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Abstract. In this article, we propose a generalization of the notion of chordal graphs to signed graphs, which is
based on the existence of a perfect elimination ordering for a chordal graph. We give a special kind of filtrations of
the generalized chordal graphs, and show a characterization of those graphs. Moreover, we also describe a relation
between signed graphs and a certain class of multiarrangements of hyperplanes, and show a characterization of free
multiarrangements in that class in terms of the generalized chordal graphs, which generalizes a well-known result
by Stanley on free hyperplane arrangements. Finally, we give a remark on a relation of our results with a recent
conjecture by Athanasiadis on freeness characterization for another class of hyperplane arrangements.

Résumé. Dans cet article, nous proposons une généralisation de la notion des graphes triangulés à graphes signés, qui
est basé sur l’existence d’un ordre d’élimination simplicial à un graphe triangulé. Nous donnons un genre spécial de
filtrations des graphes triangulés généralisés, et montrons une caractérisation de ces graphes. De plus, nous décrivons
aussi une relation entre graphes signés et une certaine classe de multicompositions d’hyperplans, et montrons une car-
actérisation de multicompositions libres dans cette classe en termes des graphes triangulés généralisés, qui généralise
un résultat célèbre de Stanley sur compositions libres d’hyperplans. Finalement, nous donnons une remarque sur une
relation de nos résultats avec une conjecture récente d’Athanasiadis sur une caractérisation du freeness d’une autre
classe de compositions d’hyperplans.

Keywords: hyperplane arrangement, free arrangement, chordal graph, signed graph, characterization

1 Introduction
Let V ` be an `-dimensional vector space over a field K of characteristic zero. A hyperplane arrange-
ment A (or simply an arrangement) is a finite collection of affine hyperplanes in V `. In this article any
arrangement A is assumed, unless otherwise specified, to be central, i.e., each hyperplane in A contains
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the origin. A multiplicity on an arrangementA is a map m : A → Z≥0, and a pair (A,m) is called a mul-
tiarrangement. Then an arrangement is a multiarrangement (A,m) with m constantly equal to one, that
is also called a simple arrangement. Theory of (multi)arrangements is an intersecting area of geometry,
algebra and combinatorics (see e.g., Orlik-Terao (1992)). For example, some associated combinatorial
objects such as intersecting lattices and characteristic polynomials of an arrangement reflect properties of
the arrangement. On the other hand, braid arrangements, or more generally Coxeter arrangements, are
fundamental objects in the theory of arrangements that are closely related to root systems of finite Coxeter
groups (see e.g., Saito (1975)).

One of the aims of this article is to give insight into freeness property of multiarrangements, that is
one of the most active topics in theory of (multi)arrangements, in a combinatorial viewpoint specified
below. To define the freeness property, we need some definitions and notations. Let {x1, . . . , x`} denote
a basis for the dual vector space V ∗ = (V `)∗ of V `, and let S = Sym(V ∗) ' K [x1, . . . , x`] be the
symmetric algebra on V ∗. Let DerK(S) =

⊕`
i=1 S · ∂xi denote the S-module of K-linear derivations of

S. For each hyperplane H ∈ A in a given multiarrangement (A,m), fix a linear form αH ∈ V ∗ such
that ker(αH) = H . Then (A,m) is called free if the logarithmic derivation module D(A,m) of (A,m)
defined by

D(A,m) = {θ ∈ DerK(S) | θ(αH) ∈ S · αHm(H) for all H ∈ A} (1)

is a free S-module (of rank `). Moreover, since for any free (A,m) the S-module D(A,m) has a free
basis {θ1, . . . , θ`} such that each θi is homogeneous of degree deg(θi) (i.e., θi =

∑`
j=1 fi,j∂xj with every

fi,j either zero or homogeneous of degree deg(θi)), and in that case the multiset of the degrees deg(θi) is
independent of the choice of the basis, we define the exponents of a free multiarrangement (A,m) by

exp(A,m) = {deg(θ1), . . . ,deg(θ`)} (as a multiset). (2)

When an arrangementA is fixed, we say that a multiplicitym onA is free if (A,m) is a free multiarrange-
ment. It is very difficult to determine free (multi)arrangements in general, and derivation modules and free
(multi)arrangements in some special cases have been well studied in preceding works. For instance, see
Abe-Terao-Wakefield (2008, 2007); Saito (1975, 1980); Solomon-Terao (1998); Terao (2002).

In this article, we deal with multiplicities on a braid arrangement A` (equivalently, the Coxeter ar-
rangement of type A`) that is an arrangement in V `+1 defined by

A` = {Hij = {xi − xj = 0} | i, j ∈ {1, 2, . . . , `+ 1}, i 6= j} . (3)

More generally, a Coxeter arrangement is the arrangement of all reflecting hyperplanes of a finite Coxeter
group. There have been several preceding results on free multiplicities on braid arrangements and Coxeter
arrangements (see e.g., Abe (2007, preprint 2008); Abe-Yoshinaga (preprint 2007); Saito (1975, 1980);
Solomon-Terao (1998); Terao (2002); Yoshinaga (preprint 2007)). In particular, a characterization of free
multiplicities m on Coxeter arrangements of the form m(H) = c+ δH , with c a constant and δH ∈ {0, 1}
for every H ∈ A, has been obtained by combining results of Abe-Yoshinaga (preprint 2007); Solomon-
Terao (1998); Terao (2002); Yoshinaga (2002). In this article, we consider any multiplicity m on braid
arrangements of another form m(H) = 2k+ δH , with k ∈ Z>0 a constant and δH ∈ {−1, 0, 1} for every
H ∈ A. Motivations of focusing on such situations are explained in the next paragraph. We parameterize
such a multiplicitym by using a signed graph with `+1 vertices in the following manner (see e.g., Diestel
(2006) for graph-theoretic terminology): For a signed graph G = (V,E) with V = {v1, . . . , v`+1} and
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E = E+ ∪ E− (disjoint union), define an auxiliary map mG : A` → {−1, 0, 1} by

mG(Hij) =


1 if vivj ∈ E+ ;
−1 if vivj ∈ E− ;
0 otherwise,

(4)

where vivj denotes an unordered pair of vi and vj , and put m = 2k + mG. (In this article, every graph
is finite, simple, and undirected, unless otherwise specified.) One of the main theorems in this article
gives a characterization of free multiplicities on A` of the above type in terms of a certain property of
the corresponding signed graph that will be described below. More precisely, our result shows that, under
a certain technical and not essential condition, a multiplicity m = 2k + mG is free if and only if G is
signed-eliminable in the sense specified in Section 2. See Theorem 2 for the precise statement of the
result. The notion of signed-eliminable graphs is a generalization of chordal graphs to signed graphs, and
the above result is also a signed-graphic generalization of Stanley’s well-known result (Stanley (1972))
on a characterization of free graphic arrangements in terms of chordal graphs. Moreover, Theorem 2 also
shows that, if a multiplicity m = 2k+mG is free, then its exponents are determined by certain quantities
associated to the signed graph G. A main ingredient of the proof of the result is a characterization of
signed-eliminable graphs in terms of excluded subgraphs, that is another main contribution of this article.
See Theorem 1 for the precise statement.

The main motivations of studying multiplicities of the above form m(H) = 2k+ δH , δH ∈ {−1, 0, 1},
on a braid arrangement are as follows. First, it is known that a kind of duality exists between multiplicities
2k + δH and 2k − δH , with all δH ∈ {0, 1}, not only for braid arrangements but also for Coxeter
arrangements of other types (Abe (preprint 2008)). The authors had guessed that such a duality would
extend to more general cases δH ∈ {−1, 0, 1}; the work in this article on the case of braid arrangements
is the first step to a study of the case of general Coxeter arrangements. Secondly, from the viewpoint of
Stanley’s freeness characterization based on (non-signed) chordal graphs, it is reasonable to expect that
extending non-signed graphs to signed graphs gives a natural generalization of Stanley’s theory, and the
corresponding multiplicities are actually of the above type. Moreover, it will be mentioned in Section 5
that our study on the above multiplicities is closely related to a conjecture by Athanasiadis (Athanasiadis
(2000)) on freeness characterization for another class of arrangements.

This article is organized as follows. In Section 2, we give a definition of signed-eliminable graphs
and introduce some related objects. We also show two inductive properties of signed-eliminable graphs
that play key roles of the proof of our main theorems. Moreover, we present some quantities associated
to signed-eliminable graphs that are main ingredients of the description of exponents of free multiar-
rangements of the above type. In Section 3, we state one of the two main theorems of this article that
characterizes signed-eliminable graphs in terms of excluded subgraphs (Theorem 1). We also show an
outline of the proof and some key lemmas that would be of independent interest. Moreover, we present
some simpler characterizations of signed-eliminable graphs in certain subclasses as easy consequences of
our result. In Section 4, we state an aforementioned result on free multiplicities on braid arrangements,
that is another main theorem of this article (Theorem 2), and show an outline of the proof. As an applica-
tion, we also describe characteristic polynomials of free multiarrangements of the above type (Corollary
5). Finally, in Section 5, we give a remark on a relation of our result with a conjecture by Athanasiadis
(Athanasiadis (2000)) on freeness characterization for another class of arrangements. More precisely, our
result is applied to prove one direction of Athanasiadis’s Conjecture (the sufficiency of Athanasiadis’s
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conditions for the freeness) in a more general setting than that in the statement of the conjecture.

2 Signed-Eliminable Graphs
First, we give a definition of signed-eliminable graphs:

Definition 1 For a signed graph G = (V,E) and a bijection ν : V → {1, 2, . . . , |V |} (in this article,
such a map ν is referred to as an ordering on G), we say that ν is a signed-elimination ordering (or an
SEO in short) if for any triple (u, v, w) of vertices of G such that ν(u) < ν(w) > ν(v), and for each
σ ∈ {+,−}, the following two conditions are satisfied:

(E1) If uw ∈ Eσ and vw ∈ Eσ , then uv ∈ Eσ .

(E2) If uv ∈ Eσ and vw ∈ E−σ , then uw ∈ Eσ .

We say that G is signed-eliminable (or SE in short) if an SEO on G exists.

See Figure 1 for the conditions (E1) and (E2), where single and duplicated edges represent edges with
different signs. Note that, owing to a well-known characterization of chordal graphs in terms of vertex
elimination orderings (see e.g., Fulkerson-Gross (1965)), both subgraphs G+ = (V,E+) and G− =
(V,E−) of an SE graph are chordal. In particular, SE graphs with either E+ = ∅ or E− = ∅ are nothing
but chordal graphs. Two examples of SE graphs are given in Figure 2. An SEO for the graph in the
left-hand side is given by w 7→ 1 and vi 7→ i+ 1. On the other hand, for the graph in the right-hand side,
an SEO is given by wi 7→ i and vi 7→ i+ 2.
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Fig. 1: Condition for signed-eliminable graphs
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Fig. 2: Examples of SE graphs

Remark 1 The SEOs are also characterized in the following manner: We assign weights ω(uv) to pairs
of vertices u, v of a signed graph G by the rule ω(uv) = ±1 and 0 if uv ∈ E± and uv 6∈ E, respectively.
Then an ordering ν on G is an SEO if and only if, for any triple (u, v, w) with ν(u) < ν(w) > ν(v) and
either uw ∈ E or vw ∈ E, if a ≤ b ≤ c are three weights ω(uv), ω(vw), and ω(uw) in nondecreasing
order, then we have b = ω(uv). This property plays a key role in our characterization of free multiplicities
of the above type.
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We summarize some fundamental properties of SE graphs. For any SEO ν on an SE graph G, the
restriction of ν to an induced subgraph of G gives an SEO on that subgraph. Hence the class of SE graphs
is closed under taking induced subgraphs. On the other hand, a signed graph is SE if and only if every
connected component of the graph is SE. Moreover, SE graphs have the following inductive properties.
To explain the properties, we introduce the following terminology:

Definition 2 Let G be a signed graph. Then a vertex v of G is called signed-simplicial if the following
two conditions are satisfied:

(S1) For each σ ∈ {+,−}, NGσ [v] = {u ∈ V | uv ∈ Eσ} ∪ {v} is a clique in Gσ (i.e., v is a simplicial
vertex of the graph Gσ).

(S2) For each σ ∈ {+,−}, uw ∈ E−σ and wv ∈ Eσ imply uv ∈ E−σ .

Moreover, let S(G) denote the set of the signed-simplicial vertices of G.

Then we have the following result:

Lemma 1 IfG is an SE graph with an SEO ν, then the vertex v ofG with ν(v) = |V | is signed-simplicial
in G (and by the aforementioned property, the restriction of ν to the induced subgraph G \ {v} of G with
vertex set V \ {v} is an SEO on the subgraph). Conversely, if G is a signed graph, v ∈ S(G) and ν is an
SEO on G \ {v}, then the unique extension ν of ν to G with ν(v) = |V | is also an SEO on G.

This inductive property plays a central role in the proof of our characterization of SE graphs. Moreover,
Lemma 1 implies that an SEO of any SE graph is found by a greedy algorithm, namely:

Lemma 2 We consider the following inductive algorithm for a signed graph G: If S(G) is empty then
halt, otherwise let vn be a vertex in S(G), where n = |V |, and proceed the algorithm for G \ {vn}.
Then G is an SE graph if and only if the algorithm does not halt until the graph becomes empty, and the
ordering ν on G with ν(vi) = i determined in this way is an SEO if G is an SE graph.

In contrast to the above inductive property with respect to vertices, the next property of SE graphs is
inductive with respect to edges. We introduce the following notion:

Definition 3 Let G be an SE graph with an SEO ν. For each 0 ≤ k ≤ |V |, let G(k) denote the subgraph
of G with the same vertex set V and an edge set consisting of all edges uv of G such that ν(u) ≤ k and
ν(v) ≤ k. Then we say that a sequence G′0 = G(k−1), G′1, . . . , G

′
r = G(k) of subgraphs of G is a k-th

signed-eliminable filtration (or a k-th SE filtration in short) of G if each G′i (1 ≤ i ≤ r) is obtained from
G′i−1 by adding one edge and ν is also an SEO on G′i. Moreover, we refer to a concatenation of k-th SE
filtrations for all 1 ≤ k ≤ |V | as a complete signed-eliminable filtration (or a complete SE filtration in
short) of G.

Then we have the following property, that plays a significant role in our characterization of free multiplic-
ities of the above type:

Proposition 1 Any SE graph has a complete SE filtration.

We give an outline of construction of complete SE filtrations. For an SE graph G with an SEO ν, let
v ∈ V with ν(v) = |V |. Then we define a binary relation ≺ on NG(v) = NG[v] \ {v} by u ≺ w if and
only if uw ∈ Eσ , uv ∈ Eσ and wv ∈ E−σ for some σ ∈ {+,−}. It is shown that the transitive closure
≺′ of ≺ is a partial order on NG(v), and that for a maximal element u of NG(v) with respect to ≺′, the
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subgraph of G obtained by deleting the edge uv is also an SE graph with the same SEO ν. Thus repetition
of this process gives a desired filtration of G.

For example, for the SE graph G in the left-hand side of Figure 2 with the SEO ν specified above,
the unique (n + 1)-th SE filtration of G is given by first adding the edge wvn and then adding the edge
vn−1vn, therefore a complete SE filtration is also inductively obtained. On the other hand, for the other
graph G in Figure 2 with the above SEO ν, the unique (n + 2)-th SE filtration of G is given by adding
three edges w1vn, w2vn, and vn−1vn in this order, therefore a complete SE filtration is also inductively
obtained.

In the last of this section, we introduce the following quantities associated to any SE graph that will be
used to describe the exponents of free multiplicities of the above type. Let G be an SE with an SEO ν.
Then we define d(ν)

σ (i) ∈ Z≥0 for each 1 ≤ i ≤ |V | and σ ∈ {+,−} by

d(ν)
σ (i) = |{u ∈ V | ν(u) ≤ i and uiu ∈ Eσ}| , (5)

where ui ∈ V such that ν(ui) = i. Moreover, for each i, put

d̃egi = d̃egi(G) = d
(ν)
+ (i)− d(ν)

− (i) . (6)

For example, for an SE graph G in Figure 3 and an SEO ν in the left-hand side of Figure 3, we have
(d(ν)

+ (i), d(ν)
− (i)) = (0, 0), (1, 0), (0, 0), and (1, 1) for each i = 1, . . . , 4, respectively. On the other hand,

for an SEO µ in the right-hand side of Figure 3, we have (d(µ)
+ (i), d(µ)

− (i)) = (0, 0), (0, 0), (1, 1), and
(1, 0) for each i = 1, . . . , 4, respectively. Now we see that the multisets of the pairs (d(ν)

+ (i), d(ν)
− (i))

in the first case and of the pairs (d(µ)
+ (i), d(µ)

− (i)) in the second case coincide with each other. This
phenomenon is not just an accident, namely we have the following property (that coincides with Theorem
4 of Rose (1970) in the special case of non-signed graphs):

g g
g g

1 2

3 4

g g
g g

4 1

2 3

Fig. 3: Two SEOs on the same SE graph

Proposition 2 For any SE graph G, the multiset of the pairs (d(ν)
+ (i), d(ν)

− (i)), 1 ≤ i ≤ |V |, does not
depend on the choice of an SEO ν on G. In particular, the multiset d̃eg(G) of the values d̃egi(G) is also
independent on the choice of ν.

Note that we always have d̃eg1 = 0 in the above setting.

3 Characterization of Signed-Eliminable Graphs
In this section, we give a characterization of SE graphs. To state the characterization, we need some more
definitions:
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Definition 4 We say that a sequence (v1, v2, . . . , vn;w) of vertices with n ≥ 3 is a σ-mountain, where
σ ∈ {+,−} (or simply a mountain), if vivi+1 ∈ E−σ for 1 ≤ i ≤ n − 1, wvi ∈ Eσ for 2 ≤ i ≤ n − 1,
and any other pair of vertices is not joined by an edge (see the left-hand side of Figure 4).

Definition 5 We say that a sequence (v1, v2, . . . , vn;w1, w2) of vertices with n ≥ 2 is a σ-hill, where
σ ∈ {+,−} (or simply a hill), if vivi+1 ∈ E−σ for 1 ≤ i ≤ n − 1, w1w2 ∈ Eσ , w1vi ∈ Eσ for
1 ≤ i ≤ n− 1, w2vi ∈ Eσ for 2 ≤ i ≤ n, and any other pair of vertices is not joined by an edge (see the
right-hand side of Figure 4).
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Fig. 4: Examples of non-SE graphs

A direct verification shows that neither a mountain nor a hill is an SE graph.

Definition 6 We refer to an induced path uvwx in a signed graph G with uv ∈ Eσ , vw ∈ E−σ , and
wx ∈ Eσ , where σ ∈ {+,−}, as an alternating 4-path in G.

Then the characterization is given by the following theorem:

Theorem 1 Let G be a signed graph. Then G is an SE graph if and only if all of the following three
conditions are satisfied:

(C1) Both G+ and G− are chordal (i.e., having no induced cycle of length ≥ 4).

(C2) For any alternating 4-path uvwx in G with uv ∈ Eσ , we have either uw ∈ Eσ and ux ∈ Eσ , or
ux ∈ Eσ and vx ∈ Eσ .

(C3) G contains no mountain and no hill as an induced subgraph.

An easy argument shows that the “only if” part of Theorem 1 holds, thus the nontrivial part of the theorem
is to show that G is an SE graph if the conditions (C1)–(C3) are satisfied. Moreover, since the conditions
(C1)–(C3) are closed under taking an induced subgraph, the proof can be proceeded by induction on |V |.
Note that the case |V | ≤ 3 is trivial, since every signed graph with at most three vertices is an SE graph.
Thus, by the properties mentioned in Section 2, it suffices to show that S(G) 6= ∅ if G is connected,
E+ 6= ∅, E− 6= ∅, and S(G \ {v}) 6= ∅ for every vertex v of G.

We explain an observation for the proof. For any graph G and a subset V ′ of the vertex set V of G, let
G|V ′ denote the induced subgraph of G with vertex set V ′. For a signed graph G, two subsets V ′, V ′′ of
V with V ′ ⊂ V ′′, and σ ∈ {+,−}, let W = clσ(V ′;V ′′) be the union of vertex sets of the connected
components of Gσ|V ′′ that have nonempty intersection with V ′, and define

W = clσ(V ′;V ′′) = {v ∈ V ′′ | NG−σ [v] ∩ clσ(V ′;V ′′) 6= ∅} (7)

(note that W ⊂ W ). Then it is shown that, if the condition (C2) is satisfied and every connected com-
ponent of Gσ|W contains at least two vertices, then any simplicial vertex of the “closure” G|W of V ′
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relative to V ′′ is contained in the “interior set” W of G|W and is also simplicial in G|V ′′ . Owing to this
fact, by choosing an appropriate vertex v of G, we can restrict possibilities of the simplicial vertices of
the subgraph G \ {v} (that exist by the induction hypothesis). This is a main tool of our proof, and a
somewhat lengthy graph-theoretic argument enables us to find a desired simplicial vertex of the graph G.
For the details, see a forthcoming full version of the article, or its preliminary version (Nuida (preprint
2007)).

We also present two lemmas for the proof that would be of independent interest:

Lemma 3 Let G be a chordal graph and V ′ ⊂ V a clique of G with V ′ 6= V . Then there is a vertex
v ∈ V \ V ′ such that NG[v] is a clique of G.

Lemma 4 LetG be a connected SE graph such thatE+ 6= ∅ andE− 6= ∅. ThenG has a signed-simplicial
vertex v such that NG+ [v] 6= {v} and NG− [v] 6= {v}.

In the last of this section, we state some special cases of our characterization:

Corollary 1 A signed graph G with four vertices is SE if and only if one of the following conditions is
satisfied:

(FV1) Either G+ or G− has a vertex of degree three.

(FV2) Both G+ and G− are chordal, G is not a mountain, and G has no alternating 4-path.

Corollary 2 Let G be a signed graph that is chordal (as a non-signed graph). Then G is SE if and only if
both conditions (C2) and (C3) are satisfied.

Corollary 3 LetG be a signed graph with independence number α(G) ≤ 2 (i.e., every induced subgraph
of G with three vertices has an edge). Then G is SE if and only if the condition (C2) and the following
two conditions are satisfied:

(I1) Both G+ and G− have no cycle of length four or five that is an induced cycle in G.

(I2) G contains no hills with five or six vertices as an induced subgraph.

Corollary 4 Let G be a signed graph that is a complete graph (as a non-signed graph). Then G is SE if
and only if for each σ ∈ {+,−}, Gσ contains, as an induced subgraph, neither a simple path with four
vertices, nor a pair of two disjoint edges that are not joined by an edge in Gσ .

4 Freeness Characterization of Multiplicities 2k + mG

Now we come back to the study of free multiarrangements mentioned in the Introduction. The full state-
ment of our characterization of those free multiarrangements is the following:

Theorem 2 Let A = A` denote the braid arrangement in V `+1 as in the Introduction, let G be a signed
graph with vertex set V = {v1, . . . , v`+1}, and let mG be the map defined in (4). Let k, n1, . . . , n`+1 be
nonnegative integers. Let m be a multiplicity on A defined by m(Hij) = 2k + ni + nj +mG(Hij) for
each Hij ∈ A, and put N = (` + 1)k +

∑`+1
i=1 ni. Assume that one of the following three conditions is

satisfied:

(a) k > 0.
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(b) E− = ∅.

(c) E+ = ∅ and m(Hij) > 0 for all Hij ∈ A.

Then (A,m) is free if and only if G is an SE graph. Moreover, if it is free, then the exponents of (A,m)
are determined by

exp(A,m) = (0, N + d̃eg2, . . . , N + d̃eg`+1) (8)

where d̃egi is the quantity associated to G defined in (6).

Note that, in the case that E− = ∅ and k = n1 = · · · = n`+1 = 0, the multiarrangement in Theorem 2
coincides with a graphic arrangement mentioned in the Introduction. Thus Theorem 2 is a generalization
of Stanley’s aforementioned characterization of free graphic arrangement (see Stanley (1972)).

We explain an outline of the proof of Theorem 2. First, for the “if” part, suppose that G is an SE graph
with an SEO ν. By an appropriate permutation of coordinates, we assume without loss of generality that
ν(vi) = i for every i. We proceed the proof by induction on `, and the case ` ≤ 2 follows from the
result of Wakamiko (2007). For the case ` > 2, Proposition 1 implies that G has a complete SE filtration
G′0, G

′
1, . . . , G

′
r = G corresponding to the SEO ν. We show by induction on i that the multiarrangement

(A(i),m(i)) corresponding to each SE graph G′i is free. For the step from G′i−1 to G′i, let vjvk denote
the edge added to G′i−1 in this step, where j < k. Let A′ = {H ∩ Hjk | H ∈ A(i) \ {Hjk}},
which is an arrangement in an `-dimensional space, and let (A′,m′) be a certain special multiarrangement
(called the Euler restriction of (A(i),m(i)) to Hjk) obtained by a result of Abe-Terao-Wakefield (2008).
Then it follows from results of Abe-Terao-Wakefield (2008) that (A′,m′) is a multiarrangement of the
form in Theorem 2 corresponding to an induced subgraph of G and the restriction of ν to this subgraph,
therefore the first induction hypothesis implies that (A′,m′) is free. Now owing to Addition-Deletion
Theorem (Theorem 0.8 of Abe-Terao-Wakefield (2008)), freeness of (A(i−1),m(i−1)) implies freeness
of (A(i),m(i)), therefore the claim follows from the second induction hypothesis. Thus the “if” part is
proved. Moreover, the description of the exponents is also obtained by the same argument in parallel.
Note that existence of complete SE filtrations plays a key role in this proof, but the characterization of SE
graphs has not yet appeared.

