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Abstract. Several bases of the Garsia-Haiman modules for hook shapes are given, as well as combinatorial
decomposition rules for these modules. These bases and rules extend the classical ones for the coinvariant
algebra of type A. We also exhibit algebraic decompositions of the Garsia-Haiman modules for hook shapes

that correspond to the combinatorial interpretation of the modified Macdonald polynomial that has recently
been proved by Haglund, Haiman, and Loehr [20, 21].

1. Outline

The Garsia-Haiman module ∆µ was introduced in [12], in an attempt to prove a conjecture of Macdonald,
and indeed played a major role in the solution [23]. When the shape µ has a single row, this module is
isomorphic to the coinvariant algebra of type A. Our goal here is to understand the structure of the dual
Garsia-Haiman module ∆∗

µ when µ is a hook shape (k, 1n−k).
A family of bases for the dual Garsia-Haiman module of hook shape is presented. This family includes

the k-th Artin basis, the k-th descent basis, the k-th Haglund basis and the k-th Schubert basis. While the
first basis appears in [14], the others are new and have interesting applications.

The k-th Haglund basis realizes Haglund’s statistics in the hook case. The k-th descent basis extends
the well known Garsia-Stanton descent basis for the coinvariant algebra. The advantage of the k-th descent
basis is that the Sn-action on it may be described explicitly. This description implies combinatorial rules
for decomposing the bi-graded components of the module into Solomon descent representations and into
irreducibles. In particular, a constructive proof of a formula due to Stembridge is deduced.

The rest of the paper is organized as follows. Preliminaries and background are given in Section 2.
Bases for the dual Garsia-Haiman module of hook shape are presented in Section 3. An explicit formula
for the action of the Coxeter generators on the k-th descent basis and the resulting combinatorial rules for
decomposing the bi-graded homogeneous components are described in Section 4. Proofs of two of the main
theorems are sketched in Sections 5 and 6. Relations with the combinatorial interpretation of the modified
Macdonald polynomial that was recently proved by Haglund, Haiman, and Loehr [20, 21] are discussed in
Section 7.

This is an extended abstract; complete proofs and more details will be given in [4].

2. Background

In 1988, I. G. Macdonald [27] introduced a remarkable new basis for the space of symmetric functions.
The elements of this basis are denoted Pλ(x; q, t), where λ is a partition, x is a vector of indeterminates, and
q, t are parameters. The Pλ(x; q, t)’s, which are now called “Macdonald polynomials”, specialize to many of
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the well-known bases for the symmetric functions, by suitable choices of the parameters q and t. In fact, we
can obtain in this manner the Schur functions, the Hall-Littlewood symmetric functions, the Jack symmetric
functions, the zonal symmetric functions, the zonal spherical functions, and the elementary and monomial
symmetric functions.

Given a cell s in the Young diagram (drawn according to the French convention) of a partition λ, let
legλ(s), leg′λ(s), armλ(s), and arm′

λ(s) denote the number of squares that lie above, below, to the right,
and to left of s in λ, respectively. For each partition λ, define

hλ(q, t) :=
∏

s∈λ

(1 − qarmλ(s)tlegλ(s)+1)

For a partition λ = (λ1, . . . , λk) (where λ1 ≥ . . . ≥ λk > 0) let n(λ) :=
∑k

i=1(i−1)λi. Macdonald introduced
the (q, t)-Kostka polynomials Kλ,µ(q, t) via the equation

Jµ(x; q, t) = hµ(q, t)Pµ(x; q, t) =
∑

λ

Kλ,µ(q, t)sλ[X(1− t)],

and conjectured that they are polynomials in q and t with non-negative integer coefficients.
In an attempt to prove Macdonald’s conjecture, Garsia and Haiman [12] introduced the so-called modified

Macdonanld polynomials H̃µ(x; q, t) as

H̃µ(x; q, t) =
∑

λ

K̃λ,µ(q, t)sλ(x),

where K̃λ,µ(q, t) := tn(µ)Kλ,µ(q, 1/t). Their idea was that H̃µ(x; , q, t) is the Frobenius image of the character
generating function of a certain bi-graded module ∆µ under the diagonal action of the symmetric group Sn.
To define ∆µ, assign (row, column)-coordinates to squares in the first quadrant, so that the lower left-hand
square has coordinates (1,1), the square above it has coordinates (2,1), the square to its right has coordinates
(1,2), etc. The first (row) coordinate of a square w is denoted row(w), and the second (column) coordinate
of w is the denoted col(w). Given a partition µ ` n, let µ also denote the corresponding Young diagram,
drawn according to the French convention; it consists of all the squares with coordinates (i, j) such that
1 ≤ i ≤ `(µ) and 1 ≤ j ≤ µi. For example, for µ = (4, 2, 2), the labeling of squares is depicted in Figure 1.

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2)

(3,1) (3,2)

Figure 1. Labeling of the cells of a partition.

Fix an ordering w1, . . . , wn of the squares of µ, and let

∆µ(x1, . . . , xn; y1, . . . , yn) := det
(

x
row(wj)−1
i y

col(wj)−1
i

)

i,j
.

