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Complete decomposition of Dickson-type recursive polynomials and a related
Diophantine equation

Thomas Stoll

Abstract. We characterize decomposition over C of polynomials fn(x) defined by the generalized Dickson-
type recursive relation

f0(x) = B, f1(x) = x, fn+1(x) = xfn(x)− afn−1(x) (n ≥ 1),

where B, a ∈ Q or R. This parametric class of polynomials includes Fibonacci, Pell, Fermat, Dickson, Lucas
(w-), Pell-Lucas, Fermat-Lucas polynomials as well as Chebyshev polynomials of the first and second kind.
As an application of the decomposition result, we show that the Diophantine equation

f
(a,B)
n (x) = f

(â,B̂)
m (y)

with f
(a,B)
n , f

(â,B̂)
m ∈ Q[x] and min(m, n) ≥ 3 has only finitely many rational solutions (x, y) with a bounded

denominator, except in a few explicitly stated exceptions. This vastly extends work of A. Dujella/R. F. Tichy
(Diophantine equations for second order recursive sequences of polynomials, Quart. J. Math. 52 (2001),
161–169) and A. Dujella/I. Gusić (Decomposition of a recursive family of polynomials, Monatsh. Math.,
to appear). In particular, a complete answer to a question posed by the latter authors is presented.

Résumé. Nous caractérisons la décomposition sur C de polynômes fn(x) définis par la relation de récurrence
de type Dickson généralisée :

f0(x) = B, f1(x) = x, fn+1(x) = xfn(x)− afn−1(x) (n ≥ 1),

où B, a ∈ Q ou R. Cette classe de polynômes paramétriques inclut les polynômes de Fibonacci, Pell, Fer-
mat, Dickson, Lucas (w-), Pell-Lucas, Fermat-Lucas ainsi que les polynômes de Tchebychev de première et
deuxième espèces. Une application de notre résultat permet de montrer que l’équation diophantienne

f
(a,B)
n (x) = f

(â,B̂)
m (y)

avec f
(a,B)
n , f

(â,B̂)
m ∈ Q[x] et min(m, n) ≥ 3 n’admet qu’un nombre fini de solutions rationnelles (x, y) avec

dénominateur borné, à quelques exceptions près que nous donnons explicitement. Ceci prolonge les travaux
de A. Dujella et R. F. Tichy (Diophantine equations for second order recursive sequences of polynomials,
Quart. J. Math. 52 (2001), 161–169) et de A. Dujella/I. Gusić (Decomposition of a recursive family of
polynomials, Monatsh. Math., à parâıtre). En particulier, nous répondons entièrement à la question posée
par les deux derniers auteurs sus-cités.

1. Introduction

1.1. Indecomposability and Diophantine equations. The theory of polynomial decompositions
dates back to the ground-breaking work of J. F. Ritt [10, 11]. Ritt’s main results split into two parts.
First, he identified all decompositions of polynomials over C as being prime decompositions up to linear
transformations and bidecompositions. Secondly, in the so-called “Ritt’s second theorem”, he specified
which bidecompositions are indeed possible.
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In what follows, by a (binary) decomposition of f ∈ C[x] we mean a representation f = r ◦ q with
some non-constant polynomials r, q ∈ C[x], where the operation is the usual functional composition. If
deg r,deg q > 1, then the decomposition is called a non-trivial decomposition. We call r the left and q the
right component of the decomposition. It is clear, that (C[x], ◦) forms a non-commutative monoid, where
the units are exactly the polynomials over C of degree 1. Two decompositions f = r1 ◦ q1 = r2 ◦ q2 are called
equivalent if there is a unit κ such that r2 = r1 ◦κ and q2 = κ−1 ◦ q1. A polynomial f is called decomposable
over C if it has at least one non-trivial decomposition, and prime (or indecomposable) otherwise. It is
well-known, that indecomposability over Q or R implies indecomposability over C (see [13, p.14]).

Several refinements on Ritt’s results have been obtained (see [1, 12]) and some of the rather complicated
original proofs based on Riemann surface theory have been considerably simplified (see [3]). Decomposition
results have shown to give access to the finiteness problem for Diophantine equations of the form f(x) = g(y)
with f, g ∈ Q[x] in unknowns (x, y) ∈ Q2. In 2000, Bilu and Tichy [2] succeeded in fully joining polynomial
decomposition theory with the classical finiteness theorem of Siegel [14] on finiteness of integral points of
curves of genus > 0. They obtained the following remarkable theorem.

Theorem 1.1 (Bilu/Tichy [2]). Let f(x), g(x) ∈ Q[x] be non-constant polynomials. Then the following
two assertions are equivalent:

(a) The equation f(x) = g(y) has infinitely many rational solutions with a bounded denominator.
(b) We have

f = ϕ ◦ f1 ◦ κ1 and g = ϕ ◦ g1 ◦ κ2,

where κ1, κ2 ∈ Q[x] are linear, ϕ(x) ∈ Q[x], and (f1, g1) is a standard pair over Q such that the
equation f1(x) = g1(y) has infinitely many rational solutions (x, y) with a bounded denominator.

We say that the equation f(x) = g(y) has infinitely many rational solutions with a bounded denominator,
if there is ν ∈ Z+ such that that f(x) = g(y) has infinitely many rational solutions (x, y) with νx, νy ∈ Z.
The list of standard pairs, which is referred to in Theorem 1.1, includes five different pairs of polynomials
(f1, g1). For the sake of clarity, we define them separately in the next subsection (see (1.1)–(1.5)).

