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Extended quadratic algebra and a model of the equivariant cohomology ring of
flag varieties

Anatol N. Kirillov and Toshiaki Maeno

ABSTRACT. For the root system of type A we introduce and study a certain extension of the quadratic
algebra invented by S. Fomin and the first author, to construct a model for the equivariant cohomology ring
of the corresponding flag variety. As an application of our construction we describe a generalization of the
equivariant Pieri rule for double Schubert polynomials. For a general finite Coxeter system we construct an
extension of the corresponding Nichols-Woronowicz algebra. In the case of finite crystallographic Coxeter
systems we present a construction of “extended Nichols-Woronowicz algebra model” for the equivariant
cohomology of the corresponding flag variety.

RESUME. Pour le systéme de racines de type A nous introduisons et étudions une certaine extension de
I’algebre quadratique inventée par S. Fomin et le premier auteur, construire un modele pour la cohomologie
équivariante de la variété des drapeaux correspondante. Comme une application de notre construction nous
décrivons une généralisation de la formule de Pieri équivariante pour les polynéomes de Schubert doubles.
Pour un systéeme de Coxeter fini général nous construisons une extension de I’algébre de Nichols-Woronowicz
correspondante. Dans le cas de systéemes de Coxeter cristallographique fini nous présentons une construction
de "modele par I’algebre de Nichols-Woronowicz étendu” pour la cohomologie équivariante de la variété des
drapeaux correspondante.

1. Introduction

In the paper [4] S. Fomin and the first author have introduced and study a model for the cohomology
ring of flag varieties of type A as a commutative subalgebra generated by the so-called Dunkl elements in a
certain noncommutaive quadratic algebra &,. One of the main advantages of an approach developed in [4]
is that it admits a simple generalization which is suitable for description of the quantun cohomology ring
of flag varieties, as well as (quantum) Schubert polynomials. Constructions from the paper [4] have been
generalized to other finite root systems by the authors in [8]. One of the main constituents of the above
constructions is the Dunkl element. The basic properties of the Dunkl elements are: 1) they are pairwise
commuting; 2) in the so-called Calogero-Moser representation [4, 8] they correspond to the truncated (i.e.
without differential part) Dunkl operators [3]; 3) in the crystallographic case they correspond — after applying
the so-called Bruhat representation [4, 8] to the Monk formula in the cohomology ring of the flag variety in
question; 4) in the crystallographic case, a subtraction-free expressions of Schubert polynomials calculated
at the Dunkl elements in the algebra & (X), if exist, provide a combinatorial rule for describing the Schubert
basis structural constants, i.e. the intersection numbers of Schubert classes. .

In the case of classical root systems ¥, the first author [6] has defined a certain extension #&(X) of the
algebra & (%) together with a pairwise commuting family of elements, called Dunkl elements, which after
applying the Calogero-Moser representation exactly coincide with the rational Dunkl operators. One of the
main objective ofglg paper is to study a commutative subalgebra generated by the Dunkl elements in the
extended algebra Z&(X) in the case of type A root systems. Our main result in this direction is:
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THEOREM 1.1. (Pieri formula in the algebra &, (R)]t])

11|

;}(—t)f’ <2pp— 1) { S;J Xs iaegaej[z‘a,ja]}_

See Section 2, Theorem 2.5, for a detailed explanation of conditions on sets I,.J and S in the second
summation, and those on indices {z'a,ja}ll]:‘1 in the product.

Important consequence of the above Theorem is that in the case ¢ = 0, a commutative subalgebra gener-
ated by the Dunkl elements in the algebra &, (R) is canonically isomorphic to the T-equivariant cohomology
ring of the type A flag variety Fl,. Our formula, in the case ¢t = 0, describes a multiplication rule for the
Schubert polynomial corresponding to the (m + 1)-cycle c[k,m] :== (k—m +1,... ,k,k+ 1) € S,, and the
double Schubert polynomial corresponding to a permutation in S,. An analog of Pieri’s formula for multi-
plication of the Schubert class corresponding to special permutation c[k,m] and the one corresponding to
arbitrary permutation w € S, has been obtained by by S. Veigneau [14, Section 5.3, Proposition 5.7]. Here
we treat Schubert and double Schubert polynomials as certain elements in the algebra &,_1, see Theorem
3.1.

