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Operations on posets and rational identities of type A

Adrien Boussicault

Abstract. To each permutation σ, we associate a rational function ψσ :=
Q

(xσ(i) − xσ(i+1))
−1. The aim

of this paper is to study the combinatorics of the sum ΨP of the ψw where the indices are taken in the

linear extensions L(P ) of a planar poset P . In particular, we describe different transformations on posets
which will result in elementary operations on these functions.

Résumé. À chaque mot w, on associe la fonction rationnelle ψσ :=
Q

(xσ(i) − xσ(i+1))
−1. Le but de cet

article est d’étudier la somme ΨP des fonctions ψw sur les extensions linéaires des posets. En particulier,
nous décrivons différentes transformations sur les posets qui se traduisent par des opérations élémentaires

sur ces fonctions.

1. Introduction

To each permutation σ, we associate a rational function

ψσ :=
1

(xσ(1) − xσ(2)).(xσ(2) − xσ(3)) . . . (xσ(n−1) − xσ(n))
.

Summing this function on intervals of the permutohedron (i.e. for the weak order) gives remarkable proper-
ties. In particular, when permutations avoid some patterns, the sum can be simplified in a product of terms
of type

∏

(xi − xj)
−1.

The patterns appear in geometry, characterizing some families of Schubert varieties. Schubert varieties
are indexed by permutations, and the varieties which are non singular are those whose indexing permutation
does not contain the pattern 2143 nor the pattern 1324. In [2], Cortez has described geometrical properties
of Schubert varieties for permutations avoiding the patterns 1324 and 2143. This was further clarified by
Woo and Yong in [6], and Butler and Bousquet-Mélou in [1]. They use the fact that Hasse diagram naturally
associated to a permutation avoiding 1324 and 2143 is acyclic.

Surprisingly, the same patterns will occur in the study of our rational functions. In fact our work is
closely connected to a study of Greene [3] on rational identity related to Murnaghan-Nakayama formula for
Sn (type A). Greene gives in [3] a closed expression for the sum ΨP of the ψw where the indices are taken
in the linear extensions L(P ) of a planar poset P ,

ΨP =
∑

w∈L(P )

ψw.

He shows the equality

ΨP =

{

0 if P is a disconnected graph,
∏

y,z∈P (xy − xz)
µP (y,z) if P is a connected graph.

where µ(x, y) denotes the Möbius function of the poset P . In the case of a permutation avoiding the patterns
1324 and 2143, the poset is planar, and the Möbius function takes only values 0 or −1. Therefore (Corollary
4.1) the function ΨP has numerator equal to 1 if and only if P has an acyclic Hasse diagram.
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2 A. Boussicault

The aim of this paper consists in pointing out the connexions between some operations on posets and
rational identities involving the ΨP . These results are summarized in appendix A Table 1 and 2

To study the rational functions ΨP , we introduce some operations on posets in Section 2, and describe in
Section 3 the identities on the rational functions that these operations induce. We finish with some explicit
examples in Section 4: acyclic posets, 1-cycle posets and bipartite posets.

2. Operations on posets

2.1. Basic definitions. A partially ordered set (poset) P is a set endowed with a binary relation ≤
verifying:

1) for all x ∈ P , x ≤ x (reflexivity);
2) if x ≤ y and y ≤ x, then x = y (antisymmetry);
3) if x ≤ y and y ≤ z, then x ≤ z (transitivity).

Let R(P ) be the set of the pairs (x, y) ∈ P × P with x ≤ y. A linear extension of a poset P is a total order
compatible with P . We denote by L(P ) the set of linear extensions of P .
Classically, the covering relation (�) is defined by y covers x (or y � x) if x ≤ y and if there is no z ∈ P such
that x < z < y. The Hasse diagram of a poset P , denoted by H(P ), is the oriented graph of the covering
relation of P drawn in such a way that if x ≤ y, then y is drawn at the right of x 1.
The Hasse diagram is the minimal set generating P by transitivity.
We denote by Int(P ) the subset of P composed by the elements which are neither minimal nor maximal
and Ext(P ) denotes P \ Int(P ).

2.2. Permutations and posets. Let [σ, τ ] be the interval whose lower bound is σ and upper bound
is τ (i.e. the set of permutations greater than σ and lower than τ in the permutohedron).

For example, this is the interval [123456, 132564] in S6 :

[123456, 132564] = {132564, 123564, 132546, 123546, 132456, 123456}.

