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Compound basis arising from the basic A
(1)
1 -module

Kazuya Aokage, Hiroshi Mizukawa

Résumé. A new basis for the polynomial ring of infinitely many variables is constructed which consists of
products of Schur functions and Q-functions. The transition matrix from the natural Schur function basis

is investigated.

RÉSUMÉ. On construit une nouvelle base pour l’anneau des polynômes d’une infinité de variables. Cette
base consiste en produits de fonctions de Schur et Q-fonctions, dont la matrice de passage à la base naturelle

de fonctions de Schur est aussi étudiée.

1. Introduction

We are interested in realizations of the basic representation of the simplest affine Lie algebra A
(1)
1 (cf.

[4]). The most well-known realization is PU , principal, untwisted, which is on the space

V PU = C[tj ; j ≥ 1, odd].

In the context of nonlinear integrable systems, this space appears as that of the KdV hierarchy. The second
one is HU , homogeneous, untwisted, which is on

V HU =
⊕
m∈Z

V (m); V (m) = C[tj ; j ≥ 1] ⊗ qm.

This space is for the NLS (nonlinear Schrödinger) hierarchy and for the Fock representation of the Virasoro
algebra(cf. [3]). The third one is PT , principal, twisted, on V PT which coincides with V PU . And the
forth one is HT , homogenous, twisted, on V HT which is the same as V HU . The Lie algebra of type A

(1)
1 is

isomorphic to that of type D
(2)
2 . One can discuss twisted version of A

(1)
1 -modules via this isomorphism.

The purpose of this note is to give a weight basis for V HT and compare it with a standard Schur function
basis for V HU . We will show that the transition matrix has several interesting combinatorial properties.

2. A quick review of realizations

Let us first consider the principal untwisted version on V PU = C[tj ; j ≥ 1, odd]. To describe a weight
basis for this space we need Schur functions and Schur’s Q-functions in our setting. Let Pn be the set of all
partitions of n and put P =

∪
n≥0 Pn. For λ ∈ Pn, the Schur function Sλ(t) is defined by

Sλ(t) =
∑

ρ=(1m12m2 ...)∈Pn

χλ
ρ

tm1
1 tm2

2 · · ·
m1!m2! · · ·

,

where the summation runs over all partitions ρ = (1m12m2 . . .) of n and χλ
ρ is the irreducible character of

the symmetric group Sn, indexed by λ and evaluated at the conjugacy class ρ. The Schur functions are the
irreducible characters of the general linear groups. If the group element g has eigenvalues x1, x2, . . ., then
the original irreducible character is recovered by putting tj := pj/j (j ≥ 1), where pj =

∑
i≥1 xj

i is the j-th
power sum.

The 2-reduction of a polynomial f(t) is to “kill” the even numbered variables t2, t4, . . ., i.e. ,

f (2)(t) = f(t)|t2=t4=...=0 ∈ V PU .

The 2-reduced Schur functions are linearly dependent in general. However all linear relations among them
are known and one can choose certain set P ′ ⊂ P so that

{
S

(2)
λ ; λ ∈ P ′

}
forms a basis for V PU (cf. [1]).
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The space V PU also affords the principal twisted realization. A weight basis is best described by Schur’s
Q-functions. Let SPn (resp. OPn) be the set of all strict (resp. odd) partitions of n and put SP =

∪
n≥0 SPn,

OP =
∪

n≥0 OPn. For λ ∈ SPn the Q-function Qλ(t) is defined by

Qλ(t) =
∑

ρ=(1m13m3 ...)∈OPn

2
ℓ(λ)−ℓ(ρ)+ϵ

2 ζλ
ρ

tm1
1 tm3

3 · · ·
m1!m3! · · ·

,

where the summation runs over all odd, partitions ρ = (1m13m3 . . .) of n, ϵ = 0 or 1 according to that
ℓ(λ)− ℓ(ρ) is even or odd and ζλ

ρ is the irreducible spin character of Sn, indexed by λ and evaluated at the
conjugacy class ρ. For the Q-functions, we set tj = 2pj/j (j ≥ 1, odd) as the relation with the “eigenvalues”.
A more detailed account is found in [7].

