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Generating functions from the point of view of Rota–Baxter algebras

Li Guo

Abstract. We study generating functions in the context of Rota-Baxter algebras. We show that exponential
generating functions can be naturally viewed in a special free complete Rota-Baxter algebra. This allows
us to use free Rota–Baxter algebras to give a wide class of algebraic structures where generalizations of
generating functions can be studied. We illustrate this by several cases and examples.

1. Introduction

The power series (or ordinary) generating function of a number sequence a0, a1, a2, · · · is the power series

A(z) =
∑

n≥0

anzn.

The exponential generating function (EGF) of a number sequence a1, a2, · · · is the exponential power series

B(z) =
∑

n≥1

an

zn

n!
.

For some sequences, the exponential series has a better formula. For example, the Bell numbers b(n) have
exponential generating function

∑

n≥0

B(n)
xn

n!
= exp(ex − 1).

The Bernoulli numbers Bn have exponential generating function

∑

n≥0

Bn

xn

n!
=

x

ex − 1
.

Such nice analytic expressions are not available in terms of power series generating functions.
One way to view the power series generating functions and exponential generating functions in the same

framework is that they each give a way to encode a number sequence an, n ≥ 0 as the coefficients of a linear
combination with respect to a basis of the power series algebra R[[z]]. The basis is zn, n ≥ 0 for power
series generating functions and is the divided powers zn/n!, n ≥ 0 for exponential generating functions.
The distinction is the two different bases for the same power series ring. We can also view the difference
externally: vk = zk, k ≥ 0 is the standard basis of the algebra

A :=
∏

k≥0

R vk, with componentwise product vmvn = vm+n

2000 Mathematics Subject Classification. Primary 05A15; secondary 05A18, 16W99.
Key words and phrases. exponential generating functions, shuffle products, free Rota-Baxter algebras, divided powers,

Stirling numbers.
The author is supported in part by NSF grant DMS-0505643.

1



2 Li Guo

while wk = zk/k! is the standard basis of the divided power algebra

B :=
∏

k≥0

R wk, with componentwise product wmwn =

(
m+n

m

)
wm+n.

We can take this point of view further and consider the following general framework for generating
functions: A complete filtered R-algebra is a R-algebra A with ideals An, n ≥ 0, such that AmAn ⊆ Am+n

and A is complete with respect to the metric on A induced by An. In other words, the natural map

A → lim
←−

A/An

is bijective. Let U := {uj, j ∈ J}, be a basis of A that is compatible with its filtration in the sense that
U ∩ Ak is a basis of Ak, k ≥ 0. Then a U-generating function of a family of numbers aj ∈ R, j ∈ J , is
the element

∑
j∈J ajuj in A. In this context, a power series generating function is a U-generating function

when U is taken to be the basis vk = {zk, k ≥ 0} in the complete filtered algebra

R[[z]] =
∏

k≥0

R zk ∼=
∏

k≥0

R vk = A

and an exponential generating function is a U-generating function when U is taken to be the basis {wk =
zk/k!, k ≥ 0} in the complete filtered algebra

R[[z]] =
∏

k≥0

R
zk

k!
∼=

∏

k≥0

R wk = B.

In both cases, the complete filtration on R[[z]] is given by the ideals zn
R[[z]] which is also ukA (resp. vkB).

Of course such a formal definition in such generality is of little use unless

(1) it can be naturally related to the ordinary generating functions or exponential generating functions;
(2) it is useful in the study of number sequences and number families.

We will show that free Rota-Baxter algebras do give a generalization with these conditions. In Section 2
we review the construction of free commutative Rota–Baxter algebras and show that their completions give a
large class of complete filtered algebras. In Section 3 we show that such complete free Rota-Baxter algebras
give the exponential generating functions in a very special case. We then show how other instances of
complete free Rota-Baxter algebras give rise to interesting generating functions of sequences of numbers or
multi-indexed families of numbers, such as the Stirling numbers of the second kind and partition numbers.

