Variance for the Number of Maxima in Hypercubes and Generalized Euler's γ constants

Christian Costermans and Hoang Ngoc Minh

Abstract

In this work, we obtain some results à l'Abel dealing with noncommutative generating series of polylogarithms and multiple harmonic sums, by using techniques la Hopf. In particular, this enables to explicit generalized Euler constants associated to divergent polyzêtas. As application, we present a combinatorial approach of the variance for the number of maxima in hypercubes. This leads to an explicit expression, in terms of convergent polyzêtas, of the dominant term in the asymptotic expansion of this variance. Moreover, we get an algorithm to compute this expansion, and show that all coefficients occuring belong to the \mathbb{Q}-algebra generated convergent polyzêtas and by Euler's γ constant.

Dans ce travail, nous obtenons des résultats à l'Abel concernant les séries génératrices non commutatives de polylogarithmes et sommes harmoniques multiples, en utilisant des techniques à la Hopf. En particulier, ceci nous permet d'expliciter les constantes d'Euler généralisées associées à des polyzêtas divergents. Comme application, nous présentons une approche combinatoire de la variance du nombre de maxima dans un hypercube. Celle-ci amène à une expression explicite, en termes de polyzêtas, du terme dominant du développement asymptotique de cette variance. De plus, nous obtenons un algorithme pour calculer ce développement, et montrons que tous les coefficients intervenant appartiennent la \mathbb{Q}-algèbre engendré par les polyzêtas convergents et par la constante d'Euler γ.

1. Introduction

Let $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ be a set of independent and identically distributed random vectors in \mathbb{R}^{d}. A point $q_{i}=\left(q_{i_{1}}, \ldots, q_{i_{d}}\right)$ is said to be dominated by $q_{j}=\left(q_{j_{1}}, \ldots, q_{j_{d}}\right)$ if $q_{i_{k}}<q_{j_{k}}$ for all $k \in[1, . ., d]$ and a point q_{i} is called a maximum of Q if none of the other points dominates it. The number of maxima of Q is denoted by $K_{n, d}$.

Recently, in [2], Bai et al. proposed a method for computing an asymptotic expansion of the variance and the study of $\operatorname{Var}\left(K_{n, d}\right)$ for random samples from $[0,1]^{d}$ is precisely the goal of the present section. For that, we exploit the following result, first derived by Ivanin $[\mathbf{1 6}]$:

$$
\begin{equation*}
\mathbb{E}\left(K_{n, d}^{2}\right)=\mu_{n, d}+\sum_{1 \leq t \leq d-1}\binom{d}{t} \sum_{l=1}^{n-1} \frac{1}{l} \sum^{(*)} \frac{1}{i_{1} \ldots i_{d-2} j_{1} \ldots j_{d-1}} \tag{1}
\end{equation*}
$$

where the sum $(*)$ is taken over indices verifying $1 \leq i_{1} \ldots \leq i_{t-1} \leq l, 1 \leq i_{t} \leq \ldots \leq i_{d-2} \leq l \quad$ and $\quad l+1 \leq$ $j_{1} \leq \ldots \leq j_{d-1} \leq n$. In Formula (1), $\mu_{n, d}$ stands for the mean of $K_{n, d}$, first calculated by Barndorff-Nielsen and Sobel [3]

$$
\begin{equation*}
\mu_{n, d}=\mathbb{E}\left(K_{n, d}\right)=\sum_{1 \leq i_{1} \leq \ldots \leq i_{d-1} \leq n} \frac{1}{i_{1} \ldots i_{d-1}} \tag{2}
\end{equation*}
$$

After having given an alternative derivation for this formula, Bai et al. deduce, by analytic and combinatoric considerations, as the main result of [1], the following equivalent

$$
\begin{align*}
\operatorname{Var}\left(K_{n, d}\right) & \sim\left(\frac{1}{(d-1)!}+\kappa_{d}\right) \ln ^{d-1}(n) \tag{3}\\
\text { with } \kappa_{d} & =\sum_{t=1}^{d-2} \frac{1}{t!(d-1-t)!} \sum_{l \geq 1} \frac{1}{l^{2}} \sum^{(* *)} \frac{1}{i_{1} \ldots i_{t-1} j_{1} \ldots j_{d-2-t}} \tag{4}
\end{align*}
$$

the sum $(* *)$ being calculated over all indices verifying $1 \leq i_{1} \leq \ldots \leq i_{t-1} \leq l$ and $1 \leq j_{1} \leq \ldots \leq j_{d-2-t} \leq l$.
These two formulas (1) and (4) give rise to harmonic sums $\mathrm{A}_{\mathbf{s}}(N)$, closely related to $\mathrm{H}_{\mathbf{s}}(N)$ and defined for a composition $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$ by

$$
\begin{equation*}
\mathrm{A}_{\mathbf{s}}(N)=\sum_{N \geq n_{1} \geq \ldots \geq n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} \quad \text { and } \quad \mathrm{H}_{\mathbf{s}}(N)=\sum_{N \geq n_{1}>\ldots>n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} \tag{5}
\end{equation*}
$$

There exist explicit relations between the $\mathrm{A}_{\mathbf{s}}(N)$ and $\mathrm{H}_{\mathbf{s}}(N)$. Precisely, let $\operatorname{Comp}(n)$ be the set of compositions of n. If $I=\left(i_{1}, \ldots, i_{r}\right)$ (resp. $J=\left(j_{1}, \ldots, j_{p}\right)$) is a composition of n (resp. of r) then $J \circ I=\left(i_{1}+\ldots+i_{j_{1}}, i_{j_{1}+1}+\ldots+i_{j_{1}+j_{2}}, \ldots, i_{k-j_{p}+1}+\ldots+i_{k}\right)$ is a composition of n. By Möbius inversion, one has [15]

$$
\begin{equation*}
\mathrm{A}_{\mathbf{s}}(N)=\sum_{J \in \operatorname{Comp}(r)} \mathrm{H}_{J \circ \mathbf{s}}(N) \quad \text { and } \quad \mathrm{H}_{\mathbf{s}}(N)=\sum_{J \in \operatorname{Comp}(r)}(-1)^{l(J)-r} \mathrm{~A}_{J \circ \mathbf{s}}(N) \tag{6}
\end{equation*}
$$

where $l(J)$ is the number of parts of J. Therefore, from the algebraic and combinatoric properties of $\mathrm{A}_{\mathbf{s}}$ (or equivalently, of $\mathrm{H}_{\mathbf{s}}$) and their limit $\underline{\zeta}(\mathbf{s})$ (or equivalently, $\zeta(\mathbf{s})$)

$$
\begin{equation*}
\underline{\zeta}(\mathbf{s})=\sum_{n_{1} \geq \ldots \geq n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} \quad \text { and } \quad \zeta(\mathbf{s})=\sum_{n_{1}>\ldots>n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} \quad \text { for } s_{1}>1 \tag{7}
\end{equation*}
$$

we will deduce two main results, first the explicit value of κ_{d} in terms of convergent $\underline{\zeta}(\mathbf{s})$ of weight $d-1$ (c.f. Theorem 8)

$$
\begin{equation*}
\kappa_{d}=\frac{1}{(d-1)!} \sum_{\substack{\left(2, s_{2}, \ldots, s_{r}\right) \\ s_{i} \in\{1,2\}, 2 \leq i \leq r \leq d-2}}(-1)^{|\mathbf{s}|_{2}+1}\binom{2\left(d-1-|\mathbf{s}|_{2}\right)}{d-1-|\mathbf{s}|_{2}} \underline{\zeta}(\mathbf{s}) \tag{8}
\end{equation*}
$$

where $\mathbf{s}=\left(2, s_{2}, \ldots, s_{r}\right)$ and $|\mathbf{s}|_{2}$ stands for the number of occurences of 2 in \mathbf{s} (for example $\left.|(2,1,2,2,1)|_{2}=3\right)$. We then give an algorithm to compute the asymptotic expansion of $\operatorname{Var}\left(K_{n, d}\right)$ via the asymptotic expansion of $\mathrm{H}_{\mathbf{s}}(N)$ (c.f. Theorem 9) :

$$
\begin{equation*}
\mathbb{V} a r\left(K_{n, d}\right)=\sum_{i=0}^{2 d-2} \alpha_{i} \ln ^{i}(n)+\sum_{j=1}^{M} \frac{1}{n^{j}} \sum_{k=0}^{2 d-2} \beta_{j, k} \ln ^{k}(n)+\mathrm{o}\left(\frac{1}{n^{M}}\right) \tag{9}
\end{equation*}
$$

where $\alpha_{i}, \beta_{j, k}$ belong the \mathbb{Q}-algebra generated by Euler's γ constant and by convergent polyzêtas.
For an analytic function f verifying $\int_{1}^{\infty}\left|f^{(2 k)}(t)\right| d t<\infty, k \in \mathbb{N}_{+}$, the Euler-Mac Laurin summation formula asserts that there exist a constant C_{f}, called Euler-MacLaurin constant associated to $\sum_{n \geq 1} f_{n}$, such that [8]

$$
\begin{equation*}
\sum_{n=1}^{N} f(n)=C_{f}+\int_{1}^{N} f(x) d x+\frac{f(N)}{2}+\sum_{j=1}^{k} \frac{B_{2 j}}{(2 j)!} f^{(2 j-1)}(N)+\mathrm{O}\left(\int_{N}^{\infty}\left|f^{(2 k)}(t)\right| d t\right) \tag{10}
\end{equation*}
$$

where the $\left\{B_{k}\right\}_{k \geq 0}$ are the Bernoulli numbers. One of the most common application of this formula consists in taking $f(x)=x^{-r}, r \in \mathbb{N}_{+}$, which leads to

$$
\begin{align*}
\sum_{n=1}^{N} \frac{1}{n} & =\log N+\gamma-\sum_{j=1}^{k-1} \frac{B_{j}}{j} \frac{1}{N^{j}}+\mathrm{O}\left(\frac{1}{N^{k}}\right) \tag{11}\\
\sum_{n=1}^{N} \frac{1}{n^{r}} & =\zeta(r)-\sum_{j=r-1}^{k-1} \frac{B_{j-r+1}}{j}\binom{j}{r-1} \frac{1}{N^{j}}+\mathrm{O}\left(\frac{1}{N^{k}}\right) \tag{12}
\end{align*}
$$

leading to the asymptotic expansion of the harmonic sum $\mathrm{H}_{r}(N)=\sum_{n=1}^{N} n^{-r}$. We now are interested on multiple harmonic sums $\mathrm{H}_{\mathbf{s}}$ and their derivated $\mathrm{A}_{\mathbf{s}}$. We have already proposed in [5] a recursive method, widely based on the Euler-MacLaurin formula and based on the algebraic structure of H_{s}, to get this asymptotic expansion. An other algorithm is also proposed in [4] and based on the asymptotic behaviour at the singularity $z=1$ of the following ordinary generating series of the multiple harmonic sums :

$$
\begin{equation*}
\mathrm{P}_{\mathbf{s}}(z)=\sum_{n \geq 0} \mathrm{H}_{\mathbf{s}}(n) z^{n}=\frac{\mathrm{Li}_{\mathbf{s}}(z)}{1-z}, \quad \text { where } \quad \mathrm{Li}_{\mathbf{s}}(z)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} \tag{13}
\end{equation*}
$$