On the other hand, for the “only if” part, we show that (A,m) is not free if G is not an SE graph. Then
by the characterization of SE graphs (Theorem 1), one of the three conditions (C1)–(C3) is not satisfied,
namely we are in one of the following situations:

• Either G+ or G− has an induced cycle of length ≥ 4.

• G contains an alternating 4-path uvwx with uv ∈ Eσ such that either ux 6∈ Eσ , or uw 6∈ Eσ and
vx 6∈ Eσ .

• G contains a mountain or a hill as an induced subgraph.

Owing to Lemma 3.8 in Abe (2006), it suffices to show that the multiarrangement corresponding to the
subgraph ofG specified in the above conditions is not free. This is done by a case-by-case argument based
on Addition-Deletion Theorem and other preceding results of Abe-Terao-Wakefield (2008), Abe-Terao-
Wakefield (2007), and Wakamiko (2007). Thus the “only if” part is proved. For the details, see the full
version of this article (Abe-Nuida-Numata (2009)).
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We would like to summarize here again that the complete SE filtration plays a key role in the proof of
the “if” part of Theorem 2, while the proof of the “only if” part requires our characterization of SE graphs
given in Theorem 1.

In the last of this section, we give a remark on characteristic polynomials of the above multiarrange-
ments that is an easy consequence of Theorem 2. Characteristic polynomials χ(A,m, t) of multiarrange-
ments (A,m) are defined by Abe-Terao-Wakefield (2007), and in that article a factorization theorem of
χ(A,m, t) is proved. It is difficult to compute the polynomial χ(A,m, t) in general. However, if (A,m)
is a free multiarrangement, then the computation becomes easy owing to the factorization theorem. Thus
by Theorem 2, we obtain the following result on characteristic polynomials of the above multiarrange-
ments:

Corollary 5 Let (A,m) be the same multiarrangement as in Theorem 2 corresponding to a signed graph
G. Let m̃ be another multiplicity on A such that m̃(Hij) = 2k+ ni + nj −mG(Hij) for each Hij ∈ A.
Then, in the case k > 0, (A,m) is free if and only if (A, m̃) is free. Moreover, if G is an SE graph, then
we have

χ(A,m, t) = t

`+1∏
i=2

(t−N − d̃egi) (9)

and

χ(A, m̃, t) = t

`+1∏
i=2

(t−N + d̃egi) . (10)

5 Conjecture of Athanasiadis
In this section, we explain a relation of our result with a conjecture of Athanasiadis (see Athanasiadis
(2000)) on graphic characterization of free arrangements in another class. Here we consider a non-central
affine arrangement in V `+1 that consists of affine hyperplanes defined by xi−xj = h (1 ≤ i < j ≤ `+1),
where h ∈ Z, −k − ε(i, j) ≤ h ≤ k + ε(j, i), k ∈ Z≥0 is a constant, and ε(i, j) ∈ {0, 1}. Such
an arrangement is called a deformation of the Coxeter arrangement and was first systematically inves-
tigated by Stanley (1996). These arrangements have been extensively studied by several persons such
as Athanasiadis (1996, 1998, 2000), Edelman-Reiner (1996), Postnikov-Stanley (2000), and Yoshinaga
(2004). In particular, Athanasiadis (Athanasiadis (1996)) introduced a description of the above arrange-
ment in terms of a directed graph G = (V,E) with vertex set V = {v1, . . . , v`+1}. For such a graph G,
define ε(i, j) = 1 if (vi, vj) ∈ E and ε(i, j) = 0 if (vi, vj) 6∈ E, where (vi, vj) denotes an arrow from
vi to vj . Note that every affine arrangement of the above form is parameterized in this manner. Let AG
denote the arrangement corresponding to G. Then Athanasiadis (Athanasiadis (1996)) gives a splitting
formula of the characteristic polynomial of AG in the case that G satisfies the following two conditions:

(A1) For every triple vh, vi, vj of vertices of G with i < h and j < h, (vi, vj) ∈ E implies either
(vi, vh) ∈ E or (vh, vj) ∈ E.

(A2) For every triple vh, vi, vj of vertices of G with i < h and j < h, we have (vi, vj) ∈ E if (vi, vh) ∈
E and (vh, vj) ∈ E.

Moreover, he also gave a conjecture (Conjecture 6.6 in Athanasiadis (2000)) that in the case k = 0, the
conditions (A1) and (A2) would be necessary and sufficient for the “coning” cAG of AG to be a free
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arrangement. We mention that one direction of Athanasiadis’s Conjecture is proved in a more general
setting by applying our results in the previous sections. Namely, we have the following result:

Theorem 3 In the above setting, where we do not assume k = 0, the coning cAG of AG is free if G
satisfies the conditions (A1) and (A2).

We give an outline of the proof of Theorem 3. Let H∞ be the infinity hyperplane of the coning cAG
of AG. Let (A′′,mH∞) denote the Ziegler restriction of cAG (see Ziegler (1989)) defined by A′′ =
{H ∩ H∞ | H∞ 6= H ∈ cAG} and mH∞(X) = |{H ∈ cAG \ {H∞} | H ∩ H∞ = X}| for each
X ∈ A′′. Then it is shown that (A′′,mH∞) is of the form in Theorem 2 corresponding to a signed
graph G′, and the conditions (A1) and (A2) for G imply that G′ is an SE graph. Thus (A′′,mH∞) is free
by Theorem 2. Now owing to Theorem 2.2 of Yoshinaga (2004), an argument based on induction on `
implies that cAG is free. Thus Theorem 3 is proved. For the details, see the full version of this article
(Abe-Nuida-Numata (2009)).
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Abstract. We construct unital extensions of the higher order peak algebras defined by Krob and the third author in
[Ann. Comb. 9 (2005), 411–430], and show that they can be obtained as homomorphic images of certain subalgebras
of the Mantaci-Reutenauer algebras of type B. This generalizes a result of Bergeron, Nyman and the first author
[Trans. AMS 356 (2004), 2781–2824].

Résumé. Nous construisons des extensions unitaires des algèbres de pics d’ordre supérieur définies par Krob et le
troisième auteur dans [Ann. Comb. 9 (2005), 411–430], et nous montrons qu’elles peuvent être obtenues comme
images homomorphes de certaines sous-algèbres des algèbres de Mantaci-Reutenauer de type B. Ceci généralise un
résultat dû à Bergeron, Nyman et au premier auteur [Trans. AMS 356 (2004), 2781–2824].

Keywords: Descent algebras, Noncommutative symmetric functions, Peak algebras

1 Introduction
A descent of a permutation σ ∈ Sn is an index i such that σ(i) > σ(i+1). A descent is a peak if moreover
i > 1 and σ(i) > σ(i − 1). The sums of permutations with a given descent set span a subalgebra of the
group algebra, the descent algebra Σn. The peak algebra P̊n of Sn is a subalgebra of its descent algebra,
spanned by sums of permutations having the same peak set. This algebra has no unit. Descent algebras
can be defined for all finite Coxeter groups [19]. In [2], it is shown that the peak algebra of Sn can be
naturally extended to a unital algebra, which is obtained as a homomorphic image of the descent algebra
of the hyperoctahedral group Bn.

The direct sum of the peak algebras turns out to be a Hopf subalgebra of the direct sum of all descent
algebras, which can itself be identified with Sym, the Hopf algebra of noncommutative symmetric func-
tions [9]. As explained in [5], it turns out that a fair amount of results on the peak algebras can be deduced
from the case q = −1 of a q-identity of [11]. Specializing q to other roots of unity, Krob and the third
author introduced and studied higher order peak algebras in [12]. Again, these are non-unital, and it is
natural to ask whether the construction of [2] can be extended to this case.
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We will show that this is indeed possible. We first construct the unital versions of the higher order
peak algebras by a simple manipulation of generating series. We then show that they can be obtained as
homomorphic images of the Mantaci-Reutenauer algebras of typeB. Hence no Coxeter groups other than
Bn and Sn are involved in the process; in fact, the construction is related to the notion of superization, as
defined in [16], rather than to root systems or wreath products.

2 Notations and background
2.1 Noncommutative symmetric functions
We will assume familiarity with the notations of [9] and with the main results of [12]. We recall a few
definitions for the convenience of the reader.

The Hopf algebra of noncommutative symmetric functions is denoted by Sym, or by Sym(A) if
we consider the realization in terms of an auxiliary alphabet A. Linear bases of Symn are labelled by
compositions I = (i1, . . . , ir) of n (we write I � n). The noncommutative complete and elementary
functions are denoted by Sn and Λn, and SI = Si1 · · ·Sir . The ribbon basis is denoted by RI . The
descent set of I is Des(I) = {i1, i1 + i2, . . . , i1 + · · ·+ ir−1}. The descent composition of a permutation
σ ∈ Sn is the composition I = D(σ) of n whose descent set is the descent set of σ.

Recall from [8] that for an infinite totally ordered alphabet A, FQSym(A) is the subalgebra of C〈A〉
spanned by the polynomials

Gσ(A) =
∑

std(w)=σ

w, (1)

that is, the sum of all words inAn whose standardization is the permutation σ ∈ Sn. The noncommutative
ribbon Schur function RI ∈ Sym is then

RI =
∑

D(σ)=I

Gσ . (2)

This defines a Hopf embedding Sym → FQSym. The Hopf algebra FQSym is self-dual under the
pairing (Gσ , Gτ ) = δσ,τ−1 (Kronecker symbol). Let Fσ := Gσ−1 , so that {Fσ} is the dual basis of
{Gσ}. The internal product ∗ of FQSym is induced by composition ◦ in Sn in the basis F, that is,

Fσ ∗ Fτ = Fσ◦τ and Gσ ∗Gτ = Gτ◦σ . (3)

Each subspace Symn is stable under this operation, and anti-isomorphic to the descent algebra Σn of Sn.
For fi ∈ FQSym and g ∈ Sym, we have the splitting formula

(f1 . . . fr) ∗ g = µr · (f1 ⊗ · · · ⊗ fr) ∗r ∆rg , (4)

where µr is r-fold multiplication, and ∆r the iterated coproduct with values in the r-th tensor power.

2.2 The Mantaci-Reutenauer algebra of level 2
We denote by MR the free product Sym ? Sym of two copies of the Hopf algebra of noncommutative
symmetric functions [14]. That is, MR is the free associative algebra on two sequences (Sn) and (Sn̄)
(n ≥ 1). We regard the two copies of Sym as noncommutative symmetric functions on two auxiliary



Unital versions of the higher order peak algebras 15

alphabets: Sn = Sn(A) and Sn̄ = Sn(Ā). We denote by F 7→ F̄ the involutive automorphism which
exchanges Sn and Sn̄. The bialgebra structure is defined by the requirement that the series

σ1 =
∑
n≥0

Sn and σ̄1 =
∑
n≥0

Sn̄ (5)

are grouplike. The internal product of MR can be computed from the splitting formula and the conditions
that σ1 is neutral, σ̄1 is central, and σ̄1 ∗ σ̄1 = σ1.

In [15], an embedding of MR in the Hopf algebra BFQSym of free quasi-symmetric functions of
type B (spanned by colored permutations) is described. Under this embedding, left ∗-multiplication by
Λn = Gnn−1...2,1 corresponds to right multiplication by nn− 1 . . . 2, 1 in the group algebra of Bn. This
implies that left ∗-multiplication by λ1 is an involutive anti-automorphism of BFQSym, hence of MR.

2.3 Noncommutative symmetric functions of type B

The hyperoctahedral analogue BSym of Sym, defined in [6], is the right Sym-module freely generated
by another sequence (S̃n) (n ≥ 0, S̃0 = 1) of homogeneous elements, with σ̃1 grouplike. This is a
coalgebra, but not an algebra. It is endowed with an internal product, for which each homogeneous
component BSymn is anti-isomorphic to the descent algebra of Bn.

3 Solomon descent algebras of type B

3.1 Descents in Bn

The hyperoctahedral group Bn is the group of signed permutations. A signed permutation can be denoted
by w = (σ, ε) where σ is an ordinary permutation and ε ∈ {±1}n, such that w(i) = εiσ(i). If we set
w(0) = 0, then, i ∈ [0, n − 1] is a descent of w if w(i) > w(i + 1). Hence, the descent set of w is
a subset D = {i0, i0 + i1, . . . , i0 + i1 + · · · ir−1} of [0, n − 1]. We then associate to D a so-called
type-B composition (a composition whose first part can be zero) (i0−0, i1, . . . , ir−1, n− ir−1). The sum
of all signed permutations whose descent set is contained in D is mapped to S̃I := S̃i0S

I′ by Chow’s
anti-isomorphism [6], where I ′ = (i1, . . . , ir).

3.2 Noncommutative supersymmetric functions
An embedding of BSym as a sub-coalgebra and sub-Sym-module of MR can be deduced from [14].
To describe it, let us define, for F ∈ Sym(A),

F ] = F (A|Ā) = F (A− qĀ)|q=−1 (6)

(the supersymmetric version of F ). The superization of F ∈ Sym(A) can also be given by

F ] = F ∗ σ]1 . (7)

Indeed, σ]1 is grouplike, and for F = SI , the splitting formula gives

(Si1 · · ·Sir ) ∗ σ
]
1 = µr[(Si1 ⊗ · · · ⊗ Sir ) ∗ (σ]1 ⊗ · · · ⊗ σ

]
1)] = SI] . (8)
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We have
σ]1 = λ̄1σ1 =

∑
ΛīSj . (9)

The element σ̄1 is central for the internal product, and

σ̄1 ∗ F = F̄ = F ∗ σ̄1 . (10)

Hence,
σ̄1 ∗ σ]1 = λ1σ̄1 =: σ[1 . (11)

The basis element S̃I of BSym, where I = (i0, i1, . . . , ir) is a type B-composition, can be embedded
as

S̃I = Si0(A)Si1i2···ir (A|Ā) . (12)

We will identify BSym with its image under this embedding.

3.3 A proof that BSym is ∗-stable
We are now in a position to understand why BSym is a ∗-subalgebra of MR. The argument will be
extended below to the case of unital peak algebras. Let F,G ∈ Sym. We want to understand why
σ1F

] ∗ σ1G
] is in BSym. Using the splitting formula, we rewrite this as

µ[(σ1 ⊗ F ]) ∗∆σ1∆G]] =
∑
(G)

(σ1G
]
(1))(F

] ∗ σ1G
]
(2)). (13)

We now only have to show that each term F ] ∗ σ1G
]
(2) is in Sym]. We may assume that F = SI , and for

any G ∈ Sym,

SI] ∗ σ1G
] =

∑
(G)

µr[(S
]
i1
⊗ · · · ⊗ S]ir ) ∗ (σ1G

]
(1) ⊗ · · · ⊗ σ1G

]
(r))] (14)

so that it is sufficient to prove the property for F = Sn. Now,

σ]1 ∗ σ1G
] = (λ̄1σ1) ∗ σ1G

]

=
∑
(G)

(λ̄1 ∗ σ1G
]
(1))(σ1G

]
(2))

=
∑
(G)

(σ̄1 ∗ λ1 ∗ σ1G
]
(1)) · σ1 ·G](2)

(15)

Now,
λ1 ∗ σ1G

]
(1) = (λ1 ∗G](1))(λ1 ∗ σ1) = (λ1 ∗G](1))λ1, (16)

since λ1 is an anti-automorphism. We then get

σ]1 ∗ σ1G
] =

∑
(G)

(σ̄1 ∗ ((λ1 ∗G](1))λ1) · σ1 ·G](2)

=
∑
(G)

(σ̄1 ∗ λ1 ∗G](1)) · (σ̄1 ∗ λ1)σ1 ·G](2)

=
∑
(G)

(λ̄1 ∗G](1)) · σ
]
1 ·G

]
(2)

(17)
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Now, the result will follow if we can prove that λ̄1 ∗G] is in Sym] for any G ∈ Sym.
For G = SI ,

λ̄1 ∗ SI] = λ1 ∗ σ̄1 ∗ SI ∗ σ]1 = λ1 ∗ SI ∗ σ̄1 ∗ σ]1 = λ1 ∗ SI ∗ σ[1 . (18)

Since left ∗-multiplication by λ1 in an anti-automorphism, we only need to prove that λ1 ∗ S[n is of the
form G]. And indeed,

λ1 ∗ S[n =
∑
i+j=n

λ1 ∗ (ΛiSj̄)

=
∑
i+j=n

(λ1 ∗ Sj̄)(λ1 ∗ Λi)

=
∑
i+j=n

Λj̄Si = S]n .

(19)

This concludes the proof that BSym is a ∗-subalgebra of BFQSym.

4 Unital versions of the higher order peak algebras
As shown in [5], much of the theory of the peak algebra can be deduced from a formula of [11] for
RI((1 − q)A), in the special case q = −1. In [12], this formula was studied in the case where q is an
arbitrary root of unity, and higher order analogs of the peak algebra were obtained. In [2], it was shown
that the classical peak algebra can be extended to a unital algebra, which is obtained as a homomorphic
image of the descent algebra of type B. In this section, we construct unital extensions of the higher order
peak algebras.

Let q be a primitive r-th root of unity. All objects introduced below will depend on q (and r), although
this dependence will not be made explicit in the notation. We denote by θq the endomorphism of Sym
defined by

f̃ = θq(f) = f((1− q)A) = f(A) ∗ σ1((1− q)A) . (20)

We denote by P̊ the image of θq and by P the right P̊-module generated by the Sn for n ≥ 0. Note that
P̊ is by definition a left ∗-ideal of Sym.

Theorem 4.1 P is a unital ∗-subalgebra of Sym. Its Hilbert series is∑
n≥0

dimPntn =
1

1− t− t2 − · · · − tr
. (21)

Proof – Since the internal product of homogeneous elements of different degrees is zero, it is enough to
show that, for any f, g ∈ Sym, σ1f̃ ∗ σ1g̃ is in P . Thanks to the splitting formula,

σ1f̃ ∗ σ1g̃ = µ[(σ1 ⊗ f̃) ∗
∑
(g)

σ1g̃(1) ⊗ σ1g̃(2)]

=
∑
(g)

(σ1g̃(1))(f̃ ∗ σ1g̃(2)) .
(22)
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Thus, it is enough to check that f̃ ∗ σ1h̃ is in P̊ for any f, h ∈ Sym. Now,

f̃ ∗ σ1h̃ = f ∗ σ1((1− q)A) ∗ σ1h̃ , (23)

and since P̊ is a Sym left ∗-ideal, we only have to show that σ1((1 − q)A) ∗ σ1h̃ is in P̊ . One more
splitting yields

σ1((1− q)A) ∗ σ1h̃ = (λ−qσ1) ∗ σ1h̃

= µ[(λ−q ⊗ σ1) ∗
∑
(h)

σ1h̃(1) ⊗ σ1h̃(2)]

=
∑
(h)

(λ−q ∗ σ1h̃(1))(σ1h̃(2))

=
∑
(h)

(λ−q ∗ h̃(1))λ−qσ1h̃(2)

(24)

(since left ∗-multiplication by λ−q is an anti-automorphism, namely the composition of the antipode
and qdegree). The first parentheses (λ−q ∗ h̃(1)) are in P̊ since it is a left ∗-ideal. The middle term is
σ1((1− q)A), and the last one is in P̊ by definition.

Recall from [12, Prop. 3.5] that the Hilbert series of P̊ is∑
n≥0

dimP̊ntn =
1− tr

1− t− t2 − . . .− tr
. (25)

From [12, Lemma 3.13 and Eq. (3.9)], it follows that Sn 6∈ P̊ if and only if n ≡ 0 mod r, so that the
Hilbert series of P is ∑

n≥0

dimPntn =
1

1− t− t2 − . . .− tr
. (26)

5 Back to the Mantaci-Reutenauer algebra
The above proofs are in fact special cases of a master calculation in the Mantaci-Reutenauer algebra,
which we carry out in this section.

Let q be an arbitrary complex number or an indeterminate, and define, for any F ∈MR,

F ] = F ∗ σ1(A− qĀ) = F ∗ σ]1 . (27)

Since σ]1 is grouplike, it follows from the splitting formula that

F 7→ F ] (28)

is an automorphism of MR for the Hopf structure. In addition, it is clear from the definition that it is also
a endomorphism of left ∗-modules. We refer to it as the ] transform.
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We now define
Q̊ = MR], (29)

the image of the ] transform. Since the latter is an endomorphism of Hopf algebras and of left ∗-modules,
Q̊ is both a Hopf subalgebra of MR and a left ∗-ideal. When q is a root of unity, its image under the
specialization Ā = A is the non-unital peak algebra P̊ of Section 4 (and for generic q, it is Sym).

Let Q be the right Q̊-module generated by the Sn, for all n ≥ 0. Clearly, the identification Ā = A
maps Q onto P , the unital peak algebra of Section 4.

Theorem 5.1 Q is a ∗-subalgebra of MR, containing Q̊ as a left ideal.

Proof – Let F,G ∈ MR. As above, we want to show that σ1F
] ∗ σ1G

] is in Q. Using the splitting
formula, we rewrite this as

µ[(σ1 ⊗ F ]) ∗∆σ1∆G]] =
∑
(G)

(σ1G
]
(1))(F

] ∗ σ1G
]
(2)) (30)

and we only have to show that each term F ] ∗ σ1G
]
(2) is in Q̊. We may assume that F = SI , where I is

now a bicolored composition, and for any G ∈MR,

SI] ∗ σ1G
] =

∑
(G)

µr[(S
]
i1
⊗ · · · ⊗ S]ir ) ∗ (σ1G

]
(1) ⊗ · · · ⊗ σ1G

]
(r))] (31)

so that it is sufficient to prove the property for F = Sn or Sn̄. Now,

σ]1 ∗ σ1G
] = (λ̄−qσ1) ∗ σ1G

]

=
∑
(G)

(λ̄−q1 ∗ σ1G
]
(1))(σ1G

]
(2))

=
∑
(G)

(λ̄−q ∗G](1)) · σ
]
1 ·G

]
(2)

(32)

which is in Q̊, since it is a subalgebra and a left ∗-ideal, and similarly,

σ̄]1 ∗ σ1G
] = (λ−qσ̄1) ∗ σ1G

]

=
∑
(G)

(λ−q ∗ σ1G
]
(1))(σ̄1Ḡ

]
(2))

=
∑
(G)

(λ−q ∗G](1)) · σ̄
]
1 · Ḡ

]
(2)

(33)

is also in Q̊.

The various algebras introduced in this paper and their interrelationships are summarized in the follow-
ing diagram.

Q̊

����

⊆ Q

����

⊆ MR

����

⊆ BFQSym

����
P̊ ⊆ P ⊆ Sym ⊆ FQSym

(34)
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Note that in the special case q = −1, by the results of Section 3.3,Qn is the (Solomon) descent algebra
of Bn, Q is isomorphic to BSym, and P is the unital peak algebra of [2].

6 Further developments
6.1 Inversion of the generic ] transform
For generic q, the endomorphism (27) of MR is invertible; therefore

Q̊ ∼MR. (35)

The inverse endomorphism of MR arises from the transformation of alphabets

A 7→ (qĀ+A)/(1− q2), (36)

which is to be understood in the following sense:

σ1

(
qĀ+A

1− q2

)
:=
∏
k≥0

σq2k+1(Ā)σq2k(A) . (37)

Indeed,

σ1

(
qĀ+A

1− q2

)
∗ σ1(A− qĀ) =

∏
k≥0

σq2k+1(Ā− qA)σq2k(A− qĀ)

=
∏
k≥0

λ−q2k+2(A)σq2k+1(Ā)λ−q2k+1(Ā)σq2k(A)

= σ1(A) .

(38)

By normalizing the term of degree n in (37), we obtainBn-analogs of the q-Klyachko elements defined
in [9]:

Kn(q;A, Ā) :=
n∏
i=1

(1− q2 i)Sn

(
qĀ+A

1− q2

)
=
∑
I�n

q2 maj(I)RI(qĀ+A) . (39)

This expression can be completely expanded on signed ribbons. From the expression of RI in FQSym,
we have

RI(Ā+A) =
∑

C(σ)=I

Gσ(Ā+A) (40)

where Ā+A is the ordinal sum. If we order Ā by

ā1 < ā2 < . . . < āk < . . . (41)

then, arguing as in [16], we have

Gσ(Ā+A) =
∑

std(τ,ε)=σ

Gτ,ε (42)
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so that
RI(Ā+A) =

∑
ρ(J)=I

RJ (43)

where for a signed composition J = (J, ε), the unsigned composition ρ(J) is defined as the shape of
std(σ, ε), where σ is any permutation of shape J .

