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Combinatorial realisation of Hall-Littlewood polynomials at t = −1
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Abstract. A generalisation is given of Hall-Littlewood polynomials, Pλ(x; t), to the case of an arbitrary
simple Lie algebra g. For t = 0 and t = 1 these polynomials are just the appropriate Weyl group symmetric
monomial function and Weyl’s character of an irreducible representation, respectively. Here the case t = −1
is discussed in some detail. First a factorisation result is established for all g, and then a combinatorial
realisation of Pλ(x;−1) is offered for both gl(n) and sp(2n) in terms of certain Q-functions that are shown
to be Weyl group symmetric. The Q-functions are defined in terms of primed shifted tableaux. In addition
a lattice path interpretation is provided in the form of determinantal expansions.

Résumé. Nous donnons un généralisation des polynômes Hall-Littlewood, Pλ(x; t), à une algèbre Lie simple

arbitraire g. À t = 0 et t = 1 ces polynômes ne sont que la fonction symmétrique monomiale du groupe
Weyl et le caractère Weyl d’une représentation irréductible. Nous discutons ici en détail le cas t = −1. Nous
établissons d’abord un résultat de factorisation pour tout choix de g, et ensuite nous dérivons une réalisation
combinatoire de Pλ(x;−1) pour gl(n) et sp(2n) en termes de certaines Q-fonctions qui sont symmétriques
dans le groupe Weyl. Les Q-fonctions sont définies en termes des tableaux primés et décalés. De plus, nous
donnons une interprétation de chemins de treillis sous forme d’expansion de déterminant.

1. Introduction

Let g be a simple Lie algebra of rank r, with Cartan subalgebra h and dual h∗. Let the corresponding
Weyl group be W and let the sets of positive roots and simple roots be denoted by ∆+ and Π, respectively.
For each w ∈ W , let `(w) be the minimal length of w when expressed as a word in the generators, wi with
i = 1, 2, . . . , r, of the Weyl group W .

An arbitrary weight vector, µ ∈ h∗, is said to be integral, dominant integral or strongly dominant integral
if 〈µ, α∨〉 ∈ Z, Z≥0 or Z>0 for all α ∈ Π. In such cases we write µ ∈ P , P + or P++, respectively. The Weyl
vector ρ = 1

2

∑

α∈∆+ α is such that 〈ρ, α〉 = 1 for all α ∈ Π. It follows that for each µ ∈ P ++ we can write

µ = λ + ρ with λ ∈ P+.
Let (ε1, ε2, . . . , εn) be a sequence of orthonormal vectors spanning h∗ and let x = (x1, x2, . . . , xn) with

xk = eεk for k = 1, 2, . . . , n. Then for each µ ∈ P + we have eµ = xµ = (xµ1

1 xµ2

2 · · ·xµn
n ). In this situation the

action of the Weyl group is defined by w(eµ) = ew(µ) = xw(µ). The corresponding monomial Weyl-symmetric
function is defined by:

(1.1) mµ(x) =
∑

w∈W µ=W/Wµ

xw(µ) ,

where Wµ = {w ∈ W |w(µ) = µ}, and W µ is a set of minimal length left coset representatives of W with
respect to Wµ.

Macdonald [6, 7] introduced a two-parameter family of orthogonal polynomials, Pµ(x; q, t) with µ ∈ P+,
uniquely characterised by the conditions:

(1.2)
(i) Pµ(x; q, t) = mµ(x) +

∑

ν<µ aνµ(q, t) mν(x) with aνµ ∈ Q(q, t)

(ii) 〈Pµ(x; q, t) , Pν(x; q, t)〉 = 0 if ν 6= µ ,
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for a suitably defined partial order relation < and symmetric scalar product 〈· , ·〉 [6, 7].
Here we confine our attention to the case q → 0, for which the Macdonald polynomials Pµ(x; 0, t) coincide

with the Hall-Littlewood polynomials Pµ(x; t). For these cases there exists the explicit formula [5, 6, 7]:

(1.3) Pµ(x; t) =
1

Wµ(t)

∑

w∈W

w

(

xµ
∏

α∈∆+

(

1 − tx−α

1 − x−α

)

)

,

with

(1.4) Wµ(t) =
∑

w∈Wµ

t`(w) .

The special case t = 1 gives the monomial Weyl-symmetric functions

(1.5) Pµ(x; 1) =
1

|Wµ|

∑

w∈W

w(xµ) =
∑

w∈W µ=W/Wµ

xw(µ) = mµ(x) .

For t = 0 we obtain

(1.6) Pµ(x; 0) =
∑

w∈W

w

(

xµ
∏

α∈∆+

(

1

1 − x−α

)

)

=
∑

w∈W

w

(

xµ+ρ

aρ(x)

)

,

where aρ(x) is Weyl’s denominator function

(1.7) aρ(x) = xρ
∏

α∈∆+

(

1 − x−α
)

=
∏

α∈∆+

(

xα/2 − x−α/2
)

.

However, w(aρ(x)) = (−1)`(w) aρ(x), so that

(1.8) Pµ(x; 0)) =
1

aρ(x)

∑

w∈W

(−1)`(w)xw(µ+ρ) =
aµ+ρ(x)

aρ(x)
.

This serves to define Pµ(x; 0) for all weights µ, but if µ is an integral dominant weight, that is µ ∈ P +, then
this is nothing other than Weyl’s formula for the character of the irreducible representation V µ of g having
highest weight µ. That is to say, for each µ ∈ P +, we have

(1.9) ch V µ(x) = Pµ(x; 0) .

The special case µ = 0, for which ch V 0 = 1, gives Weyl’s denominator identity:

(1.10) aρ(x) = xρ
∏

α∈∆+

(

1 − x−α
)

=
∑

w∈W

(−1)`(w)xw(ρ) .