For example,

∆4,2,2(x1, . . . , x8; y1, . . . , y8) = det











1 y1 y2
1 y3

1 x1 x1y1 x2
1 x2

1y1
1 y2 y2

2 y3
2 x2 x2y2 x2

2 x2
2y2

...
...

1 y8 y2
8 y3

8 x8 x8y8 x2
8 x2

8y8











Now let ∆µ be the vector space of polynomials spanned by all the partial derivatives of ∆µ(x1, . . . , xn; y1, . . . , yn).
The symmetric group Sn acts on ∆µ diagonally, where for any polynomial P (x1, . . . , xn; y1, . . . , yn) and any
permutation σ ∈ Sn,

P (x1, . . . , xn; y1, . . . , yn)σ := P (xσ1 , . . . , xσn
; yσ1 , . . . , yσn

).



GARSIA-HAIMAN MODULES 3

The bi-degree (h, k) of a monomial xp1

1 · · ·xpn
n yq1

1 · · · yqn
n is defined by h :=

∑n
i=1 pi and k :=

∑n
i=1 qi. Let

∆
(h,k)
µ denote space of homogeneous polynomials of degree (h, k) in ∆µ. Then

∆µ =
⊕

(h,k)

∆(h,k)
µ .

The Sn-action clearly preserves the bi-degree, so that Sn acts on each homogeneous component ∆
(h,k)
µ . The

character of the Sn-action on ∆
(h,k)
µ can be decomposed as

χ∆(h,k)
µ =

∑

λ`n

c
(h,k)
λ,µ χλ,

where χλ is the irreducible character of Sn indexed by the partition λ and the c
(h,k)
λ,µ ’s are non-negative

integers. Garsia and Haiman conjectured [12] that, as an Sn-module, ∆µ carries the regular representation.
This conjecture was eventually proved by Haiman [23], by exploiting the algebraic geometry of the Hilbert
Scheme.

3. Bases

Consider the inner product 〈 , 〉 on the polynomial ring Qn = Q[x1, . . . , xn, y1, . . . , yn] defined as follows:
for any two polynomials f, g ∈ Qn, 〈f, g〉 is the constant term of

f(∂x1 , . . . , ∂xn
; ∂y1 , . . . , ∂yn

)g.

Let ∆∗
µ be the module dual to ∆µ with respect to 〈 , 〉.

3.1. The k-th Descent Basis. The descent set of a permutation π ∈ Sn is

Des(π) := {i |π(i) > π(i+ 1)}.

Garsia and Stanton [17] associated with each π ∈ Sn the descent monomial

aπ :=
∏

i∈Des(π)

(xπ(1) · · ·xπ(i)) =

n−1
∏

j=1

x
|Des(π)∩{j,...,n−1}|
π(j) .

Using Stanley-Reisner rings, Garsia and Stanton [17] showed that the set {aπ |π ∈ Sn} forms a basis for the
coinvariant algebra of type A. See also [36] and [5].

Definition 3.1. For every integer 1 ≤ k ≤ n and permutation π ∈ Sn define

d
(k)
i (π) :=











|Des(π) ∩ {i, . . . , k − 1}|, if 1 ≤ i < k;

0, if i = k;

|Des(π) ∩ {k, . . . , i− 1}|, if k < i ≤ n.

Definition 3.2. For every integer 1 ≤ k ≤ n and permutation π ∈ Sn define the k-th descent monomial

a(k)
π :=

∏

i∈Des(π)
i≤k−1

(xπ(1) · · ·xπ(i)) ·
∏

i∈Des(π)
i≥k

(yπ(i+1) · · · yπ(n))

=

k−1
∏

i=1

x
d
(k)
i

(π)

π(i) ·
n

∏

i=k+1

y
d
(k)
i

(π)

π(i) .

Note that a
(n)
π = aπ, the Garsia-Stanton descent monomial.

Theorem 3.3. For every 1 ≤ k ≤ n, the set of k-th descent monomials {a
(k)
π | π ∈ Sn} forms a basis

for the dual Garsia-Haiman module ∆∗
(k,1n−k).

Two proofs of Theorem 3.3 are given in [4]. In Section 5.2 of this extended abstract we sketch a proof
via a straightening algorithm. This proof implies

Corollary 3.4. ∆∗
(k,1n−k)

∼= Q[x̄, ȳ]/I+
(k,1n−k)

, where the ideal I+
(k,1n−k)

is generated by

(1) the elementary symmetric functions ei(x1, . . . , xn) (1 ≤ i ≤ n) and ei(y1, . . . , yn) (1 ≤ i ≤ n);
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(2) the monomials xi1 · · ·xik
(1 ≤ i1 < · · · < ik ≤ n) and yi1 · · · yin−k+1

(1 ≤ i1 < · · · < in−k+1 ≤ n);
and

(3) the monomials xiyi (1 ≤ i ≤ n).

This result has been obtained, in a different form, by J.-C. Aval [7, Theorem 2].

3.2. The k-th Artin and Haglund Bases. The second proof of Theorem 3.3 is sketched in Section 6.1.
This proof applies a generalized version of the Garsia-Haiman kicking process. This construction is extended
to a rich family of bases.