Replacing Ā by qĀ, one obtains the expansion of the q-Klyachko elements of type B:

Kn(q;A, Ā) =
∑

J

qbmaj(J)RJ (44)

where
bmaj(J) = 2 maj(ρ(J)) + |ε| , (45)

where |ε| is the number of minus signs in ε.
For example,

K2(q) = R2 + q2R2 + q2R11 + q3R11 + q R11 + q4R11. (46)

K3(q) = R3 + q3R3 + q4R21 + q5R21 + q2R21 + q7R21 + q2R12 + q4R12

+ q R12 + q5R12 + q6R111 + q7R111 + q3R111 + q8R111

+ q5R111 + q6R111 + q4R111 + q9R111.

(47)

This major index of type B is the flag major index defined in [1].
Following [1] and considering the signed composition (where ε is encoded as boolean vector for readability)

J = (2, 1, 1, 3̄, 1̄, 2̄, 4, 1̄, 2, 2) = (2113124122, 00001111110000100000) (48)

we can take the smallest permutation of shape (2, 1, 1, 3, 1, 2, 4, 1, 2, 2), which is

α = 1 5 4 3 2 6 9 8 7 11 10 12 13 16 15 14 18 17 19 (49)

sign it according to ε, which yields
1 5 4 3 2̄ 6̄ 9̄ 8̄ 7̄ 11 10 12 13 16 15 14 18 17 19 (50)

whose standardized is
8 11 10 9 1 2 5 4 3 6 12 13 14 16 7 15 18 17 19 (51)

and has shape ρ(J) = (2, 1, 1, 3, 1, 6, 3, 2). The major index of ρ(J) is 55, the number of minus signs in ε is 7, so bmaj(J) =

2× 55 + 7 = 117.
The major index of type B can be read directly on signed compositions without reference to signed

permutations as follows: one can get ρ(J) by first adding the absolute values of two consecutive parts if
the left one is signed and the second one is not, then remove the signs and proceed as before.

A different solution consists in reading the composition from right to left, then associate weight 0 (resp. 1) to the rightmost part
if it is positive (resp. negative) and then proceed left by adding 2 to the weight if the two parts are of the same sign and 1 if not.
Finally, add up the product of the absolute values of the parts with their weight.

For example, with the same J as above we have the following weights:

J =(2, 1, 1, 3̄, 1̄, 2̄, 4, 1̄, 2, 2)

weights :14 12 10 9 7 5 4 3 2 0
(52)

so that we get 2 · 14 + 1 · 12 + 1 · 10 + 3 · 9 + 1 · 7 + 2 · 5 + 4 · 4 + 1 · 3 + 2 · 2 + 2 · 0 = 117.
This technique generalizes immediately to colored compositions with a fixed number c of colors 0, 1, . . . , c− 1: the weight of

the rightmost cell is its color and the weight of a part is equal to the sum of the weight of the next part and the unique representative
of the difference of the colors of those parts modulo c belonging to the interval [1, c].
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6.2 Generators and Hilbert series
For n ≥ 0, let

S±n = Sn(A)± Sn(Ā) , (53)

and denote byHn the subalgebra of MR generated by the S±k for k ≤ n. For n ≥ 0, we have

(S±n )] ≡ (1∓ qn)S±n mod Hn−1 , (54)

so that the (S±n )] such that 1∓ qn 6= 0 form a set of free generators in MR].

Conjecture 6.1 If r is odd, a basis of MR] will be parametrized by colored compositions such that parts
of color 0 are not ≡ 0 mod r and parts of color 1 are arbitrary. The Hilbert series is then

Hr(t) =
1− tr

1− 2(t+ t2 + · · ·+ tr)
. (55)

If r is even, there is the extra condition that parts of color 1 are not ≡ r/2 mod r. The Hilbert series is
then

Hr(t) =
1− tr

1− 2(t+ t2 + · · ·+ tr) + tr/2
. (56)

For example,
H2(t) = 1 + t+ 2 t2 + 4 t3 + 8 t4 + 16 t5 + 32 t6 + 64 t7 + 128 t8 +O

`
t9
´

(57)

H3(t) = 1 + 2 t+ 6 t2 + 17 t3 + 50 t4 + 146 t5 + 426 t6 + 1244 t7 + 3632 t8 +O
`
t9
´

(58)

H4(t) = 1 + 2 t+ 5 t2 + 14 t3 + 38 t4 + 104 t5 + 284 t6 + 776 t7 + 2120 t8 +O
`
t9
´

(59)

If these conjectures are correct, the Hilbert series of the right MR]-modules generated by the Sn are
respectively

1
1− 2(t+ t2 + . . .+ tr)

, (60)

or
1

1− 2(t+ t2 + . . .+ tr) + tr/2
. (61)

according to whether r is odd or even.

The cases r = 1 and r = 2 are easily proved as follows. Assume first that q = 1. Set

f = 1 + (σ+
1 )] = (σ1 + λ−1)(A− Ā) , (62)

g = (σ−1 )] − 1 = (σ1 − λ−1)(A− Ā) . (63)

Then, f2 = g2 + 4, so that

f = 2

„
1 +

1

4
g2
« 1

2
(64)

which proves that the (S+
n )] can be expressed in terms of the (S−m)].

Similarly, for q = −1, one can express
f =

X
n≥1

(S+
2n)] +

X
n≥0

(S−2n+1)] (65)
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in terms of
g =

X
n≥1

(S−2n)] +
X
n≥0

(S+
2n+1)] (66)

since, as is easily verified,

(f + 2)2 = g2 + 4 , i .e., f = −2 + 2

„
1 +

1

4
g2
« 1

2
. (67)

Apparently, this approach does not work anymore for higher roots of unity.

7 Appendix: monomial expansion of the (1− q)-kernel
The results of [16, 7] allow us to write down a new expansion of Sn((1− q)A), in terms of the monomial
basis of [4]. The special case q = 1 gives back a curious expression of Dynkin’s idempotent, first obtained
in [3].

Let σ be a permutation. We then define its left-right minima set LR(σ) as the values of σ that have
no smaller value to their left. We will denote by lr(σ) the cardinality of LR(σ). For example, with
σ = 46735182, we have LR(σ) = {4, 3, 1}, and lr(σ) = 3.

Let us now decompose Sn((1− q)A) on the monomial basis Mσ (see [4]) of FQSym. Thanks to the
Cauchy formula of FQSym [7], we have

Sn((1− q)A) =
∑
σ

Sσ(1− q)Mσ(A), (68)

where S is the dual basis of M. Given the transition matrix between M and G, we see that

Sσ =
∑
τ≤σ−1

Fτ , (69)

where≤ is the right weak order, e.g., S312 = F123+F213+F231. Thanks to [16], we know that Fσ(1−q)
is either (−q)k if Des(σ) = {1, . . . , k} or 0 otherwise. Let us define hook permutations of hook k the
permutations σ such that Des(σ) = {1, . . . , k}. Now, Sσ(1 − q) amounts to compute the list of hook
permutations smaller than σ. Note that hook permutations are completely characterized by their left-right
minima. Moreover, if τ is smaller than σ in the right weak order, then LR(τ) ⊂ LR(σ).

Hence all hook permutations smaller than a given permutation σ belong to the set of hook permutations
with left-right minima in LR(σ). Since by elementary transpositions decreasing the length, one can get
from σ to the hook permutation with the same left-right minima and then from this permutation to all the
others, we have:

Theorem 7.1 Let n be an integer. Then

Sn((1− q)A) =
∑
σ∈Sn

(1− q)lr(σ)Mσ. (70)

In the particular case q = 1, we recover a result of [3]:

Ψn =
∑
σ∈Sn
σ(1)=1

Mσ, (71)

where Ψn is the noncommutative power sum associated with Dynkin’s idempotent [11, Prop. 5.2].
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Growth function for a class of monoids
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Abstract. In this article we study a class of monoids that includes Garside monoids, and give a simple combinatorial
proof of a formula for the formal sum of all elements of the monoid. This leads to a formula for the growth function
of the monoid in the homogeneous case, and can also be lifted to a resolution of the monoid algebra. These results are
then applied to known monoids related to Coxeter systems: we give the growth function of the Artin-Tits monoids,
and do the same for the dual braid monoids. In this last case we show that the monoid algebras of the dual braid
monoids of type A and B are Koszul algebras.

Résumé. Nous étudions une classe de monoïdes incluant les monoïdes de Garside, et donnons une preuve combina-
toire simple d’une formule pour la somme formelle de leurs éléments. Cela mène à une formule pour la fonction de
croissance du monoïde dans le cas homogène, et peut être aussi relevé en une résolution de l’algèbre de monoïdes.
Ces résultats sont ensuite appliqués aux monoïdes liés aux systèmes de Coxeter: nous donnons la fonction de crois-
sance des monoïdes d’Artin-Tits ainsi que des monoïdes duaux ; pour ces derniers nous montrons que leur algèbre de
monoïde en types A et B est une algèbre de Koszul.

Keywords: monoid, growth function, Garside group, resolution, Koszul algebra

Introduction
We consider left cancellative monoids M that are generated by their atoms S, and such that if a subset of
S admits a common right multiple, then it actually admits a least common multiple.

These monoids include trace monoids, for which there exists a nice combinatorial theory due to Viennot
[23]. Our first result (Theorem 2) generalizes one of the proofs of Viennot for the formal sum of elements
a monoid. When the monoid is homogeneous with respect to its set of atoms S, then we have immediately
that the growth function of the monoid (i.e. the generating function according to the length of elements as
words in S) is the inverse of a polynomial. We will apply this formula to Artin-Tits monoids, and more
generally it applies to all Garside monoids [9].

The combinatorial proof, which is a actually a sign reversing involution, has an interpretation as a
resolution of Z as a ZM -module, where ZM stands for the monoid algebra of M . Another resolution can
be deduced from this one, and in turn this new resolution gives another formula for the growth generating
function of the monoid. We use this reduced resolution in the case of the dual braid monoids defined by
Bessis in the types A and B; for a particular choice of the reduced resolution in these cases, we will show
that the monoid algebras ZM are Koszul algebras [19, 11].
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We now give an outline of the paper. In Section 1 we define the class of monoids we study, give
formulas for the formal sum of their elements (Theorem 2) and the growth functions of such monoids,
and give interpretations of these results as resolutions of the corresponding monoid algebras. In Section
2, we explain how these results apply to both trace monoids and Garside monoids. The following two
sections apply the results of Section 1 to two families of Garside monoids related to irreducible finite
Coxeter groups. In Section 3 we give the growth functions of the corresponding Artin-Tits monoids. In
Section 4, we also give the corresponding growth functions for the dual braid monoids, and show that in
type A and B the corresponding monoid algebras are Koszul algebras.

1 Growth function and exact resolution
1.1 Monoids
A monoid (M, ·) is a set M together with an internal law · that is associative and such that there exists an
identity element 1. A subset S ⊂M is a generating set if every element of M can be written as a product
of elements of S.

Let S be a set, and R a collection of pairs (w,w′) (called relations), where w and w′ are words in S.
We say that 〈S |R 〉 is a presentation of the monoid M if M is isomorphic to S∗/�R�, where�R�
is the congruence generated by R. The presentation is said to be homogeneous if all relations of R are
composed of two words of equal length. Given a generating set S of M , the length of an element m ∈M
is the smallest number of generators needed to write it. We will write |m|S for this length, and we note
that this length is additive if M admits an homogeneous presentation.

An element a is an atom of M if a 6= 1, and if a = bc implies b = 1 or c = 1; a monoid is atomic if it
is generated by its set of atoms, and if in addition every element m possesses a finite number of different
decompositions as a product of atoms. It is easy to see that an atomic monoid has the property that a 6= 1
and b 6= 1 imply that ab 6= 1.

We note ZM the monoid algebra of M , whose elements are formal linear combinations of elements of
M with coefficients in Z; we note also Z〈〈M 〉〉 the algebra of formal infinite such linear combinations.
The product of

∑
m cmm and

∑
m dmm is in both cases given by

∑
m emm where em =

∑
ab=m cadb:

the product is well defined if the sum is finite, which is the case when M is atomic.

1.2 Main result
In all this work, we consider monoids M with a finite generating set S satisfying the following properties:
M is atomic, left-cancellative (if a, u, v ∈ M are such that au = av, then u = v) and verifies that if a
subset of S has a right common multiple, then it has a least right common multiple.

Lemma 1. For such a monoid, if J ⊂ S is such that J has a common multiple, then a least common
multiple (lcm) exists and is unique.

We will call cliques the subsets of S having a common multiple, and let J be the set of all cliques; if
J is a clique, we note MJ its unique least common multiple, and let mJ be the length of MJ . Then we
have our first result:

Theorem 2. Let M,S be as above. Then the following identity holds in Z〈〈M 〉〉:(∑
J∈J

(−1)|J|MJ

)
·

( ∑
m′∈M

m′

)
= 1M (1.1)
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As an important corollary, we get the following:

Corollary 3 (Bronfman ’01). Given M,S as in the above theorem, suppose also that M admits a homo-
geneous presentation 〈 S |R 〉. Then its growth function is equal to :

GM (t) =
∑
m∈M

t|m|S =

[∑
J∈J

(−1)|J|tmJ

]−1

(1.2)

of Corollary 3. Admitting a homogeneous presentation is equivalent to the fact that the length according
to S is additive, which means that the application

∑
m cmm 7→

∑
m cmt

|m|S is a homomorphism from
Z〈〈M 〉〉 to Z[[t]], the ring of power series with integer coefficients. It is indeed well defined because
there is a finite number of elements of M of a given length. We can apply this homomorphism to both
sides of the above theorem, which finishes the proof.

of Theorem 2. For every element m ∈ M , let us define J (m) ⊆ J to be the subsets J of S such that
every element s of J divides m; by the lcm property of M , we have that there exists a subset Jm ⊆ S ,
such that J (m) consists exactly of the subsets of Jm.

From now on we fix a total order < on the set of generators S. Let us fix any m 6= 1. Clearly Jm is not
empty in this case, and so we can define s(m) as the maximal (for the order <) element of Jm. Define the
involution Φm on J (m) as follows: Φm(J) = J4{s(m)} where 4 denotes the symmetric difference
A4B = (A∪B) \ (A∩B). The application Φm is simply the classical involution on the subsets of Jm;
since Φm changes the parity of |J |, we have obviously∑

J⊆Jm

(−1)|J| = 0. (1.3)

Note that this sum is 1 if we take m = 1, since there is only one term corresponding to the empty set.
Now J ∈ J (m) means precisely that MJ divides m, that is there exists m′ such that MJm

′ = m: such
an element m′ is uniquely determined by the cancellability property. Therefore Equation (1.3) can be
rewritten equivalently as ∑

(J,m′)∈J×M
MJm

′=m

(−1)|J| =

{
0 if m 6= 1;
1 if m = 1.

(1.4)

But this quantity is precisely the coefficient cm of m in the left term of Equation (1.1) written in the
form

∑
m cmm, and so this proves Theorem 2.

1.3 Posets
We refer to [22, ch. 3] for standard notions about posets. Given a locally finite poset (P,≤) (i.e all
intervals have a finite number of elements), the Möbius function can be defined inductively on all pairs
x ≤ z by

µ(x, x) = 1, µ(x, z) =
∑

x≤y<z

µ(x, y) for x < z (1.5)

Now consider a monoid M (as in Paragraph 1.2 with the divisibility relation �. It forms a locally finite
poset PM as is readily checked, so it has a Möbius function; it has also a smallest element 1, and we write
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µ(m) = µ(1,m). In this poset, atoms of the monoids become atoms of the poset (i.e. elements that cover
1), and lcms become joins. We will use this in Section 4 to compute the growth functions of dual braid
monoids of type A and B in particular, since the interval [1,MS ] in PM for these monoids are noncrossing
partitions.

Note that one can identify the algebra Z〈〈M 〉〉 with the incidence algebra I(PM ). From this we know
that ζM =

∑
m∈M m ∈ Z〈〈M 〉〉 has for inverse in Z〈〈M 〉〉 the function

∑
m µ(m)m, so that Theorem

2 is actually a manner of computing the Möbius function of this poset, related to the crosscut theorem of
Rota [21].

1.4 An exact resolution
In this paragraph we give resolutions that generalize the one in [14] which concerned trace monoids: let
M,S be as at the beginning of Paragraph 1.2, A = ZM be the monoid algebra of M . Let B = ZJ be
the free module with basis J , and Bn be the submodule with basis Jn the cliques of cardinal n. Consider
then Cn = Bn ⊗Z A the free (right) A-module with basis Jn. Now we fix a total order < on S, and we
write cliques as words s1 . . . sn where si < si+1 for all i. For two cliques J ⊂ J ′, we also let δJ

′\J
J be

the element of M such that MJδ
J′\J
J = MJ′ ; it is well defined thanks to the cancellability property. We

define an A-module homomorphism dn : Cn → Cn−1 by

dn(s1 . . . sn ⊗ 1) =
n∑
i=1

(−1)n−is1 . . . ŝi . . . sn ⊗ δsi

s1...ŝi...sn
(1.6)

We define also ε : A→ Z by ε(m) = 0 if m 6= 1 and ε(1) = 1, so that we have the following sequence
of A-modules and A-homomorphism (where we let k = |S|):

0 −→ Ck
dk−→ Ck−1

dk−1−→ · · · · · · d2−→ C1
d1−→ C0 = A

ε−→ Z (1.7)

Theorem 4. The complex (1.7) is a resolution of Z as an A-module.

We recall that this means that the sequence is exact, i.e. we have to check that Im(dn) = Ker(dn−1)
for all n.

Proof. Let J = s1 . . . sn be a clique, then one checks first that dn−1 ◦ dn = 0 for any n. Indeed
the computation gives dn−1 ◦ dn(J ⊗ 1) =

∑
i<j(−1)i+j−1Ji,j ⊗

(
δ
sj

Ji,j
δsi

Ji
− δsi

Jj,i
δ
sj

Jj

)
, where we let

Ji1,...,it be the clique obtained by removing the generators si1 , . . . , sit from J . Now the difference in the
second term is 0 since both terms are equal to δsi,sj

Ji,j
.

So we have Im(dn) ⊆ Ker(dn−1), and to check the reverse inclusion, we define a Z-homomorphism
in+1 : Cn → Cn+1 in the following way: let J ⊗m ∈ Cn, with J = s1 . . . sn, and consider the subset
of S consisting of divisors of MJm that are greater than sn; call this set E(J,m). If E(J,m) is empty, set
in+1(J ⊗m) := 0; otherwise, let sn+1 be the maximum element of E(J,m) for the order <, and define
m1 by δsn+1

J m1 = m; then set in+1(s1 . . . sn ⊗ m) := s1 . . . snsn+1 ⊗ m1. One can then check that
in−1 ◦ dn−1 + dn ◦ in = 1 for all n in a similar manner to [14], where 1 is the identity on Cn−1. This
shows that Ker(dn−1) ⊆ Im(dn) and concludes the proof.

Now we show how this resolution gives a proof of Theorem 2:
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of Theorem 2. Define the Z-module C(m) = ⊕nCn,m by letting the basis of Cn,m be the elements
J ⊗m1 such that |J | = n and MJm1 = m in M . Then the functions dn and in+1 map C(m) to itself as
is immediately checked, so we obtain for every m ∈M an exact sequence of free Z-modules:

0 −→ Ck,m
dk−→ Ck−1,m

dk−1−→ · · · · · · d2−→ C1,m
d1−→ C0,m

ε−→ Zm (1.8)

We have that dimZCn,m is the number of pairs (J,m1) ∈ J ×M such that |J | = n and MJm1 = m;
furthermore, dimZZm is equal to 1 if m = 1 and 0 otherwise. Taking the Euler-Poincaré characteristic
of the resolution (1.8) gives us then Equation (1.4), which has been shown to be equivalent to Theorem
2.

Reduced resolution: Given a total order on S as above, introduce now the set J< ⊆ J of order com-
patible cliques: these are the cliques s1 . . . sn such that for all i we have that si is the largest divisor of
Ms1,...,si for the order <. We will write OC for order compatible.

Lemma 5. A clique J = s1 . . . sn is OC if and only if for all t ≤ n and all sequences of indices
1 ≤ i1 < · · · < it ≤ n we have that sit is the maximal divisor of Msi1 ,...,sit

.

Proof. The condition is clearly sufficient; now if J = s1 . . . sn is OC and 1 ≤ i1 < · · · < it ≤ n, we
have the inequalities sit ≤ maxdiv(Msi1 ,...,sit

) ≤ maxdiv(Ms1,s2,...,sit
) = sit . So all inequalities are

in fact equalities and the lemma is proved.

Corollary 6. If J is an OC clique then every subset of J is also an OC clique.

Now let C̃i be the A-submodule of Ci with basis the OC cliques of size i. By the last corollary, the
derivations di are well defined when restricted to these submodules, so we have a complex:

0 −→ C̃k
dk−→ C̃k−1

dk−1−→ · · · · · · d2−→ C̃1
d1−→ C̃0 = A

ε−→ Z (1.9)

Proposition 7. The complex (1.9) is an exact resolution of Z by A-modules.

Proof. We check that the homotopy in+1 is still well defined when restricted to the Z-module C̃n, which
will prove the proposition. Suppose J = s1 . . . sn is an OC clique, m ∈M , and that the maximal element
sn+1 among the divisors of MJm is greater than sn. Then, if s divides Ms1,...,sn+1 , it divides also MJm,
and thus the greatest of these divisors is sn+1; this shows that s1 . . . sn+1 is an OC clique, and thus that
the function in+1 is well defined. So now the same proof as the one of Theorem 4 can be applied, and the
result follows.

These modules were already considered in [8][Section 4], but with a different resolution.

Proposition 8. Theorem 2 and its corollary hold if the sum is restricted to J< (for any given total order
< on S.)

The proof mimics the alternative proof of Theorem 2 above. We will use this proposition and the
resolution in Section 4.

2 Application to some classes of monoids
We give in this section some examples of monoids that satisfy the conditions of Theorem 2.
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2.1 Trace monoids
Trace monoids (also called heaps of pieces monoids, Cartier-Foata monoids or free partially commutative
monoids) are defined by the presentation M = 〈S | ab = ba if (a, b) ∈ I〉, where S is a finite set of
generators and I is a symmetric and antireflexive relation on S × S called the commutation relation.
In [23], elements of M are interpreted as heaps of pieces

At the very beginning, the aim of the work presented here was to generalize the results of [23]. It is
indeed a special case of our Theorem 2: in trace monoids, for a subset J of S, only two disjoint cases can
occur: either all elements of J commute, and their product is clearly their least common multiple; or there
exist two elements of J which do not commute, and J does not admit a common multiple.

The first case corresponds to what is called cliques in the trace monoid literature, from which we
borrowed our terminology in our more general setting. It is then straightforward that the set of all least
common multiples of cliques corresponds exactly to the set of heaps of pieces of height at most one.

This work applies too to divisibility monoids which are a natural generalization of trace monoids,
studied in [10, 16].

2.2 Artin-Tits monoids
The Artin-Tits monoids are a generalization of both trace monoids and braid monoids (which are exten-
sively studied in Section 3). Given a finite set S and a symmetric matrix M = (ms,t)s,t∈S such that
ms,t ∈ N ∪ {∞} and ms,s = 1, the Artin-Tits monoid M associated to S and M has the following
presentation:

M = 〈s ∈ S| sts . . .︸ ︷︷ ︸
ms,t terms

= tst . . .︸ ︷︷ ︸
ms,t terms

if ms,t 6=∞〉 (2.1)

An Artin-Tits monoid is clearly homogeneous, has the left and right cancellation property (see Michel,
Proposition 2.4 of [17]) and has the least common multiple property (see Brieskorn and Saito, Proposition
4.1 of [7]). So in this case also our main Theorem and its corollary apply.

The Coxeter group associated to an Artin-Tits monoid is defined as the quotient of the latter by the
relations s2 = 1 for any s ∈ S. In other words, the Coxeter Group W is defined by the following
presentation :

W = 〈s ∈ S | s2 = 1 and sts . . .︸ ︷︷ ︸
ms,t termes

= tst . . .︸ ︷︷ ︸
ms,t terms

if ms,t 6=∞〉.

An Artin-Tits monoids is called spherical if and only if its Coxeter group is finite. For example, the
only trace monoids that are spherical are the ones whose every elements commute. More generally, every
subset of generators of a spherical Artin-Tits monoid admit a lcm. In this case the set J of Theorem 2
and of Corollary 3 is naturally the set of all subsets of S.

2.3 Garside monoids
In [9], Dehornoy and Paris generalize spherical Artin-Tits groups as follows:

Definition 9. A Garside monoid is an atomic left cancellative monoid M , such that any two elements
have left and right lcm. We require besides that M admits a Garside element ∆: this means an element
whose sets of left and right divisors coincide, and such that this set is finite and generates M .
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A Garside monoid fitted with the set S of its atoms satisfies the conditions of the main theorem. Fur-
thermore, as for spherical Artin-Tits monoids, all subsets of atoms of a Garside monoids have a lcm and
so the set J is the set of every subsets of S.