1.2. Standard pairs. In the sequel, let γ, δ denote some non-zero rational numbers, r, q, s and t some
non-negative integers and v(x) ∈ Q[x] a non-zero polynomial (which may also be constant). Furthermore,
denote by Ds(x, γ) the Dickson polynomial of the first kind (for short: Dickson polynomial) of degree s
defined by

Ds(x, γ) =
bs/2c∑

i=0

s

s− i

(
s− i

i

)
(−γ)ixs−2i,

which can equivalently be defined by a three-term recursion (see (1.6) below). For basic properties of these
polynomials we refer to the monograph of Lidl et al. [9].

A standard pair of the first kind is of the type

(1.1) (xq, γxrv(x)q)

(or switched), where 0 ≤ r < q, gcd(r, q) = 1 and r + deg v > 0.
A standard pair of the second kind is given by

(1.2) (x2, (γx2 + δ)v(x)2)

(or switched).
A standard pair of the third kind is

(1.3) (Ds(x, γt), Dt(x, γs))

with s, t ≥ 1 and gcd(s, t) = 1.
A standard pair of the fourth kind is

(1.4) (γ−s/2Ds(x, γ),−δ−t/2Dt(x, δ))

(or switched) with s, t ≥ 1 and gcd(s, t) = 2.
A standard pair of the fifth kind is of the form

(1.5) ((γx2 − 1)3, 3x4 − 4x3)

(or switched).
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According to Theorem 1.1, to get finiteness of the number of solutions (x, y) ∈ Q2 with a bounded
denominator (thus, in particular, of solutions (x, y) ∈ Z2), one can show that at least one of the polynomials
f, g is indecomposable. In recent years, much interest has been focused on using the criterion of Theorem 1.1
to Diophantine equations of the form pm(x) = pn(y) and, again more generally, to pm(x) = g(y), where
{pk}k≥0 denotes some specific polynomial family and g(x) is an arbitrary polynomial over Q. However, as a
principle, the main difficulty consists in proving a uniform indecomposability theorem for {pk}.

1.3. Dickson-type recursive families. The aim of the present talk is to give a complete investigation
of decomposition of so-called Dickson-type recursive polynomials over R, which depend on two real parameters
a and B. These polynomials generalize the Dickson polynomials Dn(a, x) appearing in the definition of the
standard pairs of the third (1.3) and fourth kind (1.4). Recall an alternative definition of the Dickson
polynomials [9, Lemma 2.3],

(1.6) D0(x, a) = 2, D1(x, a) = x, Dn+1(x, a) = xDn(x, a)− aDn−1(x, a), n ≥ 1,

for any a ∈ C. It is well-known that Dickson polynomials are decomposable for all m,n ≥ 2, i.e.,

(1.7) Dmn(x, a) = Dm(x, an) ◦Dn(x, a) = Dn(x, am) ◦Dm(x, a).

Note that several combinatorial polynomial families and their dilates form subclasses of the Dickson
polynomials. Mention, for instance, the Lucas (w-)polynomials Lk(x) and Pell-Lucas polynomials Qk(x/2)
for a = −1, the Chebyshev polynomials of the first kind 2 Tk(x/2) for a = 1 and the Fermat-Lucas polynomials
FLk(x/3) for a = 2 (see [19]).

A generalized Dickson-type recursive relation is obtained by a perturbation of the zero instance in the
Dickson recurrence (1.6).

Definition 1.2. Polynomials fk ∈ R[x] (resp. Q[x]) with

f0(x) = B,(1.8)

f1(x) = x,

fn+1(x) = xfn(x)− afn−1(x), n ≥ 1,

where B, a ∈ R (resp. Q) are called Dickson-type recursive polynomials over R (resp. Q).

In the framework of (1.8) one again encounters well-known polynomial families related to combinatorics.
For B = 1, for example, we have Fibonacci polynomials Fk(x) resp. Pell polynomials Pk(x/2) if a = −1,
Chebyshev polynomials of the second kind Uk(x/2) if a = 1 and Fermat polynomials Fk(x/3) if a = 2
(see [19]). In fact, the polynomials En(x, a) defined by

(1.9) E0(x, a) = 1, E1(x, a) = x, En+1(x, a) = xEn(x, a)− aEn−1(x, a), n ≥ 1,

with a ∈ C are the Dickson polynomials of the second kind, for which holds the formula [9, Definition 2.2],

(1.10) En(x, a) =
bn/2c∑

i=0

(
n− i

i

)
(−a)ixs−2i.

Decomposability of Dickson-type recursive polynomials over Q and related Diophantine equations have
been previously considered by Dujella and Tichy [8] for B = 1 and a ∈ Z. Very recently, Dujella, Gusić
and Tichy [7], and Dujella and Gusić [5] proved new criteria for indecomposability of polynomials over Z
in terms of the degree and two leading coefficients. In [6], the latter authors applied their criteria to attack
indecomposability concerning general Dickson-type recursive polynomials over Q.

Theorem 1.3 (Dujella/Gusić [6]). Let a ∈ Q and B = b1/b2, where we assume gcd(b1, b2) = 1 and
b2 > 0; if B = 0 then we set b1 = 0 and b2 = 1. Suppose gcd(b2, n) = 1 and gcd(b1 − 2b2, n) = 1. Then:

(i) If n is odd, then fn is indecomposable.
(ii) f2n(x) = hn(x2) with hn := f2n(

√
x) ∈ Q[x] is the unique non-trivial decomposition of f2n.