2. Complete free commutative Rota-Baxter algebras

Let λ ∈ R be a constant. A Rota–Baxter algebra of weight λ is a pair (R, P ) where R is a unitary
k-algebra and P : R → R is a linear operator such that

(2.1) P (x)P (y) = P (xP (y)) + P (P (x)y) + λP (xy),

for any x, y ∈ R. Often θ = −λ is used, especially in the physics literature. Let (R, P ) and (R′, P ′) be
Rota-Baxter algebras of weight λ. A Rota-Baxter algebra homomorphism f from (R, P ) to (R′, P ′) is
an algebra homomorphism f : R → R′ such that f ◦ P = P ′ ◦ f .

The study of Rota-Baxter algebras was started by G. Baxter in 1960 and was popularized largely
by Rota and his school in 1960s and 70s and again in 1990s. In recently years, there have been several
interesting developments of Rota–Baxter algebras in theoretical physics and mathematics, including quantum
field theory, Yang–Baxter equations, shuffle products, operads, Hopf algebras, combinatorics and number
theory. The most prominent of these is the work of Connes and Kreimer in their Hopf algebraic approach
to renormalization theory in perturbative quantum field theory [8, 9, 13].

2.1. Free commutative Rota-Baxter algebras. We recall the construction of free commutative
Rota-Baxter algebras in terms of mixable shuffles. See [20, 21, 19] for details.

Given a commutative algebra C which will often be taken as R, λ ∈ C, and a C-algebra A, the free
commutative Rota-Baxter C-algebra on A is defined to be a Rota-Baxter C-algebra ( XC,λ(A), PA) together
with a C-algebra homomorphism jA : A → XC,λ(A) with the property that, for any Rota-Baxter C-
algebra (R, P ) and any C-algebra homomorphism f : A → R, there is a unique Rota-Baxter C-algebra

homomorphism f̃ : ( XC,λ(A), PA) → (R, P ) such that jA ◦ f̃ = f as C-algebra homomorphisms.
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One realization of this free commutative Rota-Baxter algebra is given by the mixable shuffle Rota-Baxter
algebra. The mixable shuffle Rota-Baxter algebra is a pair ( XC,λ(A), PA), where XC,λ(A) is a C-algebra
in which

• the C-module structure is given by the direct sum
∞⊕

n=1

A⊗n, where A⊗n = A ⊗C . . . ⊗C A︸ ︷︷ ︸
n−factors

;

• the multiplication is given by the augmented mixable shuffle product ⋄, recursively defined on
A⊗m ⊗ A⊗n by

a0 ⋄ (b0 ⊗ b1 ⊗ . . . ⊗ bn) = a0b0 ⊗ b1 ⊗ . . . ⊗ bn,

(a0 ⊗ a1 ⊗ . . . ⊗ am) ⋄ b0 = a0b0 ⊗ a1 ⊗ . . . ⊗ am, ai, bj ∈ A⊗1 = A,

and

(a0 ⊗ a1 ⊗ . . . ⊗ am) ⋄ (b0 ⊗ b1 ⊗ . . . ⊗ bn)(2.2)

= (a0b0) ⊗
(
(a1 ⊗ . . . ⊗ am) ⋄ (1 ⊗ b1 ⊗ . . . ⊗ bn)

)

+(a0b0) ⊗
(
(1 ⊗ a1 ⊗ . . . ⊗ am) ⋄ (b1 ⊗ . . . ⊗ bn)

)

+λa0b0 ⊗
(
(a1 ⊗ . . . ⊗ am) ⋄ (b1 ⊗ . . . ⊗ bn)

)
, ai, bj ∈ A

with the convention that

a ⋄ (1 ⊗ b) = a ⊗ b, (1 ⊗ a) ⋄ b = b ⊗ a, a ⋄ b = ab, for a, b ∈ A.

The Baxter operator PA is defined by

PA(a1 ⊗ . . . ⊗ am) = 1 ⊗ a1 ⊗ . . . ⊗ am, a1 ⊗ . . . ⊗ am ∈ A⊗m, m ≥ 1.

Since the mixable shuffle product is compatible with the product on A, we will suppress the notation ⋄. We
will also express C and λ from XC,λ(A) when there is not danger of confusion.