In this paper, in continuation of [4, 5], we establish a theorem $\grave{a} l^{\prime}$ 'Abel (c.f. Theorem 4) concerning the noncommutative generating series of multiple sums and of polylogarithms by use of techniques à la Hopf. In particular, this enables to obtain, once again, the asymptotic expansion of multiple harmonic sums (c.f. Corollary 2) and to explicit the generalized Euler's γ constants associated to divergent polyzêtas (c.f. Theorem 6) as the N-free term in their asymptotic expansion. As applications of these expansions and these constants, we evaluate the variance for the number of maxima in hypercubes.

2. The constant problem, algorithmic determination

2.1. Algebraic combinatoric aspects. Let $\left\{t_{i}\right\}_{i \in \mathbb{N}_{+}}$be an infinite set of variables. The elementary symmetric functions λ_{k} and the sums of powers ψ_{k} are defined by

$$
\begin{equation*}
\lambda_{k}(\underline{t})=\sum_{n_{1}>\ldots>n_{k}>0} t_{n_{1}} \ldots t_{n_{k}} \quad \text { and } \quad \psi_{k}(\underline{t})=\sum_{n>0} t_{n}^{k} \tag{14}
\end{equation*}
$$

They are respectively coefficients of the following generating functions

$$
\begin{equation*}
\lambda(\underline{t} \mid z)=\sum_{k>0} \lambda_{k}(\underline{t}) z^{k}=\prod_{i \geq 1}\left(1+t_{i} z\right) \quad \text { and } \quad \psi(\underline{t} \mid z)=\sum_{k>0} \psi_{k}(\underline{t}) z^{k-1}=\sum_{i \geq 1} \frac{t_{i}}{1-t_{i} z} . \tag{15}
\end{equation*}
$$

These generating functions satisfy a Newton identity

$$
\begin{equation*}
d / d z \log \lambda(\underline{t} \mid z)=\psi(\underline{t} \mid-z) \tag{16}
\end{equation*}
$$

The fundamental theorem from symmetric functions theory asserts that the $\left\{\lambda_{k}\right\}_{k \geq 0}$ are linearly independent, and remarkable identities give (putting $\lambda_{0}=1$) :

$$
\begin{equation*}
\lambda_{k}=\frac{(-1)^{k}}{k!} \sum_{\substack{s_{1}, \ldots, s_{k}>0 \\ s_{1}+\ldots+k s_{k}=k}}\binom{k}{s_{1}, \ldots, s_{k}}\left(-\frac{\psi_{1}}{1}\right)^{s_{1}} \ldots\left(-\frac{\psi_{k}}{k}\right)^{s_{k}} \tag{17}
\end{equation*}
$$

To the composition $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$, we associate the word $w=y_{s_{1}} \ldots y_{s_{r}}$ defined over the alphabet $Y=\left\{y_{i}, i \in \mathbb{N}_{+}\right\}$. Its length is r, also denoted by $|w|$ and its weight is $\sum_{i=1}^{r} s_{i}$. The set of words over Y is denoted by Y^{*}. The empty word is usually denoted by $\epsilon(|\epsilon|=0)$.

The number of occurences of letter y_{i} in the word $w \in Y^{*}$ is denoted by $|w|_{i}$.
Let $w=y_{s_{1}} \ldots y_{s_{r}} \in Y^{*}$. The quasi-symmetric functions F_{w} and G_{w}, of depth $r=|w|$ and of degree (or weight) $s_{1}+\ldots+s_{r}$, is defined by

$$
\begin{equation*}
\mathrm{F}_{w}(\underline{t})=\sum_{n_{1}>\ldots>n_{r}>0} t_{n_{1}}^{s_{1}} \ldots t_{n_{r}}^{s_{r}} \quad \text { and } \quad \mathrm{G}_{w}(\underline{t})=\sum_{n_{1} \geq \ldots \geq n_{r}>0} t_{n_{1}}^{s_{1}} \ldots t_{n_{r}}^{s_{r}} \tag{18}
\end{equation*}
$$

In particular, $\mathrm{F}_{y_{1}^{k}}=\lambda_{k}$ and $\mathrm{F}_{y_{k}}=\mathrm{G}_{y_{k}}=\psi_{k}$. As a consequence, the functions $\left\{\mathrm{F}_{y_{1}^{k}}\right\}_{k \geq 0}$ are linearly independent and integrating differential equation (16) shows that functions $\mathrm{F}_{y_{1}^{k}}$ and $\mathrm{F}_{y_{k}}$ are linked by the formula

$$
\begin{equation*}
\sum_{k \geq 0} \mathrm{~F}_{y_{1}^{k}} z^{k}=\exp \left[-\sum_{k \geq 1} \mathrm{~F}_{y_{k}} \frac{(-z)^{k}}{k}\right] \quad\left(\text { or } \quad \sum_{k \geq 0} \mathrm{G}_{y_{1}^{k}} z^{k}=\exp \left[\sum_{k \geq 1} \mathrm{G}_{y_{k}} \frac{z^{k}}{k}\right]\right) \tag{19}
\end{equation*}
$$

By linearity, the definitions of F_{w} and G_{w} are extended to polynomials on $\mathbb{Q}\langle Y\rangle$.

DEFINITION 1. Let $y_{i}, y_{j} \in Y$ and $u, v \in Y^{*}$. The shuffle product of $u=y_{i} u^{\prime}$ and $v=y_{j} v^{\prime}$ is the polynomial recursively defined by

$$
\epsilon ш u=u ш \epsilon=u \quad \text { and } \quad u \pm v=y_{i}\left(u^{\prime} ш v\right)+y_{j}\left(u ш v^{\prime}\right) .
$$

The stuffle product of $u=y_{i} u^{\prime}$ and $v=y_{j} v^{\prime}$ is the polynomial recursively defined by

$$
\epsilon \uplus u=u \uplus \epsilon=u \quad \text { and } \quad u \uplus v=y_{i}\left(u^{\prime} \uplus v\right)+y_{j}\left(u \uplus v^{\prime}\right)+y_{i+j}\left(u^{\prime} \uplus v^{\prime}\right) .
$$

In the same way, the minus-stuffle of u and v is the polynomial recursively defined by

$$
\epsilon \sqcup u=u \sqcup \epsilon=u \quad \text { and } \quad u \text { ๒ } v=y_{i}\left(u^{\prime} \sqcup v\right)+y_{j}\left(u \sqcup v^{\prime}\right)-y_{i+j}\left(u^{\prime} \sqcup v^{\prime}\right) .
$$

EXAMPLE 1. $y_{1} \sqcup y_{2}=y_{1} y_{2}+y_{2} y_{1}, y_{1}+y_{2}=y_{1} y_{2}+y_{2} y_{1}+y_{3}$ and $y_{1} \sqcup y_{2}=y_{1} y_{2}+y_{2} y_{1}-y_{3}$.
Proposition 1. The operation \backsim is commutative and associative.
Proof. To show that $w_{1} \sqcup w_{2}=w_{2} \longleftarrow w_{1}$, we proceed by induction on $\left|w_{1}\right|+\left|w_{2}\right|$. The induction hypothesis is proved by (20) when $\left|w_{1}\right|+\left|w_{2}\right| \leq 1$ and the induction step is proved by (20).

In the same way, we show that $w_{1} \sqcup\left(w_{2}\left\llcorner w_{3}\right)=\left(w_{1} \longleftarrow w_{2}\right) \longleftarrow w_{3}\right.$ by induction on $\left|w_{1}\right|+\left|w_{2}\right|+$ $\left|w_{3}\right|$. Once again, the hypothesis is proved by (20) when $\left|w_{1}\right|+\left|w_{2}\right|+\left|w_{3}\right| \leq 1$. Then, the calculation of $y_{i} w_{1} \sqcup\left(y_{j} w_{2} \sqsubset y_{k} w_{3}\right)$ gives

$$
\begin{aligned}
& y_{i}\left(w_{1} \sqcup y_{j}\left(w_{2} \sqcup y_{k} w_{3}\right)\right)+y_{j}\left(y_{i} w_{1} \sqcup\left(w_{2} \sqcup y_{k} w_{3}\right)\right)-y_{i+j}\left(w_{1} \sqcup\left(w_{2} \sqcup y_{k} w_{3}\right)\right) \\
& +y_{i}\left(w_{1} \sqcup y_{k}\left(y_{j} w_{2} \sqcup w_{3}\right)\right)+y_{k}\left(y_{i} w_{1} \sqcup\left(y_{j} w_{2} \sqcup w_{3}\right)\right)-y_{i+k}\left(w_{1} \sqcup\left(y_{j} w_{2} \sqcup w_{3}\right)\right) \\
& -y_{i}\left(w_{1} \sqcup y_{j+k}\left(w_{2} \sqcup w_{3}\right)\right)-y_{j+k}\left(y_{i} w_{1} \sqcup\left(w_{2} \sqcup w_{3}\right)\right)+y_{i+j+k}\left(w_{1} \sqcup\left(w_{2} \sqcup w_{3}\right)\right)
\end{aligned}
$$