In order to obtain the corresponding formula in the equivariant cohomology ring of a flag variety of type
A, one needs to use the Bruhat representation of the algebra &, 1, see Section 3. The existance of the Bruhat
representation of the algebra &, (R)[t] plays a crucial role in application to the equivariant Schubert calculus,
and constitutes an important step in the proof of Corollary 2.2. Note that the Bruhat representation has
a huge kernel, so that it’s not evident why our formula (in the case ¢ = 0) implies the known analogs of
the equivariant Pieri formula due to B. Kostant and S. Kumar [10], S. Robinson [13], S. Veigneau [14]
and vise versa, if so. We expect that for general ¢ our formula describes an analog of the Pieri rule in the
A-equivariant cohomology of (type A,_1) flag variety for the group A :=T x C*.

So far as we know, for the first time a Pieri-type formula in the equivariant cohomology ring of generalized
flag varieties for Kac-Moody groups has been proved by B. Kostant and S. Kumar [10, Proposition 3.41, 3.42],
see also [10], p.190, Note added in proof. In the case of flag varieties of type A,,_1, a significant simplification
of Kostant and Kumar’s Pieri-type formula has been obtained by S. Robinson [13]. Robinson’s Pieri-type
formula gives an answer in terms of a linear combination of the value of the Kostant polynomials on some
special permutations, [13, Definition 4.2]. A compact expression for the value of a Kostant polynomial on
an arbitrary permutation has been obtained by S. Billey [2]. Tt seems an interesting task to understand
relationships between the equivariant Pieri-type formulas obtained in our paper with those obtained by S.
Robinson and S. Veigneau.

Another objective of our paper is to construct the “Nichols-Woronowicz model” for the coinvariant
algebra of a finite Coxeter group W. Recall that the Nichols-Woronowicz algebra model for the cohomology
ring of flag varieties has been invented by Y. Bazlov [1]. In Section 4 we introduce a certain extension
of the Nichols-Woronowicz algebra Ay and construct a commutative subalgebra in the extended Nichols-
Woronowicz algebra. Our second main result states that for crystallographic root systems and ¢ = 0, the
commutative subalgebra in question is isomorphic to the T-equivariant cohomology ring of the corresponding
flag variety.

2. Extension of the quadratic algebra

DEFINITION 2.1. The algebra &, is an associative algebra generated by the symbols [i,j], 1 < i,j < n,
# j, subject to the relations:

0): i
i gl =0, e

2) : [i,4][k, 1] = [k, Q[i, 4], if {i,5} N {k,1} =0,

3) : [0, 4105, K + [4, K][k, i] + [k, i][i, ] = O.

Let us consider the extension &,(R)[t] of the quadratic algebra &, by the polynomial ring R[t] =

Zx1,... ,2,|[t] defined by the commutation relations:
(A) [Za]]wk = wk[iaj]a for k 7& iaja
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(B): [0, 4]zs = z5[i, 7] + ¢, [i, 5]z = @[3, j] — ¢, for i < 4,

(C): [i, 4]t = #[i, 5.
Note that the S,-invariant subalgebra RS[t] of R[t] is contained in the center of the algebra &, (R)[t].
DEFINITION 2.2. (1) We define the R[t]-algebra &,[t] by

Enlt] = Ea(R)[t] ®pen R.

More explicitly, &,[t] is an algebra over the polynomial ring Z[yi,... ,yn] generated by the symbols [i, 7],

1<i,5<n,i#j,and x1,... ,z,,t satisfying the relations in the definition of the algebra &, (R)[t] together
with the identification e;(z1,... ,2,) = €i(y1,... ,yn), for i = 1,... ,n. Denote by &, i, the specialization of
Enlt] at t = tq.