It follows from the second form of aρ(x) given here that a2ρ(x) = aρ(x
2), where x2 is obtained from x by

squaring every component. This implies in turn that

(1.11) ch V ρ(x) = Pρ(x; 0) =
a2ρ(x)

aρ(x)
=

aρ(x
2)

aρ(x)
=

x2ρ

xρ

∏

α∈∆+

(

1 − x−2α

1 − x−α

)

= xρ
∏

α∈∆+

(1 + x−α) .

The final expression can be thought of as a rather simple deformation of Weyl’s denominator function (1.7).
The interesting case t = −1 of Pµ(x; t) defies, in general, such a simple analysis, if for no other reason

than the singular nature of 1/Wµ(−1) preventing in some cases the direct use of the formula (1.3). However,
if µ is strongly integral dominant, that is µ ∈ P ++ then w(µ) = µ if and only if w = 1, the identity element
of W . In such a case Wµ(−1) = 1. This allows us to see from (1.3) that for all µ ∈ P ++

Pµ(x;−1) =
∑

w∈W

w

(

xµ
∏

α∈∆+

(

1 + x−α

1 − x−α

)

)

=
∑

w∈W

w

(

xµ x2ρ

(xρ)2

∏

α∈∆+

(

(1 − x−2α)

(1 − x−α)2

)

)

=
aρ(x

2)

(aρ(x))2

∑

w∈W

(−1)`(w)xw(µ) =
1

aρ(x)

∑

w∈W

(−1)`(w)xw(2ρ) 1

aρ(x)

∑

w∈W

(−1)`(w)xw(µ) ,(1.12)

where use has been made of (1.10) with x replaced by x2. If we now set µ = λ + ρ, with λ ∈ P + by virtue
of our assumption that µ ∈ P ++, it then follows from (1.8) and (1.9) that

(1.13) Pλ+ρ(x;−1) = Pρ(x; 0) Pλ(x; 0) = chV ρ(x) ch V λ(x) .
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This identity is true for all λ ∈ P +.
In the case g = sl(n) or gl(n) the above definitions are such that Pλ(x; 1) = mλ(x) and Pλ(x; 0) =

sλ(x) = ch V λ(x) for all partitions λ, where mλ(x) and sλ(x) are the classical monomial and Schur symmetric
functions, respectively [5]. Moreover, for all partitions λ whose parts are distinct, Pλ(x;−1) is nothing other
than Pλ(x), that is Schur’s P -function [5, 11]. Both sλ(x) and Pλ(x) have a combinatorial realisation in

terms of semistandard and primed shifted semistandard Young tableaux, T ∈ T λ(n) and PST ∈ PSTλ(n),
respectively. In addition, the identity (1.13) in the gl(n) case [10, 13, 9, 5] admits a proof by way of a

bijection [3] between each PST ∈ PSTλ(n) and a pair (PD, T ), consisting of a triangular primed tableau,
PD ∈ PDρ(n), and a semistandard Young tableau, T ∈ T λ(n). This is described in the next Section.

Much of this can be extended to the case g = sp(2n), as described in Section 3. In particular, for
sp(2n) there exists a combinatorial realisation both of Pλ(x; 0) = spλ(x) = chV λ for all partitions λ and of
Pλ(x;−1) for all partitions λ having n distinct non-vanishing parts. It is conjectured that this realisation
extends to the case of all partitions λ having no more than n distinct parts. These realisations are by way
of symplectic tableaux T ∈ T λ(n, n) [4] and primed symplectic shifted tableaux, PST ∈ PST λ(n, n) [2, 3],
respectively. Moreover these realisations lead rather naturally to a bijective, tableaux based proof of (1.13)
for sp(2n) [3].

The combinatorial realisation of Pλ(x;−1) by way of primed shifted tableaux does not immediately make
clear the symmetry of these polynomials under the action of the Weyl group. This is discussed in Section 4,
followed in Section 5 by a lattice path interpretation of Pλ(x;−1) leading to determinantal expansions.

2. The gl(n) case

For g = sl(n), which has rank n − 1, it is convenient to work in an n-dimensional space spanned by
Euclidean basis vectors εi for i = 1, 2, . . . , n and project down to the subspace in which ε1 + ε2 + · · ·+ εn = 0,
wherever necessary. With respect to this basis ∆+ = {εi − εj | 1 ≤ i < j ≤ n} and, taking the projection
into account, ρ = (nε1 + (n− 1)ε2 + · · ·+ εn) = (n, n− 1, . . . , 1). Setting xk = eεk for i = 1, 2, . . . , n we have
x = (x1, x2, . . . , xn) with x1x2 · · ·xn = 1. For g = gl(n) we can use the same positive roots, the same ρ and
the same x and just drop the constraint x1x2 · · ·xn = 1.

Let λ = (λ1, λ2, . . . , λn) be a partition of length `(λ) ≤ n with n−`(λ) trailing zeros. Then for both gl(n)
and sl(n) there exits a finite-dimensional polynomial irreducible representation V λ having highest weight
λ. The partition λ also serves to define a Young diagram consisting of `(λ) rows of boxes of lengths λi, for
i = 1, 2, . . . , `(λ), left adjusted to a vertical line.

Each semistandard tableaux T ∈ T λ(n) is a filling of the boxes of F λ with entries from the ordered set
{1 < 2 < · · · < n} weakly increasing across rows and strictly increasing down columns. The weight, wgt(T ),
of such a tableau is given by κ(T ) = (κ1, κ2, . . . , κn) where κk is the number of entries k in T . For example,
for n = 5 and λ = (8, 8, 5, 4, 0) we have:

(2.1) F λ = T =

1 1 1 1 2 2 3 3

2 2 2 3 3 3 4 4

3 3 4 4 5

5 5 5 5

wgt(T ) = (4, 5, 7, 4, 5) .