To each permutation σ, we associate the poset Pσ whose linear extensions are the permutations in [id, σ].
To obtain the Hasse diagram of Pσ, proceed as follows. The letters of the permutation σ are readen

from right to left. While the values increase, we write them disposed on the same vertical line. If the values
decrease, one writes them from the right to the left. Finally, we draw an edge between two vertices i and j
if and only if i < j, the vertex j is to the right of i and there exists no vertex k such that i < k < j and k is
on the left of j and on the right of i.

Figure 1 shows an example of a Hasse diagram.

1

2 3 4

5

6

7

8

9

Figure 1. Hasse diagram of P215736498

2.3. Collapses. Following the notation of [9], for a graph G we say that a vertex v of an edge e is free
if v is not a vertex of any edge other than e. An inner edge is an edge such that none of its end-points are
free vertices. Removing a non-inner edge e together with a free vertex of e is called an elementary collapse,
and a sequence of elementary collapses is a collapse. We denote Coll(G) the collapsed graph of G, that is,
the unique maximal subgraph of a graph G without free vertices.

1Usually, Hasse diagrams are drawn from bottom to top, but this representation takes more space and is less natural for
our purposes.
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2.4. Subposets and linear extensions. Let P be a poset and X ⊂ P . Let w ∈ L(X). We denote by
P(w) the poset such that its linear extensions are linear extensions of P having w as subword. Pσ and P(σ)

are not the same object, the second needs the definition of P to exist. Pσ is definied in Section 2.2.
In fact, P(w) is the poset P endowed with the transitive closure of R(w) ∪R(P ).

We define recursively P(w1,...,wk) =
(

P(w1,...,wk−1)

)

(wk)
.

Lemma 2.1. Let P be a poset and X1, . . . ,Xk be k disjoint subsets of P , we have

L(P ) =
⊔

l∈L(X1)×...×L(Xk)

L(Pl)

where
⊔

denotes the disjoint union.

For example, the set of linear extensions of the poset P in Figure 2 can be partitioned in disjoint subsets
indexed by the linear extensions of X1 and X2.

L(P ) = L(P(12,456)) ⊔ L(P(12,465)) ⊔ L(P(21,456)) ⊔ L(P(21,465))

L(P(12,456)) = {124356, 123456}

L(P(12,465)) = {124365, 123465}

L(P(21,456)) = {214356, 213456}

L(P(21,465)) = {214365, 123465}

P =
1

2

3

4

5

6

X1 =
1

2

X2 =

4

5

6

Figure 2. A poset P with two subposets X1 and X2 of P .

2.5. Contractions.

Proposition 2.1. Let P be a poset and a, b be two elements of P . If a � b the relation ≤a=b defined by

x ≤a=b y ⇔ (x ≤ y) or ((x ≤ a) or (x ≤ b)) and ((a ≤ y) or (b ≤ y))

is a partial order over P \ {b}.

Proof. The relation ≤a=b is obviously reflexive and transitive.
The antisymmetry follows from the fact that a covers b. Indeed, if (a ≤ x or b ≤ x) and (x ≤ a or x ≤ b)

then x = a or x = b. Hence, after looking at all the possibilities for x, y in P \ {b} such that x ≤a=b

y and y ≤a=b x we have that x = y. �

When a covers b, we denote by Pa=b the contraction of the edge (a, b) (that is P \ {b} endowed with
≤a=b).

Proposition 2.2. Let P be a poset and (a, b) be an edge in H(P ). Then w′abw′′ is a linear extension
of P if and only if w′aw′′ is a linear extension of Pa=b.

Proof. Suppose that w′abw′′ is a linear extension of P and let x, y ∈ P \ {b}. For each z ∈ P , we
denote by iz the position of z in the word w′abw′′. As ib = ia + 1 and x 6= b, y 6= b, the condition
((x ≤P a) or (x ≤P b)) and ((a ≤P y) or (b ≤P y)) implies ix ≤ ia and iy ≥ ia. Hence, if x ≤Pa=b

y then
ix ≤ iy which implies w′aw′′ ∈ L(P ).