(2) The Dunkl elements §; € &n [t], i =1,...,n, are defined by the formula
0: =0 =+ i j).
J#i
REMARK 2.3. Note that x;’s do not commute with the Dunkl elements, but only symmetric polynomials
in x;’s do. By this reason we need the second copy of R = Z[yi, ... ,yn], where y;’s are in the center of the
algebra gn[t], and f(z1,...,2n) = f(y1,--. ,yn) for any symmetric polynomial f.

LEMMA 2.4. The Dunkl elements commutes each other.
Proof. This follows from the fact that
(@i + z;)[i, 5] = [i, j](@i + ;).
Let ex(z1,...,2n), 1 <k < n, stand for the elementary symmetric polynomial of degree k in the variables
Z1,...,T,. We put by definition, eg(z1,...,2,) =1, and ex(x1,... ,z,) =0,if £ < 0.
THEOREM 2.5. (Pieri formula in the algebra &, (R)]t])
ern(@", ... .00)) =

m

)T Sy | CRMEEMESD SEED SRS D DI || [z'a,ja]>,

p>0 r>1 S C [1,...,m] I,J i.€l,ja€J
|S|=k—r—2p

where Xs := [[,cq@s; I and J are subsets of the same cardinality v in the set [1,... ,n]\ S; the product is
r=|I|

taken over pairs {ia, ja},—; such that1 <i, <m < j, <n and the indices i1, ... i are all distinct.

Sketch of Proof. Since the defining relations for the algebra &,(R)[t] are invariant with respect to the
action of the symmetric group S,,, we have

kim — B)len(0) ... 00) = S wien(8,... ,6")),
WESm,

where we regard S,, as the subgroup of S, which interchanges only indices 1,...,m. So, the first step of
our proof is to show that it is enough to prove the statement of Theorem 2.5 in the case m = k only. In the

case m = k, we compute the product Hle 05-”) by induction on k taking into account an observation that

all computations have to be invariant with respect to the action of the symmetric group Sg.
COROLLARY 2.1. The list of relations in the algebra &,][t]
en (@™, ... 0" =

2p—1
Z(_t)p ( P > ek72p(y1="' 7yn)= 1 S k Sna

p>0 b
describes the complete set of relations among the Dunkl elements 6§"), 0
COROLLARY 2.2. For t = 0, the sublagebra of gn,o generated by the Dunkl elements 6,...,6, over

Zly1, ... ,yn] is isomorphic to the T-equivariant cohomology ring H}.(F'l,,).
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Proof. First of all it follows from Theorem 2.5 that the natural map 6; — z; = —c1(U;/Ui—1), yi = y;
defines a well-defined homomorphism

(2.1) Lyt - yn]l01s- .. ,00] — HF(Fl,),

where (0 =Up C Uy C --- C U,) is the universal flag over Fl,,.
On the other hand, it follows from the definitions that the image of Dunkl’s element 6#; in the Bruhat
representation (see Section 3) acts according to the rule:

bw=y,uw+ D, whi- Y why.

Jj>i Jj<i
l(wti;)=l(w)+1 l(wti;)=l(w)+1

This rule exactly corresponds to the Monk formula for double Schubert polynomials, see e.g. [11, Exer-
cise 2.7.2]. Therefore the images of the coset 1 under the action of the commutative subalgebra generated by
the Dunkl elements span the entire quotient Z[y1,... ,Yn, 21, - , 2n]/Jn, where J,, denotes the ideal gener-
ated by the elements ey (z1,... ,2n) —€x(y1,... ,¥n), 1 <k < n. This exactly means that the homomorphism
(2.1) is an isomorphism.