From the theorem one has that for B ∈ {1, 3} and a ∈ Q the polynomial fn is indecomposable (n odd),
and fn(x) = hn/2(x2) (n even) is the unique binary decomposition. Hence, in particular, a former result
about indecomposability of Fibonacci polynomials is reobtained [8].
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Despite the huge class of known decompositions (1.7) given by the Dickson polynomials, there are other
sporadic decompositions of Dickson-type recursive polynomials over Q as pointed out by Dujella and Gusić [6,
Example 1].

Example 1.4. Let B = −2 and a = −1, then

(1.11) f8 = (x2 − 4x− 2) ◦ (x4 + 2x2).

Motivated by example (1.11), the authors posed the question, whether there exist other values for
B, a ∈ Q and odd n such that fn is decomposable. We give a complete answer for decomposability (up to
equivalence) with B, a ∈ R and show that example (1.11) is, in principle, the only “non-trivial” decomposi-
tion∗.

2. Main results

Theorem 2.1. The Dickson-type recursive polynomials fn over R defined in (1.8) with a 6= 0, B 6= 2
are decomposable over C if and only if n = 2k with k ≥ 2. In that case,

(2.1) fn = hk ◦ x2

and hk is decomposable over C if and only if B = −2, n = 8 such that

(2.2) f8 = (x2 − 4a2x− 2a4) ◦ (x2 − 2ax) ◦ x2.

Moreover, all non-trivial decompositions of fn are equivalent to (2.1) and (2.2).

We join Theorem 2.1 with Theorem 1.1 to study the finiteness problem for Diophantine equations of the
form fn(x) = g(y), where g ∈ Q[x] is an arbitrary, but fixed polynomial. In what follows, let κ(x) be some
arbitrary linear polynomial over Q.

Theorem 2.2. Let g(x) ∈ Q[x] with m = deg g ≥ 3. Suppose that the Diophantine equation

(2.3) fn(x) = g(y)

with Dickson-type recursive polynomials fn over Q with a 6= 0, B 6= 2, n ≥ 3 has infinitely many rational
solutions (x, y) with a bounded denominator. Then we are in one of the following cases.

(i) g(x) = fn(g̃(x)) for some polynomial g̃ ∈ Q[x].
(ii) n = 2k, k ≥ 2 and g(x) = hk(g̃(x)), where g̃ is a polynomial over Q, whose square-free part has at

most two zeroes, such that g̃ takes infinitely many square values in Z.
(iii) n = 3, B 6= −1 and g(x) = β3Dm(κ(x), γ3), where β, γ ∈ Q, gcd(m, 3) = 1 such that

3γmβ2 = (B + 1)a.

(iv) n = 3, B = −1 and g(x) = γκ(x)rv(x)3, where γ ∈ Q \ {0}, r ∈ {1, 2} and v(x) ∈ Q[x].
(v) n = 4, B 6= −2 and g(x) = β4Dm(κ(x), γ4)− 1

8a2(B− 2)2, where β, γ ∈ Q, gcd(m, 4) = 1 such that

4γmβ2 = (B + 2)a.

(vi) n = 4, B 6= −2 and g(x) = − (B+2)2a2

16 δ−m/2Dm(κ(x), δ) − 1
8a2(B − 2)2, where δ ∈ Q \ {0},

gcd(m, 4) = 2.
(vii) n = 4, B = −2 and g(x) = γκ(x)rv(x)4, where γ ∈ Q \ {0}, r ∈ {1, 3} and v(x) ∈ Q[x].
(viii) n = 8, B = −2 and g(x) = κ(x)4 − 4a2κ(x)2 − 2a4.

Moreover, in each of the cases, there are infinitely many choices of the parameters such that (2.3) has
infinitely many rational solutions with a bounded denominator.

Thus, informally speaking, in most cases fn(x) = g(y) has only finitely many rational solutions with a
bounded denominator. Note that Theorem 2.2 is no equivalence statement, since parameters of g(x) are not
made explicit. However, the version of Theorem 2.3 is already sufficient to fully settle the finiteness problem
for Diophantine equations in Dickson-type recursive polynomials.

We introduce the notation f
(a,B)
n (x) = fn(x) and h

(a,B)
k (x) := f

(a,B)
2k (

√
x) in order to specify param-

eters in the related recurrence (1.6). By setting g(x) = f
(â,B̂)
m (x) and working through Cases (i)–(viii) of

∗For some missing proofs and more details, we refer to the original paper of the author [16].
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Theorem 2.2, we can identify all those cases where there are infinitely many solutions with a bounded de-
nominator. Moreover, we can show, that the implied parameter restrictions are already sufficient to identify
an infinite parametric solution family, such that we get an equivalence statement (“if and only if ”). For the
details of the proof of Theorem 2.3, we again refer to [16].

Theorem 2.3. The Diophantine equation

(2.4) f (a,B)
n (x) = f (â,B̂)

m (y)

with a, â, B, B̂ ∈ Q and m ≥ n ≥ 3 has infinitely many rational solutions (x, y) with a bounded denominator
if and only if we are in one of the following cases (γ ∈ Q \ {0}, s, t ∈ Z+):

(I) m = 6, n = 3 and B̂ = −5/2, 4a(B + 1) = 21â2, â 6= 0;

(II) m = 3t, n = 3 and B̂ = 2, (B + 1)a = 3ât, t ≥ 2, B 6= 2, â 6= 0;

(III) gcd(m, 3) = 1, n = 3 and B̂ = 2 6= B, (B + 1)a = 3γm, â = γ3 6= 0;

(IV) m > n ≥ 3 and B = B̂ = 2, at = âs, â 6= 0, mt = ns.
(V) m > n ≥ 3 and a = â = 0;

(VI) m > n = 3 and B = −1, â = 0, a 6= 0;

(VII) m = n and f
(a,B)
n ≡ f

(â,B̂)
m .