The corresponding Schur function then takes the form

(2.2) sλ(x) =
∑

T∈T λ(n)

xwgt(T ) ,

where, quite generally for any x and κ, we have xκ = xκ1
1 xκ2

2 · · ·xκn
n .

Now we turn to Schur’s P and Q-functions, as described by Stembridge [11]. Let λ be a partition, all
of whose parts are distinct. Such a partition defines a shifted Young diagram SF λ in which the row lengths
are as before the parts of λ, but the rows are left adjusted to a diagonal line.

Each primed semistandard shifted tableaux PST ∈ QSTλ(n) is a filling of the boxes of SF λ with
entries taken from the ordered set {1′ < 1 < 2′ < 2 < · · · < n′ < n} weakly increasing across rows and down
columns, with each column containing at most one k and each row at most one k′ for all k = 1, 2, . . . , n.
The weight, wgt(PST ), of such a tableau is given by κ(T ) = (κ1, κ2, . . . , κn) where κk is the total number
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of entries k and k′ in PST . For example, for n = 5 and λ = (10, 6, 5, 1, 0) we have

(2.3) SF λ = PST =

1
′ 1 2′ 2 2 2 4′ 4 4 5

2 2 3
′ 3 3 4

′

4
′ 4 4 5 5

5

wgt(PST ) = (2, 6, 3, 7, 4)

In general each ribbon strip strk(PST ), consisting of the set of all boxes having entries k or k′, may be
composed of more than one connected component. The only entries on such a strip for which there is any
degree of freedom in specifying whether a given entry is k or k′ are those entries that lie at the lower left-hand
end of a connected component of the ribbon strip. These have been indicated in boldface type.

For each partition λ of length `(λ) ≤ n whose parts are all distinct, the corresponding Schur Q-function
takes the form:

(2.4) Qλ(x) =
∑

PST∈QST λ(n)

xwgt(PST ) .

Since every entry on the main diagonal may be either unprimed or primed, Qλ(x) is divisible by 2`(λ) and
Schur’s P -function is defined to be

(2.5) Pλ(x) = 2−`(λ) Qλ(x) =
∑

PST∈PST λ(n)

xwgt(PST ) ,

where PSTλ(n) is the subset of QSTλ(n) consisting of all those primed shifted tableaux PST with no primes
on the main diagonal.

With this definition, we have [11, 5] the following combinatorial realisation of the t = −1 specialisation
of gl(n) or sl(n) Hall-Littlewood polynomials:

Proposition 2.1. Let x = (x1, x2, . . . , xn) and let λ be a partition of length `(λ) ≤ n all of whose parts
are distinct, then the Hall-Littlewood polynomial Pλ(x; t) of gl(n) is such that

(2.6) Pλ(x;−1) = Pλ(x) .

Turning to (1.13), in the case of gl(n) this factorisation was established by Macdonald [5], see Ex2, p259.
A combinatorial proof requires the notion of primed triangular tableaux PD ∈ QDρ(n). Each such PD is a
tableau of shifted shape SF ρ, where ρ = (n, n−1, . . . , 1), with entries taken from the set {1′, 1, 2′, 2, . . . , n′, n},
in which each unprimed entry k lies in the kth row and each primed entry k′ lies in the kth column. The
weight of such a primed tableau is given as usual by wgt(PD) = κ = (κ1, κ2 . . . , κn) with κk equal to the
total number of entries k or k′. For example:

(2.7) PD =

1 2′ 1 4′ 5′ 6′

2 3′ 2 5′ 2

3′ 4′ 3 3

4 5′ 6′

5′ 5

6

wgt(PD) = (2, 4, 4, 3, 5, 3)

To enumerate all possible PD ∈ QDρ(n) it is merely necessary to note that at position (i, j) in the ith
row and jth column the entry must be either i or j ′. Since each entry k or k′ contributes xk to xwgt(PD), it
follows that

(2.8)
∑

PD∈QDρ(n)

xwgt(PD) =
∏

1≤i≤j≤n

(xi + xj) .

Since each entry on the main diagonal may be unprimed or primed, this expression may be divided by
2`(ρ) = 2n to give

(2.9)
∑

PD∈PDρ(n)

xwgt(PD) =
∏

1≤i≤n

xi

∏

1≤i<j≤n

(xi + xj) .
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where PDρ(n) is the subset of QDρ(n) consisting only of those primed triangular tableaux PD having no
primed entries on the main diagonal.

However, with ρ = (n, n − 1, . . . , 1) and positive roots α = εi − εj for 1 ≤ i < j ≤ n, it follows from
(1.11) and the above that

(2.10) sρ(x) = xρ
∏

1≤i<j≤n

(1 − x−1
i xj) =

∏

1≤i≤n

xi

∏

1≤i<j≤n

(xi + xj) =
∑

PD∈PDρ(n)

xwgt(PD) .

As mentioned in the Introduction, there exists a bijection [3] between PST ∈ PST λ+ρ(n) and pairs
(PD, T ) with PD ∈ PD(n) and T ∈ T λ(n). This is illustrated by the map:

(2.11) PST =

1 1 1 2′ 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

−→ (PD, T ) =

1 2′ 1 4′ 5′ 6′

2 3′ 2 5′ 2

3 4′ 3 3

4 5′ 6′

5 5

6

,

1 2 3

3 5 5

4 6

5

6

To effect this map one moves all primed entries k′ north west into their own column, that is the kth
column, taking k′ in turn equal to 1′, 2′, . . . , n′ and dealing with each k′ in turn from top to bottom. This
is done by a sequence of jeu de taquin moves in the form of transpositions of k′ with their north or west
unprimed neighbours, i or j, respectively:

(2.12)

j

i k′

−→ k′

i j
if i ≤ j ;

j

i k′

−→ j

k′ i
if i > j .