Suppose now that w′aw′′ is a linear extension of Pa=b. If x 6= b, y 6= b then x ≤P y implies x ≤Pa=b
y

and ix ≤ iy. If x = b then b ≤P y implies ia ≤ iy and ib ≤ iy. In the same way, x ≤P b implies ix ≤ ib.
Then in all the cases, x ≤P y implies ix ≤ iy. Equivalently, w′abw′′ is a linear extension of P . �
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For example, the edge (4, 5) of the poset P in Figure 3 can be contracted. The linear extensions for
P4=5 are

L(P ) = {12435, 21435, 12345, 21345},

and, the set obtained by removing all words with no factor 45 has the same size than L(P4=5).

{w′45w′′ ∈ L(P )} = {12345, 21345}

P =
1

2

3

4
5 4=5

−−−−→ P4=5 = 1

2

3
4 = 5





y
Hasse diagram Hasse diagram





y

H(P ) =
1

2

3

4
5 4=5

−−−−→ H(P4=5) = 1

2

3
4 = 5

Figure 3. The posets P and P4=5, their Hasse diagrams and their linear extensions.

2.6. Decontractions. A poset is bipartite if only has maximal and minimal elements.

Proposition 2.3. Each poset can be obtained from a bipartite poset by applying a succession of con-
tractions.

Proof. Consider a poset P . We construct a new poset P by duplicating each vertex of Int(P )

P = P ∪ {x | x ∈ Int(P )}.

The poset P is endowed with the relation ≤′ defined by y ≤′ z if and only if one of the following statements
is true:

(1) y = z,
(2) z = x with x ∈ Int(P ), y ∈ P and y � x,
(3) y ∈ P , z ∈ Ext(P ) and y � z,
(4) z = y with y ∈ Int(P ).

By construction, ≤′ is a partial order and each element of P is either minimal or maximal. Finally, when
contracting the edges {(x, x) | x ∈ Int(P )}, the poset P is recovered, see Figure 4 for an example of
contraction. �

P21435 =
1

2

3

4

5

3

4

3̄=3
−−→

1

2

3

4

5

4

4̄=4
−−→ P21435 =

1

2

3

4
5

Figure 4. The poset P21435 is the contraction of the bipartite poset P21435.
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2.7. Suppressions of extremal elements.

Proposition 2.4. Let P be a poset and m a maximal or a minimal element of P . Then mw is a linear
extension of P if and only if w is a linear extension of P \ {m}.

Proof. Let us assume that m is minimal (the case where m is maximal being similar).
Suppose that mw is a linear extension of P and let x, y be two elements of P different of m. Hence, if

x ≤P\{m} y then x ≤w y which implies w ∈ L(P \ ({m})).
Conversely, suppose that w is a linear extension of P \ {m}. Let x, y ∈ P be such that x ≤P y. If x 6= m

then as m is minimal we have y 6= m and x ≤w y. So we have x ≤mw y. If x = m, we have trivialy x ≤mw y.
We deduce that mw ∈ L(P ). �

3. Operations on rational functions

3.1. Residues and contractions.

Theorem 3.1. Let a and b be two elements of a poset P . We have

((xa − xb).ΨP )|xa=xb
=

{

ΨPa=b
if (a, b) is an edge of the Hasse diagram of P ,

0 otherwise.

Proof. Applying the residue at xa = xb, we get

(3.1) ((xa − xb).ΨP )|xa=xb
=

∑

w∈L(P )

w=w′abw′′ or w=w′baw′′

((xa − xb).ψw)|xa=xb

We can consider three cases.

1) a and b are not comparable. Obviously, the word w′abw′′ is a linear extension of P if and only if w′baw′′

is also a linear exension of P . Hence, by considering the pairs ψw′abw′′ and ψw′baw′′ in (3.1), we obtain

((xa − xb).ΨP )|xa=xb
=

∑

w′abw′′∈L(P )

((xa − xb)[ψw′abw′′ + ψw′baw′′ ])|xa=xb
= 0.

2) a and b are comparable but a 6� b and b 6� a. Assuming that a ≤ b (the other case being similar), there
is at least one element c such that a ≤ c ≤ b. Then L(P ) contains no word having ab nor ba as a factor
and the residue ((xa − xb).ΨP )|xa=xb

is equal to 0.

3) Now, if a � b (the case b � a is similar), by Proposition 2.2, we have

((xa − xb).ΨP )|xa=xb
= ΨPa=b

.

�

Theorem 3.1 and Proposition 2.3 show that the knowledge of the fraction Ψ for each bipartite poset is
enough to compute any ΨP by applying a sequence of residues.

