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Analysis of some exactly solvable diminishing urn models

Hsien-Kuei Hwang, Markus Kuba, and Alois Panholzer

ABSTRACT. We study several exactly solvable Pólya-Eggenberger urn models with a diminishing character, namely, balls of
a specified color, say x are completely drawn after a finite number of draws. The main quantity of interest here is the number
of balls left when balls of color x are completely removed. We consider several diminishing urns studied previously in the
literature such as the pills problem, the cannibal urns and the OK Corral problem, and derive exact and limiting distributions.
Our approach is based on solving recurrences via generating functions and partial differential equations.

RÉSUMÉ. On se propose d’étudier plusieurs modèles d’urnes de Pólya-Eggenberger de nature “diminuante” ayant des
solutions exactes, c’est-à-dire, les boules de couleur, disons x, sont toutes prises après un nombre fini de tirées. La quantité
principale qui nous interesse est le nombre de boules qui restent dans l’urne au moment où il n’y a plus de boules de
couleur x. Nous traitons, en particulier, plusieurs modèles d’urnes diminuantes proposés dans la litterature, comme le
problème de pillules, le modèle d’urnes dit “cannibaliste” et le problème d’OK Corral, et obtenons des résultats exactes et
asymptotiques. L’approche que nous utilisons est fondée sur le traitement de récurrences par voie de fonctions génératrices
et équations aux dérivativés partielles.

1. Introduction

1.1. Diminishing urn models. We are concerned here with the so-called Pólya-Eggenberger urn models, which
in the simplest case of two types of colors for the balls can be described as follows. At the beginning, the urn contains
m black and n white balls. At every step, we choose a ball at random from the urn, examine its color and put it back
into the urn and then add/remove balls according to its color by the following rules. If the ball is white, then we put a
white and b black balls into the urn, while if the ball is black, then c white balls and d black balls are put into the urn.
The values a, b, c, d ∈ Z are fixed integer values and the urn model is specified by the transition matrix M =

(

a b
c d

)

.
Urn models with r (≥ 2) types of colors can be described in an analogous way and are specified by an r× r transition
matrix.

Urn models are simple, useful mathematical tools for describing many evolutionary processes in diverse fields
of application such as analysis of algorithms and data structures, statistics and genetics. Due to their importance in
applications, there is a huge literature on the stochastic behavior of urn models; see for example [8, 11]. Recently, a
few different approaches have been proposed, which yield deep and far-reaching results for very general urn models;
see [2, 3, 7].

Most papers in the literature impose the so-called tenability condition on the transition matrix, so that the process
can be continued ad infinitum (or no balls of a given color being completely removed). However, in some applications
(examples given below), there are urn models with a very different nature, which we will refer to as “diminishing urn
models.” For simplicity of presentation, we describe them in the case of balls with two types of colors, black and
white. We consider Pólya-Eggenberger urn models specified by a transition matrix M =

(

a b
c d

)

, and in addition there
is a set of absorbing states S ⊆ N×N. The urn contains m black balls and n white balls at the beginning and evolves
by successive draws at discrete instance according to the transition matrix until an absorbing state s = (j, k) ∈ S is
reached, namely, the urn contains exactly j black balls and k white balls. Then the urn process stops. We only call
an urn model “diminishing urn model” if it is guaranteed that from any initial state (m,n) ∈ N × N (starting with m
black balls and n white balls) we will reach an absorbing state s ∈ S after a finite number of draws.
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FIGURE 1. An example of a weighted path from (6, 1) to the absorbing state (0, 2) for the so called
pills problem with transition matrix M = [−1, 0; 1,−1] and the vertical absorbing axis S = {(0, n) :
n ≥ 0}. The illustrated path has weight 6
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FIGURE 2. Type A and Type B urn models.

Diminishing urn models with more than two type of balls can be considered similarly; an example will be given
below. For diminishing urns, the main questions are (i) starting at state (m,n), what is the probability of reaching the
absorbing state (j, k) ∈ S?, and (ii) what is then the number of balls left?.

Motivated by concrete applications, we distinguish the following two types of urns.

Type A: The entries of M satisfy a, b ≤ 0, (a, b) 6= (0, 0), d < 0 and c > 0, and the set of absorbing states S
consists of the vertical axis m = 0 (or a vertical wall 0 ≤ m ≤M , M ≥ 0).

Type B: The entries of M satisfy a, b, c, d ≤ 0, (a, b) 6= (0, 0) and (c, d) 6= (0, 0) and the set of absorbing
states S consists of the vertical axis m = 0 (or a vertical wall 0 ≤ m ≤M , M ≥ 0) and the horizontal axis
n = 0 (or a horizontal wall 0 ≤ n ≤ N , N ≥ 0).

Note that the conditions on Type A urn models are in general not sufficient to guarantee that an absorbing state will be
reached (if b < −1 then the urn process could reach states with n < 0), but this is the case for all models we consider
here.

