as spanning trees.

Proposition 4. The kernel of (1−ρk1) acting on C(Wk2(q, t)) is subgroup C(Wk1(q, t)) whenever k1|k2.

We therefore can define a direct limit

C(W (q, t)) ∼=
∞
⋃

k=1

C(Wk(q, t))
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where ρ provides the transition maps.
Another view of C(W (q, t)) is as the set of bi-infinite words which are (1) periodic, and (2) have funda-

mental subword equal to a configuration vector in C(Wk(q, t)) for some k ≥ 1. In this interpretation, map ρ
acts on C(W (q, t)) also. In this case, ρ is the shift map, and in particular we obtain

C(Wk(q, t)) ∼= Ker(1 − ρk) : C(W (q, t)) → C(W (q, t)).

We now can describe our variant of Theorem 4.

Theorem 10.

WCycd =

∣

∣

∣

∣

Ker

(

Cycd(ρ)

)

: C(W (q, t)) → C(W (q, t))

∣

∣

∣

∣

where ρ denotes the shift map, and C(W (q, t)) is the direct limit of the sequence {C(Wk(q, t))}∞k=1.

Proof. The proof is analogous to the elliptic curve case. Since the maps Cycd1(ρ) and Cycd2(ρ) are
group homomorphisms, we get

|Ker Cycd1(ρ) Cycd2(ρ)| = |Ker Cycd1(ρ)| · |Ker Cycd2(ρ)|
and the rest of the proof follows as in [8]. �

Thus we identify shift map ρ as being the analogue of the Frobenius map π on elliptic curves. In addition
to ρ’s appearance in Theorem 10, two other comparisons with π are highlighted below.

(1)

C(Wk(q, t)) ∼= Ker(1 − ρk) : C(W (q, t)) → C(W (q, t)) just as

E(Fqk) = Ker(1 − πk) : E(Fq) → E(Fq).

(2) We get the equation

ρ2 − (1 + q + t)ρ + q = 0,

which can be read off from matrix Mk and the configuration vectors’ images under clockwise and
counter-clockwise rotation. This is a simple analogue of the characteristic equation

π2 − (1 + q − N1)π + q = 0

of the Frobenius map π.

5. Characterization of Critical Configurations

In this section we completely characterize critical configurations of the (q, t)-Wheel graph. Furthermore,
we will shortly see a deterministic finite automaton which admits such critical configurations. As an added
bonus, we can construct a zeta function of such a system which is intimately connected to the zeta function
of the elliptic curve.

This new characterization of critical configurations also proves Theorem 7, giving a bijection between
critical configurations and spanning trees.

Proposition 5. A configuration C = [c1, c2, . . . , ck] of the wheel graph Wk(q, t) is stable if and only if
0 ≤ ci ≤ q + t for all 1 ≤ i ≤ k.

Proof. It is clear that we disallow ci < 0 as a legal configuration by our definition. If such a config-
uration were to come up, we could add t to every value ci, simulating the firing of the central vertex. If
on the other hand, there exists ci ≥ 1 + q + t, with all other ci ≥ 0, then vertex vi can fire resulting in a
new nonnegative configuration. Otherwise, if all ci are in the specified range, we have a stable configuration
where no vertex except the hub can fire. �

We recall that any stable configuration C is critical if and only if it is recurrent, meaning that after
adding t to every ci and applying the chip-firing rules, we arrive back at stable configuration C.

Proposition 6. There exists a unique critical configuration reachable from a given stable configuration.

Lemma 1. Let C be a stable configuration, with
∑k

i=1 ci = N . If C is reachable from some configuration

C′ (which is not necessarily stable) with
∑k

i=1 c′i > N , then C is actually critical.
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Proof. We need only check that if we add t to all values ci and apply the chip-firing rules, we will
reach C again. Given the sum of the rows of the Laplacian matrix, there will be some firing sequence such
that every vertex will fire, and thus the result being the subtraction of t from every ci, thus we obtain C
again. See [1] for more details in the case of a general graph. �

Lemma 2. While we apply the chip-firing rules, every stage will decrease the
∑k

i=1 ci by t. In particular,
if there are two stable configurations which are equivalent, we will reach the configuration with the biggest
∑k

i=1 ci first. Thus, this vector will be the critical configuration out of this equivalence class.