In order to give the homogeneous, twisted realization we employ a combinatorics of strict partitions. We
introduce the following h-abacus. For example, the h-abacus of λ = (11, 10, 5, 3, 2) is shown below.

1 3⃝
2⃝
4 5⃝ 7
6
8 9 11⃝
10⃝
12 13 15
...

...
...

From this h-abacus of λ we read off a triplet (λhc; λh[0], λh[1]) of partitions. Firstly λh[0] = (5, 1),
obtained just by taking halves of the circled positions of the leftmost column.

For obtaining λh[1], we need the following process:
(1) For the third column, the circled positions correspond to the vacancies ”◦”.
(2) For the second column, the circled positions correspond to being occupied ”•”.
(3) Read the third column from infinity to the position 3 and consequently the second column from

the position 1 to infinity, and make the Maya diagram

. . . 15 11 7 3 1 5 9 . . . .
• ◦ • ◦ ◦ • ◦

(4) For each •, count the number of vacancies which are on the left of that •, and get a partition

λh[1] = (3, 1).

Next the h-core λhc is obtained by the following moving and removing:
(1) Remove all circles on the leftmost column.
(2) Move a circle one position up along the second or the third column.
(3) Remove the two circles at the positions 1 and 3 simultaneously.
(4) The “stalemate” determines the partition

λhc = (3).

Note that λhc is always of the form

∆h(m) = (4m − 3, 4m − 7, . . . , 5, 1) or ∆h(−m) = (4m − 1, 4m − 5, . . . , 7, 3)

for some m ∈ N (∆h(0) = ∅). Let HC be the set of all λhc’s. In this way we have a one-to-one correspondence
between λ ∈ SP and (λhc; λh[0], λh[1]) ∈ HC × SP × P with the condition

|λ| = |λhc| + 2(|λh[0]| + 2|λh[1]|).

By making use of this one-to-one correspondence, we define the linear map η : V PT → V HT by

η(Qλ(t)) = Qλh[0](t)Sλh[1](t
′) ⊗ qm(λ).

Here

m(λ) = (number of circles on the second column) − (number of circles on the third column)
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and Sν(t′) = Sν(t)|tj 7→t2j for any j ≥ 1. For any integer m, the set

{η(Qλ);λ ∈ SP,m(λ) = m}

forms a basis for V (m) = C[tj ; j ≥ 1] ⊗ qm (cf. [2]). Under the condition m = 0, there is a one-to-one
correspondence between the following two sets for any n ≥ 0:

(i) {λ ∈ SP2n; λhc = ∅}.
(ii) {(µ, ν) ∈ SPn0 × Pn1 ; n0 + 2n1 = n}.

3. Compound basis

We begin with some bijections between sets of partitions. The first one is

φ : Pn −→
∪

n0+2n1=n

SPn0 × Pn1

defined by λ 7→ (λs, λp). Here the multiplicities mi(λs) and mi(λp) are given respectively by

mi(λs) =

{
1 mi(λ) ≡ 1 (mod 2)
0 mi(λ) ≡ 0 (mod 2),

and

mi(λp) =

{
1
2 (mi(λ) − 1) mi(λ) ≡ 1 (mod 2)
1
2 (mi(λ)) mi(λ) ≡ 0 (mod 2).

For example, if λ = (5344271) then λs = (521) and λp = (54223). We set

Pn0,n1 = φ−1(SPn0 × Pn1).

The second bijection is
ψ : Pn −→

∪
n1+2n2=n

OPn1 × Pn2

defined by ψ(λ) = (λo, λe). Here λo is obtained by picking up the odd parts of λ, while λe is obtained by
taking halves of the even parts. For example, if λ = (5344271), then λo = (531) and λe = (2417).