It is helpful to describe the evolution of the urn model by weighted lattice paths, which is described in the case
of urns with two types of balls. If the urn contains m black balls and n white balls and we select a white ball (with
probability n

m+n ), then this corresponds to a step from (m,n) to (m+a, n+b), to which the weight n
m+n is associated;

and if we select a black ball (with probability m
m+n ), this corresponds to a step from (m,n) to (m + c, n + d) (with

weight m
m+n ). The weight of a path after t successive draws consists of the product of the weight of every step. By

this correspondence, the probability of starting at (m,n) and ending at (j, k) is equal to the sum of the weights of all
possible paths starting at state (m,n) and ending at the absorbing state (j, k) ∈ S (which did not reach any absorbing
state before). Unfortunately, the expressions so obtained for the probability are, although exact, less useful for large
m or n. An example for the weighted path corresponding to the evolution of a diminishing urn is given in Figure 1.

The description of the urn model via weighted lattice paths then gives the following interpretation of the Type A
and Type B urn models: in Type A we have a step lying in the lower-left quadrant and one step lying in the upper-left
quadrant, whereas in Type B both steps are lying in the lower-left quadrant; see Figure 2.
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1.2. Examples. We first describe a few motivating examples of diminishing urn models.
The pills problem. The transition matrix is given by M =

(−1 0
1 −1

)

and the absorbing axis is S = {(0, n) : n ≥
0}. An interpretation is as follows. An urn has two types of pills in it, which are single-unit and double-unit pills,
respectively. At every step, we pick a pill uniformly at random. If a single-unit pill is chosen, then we eat it up, and
if the pill is of double unit, we break it into two halves—one half is eaten up and the other half is now considered of
single unit and thrown back into the urn. The question is then, when starting with n single-unit pills and m double-unit
pills, what is the probability that k single-unit pills remain in the urn when all double-unit pills are drawn?

This problem has been stated in [12], where the authors asked for a formula for the expected number of remaining
single-unit pills, when there are no double-unit pills in the urn. The solution appeared in [6]. A more refined study
is given recently in [1], where they derive exact formulæ for the variance and the third moment of the number of
remaining single-unit pills; furthermore, a few generalizations are proposed.

A natural generalization is to consider r types of pills, which are of i units, i = 1, . . . , r, respectively. At every
time step, a pill is chosen uniformly at random; if the pill is of single unit, it is eaten up, and if the pill is of i units,
i ≥ 2, it is broken into two parts, one of single unit and the other of (i− 1) units. The piece of single unit is eaten up
and the remaining piece is thrown back into the urn. We stop if there are no more pills of the largest units (r).

This problem corresponds to the diminishing urn model with the r × r-transition matrix

M =
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and the absorbing hyperplane S = {(n1, . . . , nr−1, 0) : n1, . . . , nr−1 ≥ 0}. We will be interested in finding the
probability that k pills of single unit remain in the urn when there are no more pills of r units, the starting configuration
being ni pills of i units.

A variant of the pills problem. To illustrate how a minor change in the entries of the transition matrix leads to very
different behavior, we will also consider the transition matrix M =

(−1 0
1 −2

)

and the absorbing wall S = {(0, n) :
n ≥ 0} ∪ {(1, n) : n ≥ 0}.

The cannibal urn. Introduced by R. F. Greene (unpublished) and analyzed in details by Pittel in [13], this urn
model is a slight modification of the diminishing urn with M =

(

0 −1
1 −2

)

and the vertical wall of absorbing states
S = {(0, n) : n ≥ 0} ∪ {(1, n) : n ≥ 0}. In terms of weighted lattice paths, one starts at position (m,n), the weight
(and thus the probability) of a step to (m − 1, n) is n

m−1+n (not n
m+n ), and the weight to (m − 2, n + 1) is m−1

m−1+n .
The approach we use is also applicable to this modified urn model.

Such an urn was introduced to model the behavior of cannibals in biological population. It can be described as
follows. A population consists of cannibals and non-cannibals. At every time step, a non-cannibal is selected as victim
and removed; after that a member in the remaining population (cannibals and non-cannibals) is selected uniformly at
random. If the selected individual is a cannibal it remains as a cannibal, but if the selected individual is a non-cannibal,
it becomes then a cannibal. The question is, when starting with n cannibals and m non-cannibals, what is the number
of resulting cannibals in the population at the moment when all non-cannibals are removed?

The OK Corral problem. This corresponds to the urn M =
(

0 −1
−1 0

)

with two absorbing axes: S = {(0, n) :
n ≥ 0} ∪ {(m, 0) : m ≥ 0}. An interpretation is as follows. Two groups of gunmen, group A and group B (with n
and m gunmen, respectively), face each other. At every discrete time step, one gunman is chosen uniformly at random
who then shoots and kills exactly one gunman of the other group. The bloody gunfight ends when one group gets
completely “eliminated”. Two questions are of interest: (i) what is the probability that group A (group B) survives?
and (ii) what is the probability that the gunfight ends with k survivors of group A (group B)?

This problem was introduced by Williams and McIlroy in [15] and studied recently by several authors using
different approaches, leading to very interesting results; see [2, 9, 10]. Also the urn corresponding to the OK corral
problem can be viewed as a basic model in the mathematical theory of warfare and conflicts; see [10].