3 Spherical Artin-Tits monoids
We study in this section the combinatorics of the classical braid monoid introduced by Artin and of some
of its generalizations, namely the classical braid monoids of types B and D. All these monoids are
spherical Artin-Tits monoids and hence some Garside monoids.

3.1 Coxeter groups
Before going further, let us just mention some points about finite Coxeter groups. A Coxeter group is said
to be irreducible if there does not exist two disjoint subsets S1 and S2 of S such that S = S1 ∪ S2 and
such that any s1 ∈ S1 commutes with any s2 ∈ S2. The irreducible finite Coxeter groups are completely
classified (see [13]). This section is devoted to the three infinite families An, Bn and Dn and more
precisely to the corresponding Artin monoids. We compute their growth functions by applying Theorem
2; this boils down to describing how to compute lcms in such monoids.

For X = An, Bn, Dn, we write the corresponding growth function of the Artin-Tits monoid GX(t) =
1

HX(t) , where HX is the polynomial
∑
J(−1)|J|tmJ , in which the sum is over all subsets J of generators

and mJ is the length of the lcm MJ of J . We describe in the following such lcms.

3.2 Type A
The Artin monoid A(An) is in fact the classical braid monoid on n + 1 strands. Hence, it admits the
following presentation:

A(An) = 〈σ1, . . . , σn |σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i− j| ≤ 2〉.

We denote Σn = {σ1, . . . , σn} the set of Artin generators. To compute the lcm of a subset J of Σn, let
us consider a partition J = J1 ∪ · · · ∪ Jp such that any σi and σj in J belong to the same block of this
partition if and only if j = i± 1.

We set ∆{σj ,σj+1,...,σj+i} = (σj)(σj+1σj) . . . (σj+i . . . σj+1σj), then MJ is equal to ∆J1 . . .∆Jp and
mJ =

∑p
i=1(|Ji|(|Ji|+ 1)/2).

In this case, no explicit formula is known forHAn
but the form of the lcms leads easily to the following

recurrence relation:

HAn
(t) =

n∑
i=1

(−1)i+1ti(i−1)/2HAn−i
(t) + (−1)ntn(n+1)/2.

3.3 Type B
The Artin monoid A(Bn) of type B is the monoid whose set of generators is Σn = {σ1, . . . , σn} and
which is submitted to the following relations:

σ1σ2σ1σ2 = σ2σ1σ2σ1, σiσi+1σi = σi+1σiσi+1, for i ≥ 2 and σiσj = σjσi if |i− j| ≤ 2.
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The elements of this monoid are classically represented as positive braids whose second strand is not
braided.

Similarly to Paragraph 3.2, for J ⊂ {σ1, . . . , σn}, we write J = J1 ∪ . . . ∪ Jp, where the properties
satisfied by this partition are the same as those given above. Because of the particular role of σ1, three
different cases have to be considered to compute the lcm of J . Either σ1 /∈ J or σ1 ∈ J and σ2 /∈ J
and in these cases MJ = ∆J1 . . .∆Jp

just as before. Now if σ1, σ2 ∈ J , without loss of generality we
assume that σ1 ∈ J1, thenMJ = ∆̃J1∆J2 . . .∆Jp

, where ∆̃J1 = (σ1σ2 . . . σm)|J1| with σm the maximal
element of J1 for the classical ordering σ1 < σ2 < . . . < σn of Σn.

The expression of lcms enable to obtain the following recurrence relation for HBn
, for n ≥ 1 (with the

convention HB0(t) = 1):

HBn
(t) =

n∑
i=1

(−1)i+1ti(i−1)/2HBn−i
(t) + (−1)nt(n)2 .

3.4 Type D
The Artin monoid A(Dn) of type D is the monoid whose set of generators is Σn = {τ, σ1, . . . , σn−1}
and submitted to the following relations:

τσ2τ = σ2τσ2, σiσi+1σi = σi+1σiσi+1 for i ≥ 2, (3.1)
τσi = σiτ for i 6= 2 and σiσj = σjσi if |i− j| ≤ 2. (3.2)

In [1], Allcock introduced a representation in terms of braids on some orbifolds of the elements of this
monoid.

Let J ⊂ Σn, because of the symmetric role of τ and σ1 we have to study two cases depending on either
at most one of them belongs to J or both of them. Without loss of generality, we assume that only σ1

belongs to J , then MJ = ∆J1 . . .∆Jp
, where the Ji as defined in Paragraph 3.2 (it suffices to replace

each occurrence of σ1 in MJ by τ to deal with the symmetric case). If τ and σ1 belong both to J , we
moreover assume that σ1 ∈ J1, then MJ = ∆̃J1∆J2 . . .∆Jp , where ∆̃J1 = (τσ1σ2 . . . σm)|J1| with σm
the maximal element of J1 for the classical ordering σ1 < σ2 < . . . < σn of Σn.

Once again, this leads to the following recurrence relation for the denominator of the generating func-
tion of A(Dn), for n ≥ 2 (by convention HB0(t) = 1 and HB1(t) = 1):

HDn
(t) =

n−1∑
i=1

(−1)i+1ti(i−1)/2HDn−i
(t) + (−1)n−12t(n)(n−1)/2 + (−1)nt(n)(n−1).

4 Dual braid monoids
4.1 Definition
We defined Coxeter systems in paragraph 2.2. Let T be the set of reflections of W , i.e. the set T =
{wsw−1, s ∈ S}; T is obviously a generating set for W , and we let `T (w) = k where k is the minimal
number of reflections ti ∈ T such that w = t1 · tk; the function `T is then invariant under conjugation,
that is we have `T (w) = `T (zwz−1) for any two elements w, z ∈W . Then one defines a partial order on
W by setting w ≤T z if `T (w) + `T (w−1z) = `T (z). A Coxeter element is an element c of W which
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is the product of the Coxeter generators S in any order; one can show that any two Coxeter elements are
conjugate in W . Given a Coxeter element c ∈ W , one defines a poset NC(W, c) = [1, c] with respect to
the partial order≤T . Since `T is invariant under conjugation and any two Coxeter elements are conjugate,
we have that the isomorphism type of NC(W, c) does not depend on the particular c chosen, and we will
just write NC(W ). We refer to [2] and the references therein for more information about this topic.

Bessis [5] showed that one can define a certain dual braid monoid for every poset, with generating set in
bijection with T , which is a Garside monoid such that the lattice of elements dividing the Garside element
is isomorphic to the lattice NC(W ). As shown in Section 1.3, we need only this lattice to compute the
growth function of the monoid. We refer the reader to [5] for the general definition of the monoid, and to
[18] for explicit presentations in classical types.

Note that the values
∑
rk(x)=k µ(x) of the Möbius functions of the posets NC(W ) have already been

computed in general, so by the results of Subsection 1.3, all growth functions of the dual braid monoids
can be obtained. What we will do here is to find first a combinatorial proof of this result in type A
and B, and then verify that the resolution (1.9) we obtain shows that the corresponding algebras of the
corresponding dual braid monoids are in fact Koszul algebras (Paragraph 4.5). The combinatorial objects
that we will deal with are noncrossing alternating forests, which we now study.

4.2 Noncrossing alternating forests and unary binary trees
Consider n points aligned horizontally, labeled 1, 2, . . . , n from left to right. We identify pairs pairs (i, j),
i < j, with arcs joining i and j above the horizontal line. Two arcs (i, j) and (k, l) are crossing if
i < k < j < l or k < i < l < j.

Definition 10. A noncrossing alternating forest on n points is a set of noncrossing arcs on [[1, n]] such that
at every vertex i, all the arcs are going in the same direction (to the right or to the left).

It is easily seen that these conditions determine forests in the graph-theoretical sense, that is the arcs
cannot form a cycle.We defineNCAF(n, k) as the set of noncrossing alternating forests on n points with
k arcs, and in this subsection we will determine bijectively their cardinality denoted NCAF (n, k).

We will actually define a bijection with unary binary trees, by which we mean rooted plane trees all of
whose vertices have 0, 1 or 2 sons. It is well known that such trees with m vertices are counted by the
Motzkin number Mm−1 (cf. [22]) and that they are in bijection with Motzkin paths with m − 1 steps:
these are paths in N2 from (0, 0) to (m−1, 0), with allowed steps (1, 1), (1, 0) and (1,−1). The bijection
consists of a prefix traversal of the tree, as shown by the dotted line around the tree on the left of Figure
1; for every left son (respectively right son, resp. single son) encountered for the first time, we draw an
up step (resp. a down step, resp. a horizontal step). Under this bijection, unary vertices correspond to
horizontal steps; by the cyclic lemma, it is then easy to show that:

Proposition 11. The number of unary binary trees with m vertices and p binary vertices is given by

1
m

(
m

m− 2p− 1, p, p+ 1

)
=

(m− 1)!
(m− 2p− 1)!p!(p+ 1)!

Suppose we have just one connected component in a noncrossing alternating forest, i.e k = n − 1:
we obtain the noncrossing alternating trees introduced in [12], where a bijection with binary trees with
n leaves was given. We recall this bijection: given a noncrossing alternating tree on n ≥ 2 points, there
is necessarily an edge between 1 and n. Destroying that arc, we get two smaller noncrossing alternating
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Fig. 1: A unary binary tree and the corresponding Motzkin path.

trees, on i and n − i points say. By induction, we can attach a binary tree to each of these smaller trees;
let T1 and T2 be these two trees respectively, and create a new root (corresponding to the deleted arc) with
left subtree T1 and right subtree T2. The inverse bijection is immediate.

We can generalize this bijection as follows:

Theorem 12. There is a bijection between unary binary trees with n+k−1 vertices and k binary vertices,
and noncrossing alternating forests on n points with k arcs.

Proof. Let us be given a noncrossing alternating forest on n points with k arcs; for each of the n − k
components, we apply the bijection for noncrossing trees described above, keeping the labels on the
leaves. So we have a collection C of binary trees, such that each integer [[1, n]] appears exactly once as
the label of a leaf. Let T be the tree containing the label 1, and let m be such that 1, . . . ,m label leaves
of T , but m + 1 does not; let T ′ be the tree containing the label m + 1. We then form a new tree T1 by
transforming the leaf labeled m in a unary vertex (still labeled m), whose attached subtree is T ′. We now
remove T and T ′ from C and replace them by T1; we can now repeat the same operation, and we do it
until C has just one element, which is a unary binary tree with n− k − 1 unary vertices.

Conversely, given a unary binary tree with k−1 unary vertices and n leaves, we make a prefix traversal
of the tree, and we label only unary vertices and leaves (thus leaving binary vertices unlabeled). Then we
cut every edge stemming from a unary vertex, which gives us a forest of k binary trees labeled on leaves:
we apply to each of them the bijection for noncrossing trees (using as point set the labels of the leaves),
thereby obtaining the desired noncrossing forest.

The bijection is illustrated on Figure 2, in which n = 10 and k = 5. From Proposition 11, we have the
immediate corollary:

Corollary 13. The number of noncrossing alternating forests on n points with k arcs is given by

NCAF (n, k) =
(n− 1 + k)!

(n− 1− k)!k!(k + 1)!

4.3 Type A
In type A, the poset NC(W ) is isomorphic to the noncrossing partition lattice NCA(n), which we de-
scribe. A set partition of [n] is noncrossing if it does not have two blocksB,B′ and elements i, j ∈ B and
k, l ∈ B′ such that i < k < j < l. Let NCA(n) be the poset of noncrossing partitions of size n ordered
by refinement.
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Fig. 2: Bijection between unary binary trees and noncrossing alternating forests

We now need to compute joins of cliques in this poset; we will use here a certain order on atoms to
restrict to certain order compatible cliques (see Section 1). The atoms of NCA(n) are the partitions with
one block of size 2 and all other blocks are singletons, and we identify these atoms with arcs (i, j) between
the points labeled i and j if n points horizontally aligned and labelled from 1 to n are given. Now we
define the following order on atoms:(i, j) < (k, l) if l − k > j − i, or if l − k = j − i and i < k; the
important point is that if an arc contains another arc, then it is bigger.

Consider a clique of size two {(i, j), (k, l)}. If i < k ≤ j < l, then the join of these elements is the
partition with one non-singleton block {i, j, k, l}; but (i, l) is smaller in the poset than this partition, and
bigger than both (i, j) and (k, l) for the order <, so the clique cannot be OC. Now it can be shown that
all other size 2 cliques are OC, and that OC cliques of size k are precisely the elements of NCAF(n, k);
the join of such an OC-clique is simply the partition whose blocks are the labels of each tree in the
forest. For the element of NCAF(10, 2) on the left of Figure 2, the noncrossing partition has blocks
{1, 3, 6, 7}, {2}, {4, 5}, {8, 10} and {9}.

From this, Proposition 11 and 11 we have that the growth function of the dual braid monoid of type A
is given by

GA(t) =

(
n∑
k=0

(−1)k
(n− 1 + k)!

(n− 1− k)!k!(k + 1)!

)−1

This answers a conjecture of Krammer [15, Exercise 17.37].

4.4 Type B
Here the poset NC(W ) is isomorphic to the type B noncrossing partitions NCB(n), which is defined
as the subposet of NCA(2n) formed by partitions of {1, 2, · · · , n,−1,−2, · · · ,−n} that are invariant
under the bijection i 7→ −i . We note ((i1, . . . , it)) the partition with non singleton blocks {i1, . . . , it}
and {−i1, . . . ,−it}. There are n2 atoms in the poset NCB(n): n with exactly one non singleton block
[i] := {i,−i}, and n(n − 1) of the type ((i, j)) and ((i,−j)) where 1 ≤ i < j ≤ n. Consider now as
before n labeled points aligned horizontally: we identify the atoms [i] with the points, and ((i, j)) and
((i,−j)) with arcs between i and j to which we assign respectively a positive and a negative sign.

Now we consider any linear order that extends the following partial order defined by Blass and Sagan
[6]: an atom –identified with a positive or negative arc, or a negative vertex– is bigger than another if it
strictly contains it, and a positive arc is bigger than the same arc with negative sign. By extending the
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analysis of [6] which focused on the top element {1, 2, · · · , n,−1,−2, · · · ,−n}, we can show that the
OC cliques of size k can be constructed in two ways:

• Pick an element ofNCAF(n, k); then either choose any of the k arcs and assign a negative sign to
this arc and all arcs above it, or assign all arcs positive signs.

• Pick an element ofNCAF(n, k− 1), either choose any of the k− 1 arcs and assign both a positive
and a negative sign to it, or choose any of the n points and mark it negatively. In both cases, assign
a negative sign to all arcs that contain the chosen arc or point and assign a positive sign to all other
arcs.

In both cases one checks that the corresponding join of atoms is of rank k exactly in the poset. From
their description above one has immediately that there are (k+1)NCAF (n, k)+(n+k−1)NCAF (n, k−
1) OC-cliques of size k, so we get that the growth function GB(t) for the dual braid monoid of type B is
given by

GB(t) =

(
n∑
k=0

(−1)k
(
n

k

)(
n+ k − 1

k

)
tk

)−1

Remark: for W of type Dn, the poset NC(W ) is isomorphic to the type D noncrossing partitions
NCD(n) defined in [4]; we did not find a similar order on atoms as described in types A and B in
order to compute the growth function. Note that the order described in [6] cannot be used, since it is
applied to a certain poset of [20] that has been since shown to be different from the poset NC(Dn).

4.5 Koszul algebras
Let A be a finitely generated graded algebra A = ⊕i≥0Ai,of the form A = Z < x1, . . . , xk >/I for an
homogeneous ideal I , . A is said to be a Koszul algebra if Z admits a free resolution of A-modules, such
that the matrices of all linear maps in the resolution have coefficients in A1 (the resolution is then called
linear) [19, 11].

Now, given a homogeneous monoid M with atoms S verifying the conditions of Section 1, the algebra
ZM is graded. In the resolutions (1.7) and (1.9), the entries of the matrices are (up to sign) the elements
δsi

Ji
, which are the elements x in M such that MJ−{si}x = MJ , and the component A1 of the algebra

is ZS. For the orders on atoms defined for dual monoids in type A and B, our analysis of OC cliques J
show that δsi

Ji
= si: indeed we showed that such cliques have joins of rank k in the poset, which means

that in the monoid the lcm is of length |J | precisely. The resolution (1.9) is thus linear, and we have:

Theorem 14. The monoid algebras of the dual braid monoids of type A and type B are Koszul algebras.

By the general theory of Koszul algebras, they possess graded dual algebras called Koszul duals, whose
homogeneous components have the dimensions of the modules C̃i in a linear resolution; in type A for
instance, we have that this dual algebra is finite dimensional, and has a basis given by noncrossing al-
ternating forests, the number of arcs determining the grading. It would be interesting to investigate the
structure of these algebras, and generalize this to all finite Coxeter groups.

A promising way is certainly to investigate the descending chains for the EL-labeling of NC(W )
defined in [3] and relate them to the OC cliques we described in type A and B: we can prove for instance
that they are identical in type A, but differ in type B.

Acknowledgment. The authors thank Vic Reiner for pointing out the link between Theorem 2 and Koszul
algebras.
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1 Definitions and initial observations
Given a family C of combinatorial objects that can be represented as sequences of length n, a universal
cycle for such a family is a sequence, whose length n factors (read cyclically) represent all the elements
of C without repetition. De Bruijn sequences ([3]) are the most well known such universal cycles, but
their study was extended to other combinatorial families by Chung, Diaconis and Graham in [2]. Among
the classes they considered was the set of all permutations of an n set. In the present work, we consider a
notion of universal cycles for permutation pattern classes.

To each sequence s = a1, a2, . . . , ak of distinct values, we associate a permutation τ ∈ Sk called its
pattern or type, by choosing τ(i) < τ(j) if and only if ai < aj . We will use the notation τ = pat(s)
to express this relationship. Our interest is in observing the presence or absence of patterns in longer
permutations; thus, regarding a permutation π ∈ Sn as a sequence of n elements, π(1), π(2), . . . , π(n),
we will say that π contains τ if there is a selection of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that
pat(π(i1), π(i2), . . . , π(ik)) = τ . If π does not contain τ then it is said to avoid τ .

We will write Av(τ) for the avoidance class of all permutations (of any length) which avoid τ , and use
the obvious notation Avn(τ) = Av(τ)∩Sn. We extend this to multiple restrictions: Av(τ1, τ2, . . . , τr) =
Av(τ1) ∩Av(τ2) ∩ . . . ∩Av(τr).

For example the permutation π = 2314 contains 123, as one of its subsequences is 234 and pat(234) =
123. But 2314 avoids both 132 and 312, so we will say that π ∈ Av4(132, 312).

Let A = Av(τ1, . . . , τr) be an avoidance class, and let m be the size of An. Then a sequence of
integers c1, c2, . . . , cm is a universal cycle forAn if each of them substrings cj , cj+1, . . . , cj+n−1 (taking
the subscripts modulo m) has a distinct element of An as its pattern.

For instance, the sequence 1, 6, 7, 8, 4, 3, 2, 5 is a universal cycle for the class Av4(132, 312), as can be
verified by taking each of the 8 substrings 1678, 6784, . . . , 2516, 5167, reducing each one to a permutation,
and checking that these are exactly the eight permutations of length four which avoid both 132 and 312.

Suppose that such a universal cycle c1 . . . cm contains, in order, substrings of patterns π1, . . . , πm. Then
it is evident that a permutation πj = a1, a2, . . . , an cannot be followed by an arbitary permutation πj+1 =
b1, b2, . . . , bn. Specifically, the overlapping parts of the two permutations, a2, . . . , an and b1, . . . , bn−1,
must have the same pattern, say σ ∈ Sn−1.

This suggests that a useful tool for constructing universal cycles would be a deBruijn-type graph, in
which a vertex corresponding to the overlapping part, σ, would be visited by an incoming edge πj and an
outgoing edge πj+1. A universal cycle c1, . . . , cm ofAn would thus trace an Eulerian circuit in a directed
graph G(An) containing m edges, this graph being a subgraph of G(Sn), which is a regular graph on
(n− 1)! vertices, each having indegree n and outdegree n, for a total of n! directed edges.

The graph G(S4) is depicted in figure 1. The vertices are labelled with the six elements of S3. The
letter labelling each edge can be read in conjunction with the label of its trailing vertex to produce a
4-permutation by appending the letter to the vertex label and then taking the pattern of the resulting 4-
sequence, using the order a < 1 < b < 2 < c < 3 < d. For instance the edge labelled c from 123 to
132 corresponds to the 4-permutation 1243, whose 3-element prefix has pattern 123, and whose 3-element
suffix has pattern 132.

As is well known, the necessary and sufficient conditions for the existence of an Eulerian circuit in
a graph are that the graph be connected and that the indegrees and outdegrees match at each vertex,
making it easy in general to test for the existence of an Eulerian circuit. However, the existence of
Eulerian circuits does not guarantee that a universal cycle can be constructed. For instance, the deBruijn
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Fig. 1: The directed graph G(S4).

graph for Av4(132, 213) (figure 6) has an Eulerian circuit which visits the directed edges in the sequence
1234,2341,3412,4231,3421,4321,4312,4123. However, if this were to correspond to a universal cycle
c1, c2, . . . , c8, the second, fifth and seventh edges in the list would, respectively, force c2 > c5, c5 > c8
and c8 > c2, a contradiction. In fact, no Eulerian tour of the graph for Av4(132, 213) is realizable with a
sequence of values.

We will distinguish these two cases by saying that the class Av4(132, 312) is value cyclic, but that
Av4(132, 213) is merely pattern cyclic, i.e. that its associated directed graph is Eulerian. An Eulerian
cycle in the graph of a pattern cyclic class can be realized by a sequence of values if and only if the order
relations implied by the individual edges form a directed acyclic graph, and thus can be extended to a
partial order, as then any extension to a total order will provide a realisation of a universal cycle.

In [2], it is shown that Sn (the avoidance class of the empty set) is value cyclic for all n, and indeed con-
jectured that a universal cycle can always be constructed using just n+ 1 different values; this conjecture
was proven in [9].

It is instructive to consider the graphs G(Sn) and G(Sn+1) together. The first of these graphs has
vertex set Sn−1 and edge set Sn, while the second has vertex set Sn and edge set Sn+1. Now let
π = a1, a2, . . . , an+1 be any permutation belonging to Sn+1 and let ρ1 = pat(a1, . . . , an) and ρ2 =
pat(a2, . . . , an+1) be the pattern types of its n-prefix and n-suffix respectively.

Finally let σ = pat(a2, . . . , an), from which it is apparent that σ is simultaneously the pattern type for
the (n − 1)-suffix of ρ1 and for the (n − 1)-prefix of ρ2. In graph terms, this means that π is an edge
leading from ρ1 to ρ2 in G(Sn+1), while σ is a vertex in G(Sn) which has ρ1 leading in and ρ2 leading
out. The option in G(Sn) to follow the edge ρ1 by ρ2 thus corresponds to an option in G(Sn+1) to move
from the vertex ρ1 to ρ2; specifically, any Eulerian circuit of G(Sn) corresponds exactly to a Hamiltonian
tour of G(Sn+1).

For a given set T = τ1, τ2, . . . , τr of forbidden patterns, we will be interested in two questions. Is it
true that Sn(T ) is pattern cyclic for all values of n? Is it true that Sn(T ) is value cyclic for all values of
n?
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Fig. 2: The directed graph G(S3).

We begin by settling the pattern-cyclic question in the affirmative for a special infinite set of avoidance
classes. We will say that a set of permutations is cyclically closed if, given any permutation in the set, its
head-to-tail shift is also in the set. Thus, for instance, 1243, 2431, 4312, 3124 is a cyclically closed set.

Proposition 1 If the set of forbidden patterns T is cyclically closed, and G(Avn(T )) is connected, then
Avn(T ) is pattern cyclic.

Proof: First note that if T is cyclically closed, then Av(T ) is also cyclically closed. Then note that
π = x, a1, a2, . . . , an belongs to Avn+1(T ) if and only if σ = a1, a2, . . . , an, x does as well. This means
that a1, a2, . . . , an, as a vertex inG(Avn(T )), has the same number of incoming edges as outgoing edges.
Together with the connectedness condition, this establishes that G(Avn(T )) is Eulerian. 2

2 Classes defined by restrictions of length 3
For each n, Avn(12) (and, symmetrically, Avn(21)) contains only a single permutation, so the first non-
trivial restrictions are of length 3. We therefore begin by considering all possible sets of restrictions
comprised of permutations from S3.

Consider T ⊂ S3. The pattern-cyclic question asks whether G(Avn(T )) has a universal cycle for all
n ≥ 3; in order to be able to settle this in the affirmative, we must, to begin, have a universal cycle
for n = 3, and therefore it is necessary that G(Av3(T )) be Eulerian. The graph of G(S3), given in
Figure 2 allows us to identify possible sets of edges whose removal would leave the graph connected
and Eulerian. There are certain symmetries which allow us to reduce the number of cases we need to
consider. In particular, the reversal of a class Avn(T ) in which each element of τ = a1, . . . , ak of T is
replaced by a τ r = ak, . . . , a1 is pattern or value cyclic exactly Av( T ) is, because it suffices simply to
reverse any given cycle, and a similar property holds for complements τ c = k + 1− a1, . . . , k + 1− ak.
These two symmetries are visible in the symmetric construction of Figure 1, in which reflection in a
horizontal mirror corresponds to complementation, while reflection in a vertical mirror corresponds to
reverse complemenent, and rotation through 180 degrees corresponds to reversal. However, the third
operation which preserves the enumeration of pattern classes, inverse, does not preserve cyclic properties;
for instance, Av3(132, 312) is value cyclic, but Av3(132, 231) is not even pattern cyclic.