Proof. This claim follows from the definition of the Laplacian and Lemma 1. �

Thus we have proven Proposition 6 for the case of the (q, t)-wheel graph. For a more general proof, see [1].

Lemma 3. Any critical configuration [c1, . . . , ck] will have at least one element ci = B such that B ∈
{1 + q, . . . , q + t}.

Proof. Assume otherwise. Then ci ∈ {0, 1, . . . , q} for all 1 ≤ i ≤ k. Consequently, we may add t
to every ci and still obtain a stable configuration. Thus the initial configuration is smaller and cannot be
critical. �

Theorem 11. Any configuration C is critical if and only if it consists of a circular concatenation of
blokcs of the form

B, M1, . . . , Mj , 0, q, q, . . . , q

where B ∈ {1 + q, . . . , q + t} and Mi ∈ {1, . . . , q}.
Proof. We have already shown that there exists at least one ci = B with B > q. Thus we prove this

Theorem by induction on n, the number of such elements. Consider such a block in context, and presume it
is of form

· · · , Mkn

n | B1, M
1
1 , M2

1 , . . . , Mk1
1 | B2, · · ·

where M i
p ∈ {0, 1, . . . , q} and Bp ∈ {1 + q, . . . , q + t}. Here Mkn

n and B2 represent the end of the previous
block and the beginning of the next block, respectively. The heart of the proof is the verification of the
following claim.

Claim 1. Such a configuration cannot be recurrent unless M
jp

p = 0 implies that the remaining M i
p’s, i.e.

M
jp+1
p through M

kp

p , are equal to q.

Without loss of generality, we will work with p = 1 and let j1 = j, k1 = k, Mkn
n = M0. Assume that

M1
1 through M j−1

1 ∈ {1, 2, . . . q}. We add t to every element of C, getting C + [t], and then reduce via the
chip-firing rules whenever we encounter an element with value greater or equal to 1 + q + t. Configuration
C + [t] contains element B1 + t, with value ≥ 1 + q + t, but all other elements of the block are < 1 + q + t.
Once we replace B1 + t with B1 − 1 − q, and its neighbors with M0 + t + 1 and M1

1 + q + t, respectively,

we reduce M1
1 + q + t since its entry is now ≥ 1 + q + t. We continue inductively until we reach M j

1 + q + t

which is less than 1 + q + t since M j
1 = 0 by assumption. At this point, the block looks like

M0 + t + 1 | B1 − q, M1
1 , . . . , M j−1

1 − 1, q + t, M j+1
1 + t, . . . , Mk

1 + t | B2 + t.

Since B2 + t ≥ 1 + q + t, we can reduce this block further as

M0 + t + 1 | B1 − q, M1
1 , . . . , M j−1

1 − 1, q + t, M j+1
1 + t, . . . , Mk

1 + t + 1 | B2 − 1 − q.

By propagating the same reductions to the rest of the configuration, we reduce to a configuration C′ which
is made up of blocks of the form

Bp − q, M1
p , . . . , M jp−1

p − 1, q + t, M jp+1
p + t, . . . , Mkp

p + t + 1

in lieau of
Bp, M

1
p , . . . , M jp−1

p , 0, M jp+1, . . . , Mkp .

Since M i
p ≤ q, all elements of C′ are less than 1 + q + t except possibly for the last elements of each block,

e.g. Mk
p + t + 1. If all of the Mk

p ’s are less than q, then C′ is stable, and thus the original configuration C
is not recurrent, nor critical as assumed.
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Thus, without loss of generality, assume that Mk
1 = q. We then can reduce block

M0 + t + 1 | B1 − q, M1
1 , . . . , M j−1

1 − 1, q + t, M j+1
1 + t, M j+2

1 + t . . . , Mk−1
1 + t, q + t + 1 | B2 − 1 − q

and obtain

M0 + t + 1 | B1 − q, M1
1 , . . . , M j−1

1 − 1, q + t, M j+1
1 + t, M j+2

1 + t . . . , Mk−1
1 + t + 1, 0 | B2 − 1.