The third bijection is called the Glaisher map. Let λ = (λ1, λ2, . . .) be a strict partition of n. Suppose
that λi = 2piqi (i = 1, 2, . . .), where qi is odd. Then an odd partition λ̃ of n is defined by

m2j−1(λ̃) =
∑

qi=2j−1,i≥1

2pi .

For example, if λ = (8, 6, 4, 3, 1) then λ̃ = (33, 113). This gives a bijection between SPn and OPn.

Definition 3.1. Define a bijection π on Pn by

π(λ) = ψ−1(φ̃(λ)) (λ ∈ Pn).

Here we remark that π gives a bijection between φ−1(SPn1 × Pn2) and ψ(OPn1 × Pn2).

Proposition 3.2. Let (n0, n1) be fixed. Then we have∑
λ∈Pn

ℓ(λ) =
∑

λ∈Pn

(ℓ(λs) + 2ℓ(λp)) =
∑

λ∈Pn

(ℓ(λo) + ℓ(λe)) =
∑

λ∈Pn

(ℓ(λ̃s) + ℓ(λe)),

∑
λ∈Pn0,n1

ℓ(λ) =
∑

λ∈Pn0,n1

(ℓ(λs) + 2ℓ(λp)) =
∑

λ∈Pn0,n1

(ℓ(λo) + ℓ(λe)),

∑
λ∈Pn

2ℓ(λp) =
∑

λ∈Pn

2ℓ(λe) =
∑

λ∈Pn

(ℓ(λo) + ℓ(λe) − ℓ(λs)) =
∑

λ∈Pn

(ℓ(λ̃s) + ℓ(λe) − ℓ(λs)),

and∑
λ∈Pn0,n1

2ℓ(λp) =
∑

λ∈Pn0,n1

(ℓ(λo) + ℓ(λe) − ℓ(λs)).
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Looking at the representation spaces V HU and V HT , we have the following two natural bases for the
space

V (0)
n = C[tj ; j ≥ 1]n (the homogenous component of degree n).

Namely we have
(i) {Sλ(t);λ ∈ Pn},
(ii) {Qλs(t)Sλp(t′);λ ∈ Pn}.

For simplicity we write
Wλ(t) = Qλs(t)Sλp(t′)

for λ ∈ Pn and call the set (ii) the compound basis for V
(0)
n .

Our problem is to determine the transition matrix between these two bases. Let An = (aλµ) be defined
by

(1) Sλ(t) =
∑

µ∈Pn

aλµWµ(t)

for λ ∈ Pn.
Here we remark the relation between our basis and the Q

′
-functions. Lascoux, Leclerc and Thibon (cf. [5])

introduced the Q
′
-functions as the basis for V

(0)
n dual to P -functions with respect to the inner product

〈F (t), G(t)〉0 := F (∂̃)G(t)|t=0,

where ∂̃ = ( ∂
∂t1

, 1
2

∂
∂t2

, 1
3

∂
∂t3

, . . .). For a strict partition µ we see that Q
′

µ(t) = Qµ(2t). Also, for a partition λ,
we see that

Q
′

λ(t) = Q
′

λs(t)hλp(t
′
)

where hλp is the complete symmetric function indexed by λp. Therefore the transition from Wλ to Q
′

µ is
essentially given by the Kostka numbers.

4. transition matrices

In the previous section, functions are expressed in terms of the “time variables” t = (t1, t2, . . .) of the
soliton equations. However, for the description and the proof of our formula, it is more convenient to use
the ”original” variables of the symmetric functions, i.e., the eigenvalues x = (x1, x2, . . .).

The definition (1) of aλµ is rewritten as

Sλ(x, x) =
∑

µ∈Pn

aλµQµs(x)Sµp(x2),

where (x, x) = (x1, x1, x2, x2, . . .) and x2 = (x2
1, x

2
2, . . .). Hereafter we will denote

Wλ(x) = Qλs(x)Sλp(x2), Vλ(x) = Pλs(x)Sλp(x2),

where Pλs(x) = 2−ℓ(λs)Qλs(x). Also we will set the following spaces of symmetric functions

Λ = C[pr(x); r ≥ 1], Γ = C[pr(x); r ≡ 1 (mod 2)],

and
Γ

′
= C[pr(x); r ≡ 0 (mod 2)]

so that
Λ ∼= Γ ⊗ Γ

′
.