THEOREM 2.6. The subalgebra generated by the elements g1 := [1,2],92 := [2,3], "+, gn—1 := [n — 1,n]

in the algebra &,(R)[t] is isomorphic to the nil degenerate affine Hecke algebra of type A,(llll, i.e. the algebra
given by two sets of generators g1, - ,gn—1 and x1, - ,x, subject to the set of defining relations:

9i =0, gigj =gigi, ifli—3jl>1, gigigi = g;gig;, if li —j| =1,
9i%; — Tiy19; = 1.
3. Bruhat representation

Let us recall the definition of the Bruhat representation of the algebra &, on the group ring of the
symmetric group Z(S,) = Buwes,Z - w. The operator 05, i < j, is defined as follows:

_ | wty, if Hwtiy) = 1(w) + 1,
Oij (w) = { 0, otherwise.

Then the Bruhat representation of &, is defined by [i, j].w := o;;(w).
Now we extend the Bruhat representation to that of the algebra &, (R)[t] defined on

R[t)(Sn) = Guwes, Llyr, .- yn]lt] - w.
For f(y) € Z[y1, ... ,yn][t] and w € S, we define the Z[t]-linear operators &;;, i < j, and & as follows:
- _ [ tQOu(ywiy fW)w + fy)wtiy, if l(wii;) = l(w) + 1,
71 (f(y)w) B { t(aw(z)w(])f(y))w, otherwise,
Ee(f(W)w) = Ywm f(y)w.
PROPOSITION 3.1. The algebra &,(R)[t] acts Z[t]-linearly on Z[y][t](S.) via [ij] — 6i; and z) — k.

Proof. Let us check the compatibility with the defining relations of the algebra gn[t] We show the
compatibility only with the relations (1), (3) and (B). The rest are easy to check.
Let us start with the relation (1). We have

55 (fW)w) = 635 (HBuw(iyw(iy f @)w + f(y)oi;(w))
= 20 iyw(i) F W))W + (Ou(iyw(i) (1)) ij (w)
+t(Duw(jyw(i) f W) oij(w) + f(y)os; (w).

Since Bi(i)w(j) =0, O’zgj =0 and 8w(i)w(j) = —8w(j)w(i), we get % =0.
For the relation (3), we have
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+t(Ow(iyw(r) f (W) ok (W) + f(y)oijojn(w).
We also obtain ;56 (f(y)w) and 64:6:;(f(y)w) by the cyclic permutation of ¢, j, k. The 3-term relations
Ouw(i)uw() Ouw(i)w(k) + Ou(iyw()Qwmyw(i) + ukyw(i Ou(iui) =0
and
0ijOjk + OjkOki + Okioi; = 0
show the desired equality
0ij0ik + OjkOki + 0ki0i; = 0.
Finally, we check the relation (B). We have

056 (f(Y)w) = 74 (Yu(i) f(Y)w)
= 0w (i) w(s) Wuw(i) f W))W + (Ywi) f(y))oij (w)
= t(f(¥)w) + tYuw(i)Ouwiiywi) f U)W + Yur, () 7ii ()

=&0i (f(y)w) + t(f(y)w).

Denote by L,, the submodule of Z[z1, ... ,Zn,y1,- .. ,yn] generated by the monomials ' - -- a:;"jll y{l . -yfl"jf ,
0<ir<n—k 0<jr<n-—k

THEOREM 3.1. Let &,,(z,y) be the double Schubert polynomial corresponding to w € S,. Then, we have
6. (0,y)(id.) = w.
Conversely, if a polynomial F(x,y) € L,, satisfies the condition
F(8,y)(id.) = w,
then F(z,y) = Gu(x,y).

Proof. The first statement follows from the Monk formula for the double Schubert polynomials and

(0; = Yuin) (W) = &) + Y 03 (w) = Yuw
J#i

= D whi— ) why

j<i7l(wti]-):l(w)+l j>i7l(wti]-):l(w)+l

The second statement is a consequence from the fact that the double Schubert polynomials are the unique
solution in L,, for the system of equations coming from the Monk formula.