Let n be a positive integer and 1 ≤ k ≤ n. For every positive integer n, denote [n] := {1, . . . , n}. For every
subset A = {i1, . . . , ik} ⊆ A denote x̄A := xi1 , . . . , xik

and ȳA := yi1 , . . . , yik
. Denote x̄ := x̄[n] = x1, . . . , xn

and ȳ := ȳ[n] = y1, . . . , yn.
Let c ∈ [n] and let a A be a subset {a1, . . . , ak−1} of size k − 1 of [n] \ c. For any such a pair (A, c) let

BA be an arbitrary basis of the coinvariant algebra of Sk−1 acting on Q[x̄A]; let Ā := [n] \ (A∪ {c}) and let
CĀ = C[n]\(A∪j) be a basis of the coinvariant algebra of Sn−k acting on Q[ȳĀ].

For every pair (A, c) define a monomial in Q[x̄, ȳ],

m(A,c) :=
∏

{i∈A| i>c}

xi

∏

{j∈Ā | j<c}

yj .

Then

Theorem 3.5. The set
⋃

A,c

m(A,c) BA CĀ

forms a basis for the dual Garsia-Haiman module ∆∗
(k,1n−k).

Definition 3.6. For every integer 1 ≤ k ≤ n and permutation π ∈ Sn define

inv
(k)
i (π) :=











|{j : i < j ≤ kand π(i) > π(j)}|, if 1 ≤ i < k;

0, if i = k;

|{j : k ≤ j < i and π(j) < π(i)}|, if k < i ≤ n.

For every integer 1 ≤ k ≤ n and permutation π ∈ Sn define the k-th Artin monomial

b(k)
π :=

k−1
∏

i=1

x
inv

(k)
i

(π)

π(i) ·
n

∏

i=k+1

y
inv

(k)
i

(π)

π(i) .

and the k-th Haglund monomial

c(k)
π :=

k−1
∏

i=1

x
d
(k)
i

(π)

π(i) ·
n

∏

i=k+1

y
inv

(k)
i

(π)

π(i) .

Interesting special cases of Theorem 3.5 are the following.

Corollary 3.7. Each of the following sets : {a
(k)
π | π ∈ Sn}, {b

(k)
π | π ∈ Sn} and {c

(k)
π | π ∈ Sn}

form a basis for the dual Garsia-Haiman module ∆∗
(k,1n−k).

Remark 1.

1. Garsia and Haiman [12] showed that {b
(k)
π : π ∈ Sn} is a basis for ∆∗

(k,1n−k). Other bases of

∆∗
(k,1n−k) were also constructed by J.-C. Aval [7] and E. Allen [5, 6]. They used completely

different methods. Aval constructed a basis of the form of an explicitly described set of partial
differential operators applied to ∆(k,1n−k) and Allen constructed a basis for ∆∗

(k,1n−k) out his theory

of bitableaux.
2. It should be noted that the last basis corresponds to Haglund’s maj-inv statistics for the Hilbert

series of ∆∗
(k,1n−k) that is implied by his combinatorial interpretation for the modified Macdonald

polynomial H̃(k,1n−k)(x̄; q, t); see Section 7 below.
3. Choosing BA and CĀ in Theorem 3.5 to be the Schubert bases of the coinvariant algebras of Sk−1

(acting on Q[x̄A]) and of Sn−k (acting on Q[ȳĀ]), respectively, gives the k-th Schubert basis. One
may study the Hecke algebra actions on this basis along the lines drawn in [2].
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4. Representations

4.1. Decomposition into Descent Representations. The set of elements in a Coxeter group having
a fixed descent set carries a natural representation of the group, called a descent representation. Descent
representations of Weyl groups were first introduced by Solomon [32] as alternating sums of permutation
representations. This concept was extended to arbitrary Coxeter groups, using a different construction, by
Kazhdan and Lusztig [25] [24, §7.15]. For Weyl groups of type A, these representations also appear in the
top homology of certain (Cohen-Macaulay) rank-selected posets [34]. Another description (for type A) is by
means of zig-zag diagrams [18, 16]. A new construction of descent representations for Weyl groups of type
A, using the coinvariant algebra as a representation space, is given in [1].

For every subset A ⊆ {1, . . . , n− 1} let

SA
n := { π ∈ Sn | Des(π) = A }

be the corresponding descent class; denote by ρA the corresponding descent representation of Sn.
Define 1 ≤ i < n to be a descent in a standard Young tableau T if i+ 1 lies strictly above and weakly

to the left of i (in French notation). Denote the set of all descents in T by Des(T ).
The following theorem is well known.

Theorem 4.1. For any subset A ⊆ [n− 1] and partition µ ` n, the multiplicity in the descent represen-
tation ρA of the irreducible Sn-representation corresponding to µ is

mA
µ := # {T ∈ SY T (µ) |Des(T ) = A},

the number of standard Young tableaux of shape µ with descent set A.