Remark 2.4. Observe that with the assumptions of (I) we have the identity

f
(â,−5/2)
6 (x) = f

(a,B)
3 (x2 − â/2) = x6 +

3
2
âx4 − 9

2
â2x2 +

5
2
â3,

such that (2.4) has infinitely many solutions in case (I) by trivial means. Besides this sporadic case, all
of (II)–(VII) are well-known: From case (II) we retrieve the equation D3(x, ât) = D3t(y, â), where (x, y) =
(Dt(u, â), u) denotes an infinite family of solutions. In case (III) we get D3(x, γm) = Dm(y, γ3) with
(x, y) = (Dm(u, γ), D3(u, γ)) being an infinite family of solutions. Case (IV) is based on the identity
Dn(Ds(x, γ), γs) = Dm(Dt(x, γ), γt). Cases (V) and (VI) plainly correspond to the equations xn = ym

and x3 = ym, respectively, whereas (VII) is trivial. We have plugged in various parameter restrictions
into (I)–(VII) in order to avoid an overlapping of the seven cases.

Theorem 2.3 vastly generalizes two already known results for Diophantine equations with polynomials
f

(a,B)
k (x). First, for a, â ∈ Z \ {0} with a = â we derive the finiteness result of Dujella and Tichy [8,

Theorem 2] concerning Dickson polynomials of the second kind (1.9) (also termed generalized Fibonacci
polynomials). Secondly, it has been proved by Dujella and Gusić [6, Theorem 3], that the equation (2.4)
has only finitely many rational solutions with a bounded denominator, if the parameters satisfy certain
conditions.

Corollary 2.5 (Dujella/Gusić [6]). The Diophantine equation

f (a,B)
n (x) = f (â,B̂)

m (y)

with m, n ≥ 3, m,n odd, a, â ∈ Q and B = b1/b2, B̂ = b̂1/b̂2 with

gcd(b2, n) = gcd(b1 − 2b2, n) = gcd(b̂2, m) = gcd(b̂1 − 2b̂2,m) = 1

has only finitely many rational solutions (x, y) with a bounded denominator, except if f
(a,B)
n ≡ f

(â,B̂)
m or

a = â = 0.

We point out that this result is weaker than the corresponding direction of Theorem 2.3, since none of
the Cases (II), (III), (IV) and (VI) is covered.

3. Preliminaries

Let K be a field of constants with char K = 0. First, we collect some standard results from polynomial
decomposition theory, which will be needed in the sequel [4, 12, 13]. For more details we refer to [16].

Definition 3.1. Let f = anxn+an−1x
n+· · ·+a0 ∈ K[x] with deg f = n. Then f is called zerosymmetric

iff a0 = 0, monic iff an = 1, and normed iff f is both zerosymmetric and monic.
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By comparison of coefficients it is clear, that every non-constant polynomial f has exactly one decom-
position f = κ ◦ f̂ , where κ is a unit and f̂ is normed. Furthermore, since f = r ◦ q = (r ◦ κ−1) ◦ (κ ◦ q), any
decomposition is equivalent to a decomposition with a normed right component κ ◦ q of equal degree. In the
next two propositions, we link decompositions of f to the degree of certain remainder polynomials (see [4,
Ch. I. Par. 3.]).

Proposition 3.2. Let f = r ◦ q, where r is monic and q is normed of degrees n and m, respectively.
Then

deg(f − qn) ≤ mn−m.

Proposition 3.3. Let f be a monic polynomial and q a normed, non-constant polynomial of degrees
mn and m, respectively. Suppose

deg(f − qn) ≤ mn− k

for some 1 ≤ k < m. Then there exists exactly one α ∈ K such that

(3.1) deg(f − (q + αxm−k)n) ≤ mn− k − 1.

Since k < m and q is normed, the polynomial q + αxm−k is normed, too, such that we may successively
decrease the degree of the remainder polynomial, starting with k = 1. Obviously, q = xm is the only
polynomial q with only one term such that deg(f−qn) ≤ mn−1. After applying Proposition 3.3 subsequently
(m − 1) times, we will come up with a sequence of numbers α1, α2, . . . , αm−1 (i.e., the numbers α indexed
by k) and a polynomial

(3.2) q̂(x) = xm + α1x
m−1 + · · ·+ αm−1x

with deg q̂ = m and deg(f − q̂n) ≤ mn −m. By the construction, q̂ is normed and uniquely determined by
f and m. Therefore, by Proposition 3.2, if q is a normed right component of f then necessarily q = q̂. This
induces an indecomposability criterion for f with right components of fixed degree m.

Lemma 3.4. Let f be monic and m ≥ 2 a positive integer. Denote by q̂(x) the unique polynomial of
degree m given by (3.2). Furthermore, let

(3.3) f(x) = β0q̂(x)k + β1q̂(x)k−1 + · · ·+ βlq̂(x)k−l +R(x),

for some constants βj ∈ K, 0 ≤ l < k with degR ≤ mk −m and m - degR. Then f is indecomposable with
right components of degree m.

Proof. Observe that β0 = 1 and

S(x) := q̂(x)k + β1q̂(x)k−1 + · · ·+ βlq̂(x)k−l

= (xk + β1x
k−1 + · · ·+ βlx

k−l) ◦ q̂(x) =: s ◦ q̂.