Note that assuming PA is a Rota-Baxter operator and thus satisfies Eq. (2.1), then Eq. (2.2) follows.
For example, we have

(a0 ⊗ a1 ⊗ a2)(b0 ⊗ b1)

= a0b0 ⊗ ((a1 ⊗ a2)(1 ⊗ b1) + b1(1 ⊗ a1 ⊗ a2) + λ(a1 ⊗ a2)b1)

= a0b0 ⊗ (a1 ⊗ (a2(1 ⊗ b1) + (b1(1 ⊗ a2)) + λa2b1) + b1 ⊗ a1 ⊗ a2 + a1b1 ⊗ a2)

= a0b0 ⊗ (a1 ⊗ a2 ⊗ b1 + a1 ⊗ b1 ⊗ a2 + λa1 ⊗ a2b1 + b1 ⊗ a1 ⊗ a2 + λa1b1 ⊗ a2) .

Theorem 2.1. ([20, Theorem 4.1]) For any C-algebra A, ( X(A), PA), together with the natural em-
bedding jA : A → X(A), is a free Baxter C-algebra on A (of weight λ) in the sense that the triple
( X(A), PA, jA) satisfies the following universal property: For any Baxter C-algebra (R, P ) and any C-
algebra map ϕ : A → R, there exists a unique Baxter C-algebra homomorphism ϕ̃ : ( X(A), PA) → (R, P )
such that the diagram

A
jA

//

ϕ

''O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

X(A)

ϕ̃

��

R

commutes.

Alternatively, X(A) can defined to be the tensor product algebra A⊗ X
+(A) where the multiplication

on X
+(A) =

⊕
k≥1 A⊗k is given in the explicit form by the mixable shuffle product [20] and in the recursive

form by a generalization [10, 23] of the quasi-shuffle algebra defined by Hoffman [26] in the study of
multiple zeta values.

Quasi-shuffle is also known as harmonic product [25] and coincides with the stuffle product [2, 4] in
the study of multiple zeta values. Variations of the stuffle product have also appeared in [6, 14]. It is
shown [10] to be the same as the mixable shuffle product [20, 21] which is also call overlapping shuffles [24]
and generalized shuffles [16], and can be interpreted in terms of Delannoy paths [1, 15, 28].
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2.2. Complete free Rota-Baxter algebras. For a given commutative algebra A, it is easy to see
that the submodules

Filk X(A) :=
⊕

i≥k

A⊗i, i ≥ 0

of X(A) are ideals of X(A). They are in fact Rota-Baxter ideals of X(A) in the sense that PA(Filk X(A)) ⊆
Filk X(A). Further, ∩k≥0Filk X(A) = 0. Thus

X̂(A) := lim
←−

X(A)/Filk X(A) ∼=
∏

k≥0

A⊗k

is a complete filtered algebra and contains X(A) as a subalgebra. It coincides with the complete free
commutative Rota-Baxter algebra defined in [21].

3. Generating functions from Rota-Baxter algebras

We first interpret exponential generating functions in terms of free commutative Rota-Baxter algebras.
We then consider other cases where free commutative Rota-Baxter algebras give rise to generating functions.

3.1. Connection with exponential power series. Let A = R. Then

(3.1) Xλ(A) = Xλ(R) = ⊕k≥1R
⊗k = ⊕k≥1R1k,

where 1k = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(k+1)−terms

. The augmented shuffle product in this special case is

(3.2) 1m ⋄ 1n =

m∑

i=0

λk

(
m+n−k

m

) (
m

k

)
1m+n−k.

When λ = 0, we have

1m ⋄ 1n =

(
m+n

m

)
1m+n.

We then have X̂λ(R) =
∏

k≥0 R1k. This is also the cofree differential algebra [27] with the differential

operator d(xn) = xn−1, d(1) = 0.
Denote xn = xn/n! (divided powers). Then as an algebra,

R[x] = ⊕n≥0Rxn

with multiplication given by xmxn =

(
m+n

m

)
xm+n. This extends to an isomorphism

R[[x]] → X̂(R) =
∏

k≥0

R1k, xk 7→ 1k, k ≥ 0.

Through this isomorphism the theory of exponential generating function is translated to a theory of

generating functions in X̂(R), and can be generalized to X̂λ(A) for other algebras A and other weight λ.
We will next demonstrate how this can be done in several cases. More systematic results will be provided in
the full paper.