Up to symmetry, there are six non-empty cases, which are displayed in the table below. Recall that
the case for the empty set was shown to be value-cyclic in [2]. Also, we don’t consider any case which
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involves both loops, as avoiding both 123 and 321 leaves empty permutation classes for large enough n,
by a famous theorem of Erdős and Szekeres[5].

Class Size of Class Properties
Avn(123) Cn = (2n)!/n!(n+ 1)! not cyclic: {c,d}213{a,b,c}
Avn(132, 312) 2n−1 value cyclic
Avn(132, 213) 2n−1 pattern cyclic
Avn(132, 312, 123) n pattern cyclic
Avn(132, 213, 123) Fibonacci not cyclic: {d}231{a,b}
Avn(132, 213, 321) n value cyclic

The easiest cases to dispose of are those in which the pattern-class property fails to hold in general, as
it suffices to give a counterexample. We have provided one in each case, in the form of a vertex (in each
case, in G(Av4(T ))) together with its attendant directed edges. Here, our notation is slightly different
from that used in Figure 1, as we here label both incoming and outgoing edges relative to the vertex
shown. Thus, in Av4(123), we can prepend either a 3 or a 4 to the permutation 213, to produce 3214 and
4213 respectively, both of these being in the avoidance class. But we can add any of the three symbols
1, 2 or 3 at the end, to produce 3241, 3142 or 2143. Thus the indegrees and outdegrees fail to match,
and G(Av4(123)) is not Eulerian. (Indeed, this example readily extends to show that G(Avn(123)) for
n ≥ 4: the permutation n− 2, n− 3, . . . , 1, n− 1 can be extended only by prepending an n or an n− 1,
but at the other end can be extended by appending anything from 1 to n− 1.)

Now consider Avn(132, 213, 321), which is the cyclically closed set consisting of 123 . . . n and its
cyclic shifts. This is automatically pattern cyclic by Proposition 1, and indeed a universal cycle can
be obtained from the sequence 1, 2, 3, . . . , n itself, so the class is value cyclic. This is, up to symme-
try, the only cyclically-closed class of size n, because for large n any non-empty class must contain
either the all-increasing or the all-decreasing permutation, and thus, if cyclically closed, be a superset of
Avn(132, 213, 321) or of its reverse.

It is easy to check that the permutations belonging to Avn(132, 312, 123) are those in which n−1, n−
2, . . . , 2, 1 form a decreasing subsequence (and the largest value, n, can be inserted into this in any one
of n places). Each sequence in Avn−1(132, 312, 123) has outdegree one (by adding in each case a new
smallest element), except for the all-decreasing sequence, which has outdegree two, because one can
add a new smallest element (creating a loop back to the same vertex) or a new largest element. And,
symmetrically, each vertex has indegree one (by prepending a new largest element) except for the all-
decreasing sequence, to which either n or n − 1 can be prepended. The graph therefore consists of a
single directed cycle, with a loop added at one vertex. It is easy to see that this class is not value cyclic,
because a universal cycle would consist of only n values, a1, . . . , an, and each of the permutations, being
of length n, would imposes a total order on this cycle; only for the all-descending permutation and the
one which follows it, n− 1, . . . , 1, n, do these total orders coincide.

Proposition 2 The class Av(132, 312) is value cyclic for all n.

Proof: There are 2n−1 permutations in An = Avn(132, 312), which are constructed as follows. Assign
a bit freely to each position from 2 to n. Now, beginning on the right, replace the 1s sequentially by
n, n − 1, n − 2, . . . to form an upper sequence, and replace the 0s sequentially by 1, 2, 3 . . . to form a
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lower sequence. Arriving at the (unlabelled) first position, assign it the sole remaining value, which could
be viewed as belonging to either the upper sequence or the lower sequence.

It is clear that these permutations belong to the avoidance class: in any subsequence x, y, z, the element
z must be either the largest of the three elements (if it belongs to the upper sequence), or the smallest (if
it belongs to the lower sequence).

Now note that if σ follows π in an Eulerian tour of G(An), then σ is obtained from π by deleting the
first element and appending either a new maximal or a new minimal element. In terms of the bitstring,
this means deleting the first bit and adding a new bit, either a 1 or a 0, to the end. So, if each edge
were labelled not by a permutation but by its corresponding bitstring (and each vertex, therefore, labelled,
by the bitstring which corresponds to the tail of each of its incoming edges and the head of each of its
outgoing edges), the resulting graph would simply be the usual deBruijn graph on binary words. The
graph G(An) is thus isomorphic to the usual deBruijn graph on bitstrings of length n− 1.

Any Eulerian tour of the usual deBruijn graph thus corresponds to an Eulerian tour of G(An). (In
general a deBruijn graph has a large number of Eulerian circuits, 22n−2−(n−1). This formula is well-
known and was rediscovered at least once; for an interesting history lesson see [3, 4, 6].) Moreover, any
deBruijn cycle (obtained from an Eulerian circuit by writing down the new bits in order) can be converted
into a universal cycle for An as follows.

The deBruijn cycle contains a unique run of n − 1 1s. Let m = 2n−2, which is half the length of the
sequence. Write the numbers m,m− 1,m− 2, . . . , 3, 2, 1, in order, below the 0s in the cycle, beginning
immediately after this run of 1s (and ending immediately before it). Likewise, write the numbers m +
1,m+ 2, . . . , 2m− 1, 2m in order below the 1s in the cycle, beginning immediately after the unique run
of n− 1 0s (and ending again immediately before it).

Here is an example for n = 5:

0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1
4 3 2 1 9 10 11 12 8 7 13 6 14 15 5 16

Any consecutive run of n values from this (cyclic) sequence will reduce to a permutation in the class
Avn(132, 312). For the n values cannot include numbers corresponding to all of the n − 1 consecutive
0s as well as 1s both before and after them; therefore those corresponding to 1s must all be (large and)
increasing. Similarly those corresponding to 0s must be (small and) decreasing. As each bitstring of length
n− 1 occurs uniquely in the deBruijn cycle, each of the 2n−1 possible 01-codes for positions 2, 3, . . . , n
occurs. The bit in the first position might be either a 1 or a 0 (and is dependent on the choice of deBruijn
cycle), but regardless the value at this position will be smaller than all the later values corresponding to 1s
and larger than all those corresponding to 0s.

This construction shows that Avn(132, 312) is value cyclic for all n. 2

The final entry in the table is for Avn(132, 213), which is the well-known class of layered permutations
(see [1]), those consisting of an initial increasing run containing all the largest elements in the permutation,
followed by another increasing run containing all the largest remaining elements, and so on. The graph
G(Avn(132, 213)) is regular of indegree 2 and outdegree 2, because any layered permutation on n − 1
elements can be extended at the front end in one of two ways, by prepending a new first entry into the first
layer, or by creating a new layer by prepending n, and likewise can be extended at the back end in either
of two ways.
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3 Classes defined by restrictions of lengths 3 and 4
In this section we look at pattern classes which are defined by avoiding at least one restriction of length
3 and at least one of length 4. In order to have a hope of being pattern cyclic for all n, such a class must
first of all be pattern cycle at length 3, which means that the 3-restrictions must be of one of the forms
considered in the previous section. (The table in that section may be a convenient reference.)

To these we wish to add some 4-restrictions, which we should do in such a way as to produce an
Eulerian graph at length 4. To assist with this selection process, Figures 3, 4, 5, 6, 7, and 8 show the
length-4 graphs for the various sets of 3-restrictions.

Here is our table for mixed groups of restrictions from S3 and S4, again taking advantage of symmetries
and including only those for which G(Av3(T )) and G(Av4(T )) are Eulerian. We have only indicated the
class sizes where Eulerian cycles exist.

Class Size of Class Properties
Avn(123, 3142, 3412) 2n − n value cyclic
Avn(123, 3142, 2413) not cyclic: {c,d,e}4312{a,b}
Avn(123, 3142, 3421, 4312) not cyclic: {}4213{a,c}
Avn(123, 2143, 3412) not cyclic: {e}4132{a,b}
Avn(123, 2143, 2413) not cyclic: {c,d,e}4312{a,b}
Avn(123, 2143, 3421, 4312) not cyclic: {}4213{a}
Avn(132, 312, 1234)

(
n
2

)
+ 1 pattern cyclic

Avn(132, 312, 3241, 2314) 2(n-1) pattern cyclic
Avn(132, 312, 3241, 2314, 1234) not cyclic: {c}2134{}
Avn(132, 213, 1234) not cyclic: {d,e}4123{a}
Avn(132, 213, 3412, 4231) 2(n-1) pattern cyclic
Avn(132, 213, 4321)

(
n
2

)
+ 1 pattern cyclic

Avn(132, 213, 3412, 4231, 1234) not cyclic: {e}4123{}
Avn(132, 213, 3412, 4231, 4321) not cyclic: {}4312{c}
Avn(132, 213, 123, 3412) n pattern cyclic

There are no lines in the table corresponding to the two classes of size n in the previous section. The
graphs of these classes, seen for n = 4 in Figure 5 and 8, each consist (for all n) of a single cycle.
Therefore no addition of any further restrictions (of any length n) could leave these graphs Eulerian (or
even connected) except for the removal of the loop. This, however, would eventually lead to empty pattern
classes by the Erdős-Szekeres theorem.

The addition of the restriction 3412 to the avoidance class Av(132, 213, 123) leaves a similar set of
graphs which are simply n-cycles (and so are not subject to further modification). The n-permutations
belonging to Avn(132, 213, 123, 3412) consist of the all-decreasing permutation, plus those permutations
obtained from it by a single adjacent transposition. It is pattern cyclic: from the all-decreasing sequence,
transition to n, n−1, . . . , 4, 3, 1, 2, while from every other permutation in the class, transition by append-
ing a new smallest element.

The class Av(132, 213, 4321) is interesting. As we saw in the previous section, Av(132, 213) is the
class of layered permutations, and each has indegree 2 and outdegree 2, the two options being to extend
the final layer, or to add a new layer. The addition of the restriction 4321 modifies the class by restricting
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the number of layers to at most 3, so that in the new class a permutation with one or two layers has
indegree and outdgree 2, while a permutation with three layers has outdegree only 1.

This observation generalizes to the following simple proposition, which gives us an infinite family of
pattern cyclic, but non-cyclically-closed, avoidance classes.

Proposition 3 For all j ≥ 3, the class Avn(132, 213, j . . . 321) is pattern cyclic for all n.

Proof: The class consists of layered permutations with fewer than j layers. An (n− 1)-permutation with
j − 1 layers will have indegree and outdegree 1, while one with j − 2 or fewer layers will have indegree
and outdegree 2. 2

The class Avn(132, 213, 3412, 4231) is the union of two sets of permutations, those of form (j+1, j+
2, . . . , n, j, j− 1, . . . , 1) for some j, and those of form (n, n− 1, . . . , j+ 1, 1, 2, . . . , j) for some j. Each
permutation in the class has outdegree 1 – if it is of the first type, then only a new minimum element can
be added, while if it is of the second type, only an element just larger than the final element can be added.
Thus they are easily cycled by running through the permutations of the first kind, always adding a new
smallest element, until arriving at the all-descending permutation, and then switching to the other type,
adding new elements between j and j + 1 until arriving at the all-increasing permutation. It is easy to see
that this class is not value cyclic.

The class Avn(132, 312, 3241, 2314) is very similar; the permutations in this class are those of the form
(j+ 1, j+ 2, . . . , n, j, j− 1, . . . , 1) or of form (j, j− 1, . . . , 1, j+ 1, j+ 2, . . . , n). This class is also not
value cyclic, as can be seen by examining the case for n = 4.

The permutations in the class Avn(132, 312, 1234) are built by taking the elements n−2, n−3, . . . , 2, 1
in a descending sequence, and then inserting n − 1 and n somewhere along the sequence, with n − 1 on
the left. These thus correspond to all the 2-element subsets of n. They can be cycled by taking the large
element n − 2 off the front, putting a new small element at the end, and, when n − 1 reaches the front,
managing the separation between n− 1 and n.

The final example is Avn(123, 3142, 3412). The permutations in this class are in fact similar to those
in the class Avn(132, 312) studied in the previous section.

Proposition 4 The class Av(123, 3142, 3412) is value cyclic for all n.

Proof: Beginning with a bitstring of length n, replace all the 1s in the string with a decreasing upper
sequence, n, n−1, n−2, . . . , j+1, then replace all the 0s with a decreasing lower sequence, j, j−1, . . . , 1.
This gives a priori 2n permutations, but there is an overcount of n because the all-decreasing permutation
is constructed by all of the n + 1 bitstrings of the special form 111 . . . 11000 . . . 00. To see that the class
is pattern-cyclic, observe that an ordinary vertex (i.e. with a bitstring not in the special form) has indegree
2 and outdegree 2, by prepending or appending a bit, while the special vertex n − 1, n − 2, . . . , 2, 1 has
indegree and outdegree n, because we can choose any of its n forms and append a 1 (not a 0 as this would
simply loop back to the special vertex; the correct way to follow the loop is to append a 1 to the all-1s
string). To express the same thing at the level of permutations, if both an upper and a lower sequence are
really present, either can be extended, giving indegree and outdegree 2, while the all-descending sequence
can be preceded or followed by a new element of any value.

We will show how to select an Eulerian cycle in G(Avn(123, 3142, 3412)) in a careful way which
allows the construction of a universal cycle. The special vertex n − 1, . . . , 1 has n incoming edges,
namely the loop n, . . . , 1 (which can be coded in n + 1 different ways as a bitstring) and the n − 1
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permutation corresponding to bitstrings of the form 01k0n−1−k for k ranging from 1 to n− 1. Note that
k cannot be zero, because this would be the all-zero bitstring, one of the possible codings for the loop.
Similarly, the special vertex has n outgoing edges, the loop plus the n− 1 edges of the form 1k0n−1−k1
for k ranging from 0 to n − 2. As far as the rules by which permutations may succeed permutations in
Eulerian cycles, any incoming edge may be followed by any outgoing edge, but now we will insist that
an incoming edge 01k0n−1−k be followed by an outgoing edge 1k0n−1−k1 with the same value of k (in
permutation terms this means that the element removed from the front of the permutation is immediately
reattached at the end).

Thus every incoming edge has a corresponding outgoing edge, for k between 2 and n− 1. This leaves
the incoming 01n−1 and the outgoing 0n−11, which will be matched with one another, with the loop-edge
n, . . . , 1 intervening. Now we will construct an Eulerian circuit, beginning with the loop-edge. Write
down 0n (one of the codes for the loop-edge), and then append a 1 to move on to edge 0n−11, and
continue to construct an Eulerian circuit, appending a bit each time, taking care that each time the special
vertex is visited, the succession rule for bitstrings is followed.

This assures that the final edge in our Eulerian circuit will be the one corresponding to the bitstring
01n−1. Add one more 1 at the end, so that now we have a long bitstring of length 2n, beginning with
n zeroes and ending with n ones. Replace the zeroes, from left to right, with the decreasing values
2n−1, . . . , 1, and replace the ones, from left to right, with the decreasing values 2n−n, . . . , 2n−1−n+1.
Noting that the n zeroes at the beginning and the n ones at the end have thus been assigned the same
values, identify them to form a cycle. Using the construction, it is easy to verify that this is a universal
cycle for the given pattern class. 2

We observe an interesting phenomenon in our table, and in the table for length-3 permutations given
in the previous section. When a class failed to be pattern cyclic for all n, we were always able to give a
counterexample of the shortest possible length. This leads us to the following tentative conjecture.

Conjecture 5 Let T be a set of patterns including some of length k and possibly some of shorter lengths.
If Avk(T ) and Avk+1(T ) are pattern (value) cyclic, then Avn(T ) is pattern (value) cyclic for all n.

Another potentially interesting question is the one settled in [9] for the case of Sn, namely for value-
cyclic classes, what is the minimum number of distinct values necessary to construct a universal cycle?
That is, given n, what is the least cn such that there is a sequence of positive integers bounded above by
cn that represents the class?
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A new class of functions is studied. We define the Brauer-Schur functions B
(p)
λ for a prime number p, and investigate

their properties. We construct a basis for the space of symmetric functions, which consists of products of p-Brauer-
Schur functions and Schur functions. We will see that the transition matrix from the natural Schur function basis has
some interesting numerical properties.

Keywords: Schur function, compound basis, transition matrix

1 Introduction
Let V denote the space of polynomials with infinitely many variables:

V = Q[tj ; j ≥ 1] =
∞⊕
n=0

Vn,

where Vn is the subspace of homogeneous polynomials of degree n, with deg tj = j. The Schur functions
form a basis for V . For a partition λ of n, the Schur function Sλ(t) indexed by λ is defined by

Sλ(t) =
∑
ρ

χλρ
tm1
1 tm2

2 · · ·
m1!m2! · · ·

∈ Vn.

Here the summation runs over all partitions ρ = (1m12m2 · · · ) of n, and the integer χλρ is the irreducible
character of λ of the symmetric group Sn, evaluated at the conjugacy class ρ. The “original” (symmetric)
Schur function is recovered by putting

tj =
1
j

(xj1 + xj2 + · · · ).

It is known that these Schur functions are ortho-normal with respect to the inner product

〈F,G〉 = F (∂)G(t)|t=0,

where ∂ = ( ∂
∂t1
, 1

2
∂
∂t2
, 1

3
∂
∂t3
, · · · ).

In this paper we will consider yet another basis for V , which we call the compound basis. Our new
basis comes from modular representations of the symmetric group at characteristic p. We will simply
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replace the character χλρ by the p-Brauer character ϕλρ . It is natural that the decomposition matrices play
an essential role in the argument. The aim of this note is to investigate the transition matrices between
Schur function basis and our compound basis.

For p = 2 the compound basis was introduced in (1) in connection with the basic representation of the
affine Lie algebra of type A(1)

1 . In this case Schur’s Q-functions are used. However that basis cannot be
defined for odd primes p. Instead we consider here the functionsB(p)

λ (t), which we call the “Brauer-Schur
functions”.

Throughout the note, P (n) always denotes the set of partitions of n, and P denotes the set of all
partitions.

2 The Symmetric Functions B
(p)
λ

We introduce a new family of symmetric functions. It has an origin in the modular representations of the
symmetric groups (6). Let p be a fixed prime number. A partition λ = (λ1, λ2, · · · , λ`) is said to be
p-regular if there are no parts satisfying λi = λi+1 = · · · = λi+p−1. The set of p-regular partitions of n
is denoted by P p(n). A partition ρ = (1m12m2 · · · ) is said to be p-class regular if mp = m2p = · · · = 0.
The set of p-class regular partitions of n is denoted by Pp(n). For example, a partition is 2-regular if
it is strict, and 2-class regular if it is odd. If p = 3 and n = 4, then P 3(4) = {4, 31, 22, 212} and
P3(4) = {4, 14, 22, 212}.
For λ ∈ P p(n), we define the Brauer-Schur function B(p)

λ (t) indexed by λ as follows.

B
(p)
λ (t) =

∑
ρ∈Pp(n)

ϕλρ
tm1
1 tm2

2 · · ·
m1!m2! · · ·

∈ Vn,

where ϕλρ is the irreducible Brauer character for the symmetric group Sn of characteristic p corresponding

to λ, evaluated at the conjugacy class ρ. These functions form a basis for the space V (p)
n = V (p) ∩ Vn,

where
V (p) = Q[tj ; j ≥ 1, j 6≡ 0 (mod p)].

The p-decomposition matrix records the relation between ordinary irreducible characters and Brauer
characters. Given a Schur function Sλ(t), define the p-reduced Schur function S(p)

λ (t) by “killing” all
variables tp, t2p, · · · ;

S
(p)
λ (t) = Sλ(t)|tjp=0.

By definition, the p-decomposition matrix D(p)
n = Dn = (dλµ) is given by

S
(p)
λ (t) =

∑
µ∈Pp(n)

dλµB
(p)
µ (t)

for λ ∈ P (n). It is known that the entries dλµ satisfies the properties; dλµ ∈ Z≥0, dλµ = 0 unless µ ≥ λ
and dλλ = 1. Here “ ≥ ” denotes the dominance order.
We define an inner product 〈 , 〉 on Vn by 〈F (t), G(t)〉 := F (∂)G(t)|t=0, where ∂ = ( ∂

∂t1
, 1

2
∂
∂t2
, 1

3
∂
∂t3
· · · ).

In contarst with the Schur functions which are ortho-normal with respect to this inner product, our
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p-Brauer-Schur functions are not orthogonal in general. Therefore we need the dual basis for the p-

Brauer-Schur functions B(p)
λ (t). To this end we introduce another symmetric functions B̃(p)

λ (t) indexed
by λ ∈ P p(n) as follows.

B̃
(p)
λ (t) =

∑
ρ∈Pp(n)

ϕ̃λρ
tm1
1 tm2

2 · · ·
m1!m2! · · ·

∈ Vn,

where ϕ̃λρ are the entries of the matrix
Ψ̃n := tDnDnΨn

with Ψn = (ϕλρ)λ∈Pp(n),ρ∈Pp(n). Then the orthogonality of the Brauer characters implies

〈B(p)
λ (t), B̃(p)

µ (t)〉 = 〈B̃(p)
λ (t), B(p)

µ (t)〉 = δλµ.

It is known that
B

(p)
λ (t) = S

(p)
λ (t) = Sλ(t)

for a p-core λ, and hence, it is a homogeneous τ -function for the p-reduction of KP hierarchy (9; 4).
Here these functions are being expressed in terms of the “Sato variables” t = (t1, t2, . . .) appearing in

the theory of soliton equations. However, for the description and the proof of our formula, it is sometimes
more convenient to use the “original” variables of the symmetric functions, i.e., the “eigenvalues” x =
(x1, x2, . . .). The variables are connected by the formula

tj =
1
j

(xj1 + xj2 + · · · ).

We will denote by B(p)
λ (x) etc. when the functions are expressed in terms of variables x.

First we notice the following Cauchy identity.

Proposition 2.1 ∑
λ∈Pp

B
(p)
λ (px)B̃(p)

λ (y) =
∏
i,j

1− xpi y
p
j

(1− xiyj)p
,

where (px) := (x1, . . . x1︸ ︷︷ ︸
p

, x2, . . . x2︸ ︷︷ ︸
p

, . . .).

Proof: It is known that the Schur functions form a selfdual basis for the space V with respect to the inner
product 〈 , 〉. Hence we have the well-known Cauchy identity∑

λ∈P

Sλ(x)Sλ(y) =
∏
i,j

1
1− xiyj

= exp(
∑
i,j

tiyj
i).

Our functions B(p)
λ (t) and B̃(p)

λ (t) are dual bases for the p-reduced space V (p). Therefore we have∑
λ∈Pp

B
(p)
λ (px)B̃(p)

λ (y) = exp(
∑
j≥1

∑
n 6≡0(mod p)

ptny
n
j ).
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The right-hand side equals

exp(
∑
j≥1

∑
n 6≡0(mod p)

ptny
n
j ) = exp(

∑
j≥1

∑
n≥1

ptny
n
j −

∑
j≥1

∑
n≥1

ptpny
pn
j )

=
∏
i,j

1− xpi y
p
j

(1− xiyj)p
.

2

3 Compound Basis
We begin with three bijections among sets of partitions. We here remark that these bijections can be
defined for any nutural number p. The first bijection is

ψ(p) : P (n) −→
⋃

n1+pn2=n

P p(n1)× P (n2),

defined by λ 7−→ (λr(p), λd(p)). Here the multiplicities mi(λr(p)) and mi(λd(p)) of i ≥ 1 are given
respectively by

mi(λr(p)) =

{
k if mi(λ) ≡ k 6=0 (mod p)
0 if mi(λ) ≡ 0 (mod p),

and

mi(λd(p)) =

{
mi(λ)−k

p if mi(λ) ≡ k 6=0 (mod p)
mi(λ)
p if mi(λ) ≡ 0 (mod p).

For example, if p = 3 and λ = (544621112), then λr(3) = (52212), λd(3) = (54223).
In view of this bijection, we can define the function, for a prime p and λ ∈ P (n),

B
(p)

λr(p)
(t)Sλd(p)(t(p)), t(p) = (tp, t2p, t3p, · · · ).

These functions are linearly independent, and therefore, form a basis for the space Vn. We call
{B(p)

λr(p)
(t)Sλd(p)(t(p));λ ∈ P (n)} the “p-compound basis” for Vn.