For example, the rational functions ΨP21435
and Ψ

P21435|
3=3,4=4

described in Figure 5 have the following

numerators and denominators:

Num(ΨP21435
) = x1.x4 − x1.x4 + x2.x3 − x2.x3 + x2.x4 − x2.x4 + x2

3 − x3.x3 + x3.x4 − x3.x4 + x1.x3 −

x1.x3 + x2
4 − x4.x4 + x1.x2 + x3.x5 + x4.x5 − x1.x5 − x2.x5 − x3.x4

Den(ΨP21435
) = (x1 − x3).(x1 − x4).(x2 − x3).(x2 − x4).(x3 − x3).(x3 − x5).(x4 − x4).(x4 − x5)

Den(ΨP
P21435|3=3,4=4

) = x1.x2 + x3.x5 + x4.x5 − x1.x5 − x2.x5 − x3.x4

Num(ΨP
P21435|3=3,4=4

) = (x1 − x3).(x1 − x4).(x2 − x3).(x2 − x4).(x3 − x5).(x4 − x5)
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P21435 =
1

2

3

4

5

3

4

P21435

∣

∣

3=3,4=4
=

1

2

3

4
5

Figure 5. We obtain the fraction ΦP21435
from ΦP21435

.

3.2. Limits and suppressions of extremal elements.

Theorem 3.2. Let v be an element of a poset P .

lim
xv→+∞

(xv.ΨP ) =







−ΨP\v if v is maximal,
ΨP\v if v is minimal,
0 otherwise.

Proof. We have that

(3.2) lim
xv→+∞

(xv.ΨP ) =
∑

w∈L(P )

w=vw′ or w=w′v

lim
xv→+∞

(xv.ΨPw
)

If v is not extremal then L(P ) contains no word having v in his initial or last position. Hence, the limit
lim

xv→+∞
(xv.ΨP ) is equal to 0.

Now, assume that v is minimal (the case with v maximal is similar). By Proposition 2.4, we have

lim
xv→+∞

(xv.ΨP ) = ΨP\v.

�

3.3. Connexity and annulation.

Definition 3.3 (Greene [3]). A poset P is planar if his Hasse diagram may be ordered-imbedded in
R × R without edge crossings, even when extra maximal and minimal elements are added.

See Figures 6 and 7 for examples of planar and non planar posets.

1

2

3

4 1
2

3

4

Adjonction of 0 and ∞





y





y
Adjonction of 0 and ∞

1

2

3

4
0 ∞

1
2

3

4

0 ∞

Figure 6. The poset P2143 is not planar.

Theorem 3.4 (Greene [3]). Let P be a planar poset, then

ΨP =

{

0 if P is not connected,
∏

y,z∈P (xy − xz)
µP (y,z) if P is connected.

where µ(x, y) denotes the Möbius function of the poset P .
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1

2

3

4 Adjonction of
−−−−−−−−−→

0 and ∞

1

2

3

40 ∞

Figure 7. The poset P1324 is planar.

We have the following consequence.

Corollary 3.1. Let P be a poset, the Hasse diagram of P is connected if and only if ΨP 6= 0.

Proof. Suppose first that P is connected and ΨP = 0. As contraction preserves the connexity, we can
contract edges on P to obtain a new poset whith only two elements a ≤ b. Using Theorem 3.1, we get Ψa−b

from ΨP by applying a succession of residues. It follows that Ψa−b = 0. This is in contradiction with the
direct computation Ψa−b = 1

xa−xb
. Hence, ΨP 6= 0.

Now, we consider the case of a disconnected poset P . Let C1, . . . , Ck be the k connected components of
P . By Lemma 2.1 we have :

ΨP =
∑

w1∈L(C1),...,wk∈L(Ck)

ΨP(w1,...,wk)
.

However, the poset P(w1,...,wk) is planar and disconnected. Applying the Greene theorem (Theorem 3.4), we
obtain ΨP = 0. �

3.4. Reduced fractions and Hasse diagrams. We denote Den(ψP ) the denominator of the reduced
fraction ΨP and Num(ΨP ) denotes its numerator.

Corollary 3.2. Let P be a connected poset, then:

Den(ψP ) =
∏

a≺b

(xa − xb).

Proof. Theorem 3.1 implies that
∏

a≺b(xa − xb) is a factor of Den(ΨP ). As contraction preserves the
connexity (Corollary 3.1), we deduce that Den(ΨP ) is exactly

∏

a≺b(xa − xb). �

Corollary 3.3. Let P be a connected poset, the degree of Num(ΨP ) is equal to the number of cycles
in the non oriented Hasse diagram of P .