The chosen move is the unique one that ensures that the unprimed entries remain weakly increasing across
rows and strongly increasing down columns. Of course k′ must move west if it is already in the 1st row
but not yet in the kth column. When it reaches the kth column it may still move north by means of a
transposition of the type:

(2.13) i

k′

−→ k′

i

unless i is in the ith row, in which case the k′ moves no further. It has been shown [3] that each k′ always
reaches a position off the main diagonal in the kth column and that in the first n columns all unprimed
entries lie in their own row. Moreover, by reversing the individual jeu de taquin steps it has been shown
that this map is bijective. Finally, it should be noted that the map is weight preserving since all the steps
involve interchanging the positions of entries, without any alteration of their value.

By virtue of the combinatorial realisation of Pλ+ρ(x) with `(λ + ρ) = n that is implied by (2.6), and
those of sλ(x) and sρ(x) given in (2.2) and (2.10), respectively, it follows from the existence of the above
bijection that for all partitions λ:

(2.14) Pλ+ρ(x;−1) = Pλ+ρ(x) = sρ(x) sλ(x) .

3. The sp(2n) case

In the case g = sp(2n), which has rank n, we work in the n-dimensional space spanned by Euclidean basis
vectors εi with i = 1, 2, . . . , n. The set of positive roots is given by ∆+ = {εi − εj | 1 ≤ i < j ≤ n}∪{2εi | 1 ≤

i ≤ n} and ρ = nε1 + (n − 1)ε2 + · · · + εn = (n, n − 1, . . . , 1). We set xk = eεk and xk = x−1
k = e−εk for

k = 1, 2, . . . , n.
Each partition λ = (λ1, λ2, . . . , λn) with no more than n non-vanishing parts specifies a finite-dimensional

irreducible representation V λ of sp(2n). Its character is given by ch V λ(x) = spλ(x), where spλ(x) may be
referred to as a symplectic Schur function. This may be given a combinatorial definition as follows [4]. Each
symplectic tableau T ∈ T λ(n, n) is filling of the boxes of F λ with entries from the ordered set {1 < 1 < 2 <
2 < · · · < n < n} weakly increasing across rows and strictly increasing down columns, with no entry k or k
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lying below the kth row. The weight of such a tableau is given by wgt(T ) = κ(T ) = (κ1, κ2, . . . , κn) with κk

equal to the total number of entries k minus the total number of entries k, for k = 1, 2, . . . , n. For example
for n = 5 and λ = (4, 3, 3, 0, 0) we have

(3.1) F λ =
1 1 2 4

3 4 4

4 4 4

T =
1 1 2 4

3 4 4

4 4 4

wgt(T ) = (0,−1, 1, 0, 0) .

In terms of these symplectic tableaux and their weights, symplectic Schur functions take the form:

(3.2) spλ(x) =
∑

T∈T λ(n,n)

xwgt(T ) .

Proceeding as in the gl(n) case, we now turn to what we call symplectic Schur Q-functions defined in
terms of primed shifted symplectic tableaux QST [3]. Let λ be partition, all of whose parts are distinct,
and let SF λ be the corresponding shifted Young diagram. Then each primed shifted symplectic tableau

QST ∈ QSTλ(n, n) is a filling of the boxes of SF λ with entries from the ordered set {1
′
< 1 < 1 < 1 < 2

′
<

2 < 2′ < 2 < · · · < n′ < n < n′ < n} weakly increasing across rows and down columns, with each column

containing at most one k and at most one k, each row at most one k′ and at most one k
′
, and the main

diagonal at most one entry from the subset {k
′
, k, k′, k} for each k = 1, 2, . . . , n. The weight wgt(QST ) of

such a tableau is given by κ = (κ1, κ2 . . . , κn) where κk is the total number of entries k or k′ minus the total

number of entries k or k
′
. For example, for n = 5 and λ = (10, 6, 5, 1, 0) we have

(3.3)

SF λ = QST =

1
′

1 2
′

2 2 2 4′ 4 4 5

2 2 3
′

4 4 4
′

4
′ 4 4 4 5

5

wgt(QST ) = (0, 0, 1, 6,−1)

Once again boldface type has been used to indicate those entries for which there is a degree of freedom as
to whether or not they are primed.

If we now let

(3.4) Qλ(x,y) =
∑

QST∈QST λ(n,n)

n
∏

k=1

x
(#k∈QST )+(#k′∈QST )
k y

(#k∈QST )+(#k
′

∈QST )
k ,

then our symplectic Schur Q-functions are defined by:

(3.5) Qsp
λ (x) = Qλ(x, ,x) =

∑

QST∈QST λ(n,n)

xwgt(QST ) ,

where wgt(QST ) = (#k ∈ QST ) + (#k′ ∈ QST ) − (#k ∈ QST ) − (#k
′
∈ QST ). Once again taking

into account the fact that each element on the main diagonal may be either unprimed or primed, we define
symplectic Schur P -functions by

(3.6) P sp
λ (x) = 2−`(λ)Qλ(x,x) =

∑

PST∈PST λ(n,n)

xwgt(PST ) ,

where PSTλ(n, n) is the subset of QSTλ(n, n) consisting of those primed shifted tableaux PST having no
primes on the main diagonal.

With this definition, we offer the following conjecture regarding the t = −1 specialisation of sp(2n)
Hall-Littlewood polynomials :

Conjecture 3.1. Let x = (x1, x2, . . . , n) and let λ be a partition of length `(λ) ≤ n all of whose parts
are distinct, then the Hall-Littlewood polynomial, Pλ(x; t), of sp(2n) is such that:

(3.7) Pλ(x;−1) = P sp
λ (x) .
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It is far from obvious that the function P sp
λ (x) does, as claimed, coincides with the t = −1 specialisation

of the sp(2n) Hall-Littlewood polynomial Pλ(x; t), or even that it is symmetric with respect to the Weyl
group of sp(2n), which includes both all the permutations of the components of x and any combination of the
inversions xk 7→ x−1

k with k ∈ {1, 2, . . . , n}. However, in the case that λ is a partition with n non-vanishing
distinct parts these properties can be established, thanks to the existence of the factorisation property (1.13).