By Proposition 3.2 we have deg(S − q̂k) ≤ mk −m. As degR ≤ mk −m by assumption, this yields

deg((S +R)− q̂k) = deg((S − q̂k) +R) ≤ mk −m.

By the argument following Proposition 3.3, if there is a decomposition of S + R with a normed right
component q of degree m then it is necessarily q̂. Suppose S + R = r ◦ q̂. Since S = s ◦ q̂, we get
R = (r − s) ◦ q̂ which is a contradiction since m - degR. Thus, f = S + R is indecomposable with right
components of degree m. ¤

4. Proof of Theorem 2.1

4.1. Sturm-Liouville type differential equation. We now turn back to the Dickson-type recursive
polynomials fn defined by (1.8). Let a,B ∈ R, a 6= 0 and B 6= 2. We further may assume that n ≥ 4 since
otherwise fn is trivially indecomposable by reasons of degrees. The polynomial family defined by

(4.1) f̃−1(x) = 0, f̃0(x) = 1, f̃n+1(x) = xf̃n(x)− δnf̃n−1(x), n ≥ 0,

with δ0 = 0, δ1 = aB and δn = a for n ≥ 2 denotes a canonical version for the polynomials fn of (1.8).
Indeed, it is easy to see that f̃n(x) = fn(x) for n ≥ 1. As already pointed out in [5], the polynomials f̃n form
a quasi-orthogonal family of polynomials with a single dilated coefficient δ1. More specifically, there is close
connection to Chebyshev polynomials of the first kind, which are defined via Tn(x) = cos nϕ with x = cos ϕ.
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Lemma 4.1. For all n ≥ 1 we have

(4.2) fn(2
√

ax) =
(
√

a)n

x2 − 1
(
(2x2 −B)Tn(x) + (B − 2)xTn−1(x)

)
.

It is also possible to derive

(4.3) fn(2
√

ax) = (
√

a)n(2xUn−1(x)−BUn−2(x)),

where Un(x) = sin nϕ/ sin ϕ with x = cos ϕ denote the Chebyshev polynomials of the second kind. Since
by (1.10),

Un(x) =
bn/2c∑

i=0

(−1)i

(
n− i

i

)
(2x)n−2i,

we get the following explicit representation for fn, which has already been proved in [6] by other means.

Proposition 4.2. We have

fn(x) =
bn/2c∑

i=0

n + (B − 2)i
n− i

(
n− i

i

)
(−a)ixn−2i(4.4)

= xn − (n + B − 2)axn−2 +
(n− 3)(n + 2B − 4)

2
a2xn−4

− (n− 4)(n− 5)(n + 3B − 6)
6

a3xn−6 ± . . .

The main tool to prove Theorem 2.1 relies on the fact that fn(x) satisfies a second-order linear differential
equation of Sturm-Liouville type with polynomial factors of fixed degree. The method is reminiscent of
Pólya–Sonin–Szegő [18, Th. 7.31.1] and has already been used by Tichy and the author to study two-
interval monotonicity of continuous classical orthogonal polynomials [15].

Lemma 4.3. The polynomials y = fn(x) with a 6= 0, B ∈ R satisfy the differential equation

(4.5) (A4x
4 + aA2x

2 + a2A0)y′′ + (B3x
3 + aB1x)y′ − (C2x

2 + aC0)y = 0,

where A4, A2, A0, B3, B1, C2, C0 ∈ R with

A4 = B3 = n(B − 1),

A2 = −(n− 1)B2 − 2(2n + 1)B + 4n,

A0 = 4(n− 1)B2 + 8B,

B1 = −3(n− 1)B2 + 2(4n− 3)B − 8n,

C2 = n3(B − 1),

C0 = −n(n− 1)(n− 2)B2 − 2n(3n− 4)B − 8n.

In order to use Szegős argument, we need the specific root behaviour of the polynomials fn(x), which
has been stated in [6, Theorem 4].

Proposition 4.4. The polynomials fn(x) with a 6= 0, B ∈ R have simple zeroes except in the following
cases:

(i) B = 0 and n = 2k (then x = 0 is a double root);
(ii) B = −1/k and n = 2k + 1 (then x = 0 is a triple root).

Set ε = 0 if n = 2k, and ε = −1/k if n = 2k + 1. Then
(i) If B ≥ ε, a > 0 then all roots are real.
(ii) If B ≥ ε, a < 0 then all roots are purely imaginary.
(iii) If B < ε, a > 0 then n− 2 roots are real and two roots are purely imaginary conjugates.
(iv) If B < ε, a < 0 then n− 2 roots are purely imaginary and two roots are real.

Corollary 4.5. The polynomials f ′n(x) with B ∈ R have at least n − 3 different real zeroes if a > 0,
and at least n− 3 different purely imaginary zeroes if a < 0.
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We now join Lemma 4.4 with Lemma 4.3 to obtain a uniform bound on the degree of the right component
q of some possible decomposition fn = r ◦ q.

Lemma 4.6. Let fn = r ◦ q with r, q ∈ R[x] and min(deg r,deg q) ≥ 2. Then

deg q ≤ 6.

Proof. Put σ(x) = A4x
4 + aA2x

2 + a2A0, τ(x) = B3x
3 + aB1x and λ(x) = C2x

2 + aC0. Moreover,
define a function

(4.6) h(x) = fn(x)2 − σ(x)
λ(x)

f ′n(x)2.