3.2. λ-exponential generating functions. We first consider free Rota-Baxter algebra X(R) on R

of weight 1. It is given by Eq. (3.1) with product given by Eq. (3.2) with λ = 1.
We quote from [32], Proposition 5.1.1, the following simple yet fundamental property of exponential

generating functions which underlies the prominent role played by these generating functions. See [32] for
details. For any function f : N → R, let Ef (x) =

∑
k≥0 f(n)xn/n! be the exponential generating function of

f .

Theorem 3.1. Let #Y be the cardinality of a finite set Y . Given functions f, g : N → R, define a new
function h : N → R by the rule

h(#X) =
∑

(S,T )

f(#S)g(#T ),
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where X is a finite set, and where (S, T ) ranges over all weak ordered partitions of X into two blocks, i.e.,
S ∩ T = ∅ and S ∪ T = X. Then

(3.3) Eh(x) = Ef (x)Eg(x).

We prove the following generalization of Theorem 3.1. For f : N → R, call E
(λ)
f (x) :=

∑
k≥0 f(n)1k ∈

X̂λ(R) be the λ-exponential generating function of f . When λ = 0, this recovers the exponential
generating function.

Theorem 3.2. Given functions f, g : N → R, define a new function h : N → R by the rule

h(#X) =
∑

(S,T )

λ#(S∩T )f(#S)g(#T ),

where X is a finite set, and where (S, T ) ranges over all ordered subsets of X such that S ∪ T = X. Then

(3.4) E
(λ)
h (x) = E

(λ)
f (x)E(λ)

g (x) ∈ X̂λ(R).

Proof. We have

E
(λ)
f (x)E(λ)

g (x) =
( ∑

m≥0

f(m)1m

)( ∑

n≥0

g(n)1n

)

=
∑

m,n

f(m)g(n)1m1n

=
∑

m,n

f(m)g(n)

m∑

i=0

λi

(
m+n−k

m

) (
m

k

)
1m+n−k

by Eq. (3.2). Note that

(
m+n−k

m

) (
m

k

)
=

(
m+n−k

k,m−k,m+n−2k

)
. So setting u = m + n − k, we have

E
(λ)
f (x)E(λ)

g (x) =
∞∑

u=0

( u∑

m=0

m∑

k=0

λk

(
u

k,m−k,u−m

)
f(m)g(u − m + k)

)
1k

=

∞∑

u=0

( ∑

(u1,u2,u3)∈N3,u1+u2+u3=u

λu1

(
u

u1,u2,u3

)
f(u1 + u2)g(u1 + u3)

)
1u.

Now the theorem follows since, for given (u1, u2, u3) ∈ N
3,

(
u

u1,u2,u3

)
is the number of ways of partitioning

a size u set into subsets of size u1, u2 and u3. It is also the number of ways of taking subsets S of size u1 +u2

and T of size u1 + u3 of a X of size u1 + u2 + u3 such that S ∪ T = X and #(S ∩ T ) = u1. �

3.3. Stirling numbers. We next give an example of weight 1 exponential generating functions. Stirling
numbers of the first kind, s(n, k), and the second kind, S(n, k), n, k ∈ N, are defined by

(x)n =

n∑

k=0

s(n, k)xk, xn =

n∑

k=0

S(n, k)(x)k.

Stirling numbers of the second kind have the recursive formula

S(n + 1, k + 1) = S(n, k) + (k + 1)S(n, k + 1), n, k ≥ 0

with S(0, 0) = 1, S(n, 0) = S(0, k) = 0 for n, k ≥ 1. It follows that S(n, 1) = S(n, n) = 1, n ≥ 1. The
importance of these numbers in combinatorics is well-known [32]. For instance, S(n, k) is the number of
partitions of n objects into k non-empty cells. They have the generating function

(3.5) exp[t(eu − 1)] =

∞∑

n=0

n∑

k=0

S(n, k)tkun/n!.
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Theorem 3.3. We have the generating function

e(1⊗1)u =

∞∑

n=0

n∑

k=0

S(n, k)k!1kun/n! ∈ X̂1(R)[[u]].

It has a much simpler form compared with Eq. (3.5). k!S(n, k) is the number of ways to put n different
objects into m different non-empty cells, and is the number of surjective maps from {1, . . . , n} to {1, . . . , k}.