To see how this comes about it is necessary to introduce, as our final set of tableaux, the set QDρ(n, n).
Each PD ∈ QDρ(n, n) is a tableau of shifted shape SF ρ where ρ = (n, n− 1, . . . , 1), with entries taken from

the set {1
′
, 1, 1′, 1, 2

′
, 2, 2′, 2, · · · , n′, n, n′, n}, in which each entry k or k lies in the kth row and each entry k′

or k
′
lies in the kth column. The weight of such a primed tableau is given by wgt(PD) = κ = (κ1, κ2 . . . , κn),

where κk equals the total number of entries k or k′ minus the total number of entries k or k
′
. Typically for

n = 5 we have

(3.8) PD =

1 1 3
′

4′ 1

2 2 2 2

3
′

3 3

4′ 4

5
′

wgt(PD) = (−1, 2,−2,−1,−1) .

It follows from our definition of QDρ(n, n) that

(3.9)
∑

PD∈QDρ(n,n)

xwgt(PD) =
∏

1≤i≤j≤n

(xi + xi + xj + xj) .

As usual this expression is divisible by 2`(ρ) = 2n and we have

(3.10)
∑

PD∈PDρ(n,n)

xwgt(PD) =
∏

1≤i≤n

(xi + xi)
∏

1≤i<j≤n

(xi + xi + xj + xj) ,

where PDρ(n, n) is the subset of QDρ(n, n) consisting of those PD that have no primes on their main
diagonal.

However, with ρ = (n, n − 1, . . . , 1) and positive roots εi ± εj for 1 ≤ i < j ≤ n and 2εi for 1 ≤ i ≤ n, it
follows from (1.11) that

spρ(x) = xρ
∏

1≤i≤n

(1 + x−2
i )

∏

1≤i<j≤n

(1 + x−1
i xj)(1 + x−1

i x−1
j )

=
∏

1≤i≤n

(xi + x−1
i )

∏

1≤i<j≤n

(xi + x−1
i + xj + x−1

j ) =
∑

PD∈PDρ(n,n)

xwgt(PD) ,(3.11)

where in the last step use has been made of the fact that xk = x−1
k for all k = 1, 2, . . . , n.

This time the required bijection [3] is one between PST ∈ QST λ+ρ(n, n) and pairs (PD, T ) with
PD ∈ QDρ(n, n) and T ∈ T λ(n, n). This is illustrated in the case n = 5 by the map:

(3.12) QST =

1 1′ 2
′

2′ 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

−→ (PD, T ) =

1′ 1 3
′

4′ 1

2
′

2 4′ 5′

3 4
′

3

4 4

5′

,
1 4 4 5

3 4 4

4 5 5

The map is effected by moving all primed entries k′ and k
′
into their own column by means of a sequence

of jeu de taquin moves, dealing first with all k
′
s and the all k′s. The allowed moves include all those described

in the gl(n). These are applied first to all k
′
s, and in doing so no obstacles are encountered. However, in

moving the k′s one may encounter a final move in which the destination site in the ith row and kth column

is already occupied by a k
′
. In this case we use the following transposition:

(3.13) k
′

k′ −→ i i
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Similarly, to avoid a pair i and i in the kth column, which would be non-standard in that they cannot both

be in the ith row, one replaces such a pair by a k
′
and k′ pair as below:

(3.14) i

i
−→ k′

k
′

It is this last transformation that forces one to allow primed entries on the main diagonal, and thus establish
the bijection at the level of QSTλ+ρ(n, n), rather than PSTλ+ρ(n, n). Having done this it has been shown

that each primed entry k′ or k
′
reaches the kth column, and that in the first n columns each unprimed entry

lies in its own row. Just like the previous moves, the two new moves described above are weight preserving

since the contribution to the weight of any pair of entries k k or k′ k
′
is zero. It follows that the map is a

weight preserving bijection. This allows us to see that

(3.15)
∑

QST∈QST λ+ρ(n,n)

xwgt(QST ) =
∑

PD∈PDρ(n,n)

xwgt(PD)
∑

T∈T λ(n,n)

xwgt(T ) .

Taking into account the fact that `(λ + ρ) = `(ρ) = n this leads to the factorisation:

(3.16) P sp
λ+ρ(x) = spρ(x) spλ(x) .

Thanks to the general factorisation identity (1.13), this suffices to prove our Conjecture 3.1 in any case for
which λ has length `(λ) = n.

4. Symmetry properties

4.1. The Weyl symmetry of Schur Q-functions. Before embarking on a direct proof of the fact
that Qλ(x), as defined combinatorially by (2.4), is a symmetric function of the components of x, it is worth
both extending the definition to the case of skew Q-functions Qλ/µ(x) and introducing supersymmetric skew
Schur functions sτ/σ(x/y).

Dealing first with the latter, if τ and σ are partitions such that F τ/σ = F τ\F σ is a skew Young diagram,
then for any x = (x1, . . . , xm) and y = (y1, . . . , yn), we have

(4.1) sτ/σ(x/y) =
∑

T∈T τ/σ(m/n)

m
∏

i=1

x#i∈T
i

n
∏

j=1

y#j′∈T
j ,

where T τ/σ(m/n) is the set of all skew supertableaux, T , of shape F τ/σ with entries taken from the set
{1, . . . , m, 1′, . . . , n′}, subject to the ordering 1 < 2 < · · · < m < 1′ < 2′ < · · · < n′, with unprimed entries
increasing weakly across rows and strictly down columns, and primed entries increasing strictly across rows
and weakly down columns. This function is supersymmetric in the sense that it is symmetric under any
permutation of (x1, . . . , xm), symmetric under any permutation of (y1, . . . , yn) and is independent of z if we
set xi = z and yj = −z for any i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. It is a remarkable, and very useful fact
that sτ/σ(x/y) is independent of the order relation on its entries [5], see Ex23, p90. In particular, in the
case m = n it is convenient to adopt the ordering 1′ < 1 < 2′ < 2 < · · · < n′ < n.