The denominator λ(x) is a non-zero function because C2C0 6= 0 for any B ∈ R, n ∈ Z+. With use of the
differential equation (4.5) we have

(4.7) h′(x) = 2fn(x)f ′n(x)−
(

σ(x)
λ(x)

)′
f ′n(x)2 − 2f ′n(x)

λ(x)
(λ(x)fn(x)− τ(x)f ′n(x)) = ω(x)(f ′n(x))2,

where

ω(x) =
(2τ(x)− σ′(x))λ(x) + σ(x)λ′(x)

λ(x)2
= − 4a(B − 2)2ω1(x)

n (n2(B − 1)x2 − a(Bn− 2B + 4)(Bn−B + 2))2

with

(4.8) ω1(x) = n(n2 − 1)(B − 1)x3 − a(Bn2 − 3Bn + 2B + 6n)(Bn−B + 2)x.

On the real line, the function ω(x) changes at most three times its sign, namely, at x = 0 and at possibly
two more real zeroes of ω1(x). First, let a > 0. Denote by ξ1, ξ2, . . . , ξm the pairwise different real zeroes of
f ′n(x). Then by Corollary 4.5, m ≥ n− 3 and by (4.6) we get

h(ξj) = fn(ξj)2, 1 ≤ j ≤ m.

By (4.7) also h′(x) changes at most three times its sign. This implies that |fn(ξj)| increases and decreases
on at most 4 consecutive real intervals. Taking into account that for the possibly two additional roots of
f ′n(x), say η1, η2, there could be some index 1 ≤ k ≤ m such that f(η1) = f(η2) = f(ξk), we conclude that
uniformly in ζ ∈ C there holds

(4.9) deg gcd(fn − ζ, f ′n) ≤ 4 + 2 = 6.

Suppose a non-trivial decomposition fn = r ◦ q. Denote by ζ a root of r′, which exists by deg r ≥ 2. Then
both the polynomials fn(x)− r(ζ) and f ′n(x) are divisible by q(x)− ζ. Therefore,

deg q = deg(q − ζ) ≤ deg gcd(fn − ζ, f ′n) ≤ 6,

which completes the proof of the lemma for a > 0. Finally, let a < 0. By (4.4) we have fn(
√

ax) = (
√

a)nfn(x)
and exactly the same arguments as above apply. This finishes the proof of the lemma. ¤

4.2. The small cases. In order to use Lemma 3.4 we require the upper-most coefficients of fn given
in (4.4). Lemma 4.6 says that if there is a non-trivial decomposition fn = r ◦ q then necessarily deg q ∈
{2, 3, 4, 5, 6}. In what follows, set k = deg r ≥ 2. We show, how the procedure works in the cases deg q = 3, 4.
The other cases are similar [16]. Note that since one gets no more decompositions with normed right
components, when coefficients of r and q are allowed to be in C, this investigation already completes the
proof of Theorem 2.1.

The case deg q = 3:

Proposition 3.3 gives α1 = 0 and deg(f − x3k) = 3k − 2. Therefore by (3.1) and (4.4),

α2 =
lcoeff(f3k(x)− x3k)

k
= −a(B + 3k − 2)

k

and

q̂(x) = x3 − a(B + 3k − 2)
k

x.
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It is sufficient to show that the remainder polynomial R = f3k − q̂k has exact degree 3k − 4. Note that by
construction it has degree at most 3k − 4. Therefore we only have to calculate the coefficient [x3k−4], i.e.,

R(x) =
(

(3k − 3)(3k + 2B − 4)
2

a2 −
(

k

2

)
a2(B + 3k − 2)2

k2

)
x3k−4 + terms of lower order

= −a2(B − 2)2(k − 1)
2k

x3k−4 + terms of lower order.

Since the leading coefficient of R(x) is non-zero for a 6= 0, B 6= 2 and 3 - degR = 3k − 4, a decomposition
with a polynomial q of degree 3 is impossible by Lemma 3.4.

The case deg q = 4:

In the same spirit as before we obtain

(4.10) q̂ = x4 − x2a(B + 4k − 2)
k

.

However, since f4k is an even polynomials, f4k − q̂k in general has degree divisible by 4, so that we have to
do some further expansion concerning (3.3). To begin with, write

(4.11) f4k = q̂k + β1q̂
k−1 +R(x).

It is a direct calculation to check

(4.12) β1 = −a2
(
(k − 1)B2 − (6k − 4)B − 4(k − 1)2

)

2k

and

R(x) = −a3(B − 2)2(k − 1)
6k2

((2k − 1)B + 2k + 2)x4k−6 + terms of lower order.

The leading coefficient of R(x) equals zero if and only if

(4.13) B = −(2k + 2)/(2k − 1).

In such case (4.11) with (4.12) and some simplification gives

f4k = q̂k +
2a2k

(2k − 1)2
(4k2 − 19k + 13)q̂k−1 +R(x)

with

R(x) =
a4k(4k − 5)(8k4 − 78k3 + 204k2 − 208k + 69)

(2k − 1)4
x4k−8 + terms of lower order.(4.14)

Let β2 denote the leading coefficient of R as given above. It is easy to see that β2 6= 0 for all k ∈ Z+. Since
4 | (4k − 8), we have to expand one more term. Write f4k(x) = q̂k + β1q̂

k−2 + β2q̂
k−2 + R̃(x) with

R̃(x) =
36(4k + 1)(k − 2)(2k − 3)a5k

5(2k − 1)4
x4k−10 + terms of lower order.