On the other hand, the calculation of $\left(y_{i} w_{1} \sqcup y_{j} w_{2}\right) \sqcup y_{k} w_{3}$ gives

$$
\begin{aligned}
& y_{i}\left(\left(w_{1} \sqcup y_{j} w_{2}\right) \sqcup y_{k} w_{3}\right)+y_{k}\left(y_{i}\left(w_{1} \sqcup y_{j} w_{2}\right) \sqcup w_{3}\right)-y_{i+k}\left(\left(w_{1} \sqcup y_{j} w_{2}\right) \sqcup w_{3}\right) \\
& +y_{j}\left(\left(y_{i} w_{1} \sqcup w_{2}\right) \sqcup y_{k} w_{3}\right)+y_{k}\left(y_{j}\left(y_{i} w_{1} \sqcup w_{2}\right) \sqcup w_{3}\right)-y_{j+k}\left(\left(y_{i} w_{1} \sqcup w_{2}\right) \sqcup w_{3}\right) \\
& -y_{i+j}\left(\left(w_{1} \sqcup w_{2}\right) \sqcup y_{k} w_{3}\right)-y_{k}\left(y_{i+j}\left(w_{1} \sqcup w_{2}\right) \sqcup w_{3}\right)+y_{i+j+k}\left(\left(w_{1} \sqcup w_{2}\right) \sqcup w_{3}\right)
\end{aligned}
$$

Substracting both expressions and using the induction hypothesis lead us to :

$$
\begin{aligned}
& y_{i}\left(w_{1} \sqcup y_{j}\left(w_{2} \sqcup y_{k} w_{3}\right)\right)+y_{i}\left(w_{1} \sqcup y_{k}\left(y_{j} w_{2} \sqcup w_{3}\right)\right)+y_{k}\left(y_{i} w_{1} \sqcup\left(y_{j} w_{2} \sqcup w_{3}\right)\right) \\
& -y_{i}\left(w_{1} \sqcup y_{j+k}\left(w_{2} \sqcup w_{3}\right)\right)-y_{i}\left(\left(w_{1} \sqcup y_{j} w_{2}\right) \sqcup y_{k} w_{3}\right)-y_{k}\left(y_{i}\left(w_{1} \sqcup y_{j} w_{2}\right) \sqcup w_{3}\right) \\
& -y_{k}\left(y_{j}\left(y_{i} w_{1} \sqcup w_{2}\right) \sqcup w_{3}\right)+y_{k}\left(y_{i+j}\left(w_{1} \sqcup w_{2}\right) \sqcup w_{3}\right),
\end{aligned}
$$

which can be further simplified using (20) in

$$
\begin{aligned}
& y_{i}\left(w_{1}-\left(y_{j} w_{2} \sqcup y_{k} w_{3}\right)\right)+y_{k}\left(y_{i} w_{1} \sqcup\left(y_{j} w_{2} \sqcup w_{3}\right)\right) \\
& -y_{i}\left(\left(w_{1} \sqcup y_{j} w_{2}\right) \downharpoonright y_{k} w_{3}\right)-y_{k}\left(\left(y_{i} w_{1} \sqcup y_{j} w_{2}\right) \downharpoonright w_{3}\right),
\end{aligned}
$$

expression reduced to zero by the induction hypothesis.
If u (resp. v) is a word in Y^{*}, of length r and of weight p (resp. of length s and of weight q), $\mathrm{F}_{u \pm \downarrow v}$ and $\mathrm{G}_{u \varpi v}$ are quasi-symmetric functions of depth $r+s$ and of weight $p+q$, and one has

$$
\mathrm{F}_{u\lfloor v}=\mathrm{F}_{u} \mathrm{~F}_{v} \quad \text { and } \quad \mathrm{G}_{u \sqcup v v}=\mathrm{G}_{u} \mathrm{G}_{v} .
$$

The remarkable identity (17) can be then seen as

$$
\begin{align*}
y_{1}^{k} & =\frac{(-1)^{k}}{k!} \sum_{\substack{s_{1}, \ldots, s_{k}>0 \\
s_{1}+\ldots+k_{k}=k}}\binom{k}{s_{1}, \ldots, s_{k}} \frac{\left(-y_{1}\right)^{\left\lfloor s_{1}\right.}}{1^{s_{1}}} \downarrow \ldots+\frac{\left(-y_{k}\right)^{\left\lfloor\downarrow s_{k}\right.}}{k^{s_{k}}} \tag{20}\\
& =\frac{1}{k!} \sum_{\substack{s_{1}, \ldots, s_{k}>0 \\
s_{1}+\ldots+s_{k}=k}}\binom{k}{s_{1}, \ldots, s_{k}} \frac{y_{1}^{\left\llcorner\sqcup s_{1}\right.}}{1^{s_{1}}} \sqcup \ldots \sqcup \frac{y_{k}^{\left\llcorner\sqcup s_{k}\right.}}{k^{s_{k}}} \tag{21}\\
& =\frac{y_{1}^{\amalg k}}{k!} . \tag{22}
\end{align*}
$$

Definition 2. For any $w \in Y^{*}$, let us define the maps H_{w} and A_{w} from \mathbb{N}_{+}to \mathbb{Q} as follows

$$
\begin{aligned}
& \mathrm{H}_{w}(N)=\left\{\begin{aligned}
1 & \text { if } w=\epsilon, \\
\sum_{N \geq n_{1}>\ldots>n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} & \text { if } w=y_{s_{1}} \ldots y_{s_{r}}
\end{aligned}\right. \\
& \mathrm{A}_{w}(N)=\left\{\begin{aligned}
1 & \text { if } w=\epsilon, \\
\sum_{N \geq n_{1} \geq \ldots \geq n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} & \text { if } w=y_{s_{1}} \ldots y_{s_{r}} .
\end{aligned}\right.
\end{aligned}
$$

We put also $\mathrm{H}_{w}(0)=\mathrm{A}_{w}(0)=0$.
By linearity, the definitions of H_{w} and A_{w} are extended to polynomials on $\mathbb{Q}\langle Y\rangle$.
For $N \geq 1$ and $w \in Y^{*}$, any $\mathrm{H}_{w}(N)$ (resp. $\mathrm{A}_{w}(N)$) can be obtained by specializing variables $\left\{t_{i}\right\}_{N \geq i \geq 1}$ at $t_{i}=1 / i$ and, for $i>N, t_{i}=0$ in the quasi-symmetric function F_{w} (resp. G_{w}) [14]. Therefore,

Proposition $2([\mathbf{1 4}])$. For $u, v \in Y^{*}, \mathrm{H}_{u \not t v}=\mathrm{H}_{u} \mathrm{H}_{v}$ and $\mathrm{A}_{u \downharpoonright v}=\mathrm{A}_{u} \mathrm{~A}_{v}$.
Let $w=y_{s} w^{\prime} \in Y^{*}$ such that $|w|=r$. One has

$$
\begin{equation*}
\mathrm{H}_{w}(N)=\sum_{l=r}^{N} \frac{\mathrm{H}_{w^{\prime}}(l-1)}{l^{s}} \quad \text { and } \quad \mathrm{A}_{w}(N)=\sum_{l=1}^{N} \frac{\mathrm{~A}_{w^{\prime}}(l)}{l^{s}} . \tag{23}
\end{equation*}
$$

In consequence,
Theorem 1. For any $w=y_{s} w^{\prime} \in Y^{*}, \mathrm{H}_{w}(N)$ and $\mathrm{A}_{w}(N)$ converge when $N \rightarrow+\infty$ if and only if $s>1$. Therefore, if $s \geq 2$ then the limits $\lim _{N \rightarrow+\infty} \mathrm{H}_{w}(N)$ and $\lim _{N \rightarrow+\infty} \mathrm{A}_{w}(N)$ are denoted respectively by $\zeta(w)$ and by $\underline{\zeta}(w)$. In this case, w is said to be convergent (otherwise, it is said to be divergent).

Proof. The immediate minorization $\mathrm{H}_{w}(N) \geq \mathrm{H}_{w^{\prime}}(r-1) \sum_{l=r}^{N} l^{-s}$ shows the divergence of $\mathrm{H}_{w}(N)$ when $s=1$, i.e. $w \in y_{1} Y^{*}$. To show the convergence when $w \in Y^{*} \backslash y_{1} Y^{*}$ by dominating correctly $\mathrm{H}_{w^{\prime}}(l)$, we need the following result : for any $w \in Y^{*}$, there exist a constant K and in integer α such that, for any $l>1$, $\mathrm{H}_{w}(l) \leq K \ln ^{\alpha} l$. This result can be shown by Formula (23), and by induction on the length of w. Using a last time Formula (23), the convergence of $\mathrm{H}_{w}(N)$ comes directly.

The same proof can be done for $\mathrm{A}_{w}(N)$. From Formula (6), the $\underline{\zeta}(w)$ can be expressed as linear combination of convergent polyzêtas (and vice versa).

Let us consider the following two differential forms $\omega_{0}(z)=d z / z$ and $\omega_{1}(z)=d z /(1-z)$. The polylogarithm $\operatorname{Li}_{\mathbf{s}}(z)$ is defined for a composition $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$ and for a complex z such that $|z|<1$ by Formula (13) corresponds to the iterated integral over ω_{0}, ω_{1} and along the integration path $0 \rightsquigarrow z$,

$$
\begin{equation*}
\mathrm{Li}_{\mathbf{s}}=\int_{0 \rightsquigarrow z} \omega_{0}^{s_{1}-1} \omega_{1} \ldots \omega_{0}^{s_{r}-1} w_{1} \tag{24}
\end{equation*}
$$

Let $X=\left\{x_{0}, x_{1}\right\}$. We shall also identify any composition $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$ with its encoding word $w=$ $x_{0}^{s_{1}-1} x_{1} \cdots x_{0}^{s_{r}-1} x_{1}$ over $X^{*} x_{1}$. We obtain so a concatenation isomorphism from the \mathbb{Q}-algebra of compositions into the subalgebra $\mathbb{Q}\langle X\rangle x_{1} \subset \mathbb{Q}\langle X\rangle$. In that way, the polylogarithm $\operatorname{Li}_{\mathbf{s}}(z)$ defined by the formula (13) can be also indexed by $w \in X^{*} x_{1}$. To extend the definition of polylogarithms over X^{*}, we put $\mathrm{Li}_{x_{0}}(z)=\log (z)$. By linearity, the definition of Li_{w} is extended to polynomials on $\mathbb{Q}\langle X\rangle$.