Definition 4.2. A bipartition (i.e., a pair of partitions) λ = (µ, ν) is called an (n, k)-bipartition if µ
has at most k − 1 parts and ν has at most n− k parts.

For a permutation π ∈ Sn and a corresponding k-descent basis element a
(k)
π =

∏k−1
i=1 x

di

π(i) ·
∏n

i=k+1 y
di

π(i), let

λ(m) := (λx(m), λy(m)) := ((d1, d2, . . . , dk−1), (dn, dn−1, . . . , dk+1))

be its exponent bipartition.
For an (n, k) bipartition λ = (µ, ν) let

J
(k)/
λ := spanQ{a(k)

π + I+
(k,1n−k)

|π ∈ Sn, λ(a
(k)
π ) / λ },

where / is the dominance order on bipartitions (see Definition 5.6.1). Let

J
(k)/
λ := spanQ{a(k)

π + I+
(k,1n−k)

|π ∈ Sn, λ(a
(k)
π ) / λ }

be subspaces of the module ∆∗
(k,1n−k), and let

R
(k)
λ := J

(k)/
λ /J

(k)/
λ .

Proposition 4.3. J
(k)/
λ , J

(k)/
λ and thus R

(k)
λ are Sn-invariant.

Lemma 4.4. Let λ = (µ, ν) be an (n, k) bipartition. Then

(1) R
(k)
λ 6= {0} ⇐⇒ (1 ≤ i < k − 1) µi − µi+1 ∈ {0, 1} and (1 ≤ i < n − k) νi+1 − νi ∈ {0, 1}.

If these conditions hold then a basis for R
(k)
λ is

{a(k)
π + I+

(k,1n−k)
|Des(π) = Aλ}.

where

(2) Aλ := {1 ≤ i < n | µi = µi+1 + 1 or νn−i+1 = νn−i + 1 }.
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Theorem 4.5. The Sn-action on R
(k)
λ is given by

sj(a
(k)
π ) =











a
(k)
sjπ, if |π−1(j + 1) − π−1(j)| > 1;

a
(k)
π , if π−1(j + 1) = π−1(j) + 1;

−a
(k)
π −

∑

σ∈Aj(π) a
(k)
σ , if π−1(j + 1) = π−1(j) − 1.

Here sj = (j, j + 1) (1 ≤ j < n) are the Coxeter generators of Sn, {a
(k)
π + I+

(k,1n−k)
|π ∈ Sλ} is the descent

basis of R
(k)
λ , and for π ∈ Sλ with π−1(j + 1) = π−1(j) − 1 we define

t := π−1(j + 1),
m1 := max{i ∈ Des(π) ∪ {0} | i ≤ t− 1},
m2 := min{i ∈ Des(π) ∪ {n} | i ≥ t+ 1}

(so that π(t) = j + 1, π(t+ 1) = j, and {m1 + 1, . . . ,m2} is the maximal interval containing t and t+ 1 on
which sjπ is increasing); and let Aj(π) be the set of all σ ∈ Sn satisfying

(1) (i ≤ m1 or i ≥ m2 + 1) =⇒σ(i) = π(i);
(2) the sequences (σ(m1 + 1), . . . , σ(t)) and (σ(t+ 1), . . . , σ(m2)) are increasing;
(3) σ 6∈ {π, sjπ} (i.e., {σ(t), σ(t + 1)} 6= {j, j + 1}).

Example 4.6. Let π = 2416573 ∈ S7 and j = 5. Then:

j = 5, j + 1 = 6; t = 4, t+ 1 = 5;

Des(π) = {2, 4, 6}; m1 = 2, m2 = 6; sjπ = 2415673;

Aj(π) = {2417563, 2456173, 2457163, 2467153}.

Note that |Aj(π)| =
(

m2−m1

t−m1

)

− 2 =
(

4
2

)

− 2 = 4.

Corollary 4.7. The Sn representation on R
(k)
λ is independent of k.

Theorem 4.8. Let λ = (µ, ν) be an (n, k) bipartition. R
(k)
λ is isomorphic as an Sn-module to the

corresponding Solomon descent representation determined by the descent class {π ∈ Sn | Des(π) = Aλ},
defined in Lemma 4.4 above.

Proof. By Theorem 4.5 together with Lemma 4.4, for every Coxeter generator si, the representation matrices

of si on R
(k)
λ and on R

(n)
λ with respect to the corresponding k-th and n-th descent monomials respectively

are identical. By [1, Theorem 4.1], the multiplicity of the irreducible Sn-representation corresponding to µ

in R
(n)
λ is mS,µ := # {T ∈ SY T (µ) | Des(T ) = Aλ }, the number of standard Young tableaux of shape µ

and descent set Aλ. Theorem 4.1 completes the proof. �

Let R
(k)
t1,t2 be the (t1, t2)-th homogeneous component of ∆∗

(k,1n−k).