The second bijection reads

π(p) : P (n) −→
⋃

n1+pn2=n

Pp(n1)× P (n2), λ 7−→ (λo(p), λe(p)),

where λo(p) is obtained by removing all parts from λwhich are multiples of p, and λe(p) := (1mp2m2p3m3p . . .)
if λ = (1m12m23m3 . . .). For example, if p = 3 and λ = (7463453 2612), then λo(p) = (74452612),
λe(p) = (231).

The last bijection is called the Glaisher map. Let λ = (λ1, . . . , λ`) be a p-reguler partition. Write each
part as λi = paiqi with (p, qi) = 1. Let µ(i) be the rectanguler partition of λi given by µ(i) = (qi, . . . , qi)
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with length pai . Suppose that qj1 ≥ . . . ≥ qjl . Let λ̃ be the vertical concatenation (µ(j1), . . . , µ(jl)),
which is p-class reguler. Then the bijection γ :P p(n) −→ Pp(n) is defined by λ 7−→ λ̃. For example, if
p = 3 and λ = (6253431), then λ̃ = (5342614).
By composing these three bijections, we can define the map

Φ(p) : P (n) −→ P (n), Φ(p)(λ) := π(p)−1
(γ ⊗ id)(ψ(p)(λ)).

For example, here is a table of the case p = 3 and n = 6.

P (n) −→ P p(n1)× P (n2) −→ Pp(n1)× P (n2) −→ P (n)

6 7−→ 6, ∅ 7−→ 23, ∅ 7−→ 23

51 7−→ 51, ∅ 7−→ 51, ∅ 7−→ 51
42 7−→ 42, ∅ 7−→ 42, ∅ 7−→ 42
412 7−→ 412, ∅ 7−→ 412, ∅ 7−→ 412

32 7−→ 32, ∅ 7−→ 16, ∅ 7−→ 16

321 7−→ 321, ∅ 7−→ 214, ∅ 7−→ 214

2212 7−→ 2212, ∅ 7−→ 2212, ∅ 7−→ 2212

313 7−→ 3, 1 7−→ 13, 1 7−→ 313

214 7−→ 21, 1 7−→ 21, 1 7−→ 321
23 7−→ ∅, 2 7−→ ∅, 2 7−→ 6
16 7−→ ∅, 12 7−→ ∅, 12 7−→ 32

For a pair (n1, n2) with n1 + pn2 = n, we call the set ψ(p)−1
(P p(n1) × P (n2)) the “(n1, n2)-block”.

Looking at the table above, we notice the following relations for lengths.

Proposition 3.1

(i)
∑

λ∈P (n)

`(λ) =
∑

λ∈P (n)

(`(λr(p)) + p`(λd(p))) =
∑

λ∈P (n)

(`(λo(p)) + `(λe(p)))

=
∑

λ∈P (n)

(`(λ̃r(p)) + `(λe(p))),

(ii)
`(λ̃r(p))− `(λr(p))

p− 1
= `((Φ(p)(λ))d(p)).

4 Transittion Matrices
We investigate the transition matrix between two bases. Let A(p)

n := (aλµ)λ,µ∈P (n) be defined by

Sλ(t) =
∑

µ∈P (n)

aλµB
(p)

µr(p)
(t)Sµd(p)(t(p)), λ ∈ P (n).

We see that the transition matrix A(p)
n is an integral matrix, and that the determinant of A(p)

n has a combi-
natorial interpretation. The definition of aλµ is rewritten as

Sλ(px) =
∑

µ∈P (n)

aλµB
(p)

µr(p)
(px)Sµd(p)(x

p),
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where (xp) := (xp1, x
p
2, . . .).

Proposition 4.1 ∑
λ∈P

Sλ(px)Sλ(y) =
∑
λ∈P

B
(p)

λr(p)
(px)Sλd(p)(x

p)B̃(p)

λr(p)
(y)Sλd(p)(y

p).

Proof: By looking at the Cauchy identity for the Schur functions, we see that∑
λ∈P

Sλ(xp)Sλ(yp) =
∏
i,j

1
1− xpi y

p
j

.

Hence, from Proposition 2.1, we have∑
λ∈P

B
(p)

λr(p)
(px)Sλd(p)(x

p)B̃(p)

λr(p)
(y)Sλd(p)(y

p)

=
∑
µ∈Pp

B(p)
µ (px)B̃(p)

µ (y)
∑
ν∈P

Sν(xp)Sν(yp)

=
∏
i,j

1− xpi y
p
j

(1− xiyj)p
×
∏
i,j

1
1− xpi y

p
j

=
∏
i,j

1
(1− xiyj)p

.

2

Theorem 4.2 The entries aλµ are integers given by

aλµ = 〈B̃(p)

λr(p)
(y)Sλd(p)(y

p), Sµ(y)〉.

Proof: We have ∑
λ∈P

Sλ(px)Sλ(y) =
∑
λ∈P

B
(p)

λr(p)
(px)Sλd(p)(x

p)B̃(p)

λr(p)
(y)Sλd(p)(y

p).

Taking the inner product 〈 , 〉 with Sµ(y), we obtain

Sµ(px) =
∑
λ∈P

〈B̃(p)

λr(p)
(y)Sλd(p)(y

p), Sµ(y)〉 B(p)

λr(p)
(px)Sλd(p)(x

p).

Thus we see that

aλµ = 〈B̃(p)

λr(p)
(y)Sλd(p)(y

p), Sµ(y)〉.

Here we use the following formula of plethysm, which is found in (3).
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Sλd(p)(x
p) =

∑
µ∈P

cµ
λd(p)p

Sµ(x), cµλp ∈ Z.

Also, by definition, we have

B̃
(p)

λr(p)
(y) =

∑
µ∈P (n)

dµλr(p)S
(p)
µ (y).

This shows that

B̃
(p)

λr(p)
(y) =

∑
µ∈P (n)

dµλr(p)Sµ(y).

From the orthonormality of the Schur functions, the assertion holds. 2

Here we give the matrix A(p)
n for the case p = 3 and n = 5. Columns are labeled by (µr(3), µd(3)).

A
(3)
5 =

(5, ∅) (221, ∅) (41, ∅) (32, ∅) (312, ∅) (2, 1) (12, 1)
(5) 1 0 0 0 0 1 0
(41) 0 0 1 0 0 0 1
(32) 0 0 1 1 0 0 −1
(312) 0 0 0 0 1 0 0
(221) 1 1 0 0 0 −1 0
(213) 0 1 0 0 0 1 0
(15) 0 0 0 1 0 0 1

.

If we expand the Schur function Sλ(x) and the p-Brauer-Schur function B(p)
λ (x) in terms of the power

sum symmetric functions, then we have

Sλ(x) =
∑

ρ∈P (n)

Yλ,ρpρ(x), B(p)
λ (x) =

∑
ρ∈Pp(n)

B
(p)
λ,ρpρ(x).

Put
Yn := (Yλ,ρ)λ,ρ∈P (n), B(p)

n := (B(p)
λ,ρ)λ∈Pp(n),ρ∈Pp(n).

We will remark that
B(p)
n = ΨnZ

−1
n ,

where Zn := diag(zρ; ρ ∈ Pp(n)) with zρ := 1m12m2 · · ·m1!m2! · · · for ρ = (1m12m2 · · · ).
Now we are going to discuss determinants of the transition matrices. Let the symbol “det” mean the

absolute value of the determinant. By a standard argument, we have

1 = (detYn)2
∏

ρ∈P (n)

zρ.

Here M(W,U) denotes the transition matrix from the basis W to the basis U for Vn. We compute

detM(S(px), B(p)(px)S(xp)) = detM(S(px), p(px)) detM(p(px), B(p)(px)S(xp))
= detM(S(x), p(x)) detM(p(px), B(p)(px)S(xp))
= detM(S(x), p(x)) detM(p(px), p(x)) detM(p(x), B(p)(px)S(xp)).
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Also, for λ ∈ P p(n1), µ ∈ P (n2), we write

B
(p)
λ (px)Sµ(xp) =

∑
ρ∈Pp(n1),σ∈P (n2)

B
(p)
λ,ρYµ,σpρ(px)pσ(xp)

=
∑

ρ∈Pp(n1),σ∈P (n2)

B
(p)
λ,ρYµ,σp

`(ρ)pρ(x)ppσ(x),

where pσ := (pσ1, pσ2, . . .). This shows that the matrix

M(B(p)(px)S(xp), p(x))

is block diagonal and each block is indexed by the pair (n1, n2) with n1 + pn2 = n.

Proposition 4.3

detM(B(p)(px)S(xp), p(x)) =
∏

n1+pn2=n

(detB(p)
n1

)(detYn2)(detLn1).

where Ln = diag(p`(ρ); ρ ∈ Pp(n)).

There is a compact formula for the elementary divisors of the Cartan matrix Cn =t DnDn (10):

{p
`(λ̃)−`(λ)
p−1 ;λ ∈ P p(n)}.

Clearly,

detCn =
∏

λ∈Pp(n)

p
`(λ̃)−`(λ)
p−1 .

Proposition 4.4 ∏
ρ∈Pp(n)

zρ = (det Ψn)2 ×
∏

λ∈Pp(n)

p
`(λ̃)−`(λ)
p−1 .

Our main theorem involves an interesting combinatorial fact.

Theorem 4.5
detA(p)

n = pT .

where

T =
∑

λ∈Pp(n)

`(λ̃)− `(λ)
p− 1

=
∑

λ∈P (n)

`(λd(p)),

which is the sum of the number of parts of multiples of p in the partitions of n.

Proof: We recall

detA(p)
n = detM(S(px), B(p)(px)S(xp))

= detM(S(x), p(x)) detM(p(px), p(x)) detM(p(x), B(p)(px)S(xp)).
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By Propositions 4.3 and 4.4, we see that

detM(p(x), B(p)(px)S(xp))

=

( ∏
n1+pn2=n

(detBn1)(detYn2)(detLn1)

)−1

=
∏

n1+pn2=n

(det Ψn1)

 ∏
σ∈Pp(n1)

z−1
σ

 (detYn2)

 ∏
ρ∈P (n1)

p`(ρ)

−1

=
∏

n1+pn2=n

 ∏
ρ∈Pp(n1)

p`(ρ)

 ∏
σ∈Pp(n1)

z−1
σ

−1

×

 ∏
ρ∈Pp(n1)

z−1
ρ

 ∏
λ∈Pp(n1)

p
`(λ̃)−`(λ)
p−1

1/2 ∏
ρ∈P (n2)

zρ

1/2

.

Hence we have

detA(p)
n =

∏
ρ∈P (n)

z−1/2
ρ ×

∏
ρ∈P (n)

p`(ρ)

×
∏

n1+pn2=n

 ∏
ρ∈Pp(n1)

p`(ρ)

 ∏
σ∈Pp(n1)

z−1
σ

−1

×

 ∏
ρ∈Pp(n1)

z−1
ρ

 ∏
λ∈Pp(n1)

p
`(λ̃)−`(λ)
p−1

1/2 ∏
ρ∈P (n2)

zρ

1/2

.

Paying attention to the bijection π(p) and the relation

zλ = p`p(λ)zλo(p)zλe(p) ,

where `p(λ) denotes the number of parts of multiples of p in the partition λ, we notice that ∏
ρ∈P (n)

z−1/2
ρ

×
 ∏
n1+pn2=n

∏
σ∈Pp(n1)

zσ

×
 ∏
n1+pn2=n

∏
ρ∈Pp(n1)

z−1/2
ρ

×
 ∏
n1+pn2=n

∏
ρ∈P (n2)

z1/2
ρ


is equal to (pT )−1/2

. Next, we look at

∏
ρ∈P (n)

p`(ρ) ×
∏

n1+pn2=n

 ∏
σ∈Pp(n1)

p−`(σ)

× ∏
n1+pn2=n

 ∏
λ∈Pp(n1)

p
`(λ̃)−`(λ)
p−1

1/2

.
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Through the bijection π(p), we have

∏
ρ∈P (n)

p`(ρ) ×
∏

n1+pn2=n

 ∏
σ∈Pp(n1)

p−`(σ)

 = pT .

Also, from Proposition 3.1 (ii), we obtain

∏
n1+pn2=n

 ∏
λ∈Pp(n1)

p
`(λ̃)−`(λ)
p−1

1/2

=

 ∏
τ∈P (n)

p`(τ
d(p))

1/2

= (pT )1/2.

Hence, detA(p)
n = (pT )−1/2(pT )(pT )1/2 = pT . 2

For example, we have detA(3)
5 = 9 = 32. Here is a small list of T for p = 3.

n 1 2 3 4 5 6 7 8 · · ·
T 0 0 1 1 2 5 7 11 · · · .

We also see that the elementary divisors of A(p)
n coincide with

{p
`(µ̃)−`(µ)
p−1 ;µ = λr(p), λ ∈ P (n)}.
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The hiring problem has been recently introduced by Broder et al. in last year’s ACM-SIAM Symp. on Discrete
Algorithms (SODA 2008), as a simple model for decision making under uncertainty. Candidates are interviewed in a
sequential fashion, each one endowed with a quality score, and decisions to hire or discard them must be taken on the
fly. The goal is to maintain a good rate of hiring while improving the “average” quality of the hired staff.

We provide here an alternative formulation of the hiring problem in combinatorial terms. This combinatorial model
allows us the systematic use of techniques from combinatorial analysis, e. g., generating functions, to study the
problem.

Consider a permutation σ : [1, . . . , n] → [1, . . . , n]. We process this permutation in a sequential fashion, so that
at step i, we see the score or quality of candidate i, which is actually her face value σ(i). Thus σ(i) is the rank
of candidate i; the best candidate among the n gets rank n, while the worst one gets rank 1. We define rank-based
strategies, those that take their decisions using only the relative rank of the current candidate compared to the score
of the previous candidates. For these strategies we can prove general theorems about the number of hired candidates
in a permutation of length n, the time of the last hiring, and the average quality of the last hired candidate, using
techniques from the area of analytic combinatorics. We apply these general results to specific strategies like hiring
above the best, hiring above the median or hiring above the mth best; some of our results provide a complementary
view to those of Broder et al., but on the other hand, our general results apply to a large family of hiring strategies,
not just to specific cases.

Keywords: On-line decision making, secretary problem, hiring problem, permutations, generating functions, analytic
combinatorics.

1 Introduction
The hiring problem has been recently introduced by Broder et al. (1) as a simple model for decision
making under uncertainty, closely related to the well-known secretary problem (see, for instance (3) and
the references therein). In the hiring problem, a growing company interviews and decides whether to hire
applicants in a sequential manner. In its simplest formulation, the candidate that the company interviews
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at step i has a quality score Qi, where the Qi’s are i.i.d. random variables, with common distribution
Unif(0, 1). Then, according to the company’s hiring strategy, candidate i is either hired or discarded. The
paper by Broder et al. studied two natural strategies which, on rather intuitive grounds, should lead to an
increasingly improved quality of the company’s staff, while maintaining some balance with the speed at
which the company hires applicants: the first strategy is hiring above the mean and the second strategy
is hiring above the median. As their names indicate, in hiring above the mean an applicant is hired if
and only if her score is at least equal to the mean score of the currently hired applicants, whereas in
hiring above the median, an applicant is hired if and only if her score is at least equal to the median
score of the current employees. The paper also considered the strategies hiring above a threshold and
hiring above the maximum, where candidate i is hired if and only if Qi ≥ τ for some prespecified τ , or
Qi > max{Q1, . . . , Qi−1}, respectively.

In this paper, we provide an alternative formulation of the hiring problem in combinatorial terms; its
main virtue being that it opens the door for the application of a vast and rich array of powerful techniques
coming from the combinatorial camp. We by no means claim that the model that we propose here is
superior to the original model, but on the contrary, that it nicely complements the original model by
providing a different point of view which may prove useful in investigating the hiring problem and its
many natural extensions. In particular, the combinatorial viewpoint introduced here allows us to obtain
several powerful and generic results (Theorems 1 to 3) about the number of hired candidates and other
relevant parameters for large families of hiring strategies, in particular, those which base their decisions
solely on the relative rank of a candidate compared to the ranks of previous candidates.

Consider a permutation σ : [1, . . . , n] → [1, . . . , n]. We process this permutation in a sequential
fashion, so that at step i, we see the score or quality of candidate i, which is actually her face value σ(i).
You may think of σ(i) as the rank of candidate i; the best candidate among the n gets rank n, while the
worst one gets rank 1. In this light, the model is very natural (see also the discussion in (1)); it’s not so
natural to take the face value σ(i) as an absolute measure of the candidate’s quality. For similar reasons,
if the Qi’s in the original hiring model are seen as relative ranks the choice of the uniform distribution in
(0, 1) is perfectly justifiable, but we think that it’s more debatable to see them as an absolute measure of
quality; for instance, it could be more natural to assume that the Qi’s are i.i.d. normal random variables
with common Gaussian distribution N (µ, ν2).

As in the original model, at step i, we must decide then whether we hire the ith candidate or not. The
decision must be made based upon the values σ(1), . . . , σ(i) seen so far, and a candidate i can be hired
only at step i, if at all. No information about the future is known, not even the length of the permutation σ.
If we denote byHi(σ) the set of candidates (their indices) hired up to step i when processing permutation
σ, then the rules above formally translate to: 1) Hi(σ) ⊆ {1, . . . , i} (no future candidates can be hired);
2) Hi(σ) \ {i} = Hi−1(σ) (no past candidates can be hired)(i); and 3) Hi(σ) = Hi(σ′) for any two
permutations σ and σ′ as long as σ(j) = σ′(j) for all j, 1 ≤ j ≤ i (decisions must be made without
knowledge of the future). We call Hn(σ) the hiring set of permutation σ and simplify the notation to
H(σ).

Actually, since the future is not known, we should consider that we are given the ranks of candidates
relative to those of past candidates, rather than the actual values σ(i). For instance, while processing
some sequence of candidates, we could get the information that the candidate #11 ranks the third best if

(i) This condition can be substituted byHi(σ) \ {i} ⊆ Hi−1(σ) if we want to introduce firing strategies, so that at each step one
or more currently hired candidates can be fired.
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compared with the 10 previously seen candidates (this only implies σ(11) ≤ n − 2). This is properly
captured by the notion of rank-based strategies that we present in Section 3.

Once the concept of the hiring set of a permutation has been introduced, some questions immediately
come to mind: about its size, which we will denote h(σ), and about other parameters like, for instance,
the “time” of the last hiring L(σ) or the score of the last hired candidate r(σ).

Of course, our main concern is the expected value of these parameters on random permutations, e. g.,
if hn is the size of the hiring set of a random permutation of size n, we want to obtain E {hn}. We shall
consistently use the same letters for parameters in permutations and for random variables, like A(σ) and
An. We note here that if the hiring strategy itself were randomized, for example “Pessimizing Inc.” hires
candidate i with probability∝ 1/σ(i), then the hiring set would actually be a probability measure over all
subsets of {1, . . . , n}, but all the definitions that we shall see here can be easily generalized to cope with
these strategies as well.

Last but not least, we shall look at what happens in the asymptotic regime, i. e., when n → ∞ and
after a suitable scaling of the random variable of interest. As we shall shortly see, this provides the
bridge between the original continuous model of Broder et al. and the discretized combinatorial version
introduced here.

On the other hand, our model keeps the potential for extensions intact, and its generalization for multi-
sets is both natural and immediate.

2 Simple strategies
Let us first consider hiring above a threshold τ . For simplicity, we assume τ ∈ Z. ThenHi(σ) = {j | 1 ≤
j ≤ i and σ(j) ≥ τ}, and H(σ) = {1 ≤ j ≤ n |σ(j) ≥ τ}. Hence, the size hn of the hiring set for any
permutation is n + 1 − τ . For the asymptotic regime, it is useful to consider τ = α · n + o(n) for some
0 < α ≤ 1, for otherwise almost all candidates would be hired. Then

E {hn}
n

=
n+ 1− τ

n
= 1− α+ o(1).

The rank rn of the last hired candidate in a random permutation of size n is any number from τ to n with
identical probability, hence

E {rn} =
n∑
j=τ

j

n+ 1− τ
=

1
(n+ 1− τ)

(
n(n+ 1)

2
− τ(τ − 1)

2

)
∼ n1 + α

2
+ o(n).

Therefore the normalized distance to the maximum rank (the gap) is on average E {gn} = 1−E {rn} /n ∼
(1− α)/2 + o(1) (cf. (1)). Other parameters of this hiring strategy can be easily analyzed as well.

Let us now consider the other simple strategy already studied by Broder et al., hiring above the maxi-
mum. This strategy leads to a very well known and throughly studied parameter in random permutations:
left-to-right maxima (see (5) and references therein). An element σ(i) is called a left-to-right maximum if
it is larger than all preceding elements, i. e., σ(j) < σ(i) for all j < i. Obviously,H(σ) is exactly the set
of positions of the left-to-right maxima in σ. It is well known that E {hn} = lnn+O(1), so that the size
of the hiring set is exponentially small compared to the set of interviewed candidates. We don’t give here
additional details about this strategy, as it turns out to be a particular case (when m = 1) of the strategy
that we examine in Section 4.
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3 A general framework for rank-based strategies
In this section we develop a generic analysis of the size of the hiring set and other parameters in rank-
based hiring strategies.

A rank-based strategy is one where each decision (hire or discard) is taken solely on the basis of the
rank of the current candidate relative to the rank of the previous interviewed candidates. That is, the
actual face value σ(i) of the current candidate i is not relevant, only its position among the previous i− 1
candidates. Rank-based strategies are natural and they adequately modelize constraints in some situations,
for example, when there are no mechanisms for quality measurement in absolute terms.

In particular, it would be debatable that any absolute rank σ(i) is actually available at step i; it is more
reasonable to assume that the given permutation is unknown until the very last candidate is interviewed;
what we keep at each step is the relative ordering of the candidates seen so far. This assumption is
common, for instance, in the standard secretary problem, where only the relative ranks of the candidates
are available as they are successively examined (3).

Given a permutation σ of length n and i, 1 ≤ i ≤ n, let ρi(σ) be the permutation of length i that we
obtain by relabelling the initial prefix of length i in σ in such a way that we preserve the relative ordering.
For instance, ρ1(25341) = 1, ρ3(25341) = 132 and ρ4(25341) = 1423. Another notation that we shall
define now, but use later is σ ◦ j. Given a permutation σ of size n and a value j, 1 ≤ j ≤ n+ 1, we denote
by σ ◦ j the permutation of size n + 1 which results after relabelling j, j + 1, . . . , n in σ as j + 1, . . . ,
n+ 1 and appending j to the end. For example 3241 ◦ 3 = 42513 and 213 ◦ 4 = 2134.

Definition 1 A hiring strategy is rank-based if and only if for all permutations σ and all i, 1 ≤ i ≤ |σ|,

Hi(σ) = H(ρi(σ)).

Hiring above the maximum, above the median, above some other quantile, and above the mth best in
the current staff (see Section 4) are all rank-based hiring strategies. Hiring above a threshold or above the
mean are not. We will concentrate on rank-based hiring strategies for the rest of this section.

In order to investigate the average size of the hiring set in a random permutation, we introduce the
bivariate generating function (2)

H(z, u) =
∑
σ∈P

z|σ|

|σ|!
uh(σ), (1)

where P denotes the set of all permutations. If we take derivates of H w.r.t. u and set u = 1 we obtain
the generating functions of the moments of hn, e. g.,

h(z) =
∂

∂u
H(z, u)

∣∣∣∣
u=1

=
∑
σ∈P

h(σ)
z|σ|

|σ|!

Hence E {hn} = [zn]h(z).

Theorem 1 Let H(z, u) be the generating function defined by (1). Let X(σ) denote the number of ranks
j, 1 ≤ j ≤ |σ| + 1, such that a candidate with score j will be hired if interviewed right after σ, that is,
X(σ) is the number of scores j such thatH(σ ◦ j) = H(σ) ∪ {|σ|+ 1}.
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Then

(1− z) ∂
∂z
H(z, u)−H(z, u) = (u− 1)

∑
σ∈P

X(σ)
z|σ|

|σ|!
uh(σ).

Proof: See Appendix A. 2

Each different hiring strategy will be characterized by its corresponding definition of X(σ); for in-
stance, hiring above the maximum has X(σ) = 1 for all σ, since there is only one score for which we will
hire a candidate coming after σ, namely, if the candidate has relative rank |σ|+ 1.

Other interesting quantities can be analyzed in a similar vein. For instance, let L(σ) denote the index
of the last hired candidate in σ, that is, L(σ) = max{i : i ∈ H(σ)}, with the convention L(∅) = 0. Then
L(σ ◦ j) = L(σ) if the (|σ|+ 1)th candidate is not hired, and L(σ ◦ j) = |σ|+ 1 otherwise. Letting

L(z, u) =
∑
σ∈P

z|σ|

|σ|!
uL(σ),

the recurrence for L(σ) translates to

(1− z)∂L
∂z
− L(z, u) = u

∑
σ∈P

X(σ)
(zu)|σ|

|σ|!
−
∑
σ∈P

X(σ)
z|σ|

|σ|!
uL(σ), (2)

with X(σ) as before.
We now introduce a natural restriction on hiring strategies, which will allow us to obtain further general

results. To begin with, we define the indicator Xj(σ), so that Xj(σ) = 1 if a candidate with score j is
hired after σ and Xj(σ) = 0 otherwise. Notice that X(σ) =

∑
1≤j≤|σ|+1Xj(σ).