4. Free commutative Rota-Baxter algebras of weight 0

Let X be a set. Then the free commutative Rota-Baxter algebra of weight 0 X0(X) := X0(R[X ]) is
the vector space

X0(X) = ⊕n≥0RXn ( identifying x1 ⊗ · · · ⊗ xn ↔ (x1, · · · , xn))

with the product defined by Eq. (2.2) with λ = 0. For example,

(a0 ⊗ a1) (b0 ⊗ b1) = (a0b0 ⊗ a1 ⊗ b1) + (a0b0 ⊗ b1 ⊗ a1).

In general

(a0 ⊗ a1 ⊗ · · · ⊗ am) (b0 ⊗ b1 ⊗ · · · ⊗ bn) = a0b0 ⊗
( ∑(

shuffles of (a1 ⊗ · · · ⊗ am) and (b1 ⊗ · · · ⊗ bn)
))

.

We have the following examples of generating functions in the completion X̂0(X) of X0(X).

1

1 − 1 ⊗ x
=

∑

n≥0

(1 ⊗ x)n =
∑

n≥0

n!(1 ⊗ x⊗n).

1

1 − 1 ⊗ x ⊗ x
=

∑
(1 ⊗ x ⊗ x)n =

∑ (2n)!

2n
(1 ⊗ x⊗(2n)).

5. Free commutative Rota-Baxter algebras of weight 1

Let

X1(x) := X1(R[x]) =

∞⊕

k=1

R[x]⊗k =

∞⊕

k=1

R{xm
∣∣ m ≥ 1}k.

Recall that the product in X1(x) and hence in X̂1(x) is given by the mixable shuffle product. For example,

(a0 ⊗ a1 ⊗ a2)(b0 ⊗ b1) = a0b0 ⊗
(
a1 ⊗ a2 ⊗ b1 + a1 ⊗ b1 ⊗ a2 + a1 ⊗ a2b1 + b1 ⊗ a1 ⊗ a2 + a1b1 ⊗ a2

)
.

Consider powers (1 ⊗ x)n ∈ X1(x). We have

(1 ⊗ x)2 = 2(1 ⊗ x ⊗ x) + 1 ⊗ x2,

(1 ⊗ x)3 = 6(1 ⊗ x ⊗ x ⊗ x) + 3(1 ⊗ x ⊗ x2)

+3(1 ⊗ x2 ⊗ x) + (1 ⊗ x3).

(1 ⊗ x)4 = 24(1 ⊗ x ⊗ x ⊗ x ⊗ x) + 12(1 ⊗ x ⊗ x ⊗ x2) + 12(1 ⊗ x ⊗ x2 ⊗ x)

+12(1 ⊗ x2 ⊗ x ⊗ x) + 6(1 ⊗ x2 ⊗ x2) + 4(1 ⊗ x ⊗ x3)

+4(1 ⊗ x3 ⊗ x) + (1 ⊗ x4).

Note that the terms on the right hand side for (1⊗ x)3 correspond to the ordered partitions n = 1 + 1 + 1 =

1 + 2 = 2 + 1 = 3 and the coefficients are the multi-nomial coefficients

(
3

1,1,1

)
,

(
3

1,2

)
,

(
3

2,1

)
,

(
3

3

)
. The

same is true for (1 ⊗ x)⊗4.
In general, for I = (i1, · · · , ik) ∈ N

k, denote x⊗I = xi1 ⊗ · · · ⊗ xik . So x⊗(2,3) = x2 ⊗ x3. Let I = N
k
>0.

For I ∈ I, define the norm of I to be |I| =
∑k

s=1 is, length ℓ(I) = k and

(
n

I

)
=

(
n

i1,··· ,ik

)
.
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Theorem 5.1. We have the generating function

1

1 − (1 ⊗ x)
=
∞∑

n=0

(1 ⊗ x)n =
∞∑

n=0

∑

|I|=n

(
n

I

)
(1 ⊗ x⊗I) ∈ X̂1(x).

Here we have used the convention that, for I = ∅, take |I| = 0,

(
|I|

I

)
= 1, (1 ⊗ x)I = 1 ⊗ x⊗I = 1.

Proof. It follows from the following facts [19].

(1) (1 ⊗ x)n =
∑
|I|=n

(
n

I

)
(1 ⊗ x⊗I).

(2) The sum is over the set of ordered partitions of n.

(3)
∑

|I|=n,ℓ(I)=k

(
n

I

)
= k!S(n, k).

�
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