Introducing the analogous shuffle product over X^{*} as in the definition 1, we get
Theorem 2 ([10]). The map $\mathrm{Li}: w \mapsto \operatorname{Li}_{w}$ is an isomorphism from $\left(\mathbb{C}\langle X\rangle\right.$, w) to $\left(\mathbb{C}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}},.\right)$.
The polyzêtas are well defined only for the convergent words in $\{\epsilon\} \cup x_{0} X^{*} x_{1}$, and linearly extended to $\mathrm{C}_{1}=\mathbb{Q} \oplus x_{0} \mathbb{Q}\langle X\rangle x_{1}$. Let $\mathrm{C}_{2}=\mathbb{Q} \oplus\left(Y \backslash y_{1} \mathbb{Q}\langle Y\rangle\right) \simeq \mathrm{C}_{1}$. By the Radford theorem $[\mathbf{1 7}]$, one has

$$
\begin{gather*}
(\mathbb{Q}\langle X\rangle, ш) \simeq \mathbb{Q}[\mathcal{L} y n X]=\mathrm{C}_{1}\left[x_{0}, x_{1}\right], \tag{25}\\
(\mathbb{Q}\langle Y\rangle, \sqcup) \simeq(\mathbb{Q}\langle Y\rangle, ゅ) \simeq \mathbb{Q}[\mathcal{L} y n Y]=\mathrm{C}_{2}\left[y_{1}\right], \tag{26}
\end{gather*}
$$

where $\mathcal{L} y n X$ and $\mathcal{L} y n Y$ are the sets of Lyndon words over X and Y respectively.
By Theorem 2, we have

Proposition 3 ([9]). For $u, v \in X^{*}, \operatorname{Li}_{u \pm v}=\operatorname{Li}_{u} \operatorname{Li}_{v}$. Thus, for $u, v \in x_{0} X^{*} x_{1}, \zeta(u ш v)=\zeta(u) \zeta(v)$.
By Proposition 2, one has
Proposition $4([\mathbf{1 4}])$. For $u, v \in Y^{*} \backslash y_{1} Y^{*}, \zeta(u \pm v)=\zeta(u) \zeta(v)$ and $\underline{\zeta}(u \sqcup v)=\underline{\zeta}(u) \underline{\zeta}(v)$.
 products (c.f. propositions 3 and 4) and is already studied in $[\mathbf{9}]$ and it is conjectured to be free algebra. In the same way, let \mathcal{Z}^{\prime} be the $\mathbb{Q}[\gamma]$-algebra generated by \mathcal{Z}. It is also conjectured that γ is transcendental over $\mathcal{Z}[\mathbf{9}]$.

Proposition $5([\mathbf{1 3}])$. For $w \in X^{*}$, let $\mathrm{P}_{w}(z)=(1-z)^{-1} \mathrm{Li}_{w}(z)$. Thus for $u, v \in Y^{*}, \mathrm{P}_{u\lfloor v v}=\mathrm{P}_{u} \odot \mathrm{P}_{v}$, where \odot denotes the Hadamard product.

As consequences of Theorem 2, we also have
THEOREM 3 ([13]). The map $\mathrm{P}: u \mapsto \mathrm{P}_{u}$ is an isomorphism from polynomial algebra $(\mathbb{C}\langle Y\rangle$, $\pm)$ over the Hadamard algebra $\left(\mathbb{C}\left\{\mathrm{P}_{w}\right\}_{w \in Y^{*}}, \odot\right)$. Moreover, the map $\mathrm{H}: u \mapsto \mathrm{H}_{u}=\left\{\mathrm{H}_{u}(N)\right\}_{N \geq 0}$ (resp. $\left.\mathrm{A}: u \mapsto \mathrm{~A}_{u}=\left\{\mathrm{A}_{u}(N)\right\}_{N \geq 0}\right)$ is an isomorphism from $(\mathbb{C}\langle Y\rangle$, +) (resp. ($\mathbb{C}\langle Y\rangle$, $-\boldsymbol{)}$) over the algebra $\left(\mathbb{C}\left\{\mathrm{H}_{w}\right\}_{w \in Y^{*}},.\right)\left(\operatorname{resp} .\left(\mathbb{C}\left\{\overline{\mathrm{A}}_{w}\right\}_{w \in Y^{*}},.\right)\right)$.

3. Explicit determination of Euler's γ constants

3.1. Some remarks on asymptotic expansion of multiple harmonic sums. The determination of the asymptotic expansion of $\mathrm{H}_{w}(N)$ for convergent words lies on the formula (23) and by induction on the length of w. Details are given in [5].

Example 2.

$$
\mathrm{H}_{4,2}(N)=\zeta(4,2)-\sum_{i=N+1}^{\infty} \frac{\mathrm{H}_{2}(i-1)}{i^{4}}
$$

But $\mathrm{H}_{2}(i-1)=\zeta(2)-\frac{1}{i}-\frac{1}{2} \frac{1}{i^{2}}+\mathrm{O}\left(\frac{1}{i^{3}}\right)$ so

$$
\mathrm{H}_{4,2}(N)=\zeta(4,2)-\zeta(2) \sum_{i=N+1}^{\infty} \frac{1}{i^{4}}+\sum_{i=N+1}^{\infty} \frac{1}{i^{5}}+\frac{1}{2} \sum_{i=N+1}^{\infty} \frac{1}{i^{6}}+\sum_{i=N+1}^{\infty} \mathrm{O}\left(\frac{1}{i^{7}}\right)
$$

Finally, using again Euler-MacLaurin formula, for (simple) harmonic sums, we get

$$
\mathrm{H}_{4,2}(N)=\zeta(4,2)-\frac{1}{3} \frac{\zeta(2)}{N^{3}}+\frac{\frac{1}{2} \zeta(2)+\frac{1}{4}}{N^{4}}-\frac{\frac{1}{3} \zeta(2)+\frac{2}{5}}{N^{5}}+\mathrm{O}\left(\frac{1}{N^{6}}\right)
$$

Unfortunately, it is easy to see that this consideration does not enable to get the asymptotic expansion for a divergent word. More precisely, you can get the right divergent terms in the scale of $\left\{\ln ^{\alpha}(N), \alpha \in \mathbb{N}_{+}\right\}$ and the right infinitesimal terms in the scale $\left\{\ln ^{\alpha}(N) N^{-\beta}, \alpha \in \mathbb{N}, \beta \in \mathbb{N}_{+}\right\}$, but you can not reach the N-free term. By (26), for any $w \in Y^{*}$, there exists a polynomial q_{w} on γ with coefficients which are combination on $\zeta(v), v \in \mathrm{C}_{2}$, such that $\mathrm{H}_{w}(N) \widetilde{N \rightarrow \infty} q_{w}(\gamma)[13]$.

If we now consider the derivation D verifying $D w=0$ for a convergent word w and $D\left(y_{1} w\right)=w$, for any word w, then for any $w \in Y^{*}$, we get the Taylor expansion of w as follows

$$
\begin{equation*}
w=\sum_{k=0}^{|w|} c_{k}(w) \left\lvert\,+\frac{y_{1}^{\lfloor \pm k}}{k!}\right., \quad \text { with } \quad c_{k}(w)=\sum_{i=0}^{|w|-k} \frac{\left(-y_{1}\right)^{i} D^{i}}{i!} D^{k}(w) \tag{27}
\end{equation*}
$$

where all products and powers are carried out with the stuffle product ι^{+}, and all $c_{k}(w)$ being convergent polynomials.

Example 3. Let $w=y_{1}^{2} y_{2}$, then

$$
\begin{aligned}
& c_{2}(w)=\frac{y_{1}^{\lfloor+0}}{0!}+y_{2}=y_{2} \\
& c_{1}(w)=y_{1} y_{2}-y_{1}+y_{2}=-y_{2} y_{1}-y_{3} \\
& c_{0}(w)=y_{1}^{2} y_{2}-y_{1}+y_{1} y_{2}+\frac{y_{1}^{\llcorner+2}}{2!} \oplus y_{2}=y_{2} y_{1}^{2}+y_{3} y_{1}+\frac{1}{2} y_{4}
\end{aligned}
$$

Considering this Taylor expansion, the recursive algorithm to get the expansion of $\mathrm{H}_{w}(N)$ can be summered in these two points :

- If $w=y_{1} w^{\prime}$ then compute Taylor expansion of w. Indeed, thanks to Formula (27),

$$
\mathrm{H}_{w}=\sum_{k=0}^{|w|} \mathrm{H}_{c_{k}(w)} \frac{\mathrm{H}_{1}^{k}}{k!}
$$

so we just need the expansion of $\mathrm{H}_{c_{k}(w)}(N)$

- If $w=y_{s} w^{\prime}$ then compute the asymptotic expansion of $\mathrm{H}_{w^{\prime}}(n-1)$ and then use Euler-MacLaurin summation formula.