Proof. Let P be a connected poset with n elements. Let e be the number of edges in H(P ) and c the
number of cycles. By Corollary 3.2 we deduce that the degree of the numerator of the reduced fraction is at
most equal to n − 1 − e and, from the Euler formula, it is equal to (see [8] or [9]) the number of cycles in
H(P ). The polynomial Num(P ) being homogeneous, if it is non zero its degree is c. As P is connected, the
Corollary 3.1 closes the proof. �

For example, the Hasse diagram of P132546 in Figure 8 has exactly 3 cycles. So the degree of his numerator
is equal to 3.

Num(ΨP132546
) = −x1.x2.x3 + x1.x2.x6 + x2.x3.x4 + x1.x3.x6 + x1.x4.x5 + x2.x3.x5 − x1.x4.x6 − x2.x3.x6 −

x2.x4.x5 − x1.x5.x6 − x3.x4.x5 + x4.x5.x6)

Den(ΨP132546
) = (−x1 + x3).(−x1 + x2).(−x5 + x6).(−x4 + x6).(−x3 + x5).(−x2 + x5).(x3 − x4).(−x2 + x4)

1
2

3

4

5
6

Figure 8. Numerator and denominator of the reduced fraction ΨP132546
.
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3.5. Collapses and factorisations.

Proposition 3.1. Let v be an element of a connected poset P such that v is a free vertex in the Hasse
diagram of P . Let s be the unique vertex such that s � v or v � s, then

ΨP =

{

ΨP\{v}.
1

xv−xs
if v is minimal,

ΨP\{v}.
1

xs−xv
if v is maximal.

Proof. Let v be a free vertex in a Hasse diagram of a poset P . Let Ci be a family of polynomials whose
degree in xv is zero and such that

ΨP =

∑

i Ci.x
i
v

∏

i≺j(xi − xj)
.

As v is a free vertex, v is maximal or minimal in P . Theorem 3.2 shows that

lim
xv→+∞

(xv.ΨP ) =

{

−ΨP\v if v is maximal,
ΨP\v if v is minimal.

which implies that C0 6= 0 and for all i ≥ 1, Ci = 0. Hence, Num(ΨP ) = C0 = Num(ΨP\{a}). �

As a straightforward consequence, we have:

Corollary 3.4. Num(ΨP ) = Num(ΨColl(P ))

4. Examples

4.1. Acyclic posets.

Proposition 4.1. The Hasse diagram H(P ) has no cycle if and only if Num(P ) = 1.

Proof. This result is a direct application of Greene Theorem (Theorem 3.4) and the Corollary 3.3. �

A permutation σ avoids the patterns 1324 if there exists no integers 1 ≤ i1 < i2 < i3 < i4 ≤ n verifying
σi1 < σi3 < σi2 < σi4 . A permutation σ has the pattern 2143 if for some indices 1 ≤ i1 < i2 < i3 < i4 ≤ n we
have σi2 ≤ σi1 ≤ σi4 ≤ σi3 with the further restriction that there is no i1 ≤ j ≤ i4 such that σi1 ≤ σj ≤ σi4 .

Butler and Bousquet-Mélou have shown in [1] that the Hasse diagram of a poset associated to a permu-
tation avoiding 1324 and 2143 has no cycle. As a consequence we have the following corollary.

Corollary 4.1. The fraction ΨPσ
is completely simplifiable (ie Num(ΨPσ

) = 1) if and only if σ avoids
the patterns 1324 and 2143.

4.2. 1-cycle poset.

Proposition 4.2. Let P be an acyclic connected poset, then

Num(P ) =
∑

i∈min(Coll(P ))

xi −
∑

i∈max(Coll(P ))

xi.

Proof. Let’s consider the poset P ′ = Coll(P ) obtained by the construction given in Proposition 2.3 on
Coll(P ).

As P ′ is bipartite with only 1 cycle, by Corollary 3.3, we obtain Num(ΨP ′) =
∑

i ci.xi, where ci ∈ Z.
Let i be a minimal element in P ′. As P ′ \ {i} is acyclic and connected, Num(ΨP ′\{i}) = 1. Theorem 3.2
implies that ci = 1 if i is maximal and ci = −1 if i is minimal. So, we have:

Num(ΨP ′) =
∑

i∈min(P ′)

xi −
∑

i∈max(P ′)

xi.