Definition 2 A hiring strategy is pragmatic if and only if the following two conditions hold:

1. For all σ and all j, Xj(σ) = 1 implies Xj′(σ) = 1 for all j′ ≥ j.

2. For all σ and all j, X(σ ◦ j) ≤ X(σ) +Xj(σ).

The first condition simply states that whenever a strategy would hire a candidate with score j, it would
hire a candidate with a higher score. The second condition bounds the rate at which the strategy hires. In
particular, the potential for hiring X(·) doesn’t change if no new candidate gets hired. Pragmatic hiring
strategies exclude pathological cases such as “hire any candidate that is interviewed at some step which
is a multiple of 100, discard otherwise” (because of condition #2) or “hire any candidate whose relative
score is better than that of an even number of previously interviewed candidates” (because of condition
#1). Hiring above the median, above some quantile and above the mth best (Section 4) are all pragmatic.

Theorem 2 For any pragmatic hiring strategy and any permutation σ, H(σ) contains at least the X(σ)
best candidates of σ, that is, the candidates with scores |σ|, |σ| − 1, . . . , |σ|+ 1−X(σ).

Proof: See Appendix A. 2

Let r(σ) denote the absolute score of the last hired candidate in a permutation σ, and let g(σ) =
1− r(σ)/|σ| denote the gap (1).
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Theorem 3 For any pragmatic hiring strategy,

E {gn} =
1

2n
(E {Xn} − 1),

where E {Xn} = [zn]
∑
σ∈P X(σ)z|σ|/|σ|!.

Proof: See Appendix A. 2

4 Hiring for the elite (above the mth best)
In this strategy we have an additional parameter m. A candidate i is hired if her score is better than the
score of one of the m best currently employed candidates. In other words, if Ei−1(σ) is the subset of
currently hired elements before step i with the m highest scores, and σ(i) is greater than the minimum
score in Ei−1(σ), then i is hired.

Note that i will become immediately part of the “elite” of the m best employees, and the element `
with the minimum score in Ei−1(σ) will be removed from the “elite”, that is, it will not be in Ei(σ).
Fortunately for `, he will be still hired. Note also that for m = 1 this strategy is simply hiring above the
maximum.

For this strategy we have X(σ) = |σ|+ 1 if |σ| < m since any value j will be hired after processing σ,
as long as an elite of m employees hasn’t built up yet. Once |σ| ≥ m, we will have h(σ) ≥ m and a value
j will be hired if and only if it is larger than the smallest score in the elite. Since the (relative) scores of
the elite of σ must consist of |σ|, |σ| − 1, . . . , |σ| −m+ 1 there are exactly m values for a newcomer to
be hired, namely, if j ∈ {|σ|+ 1, . . . , |σ| −m+ 2} then the last candidate of σ ◦ j will be hired. Hence,
X(σ) = m if |σ| ≥ m.

The right hand side of Theorem 1 is then

(u− 1)

(
1 + 2zu+ 3z2u2 + · · ·+mzm−1um−1

+mH(z, u)−m(1 + zu+ z2u2 + · · ·+ zm−1um−1)

)
.

Plugging the expression above back into Theorem 1 and rearranging, we finally have

(1− z) ∂
∂z
H(z, u)− (mu−m+ 1)H(z, u) =

(u− 1)(1 + 2zu+ · · ·+mzm−1um−1)

−m(u− 1)(1 + zu+ · · ·+ zm−1um−1). (3)

For m = 1, the differential equation above reduces to

(1− z) ∂
∂z
H(1)(z, u)− uH(1)(z, u) = 0,
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whose solution is

H(1)(z, u) =
(

1
1− z

)u
=
∑
n≥0
k≥0

cn,k
zn

n!
uk,

as we additionally impose H(1)(z, 1) = 1/(1 − z) and H(1)(0, u) = 1. Here, we use the superscript to
make the dependence on m explicit.

The coefficients cn,k = [znuk]H(1)(z, u) are the well-known unsigned Stirling numbers of the first
kind (4), also known as Stirling cycle numbers, and denoted

[
n
k

]
. The Stirling cycle number

[
n
k

]
is the

number of permutations of size n that contain exactly k cycles, and it turns out to coincide with the number
of permutations of size n that have exactly k left-to-right maxima (5).

The solution for general m is

H(m)(z, u) =
1

(mu−m+ 1) · (mu−m) · · · (mu− 1)

((
1

1− z

)mu−m+1

Pm(u, z)

+
1

(1− z)m
Qm(z, u)

)
, (4)

where Pm(u, z) and Qm(z, u) are polynomials in z and u.
If we differentiate w.r.t. u and set u = 1, we obtain the generating function of the expected values

h(m)(z) =
∑
n≥0

E
{
h(m)
n

}
zn =

∂

∂u
H(m)(z, u)

∣∣∣∣
u=1

= m
ln
(

1
1−z

)
1− z

− pm(z)
1− z

,

with pm(z) a polynomial of degree m− 1.
Hence E

{
h

(m)
n

}
= mHn + O(1), where Hn =

∑
1≤k≤n(1/k) denotes the nth harmonic number.

We keep here the usual notation Hn for harmonic numbers despite the possible confusion with the hiring
set parameters. Since Hn = lnn + γ + O(n−1), where γ = 0.577 . . . is Euler’s gamma constant, we
conclude that E

{
h

(m)
n

}
= m lnn+O(1). So the size of the hiring set is, for any fixed m, exponentially

smaller than the set of interviewed candidates.
Since we have an explicit form for H(m)(z, u), much more information about h(m)

n can be extracted.
In particular,we have

E
{
uh

(m)
n

}
= [zn]H(m)(z, u) ∼ Am(u) · nm(u−1) ·

(
1 + Θ

(
1
n

))
uniformly in a complex neighborhood of u = 1, for some analytic Am(u), so it follows by application of
Hwang’s quasi-powers theorem (2) that h(m)

n converges to a normal distribution. More precisely,

h
(m)
n −m lnn√

m lnn
d→ N (0, 1). (5)

Also, since E {Xn} = m if n ≥ m, Theorem 3 yields for this strategy E
{
g
(m)
n

}
= (m − 1)/2n, if

n ≥ m.
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We now consider the behavior of this strategy asm varies (notice that the results that we have discussed
above hold only for fixed m). To this end we introduce

H(z, u, v) =
∑
m≥1

vmH(m)(z, u),

with H(m)(z, u) the generating function that we have studied in the preceding paragraphs.
If we set h(z, v) = (∂H/∂u)|u=1, the coefficient [znvm]h(z, v) is the quantity we seek, the expected

size of the hiring set when the size of the elite is m. Multiplying by vm and summing over all m ≥ 1, the
differential equation (3) translates into a corresponding differential equation for H(z, u, v)

(1− z) ∂
∂z

H(z, u, v)− H(z, u, v)− (u− 1)v
∂

∂v
H(z, u, v) = (1− u)

v2

(1− v)2
ln
(

1
1− zuv

)
.

Similarly, differentiating w.r.t. u and setting u = 1 the equation above we get an ordinary differential
equation for h(z, v)

(1− z) ∂
∂z

h(z, v)− h(z, v)− v

(1− z)(1− v)2
=
(

v

1− v

)2( 1
1− zv

)
, (6)

since H(z, 1, v) = v
(1−z)(1−v) .

The solution for this equation gives (a detailed derivation can be found in Appendix A)

h(z, v) =
v ln 1

1−z
(1− z)(1− v)2

−
v ln 1

1−zv
(1− z)(1− v)2

(7)

as we impose h(0, v) = 0.
The last step is to extract the coefficients of h(z, v), whose details are also given in Appendix A. For

m ≥ n, we obviously have E
{
h

(m)
n

}
= n. For m ≤ n we have E

{
h

(m)
n

}
= m(Hn − Hm + 1), so

E
{
h

(m)
n

}
∼ m ln

(
n
m

)
+m+O(1), for n,m→∞.

5 Hiring above the median (and other quantiles)
Hiring above the median means that candidate i is hired if and only if her score σ(i) is larger than the rth
best score of the candidates hired so far, with r = b(hi−1(σ) + 1)/2c.

Since this strategy is rank-based, it is not difficult to see that if the hiring set has size k = 2t at some
given moment then there are t + 1 possible relative scores that will be hired in the next step, while if the
hiring set has size k = 2t + 1 then the number of relative scores that would be hired in the next step is
also t + 1. That means that X(σ) = d(h(σ) + 1)/2e. Coping with the ceilings is quite hard, so we will
consider instead what happens with X ′(σ) = (1 + h(σ))/2 and X ′′(σ) = (3 + h(σ))/2, which provide
lower and upper bounds, respectively.

By the same token, hiring above other quantiles, say hiring above (1 − a)h(σ), with 0 < a < 1,
can be analyzed in the same way. We should have then X(σ) = da · (h(σ) + 1)e. In general, for
X(σ) = a · h(σ) + b and 0 < a < 1, we have

(1− z)∂H
∂z
− au(u− 1)

∂H

∂u
− (1 + b(u− 1))H(z, u) = 0,
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with the additional conditions H(z, 1) = 1/(1− z) and H(0, u) = 1. The solution turns out to be

H(z, u) = u−b/a
1

1− z

(
1

1− u−1
u(1−z)a

)b/a
, (8)

which can be readily checked (and even found!) with any reasonable computer algebra system. From
this closed form we can find the successive factorial moments. It suffices to differentiate r times and set
u = 1:

E {hrn} = [zn]
∂rH(z, u)

∂ur

∣∣∣∣
u=1

,

where Xr = X(X − 1) · · · (X − r+ 1) denotes the rth falling factorial (4). In appendix A we show that

E {hrn} = Θ(nra). (9)

The expected size of the hiring set can also be obtained if we consider the differential equation satisfied
by the corresponding generating function h(z), namely,

(1− z) d
dz
h− (1 + a)h =

b

1− z
.

This is a simple linear first-order ordinary differential equation whose solution is

h(z) =
b

a

1
1− z

(
1

(1− z)a
− 1
)
.

since h(0) = 0. This coincides with what we get if we differentiateH(z, u) as given by (8) and set u = 1.
The extraction of coefficients is straightforward:

[zn]h(z) =
b

a

((
n+ a

a

)
− 1
)

=
b

a

na

Γ(1 + a)

(
1 +O

(
1
n

))
.

In particular, for a = 1/2 (hiring above the median) we get E {hn} = Θ(
√
n) and for “hire A, move B”

(see (1)) we have a = 1 − B/A; thus E {hn} = Θ(n1−B/A). Loosely speaking, when the size of the
hiring set reaches k we have interviewed n = Θ(kA/(A−B)) candidates (compare with the results in (1)).

On the other hand E {Xn} = aE {hn}+ o(E {hn}), thus

E {gn} = Θ(na−1).

For the particular case of hiring above the median, when a = 1/2, we have E {gn} = Θ(1/
√
n).
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A Proofs

Proof (of Theorem 1): We can write h(σ) = 0 if σ is the empty permutation and h(σ◦j) = h(σ)+Xj(σ),
where

Xj(σ) =

{
1, if the last candidate of σ ◦ j is hired,
0, otherwise.

Then, if Pn denotes the set of permutations of size n,

H(z, u) =
∑
σ∈P

z|σ|

|σ|!
uh(σ) = 1 +

∑
n>0

∑
σ∈Pn

z|σ|

|σ|!
uh(σ) = 1 +

∑
n>0

∑
1≤j≤n

∑
σ∈Pn−1

z|σ◦j|

|σ ◦ j|!
uh(σ◦j)

= 1 +
∑
n>0

∑
1≤j≤n

∑
σ∈Pn−1

z|σ|+1

(|σ|+ 1)!
uh(σ)+Xj(σ) = 1 +

∑
n>0

∑
σ∈Pn−1

z|σ|+1

(|σ|+ 1)!
uh(σ)

∑
1≤j≤n

uXj(σ).

Since Xj(σ) is either 0 or 1 for all j and all σ, we have∑
1≤j≤n

uXj(σ) = (|σ|+ 1−X(σ)) + uX(σ),

whereX(σ) =
∑

1≤j≤|σ|+1Xj(σ). Note thatX(σ) is the number of relative scores such that a candidate
with such a score would be hired right after processing σ.

Hence,

H(z, u) = 1 +
∑
n>0

∑
σ∈Pn−1

z|σ|+1

(|σ|+ 1)!
uh(σ)

(
(|σ|+ 1−X(σ)) + uX(σ)

)
.

Taking derivatives w.r.t. z,

∂

∂z
H(z, u) =

∑
n>0

∑
σ∈Pn−1

z|σ|

|σ|!
uh(σ)

(
(|σ|+ 1−X(σ)) + uX(σ)

)
=
∑
n>0

∑
σ∈Pn−1

z d
dz z
|σ|

|σ|!
uh(σ) +

∑
n>0

∑
σ∈Pn−1

z|σ|

|σ|!
uh(σ) + (u− 1)

∑
n>0

∑
σ∈Pn−1

z|σ|

|σ|!
uh(σ)X(σ)

= z
∂

∂z
H(z, u) +H(z, u) + (u− 1)

∑
n>0

∑
σ∈Pn−1

z|σ|

|σ|!
uh(σ)X(σ).

After reorganizing the terms in the equation above and simplifying, we obtain the statement of the
theorem. 2

Proof (of Theorem 2): The proof is by induction on the length n of the permutation σ. If n = 0 then
H(σ) = ∅ and indeed it contains the X(σ) best candidates in the (empty) permutation σ.

Consider now σ′ = σ ◦ j. By the inductive hypothesis H(σ) contains the best X(σ) candidates, with
relative scores {|σ| −X(σ) + 1, . . . , |σ|}. Since the strategy is pragmatic, only candidates with relative
rank between |σ|+ 2−X(σ) and |σ|+ 1 will be hired. If the last candidate with relative score j is hired
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then he is among the best X(σ) + 1 candidates of H(σ′). As X(σ′) ≤ X(σ) + 1, it follows that H(σ′)
contains at least the best X(σ′) candidates of σ′. On the contrary, if the last candidate were not hired then
the relative scores of the best X(σ) candidates in H(σ) increase all by one. Hence, in H(σ′) we have at
least X(σ) candidates with scores in {|σ| + 2 − X(σ), . . . , |σ|}. To conclude the proof it is enough to
notice that, for any pragmatic strategy, X(σ ◦ j) = X(σ) if the last candidate with score j was not hired.
2

Proof (of Theorem 3): The last hired candidate must have an absolute score in {|σ|+1−X(σ), . . . , |σ|}
because of Theorem 2. For a random permutation, all these X(σ) scores are equally likely, hence for a
random permutation of size n we have

E {rn} = E


n∑

k=n−X(σ)+1

k

X(σ)

 = E
{

1
X(σ)

(
n(n+ 1)

2
− (n−X(σ))(n+ 1−X(σ)

2

)}

= E
{
n+

1
2
− 1

2
X(σ)

}
= n+

1
2
− E {Xn}

2
.

Finally, E {gn} = 1− n−1E {rn} = (E {Xn} − 1) / 2n. 2

Proof (of Equation (7) and coefficient [znvm]h(z, v)): We start with the linear differential equation
satisfied by h(z, v) (Equation (6))

(1− z) ∂
∂z

h(z, v)− h(z, v) =
v

1− z
1

(1− v)2
− v2

(1− v)2
1

1− zv
.

Multiplying through by the integrating factor 1− z and integrating with respecth to z gives

(1− z)h(z, v) =
v

(1− v)2
ln
( 1

1− z

)
− v

(1− v)2
ln
( 1

1− zv

)
+ c(v),

for some unknown function c(v).
Using the initial condition h(0, v) = 0, we find that c(v) = 0 for any v. Hence

[znvm]h(z, v) = [znvm]
1

1− z

(
v

(1− v)2
ln
( 1

1− z

)
− v

(1− v)2
ln
( 1

1− zv

))
= [zn]

(
1

1− z
ln
( 1

1− z

)
[vm]

v

(1− v)2
− 1

1− z
[vm]

v

(1− v)2
ln
( 1

1− zv

))
= m[zn]

1
1− z

ln
( 1

1− z

)
− [zn]

1
1− z

m∑
k=1

(mzk
k
− zk

)
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Extracting the coefficient of zn above is now easy,

[znvm]h(z, v) = mHn −
(
m

m∑
k=1

1
k

[zn−k]
1

1− z
−

m∑
k=1

[zn−k]
1

1− z

)

= mHn −m
min(m,n)∑
k=1

1
k

+
min(m,n)∑
k=1

1

=

{
mHn −mHm +m, if m ≤ n,
n, if m > n.

2

Proof (of Equation 9): Our starting point is

H(z, u) = u−b/a
1

1− z

(
1

1− u−1
u(1−z)a

)b/a
.

It suffices to differentiate r times and set u = 1 to obtain the generating function of the rth factorial
moments of hn:

E {hrn} = [zn]hr(z)

with

hr(z) =
∂rH(z, u)

∂ur

∣∣∣∣
u=1

.

We have thus

hr(z) = γr

r∑
j=0

(−1)r−j

(1− z)ja+1

(
r

j

)
,

where γr is a polynomial of degree r in x = b/a. Extracting coefficients

[zn]hr(z) = γr

r∑
j=0

(−1)r−j
(
r

j

)(
ja+ n

n

)
.

Hence we get that, asymptotically as n→∞,

[zn]hr(z) ∼ γr
nra

Γ(ra+ 1)
.

2
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indépendant et pour le polytope matroı̈de drapeau associé a M . Nos preuves sont fondées sur une extension naturelle
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1 Introduction
The theory of matroids can be approached from many different points of view; a matroid can be defined
as a simplicial complex of independent sets, a lattice of flats, a closure relation, etc. A relatively new point
of view is the study of matroid polytopes, which in some sense are the natural combinatorial incarnations
of matroids in algebraic geometry and optimization. Our paper is a contribution in this direction.

We begin with the observation that matroid polytopes are members of the family of generalized permu-
tohedra (14). With some modifications of Postnikov’s beautiful theory, we express the matroid polytope
PM as a signed Minkowski sum of simplices, and use that to give a formula for its volume Vol (PM ).
This is done in Theorems 2.5 and 3.3. Our answers are expressed in terms of the beta invariants of the
contractions of M .

Formulas for Vol (PM ) were given in very special cases by Stanley (17) and Lam and Postnikov (11),
and a polynomial time algorithm for finding Vol (PM ) was constructed by de Loera et. al. (6). One
motivation for this computation is the following. The closure of the torus orbit of a point p in the Grass-
mannian Grk,n is a toric variety Xp, whose degree is the volume of the matroid polytope PMp

associated
to p. Our formula allows us to compute the degree of Xp combinatorially.

One can naturally associate two other polytopes to a matroid M : its independent set polytope and
its associated flag matroid polytope. By a further extension of Postnikov’s theory, we also write these
polytopes as signed Minkowski sums of simplices and give formulas for their volumes. This is the content
of Sections 4 and 5.

Throughout the paper we assume familiarity with the basic concepts of matroid theory; for further
information we refer the reader to (13).

2 Matroid Polytopes are Generalized Permutohedra
A generalized permutohedron is a polytope whose inequality description is of the following form:

Pn({zI}) = {(t1, . . . , tn) ∈ Rn :
n∑

i=1

ti = z[n],
∑
i∈I

ti ≥ zI for all I ⊆ [n]}

where zI is a real number for each I ⊆ [n] := {1, . . . , n}, and z∅ = 0. Different choices of zI can give the
same generalized permutohedron: if one of the inequalities does not define a face of Pn({zI}), then we
can increase the value of the corresponding zI without altering the polytope. When we write Pn({zI}),
we will always assume that the zIs are all chosen minimally; i.e., that all the defining inequalities are
tight.

The Minkowski sum of two polytopes P andQ in Rn is defined to be P +Q = {p+q : p ∈ P, q ∈ Q}.
We say that the Minkowski difference of P and Q is P −Q = R if P = Q+ R.(i) The following lemma
shows that generalized permutohedra behave nicely with respect to Minkowski sums.

Lemma 2.1 Pn({zI}) + Pn({z′I}) = Pn({zI + z′I}).

(i) We will only consider Minkowski differences P −Q such that Q is a Minkowski summand of P . More generally, the Minkowski
difference of two arbitrary polytopes P and Q in Rn is defined to be P −Q = {r ∈ Rn | r + Q ⊆ P} (14). It is easy to check
that (Q + R)−Q = R, so the two definitions agree in the cases that interest us. In this paper, a signed Minkowski sum equality
such as P −Q + R− S = T should be interpreted as P + R = Q + S + T .
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Let ∆ be the standard unit (n− 1)-simplex

∆ = {(t1, . . . , tn) ∈ Rn :
n∑

i=1

ti = 1, ti ≥ 0 for all 1 ≤ i ≤ n}

= conv{e1, . . . , en},

where ei = (0, , . . . , 0, 1, 0, . . . , 0) with a 1 in its ith coordinate. As J ranges over the subsets of [n], let
∆J be the face of the simplex ∆ defined by

∆J = conv{ei : i ∈ J} = Pn({z(J)I})

where z(J)I = 1 if I ⊇ J and z(J)I = 0 otherwise. Lemma 2.1 gives the following proposition.
The next two propositions are due to Postnikov in the case yI ≥ 0.

Proposition 2.2 (14, Proposition 6.3) For any yI ≥ 0, the Minkowski sum
∑
yI∆I of dilations of faces

of the standard (n− 1)-simplex is a generalized permutohedron. We can write∑
A⊆E

yI∆I = Pn({zI}),

where zI =
∑

J⊆I yJ for each I ⊆ [n].

Proposition 2.3 Every generalized permutohedronPn({zI}) can be written uniquely as a signed Minkowski
sum of simplices, as

Pn({zI}) =
∑

I⊆[n]

yI∆I

where yI =
∑

J⊆I(−1)|I|−|J|zJ for each I ⊆ [n].

Proof: First we need to separate the right hand side into its positive and negative parts. By Proposition
2.2, ∑

I⊆[n] :yI<0

(−yI)∆I = Pn({z−I }) and
∑

I⊆[n] :yI≥0

yI∆I = Pn({z+
I })

where z−I =
∑

J⊆I :yJ<0(−yJ) and z+
I =

∑
J⊆I :yJ≥0 yJ . Now zI + z−I = z+

I gives

Pn({zI}) +
∑

I⊆[n] :yI<0

(−yI)∆I =
∑

I⊆[n] :yI≥0

yI∆I ,

as desired. Uniqueness is clear. 2

Let M be a matroid of rank r on the set E. The matroid polytope of M is the polytope PM in RE

whose vertices are the indicator vectors of the bases of M . The known description of the polytope PM by
inequalities makes it apparent that it is a generalized permutohedron:

Proposition 2.4 (19) The matroid polytope of a matroid M on E with rank function r is PM = PE({r−
r(E − I)}I⊆E).



80 Federico Ardila, Carolina Benedetti and Jeffrey Doker

The beta invariant (5) of M is a non-negative integer given by

β(M) = (−1)r(M)
∑

X⊆E

(−1)|X|r(X)

which stores significant information about M ; for example, β(M) = 0 if and only if M is disconnected
and β(M) = 1 if and only if M is series-parallel. If

TM (x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A) =
∑
i,j

bijx
iyj

is the Tutte polynomial (20) of M , then β(M) = b10 = b01 for |E| ≥ 2.
Our next results are more elegantly stated in terms of the signed beta invariant of M , which we define

to be
β̃(M) = (−1)r(M)+1β(M).

Theorem 2.5 Let M be a matroid of rank r on E and let PM be its matroid polytope. Then

PM =
∑
A⊆E

β̃(M/A) ∆E−A. (1)

Proof: By Propositions 2.3 and 2.4, PM =
∑

I⊆E yI∆I where

yI =
∑
J⊆I

(−1)|I|−|J|(r − r(E − J)) = −
∑
J⊆I

(−1)|I|−|J|r(E − J)

= −
∑

E−J⊇E−I

(−1)|E−J|−|E−I|(r(E − J)− r(E − I))

= −
∑
X⊆I

(−1)|X|(r(E − I ∪X)− r(E − I))

= −
∑
X⊆I

(−1)|X|rM/(E−I)(X) = β̃(M/(E − I))

as desired. 2

Example 2.6 Let M be the matroid on E = [4] with bases {12, 13, 14, 23, 24}; its matroid polytope is a
square pyramid. Theorem 2.5 gives PM = ∆234 + ∆134 + ∆12 −∆1234, as illustrated in Figure 1. The
dotted lines in the polytope ∆234 + ∆134 + ∆12 are an aid to visualize the Minkowski difference.

One way of visualizing the Minkowski sum of two polytopes P and Q is by grabbing a vertex v of
Q and then using it to “slide” Q around in space, making sure that v never leaves P . The region that Q
sweeps along the way is P +Q. Similarly, the Minkowski difference P −R can be visualized by picking
a vertex v of R and then “sliding” R around in space, this time making sure that no point in R ever leaves
P . The region that v sweeps along the way is P −R. This may be helpful in understanding Figure 1.