Proposition $6([\mathbf{4}, \mathbf{5}])$. There exist algorithmically computable coefficients $b_{i} \in \mathcal{Z}^{\prime}, \kappa_{i} \in \mathbb{N}$ and $\eta_{i} \in \mathbb{Z}$ such that, for any $w \in Y^{*}$,

$$
\mathrm{H}_{w}(N) \sim \sum_{i=0}^{+\infty} b_{i} N^{\eta_{i}} \log ^{\kappa_{i}}(N), \quad \text { for } \quad N \rightarrow+\infty
$$

With the previous notations, we can conclude that the N-free term is given by

$$
\sum_{k=0}^{|w|} \zeta\left(c_{k}(w)\right) \frac{\gamma^{k}}{k!}
$$

Example 4. For $w=y_{1}^{2} y_{2}$, the N-free term occuring in the asymptotic expansion of $\mathrm{H}_{y_{1}^{2} y_{2}}(N)$ is

$$
\begin{aligned}
\sum_{k=0}^{2} \zeta\left(c_{k}(w)\right) \frac{\gamma^{k}}{k!} & =\zeta(2) \frac{\gamma^{2}}{2!}+(-\zeta(2,1)-\zeta(3)) \gamma+\left(\zeta(2,1,1)+\zeta(3,1)+\frac{1}{2} \zeta(4)\right) \\
& =\frac{\zeta(2)}{2} \gamma^{2}-2 \zeta(3) \gamma+\frac{7}{10} \zeta(2)^{2}
\end{aligned}
$$

In the next section, we give an explicite determination of such polynomial.
3.2. Results à l'Abel for noncommutative generating series. Let $\mathcal{C}=\mathbb{C}\left[z, \frac{1}{z}, \frac{1}{1-z}\right]$. The noncommutative generating series of polylogarithms, $\mathrm{L}=\sum_{w \in X^{*}} \operatorname{Li}_{w} w$, satisfies Drinfel'd differential equation $[\mathbf{6}, \mathbf{7}]$

$$
\begin{equation*}
d \mathrm{~L}=\left(x_{0} \omega_{0}+x_{1} \omega_{1}\right) \mathrm{L} \quad \text { with the condition } \mathrm{L}(\varepsilon)=e^{x_{0} \log \varepsilon}+O(\sqrt{\varepsilon}) \quad \text { for } \varepsilon \rightarrow 0^{+} . \tag{28}
\end{equation*}
$$

This enables to prove that L is the exponential of a Lie series [10]. From the factorization of monoid by Lyndon words $l \in \mathcal{L} y n X$, we get the factorization of the series $\mathrm{L}[\mathbf{1 0}]$:

$$
\begin{equation*}
\mathrm{L}(z)=e^{x_{1} \log \frac{1}{1-z}}\left[\prod_{l \in \mathcal{L} y n X \backslash\left\{x_{0}, x_{1}\right\}}^{\nu} e^{\operatorname{Li}_{S_{l}}(z)[l]}\right] e^{x_{0} \log z} \tag{29}
\end{equation*}
$$

For all $l \in \mathcal{L} y n X \backslash\left\{x_{0}, x_{1}\right\}$, we have $S_{l} \in x_{0} X^{*} x_{1}$. So, let us put [10]

$$
\begin{equation*}
\mathrm{L}_{\mathrm{reg}}=\prod_{l \in \mathcal{L} y n X \backslash\left\{x_{0}, x_{1}\right\}}^{\searrow} e^{\mathrm{Li}_{S_{l}}[l]} \quad \text { and } \quad Z=\mathrm{L}_{\mathrm{reg}}(1) \tag{30}
\end{equation*}
$$

Let σ be the monoid endomorphism verifying $\sigma\left(x_{0}\right)=-x_{1}, \sigma\left(x_{1}\right)=-x_{0}$, we also get [11]

$$
\begin{equation*}
\mathrm{L}(z)=\sigma[\mathrm{L}(1-z)] Z=e^{x_{0} \log z} \sigma\left[\mathrm{~L}_{\mathrm{reg}}(1-z)\right] e^{-x_{1} \log (1-z)} Z \tag{31}
\end{equation*}
$$

Example 5. This gives an alternative derivation of the asymptotic expansion of any $\mathrm{H}_{w}(N)$. Indeed, let us see the example of $w=y_{2} y_{1}$,

$$
\begin{aligned}
\mathrm{Li}_{2,1}(z) & =-\operatorname{Li}_{3}(1-z)+\log (1-z) \operatorname{Li}_{2}(1-z)-\frac{1}{2} \log ^{2}(1-z) \operatorname{Li}_{1}(1-z)-\zeta(2) \operatorname{Li}_{1}(1-z)+\zeta(3) \\
& =-(1-z)+(1-z) \log (1-z)-\frac{1}{2}(1-z) \log ^{2}(1-z)-\zeta(2)(1-z)+\zeta(3)+\mathrm{O}(|1-z|)
\end{aligned}
$$

$$
\mathrm{P}_{2,1}(z)=\frac{\zeta(3)}{1-z}+\log (1-z)-1-\frac{\log ^{2}(1-z)}{2}+(1-z)\left(-\frac{\log ^{2}(1-z)}{4}+\frac{\log (1-z)}{4}\right)+\mathrm{O}(|1-z|),
$$

and so, since $\left[z^{N}\right] \log ^{2}(1-z)=\left[z^{N}\right] 2!(1-z) \mathrm{P}_{1,1}(z)=2\left(\mathrm{H}_{1,1}(N)-\mathrm{H}_{1,1}(N-1)\right)$, and using Identity 20, we get

$$
\begin{aligned}
{\left[z^{N}\right] \mathrm{P}_{2,1}(z) } & =\mathrm{H}_{2,1}(N) \\
& =\zeta(3)-\frac{\log (N)+1+\gamma}{N}+\frac{1}{2} \frac{\log (N)}{N^{2}}+\mathrm{O}\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

In consequence, from (29) and (31), we get respectively

$$
\begin{equation*}
\mathrm{L}(z) \underset{z \rightarrow 0}{\widetilde{ }} \exp \left(x_{0} \log z\right) \quad \text { and } \quad \mathrm{L}(z) \widetilde{z \rightarrow 1} \exp \left(x_{1} \log \frac{1}{1-z}\right) Z \tag{32}
\end{equation*}
$$

where the equivalency shall be understood as an equivalence word by word. Let π_{Y} a projector from $\mathbb{C}\langle\langle X\rangle\rangle$ to $\mathbb{C}\langle\langle Y\rangle\rangle$ erasing the monomials ending with the letter x_{0}. Then

$$
\begin{equation*}
\Lambda(z)=\pi_{Y} \mathrm{~L}(z) \widetilde{z \rightarrow 1} \exp \left(y_{1} \log \frac{1}{1-z}\right) \pi_{Y} Z \tag{33}
\end{equation*}
$$

In consequence, defining $\mathrm{P}(z)=\sum_{w \in X^{*}} \mathrm{P}_{w}(z) w=\frac{\mathrm{L}(z)}{1-z}$, noncommutative generating series defined over \mathcal{C}, we get, by (29)

$$
\begin{equation*}
\mathrm{P}(z)=e^{-\left(x_{1}+1\right) \log (1-z)} \mathrm{L}_{\mathrm{reg}}(z) e^{x_{0} \log z} \tag{34}
\end{equation*}
$$

Lemma 1. Let $\operatorname{Mono}(z)=e^{-\left(x_{1}+1\right) \log (1-z)}$. Then

$$
\text { Mono }=\sum_{k \geq 0} \mathrm{P}_{y_{1}^{k}} y_{1}^{k} \quad \text { and } \quad \mathrm{Mono}^{-1}=\sum_{k \geq 0} \mathrm{P}_{y_{1}^{k}}\left(-y_{1}\right)^{k}
$$

Since the coefficient of z^{N} in the Taylor expansion of $\mathrm{P}_{y_{1}^{k}}$ is $\mathrm{H}_{y_{1}^{k}}(N)$ then
Lemma 2. Let Const $=\sum_{k \geq 0} \mathrm{H}_{y_{1}^{k}} y_{1}^{k}$. Then

$$
\text { Const }=\exp \left[-\sum_{k \geq 1} \mathrm{H}_{y_{k}} \frac{\left(-y_{1}\right)^{k}}{k}\right] \quad \text { and } \quad \text { Const }^{-1}=\exp \left[\sum_{k \geq 1} \mathrm{H}_{y_{k}} \frac{\left(-y_{1}\right)^{k}}{k}\right]
$$

DEFINITION 3 ([12]). Let $\zeta_{\amalg}:(\mathbb{C}\langle X\rangle, ш) \rightarrow(\mathbb{C},$.$) be the algebra morphism (i.e. for any u, v \in$ $\left.X^{*}, \zeta_{\amalg}(u ш v)=\zeta_{\amalg}(u) \zeta_{\amalg}(v)\right)$ verifying for any convergent word $w \in x_{0} X^{*} x_{1}, \zeta_{\amalg}(w)=\zeta(w)$, and such that $\zeta_{\amalg}\left(x_{0}\right)=\zeta_{\amalg}\left(x_{1}\right)=0$.

Then, the noncommutative generating series $Z_{\amalg}=\sum_{w \in X^{*}} \zeta_{\amalg}(w) w$ verifies $Z_{\amalg}=Z[\mathbf{1 2}]$. In consequence, Z_{\amalg} is the unique Lie exponential verifying $\left\langle Z_{\amalg} \mid x_{0}\right\rangle=\left\langle Z_{\amalg} \mid x_{1}\right\rangle=0$ and $\left\langle Z_{\amalg} \mid w\right\rangle=\zeta(w)$, for any $w \in$ $x_{0} X^{*} x_{1}$.

Proposition 7. $\mathrm{P}(z) \underset{z \rightarrow 0}{\sim} e^{x_{0} \log z}$ and $\mathrm{P}(z) \underset{z \rightarrow 1}{\sim} \operatorname{Mono}(z) Z$.
Proof. From $\mathrm{P}(z)=e^{-\left(x_{1}+1\right) \log (1-z)} \mathrm{L}_{\mathrm{reg}}(z) e^{x_{0} \log z}$, we can deduce the behaviour of $\mathrm{P}(z)$ around 0 . From Formula (31), we get the behaviour of $\mathrm{P}(z)$ around 1 .

Corollary 1. Let $\Pi(z)=\pi_{Y} \mathrm{P}(z)=\sum_{w \in Y^{*}} \mathrm{P}_{w}(z) w$. Then $\Pi(z) \widetilde{z \rightarrow 1} \operatorname{Mono}(z) \pi_{Y} Z$.
¿From this, we extract, taking care of Lemma 1, Taylor coefficients of P_{w}, and we get
Corollary 2. $\mathrm{H}(N) \widetilde{N \rightarrow \infty} \underset{\sim}{ } \operatorname{Const}(N) \pi_{Y} Z$.

Theorem 4.

$$
\lim _{z \rightarrow 1} \exp \left(-y_{1} \log \frac{1}{1-z}\right) \Lambda(z)=\lim _{N \rightarrow \infty} \exp \left(\sum_{k \geq 1} \mathrm{H}_{y_{k}}(N) \frac{\left(-y_{1}\right)^{k}}{k}\right) \mathrm{H}(N)=\pi_{Y} Z
$$

where the limit shall be understood as a limit word by word.
Proof. This is a consequence of Formula (33), of Lemma 2 and of Corollary 2.