Corollary 4.9. For every 0 ≤ t1, 0 ≤ t2 and 0 ≤ k ≤ n the (t1, t2)-th homogeneous component of
∆∗

(k,1n−k) is decomposed into a direct sum of Solomon descent representations as follows:

R
(k)
t1,t2

∼=
⊕

S

R
(k)
λ ,

where the sum is over all (n, k) bipartitions λ = (µ, ν) with µi+1 − µi ∈ {0, 1} (∀i), νi+1 − νi ∈ {0, 1} (∀i)
and

∑

µi>µi+1 and i<k

i = t1
∑

νi<νi+1 and i≥k

(n− i) = t2.
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4.2. Decomposition into Irreducibles. A classical theorem of Lusztig and Stanley gives the multi-
plicity of the irreducibles in the homogeneous component of the coinvariant algebra of type A. For a standard
Young tableau T define

maj(T ) :=
∑

i∈Des(T )

i

where Des(T ) is the descent of T , defined in previous Subsection.

Theorem 4.10. [33, Prop. 4.11] The multiplicity of the irreducible Sn-representation Sλ in the k-th
homogeneous component of the coinvariant algebra of type A is

#{T ∈ SY T (λ) |maj(T ) = k},

where SY T (λ) is the set of all standard Young tableaux of shape λ.

In 1994, Stembridge [35] gave an explict combinatorial interpretation of the (q, t)-Kostka polynomials
for hook shape. Stembridge’s result implies the following extension of Lusztig-Stanley theorem.

For a standard Young tableau T define

maji,j(T ) :=
∑

r∈Des(T )
i≤r<j

r

and

comaji,j(T ) :=
∑

r∈Des(T )
i≤r<j

(n− r).

Theorem 4.11. The multiplicity of the irreducible Sn-representation Sλ in the (h, h′) level of ∆(k,1n−k)

(bi-graded by total degrees in the x-s and y-s) is

χ
(h,h′)
λ = #{T ∈ SY T (λ) |maj1,k(T ) = h, comajk,n(T ) = h′},

where SY T (λ) is the set of all standard Young tableaux of shape λ.

Stembridge’s proof of Theorem 4.11 is rather complicated. Haglund [19] gave another proof of Theo-

rem 4.11 that uses his conjectured combinatorial definition of H̃µ(x; q, t). Haglund’s conjecture has recently
been proved by Haglund, Haiman and Loehr [20, 21]. We give two proofs to this decomposition rule.

First Proof of Theorem 4.11. Combine Theorems 4.1 and 4.8 with Corollary 4.9. �

A second proof of Theorem 4.11 is given in [4]. This proof is more straightforward and “combinatorial”.

It uses the mechanism of [21] but does not rely on Haglund’s combinatorial interpretation of H̃(1k ,n−k)(x; q, t).

5. Sketch of the First Proof of Theorem 3.3

5.1. A k-th Analogue of the Polynomial Ring.

Definition 5.1. For every 1 ≤ k ≤ n let Ik be the ideal in Q[x1, . . . , xn, y1, . . . , yn] generated by

(i) the monomials xi1 · · ·xik
(1 ≤ i1 < · · · < ik ≤ n),

(ii) the monomials yi1 · · · yin−k+1
(1 ≤ i1 < · · · < in−k+1 ≤ n), and

(iii) the monomials xiyi (1 ≤ i ≤ n).

Denote

P(k)
n := Q[x1, . . . , xn, y1, . . . , yn]/Ik.

For a monomial m =
n
∏

i=1

xei

i

n
∏

j=1

y
fj

j ∈ Q[x1, . . . , xn, y1, . . . , yn] define the x-support and the y-support

Suppx(m) := {i | ei > 0}, Suppy(m) := {j | fj > 0}.

Let M
(k)
n be the set of all monomials in Q[x1, . . . , xn, y1, . . . , yn] with

(i) |Suppx(m)| ≤ k − 1 (ii) |Suppy(m)| ≤ n− k (iii) Suppx(m) ∩ Suppy(m) = ∅.

Observation 5.2. {p+ Ik | p ∈ M
(k)
n } is a basis for P

(k)
n .
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Every monomial m ∈ M
(k)
n has the form m = x

ei1

i1
· · ·x

eik−1

ik−1
· y

fj1

j1
· · · y

fjn−k

jn−k
(with disjoint supports of

x-s and y-s). Let u := maxj fj and define

ψ(k)(m) := x
ei1

i1
· · ·x

eik−1

ik−1
· x

−fj1

j1
· · ·x

−fjn−k

jn−k
· (x1 · · ·xn)u.

Proposition 5.3. The map ψ(k) : M
(k)
n →M

(n)
n is a bijection.

Definition 5.4. For 1 ≤ m ≤ n− 1 let

e(k)
m :=

{

em(x̄) = em(x1, . . . , xn), if 1 ≤ m ≤ k − 1;

en−m(ȳ) = en−m(y1, . . . , yn), if k ≤ m ≤ n− 1.

For a partition µ = (µ1, . . . , µ`) with µ1 < n let e
(k)
µ :=

∏̀

i=1

e
(k)
µi .