Sampling without replacement. This is a toy example and corresponds to the urn M =
(−1 0

0 −1

)

with two ab-
sorbing axes: S = {(0, n) : n ≥ 0} ∪ {(m, 0) : m ≥ 0}. In this classical model, balls are drawn one after another
from an urn containing balls of two different colors and not replaced. What is the probability that k balls of one color
remain when balls of the other color are all removed?
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1.3. Recurrence. For diminishing urns, we study the position of the absorbing state. Probabilistically, we con-
sider the pair of random variables (X

(1)
n,m, X

(2)
n,m), such that P{(X(1)

n,m, X
(2)
n,m) = (j, k)} gives the probability that

when starting at state (m,n) (with m black balls and n white balls), the urn process reaches the absorbing state (j, k),
namely, the process terminates with j black balls and k white balls. For diminishing urns with a single vertical absorb-
ing axis (or wall), we are only interested in the vertical position of the absorbing state; so we define Xn,m := X

(2)
n,m and

P{Xn,m = k} is then the probability that when starting with m black balls and n white balls, the urn process stops
with k white balls remaining in the urn. We consider the probability generating function hn,m(v1, v2) or hn,m(v),
respectively, defined by

(1) hn,m(v1, v2) :=
∑

j≥0

∑

k≥0

P
{

(X(1)
n,m, X(2)

n,m) = (j, k)
}

vj1v
k
2 , hn,m(v) :=

∑

k≥0

P{Xn,m = k}vk.

According to the outcome of the first draw of the urn process, we obtain the following recurrences for the probability
generating functions

hn,m(v1, v2) =
n

m + n
hn+a,m+b(v1, v2) +

m

m + n
hn+c,m+d(v1, v2),(2a)

hn,m(v) =
n

m + n
hn+a,m+b(v) +

m

m + n
hn+c,m+d(v),(2b)

for (m,n) 6∈ S. The boundary values at the absorbing states (m,n) ∈ S are given by hn,m(v1, v2) = vm1 vn2 and
hn,m(v) = vn, respectively.

We solve such recurrences via generating functions for a few special cases below. For urn models of Type B we
can always introduce generating functions1

H(z, w) :=
∑

(m,n)6∈S
hn,m(v1, v2)z

nwm,

and the recurrence (2a) can be translated into the following first order linear partial differential equation (PDE)

z(1− z−aw−b)Hz(z, w) + w(1− z−cw−d)Hw(z, w) + (az−aw−b + dz−cw−d)H(z, w) = F (z, w),

(see [3]) where the inhomogeneous part F (z, w) is fully determined by the boundary values. Such PDEs can be
treated (at least in principle) by the method of characteristics, see, for example, [14]. For urn models of Type A,
the situation becomes more involved. The same approach may still apply but the additional difficulty is the fact that
the inhomogeneous part F (z, w) involves evaluations of the function H(z, w) or their partial derivatives at z = 0.
Fortunately, for the cases we consider here, we can solve this problem by introducing an appropriate normalizing
factor; the resulting generating function satisfies then a simpler PDE (with boundary values properly eliminated) that
can be explicitly solved.

Another general difficulty in solving the recurrences (2) by solving the associated PDEs is how to adapt the
general solution to the boundary values. By the method of characteristics, we see that the general solution is given by
H(z, w) = H [p](z, w) + f(z, w)C(ξ(z, w)) with an arbitrary continuous function C(x). Often it is not obvious how
to find C(x) such that H(z, w) satisfies the boundary values. However, for the examples treated here, we can always
solve this problem by using the analyticity of the function H(z, w) in a neighborhood of (z, w) = (0, 0), by choosing
a suitable curve z = q(w) and by considering the limit limw→0 H(q(w), w) (depending on f(z, w) and ξ(z, w)).

As we show later, we obtain for all problems mentioned above closed-form solutions for H(z, w). From such
exact forms, we can easily derive the corresponding exact solutions for the underlying probability. Also we can
apply general analytic tools such as singularity analysis and saddle-point method (see [5]) and obtain rather precise
information on the asymptotic growth of the underlying probabilities. However, for problems in two or more variables
as we are dealing with here, the treatment is generally more involved than in the univariate case.

2. The pills problem

2.1. The original problem. We start by considering Type A diminishing urn model with the transition matrix
M =

(−1 0
1 −1

)

and the vertical absorbing axis S = {(0, n) : n ≥ 0}.
The recurrence (2b) for the probability generating function hn,m(v) now becomes

(3) hn,m(v) =
n

n + m
hn−1,m(v) +

m

n + m
hn+1,m−1(v),

1The generating function also depends on v1 and v2, but we avoid the heavier notation H(z, w; v1, v2).
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for n ≥ 0 and m ≥ 1, with the boundary values hn,0(v) = vn.
Instead of considering the generating function H̃(z, w) :=

∑

n≥0

∑

m≥1 hn,m(v)znwm, which will involve the
unknown boundary values h0,m(v) (or H̃(0, w)) in the resulting PDE, we introduce the modified generating function

(4) H(z, w) :=
∑

n≥0

∑

m≥1

(

m + n

m

)

hn,m(v)znwm.