We have two bases for Λ:
W = (Wλ(x))λ and V = (Vλ(x))λ.

First we notice the following Cauchy identity.

Proposition 4.1. ∏
i,j

1
(1 − xiyj)2

=
∑
λ∈P

Wλ(x)Vλ(y).

By a standard argument, we have
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Corollary 4.2.
〈Wλ(x), Vµ(x)〉−1 = δλµ,

where we define the inner product 〈 , 〉−1 on Λ by requiring that 〈pρ, pσ〉−1 = 2−ℓ(ρ)zρδρσ.

We will use another inner product 〈 , 〉0 on Λ which is defined by 〈pρ, pσ〉0 = zρδρσ.

Theorem 4.3. The matrix An is integral.

Example 4.4.

A3 =

(3, ∅) (21, ∅) (1, 1)
(3) 1 0 1
(21) 1 1 0
(13) 1 0 −1

A4 =

(4, ∅) (31, ∅) (∅, 2) (∅, 12) (2, 1)
(4) 1 0 1 0 1
(31) 1 1 −1 0 1
(22) 0 1 1 1 0
(14) 1 0 0 1 −1
(212) 1 1 0 −1 −1

.

Theorem 4.5.
|det An| = 2kn ,

where kn =
∑

λ∈Pn
ℓ(λe) =

∑
λ∈Pn

(ℓ(λ̃s) − ℓ(λs)).

Example 4.6.
n 1 2 3 4 5 6 7 8 · · ·
kn 0 1 1 4 5 11 15 28 · · ·

For simplicity we define the Green function Xλ
σ by

Qλ(x) =
∑

σ

2ℓ(σ)z−1
σ Xλ

σpσ

which is easily computed from the spin character ζλ
σ . Our Frobenius formula for W reads

pσp2ρ =
∑

λ∈Pn0,n1

2−ℓ(λs)Xλs

σ χλp

ρ Wλ(x)

for σ ∈ OPn0 and ρ ∈ Pn1 . This gives that the transition matrix M(p, W ) is decomposed into diagonal
blocks according to (n0, n1). Hence

tAnAn = tM(p,W )tM(S̃, p)M(S̃, p)M(p,W )

= tM(p,W )D2
nZ−1

n M(p, W ).

Since D2
nZ−1

n is diagonal, tAnAn is block diagonal.

Example 4.7.

tA3A3 =


(3, ∅) (21, ∅) (1, 1)

(3, ∅) 3 1 0
(21, ∅) 1 1 0
(1, 1) 0 0 2



tA4A4 =



(4, ∅) (31, ∅) (∅, 2) (∅, 12) (2, 1)
(4, ∅) 4 2 0 0 0
(31, ∅) 2 3 0 0 0
(∅, 2) 0 0 3 1 0
(∅, 12) 0 0 1 3 0
(2, 1) 0 0 0 0 4


For a pair (n0, n1), let denote by Bn0,n1 the corresponding block in tAnAn.
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Theorem 4.8.

|det Bn0,n1 | = 2
P

λ∈Pn0,n1
(ℓ(λ̃s)+ℓ(λp)−ℓ(λs))

.

For the “principal” block Bn,0, we have

|det Bn,0| = 2
P

λ∈SPn
(ℓ(λ̃)−ℓ(λ)).

In this case, for each λ ∈ SPn, 2ℓ(λ̃)−ℓ(λ) gives an elementary divisor of Bn,0. It is interesting that these
elementary divisors coincide with those of the Cartan matrix for Sn at characteristic p = 2 (cf. [8]). We
conclude this note with an inner product expression of tAnAn.

Proposition 4.9.
tAnAn =

(
〈Pλs(x), Pµs(x)〉0〈Sλp(x2), Sµp(x2)〉0

)
λ,µ

.
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