Consider the natural Sn-action on P
(k)
n . Let P

(k)
n

Sn

be the algebra of Sn-invariants in P
(k)
n . Then the set

{e
(k)
µ |µ1 < n} forms a (vector space) basis for P

(k)
n

Sn

. It is easy to see that ψ(k) : P
(k)
n 7→ P

(n)
n is an

isomorphism, which sends invariants to invariants. Unfortunately, ψ(k) is not multiplicative and does not
send the ideal generated by invariants (with no constant term) to its analogue; thus does not send a basis of
the coinvariants to its analogue. However, the map ψ(k) may be used in finding a basis for ∆∗

(k,1n−k).

5.2. Straightening. Each monomial m ∈M
(k)
n can be written in the form

m =

k−1
∏

i=1

xpi

π(i) ·
n

∏

i=k+1

ypi

π(i),

where p1 ≥ . . . ≥ pk−1 ≥ 0 and 0 ≤ pk+1 ≤ . . . ≤ pn. Here π = π(m), the index permutation of m, is the
unique permutation that orders first the indices i ∈ Suppx(m), then the indices i 6∈ Suppx(m) ∪ Suppy(m),
and then the indices i ∈ Suppy(m). The x-indices are ordered by weakly decreasing exponents, the y-indices
are ordered by weakly increasing exponents, and indices with equal exponents are ordered in increasing
(index) order.

For a monomial m ∈ M
(k)
n with index permutation π ∈ Sn, m =

∏k−1
i=1 x

pi

π(i) ·
∏n

i=k+1 y
pi

π(i), let the

associated pair of exponent partitions

λ(m) = (λx(m), λy(m)) := ((p1, p2, . . . , pk−1), (pn, pn−1, . . . , pk+1))

be its exponent bipartition. Note that λ(m) is a bipartition of the total bi-degree of m.
Define the complementary bipartition µ(m) = (µx(m), µy(m)) of m to be the pair of partitions conjugate

to the partitions (pi − di(π))k−1
i=1 and (pi − di(π))k+1

i=n respectively; namely,

(µx)j := |{1 ≤ i ≤ k − 1 | pi − di(π) ≥ j}| (∀j)

and
(µy)j := |{k + 1 ≤ i ≤ n | pi − di(π) ≥ j}| (∀j).

If k = n then, for every monomial m ∈ M
(n)
n , µy(m) is the empty partition. In this case we denote

µ(m) := µx(m).

With each m ∈ M
(k)
n we associate the canonical complementary partition

ν(m) := µx(ψ(k)(m)).

Example 5.5. Let m = x2
1y

4
2x

2
3y5x

3
6 with n = 7 and k = 5. Then

m = x3
6x

2
1x

2
3y

1
5y

4
2 , λ(m) = ((3, 2, 2, 0), (4, 1)), π = 6134752 ∈ S7,

λ(a(5)
π ) = ((1, 0, 0, 0), (2, 1)), µ(m) = ((2, 2, 2, 0)′, (2, 0)′) = ((3, 3), (1, 1)),

ψ(5)(m) = x7
6x

6
1x

6
3x

4
4x

4
7x

3
5, aπ = x3

6x
2
1x

2
3x

2
4x

2
7x

1
5, ν(m) = µ(ψ(5)(m)) = (4, 4, 4, 2, 2, 2)′ = (6, 6, 3, 3).

Definition 5.6. 1. For two partitions λ and µ, denote λ / µ if λ is weakly smaller than µ in
dominance order. For two bipartitions λ1 = (µ1, ν1) and λ2 = (µ2, ν2), denote λ1 / λ2 if µ1 / µ2

and ν1 / ν2.
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2. For two monomials m1,m2 ∈M
(k)
n of the same total bi-degree (p, q), write m1 �k m2 if:

(1) λ(m1) / λ(m2); and
(2) if λ(m1) = λ(m2) then inv(π(m1)) > inv(π(m2)).

A Straightening Algorithm:

For a monomial m ∈ P
(k)
n , let π = π(m) be its index permutation, a

(k)
π the corresponding descent basis

element, and ν = µ(ψ(k)(m)) the corresponding canonical complementary partition. Write

m = a(k)
π · e(k)

ν − Σ,

where Σ is a sum of monomials m′ ≺k m. Repeat the process for each m′.

It is proved in [4] that this algorithm gives a basis. In particular,

Lemma 5.7. (Straightening Lemma) Each monomial m ∈ P
(k)
n has an expression

m = a
(k)
π(m)e

(k)
ν(m) +

∑

m′≺km

nm′,ma
(k)
π(m′)e

(k)
ν(m′),

where nm′,m are integers.

Theorem 3.3 follows. �

6. Sketch of the Proof of Theorem 3.5

In this section we give a brief sketch of the proof of Theorem 3.5, which implies Theorem 3.3 as a special
case. The idea is to generalize the kicking process for obtaining a basis. The kicking process was used in an
early paper of Grasia and Haiman [14] to prove the n!-conjecture for hooks. We combine this process with
a filtration.

6.1. Generalized Kicking-Filtration Process. For every triple (A, c, Ā), where [n] = A ∪ {c} ∪ Ā
and |A| = k, |Ā| = n− k, define an (A, c, Ā)-permutation π(A,c,Ā) ∈ Sn, in which the letters of A appear in
decreasing order, then c, and then the remaining letters in increasing order. For example, let n = 9, k =
4, c = 5, A = {1, 6, 7} then π({1,6,7},5) = 7, 6, 1, 5, 2, 3, 4, 8, 9.