By Corollary 3.4 and Theorem 3.1 we have:

Num(ΨP ) =





∏

e∈Int(Coll(P ))

(xe − xe).Num(ΨP ′)





∣

∣

∣

∣

∣

∣

xu=xu
u∈Int(Coll(P ))

.



OPERATIONS ON POSETS AND RATIONAL IDENTITIES OF TYPE A 9

Hence,

Num(ΨP ) =
∑

i∈min(Coll(P ))

xi −
∑

i∈max(Coll(P )

xi +
∑

e∈Int(Coll(P ))

(xe − xe)|xe=xe

=
∑

i∈max(Coll(P ))

xi −
∑

i∈max(Coll(P ))

xi.

�

For example, the numerator of the 1-cycle poset P in Figure 9 is

Num(ΨP ) = x1 + x2 − x4 − x7.

P =

1

2

3

4

5

6

7

8

9 10

Figure 9. 1-cycle poset.

4.3. Complete bipartite posets. We have seen (Subsection 3.1) that the bipartite posets are funda-
mental for the description of the functions ΨP . In this paragraph, we compute the special case of complete
bipartite posets.

Consider a poset P constituted of two sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} such that the
elements of X are all smaller than the elements of Y , the elements of X (resp. Y ) being incomparable. We
construct a new poset P ′ by choosing a total order y1 < · · · < ym on Y . The rational functions ΨP and ΨP ′

are related by the following identity:

ΨP = ΨP ′ .
∑

σ∈Sm

σY ,

where σY denotes the action of the permutation σ on the alphabet Y . The poset P ′ being planar, if we
apply the Greene Theorem (Theorem 3.4), we obtain

Ψ′
P =

1

(x1 − y1) · · · (xn − y1)

1

(y1 − y2) · · · (ym−1 − ym)
=

1

R(X,Y )

R(X,Y \ y1)
∏m−1

i=1 yi − yi+1

where R(X,Y ) denotes the resultant of the alphabets X and Y . Hence,

ΨP =

(

1

R(X,Y )

R(X,Y \ y1)
∏m−1

i=1 yi − yi+1

)

.
∑

σ∈Sm

σY

=

(

1

R(X,Y )

S(m−1)n(X − (Y \ y1))
∏m−1

i=1 yi − yi+1

)

∑

σ∈Sm

σY

=





1

R(X,Y )

∏

i<j−1

(yi − yj)S(m−1)n(X − (Y \ y1))



 .
1

∆(Y )

∑

σ∈Sm

σY

where Sλ is a Schur function (see for example [7]) and ∆(Y ) is the Vandermonde determinant of the alphabet
Y . We denote by ∂Y

i the divided difference applied on the alphabet Y :

∂Y
i =

1

yi − yi+1
(1 + si),
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where si denotes the ith elementary transposition. The operator 1
∆(Y )

∑

σ∈Sm
σY admits an expression in

term of divided differences (see prop. 7.6.2 in [4]):

1

∆(Y )

∑

σ∈Sm

σY = ∂Y
ω := (∂Y

m−1)(∂
Y
m−2∂

Y
m−1) · · · (∂

Y
1 · · · ∂Y

m−1).

The polynomial S(m−1)n(X − (Y \ y1)) is symmetric in y2, . . . , ym, so we have

∏

i<j−1

(yi − yj)S(m−1)n(X − (Y \ y1))∂
Y
ω =

∏

i<j−1

(yi − yj)(∂
Y
m−1)(∂

Y
m−2∂

Y
m−1) · · · (∂

Y
2 · · · ∂Y

m−1)×

× S(m−1)n(X − (Y \ y1))(∂
Y
1 · · · ∂Y

m−1).

∏

i<j−1(yi−yj) is a polynomial of degree
(

n−1
2

)

, so if we apply (∂Y
m−1)(∂

Y
m−2∂

Y
m−1) · · · (∂

Y
2 · · · ∂Y

m−1) we get a

constant term. More precisely, the only monomial which has a non null contribution is (−1)(
n−1

2 )ym−2
m ym−3

m−1 · · · y3.
Hence, a straightforward computation gives

∏

i<j−1

(yi − yj)(∂
Y
m−1)(∂

Y
m−2∂

Y
m−1) · · · (∂

Y
2 · · · ∂Y

m−1) = 1.