Since 4 - (4k − 10) there can only be a decomposition if k = 2, which by (4.12), (4.13), (4.14) gives
B = −2, β1 = −4a2 and β2 = −2a4. Finally by (4.10) we get q̂(x) = x4 − 2ax2 and the decomposition
f8 = (x2 − 4a2x− 2a4) ◦ (x4 − 2ax2), as asserted in (2.2).

5. Proof of Theorem 2.2

In view of Theorem 1.1, we have to deal with decompositions of fn involving the standard pairs given
by (1.1)–(1.5). Recall that by Theorem 2.1, the only non-trivial binary decompositions of fn are equivalent
to f2k = hk ◦ x2 and f8 = (x2 − 4a2x− 2a4) ◦ (x4 − 2ax2). From now on, assume the ground field to be Q.

Let min(n,deg g) ≥ 3, a 6= 0, B 6= 2 and suppose that the Diophantine equation

fn(x) = g(y)

has infinitely many rational solutions (x, y) with a bounded denominator. Then by Theorem 1.1,

fn = ϕ ◦ f1 ◦ κ1 and g = ϕ ◦ g1 ◦ κ2,
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where κ1, κ2 are some rational units, ϕ ∈ Q[x] and (f1, g1) is a standard pair as given by the list in Sub-
section 1.2, such that f1(x) = g1(y) has infinitely many rational solutions with a bounded denominator. By
Theorem 2.1, we have one of the following four cases:

(i) deg ϕ = n,
(ii) deg ϕ = k with n = 2k and fn = hk ◦ x2,
(iii) deg ϕ = 1,
(iv) deg ϕ = 2 with n = 8 and f8 = (x2 − 4a2x− 2a4) ◦ (x4 − 2ax2).
Because of reasons of space, we here omit the treatment of (iv) (see [16]).

Case deg ϕ = n:

By comparison of degrees, fn = ϕ ◦ κ for some unit κ and thus

g = fn ◦ (κ−1 ◦ g1 ◦ κ2) = fn ◦ g̃

for some non-constant polynomial g̃ ∈ Q[x]. Of course, there are infinitely many solutions with a bounded
denominator of fn(x) = fn(g̃(y)). This gives Case (i) in Theorem 2.2.

Case deg ϕ = k with n = 2k and fn = hk ◦ x2:

Let fn = ϕ◦f1◦κ1 and κ be the unique unit such that ϕ◦κ = hk. Then fn = (ϕ◦κ)◦(κ−1◦f1◦κ1) = hk◦l1
and Theorem 2.1 yields l1 = x2. On the other hand,

g = ϕ ◦ g1 ◦ κ2 = (ϕ ◦ κ) ◦ (κ−1 ◦ g1 ◦ κ2) = hk ◦ l2,

where l2 = κ−1 ◦ g1 ◦ κ2. If the equation x2 = l2(y) has infinitely many solutions with a bounded denomi-
nator, then by Siegel’s theorem l2 has at most two zeroes of odd multiplicity. This specifies to Case (ii) of
Theorem 2.2.

Case deg ϕ = 1:

In this case ϕ(x) = ϕ1x + ϕ0 with ϕ1, ϕ0 ∈ Q. Since ϕ is a unit we have to deal with fn = ϕ ◦ f1 ◦ κ1

and g = ϕ ◦ g1 ◦ κ2, where (f1, g1) is a standard pair with deg f1 = n. We now have to carry out a detailed
analysis of the five standard pairs from Subsection 1.2.

To begin with, recall the standard pair of the second kind (x2, (γx2 + δ)v(x)2) given in (1.2). By
assumption both n ≥ 3 and deg g ≥ 3, such that the standard pair (f1, g1) cannot be of the second kind.

Now, suppose n ≥ 5.
Next we want to exclude decompositions involving the Dickson polynomials as imposed by the standard

pairs of the third and fourth kind. Recall the definition of the standard pair of the third kind (1.3), i.e.,

(f1, g1) = (Ds(x, γt), Dt(x, γs)).

Suppose fn ◦ κ = ϕ ◦Ds(x, γt) with a unit κ. Since Ds is an odd respectively even polynomial, according to
whether s is even or odd, we have that κ is zerosymmetric and therefore

(5.1) fn(x) = ϕ1Ds(βx, γt) + ϕ0

for some rational numbers β, ϕ1 and ϕ0. By (4.4), (5.1) and s = n, we have the following coefficient equations
for the powers xn, xn−2 and xn−4:

1 = ϕ1β
n,

−(n + B − 2)a = −ϕ1nγtβn−2,

(n− 3)(n + 2B − 4)a2

2
= ϕ1

n(n− 3)γ2t

2
βn−4.

A simple combination of these equations gives B = 2 which is a contradiction. On the other hand, let
(γ−s/2Ds(x, γ),−δ−t/2Dt(x, δ)) be a standard pair of the fourth kind (1.4). Then the same argument with
an altered coefficient ϕ1 gives the contradiction. Hence, (f1, g1) cannot be a standard pair of the third or
fourth kind.

Next, suppose (f1, g1) = ((γx2 − 1)3, 3x4 − 4x3) (or switched) is a standard pair of the fifth kind (1.5).
Since n ≥ 5 and (γx2 − 1)3 is even, we only have to treat the case

(5.2) f6(x) = ϕ1(γ(βx)2 − 1)3 + ϕ0.
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The coefficient equations for the powers x6, x4 and x2 in (5.2) are

1 = ϕ1γ
3β6,

−(B + 4)a = −3ϕ1γ
2β4,

3(B + 1)a2 = 3ϕ1γβ2.