3.3. Generalized Euler constants associated to divergent polyzêtas.

DEFINITION 4. Let $\zeta_{+ \pm}:(\mathbb{C}\langle Y\rangle$, $\pm) \rightarrow(\mathbb{C},$.$) the algebra morphism (i.e. for any convergent word$ $\left.u, v \in Y^{*}, \zeta_{\llcorner \pm}(u \amalg v)=\zeta_{\llcorner \pm}(u) \zeta_{ \pm \pm}(v)\right)$ verifying for any $w \in Y^{*} \backslash y_{1} Y^{*}, \zeta_{ \pm \pm}(w)=\zeta(w)$ and such that $\zeta_{\text {เே }}\left(y_{1}\right)=\gamma$.

Proposition 8.

$$
\zeta_{\llcorner \pm}\left(y_{1}^{k}\right)=\sum_{\substack{s_{1}, \ldots, s_{k}>0 \\ s_{1}+\ldots+s_{k}=k}} \frac{(-1)^{k}}{s_{1}!\ldots s_{k}!}(-\gamma)^{s_{1}}\left(-\frac{\zeta(2)}{2}\right)^{s_{2}} \ldots\left(-\frac{\zeta(k)}{k}\right)^{s_{k}}
$$

Proof. By (20) and applying the (surjective) morphism $\zeta_{ \pm \pm}$, we get the expected result.
In consequence,
THEOREM 5 ([13]). For $k>0$, the constant $\zeta_{\llcorner+ \pm}\left(y_{1}^{k}\right)$ associated to divergent polyzêta $\zeta\left(y_{1}^{k}\right)$ is a polynomial of degree k in γ with coefficients in $\mathbb{Q}[\zeta(2), \zeta(2 i+1)]_{0<i \leq(k-1) / 2}$. Moreover, for $l=0, . ., k$, the coefficient of γ^{l} is of weight $k-l$.

Example 6.

$$
\begin{aligned}
\zeta_{ \pm \pm}\left(y_{1}^{2}\right) & =\frac{\gamma^{2}-\zeta(2)}{2} \\
\zeta_{ \pm \pm}\left(y_{1}^{3}\right) & =\frac{\gamma^{3}-3 \zeta(2) \gamma+2 \zeta(3)}{6} \\
\zeta_{ \pm \pm}\left(y_{1}^{4}\right) & =\frac{80 \zeta(3) \gamma-60 \zeta(2) \gamma^{2}+6 \zeta(2)^{2}+10 \gamma^{4}}{240} \\
\zeta_{ \pm \pm}\left(y_{1}^{5}\right) & =\frac{-20 \zeta(2) \zeta(3)+20 \zeta(3) \gamma^{2}-10 \zeta(2) \gamma^{3}+\gamma^{5}+3 \zeta^{2}(2) \gamma+24 \zeta(5)}{120}
\end{aligned}
$$

Let us consider the (exponential) partial Bell polynomials in the variables $\left\{t_{l}\right\}_{l \geq 1}, b_{n, k}\left(t_{1}, \ldots, t_{n-k+1}\right)$, defined by the exponential generating series :

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n} b_{n, k}\left(t_{1}, \ldots, t_{n-k+1}\right) \frac{v^{n} u^{k}}{n!}=\exp \left(u \sum_{l=1}^{\infty} t_{l} \frac{v^{l}}{l!}\right) \tag{35}
\end{equation*}
$$

Example 7 (Polynomials $b_{n, k}$ for $n \leq 5$).

	k	0	1	2	3	4
n	1					
0	0	t_{1}				
1	0	t_{2}	t_{1}^{2}			
2	0	t_{3}	$3 t_{1} t_{2}$	t_{1}^{3}		
3	0	t_{4}	$3 t_{2}^{2}+4 t_{1} t_{3}$	$6 t_{1}^{2} t_{2}$	t_{1}^{4}	
4	0	t_{5}	$10 t_{2} t_{3}+5 t_{1} t_{4}$	$10 t_{1}^{2} t_{3}+15 t_{1} t_{2}^{2}$	$10 t_{1}^{3} t_{2}$	t_{1}^{5}
5						

In particular, we have

Lemma 3. Let $t_{m}=(-1)^{m+1}(m-1)!\zeta_{++\perp}(m)$, for $m \geq 1$. Then

$$
\exp \left[-\sum_{k \geq 1} \zeta_{\llcorner+1}(k) \frac{\left(-y_{1}\right)^{k}}{k}\right]=1+\sum_{n \geq 1}\left[\sum_{k=1}^{n} b_{n, k}(\gamma,-\zeta(2), 2 \zeta(3), \ldots)\right] \frac{y_{1}^{n}}{n!}
$$

Let us build the noncommutative generating series of $\zeta_{+ \pm}(w)$ and let us take the constant part of the two members of $\mathrm{H}(N) \widetilde{N \rightarrow \infty} \operatorname{Const}(N) \pi_{Y} Z$, we have

THEOREM 6. Let $Z_{ \pm \pm}=\sum_{w \in Y^{*}} \zeta_{ \pm \pm}(w) w$ be the noncommutative generating series of the constants $\zeta_{\text {Ł+ }}(w)$. Then

$$
Z_{\text {เ+ }}=\left[1+\sum_{n \geq 1}\left(\sum_{k=1}^{n} b_{n, k}(\gamma,-\zeta(2), 2 \zeta(3), \ldots)\right) \frac{y_{1}^{n}}{n!}\right] \pi_{Y} Z
$$

Identifying coefficients of $y_{1}^{k} w$ in each member leads to
Corollary 3. For all $w \in Y^{*} \backslash y_{1} Y^{*}$ and $k \geq 0$, we have

$$
\zeta_{ \pm \pm}\left(y_{1}^{k} w\right)=\sum_{i=0}^{k} \frac{\zeta_{\amalg}\left(y_{1}^{k-i} w\right)}{i!}\left[\sum_{j=1}^{i} b_{i, j}(\gamma,-\zeta(2), 2 \zeta(3), \ldots)\right] .
$$

Example 8.

$$
\begin{aligned}
\zeta_{ \pm \pm}\left(y_{1}^{2} y_{2}\right) & =\zeta_{\amalg}\left(y_{1}^{2} y_{2}\right)+\zeta_{\amalg}\left(y_{1} y_{2}\right) b_{1,1}(\gamma)+\frac{\zeta(2)}{2!}\left(b_{2,1}(-\zeta(2))+b_{2,2}(\gamma)\right) \\
& =3 \zeta(2,1,1)-2 \zeta(2,1) \gamma+\frac{\zeta(2)}{2}\left(-\zeta(2)+\gamma^{2}\right)
\end{aligned}
$$

and using the reduction table, we find

$$
\zeta_{ \pm \pm}\left(y_{1}^{2} y_{2}\right)=\frac{\zeta(2)}{2} \gamma^{2}-2 \zeta(3) \gamma+\frac{7}{10} \zeta(2)^{2},
$$

a result in agreement with Example 4.
In consequence,
ThEOREM $7([\mathbf{1 3}])$. For $w \in Y^{*} \backslash y_{1} Y^{*}, k \geq 0$, the constant $\zeta_{ \pm+}\left(y_{1}^{k} w\right)$ associated to $\zeta\left(y_{1}^{k} w\right)$ is a polynomial of degree k in γ and with coefficients in \mathcal{Z}. Moreover, for $l=0, . ., k$, the coefficient of γ^{l} is of weight $|w|+k-l$.

4. Applications to maxima in hypercubes

Definition 5. Let $w=y_{s_{1}} \ldots y_{s_{r}} \in Y^{*}$. For $N \geq k \geq 1$, the harmonic sum $\mathrm{A}_{w}(N ; k)$ is defined as

$$
\mathrm{A}_{w}(N ; k)=\sum_{N \geq n_{1} \geq \ldots \geq n_{r} \geq k} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}
$$

For convenience, we use the notation $\mathrm{A}_{w}(N)$ instead of $\mathrm{A}_{w}(N ; 1)$ (see Definition 2).
Proposition 9. For any $u, v \in Y^{*}, \mathrm{~A}_{u \downharpoonright v}(N ; k)=\mathrm{A}_{u}(N ; k) \mathrm{A}_{v}(N ; k)$.
In all the sequel, $|w|_{2}$ denotes the number of occurences of the letter y_{2} in w and we focus on the asymptotic equivalent of $\mathbb{V} a r\left(K_{n, d}\right)$ from Formula (3), κ_{d} given by Formula (4). This one can be re-written, with our tools, in the following way:

$$
\kappa_{d}=\frac{1}{(d-1)!} \sum_{t=1}^{d-2}\binom{d-1}{t} \sum_{l \geq 1} \frac{1}{l^{2}} A_{y_{1}^{t-1} \sqcup y_{1}^{d-2-t}}(l)
$$

We need a last ad hoc notation.
DEFINITION 6. Let S be a subset of Y, and ρ a positive integer, we define S_{ρ} as the set of words containing only letters in S, and of weight equal to ρ.

Example 9. Let $S=\left\{y_{1}, y_{2}\right\}$ and $\rho=4$ then $S_{\rho}=\left\{y_{1}^{4}, y_{1} y_{2} y_{1}, y_{1}^{2} y_{2}, y_{2} y_{1}^{2}, y_{2}^{2}\right\}$.