We deduce a compact expression for ΨP :

ΨP =
1

R(X,Y )
S(m−1)n(X − (Y \ y1))∂

Y
1 · · · ∂Y

m−1.

The polynomial S(m−1)n(X − (Y \ y1))∂
Y
1 · · · ∂Y

m−1 is the Lagrange interpolation of S(m−1)n(X − (Y \ y1))
considered as a function f(y1, Y \ y1) (see [4, 5]). As S(m−1)n(X − (Y \ y1)) is equal to the multi-Schur

function 2

S(m−1)n−1;m−1(X − Y ;X − (Y \ y1)) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sm−1(X − Y ) · · · Sm−n(X − Y ) Sm−n−1(X − (Y \ y1))
...

...
...

Sm+n−2(X − Y ) · · · Sm−3(X − Y ) Sm−2(X − (Y \ y1))
Sm+n−1(X − Y ) · · · Sm−2(X − Y ) Sm−1(X − (Y \ y1))

∣

∣

∣

∣

∣

∣

∣

∣

∣

we get

S(m−1)n(X − (Y \ y1))∂
Y
1 · · · ∂Y

m−1 = S(m−1)n−1;m−1(X − Y ;X − (Y \ y1))∂
Y
1 · · · ∂Y

m−1 = S(m−1)n−1(X − Y ).

The expression of ΨP follows:

Proposition 4.3.

ΨP =
1

R(X,Y )
S(m−1)n−1(X − Y ).

4.4. More examples. In general, we do not know formulas allowing to compute ΨP when the size of
its expansion grows exponentially with the complexity of P . In some cases, we can express ΨP in terms of
multi-Schur functions. For example, if P is the complete tri-partite poset composed by X = {x1, . . . , xn},
Y = {y1, y2} and Z = {z1, . . . , zm} such that x < y < z for each x ∈ X, y ∈ Y and z ∈ Z, then the numerator
of ΦP is the multi-Schur function Sn;m−1(Y −X,Y −Z). Another example is given by the tri-partite poset
composed by X = {x1}, Y = {y1, y2, y3} and Z = {z1, . . . , zm}. In this case, the numerator can be evaluated
as a sum of two multi-Schur functions: S11;m−1(Y −X,Y −Z)+S2;m−1(Y −X,Y −Z). The proofs of these
formulas are essentially the same than in the case of the bi-partite posets. Further examples are investigated
in a forthcoming paper.

Acknowledgments: The author is gratefull to A. Lascoux for his suggestion to work on rational
functions and his introduction to Schur polynomials. The author thanks J.G. Luque for useful discussions
and revisions of this paper. The author thanks T. Gomez-Diaz for reviews of this article.

2See Chapter 1 in [4] for a more general definition and a more extended list of properties.
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Appendix A. Table summarizing the operations and the properties of posets and their

consequences on the rational functions ΨP

Table 1. Poset operators and rational function identities

Posets Rational functions

Contraction of the edge (a, b)
P → Pa=b

((xa − xb).ΨP )|xa=xb
= ΨPa=b

Suppression of an extremal element v
P → P \ {v}

lim
xv→+∞

(xv.ΨP ) =

{

−ΨP\v if v is maximal,
ΨP\v if v is minimal.

Collapse of an edge s− v with a free vertex v
P → P \ {v}

ΨP =

{

ΨP\{v}.
1

xv−xs
if v is minimal

ΨP\{v}.
1

xs−xv
if v is maximal

X1, . . . ,Xk ⊂ P , k disjoint subsets
P → {P(w1,...,wk)|w1 ∈ L(X1), . . . , wk ∈ L(Xk)}

ΨP =
∑

w1∈L(X1),...,wk∈L(Xk) ΨP(w1,...,wk)

Table 2. Poset properties and their expressions on rational functions

Posets Rational functions

P connected

ΨP 6= 0

Den(ψP ) =
∏

a≺b

(xa − xb)

The degree of the numerator is the number of cycles of P
P disconnected ΨP = 0

P acyclic Num(ΨP ) = 1

P has 1 cycle Num(ΨP ) =
∑

i∈min(Call(P ))

xi −
∑

i∈max(Call(P ))

xi

P is complete bipartite Num(ΨP ) = S(card(max(P ))−1)(card(min(p))−1)(min(P ),max(P ))

Institut Gaspard Monge, Université de Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454
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