Then H satisfies, by recurrence (3), the first-order linear PDE

(5) (z − z2 − w)Hz(z, w) + w(1− z)Hw(z, w)− zH(z, w) =
wv

(1− vz)2
,

with the initial condition H(z, 0) = 0. We see that the unknown boundary values h0,m(v) nicely disappear.
To solve equation (5), we apply the method of characteristics. Thus we first consider the corresponding reduced

PDE

(6) (z − z2 − w)Hz(z, w) + w(1− z)Hw(z, w) = 0,

and find the first integrals for the system of ordinary differential equations (the so-called system of characteristic
differential equations)

(7) ż = z − z2 − w, ẇ = w(1− z).

We regard here z and w as dependent variables of t, namely, z = z(t), w = w(t) and ż := dz(t)
dt , etc. By reducing (7)

to a differential equation (DE) of Bernoulli type, we obtain the following first integral of (7)

ξ(z, w) :=
wez/w

1− z − w
= const.

Thus the general solution of the reduced PDE (6) is as follows.

H [r](z, w) = C
( wez/w

1− z − w

)

,

where C(x) is an arbitrary continuous function
Now consider the inhomogeneous PDE

(8) (z − z2 − w)Hz(z, w) + w(1− z)Hw(z, w)− zH(z, w) = F (z, w).

We use the following transformation from (z, w)-coordinates to (η, ξ)-coordinates: ξ = wez/w

1−w−z and η = w
1−w−z , or

equivalently z = z(η, ξ) = η log(ξ/η)
1+η+η log(ξ/η) and w = w(η, ξ) = η

1+η+η log(ξ/η) , which leads to the DE

(9) Hη(η, ξ)−
log(ξ/η)

1 + η + η log(ξ/η)
H(η, ξ) =

1

η
F
(

z(η, ξ), w(η, ξ)
)

.

The general solution of the corresponding homogeneous DE Hη(η, ξ)− log(ξ/η)H(η, ξ)/(1 + η + η log(ξ/η)) = 0
can be obtained easily and is given by

H [h](z, w) =
1

1− w − z
C
( we

z
w

1− w − z

)

,

where we applied the inverse (η, ξ)-transform.
The inhomogeneous DE (9) can then be solved by using the method of variation of parameters. We obtain for the

inhomogeneous part F (z, w) = wv/(1− vz)2 the following particular solution

(10) H [p](z, w) = vw

∫ 1

0

dq
(

1− z(1 + (v − 1)q)− w(1− q − (v − 1)q log q)
)2 .

It turns out that the particular solution (10), which is analytic around z = 0 and w = 0, already satisfies the initial
condition, so (10) is the required solution of the problem, H(z, w) = H [p](z, w).

Extracting coefficients of zn and wm in (10) gives for n ≥ 0 and m ≥ 1 the following explicit form

(11) hn,m(v) =
1

(

n+m
n

) [znwm]H(z, w) = mv

∫ 1

0

(1 + (v − 1)q)n(1− q − (v − 1)q log q)m−1dq.
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From this expression, the expectation E(Xn,m) = h′n,m(1) can be easily derived and is given by

(12) E(Xn,m) =
n

m + 1
+ Hm;

cf. [1, 6].
Higher moments can be obtained similarly by taking higher derivatives from (11), but the expressions soon become

very messy; see [1] for the second and the third moments. Instead, we can apply (11) to derive the limiting distribution
of Xn,m, for all ranges of n and m satisfying max(m,n) → ∞. The idea is roughly as follows. We first compute
asymptotic approximations to the r-th factorial moments E(X

r
n,m) := E

(

Xn,m(Xn,m − 1) · · · (Xn,m − r + 1)
)

starting from the relation E(X
r
n,m) = h

(r)
n,m(1) and then by evaluating asymptotically the integrals as derivatives of

the Beta-function. The result is

E
(

Xr
n,m

)

∼ E(Xr
n,m) =















r!
( n

m
+ logm

)r
(

1 +O
(

(logm)−1
))

, for m→∞,

nr

(

m+r
r

)

(

1 +O(n−1)
)

, for m fixed and n→∞.

We then obtain the limiting distributions of Xn,m after proper normalization, justified by standard arguments (moment
sequence uniquely characterizes the distribution).

We collect our results for the pills problem in the following theorem.

THEOREM 1. Starting with m double-unit pills and n single-unit pills, the probability generating function
hn,m(v) :=

∑

k≥0 P{Xn,m = k}vk of the number Xn,m of the remaining single-unit pills in the urn when all
double-unit pills are all taken is given by

hn,m(v) = mv

∫ 1

0

(1 + (v − 1)q)n(1− q − (v − 1)q log q)m−1dq.

If m → ∞, then the random variable Xn,m converges, after suitable scaling, in distribution to an exponentially
distributed random variable X with parameter λ = 1, namely

Xn,m
n
m + logm

(d)−−→ X,

where X has density f(x) = e−x for x ≥ 0.
If m is fixed and n → ∞, then the random variable Xn,m converges, after suitable scaling, in distribution to a

Beta random variable Bm; in symbol
Xn,m

n

(d)−−→ Bm
(d)
= Beta(1,m),

where Bm has density m(1− x)m−1, 0 ≤ x ≤ 1.