By analogous logic, we must have that Mk−1
1 = q and continuing iteratively, we reduce to

M0 + t + 1 | B1 − q, M1
1 , . . . , M j−1

1 − 1, q + t + 1, 0, q, . . . , q, q | B2 − 1

which is equivalent to

M0 + t + 1 | B1 − q, M1
1 , . . . , M j−1

1 , 0, q, q, . . . , q, q | B2 − 1.

Finally, M0 = Mkn
n so we indeed obtain

q | B1, M
1
1 , . . . , M j−1

1 , 0, q, q, . . . , q, q | B2

after iterating over all the blocks to the right and wrapping around.
�

6. Connections to Deterministic Finite Automata

A deterministic finite automaton (DFA) is a finite state machine M built to recognize a given language
L, i.e. a set of words in a specific alphabet. To test whether a given word ω is in language L we write down
ω on a strip of tape and feed it into M one letter at a time. Depending on which state the machine is in,
it will either accept or reject the character. If the character is accepted, then the machine’s next state is
determined by the previous state and the relevant character on the strip. As the machine changes states
accordingly, and the entire word is fed into the machine, if all letters of ω are accepted, then ω is an element
of language L.

For our purposes we consider an automaton MG with three states, which we label as A, B, and C. In
state A we either accept a character in {1+q, . . . , q+t} and return to state A, accept a character in {1, . . . , q}
and move to state B, or accept the character 0 and move to state C.

On the other hand, in state B we either accept a character in {1 + q, . . . , q + t} and move to state A,
accept a character in {1, . . . , q} and return to state B, or accept character 0 and move to state C.

Finally, in state C we either accept a character in {1 + q, . . . , q + t} and move to state A, or accept
character q and return to state C. A character in {1, . . . , q} is not accepted while in state C.

If we consider the set of words which are accepted by MG with the properties (1) the initial state of MG

is the same as its final state, and (2) MG is in state A at some point while verifying ω, then the language
that we obtain are precisely the set of critical configurations, as described in Section 5. Using terminology
of [10], the set of critical configurations of (q, t)-Wk is given as the set of words which are the trace of MG

minus the trace of cycles only containing state B minus the trace of cycles only containing state C. We note
that all other circuits with the same initial and final state necessarily need to contain state A since there are
no cycles containing both state B and C but not A. There is no way to go from state C to state B without
going through state A first, given the definition of MG. Thus the zeta function of this cyclic language is
given as

det([1 − qT ]) det([1 − T ])

det(I − MT )

where the factor of det([1− qT ]) correspond to the trace of cycles containing state B alone, and det([1−T ])
corresponds to the trace of cycles containing state C alone. On the other hand, matrix M is the 3-by-3
matrix encoded by the number of directed edges between the various states.





t q 1
t q 1
t 0 1





Thus

exp

( ∞
∑

k=1

Wk

k
T k

)

=
(1 − qT )(1 − T )

1 − (1 + q + W1)T + qT 2
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where Wk equals the number of primitive cycles in MG, which contain state A but starting at any of the
three states.

At this point, we have yet a fourth proof of the Theorem 1, which states Nk = −Wk(q,−N1). The
reasoning being

exp

(

∑

k≥1

Wk

k
T k

)

=
(1 − qT )(1 − T )

1 − (1 + q + t)T + qT 2

=

(

1 − (1 + q + t)T + qT 2

(1 − qT )(1 − T )

)−1

= (Z(E, T )|N1=−t)
−1

= exp

(

−
∑

k≥1

Nk

k
T k

)∣

∣

∣

∣

N1=−t

.

The relationship between elliptic curves and spanning trees appears even more pronounced than one
would have guessed from the motivation of Theorem 1. The connections described here inspire further
exploration for connections between these two families of objects. This work includes the search for a
natural bijection between the set of points on an elliptic curve, and a certain subset of the spanning trees of
the (q, t)-wheel graphs, as well as for combinatorial interpretations of the coefficients in the WCycd’s.
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