Theorem 8.

$$
\kappa_{d}=\frac{1}{(d-1)!} \sum_{w \in\left\{y_{1}, y_{2}\right\}_{d-3}}(-1)^{|w|_{2}}\binom{2\left(d-2-|w|_{2}\right)}{d-2-|w|_{2}} \underline{\zeta}\left(y_{2} w\right) .
$$

Example 10. For $d=7$, we get

$$
6!\kappa_{7}=\binom{10}{5} \underline{\zeta}(2,1,1,1,1)-\binom{8}{4}(\underline{\zeta}(2,2,1,1)+\underline{\zeta}(2,1,2,1)+\underline{\zeta}(2,1,1,2))+\binom{6}{3} \underline{\zeta}(2,2,2) .
$$

See Appendix A for more examples
The last step consists in reducing into polyzêta, and then use the reduction table.

$$
\begin{aligned}
\kappa_{11} & =\frac{209}{302400} \zeta(5) \zeta(2) \zeta(3)+\frac{2893}{6048000} \zeta(2)^{2} \zeta(3)^{2}+\frac{3311}{460800} \zeta(3) \zeta(7) \\
& -\frac{517}{921600} \zeta(8,2)+\frac{39457}{9676800} \zeta(5)^{2}+\frac{426341}{221760000} \zeta(2)^{5}
\end{aligned}
$$

Let us come back to Expression (1), that we can interpret, in terms of harmonic sums,

$$
\mathbb{E}\left(K_{n, d}^{2}\right)=\mathrm{A}_{y_{1}^{d-1}}(n)+\sum_{1 \leq t \leq d-1}\binom{d}{t} \sum_{l=1}^{n-1} \frac{1}{l} \mathrm{~A}_{y_{1}^{t-1}}(l) \mathrm{A}_{y_{1}^{d-t-1}}(l) \mathrm{A}_{y_{1}^{d-1}}(n ; l+1),
$$

Proposition 10. For any integers $n \geq l, \mathrm{~A}_{y_{1}^{d}}(n ; l)=\sum_{\substack{k_{1}+\ldots+d k_{d}=d \\ k_{1}, \ldots, k_{d}>0}} \frac{\mathrm{~A}_{1}^{k_{1}}(n ; l) \ldots \mathrm{A}_{d}^{k_{d}}(n ; l)}{1^{k_{1}} k_{1}!\ldots d^{k_{d}} k_{d}!}$
Since $\mathrm{A}_{r}(n ; l+1)=\mathrm{A}_{r}(n)-\mathrm{A}_{r}(l)$, for any integer r^{1}, this enables to turn the summand into a polynomial involving only some $\mathrm{A}_{w}(n)$ and $\mathrm{A}_{w}(l)$.

- Thanks to Proposition 9, we are able to turn each polynomial (in harmonic sums) into a linear combination of harmonic sums.
- Finally, there are only sums over l of type $\frac{A_{w}(l)}{l}$ left, but by Formula (23), they simply reduce to $A_{y_{1} w}(n-1)$.

$$
\begin{aligned}
\operatorname{Var}\left(K_{n, 3}\right) & =\mathbb{E}\left(K_{n, 3}^{2}\right)-\mu_{n, 3}^{2} \\
& =\mathrm{A}_{1,1}(n)+3 \mathrm{~A}_{1}{ }^{2}(n) \mathrm{A}_{1,1}(n-1)-12 \mathrm{~A}_{1}(n) \mathrm{A}_{1,1,1}(n-1) \\
& +6 \mathrm{~A}_{1}(n) \mathrm{A}_{1,2}(n-1)+18 \mathrm{~A}_{1,1,1,1}(n-1)-12 \mathrm{~A}_{1,1,2}(n-1) \\
& -12 \mathrm{~A}_{1,2,1}(n-1)+6 \mathrm{~A}_{1,3}(n-1)+3 \mathrm{~A}_{2}(n) \mathrm{A}_{1,1}(n-1)-\mathrm{A}_{1,1}^{2}(n) .
\end{aligned}
$$

We can now compute the asymptotic expansion of $\mathbb{V} \operatorname{ar}\left(K_{n, d}\right)$.
Theorem 9. There exist algorithmically computable coefficients $\alpha_{i}, \beta_{j, k} \in \mathcal{Z}^{\prime}$ such that, for any dimension d and any order M,

$$
\operatorname{Var}\left(K_{n, d}\right)=\sum_{i=0}^{2 d-2} \alpha_{i} \ln ^{i}(n)+\sum_{j=1}^{M} \frac{1}{n^{j}} \sum_{k=0}^{2 d-2} \beta_{j, k} \ln ^{k}(n)+\mathrm{o}\left(\frac{1}{n^{M}}\right) .
$$

This is a direct consequence of Proposition 6.
Example 11.

$$
\begin{aligned}
\operatorname{Var}\left(K_{n, 3}\right) & =\left(\frac{1}{2}+\kappa_{3}\right) \ln ^{2}(n)+(-10 \zeta(3)+2 \zeta(2) \gamma+\gamma) \ln (n)+\frac{1}{2} \gamma^{2} \\
& -10 \zeta(3) \gamma+\frac{83}{10} \zeta(2)^{2}+\zeta(2) \gamma^{2}+\frac{1}{2} \zeta(2)+\mathrm{o}(1)
\end{aligned}
$$

See Appendix B for more examples

[^0]
Appendix A: values of constants κ_{d}

$$
\begin{aligned}
& \kappa_{2}=0 \\
& \kappa_{3}=\zeta(2) \\
& \kappa_{4}=2 \zeta(3) \\
& \kappa_{5}=\frac{33}{40} \zeta(2)^{2} \\
& \kappa_{6}=\frac{5}{4} \zeta(5)+\frac{1}{6} \zeta(2) \zeta(3) \\
& \kappa_{7}=\frac{1451}{7560} \zeta(2)^{3}+\frac{7}{72} \zeta(3)^{2} \\
& \kappa_{8}=\frac{1729}{5760} \zeta(7)+\frac{181}{3600} \zeta(3) \zeta(2)^{2}+\frac{13}{360} \zeta(2) \zeta(5) \\
& \kappa_{9}=-\frac{17}{1920} \zeta(6,2)+\frac{11}{160} \zeta(3) \zeta(5)+\frac{1}{320} \zeta(2) \zeta(3)^{2}+\frac{1891}{89600} \zeta(2)^{4} \\
& \kappa_{10}=\frac{529}{75600} \zeta(2)^{2} \zeta(5)+\frac{33941}{6350400} \zeta(2)^{3} \zeta(3)+\frac{17}{3360} \zeta(2) \zeta(7) \\
& +\frac{199271}{4354560} \zeta(9)+\frac{11}{12960} \zeta(3)^{3} \\
& \kappa_{11}=\frac{209}{302400} \zeta(5) \zeta(2) \zeta(3)+\frac{2893}{6048000} \zeta(2)^{2} \zeta(3)^{2}+\frac{3311}{460800} \zeta(3) \zeta(7)-\frac{517}{921600} \zeta(8,2) \\
& +\frac{39457}{9676800} \zeta(5)^{2}+\frac{426341}{221760000} \zeta(2)^{5} \\
& \kappa_{12}=-\frac{13}{100800} \zeta(3) \zeta(6,2)+\frac{877}{302400} \zeta(2) \zeta(9)+\frac{299}{604800} \zeta(5) \zeta(3)^{2}+\frac{13}{907200} \zeta(2) \zeta(3)^{3} \\
& +\frac{7949}{6048000} \zeta(2)^{2} \zeta(7)+\frac{1081}{1411200} \zeta(5) \zeta(2)^{3}+\frac{172157}{423360000} \zeta(2)^{4} \zeta(3) \\
& -\frac{586337}{232243200} \zeta(11)-\frac{13}{100800} \zeta(8,2,1) \\
& \kappa_{13}=\frac{169}{3456000} \zeta(5) \zeta(3) \zeta(2)^{2}-\frac{1703}{43545600} \zeta(7) \zeta(2) \zeta(3)+\frac{9061}{8294400} \zeta(3) \zeta(9) \\
& +\frac{471809}{348364800} \zeta(5) \zeta(7)-\frac{13}{604800} \zeta(2)^{2} \zeta(6,2)-\frac{13}{215040} \zeta(2) \zeta(8,2) \\
& +\frac{4667}{381024000} \zeta(2)^{3} \zeta(3)^{2}+\frac{11947}{174182400} \zeta(10,2)-\frac{13}{483840} \zeta(8,2,1,1) \\
& +\frac{13}{2903040} \zeta(3)^{4}-\frac{2873}{87091200} \zeta(2) \zeta(5)^{2}+\frac{11884374679}{152562009600000} \zeta(2)^{6} .
\end{aligned}
$$

Appendix B: Asymptotic expansions of $\mathbb{V} \operatorname{ar}\left(K_{n, d}\right)$