Details of the proofs will be given in the full version of this extended abstract.

2.2. A generalization to r pills. We consider the random variable Xn1,...,nr
, which gives the number of single-

unit pills when all pills of r units are all taken, starting with ni pills of i units, i = 1, . . . , r. The probability generating
function hn1,...,nr

(v) :=
∑

k≥0 P{Xn1,...,nr
= k}vk satisfies for n1, . . . , nr−1 ≥ 0, nr ≥ 1 the recurrence

(13) hn1,...,nr
(v) =

n1

n1 + · · ·+ nr
hn1−1,n2,...,nr

(v) +

r
∑

j=2

nj

n1 + · · ·+ nr
hn1,...,nj−2,nj−1+1,nj−1,nj+1,...,nr

(v),

with the boundary value hn1,...,nr−1,0(v) = vn1 . Let

(14) H(z1, . . . , zr) :=
∑

n1≥0

· · ·
∑

nr−1≥0

∑

nr≥1

(

n1 + · · ·+ nr

n1, . . . , nr

)

hn1,...,nr
(v)zn1

1 · · · znr
r .

The recurrence (13) then translates into the first-order linear PDE
r−1
∑

j=1

(zj − z1zj − zj+1)Hzj
(z1, . . . , zr) + (zr − z1zr)Hzr

(z1, . . . , zr)− z1H(z1, . . . , zr)

=
zr

(1− vz1 − z2 − · · · − zr−1)2
,(15)
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for r ≥ 3, with the boundary condition H(z1, . . . , zr−1, 0) = 0.
By the method of characteristics, we then consider the characteristic system of DEs

(16) ż1 = z1 − z2
1 − z2, ż2 = z2 − z1z2 − z3, . . . , żr−1 = zr−1 − z1zr−1 − zr, żr = zr − z1zr.

We can show that the r − 1 functions ξ1(z1, . . . , zr), . . . , ξr−1(z1, . . . , zr) given below, where ξ1, . . . , ξr−2 are given
implicitly as the solution of a linear system of equations, give r − 1 independent first integrals of (16)

zr−2

zr
=

( zr−1

zr

)2

2!
+ ξr−2,

zr−3

zr
=

( zr−1

zr

)3

3!
+ ξr−2

( zr−1

zr

)

1!
+ ξr−3,

zr−4

zr
=

( zr−1

zr

)4

4!
+ ξr−2

( zr−1

zr

)2

2!
+ ξr−3

( zr−1

zr

)

1!
+ ξr−4,

... =
...

z1

zr
=

( zr−1

zr

)r−1

(r − 1)!
+ ξr−2

( zr−1

zr

)r−3

(r − 3)!
+ ξr−3

( zr−1

zr

)r−4

(r − 4)!
+ · · · + ξ2

( zr−1

zr

)

1!
+ ξ1,

ξr−1 =
zr

1 − z1 − · · · − zr
e

zr−1

zr .

We can solve the PDE (15) by introducing η := zr

1−z1−···−zr
and ξ1, . . . , ξr−1 as above and applying a transform to

the (η, ξ1, . . . , ξr−1)-coordinates. We obtain then the following explicit solution

(17) H(z1, . . . , zr) =

zr

∫ 1

0

dq
(

1−∑r−1
j=1(1− (−1)j−1(1− v)q logj−1 q

(j−1)! )zj − (1− q − (−1)r−1(1− v)q logr−1 q
(r−1)! )zr

)2 .

Thus we obtain after extracting coefficients of (17) an explicit formula for hn1,...,nr
(v), which is given by the following

theorem.

THEOREM 2. Starting with n1 pills of size 1, . . . , nr pills of size r, r ≥ 3, the probability generating function
hn1,...,nr

(v) of the number Xn1,...,nr
of pills of single-unit pills remaining in the urn when all pills of r units are

chosen is given by

hn1,...,nr
(v) = nr

∫ 1

0

r−1
∏

j=1

(

1− (−1)j−1(1− v)q
logj−1 q

(j − 1)!

)nj
(

1− q − (−1)r−1(1− v)q
logr−1 q

(r − 1)!

)nr−1

dq.

3. A variant of the pills problem

We consider now the Type A diminishing urn model with the transition matrix M =
(−1 0

1 −2

)

and the vertical
absorbing wall S = {(0, n) : n ≥ 0} ∪ {(1, n) : n ≥ 0}. The recurrence (2b) for the probability generating function
h̃n,m̃(v) now has the form

(18) h̃n,m̃(v) =
n

n + m̃
h̃n−1,m̃(v) +

m̃

n + m̃
h̃n+1,m̃−2(v),

for n ≥ 0 and m̃ ≥ 2, with the boundary values h̃n,0(v) = vn and h̃n,1(v) = vn. Although one could study the
recurrence in general, it is more convenient to assume that m̃ is even and we consider only the case m̃ := 2m by
introducing hn,m := h̃n,m̃.