Let ≤L be the reverse lexicographic order on the permutations in Sn (as words). For a given n and k,
denote by πt the t-th (A, c, Ā)-permutation in this order and mt := mπt

. Let N := n
(

n−1
k−1

)

be the number

of (A, c, Ā)-permutations.
For example, for n = 4 and k = 3, the complete list of permutations is

π({34},2,{1}) = 4321, π({34},1,{2}) = 4312, π({24},3,{1}) = 4231,

π({24},1,{3}) = 4213, . . . , π({12},4,{3}) = 2143, π({12},3,{4}) = 2134.

and the order is

4321 <L 4312 <L 4231 <L 4213 <L 4132 <L 4123 <L 3241 <L 3214 <L 3142 <L 3124 <L 2143 <L 2134.

Thus the permutations are indexed by π1 = 4321, π2 = 4312, π3 = 4231, . . . , π11 = 2143, πN = π12 = 2134
and the corresponding monomials are m1 = x4x3y1, m2 = x4x3, m3 = x4y1, m11 = y3, mN = m12 = 1.

Let

I0 := I+
(k,1n−k)

and define

It := I0 +

t
∑

i=1

miQ[x̄, ȳ] (1 ≤ i ≤ N).

Clearly, I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ IN = Q[x̄, ȳ] and ∆∗
(k,1n−k) = Q[x̄, ȳ]/I0 ∼=

⊕N
t=1(It/It−1) as vector spaces.

In particular, a sequence of bases for the quotients It/It−1, 1 ≤ t ≤ N , will give a basis for ∆∗
(k,1n−k). It

remains to prove that mt BA CĀ, where BA, CĀ are bases of coinvariant algebras in x̄A and ȳĀ respectively,
is a basis for It/It−1. This is an immediate consequence of the following lemma.
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Lemma 6.1. (1) For each 1 ≤ t ≤ N there exists an explicit linear map

ft : mtQ[x̄A]/〈Λ[x̄A]+〉 · Q[ȳĀ]/〈Λ[ȳĀ]+〉 −→ It/It−1,

defined by

ft(mt · p · q) = mt · p · q (∀p ∈ Q[x̄A]/〈Λ[x̄A]+〉, q ∈ Q[ȳĀ]/〈Λ[ȳĀ]+〉).

(2) ft is onto.

Proof of Lemma 6.1. We shall start by defining a natural projection

f̃t : mtQ[x̄, ȳ] −→ It/It−1.

Clearly, f̃t is a surjective map (since, by definition, mtQ[x̄, ȳ] = It). We claim that

mt · (
∑

i6∈A

〈xi〉 +
∑

j 6∈Ā

〈yj〉 + 〈Λ[x̄]+〉 + 〈Λ[ȳ]+〉) ⊆ It−1 = ker (f̃t),

so that f̃t is well defined on the quotient

mtQ[x̄, ȳ]/mt(
∑

i6∈A

〈xi〉 +
∑

j 6∈Ā

〈yj〉 + 〈Λ[x̄]+〉 + 〈Λ[ȳ]+〉) ∼=

mt · Q[x̄A]/(Λ[x̄A]+Q[x̄A]) ·Q[ȳĀ]/(Λ[ȳĀ]+Q[ȳĀ])

and is exactly ft of the lemma.

To prove this claim, first, let i 6∈ A. It is shown in [4] that mtxi ∈ It−1; thus mtxiQ[x̄, ȳ] ⊆ It−1. This
is done by a combinatorial analysis of four complementary cases. Similarly, by considering four analogous
cases, one can show that if j 6∈ Ā then mtyj ∈ It−1.

In order to prove Theorem 3.5, it remains to show that ft is one-to-one. Indeed, for every 1 ≤ t ≤ N

dim (I/It−1) ≤ dim mtQ[x̄A]/〈Λ[x̄A]+〉Q[ȳĀ]/〈Λ[ȳĀ]+〉 ≤

dim Q[x̄A]/〈Λ[x̄A]+〉Q[ȳĀ]/〈Λ[ȳĀ]+〉 = (k − 1)! · (n− k)!

If there exists 1 ≤ t ≤ N , such that ft is not one-to-one then there exists t for which a sharp inequality
holds. Then

dim ∆∗
(k,1n−k) = dim Q[x̄, ȳ]/I0 = dim

N
⊕

t=1

(It/It−1) < N · (k−1)! · (n−k)! = n

(

n− 1

k − 1

)

(k−1)!(n−k)! = n!.