REMARK 3.2. Only when ¢ = 0, one can extend Z[y][t]-linearly the Bruhat representation of the algebra
&.(R)[t] to that of the algebra &,[t]. In fact, Theorem 3.1 describes the multiplicative structure of the Z[y]-

subalgebra generated by the Dunkl elements in &, o, which is isomorphic to Hj.(Fl,). Nevertheless, the
characterization of the double Schubert polynomials in Theorem 3.1 holds for arbitrary t.
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4. Nichols-Woronowicz model

The model of the equivariant cohomology ring H3.(F'l,) in the algebra &, has a natural interpretation
in terms of the Nichols-Woronowicz algebra. The Nichols-Woronowicz approach leads us to the uniform
construction for arbitrary root systems.

We denote by Zw the Nichols-Woronowicz algebra associated to the Yetter-Drinfeld module

V = @ Rlal/([a] + [~a))
a€EA

over the finite Coxeter group W of the root system A. Let h be the reflection representation of W and
R = Symbh* the ring of polynomial functions on . Let us consider the extension %y (R)[t] of the algebra
Pw by the polynomial ring R[t] defined by the commutation relation

[a]z = sq(z)[a] + t(z, ) for z € h*.
DEFINITION 4.1. We define the R-algebra 9§W by
Bw = Bw(R)[t] @pw R.
Choose a W-invariant constants (cq)q. Let us consider a linear map u : h* — éw defined as

pa)=z+ Y calz,a)e]

aEA L

for z € bh*.
PrOPOSITION 4.1. [u(z),u(y)] =0, z,y € h*.
The linear map p extends to a homomorphism of algebras
u: R — Bw(R)[t].
Denote by i the composite of the homomorphisms
R®z R'"S' Bw (R)[t] @2 R — Bw .

THEOREM 4.2. If t = 0 and the constants (co)a are generic, the image of the homomorphism [ is
isomorphic to the algebra R @pw R. In particular, when W is the Weyl group, it is isomorphic to the
T -equivariant cohomology ring H3(G/B) of the corresponding flag variety G/B.

The proof is based on the correspondence between the twisted derivation D and the divided difference
operator d,. We define the operator D, as the twisted derivation on By determined by the conditions:
(1): Do(z) =0, for z € R,

(2): Do([f]) = ba,p, for o, 8 € A4,
(3) Da(fg) = Doc(f)g + Soc(f)Doz(g)'
The operator D,, is linear with respect to R on the second component.

PROPOSITION 4.2.
Naea, Ker(D,) = R[t] @pw R
Proof. Any element w € Bw (R)[t] can be written as
w=fipr+- + frpr,

where f1,..., fr € R[t] are linearly independent, and ¢y, ..., ¢, € Bw. We have
Do (w) = sa(fi)Dalpr) + -+ sa(fr)Dalpk)
from the twisted Leibniz rule. If D,(w) = 0, we have Dy(p1) = --- = Dy(pr) = 0. Hence, w €

Naea, Ker(D,) implies that ¢; € %y, = R for i = 1,...k. This means w € R][t].
PROPOSITION 4.3.

Da(i(2)) = caft(9a())
for x € R®z R.
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Proof. When z = f® 1, 8 € A, we can check that

Da(i(B® 1)) = ca(B, @) = calt(0a(B))-
Hence, we have D, (ji(x)) = cafi(0a(z)) for € h* ® R. On the other hand, the both-hands sides satisfy the
same twisted Leibniz rule, so it follows that D, (fi(z)) = caft(0a(z)) for z € R ® R.

(Proof of Theorem 4.2) If z € R™ ®z R, we have D, (ji(z)) = 0 for every a € A, from Proposition 4.3.
This implies from Proposition 4.2 that fi(z) € R"Y ®zw R. When t = 0, ji(z) coincides with the element of
R which is obtained by replacing all the symbols [a] by zero in i(z). Hence, the homomorphism f factors
through R ®gw R — Py . Since a linear basis of the coinvariant algebra of W gives an R" -basis of R, it is
easy to see that R ® pw R — @W is injective.