Similarly, if λ and µ are partitions whose parts are distinct, such that SF λ/µ = SF λ\SF µ is a skew
shifted Young diagram, then for any x = (x1, x2, . . . , xn) we have

(4.2) Qλ/µ(x) =
∑

PST∈QST λ/µ(n)

n
∏

k=1

x
(#k∈PST )+(#k′∈PST )
k ,

where QSTλ/µ(n) is the set of all primed semistandard shifted skew tableaux, PST , of shape SF λ/µ, with
entries taken from the set {1′, 1, 2′, 2, . . . , n′, n} subject to the ordering 1′ < 1 < 2′ < 2 < · · · < n′ < n,
weakly increasing across rows and down columns, with no two k′s in the same row, and no two ks in the
same column.

It should then be noted that each PST ∈ QSTλ(n), with λ a partition whose parts are all distinct,
has a structure consisting of a sequence of ribbon strips strk(PST ) with k = 1, 2, . . . , n. This structure is
specified by means of a sequence Seq(λ) of the form λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(n), with λ(0) = 0 and λ(n) = λ,
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where each λ(k) is a partition all of whose parts are distinct, and λ(k)/λ(k−1) is a skew partition in the shape
of the ribbon strip str(PST ) for k = 1, 2, . . . , n. With this notation,

(4.3) Qλ(x) =
∑

Seq(λ)

n
∏

k=1

Qλ(k)/λ(k−1) (xk) .

Moreover,

(4.4) Qλ(x) =
∑

Seq(λ)

Qλ(k−1) (x1, . . . , xk−1) Qλ(k+1)/λ(k−1) (xk, xk+1) Qλ(n)/λ(k+1) (xk+2, . . . , xn) .

It follows that the contribution to Qλ(x) arising from the entries k′, k, (k + 1)′, (k + 1) in all those PST ∈

QSTλ(n) whose ribbon strip structure is specified by Seq(λ) is given by Qλ(k+1)/λ(k−1) (xk , xk+1).
In what follows, we let a = k and b = k + 1. Then there are two types of case to consider. Firstly, we

have those cases for which SF λ(b)/λ(a−1)

is a skew Young diagram F τ/σ specified by some pair of partitions
τ and σ. In the case λ = (11, 9, 7, 6, 2), an example of this type is provided by:

(4.5)

a′ a b

a b′

a b′ b b

b′

b

−→

a′ a b

a b′

a b′ b b

b′

b

where λ(b) = (9, 7, 6, 2, 1) and λ(a−1) = (6, 5, 2, 1) lead to τ = (5, 4, 4, 1, 1) and σ = (2, 2).
In such a case, it follows from the definitions given above that

(4.6) Qλ(b)/λ(a−1) (xa, xb) = sτ/σ(xa, xb/xa, xb) .

Since sτ/σ(xa, xb/ya, yb) is symmetric under the interchange of xa and xb, and of ya and yb, it follows that
Qλ(b)/λ(a−1) (xa, xb) is symmetric under the interchange of xa and xb.

Secondly, we have those cases for which SF λ(b)/λ(a−1)

is not a skew Young diagram F τ/σ. Such a

case arises if and only if SF λ(b)/λ(a−1)

contains two boxes on the main diagonal of SF λ. In the case λ =
(11, 9, 7, 6, 2), this is illustrated by:

(4.7)

a′ a b

a b′

a′ a b′ b b

a′ b′

b

−→

a′ a b

a b′

a′ a b′ b b

a′ b′

b

∼ a′

a′ b′

b

·

a′ a b

a b′

a b′ b b

To show that we still have symmetry in this case it should be noted that SF λ(b)/λ(a−1)

involves a connected
component with pairs of boxes on a sequence of one or more, say d, consecutive diagonals, together with

a single box on the next diagonal. This single box together with all the remaining boxes of SF λ(b)/λ(a−1)

necessarily constitute a skew Young diagram F τ/σ for some pair of partitions τ and σ. In the above example,
d = 2, τ = (5, 4, 4) and σ = (2, 2). We refer to the single box as the initial box of F τ/σ.

Each PST ∈ QSTλ(n) whose ribbon strip structure is specified by Seq(λ) is such that the pair of boxes

on the main diagonal of SF λ(b)/λ(a−1)

may be filled with entries (a′, b′), (a′, b), (a, b′) or (a, b), the pairs of
boxes on the next d − 1 diagonals are then filled with either (a′, b′) or (a, b), depending on their position
relative to the preceding pair, and the entry, say z, in the initial box of F τ/σ can in every case be either a
or b′, but neither a′ nor b. However, in the supertableaux T ∈ T τ/σ(2/2) contributing to sτ/σ(xa, xb/xa, xb)

the entry in the initial box of F τ/σ can be a′, a, b′ or b. Fortunately, with the ordering a′ < a < b′ < b,
if any supertableaux T with entry z in its initial box belongs to T τ/σ(2/2), then so does T ′, where T ′ is
obtained from T by either adding or subtracting a prime to z. Thus all contributing supertableaux arise in
pairs T and T ′. However, the entries z = a′ and z = a both contribute a factor xa to Qλ(b)/λ(a−1) (xa, xb),

while the entries z = b′ and z = b both contribute a factor xb. It follows that

(4.8) Qλ(b)/λ(a−1) (xa, xb) = 4 (xa xb)
d 1

2
sτ/σ(xa, xb/xa, xb) = 2 (xa xb)

d sτ/σ(xa, xb/xa, xb) .
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This shows, once again, that Qλ(b)/λ(a−1) (xa, xb) is symmetric under the interchange of xa and xb.