Contradicting the n! theorem. This completes the proof of Theorem 3.5. �

7. Final Remarks

7.1. Haglund Statistics. Let ξ be a filling of the Ferrers diagram of a partition µ with the numbers
1, . . . , n. For any cell u = (i, j) ∈ Fµ, let ξ(u) be the entry in cell u. We say that u = (i, j) ∈ Fµ is a descent
of ξ, written u ∈ Des(ξ), if i > 1 and ξ((i, j)) ≥ ξ((i − 1, j)). Then maj(ξ) =

∑

u∈Des(ξ)(leg(u) + 1). Two

cells u, v ∈ Fµ attack each other if either

(a) they are in the same row: u = (i, j) and v = (i, k)), or
(b) they are in consecutive rows, with the cell in the upper row strictly to the right of the one in the

lower row: u = (i+ 1, k) and v = (i, j), where j < k).

The reading order is the total ordering on the cells of Fµ given by reading the cells row by row from top
to bottom, and left to right within each row. For example, the reading order of (4, 3, 2) is depicted on the
left in Figure 2. An inversion of ξ is a pair of entries ξ(u) > ξ(v) where u and v attack each other and
u precedes v in the reading order. We then define Inv(ξ) = {{u, v} : ξ(u) > ξ(v) is an inversion} and
inv(ξ) = |Inv(ξ)| −

∑

u∈Des(ξ) arm(u).

For example, if ξ is the filling of shape (4, 3, 2) depicted in Figure 2, then Des(ξ) = {(2, 1), (2, 2), (3, 2)}.
There are four inversion pairs of type (a), namely {(2, 1), (2, 2)}, {(2, 1), (2, 3)}, {(2, 2), (2, 3)}, and {(1, 3), (1, 4)},
and one inversion pair of type (b), namely {(2, 2), (1, 1)}. Then one can check that |Inv(ξ)| = 5, maj(ξ) = 5
and inv(ξ) = 2. Finally, we can identify ξ with a permutation by reading the entries in the reading or-
der. In the example of Figure 2, ξ = 2 7 9 6 1 3 4 8 5. Then we let D(ξ) = Des(ξ−1). In our example,
ξ−1 = 5 1 6 7 9 4 2 8 3 so that D(ξ) = {1, 5, 6, 8}.
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4

6

72

19

3 8 5

1 2

3 4 5

6 7 8 9

reading order

ξ =

Figure 2. The reading order and a filling of (4, 3, 2).

Figure 3. The skew shape corresponding to the composition (3, 2, 4).

Recently, Haglund, Haiman and Loehr [20, 21] proved Haglund’s conjectured combinatorial interpreta-

tion [19] of H̃µ(x; q, t) in terms of quasi-symmetric functions. That is, given a non-negative integer n and
a subset D ⊆ {1, . . . , n− 1}, Gessel’s quasi-symmetric function of degree n in variables x1, x2, . . . is defined
by the formula

(1) Qn,D(x) :=
∑

a1≤a2≤···≤an

ai=ai+1⇒i/∈D

xa1xa2 · · ·xan
.

Then Haglund, Haiman and Loehr [21] proved

(2) H̃µ(x; q, t) =
∑

ξ:µ'{1,...,n}

qinv(ξ)tmaj(ξ)Qn,D(ξ)(x).

Here the sum runs over all fillings ξ of the Ferrers diagram of µ with the numbers 1, . . . , n.

7.2. The Hilbert series of ∆µ is equal to the coefficient of x1x2 · · ·xn in H̃µ(x; q, t). Since the coefficient
of x1x2 · · ·xn in any quasi-symmetric function Qn,D(x) is 1, it follows that the Hilbert series of ∆µ is given
by

∑

k,r

dim ∆(h,k)
µ qhtk = H̃µ(x; q, t)|x1x2···xn

=
∑

ξ:µ'{1,...,n}

qinv(ξ)tmaj(ξ),

where the sum runs over all fillings ξ of the Ferrers diagram of µ with the numbers 1, . . . , n. No known basis
realizes this remarkable identity for general ∆µ. The k-th Haglund basis described in Subsection 3.2 above
provides such a basis when µ is of hook shape.

Note also that Corollary 4.9 has an interesting interpretation relative to (2), as follows. Given a compo-
sition α = (α1, . . . , αk) of n, let Zα(x) denote the ribbon Schur function corresponding to α. For example,
Z(3,2,4)(x) is the skew Schur function corresponding to the skew shape depicted in Figure 3. Gessel [18] proved
that if P (x) is a symmetric function of degree n then, for any set D = {i1 < i2 < · · · < ik} ⊆ {1, . . . , n− 1},
〈P (x), Zα(D)(x)〉 equals the coefficient of Qn,D(x) in the quasisymmetric function expansion of P (x), where
α(D) is the composition (i1, i2 − i1, . . . , ik − ik−1, n− ik) of n. This suggests that the coefficient of Qn,D(x)

in the quasisymmetric function expansion of H̃µ(x; q, t) should have an algebraic meaning in terms of the
Garsia-Haiman module ∆µ. To be more precise, the set {Zλ(x) : λ ` n} is a basis for the space Λn of homo-

geneous symmetric functions of degree n. Thus one could ask whether we can decompose ∆µ =
⊕

λ`n R
(µ)
λ ,

where R
(µ)
λ is an Sn-module under the diagonal action that affords the representation whose character under

the Frobenius map is Zλ(x). Corollary 4.9 provides such a decomposition in the case where µ is a hook.
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