5. Multiparameter quantum deformation &?[t] of the algebra &,]t].

Let q := {gi;|1 <i < j <m} be a set of parameters. Replace the relation (1) [ij]*> = 0 in Definition 2.1
by [ij]*> = qij, 1 <i < j < n. Denote by ex(z1,...,z, | ¢) the multiparameter quantum deformation of the
elementary symmetric functions [4, (15.2)]:

p
er(@, . lg) =D Y er—2p(X757) I] diaias

p 1<i1<..<ip<n a=1
Z‘1<J‘15--- sip<jp
where iy,... ,ip and ji, ... ,j, should be distinct elements of the set {1,...,n} and X777 denotes the set of
variables z, for which the subscript a is neither one of iy nor one of j,. We define the Dunkl elements 6] by
the same formula as for 6;.

THEOREM 5.1. (Pieri formula in the algebra &9[t])
ex(z1,...,2n | q) = RHS of the formula in Theorem 2.5

CONJECTURE 5.2. The list of relations in the algebra &?[t]

2p—1
ek(etlla"' 50% | q) = Z(_t)p < pp ) ek—?p(yla'-' ayn)a 1 < k <mn,

p>0

describes the complete set of relations among the Dunkl elements 67, ... ,64.

Now we assume thar g;; = 0 except the case j =i+ 1.

CONJECTURE 5.3. For ¢ = 0 the sublagebra of & generated by the Dunkl elements 67,... 6% over
Zly1, ... ,yn] is isomorphic to the T-equivariant quantum cohomology ring QH3-(F1,,).

A construction of the equivariant small quantum cohomology of flag varieties has been done by A.
Givental and B. Kim [5], and more recently by L. Mihalcea [12].

References

[1] Y. Bazlov, Nichols-Woronowicz algebra model for Schubert calculus on Cozeter groups, J. Algebra 297 (2006), no. 2,
372-399.

[2] S. Billey, Kostant polynomials and the cohomology ring for G/B, Duke Math. J. 96 (1999), 205-224.

[3] C. Dunkl, Harmonic polynomials and peak sets of reflection groups, Geom. Dedicata 32 (1989), 157-171.

[4] S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements and Schubert calculus, Advances in Geometry, (J.-L.
Brylinski, R. Brylinski, V. Nistor, B. Tsygan and P. Xu, eds.) Progress in Math. 172, Birkhduser, (1995), 147-182.

[5] A. Givental and B. Kim Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995),
609-641.

[6] A. N. Kirillov, On some quadratic algebras II, preprint.

[7] A. N. Kirillov and T. Maeno, Noncommutative algebras related with Schubert calculus on Cozeter groups, European J. of
Combin. 25 (2004), 1301-1325.

[8] A. N. Kirillov and T. Maeno, A note on quantization operators on Nichols algebra model for Schubert calculus on Weyl
groups, Lett. Math. Phys. 72 (2005), no. 3, 233—241.

[9] A. N. Kirillov and T. Maeno, On some noncommutative algebras related to K -theory of flag varieties, Part I, Int. Math.
Res. Not. 2005, no. 60, 3753-3789.

[10] B. Kostant and S. Kumar, The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. Math. 62 (1986),
187-237.



8 A. N. KIRILLOV AND T. MAENO

[11] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs vol. 6,
2001.

[12] L. Mihalcea, Equivariant quantum cohomology of homogeneous spaces, math. AG/0501213.

[13] S. Robinson, A Pieri-type formula for Hy.(SLn(C)/B), J. Algebra 249 (2002), 38-58.

[14] S. Veigneau, Calcul Symbolique et Calcul Distribué en Combinatoire Algébrique, Ph. D. Thesis, 1996,
http://igm.univ-mlv.fr/ veigneau/

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN
E-mail address: kirillov@kurims.kyoto-u.ac.jp
URL: http://wuw.kurims.kyoto-u.ac.jp/ kirillov

DEPARTMENT OF ELECTRICAL ENGINEERING, KyoTO UNIVERSITY, KYOTO 606-8501, JAPAN
E-mail address: maeno@kuee.kyoto-u.ac.jp