Let

(19) H(z, w) :=
∑

n≥0

∑

m≥1

(

n + 2m

n

)

hn,m(v)znwm.

By (18), we obtain the first-order linear PDE for H(z, w)

(20) 2w(1− z)Hw(z, w)− wHz(z, w) + (z − 1)H(z, w) =
wv

(1− vz)2
,
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with the boundary condition H(z, 0) = 0. The characteristic system of DEs corresponding to (20) is given by

(21) ẇ = 2w(1− z), ż = −w.

One easily obtains the first integral of (21)

(22) ξ(z, w) := z2 − 2z − w = const.

Thus the general solution of the reduced equation 2w(1 − z)Hw(z, w) − wHz(z, w) = 0 is equal to H [r](z, w) =
C(z2 − 2z − w), with some continuous function C(x).

To solve the inhomogeneous DE

(23) 2w(1− z)Hw(z, w)− wHz(z, w) + (z − 1)H(z, w) = F (z, w),

we choose a transform of variables from the (z, w)-coordinates to (η, ξ)-coordinates via

(24) ξ = z2 − 2z − w, η = z,

leading to the DE

(25) Hη(η, ξ)−
η − 1

η2 − 2η − ξ
H(η, ξ) = − 1

η2 − 2η − ξ
F
(

z(η, ξ), w(η, ξ)
)

.

Solving the DE (25) with the inhomogeneous part F (z, w) = wv
(1−vz)2 leads, after applying the inverse (η, ξ)-

transform, to

H(z, w) =

√
w

v

(

−

√
w

(α − β2)(β − (1 − z))
+

√

1 − α

(α − β2)(β − 1)
+

β arctan
(

√
α−β2

√
u

α−β(1−z)

)

− β arctan
(

√
α−β2

√
1−α

α−β

)

(α − β2)
3
2

)

+
√

wC(z2
− 2z − w),(26)

where we use the abbreviations α := (1 − z)2 − w and β := (v − 1)/v, and C(x) denotes an arbitrary continuous
function.

To identify the unknown function C(x) in (26), we observe that due to the analyticity of the required solution
H(z, w) in a complex neighborhood of z = 0 and w = 0 and H(z, 0) = 0

lim
w→0

H(z, w)√
w

= 0.

This implies that

C(x) = −
√
−x

v(1 + x− β2)(β − 1)
+

β

v(1 + x− β2)
3
2

arctan
(

√

1 + x− β2
√
−x

1 + x− β

)

,

which yields the solution to the PDE (23) with inhomogeneous part F (z, w) = wv
(1−vz)2

(27) H(z, w) =
w

v(−β2 + α)(1− z − β)
+

β
√
w

v(α− β2)
3
2

arctan
(

√
w
√

α− β2

α− β(1− z)

)

.

It follows that

(28) E(Xn,2m) =
1

(

n+2m
n

) [znwm]
∂

∂v
H(z, w)

∣

∣

∣

∣

v=1

=
4m

(2m + 1)
(

2m
m

)n +
4m
(

2m
m

) − 1.

By the same procedures we used for the pills problem, we can derive the limiting distributions of Xn,m.

THEOREM 3. Consider the urn model with the transition matrix M =
(−1 0

1 −2

)

. Let Xn,2m denote the number
of white balls in the urn at the moment when black balls are all removed (starting with 2m black balls and n white
balls).

If m → ∞, then the random variable Xn,2m converges, after suitable scaling, in distribution to a Rayleigh
random variable R

Xn,2m
n√
m

+ 2
√
m

(d)−−→ R,

where R has density 2xe−x2

, x ≥ 0.
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If m is fixed and n → ∞, then the random variable Xn,2m converges, after suitable scaling, in distribution to a
r.v. B2m, which is the square-root of a Beta random variable; in symbols

Xn,2m

n

(d)−−→ B2m
(d)
=
√

Beta(1,m),

where B2m has density 2mx(1− x2)m−1, 0 ≤ x ≤ 1.

4. The cannibal urn

As mentioned in Subsection 1.2, this model can be described as a diminishing urn with the transition matrix
M =

(

0 −1
1 −2

)

and one vertical absorbing wall S = {(0, n) : n ≥ 0} ∪ {(1, n) : n ≥ 0}, but with slightly modified
weights for the steps. The probability generating function hn,m(v) satisfies the recurrence

(29) hn,m(v) =
n

n + m− 1
hn,m−1(v) +

m− 1

n + m− 1
hn+1,m−2(v),

for n ≥ 0 and m ≥ 2, with the boundary values hn,1(v) = hn,0(v) = vn.
Similarly as above, we introduce the modified generating function

H(z, w) :=
∑

n≥0

∑

m≥1

1

m

(

n + m− 1

m− 1

)

hn,m(v)znwm,

which leads to the first order linear PDE with initial condition H(z, 0) = 0

(30) Hw(z, w)− (z + w)Hz(z, w) =
1 + wv

1− vz
.

The system of characteristic DEs corresponding to (30) is given by

(31) ẇ = 1, ż = −w − z,

which leads to the first integral

ξ(z, w) :=
e−w

1− z − w
= const.