$$
\begin{aligned}
& \operatorname{Var}\left(K_{n, 4}\right)=\left(\frac{1}{3!}+\kappa_{4}\right) \ln ^{3}(n)+\left(-\frac{53}{5} \zeta(2)^{2}+6 \zeta(3) \gamma+\frac{1}{2} \gamma\right) \ln ^{2}(n) \\
& +\left(97 \zeta(5)-\frac{106}{5} \zeta(2)^{2} \gamma+16 \zeta(2) \zeta(3)+6 \zeta(3) \gamma^{2}+\frac{1}{2} \zeta(2)+\frac{1}{2} \gamma^{2}\right) \ln (n) \\
& +\frac{1}{3} \zeta(3)-\frac{53}{5} \zeta(2)^{2} \gamma^{2}-\frac{3719}{70} \zeta(2)^{3}+\frac{1}{6} \gamma^{3}+\frac{1}{2} \zeta(2) \gamma \\
& +16 \zeta(2) \zeta(3) \gamma-3 \zeta(3)^{2}+2 \zeta(3) \gamma^{3}+97 \zeta(5) \gamma+\mathrm{o}(1) \\
& \mathbb{V a r}\left(K_{n, 5}\right)=\left(\frac{1}{4!}+\kappa_{5}\right) \ln ^{4}(n)+\left(\frac{1}{6} \gamma-\frac{98}{3} \zeta(5)+\frac{33}{10} \zeta(2)^{2} \gamma-\frac{13}{3} \zeta(2) \zeta(3)\right) \ln ^{3}(n) \\
& +\left(\frac{10123}{140} \zeta(2)^{3}+\frac{47}{2} \zeta(3)^{2}+\frac{99}{20} \zeta(2)^{2} \gamma^{2}+\frac{1}{4} \gamma^{2}+\frac{1}{4} \zeta(2)-13 \zeta(2) \zeta(3) \gamma\right. \\
& -98 \zeta(5) \gamma) \ln ^{2}(n)+\left(\frac{1}{6} \gamma^{3}+\frac{33}{10} \zeta(2)^{2} \gamma^{3}+\frac{1}{2} \zeta(2) \gamma-950 \zeta(7)\right. \\
& -13 \zeta(2) \zeta(3) \gamma^{2}+47 \zeta(3)^{2} \gamma+\frac{1}{3} \zeta(3)-\frac{317}{5} \zeta(3) \zeta(2)^{2}+\frac{10123}{70} \zeta(2)^{3} \gamma \\
& \text { - } \left.98 \zeta(5) \gamma^{2}-222 \zeta(2) \zeta(5)\right) \ln (n)-\frac{13}{3} \zeta(2) \zeta(3) \gamma^{3}+\frac{47}{2} \zeta(3)^{2} \gamma^{2} \\
& -\frac{317}{5} \zeta(3) \zeta(2)^{2} \gamma-\frac{98}{3} \zeta(5) \gamma^{3}+\frac{33}{40} \zeta(2)^{2} \gamma^{4}+\frac{32}{3} \zeta(3) \zeta(5)+\frac{10123}{140} \zeta(2)^{3} \gamma^{2} \\
& -222 \zeta(2) \zeta(5) \gamma+\frac{1}{24} \gamma^{4}-950 \zeta(7) \gamma+50 \zeta(6,2)+\frac{1}{4} \zeta(2) \gamma^{2}+\frac{1}{3} \zeta(3) \gamma \\
& +\frac{9}{40} \zeta(2)^{2}+\frac{95}{6} \zeta(2) \zeta(3)^{2}+\frac{134739}{350} \zeta(2)^{4}+\mathrm{o}(1) \\
& \operatorname{Var}\left(K_{n, 6}=\left(\frac{1}{5!}+\kappa_{6}\right) \ln ^{5}(n)+\left(\frac{1}{24} \gamma+\frac{25}{4} \zeta(5) \gamma+\frac{5}{6} \zeta(2) \zeta(3) \gamma-\frac{25}{6} \zeta(3)^{2}\right.\right. \\
& \left.-\frac{22711}{2520} \zeta(2)^{3}\right) \ln ^{4}(n)+\left(\frac{1}{12} \gamma^{2}+\frac{1231}{30} \zeta(3) \zeta(2)^{2}-\frac{50}{3} \zeta(3)^{2} \gamma\right. \\
& +\frac{8729}{24} \zeta(7)+\frac{127}{2} \zeta(2) \zeta(5)+\frac{1}{12} \zeta(2)+\frac{5}{3} \zeta(2) \zeta(3) \gamma^{2}-\frac{22711}{630} \zeta(2)^{3} \gamma \\
& \left.+\frac{25}{2} \zeta(5) \gamma^{2}\right) \ln ^{3}(n)+\left(-55 \zeta(6,2)-\frac{241}{6} \zeta(2) \zeta(3)^{2}+\frac{1231}{10} \zeta(3) \zeta(2)^{2} \gamma\right. \\
& +\frac{1}{12} \gamma^{3}+\frac{1}{4} \zeta(2) \gamma+\frac{8729}{8} \zeta(7) \gamma-\frac{2331589}{4200} \zeta(2)^{4}+\frac{1}{6} \zeta(3)+\frac{25}{2} \zeta(5) \gamma^{3} \\
& +\frac{5}{3} \zeta(2) \zeta(3) \gamma^{3}-342 \zeta(3) \zeta(5)-25 \zeta(3)^{2} \gamma^{2}-\frac{22711}{420} \zeta(2)^{3} \gamma^{2} \\
& \left.+\frac{381}{2} \zeta(2) \zeta(5) \gamma\right) \ln ^{2}(n)+\left(\frac{8729}{8} \zeta(7) \gamma^{2}-\frac{2331589}{2100} \zeta(2)^{4} \gamma+\frac{381}{2} \zeta(2) \zeta(5) \gamma^{2}\right. \\
& -\frac{241}{3} \zeta(2) \zeta(3)^{2} \gamma+\frac{1231}{10} \zeta(3) \zeta(2)^{2} \gamma^{2}-19 \zeta(3)^{3}+\frac{1}{4} \zeta(2) \gamma^{2}+\frac{9}{40} \zeta(2)^{2} \\
& -\frac{50}{3} \zeta(3)^{2} \gamma^{3}-110 \zeta(6,2) \gamma+\frac{25}{4} \zeta(5) \gamma^{4}+\frac{1}{3} \zeta(3) \gamma+\frac{21919}{20} \zeta(2)^{2} \zeta(5) \\
& -\frac{22711}{630} \zeta(2)^{3} \gamma^{3}+\frac{135593}{315} \zeta(2)^{3} \zeta(3)+\frac{182179}{18} \zeta(9)+\frac{5}{6} \zeta(2) \zeta(3) \gamma^{4} \\
& \left.-684 \zeta(3) \zeta(5) \gamma+\frac{19209}{8} \zeta(2) \zeta(7)+\frac{1}{24} \gamma^{4}\right) \ln (n)+\frac{127}{2} \zeta(2) \zeta(5) \gamma^{3} \\
& +\frac{1231}{30} \zeta(3) \zeta(2)^{2} \gamma^{3}-\frac{241}{6} \zeta(2) \zeta(3)^{2} \gamma^{2}-342 \zeta(3) \zeta(5) \gamma^{2}+\frac{1}{6} \zeta(2) \zeta(3) \gamma^{5} \\
& +\frac{1}{6} \zeta(2) \zeta(3)+\frac{182179}{18} \zeta(9) \gamma+\frac{9}{40} \zeta(2)^{2} \gamma-19 \zeta(3)^{3} \gamma+\frac{1}{6} \zeta(3) \gamma^{2} \\
& -\frac{2331589}{4200} \zeta(2)^{4} \gamma^{2}+\frac{1}{5} \zeta(5)-55 \zeta(6,2) \gamma^{2}-325 \zeta(8,2)+\frac{135593}{315} \zeta(2)^{3} \zeta(3) \gamma \\
& -55 \zeta(2) \zeta(6,2)+\frac{1}{12} \zeta(2) \gamma^{3}+\frac{8729}{24} \zeta(7) \gamma^{3}-\frac{22711}{2520} \zeta(2)^{3} \gamma^{4}-\frac{25}{6} \zeta(3)^{2} \gamma^{4}+\frac{1}{120} \gamma^{5} \\
& -945 \zeta(5)^{2}-\frac{6237237}{2200} \zeta(2)^{5}+\frac{767}{30} \zeta(2)^{2} \zeta(3)^{2}-\frac{9031}{12} \zeta(3) \zeta(7)-392 \zeta(5) \zeta(2) \zeta(3) \\
& +\frac{5}{4} \zeta(5) \gamma^{5}+\frac{21919}{20} \zeta(2)^{2} \zeta(5) \gamma+\frac{19209}{8} \zeta(2) \zeta(7) \gamma+\mathrm{o}(1) .
\end{aligned}
$$

ACKNOWLEDGMENTS. We acknowledge the influence of Cartier's lectures at the GdT Polylogarithmes et Polyzêtas. We greatly appreciated many fruitful discussions with Boutet de Monvel, Enjalbert, Jacob, Petitot and Waldschmidt.

References

[1] Z.D. Bai, C.C. Chao, H.K. Hwang, W.Q. Liang.- On the variance of the number of maxima in random vectors and its applications, Annals of Applied Probability, 8(3), pp. 886-895, 1998. MathReview: 99f:60019
[2] Z.D. Bai, L. Devroye, H.K. Hwang, T.H. Tsai.- Maxima in hypercubes, Random Structures and Algorithms, 27 (3), pp. 290-309, 2005.
[3] O. Barndorff-Nielsen, M. Sobel.- On the distribution of the number of admissible points in a vector random sample, Theory Proba. Appl., 11, pp.249-269, 1966.
[4] C. Costermans, J.Y. Enjalbert, Hoang Ngoc Minh.- Algorithmic and combinatoric aspects of multiple harmonic sums, Discrete Mathematics \& Theoretical Computer Science (2005).
[5] C. Costermans, J.Y. Enjalbert, Hoang Ngoc Minh and M. Petitot.- Structure and asymptotic expansion of multiple harmonic sums, in the proceedings of International Symposium on Symbolic and Algebraic Computation, Beijing, China(2005)
[6] V. Drinfel'd.- Quasi-Hopf Algebras, Len. Math. J., 1, pp. 1419-1457, 1990.
[7] V. Drinfel'd.- On quasitriangular quasi-hopf algebra and a group closely connected with gal($\bar{q} / q)$, Leningrad Math. J. (2), 4, pp. 829-860, 1991.
[8] G.H. Hardy.- Divergent series, Clarendon (1949).
[9] Hoang Ngoc Minh and M. Petitot.- Lyndon words, polylogarithmic functions and the Riemann ζ function, Discrete Math., 217, 2000, pp. 273-292.
[10] Hoang Ngoc Minh, M. Petitot and J. Van der Hoeven.- Polylogarithms and Shuffle Algebra, FPSAC'98, Toronto, Canada, Juin 1998.
[11] Hoang Ngoc Minh, M. Petitot and J. Van der Hoeven.- L'algèbre des polylogarithms par les séries génératrices, FPSAC'99, Barcelona, Spain, Juin 1999.
[12] Hoang Ngoc Minh, Jacob G., N.E. Oussous, M. Petitot.- De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées, journal électronique du Séminaire Lotharingien de Combinatoire B44e, (2001).
[13] Hoang Ngoc Minh.- Finite polyzetas, Poly-Bernoulli numbers, identities of polyzetas and noncommutative rational power series, in the proc. of $4^{\text {th }}$ Int. Conf. on Words, pp. 232-250, September, 10-13 Turku, Finland, (2003).
[14] M. Hoffman.- The algebra of multiple harmonic series, Jour. of Alg., August (1997).
[15] M. Hoffman.- Hopf Algebras and Multiple Harmonic Sums, Loops and Legs in Quantum Field Theory, Zinnowitz, Germany, April 2004.
[16] V. M. Ivanin.- Calculation of the dispersion of the number of elements of the Pareto set for the choice of independent vectors with independent components, Theory of Optimal Decisions, Akad. Nauk. Ukrain. SSR Inst. Kibernet., Kiev., pp. 90-100, 1976.
[17] C. Reutenauer.- Free Lie Algebras, Lon. Math. Soc. Mono., New Series-7, Oxford Science Publications, 1993.
Université Lille 2, 1 Place Déliot, 59024 Lille
E-mail address: ccostermans@univ-lille2.fr
Université Lille 2, 1 Place Déliot, 59024 Lille
E-mail address: hoang@univ-lille2.fr

[^0]: ${ }^{1}$ while this is absolutely false if you replace r by a word of length greater or equal than 2 .