It follows that all contributions Qλ(b)/λ(a−1) (xa, xb) to Qλ(x) are symmetric under the interchange of
xa = xk and xb = xk+1. Applying this in the cases k = 1, 2, . . . , n − 1 is sufficient to prove our required
result that Qλ(x), as defined by (2.4), is symmetric under all permutations of the components of x.

4.2. The Weyl symmetry of symplectic Q-functions. Now, the aim is to show that Qsp
λ (x), as

defined combinatorially by (3.5), is not only a symmetric function of the components of x but also symmetric
with respect to any combination of the inversions xk 7→ x−1

k with k ∈ {1, 2, . . . , n}. Once again, it is
convenient to extend the definition to the case of skew symplectic Q-functions as follows. If λ and µ are
partitions whose parts are distinct, such that SF λ/µ = SF λ\SF µ is a skew shifted Young diagram, then for
any x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn) we let

(4.9) Qλ/µ(x,y) =
∑

QST∈QST λ/µ(n,n)

n
∏

k=1

x
(#k∈QST )+(#k′∈QST )
k

n
∏

k=1

y
(#k∈QST )+(#k

′

∈QST )
k ,

where QSTλ/µ(n, n) is the set of all primed semistandard shifted symplectic skew tableaux, QST , of shape

SF λ/µ, with entries taken from the set {1
′
, 1, 1′, 1, 2

′
, 2, 2′, 2, . . . , n′, n, n′, n} subject to the ordering 1

′
< 1 <

1′ < 1 < 2
′
< 2 < 2′ < 2 < · · · < n′ < n < n′ < n, weakly increasing across rows and down columns, with

no two k′s or k
′
s in the same row, and no two ks or ks in the same column. This allows us to define

(4.10) Qsp
λ/µ(x) = Qλ/µ(x,x) =

∑

QST∈QST λ/µ(n,n)

x
wgt(QST )
k ,

where wgt(QST ) = (#k ∈ QST ) + (#k′ ∈ QST ) − (#k ∈ QST )− (#k
′
∈ QST ).

It should then be noted that each QST ∈ QST λ(n, n), with λ a partition whose parts are all distinct,
has a structure consisting of a sequence of ribbon strips strk(QST ) and strk(QST ) with k = 1, 2, . . . , n. This

structure is specified by means of a sequence Seq(λ) of the form λ(0) ⊆ λ(1) ⊆ λ(1) ⊆ · · · ⊆ λ(n) ⊆ λ(n),
with λ(0) = 0 and λ(n) = λ, where each λ(a) is a partition all of whose parts are distinct, and λ(a)/λ(a−1) is
a skew partition in the shape of the ribbon strip stra(PST ) for a = 1, 1, 2, 2, . . . , n, n. Here a − 1 is to be
interpreted as the symbol immediately to the left of a in the sequence (0, 1, 1, 2, 2, . . . , n, n), that is to say
a − 1 = k − 1 if a = k and a − 1 = k if a = k. With this notation,

(4.11) Qsp
λ (x) =

∑

Seq(λ)

n
∏

a=1

Qλ(a)/λ(a−1) (xa) .

Moreover, with similar definitions of a + 1 and a + 2, one and two steps, respectively, to the right of a in the
sequence (0, 1, 1, 2, 2, . . . , n, n), we have

(4.12) Qsp
λ (x) =

∑

Seq(λ)

Qλ(a−1)(x1, . . . , xa−1) Qλ(a+1)/λ(a−1) (xa, xa+1) Qλ(n)/λ(a+1)(xa+2, . . . , xn) .

It follows that the contribution to Qλ(x) arising from the entries a′, a, (a + 1)′, (a + 1) in all those QST ∈

QSTλ(n, n) whose ribbon strip structure is specified by Seq(λ) is given by Qλ(a+1)/λ(a−1) (xa, xa+1).

In the case a = k, so that b = a + 1 = k and a− 1 = k − 1, then at most one of {a′, a, b′, b} may appear

on the main diagonal. It follows that SF λ(b)/λ(a−1)

is always a skew Young diagram F τ/σ for some pair of
partitions τ and σ. This is illustrated in the case of our example (3.12) by:

(4.13)

4 4

4′ 4 4

4

4 4

−→

4 4

4′ 4 4

4

4 4

where it can be seen that τ = (5, 5, 2, 2) and σ = (3, 2, 1). It then follows that in each such case

(4.14) Qλ(k)/λ(k−1) (xk , xk) = sτ/σ(xk , xk/xk, xk) .

Since sτ/σ(xa, xb/ya, yb) is symmetric under the interchange of xa and xb, and of ya and yb, it follows that
Qλ(k)/λ(k−1) (xk , xk) is symmetric under the interchange of xk and xk. This result is valid for all k = 1, 2, . . . , n
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Thanks to the identification xk = x−1
k for k = 1, 2, . . . , n, this implies that Qsp

λ (x) is symmetric with

respect to any combination of the inversions xk 7→ x−1
k with k ∈ {1, 2, . . . , n}.

On other hand, if a = k, so that b = a + 1 = k + 1 and a − 1 = k, the situation is the same as that

of a = k and b = k + 1 for gl(n). Two types of case occur, namely those for which SF λ(b)/λ(a−1)

is a skew

Young diagram F τ/σ for a pair of partitions τ and σ, and those for which SF λ(b)/λ(a−1)

contains a connected
sequence of pairs of boxes on d consecutive diagonals, starting with the main diagonal, linked to at least
one box, the initial box, of a skew Young diagram F τ/σ for a pair of partitions τ and σ. The analysis goes
through exactly as in the gl(n) case, giving either

(4.15) Qλ(k+1)/λk)(xk , xk+1) = sτ/σ(xk , xk+1/xk, xk+1)

or

(4.16) Qλ(k+1)/λk)(xk, xk+1) = 2 (xk, xk)d sτ/σ(xk, xk+1/xk, xk+1) .