Thus the general solution of the reduced PDE corresponding to (30) is given by H [r](z, w) = C
(

e−w

1−z−w

)

with a

continuous function C(x). Using the transformation ξ = e−w

1−z−w and η = w, we finally obtain the exact solution of
(30)

(32) H(z, w) = log
( 1− zv

e−w − (e−w − 1 + w + z)v

)

.

Thus the probability P{Xn,m = k} satisfies

(33) P{Xn,m = k} =
m

(

n+m−1
m−1

) [znwmvk] log
( 1− zv

e−w − (e−w − 1 + w + z)v

)

,

for n ≥ 0, m ≥ 1 and k ≥ 0. From equation (33) we obtain the following theorem.

THEOREM 4. The random variable Xn,m of the number of cannibals remaining when there are no more non-
cannibals (starting with n cannibals and m non-cannibals) satisfies

P{Xn,m = k} =
(k − 1)!

(n + m− 1)!

∑

j

(−1)j

(k − n− j)!

∑

`

(

m

`

)

(−1)`
(n + j)m−`

(j − `)!
.

Furthermore, if V(Xn,m) → ∞, then (Xn,m − E(Xn,m))/
√

V(Xn,m) tends asymptotically to the standard
normal variable.

Pittel [13] established asymptotic normality of Xn,m (as n + m → ∞) for all values of n and m except for the
range when m = o(n). Our result covers also this range. More precise results, including the local limit theorem and a
Poisson limit law when the variance of Xn,m remains bounded will be given elsewhere.
Remark. In a similar way, our approach can be applied to the Type A diminishing urn model with the same transition
matrix M =

(

0 −1
1 −2

)

and the absorbing states S = {(0, n) : n ≥ 0} ∪ {(1, n) : n ≥ 0} as the cannibal urn, but with
unmodified transition probabilities, namely, the probability generating function hn,m(v) satisfies the recurrence

hn,m(v) =
n

n + m
hn,m−1(v) +

m

n + m
hn+1,m−2(v),
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for n ≥ 0 and m ≥ 2, with the boundary values hn,1(v) = hn,0(v) = vn. In particular, we have the closed-form
solution

(34) H(z, w) =
2vz − 2− w

2(1− vz)2
+

∫ 1

0

(1 + wq)dq

1− v + vwq + v(1− w − z)ew(1−q)
.

5. The OK corral

We now briefly consider the Type B diminishing urn model with the transition matrix M =
(

0 −1
−1 0

)

and the two
absorbing axes S = {(0, n) : n ≥ 0} ∪ {(m, 0) : m ≥ 0}.

The recurrence (2a) for the probability generating function hn,m(v1, v2) as defined by (1) now satisfies

(35) hn,m(v1, v2) =
m

n + m
hn−1,m(v1, v2) +

n

n + m
hn,m−1(v1, v2),

for n ≥ 1 and m ≥ 1, with the boundary values hn,0(v1, v2) = vn2 , h0,m(v1, v2) = vm1 .
Unlike Type A urn models, no additional normalizing factor is needed for this case and the generating function

H(z, w) :=
∑

n≥1

∑

m≥1 hn,m(v1, v2)z
nwm satisfies the first-order linear PDE

(36) z(1− w)Hz(z, w) + w(1− z)Hw(z, w) =
wzv1

(1− v1z)2
+

wzv2

(1− v2w)2
,

with the boundary conditions H(z, 0) = v2z/(1− v2z) and H(0, w) = v1w/(1− v1w).
We apply again the method of characteristics to solve equation (36). We easily obtain that one first integral of the

characteristic system of DEs

(37) ż = z(1− w), ẇ = w(1− z)

is

(38) ξ(z, w) :=
z

w
ew−z = const.

We then use a transformation from (z, w)-coordinates to (η, ξ)-coordinates via ξ = zew−z/w and η = z/w, or
equivalently w = log(ξ/η)/(1− η) and z = η log(ξ/η)/(1− η). This gives the solution

(39) Hη(η, ξ) = − 1

η log(ξ/η)
F
(

z(η, ξ), w(η, ξ)
)

,

to the inhomogeneous DE

(40) z(1− w)Hz(z, w) + w(1− z)Hw(z, w) = F (z, w).

Probability that all black balls are removed. This corresponds to an evaluation of hn,m(v1, v2) at v1 = 0 and v2 = 1
or, equivalently to a study of (40) with inhomogeneous part F (z, w) = wz

(1−z)2 . We obtain the general solution of (40)

(41) H(z, w) =
z(1 + w − z)

(1− z)(z − w)
+ C

( z

w
ew−z

)

,

where C(x) denotes an arbitrary continuous function.
By considering (41) with z = xw, x ∈ C and by the fact that

lim
w→0

H(wx,w) = 0, for x ∈ C,

we have

0 = lim
w→0

xw(1 + w − wx)

(1− wx)w(x− 1)
+ lim

w→0
C
(wx

w
ew(1−x)

)

=
x

x− 1
+ C(x).

Thus C(x) = x
1−x , which yields the solution of (40) with inhomogeneous part F (z, w) = wz

(1−z)2

(42) H(z, w) =
z(1 + w − z)

(1− z)(z − w)
+

zew−z

w − zew−z
.