This yields (B + 4)2 = 9(B + 1) and B = (1 ± 3i
√

3)/2 6∈ Q, a contradiction. Thus, (f1, g1) cannot be a
standard pair of the fifth kind.

Finally, consider the standard pair of the first kind given by (1.1), namely (xq, γxrv(x)q). By Corol-
lary 4.5, the polynomial f ′n(x) has zeroes of multiplicity at most three. Hence, for n ≥ 5, there cannot be
a representation with fn(βx) = ϕ1x

q + ϕ0. It remains to consider the second entry of the standard pair.
Suppose

(5.3) fn(x) = ϕ̂1(β1x + β0)rv̂(x)q + ϕ0,

where ϕ̂1 = ϕ1γ, v̂(x) = v(β1x+β0) with β0, β1 ∈ Q and 0 ≤ r < q, gcd(r, q) = 1, r+deg v̂ > 0 as demanded
in (1.1). Then, again due to Corollary 4.5 and the fact that q ≥ 3 by deg g ≥ 3, we here have to treat the
following two cases:

Case (a): deg v̂ = 1 and q = 3, 4,
Case (b): deg v̂ = 2 and q = 3.

Observe that by n = r + q deg v̂ ≥ 5 we have the pairs (r, q) = (1, 4), (3, 4), (2, 3) in Case (a), and the pairs
(r, q) = (1, 3), (2, 3) in Case (b). We first exploit the fact that fn is an even resp. odd polynomial. Set
v̂(x) = v̂1x + v̂0 and consider the pairs of Case (a). The coefficients [xn−1] and [xn−3] on the right hand
side of (5.3) vanish if and only if β0 = v̂0 = 0. But then fn(x) = ϕ̂1(β1x)r(v̂1x)q + ϕ0, a contradiction.
Now, set v̂(x) = v̂2x

2 + v̂1x + v̂0 and consider the pairs (q, r) of Case (b). Here, the coefficient equations
[xn−1] = [xn−3] = [xn−5] = 0 yield β0 = v̂1 = 0 and again a contradiction. Hence, the standard pair (f1, g1)
cannot be of the first kind.

Next we consider the cases n = 3, 4. The only non-trivial decompositions with standard pairs can arise
from standard pairs of the third or/and fourth kind, namely,

f3(x) = β3D3

(
x

β
,
(B + 1)a

3β2

)
for B 6= −1,(5.4)

f4(x) = β4D4

(
x

β
,
(B + 2)a

4β2

)
− a2(B − 2)2

8
for B 6= −2,(5.5)

and in the special cases B ∈ {−1,−2} for standard pairs of the first kind, namely,

f3(x) = x3 for B = −1,(5.6)

f4(x) = x4 − 2a2 for B = −2.(5.7)

In the case of (5.4) we always have gcd(m, 3) 6= 2 hence – at best – a standard pair of the third kind. Then

g(x) = β3Dm

(
κ(x),

(
(B + 1)a

3β2

)3/m
)

,

where m = deg g ≥ 3 and κ is a rational unit. Consider the Diophantine equation f3(x) = g(y). Since
D3(x, γm) = Dm(y, γ3) has infinitely many rational solutions with a bounded denominator if gcd(m, 3) = 1
(take, by (1.7), x = Dm(t, γ) and y = D3(t, γ) with t ∈ Z), we get Case (iii) of Theorem 2.2.

Next, consider (5.5). If the representation involves a standard pair of the third kind (with gcd(m, 4) = 1)
then in the same manner as before we retrieve Case (v). On the other hand, if gcd(m, 4) = 2 and we suppose
a representation with a standard pair of the fourth kind, then

g(x) =
(B + 2)2a2

16

(
−δ−m/2Dm(κ(x), δ)

)
− a2(B − 2)2

8
,

which corresponds to Case (vi) of Theorem 2.2. There is an infinite family of solutions (x, y) with bounded
denominator: Assume, without loss of generality, that m/2 is odd. Then from Proposition 3.1 in [2] a
parametric family of solutions (x, y) is given by x = γ(2−m)/4Dm/2(v, γ) and y = uv, where (u, v) is a
solution of γ2u2 + δv2 = 4γδ.
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Now, let B = −1 and consider (5.6). The corresponding equation for the standard pair is x3 = γyrv(y)3,
where r = 1 or r = 2. Since 3 · 1 − r · (3 − r) = 1 we have that an infinite family of solutions is given by
x = γtrv(γ3−rt3) and y = γ3−rt3, where t ∈ Z. This is Case (iv) in Theorem 2.2. We similarly get Case (vii)
from (5.7).

This concludes the investigation with polynomials ϕ(x) with deg ϕ = 1.

6. Epilogue

At the end of the talk, we finally will comment on a recent result of the author [17] regarding perturbed
Chebyshev polynomials, which is obtained by a concrete implementation of the the decomposition algorithm
(Lemma 3.4) and Grőbner bases calculations with Maple 10.

Theorem 6.1. Let fn be defined by

f0(x) = b, f1(x) = x− c, fn+1(x) = (x− d)fn(x)− afn−1(x), n ≥ 1,

with a, b, c, d ∈ R, a > 0 and put e = (c− d)/(2
√

a). Then fn is decomposable over C if and only if

(n, b, e) ∈
{

(mk, 2, 0), (2k, b, 0), (8,−2, 0), (6,−11
2

,±3
√

3
2

), (6,−10
3

,±2
√

3
3

), (4, 2− e2, e)

}
.

Moreover, in all cases the attained decompositions can be made explicit.
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