In both cases Qλ(k+1)/λk)(xk, xk+1) is symmetric under the interchange of xk and xk+1. This result is valid

for all k = 1, 2, . . . , n − 1.
Now, returning to the symplectic Schur Q-function Qsp

λ (x) itself, its dependence on xk and xk+1 can be
isolated by means of the following decomposition

(4.17) Qsp
λ (x) =

∑

Seq(λ)

Qλ(k−1) (x1, . . . , xk−1) Qλ(k+1)/λ(k−1) (xk, xk, xk+1, xk+1) Qλ(n)/λ(k+1)(xk+2, . . . , xn) ,

where
(4.18)

Qλ(k+1)/λ(k−1) (xk , xk, xk+1, xk+1) = Qλ(k)/λ(k−1) (xk, xk) Qλk+1/λ(k) (xk+1) Qλ(k+1)/λ(k−1)(xk+1)

= Qλ(k)/λ(k−1) (xk) Qλ(k+1)/λ(k))(xk, xk+1) Qλ(k+1)/λ(k−1)(xk+1)

= Qλ(k)/λ(k−1) (xk) Qλ(k)/λ(k)(xk) Qλ(k+1)/λ(k) (xk+1, xk+1).

The fact that the first, second and third expressions are symmetric with respect to the transpositions
xk ↔ xk , xk ↔ xk+1 and xk+1 ↔ xk+1, respectively, ensures that Qλ(k+1)/λ(k−1) (xk, xk , xk+1, xk+1) is sym-

metric with respect to all permutations of its arguments, including the permutation (xk , xk, xk+1, xk+1) 7→

(xk+1, xk+1, xk, xk). This implies in turn that Qsp
λ (x) is invariant under the transposition xk ↔ xk+1. Since

this is true for all k = 1, 2, . . . , n− 1, it follows that Qsp
λ (x) is symmetric with respect to all permutations of

the components of x. Combining this with the invariance of Qsp
λ (x) under inversions, it follows that Qsp

λ (x)
is Weyl group invariant, as required.

5. Lattice path approach

It is well-known that tableaux translate nicely to lattice paths. In the case of Schur Q-function, Stem-
bridge [12] has provided a lattice path interpretation and used this to derive a pfaffian result for Qλ(x).
Hamel [1] extended this approach to obtain pfaffians for more general decompositions of tableaux. Hamel
also included a determinantal expression for Qλ(x) due to Okada [8] and showed an extension to it too. Here
we derive a determinantal expression for Qsp

λ (x) and prove it using lattice paths.

The lattice path grid is defined as follows. Label the y-axis with 0, 1
2 , 1′, 1, 1 1

2 , 1′, 1, 1 1
2 , 2′, 2, 2 1

2 , 2′, 2, . . ..
Define lattice paths with three types of permissible steps: up-vertical steps that increase the y-coordinate
by 1; horizontal steps at unprimed levels that increase the x-coordinate by 1; and up-diagonal steps from
unprimed levels to primed levels that increase the x-coordinate by 1 and increase the y-coordinate by 1.

For each tableau with m parts we can construct an m-tuple of noninteresecting lattice paths. There will
be one path for each row in the tableau. Construct a path as follows: if a box in the row contains an i or i
and is at coordinates (a, b) in the tableau, put a horizontal step from (a− b, i) to (a− b+1, i) (resp. (a− b, i)
to (a − b + 1, i)); if a box in the row contains an i′ or i′ and is at coordinates (a, b) in the tableau, put an
up-diagonal step from (a− b, i) to (a− b + 1, i′) (resp. (a− b, i− 1) to (a− b + 1, i′)). If, however, the box is
on the main diagonal of the tableau then there is a minor modification. In that case a box containing i′ or i′

causes an up-diagonal step from (0, i 1
2 ) to (1, i′) (resp. (0, (i− 1) 1

2 ) to 1, i′)). These steps are then connected
with vertical steps.
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Okada [8] proved a plane partition version of the following result using lattice paths. Hamel [1] reinter-
preted it in the form described above. In the theorem, a1, a2, . . . , al is the sequence of elements on the main
diagonal of the tableau, and |aj | = k if aj = k or k′.

Theorem 5.1. Let λ = (λ1, . . . , λl) be a shifted shape partition. Then

Qλ(x) =
∑

a1<a2<...<al

det
[

x|aj |Qλi−1(x|aj |, x|aj |+1, . . .)
]

.

Here we generalize this theorem to the symplectic case Qsp
λ (x). We now take |aj | = k if aj = k, k′, k or

k′.

Theorem 5.2. Let λ = (λ1, . . . , λl) be a shifted shape partition. Then

Qsp
λ (x) =

∑

a1<a2...<al

(

δaj ,k det
[

x−1
|aj |

Qλi−1(x
−1
|aj |

, x|aj |, x|aj |+1, . . .)
]

+ δaj ,k det
[

x|aj |Qλi−1(x|aj |, x
−1
|aj |+1, x|aj |+1, . . .)

]

)

,

where δaj ,k is 1 if aj is barred and 0 otherwise, and similarly δaj ,k is 1 if aj is unbarred and 0 otherwise.

The Q generating function in the determinant reflects the fact that with the first element removed from
the row, the row is now of size λi − 1 and the second element must have a weight of |aj | or greater.

Proof: Let a1, a2, . . . , al be the set of elements in the boxes on the main diagonal of the shifted tableau.
Using the lattice path set-up as described above with the additional constraint that the first step in a path
must be a step to (1, aj).

A Lindström-Gessel-Viennot argument will supply the proof. In particular, Theorem 1.2 of Stem-
bridge [12] applies. Summing over all permissible sequences a gives the full generality of the result. This
completes the proof.
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