Extracting coefficients of zn and wm in H(z, w) gives the probability pn,m that all black balls are removed

(43) pn,m := [znwm]H(z, w) =
1

(n + m)!

n
∑

r=1

(−1)n−r

(

n + m

n− r

)

rn+m.

This is exactly the formula stated in [2].
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Probability that all black balls are removed and k white balls remain. We can apply the same procedure to
compute the probability P{X(2)

n,m = k} that all black balls are removed and k white balls remain in the urn, or the
group of white balls has k “survivors,” (when starting at state (m,n)). This corresponds to the evaluation of our H
at v1 = 0 and v := v2, which leads to the study of the PDE (40) with inhomogeneous part F (z, w) = wzv

(1−vz)2 . The
general solution of (40) with this inhomogeneous part satisfies

H(z, w) = −v

∫ 1

0

zw(w − z − log q)dq

(w − zq − vzq(w − z − log q))2
+ C

( z

w
ew−z

)

.

We can identify C(x) as before and obtain

(44) H(z, w) = −v

∫ 1

0

zw(w − z − log q)dq

(w − zq − vzq(w − z − log q))2
− v

∫ 1

0

zwew−z log qdq

(w − zew−zq + vzew−zq log q)2
.

By (44) and P{X(2)
n,m = k} = [znwmvk]H(z, w), we obtain

(45) P{X(2)
n,m = k} =

k!

(n + m)!

n
∑

r=1

(−1)n−r

(

n + m

n− r

)(

r − 1

k − 1

)

rn+m−k,

also stated in [2].
We collect the results for the OK corral problem in the following theorem.

THEOREM 5 (stated in [2]). The probability pn,m that all black balls are removed and the probability P{X (2)
n,m =

k} that exactly k white balls remain in the urn when all black balls are removed (starting with m black balls and n
white balls) are for the OK corral urn given by the following exact formulæ (m ≥ 1, n ≥ 1, 1 ≤ k ≤ n):

pn,m =
1

(n + m)!

n
∑

r=1

(−1)n−r

(

n + m

n− r

)

rn+m,

P{X(2)
n,m = k} =

k!

(n + m)!

n
∑

r=1

(−1)n−r

(

n + m

n− r

)(

r − 1

k − 1

)

rn+m−k.

More refined results can be found in [2].

6. Sampling without replacement

As another illustrating example, we consider the Type B diminishing urn model with the transition matrix M =
(−1 0

0 −1

)

and the two absorbing axes S = {(0, n) : n ≥ 0}∪{(m, 0) : m ≥ 0}. This is by far the simplest diminishing
urn model we have considered.

The recurrence (2a) for the probability generating function hn,m(v1, v2) has the form

(46) hn,m(v1, v2) =
m

n + m
hn,m−1(v1, v2) +

n

n + m
hn−1,m(v1, v2),

with boundary values hn,0(v1, v2) = vn2 , h0,m(v1, v2) = vm1 . Recurrence (46) can be solved most easily by introduc-
ing the modified generating function

H(z, w) :=
∑

n≥1

∑

m≥1

(

n + m

m

)

hn,m(v1, v2)z
nwm,

which leads to the solution

(47) H(z, w) =
1

1− w − z

( wzv2

1− v2z
+

wzv1

1− v1w

)

.

To get the probability pn,m that the black balls are all drawn (starting at state (m,n)), we set v2 = 1 and v1 = 0
and extract the corresponding coefficients

pn,m =
1

(

n+m
m

) [znwm]
wz

(1− w − z)(1− z)
=

n

m + n
.
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On the other hand, to get the probability P{X (2)
n,m = k} that all black balls are drawn and k white balls remain in the

urn, we evaluate H at v1 = 0, and extract the corresponding coefficients (v := v2)

P{X(2)
n,m = k} =

1
(

n+m
m

) [znwmvk]
wzv

(1− w − z)(1− vz)
=

(

m−1+n−k
m−1

)

(

m+n
m

) .

Of course, these results for sampling without replacement are well-known and can be obtained by many ways.

7. Concluding remarks

Motivated by concrete examples in the literature, we studied here a few exactly solvable diminishing urn models.
Many questions remain to be further clarified. E.g., a main difficulty for Type A urn models is to get rid of the
unknown boundary values, which could be done for the urn models presented by introducing a normalizing factor for
the generating functions. Of course, it would be very interesting to attack directly the differential equations for the
“ordinary generating functions”, which contain then evaluations of the unknown function (and its partial derivatives)
at z = 0. For Type B urn models these difficulties with the boundary values do not appear and our approach can be
used to obtain generating functions solutions for a variety of urns, e.g., for generalizations of the OK Corral, but the
main difficulty here is then to extract the limiting distribution behaviour from the generating functions.

Generating functions turned out to be a very useful tool in the study of urn models as has been demonstrated in
particular in [2, 3], where Polya-Eggenberger urn models satisfying the tenability condition on the transition matrix
have been studied leading to exact and asymptotic results for the distribution of the type of balls in the urn after t
draws starting at a certain state.
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