Some remarks about Theorem 2.5 are in order.
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2

234+134+12-1234234+134

234

234+134+12

3     :

4

1

Fig. 1: A matroid polytope as a signed Minkowski sum of simplices.

• Generally most terms in the sum of Theorem 2.5 are zero. The nonzero terms correspond to the
coconnected flats A, which we define to be the sets A such that M/A is connected. These are
indeed flats, since contracting by them must produce a loopless matroid.

• A matroid and its dual have congruent matroid polytopes, and Theorem 2.5 gives different formulas
for them. For example PU1,3 = ∆123 while

PU2,3 = ∆12 + ∆23 + ∆13 −∆123.

• The study of the subdivisions of a matroid polytope into smaller matroid polytopes, originally
considered by Lafforgue (10), has recently received significant attention (1; 2; 7; 15). Speyer con-
jectured (15) that the subdivisions consisting of series-parallel matroids have the largest number of
faces in each dimension and proved this (16) for a large and important family of subdivisions: those
which arise from a tropical linear space. The important role played by series-parallel matroids is still
somewhat mysterious. Theorem 2.5 characterizes series-parallel matroids as those whose matroid
polytope has no repeated Minkowski summands. It would be interesting to connect this charac-
terization to matroid subdivisions; this may require extending the theory of mixed subdivisions to
signed Minkowski sums.

• Theorem 2.5 provides a geometric interpretation for the beta invariant of a matroid M in terms of
the matroid polytope PM . In Section 5 we see how to extend this to certain families of Coxeter
matroids. This is a promising point of view towards the notable open problem (4, Problem 6.16.6)
of defining useful enumerative invariants of a Coxeter matroid.

3 The Volume of a Matroid Polytope
Our next goal is to present an explicit combinatorial formula for the volume of an arbitrary matroid
polytope. Formulas have been given for very special families of matroids by Stanley (17) and Lam and
Postnikov (11). Additionally, a polynomial time algorithm for computing the volume of an arbitrary
matroid polytope was recently discovered by de Loera et. al. (6). Let us say some words about the
motivation for this question.

Consider the Grassmannian manifold Grk,n of k-dimensional subspaces in Cn. Such a subspace can
be represented as the rowspace of a k × n matrix A of rank k, modulo the left action of GLk which does
not change the row space. The

(
n
k

)
maximal minors of this matrix are the Plücker coordinates of the

subspace, and they give an embedding of Grk,n as a projective algebraic variety in CP(n
k)−1.
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Each point p in Grk,n gives rise to a matroid Mp whose bases are the k-subsets of n where the Plücker
coordinate of p is not zero. Gelfand, Goresky, MacPherson, and Serganova (9) first considered the strati-
fication of Grk,n into matroid strata, which consist of the points corresponding to a fixed matroid.

The torus T = (C∗)n acts on Cn by (t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn) for ti 6= 0; this
action extends to an action of T onGrk,n. For a point p ∈ Grk,n, the closure of the torus orbitXp = T · p
is a toric variety which only depends on the matroidMp of p, and the polytope corresponding toXp under
the moment map is the matroid polytope of Mp (9). Under these circumstances it is known (8) that the
volume of the matroid polytope Mp equals the degree of the toric variety Xp as a projective subvariety of
CP(n

k)−1:
VolPMp

= degXp.

Therefore, by finding the volume of an arbitrary matroid polytope, one obtains a formula for the degree
of the toric varieties arising from arbitrary torus orbits in the Grassmannian.

To prove our formula for the volume of a matroid polytope, we first recall the notion of the mixed volume
Vol (P1, . . . , Pn) of n (possibly repeated) polytopes P1, . . . , Pn in Rn. All volumes in this section are
normalized with respect to the lattice generated by e1 − e2, . . . , en−1 − en where our polytopes live; so
the standard simplex ∆ has volume 1/(n− 1)!.

Proposition 3.1 (12) Let n be a fixed positive integer. There exists a unique function Vol (P1, . . . , Pn)
defined on n-tuples of polytopes in Rn, called the mixed volume of P1, . . . , Pn, such that, for any col-
lection of polytopes Q1, . . . , Qm in Rn and any nonnegative real numbers y1, . . . , ym, the volume of the
Minkowski sum y1Q1 + · · ·+ ymQm is the polynomial in y1, . . . , ym given by

Vol (y1Q1 + · · ·+ ymQm) =
∑

i1,...,in

Vol (Qi1 , . . . , Qin
)yi1 · · · yin

where the sum is over all ordered n-tuples (i1, . . . , in) with 1 ≤ ir ≤ m.

Proposition 3.1 still holds if some of the yis are negative as long as the expression y1Q1 + · · ·+ ymQm

still makes sense, as stated in the following Proposition.

Proposition 3.2 If P = y1Q1 + · · ·+ ymQm is a signed Minkowski sum of polytopes in Rn, then

Vol (y1Q1 + · · ·+ ymQm) =
∑

i1,...,in

Vol (Qi1 , . . . , Qin)yi1 · · · yin

where the sum is over all ordered n-tuples (i1, . . . , in) with 1 ≤ ir ≤ m.

Proof: We first show that

Vol (A−B) =
n∑

k=0

(−1)k

(
n

k

)
Vol (A, . . . , A,B, . . . , B) (2)

when B is a Minkowski summand of A in Rn. Let A − B = C. By Proposition 3.1, for t ≥ 0 we have
that

Vol (C + tB) =
n∑

k=0

(
n

k

)
Vol (C, . . . , C,B . . . , B)tk =: f(t)
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and we are interested in computing Vol (C) = f(0). Invoking Proposition 3.1 again, for t ≥ 0 we have
that

Vol (A+ tB) =
n∑

k=0

(
n

k

)
Vol (A, . . . , A,B, . . . , B)tk =: g(t). (3)

But A + tB = C + (t + 1)B and therefore g(t) = f(t + 1) for all t ≥ 0. Therefore g(t) = f(t + 1) as
polynomials, and VolC = f(0) = g(−1). Plugging into (3) gives the desired result.

Having established (2), separate the given Minkowski sum for P into its positive and negative parts as
P = Q−R, where Q = x1Q1 + · · ·+ xrQr and R = y1R1 + · · ·+ ysRs with xi, yi ≥ 0. For positive t
we can write Q+ tR =

∑
xiQi +

∑
tyjRj , which gives two formulas for Vol (Q+ tR).

Vol (Q+ tR) =
n∑

k=0

(
n

k

)
Vol (Q, . . . , Q,R, . . . , R)tk

=
∑

1≤ia≤r

1≤jb≤s

Vol (Qi1 , . . . , Qin−k
, Rj1 , . . . , Rjk

)xi1 · · ·xin−k
yj1 · · · yjk

tk

The last two expressions must be equal as polynomials. A priori, we cannot plug t = −1 into this
equation; but instead, we can use the formula for Vol (Q − R) from (2), and then plug in coefficient by
coefficient. That gives the desired result. 2

Theorem 3.3 If a connected matroid M has n elements, then the volume of the matroid polytope PM is

VolPM =
1

(n− 1)!

∑
(J1,...,Jn−1)

β̃(M/J1)β̃(M/J2) · · · β̃(M/Jn−1),

summing over the ordered collections of sets J1, . . . , Jn−1 ⊆ [n] such that, for any distinct i1, . . . , ik,
|Ji1 ∩ · · · ∩ Jik

| < n− k.

Proof: Postnikov (14, Corollary 9.4) gave a formula for the volume of a (positive) Minkowski sum
of simplices. We would like to apply his formula to the signed Minkowski sum in Theorem 2.5, and
Proposition 3.2 makes this possible. 2

In Theorem 3.3, the hypothesis that M is connected is needed to guarantee that the matroid polytope
PM has dimension n−1. More generally, if we have M = M1⊕· · ·⊕Mk then PM = PM1 ×· · ·×PMk

so the ((n− k)-dimensional) volume of PM is VolPM = VolPM1 · · ·VolPMk
.

4 Independent Set Polytopes
In this section we show that our analysis of matroid polytopes can be carried out similarly for the indepen-
dent set polytope IM of a matroid M , which is the convex hull of the indicator vectors of the independent
sets of M . The inequality description of IM is known to be:

IM = {(x1, . . . , xn) ∈ Rn : xi ≥ 0 for i ∈ [n],
∑
i∈A

xi ≤ r(A) for all A ⊆ E}. (4)
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The independent set polytope of a matroid is not a generalized permutahedron. Instead, it is a Q-
polytope; i.e., a polytope of the form

Qn({zJ}) = {(t1, . . . , tn) ∈ Rn : ti ≥ 0 for all i ∈ [n],
∑
i∈J

ti ≤ zJ for all J ⊆ [n]}

where zJ is a non-negative real number for each J ⊆ [n]. We can also express these polytopes as signed
Minkowski sums of simplices, though the simplices we use are not the ∆Js, but those of the form

DJ = conv{0, ei : i ∈ J}
= Qn({d(J)I})

where d(J)I = 0 if I ∩ J = ∅ and d(J)I = 1 otherwise.
The following lemmas on Q-polytopes are proved in a way analogous to the corresponding lemmas for

generalized permutahedra as was done in Section 2, and we leave them to the reader.

Lemma 4.1 Qn({zJ}) +Qn({z′J}) = Qn({zJ + z′J})

Proposition 4.2 For any yI ≥ 0 we have∑
I⊆[n]

yIDI = Qn({zJ})

where zJ =
∑

I:I∩J 6=∅ yI .

Proposition 4.3 Every Q-polytope Qn({zJ}) can be written uniquely(ii) as a signed Minkowski sum of
DIs as

Qn({zJ}) =
∑

I⊆[n]

yIDI ,

where
yJ = −

∑
I⊆J

(−1)|J|−|I|z[n]−I .

Proof: We need to invert the relation between the yIs and the zJs given by zJ =
∑

I:I∩J 6=∅ yI . We
rewrite this relation as

z[n] − zJ =
∑

I⊆[n]−J

yI

and apply inclusion-exclusion. As in Section 2, we first do this in the case yI ≥ 0 and then extend it to
arbitrary Q-polytopes. 2

Theorem 4.4 Let M be a matroid of rank r on E and let IM be its independent set polytope. Then

IM =
∑
A⊆E

β̃(M/A)DE−A

where β̃ denotes the signed beta invariant.
(ii) assuming y∅ = 0
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The great similarity between Theorems 2.5 and 4.4 is not surprising, since PM is the facet of IM which
maximizes the linear function

∑
i∈E xi, and ∆I is the facet of DI in that direction as well. In fact we

could have first proved Theorem 4.4 and then obtained Theorem 2.5 as a corollary.

Theorem 4.5 If a connected matroid M has n elements, then the volume of the independent set polytope
IM is

Vol IM =
1
n!

∑
(J1,...,Jn)

β̃(M/J1)β̃(M/J2) · · · β̃(M/Jn)

where the sum is over all n−tuples (J1, . . . , Jn) of subsets of [n] such that, for any distinct i1, . . . , ik, we
have |Ji1 ∩ · · · ∩ Jik

| ≤ n− k.

Notice that by Hall’s marriage theorem, the condition on the Jis is equivalent to requiring that (E −
J1, . . . , E − Jn) has a system of distinct representatives (SDR); that is, there are a1 ∈ E − J1, . . . , an ∈
E − Jn with ai 6= aj for i 6= j.

Proof: By Theorem 4.4 and Proposition 3.1 it suffices to compute the mixed volume Vol (DA1 , . . . , DAn)
for each n-tuple (A1, . . . , An) of subsets of [n]. Bernstein’s theorem (18) tells us that Vol (DA1 , . . . , DAn)
is the number of isolated solutions in (C− {0})n of the system of equations:

β1,0 + β1,1t1 + β1,2t2 + · · ·+ β1,ntn = 0
β2,0 + β2,1t1 + β2,2t2 + · · ·+ β2,ntn = 0

...
βn,0 + βn,1t+ βn,2t2 + · · ·+ βn,ntn = 0

where βi,0 and βi,j are generic complex numbers when j ∈ Ai, and βi,j = 0 if j /∈ Ai.
This system of linear equations will have one solution if it is non-singular and no solutions otherwise.

Because the βi,0 are generic, such a solution will be non-zero if it exists. The system is non-singular when
the determinant is non-zero, and by genericity that happens when (A1, . . . , An) has an SDR.

We conclude that Vol (DE−J1 , . . . , DE−Jn
) is 1 if (E−J1, . . . , E−Jn) has an SDR and 0 otherwise,

and the result follows. 2

Example 4.6 Let IM be the independent set polytope of the uniform matroid U2,3. We have IM =
D12 + D23 + D13 − D123. Theorem 4.5 should confirm that its volume is 5

6 ; let us carry out that
computation.

The coconnected flats of M are 1, 2, 3 and ∅ and their complements are {23, 13, 12, 123}. We need
to consider the triples of coconnected flats whose complements contain an SDR. Each one of the 24
triples of the form (a, b, c), where a, b, c ∈ [3] are not all equal, contributes a summand equal to 1. The
27 permutations of triples of the form (a, b, ∅), contribute a −1 each. The 9 permutations of triples of
the form (a, ∅, ∅) contribute a 1 each. The triple (∅, ∅, ∅) contributes a −1. The volume of IM is then
1
6 (24− 27 + 9− 1) = 5

6 .
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5 Truncation Flag Matroids
We will soon see that any flag matroid polytope can also be written as a signed Minkowski sum of sim-
plices ∆I . We now focus on the particularly nice family of truncation flag matroids, introduced by
Borovik, Gelfand, Vince, and White, where we obtain an explicit formula for this sum.

The strong order on matroids is defined by saying that two matroidsM andN on the same ground setE,
having respective ranks rM < rN , are concordant if their rank functions satisfy that rM (Y )− rM (X) ≤
rN (Y )− rN (X) for all X ⊂ Y ⊆ E. (4).

Flag matroids are an important family of Coxeter matroids (4). There are several equivalent ways to
define them; in particular they also have an algebro-geometric interpretation. We proceed constructively.
Given pairwise concordant matroids M1, . . . ,Mm on E of ranks k1 < · · · < km, consider the collection
of flags (B1, . . . , Bm), whereBi is a basis ofMi andB1 ⊂ · · · ⊂ Bm. Such a collection of flags is called
a flag matroid, and M1, . . . ,Mm are called the constituents of F .

For each flag B = (B1, . . . , Bm) in F let vB = vB1 + · · ·+ vBm
, where v{a1,...,ai} = ea1 + · · ·+ eai

.
The flag matroid polytope is PF = conv{vB : B ∈ F}.

Theorem 5.1 (4, Cor 1.13.5) If F is a flag matroid with constituents M1, . . . ,Mk, then PF = PM1 +
· · ·+ PMk

.

As mentioned above, this implies that every flag matroid polytope is a signed Minkowski sum of sim-
plices ∆I ; the situation is particularly nice for truncation flag matroids, which we now define.

Let M be a matroid over the ground set E with rank r. Define Mi to be the rank i truncation of M ,
whose bases are the independent sets of M of rank i. One easily checks that the truncations of a matroid
are concordant, and this motivates the following definition of Borovik, Gelfand, Vince, and White.

Definition 5.2 (3) The flag F(M) with constituents M1, . . . ,Mr is a flag matroid, called the truncation
flag matroid or underlying flag matroid of M .

Our next goal is to present the decomposition of a truncation flag matroid polytope as a signed Minkowski
sum of simplices. For that purpose, we define the gamma invariant of M to be γ(M) = b20 − b10, where
TM (x, y) =

∑
i,j bijx

iyj is the Tutte polynomial of M .

Proposition 5.3 The gamma invariant of a matroid is given by

γ(M) =
∑
I⊆E

(−1)r−|I|
(
r − r(I) + 1

2

)
.

Unlike the beta invariant, the gamma invariant is not necessarily nonnegative. In fact its sign is not
simply a function of |E| and r. For example, γ(Uk,n) = −

(
n−3
k−1

)
, and γ(Uk,n ⊕ C) =

(
n−2
k−1

)
where C

denotes a coloop.
As we did with the beta invariant, define the signed gamma invariant ofM to be γ̃(M) = (−1)r(M)γ(M).

Theorem 5.4 The truncation flag matroid polytope of M can be expressed as:

PF(M) =
∑
I⊆E

γ̃(M/I)∆E−I .
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Proof: By Theorems 2.5 and 5.1, PF(M) is

r∑
i=1

PMi
=

r∑
i=1

∑
I⊆E

∑
J⊆I

(−1)|I|−|J|(i− ri(E − J))∆I ,

where ri(A) = min{i, r(A)} is the rank function of Mi. Then

PF(M) =
∑
I⊆E

∑
J⊆I

(−1)|I|−|J|
r∑

i=r(E−J)+1

(i− r(E − J))

∆I

=
∑
I⊆E

∑
J⊆I

(−1)|I|−|J|
(
r − r(E − J) + 1

2

)∆I

=
∑
I⊆E

∑
X⊆I

(−1)|X|
(
rM/(E−I) − rM/(E−I)(X) + 1

2

)∆I

=
∑
I⊆E

γ̃(M/(E − I))∆I

as desired. 2

Corollary 5.5 If a connected matroid M has n elements, then

VolPF(M) =
1

(n− 1)!

∑
(J1,...,Jn−1)

γ̃(M/J1)γ̃(M/J2) · · · γ̃(M/Jn−1),

summing over the ordered collections of sets J1, . . . , Jn−1 ⊆ [n] such that, for any distinct i1, . . . , ik,
|Ji1 ∩ · · · ∩ Jik

| < n− k.

Proof: This follows from Proposition 3.2 and Theorem 5.4. 2
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Riffle shuffles of a deck with repeated cards
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We study the Gilbert-Shannon-Reeds model for riffle shuffles and ask ’How many times must a deck of cards be
shuffled for the deck to be in close to random order?’. In 1992, Bayer and Diaconis gave a solution which gives
exact and asymptotic results for all decks of practical interest, e.g. a deck of 52 cards. But what if one only cares
about the colors of the cards or disregards the suits focusing solely on the ranks? More generally, how does the
rate of convergence of a Markov chain change if we are interested in only certain features? Our exploration of this
problem takes us through random walks on groups and their cosets, discovering along the way exact formulas leading
to interesting combinatorics, an ’amazing matrix’, and new analytic methods which produce a completely general
asymptotic solution that is remarkable accurate.

Keywords: card shuffling, lumping of Markov chains, Poisson summation

1 Introduction
A basic question in scientific computing is ‘How many times must an iterative procedure be run?’. A
basic answer is ‘It depends.’. In this paper we study the mixing properties of the Gilbert-Shannon-Reeds
model [19, 21] for riffle shuffling a deck of n cards and ask how many times the deck must be shuffled for
the cards to be in close to random order. Our answer depends not only on the metric we use to measure
distance to uniformity, but also on the particular properties of the deck that are of interest.

To be precise, we consider a ‘deck’ to be a multiset of n cards. We shuffle the deck by first cutting it
into two piles according to the binomial distribution, and then riffling the piles together by successively
dropping cards from either pile with probability proportional to the size. This process defines a measure,
denoted Q2(σ), on the symmetric group Sn. Repeated shuffles are defined by convolution powers

Q∗k2 (σ) =
∑
ω·τ=σ

Q2(τ)Q
∗(k−1)
2 (ω). (1)
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This shuffling model, which accurately models how most people actually shuffle a deck of cards, was
introduced by Gilbert and Shannon [19] and independently by Reeds [21].

Bayer and Diaconis [3] generalized this to a-shuffles, which is the natural extension to shuffling with a
hands: the deck is cut into a packets by multinomial distribution and cards are successively dropped from
packets with probability proportional to packet size. Letting Qa(σ) denote this measure, they show that
convolution of general a-shuffles is as nice as possible, namely

Qa ∗Qb = Qab. (2)

Thus it is enough to study a single a-shuffle of the deck.
To that end, denote the uniform distribution by U = U(σ). For a deck with n distinct cards, U = 1/n!,

and for a more general deck with D1 1’s, D2 2’s, up to Dm m’s, we have U = 1/
(
D1+···+Dm

D1,...,Dm

)
. There are

several ways to measure the distance between Qa and U , though for the purposes of this paper we restrict
our attention to total variation distance and separation distance.

The total variation distance is defined by

‖Qa − U‖TV = max
subsetsA

|Qa(A)− U(A)| = 1
2

∑
σ

|Qa(σ)− U(σ)|. (3)

In general, the formulas for Qa(σ) may be quite complicated, making calculations of total variation
intractable. Therefore we will also consider the separation distance defined by

SEP(a) = max
σ

1− Qa(σ)
U(σ)

. (4)

Here, only a single probability needs to be computed, though as we shall see even that can be difficult.
From the formulas above, one can easily see that separation provides an upper bound for total variation,
which makes separation a good measure to use when total variation becomes too complicated to compute.

In widely cited works, Aldous [2] and Bayer and Diaconis [3] show that 3
2 log2(n)+ c shuffles are nec-

essary and sufficient to make the total variation distance small, while 2 log2(n) + c shuffles are necessary
and sufficient to make separation small. These results, however, look at all aspects of a permutation, i.e.
consider a deck with distinct cards. In many card games, only certain aspects of the permutation matter.
For instance, in Baccarat, suits are irrelevant and all 10’s and picture cards are equivalent, and in ESP card
guessing experiments, a Zener deck of 25 cards with each of 5 symbols repeated five times is used. It is
natural, therefore, to ask how many shuffles are required in these situations, and so we consider a deck to
have repeated cards.

Many results are known for how long it takes certain features of a permutation, e.g. longest cycle,
descent structure, etc, to become random; for a thorough treatment of such results see [11]. The partic-
ular problem we address in this paper was first addressed by Conger and Viswanath [8, 9] who derive
remarkable numerical procedures giving useful answers for cases of practical interest.

In this paper, we present many of our main results from [?], giving exact formulae and asymptotics for
a deck of n cards with D1 cards labelled 1, D2 cards labelled 2, . . ., Dm cards labelled m. Our results
are proved from the deck starting ‘in order’, i.e. with 1’s on top through m’s at the bottom. In Section 2,
we show that the processes we study are Markov by framing the problem in the context of random walks
on cosets. We derive a formula for the transition matrix following a single card in Section 3, and show
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that this matrix shares many properties with Holte’s ‘Amazing Matrix’ [20]. In Section 4, we consider
a general deck, limiting our metric to the separation distance, and derive new formulae and asymptotic
approximations which we unify into our ‘rule of thumb’ formula. Section 5 shows that our results depend
on the initial configuration of the deck, a fact also observed by Conger and Viswanath [8, 9, ?]. This
extended abstract contains precise statements of our main results along with the main ideas of the proofs;
for full details see [?].

2 Random walks on Young subgroups
In this section, we reformulate shuffling in terms of random walks on a finite group, so that our investiga-
tion of particular properties of a deck becomes a quotient walk on Young subgroups of Sn.

Let G be a finite group, and let Q be a probability on G, i.e. Q(g) ≥ 0 and
∑
g∈GQ(g) = 1. Take

a random walk on G by repeatedly choosing elements independently from G with probability Q, say
g1, g2, g3, . . ., and, beginning with the identity element 1G, multiply on the left by gi. This generates the
following sequence of elements, the left walk,

1G, g1, g2g1, g3g2g1, . . . .

By inspection, the chance that the walk is at g after k steps is given by convolution formula (1) Q∗k(g),
where Q0(g) = δ1G,g .

To focus on certain aspects of the walk, we choose a subgroup and consider the quotient walk as follows.
LetH ≤ G be a subgroup ofG, and letX denote the set of left cosets ofH inG, i.e. X = G/H = {xH}.
The quotient walk on X is derived from the left walk on G by reporting the coset to which the current
position of the walk belongs. This defines a Markov chain on X with transition matrix given by

K(x, y) = Q(yHx−1) =
∑
h∈H

Q(yhx−1). (5)

Note thatK is well-defined (i.e. independent of the choice of coset representatives) and doubly stochastic.
Thus the uniform distribution onX , U = |H|/|G|, is a stationary distribution forK. The following result,
showing that powers ofK correspond precisely to convolving and taking cosets, is intuitively obvious with
a straightforward proof.

Proposition 2.1 For Q a probability distribution on a finite group G and K as defined in (5), we have

Kl(x, y) = Q∗l(yHx−1).

We may identify permutations in Sn with arrangements of a deck of n cards by setting σ(i) to be the
label of the card at position i from the top. For instance, the permutation 2 1 4 3 is associated with four
cards where “2” is on top, followed by “1”, followed by “4”, and finally “3” is on the bottom. Therefore
the random walk on Sn with probability Q2 corresponds precisely to riffle shuffles of a deck of n distinct
cards. If we consider the first D1 cards to be labelled “1”, the next D2 cards to be labelled “2”, and so
on up to the last Dm cards labelled “m”, then this corresponds precisely to the coset space of a Young
subgroup,

X = Sn/ (SD1 × SD2 × · · · × SDm) .

Thus Proposition 2.1 shows that the processes studied in the body of this paper are Markov chains.
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3 A new ‘amazing’ matrix
Suppose the ace of spades is on the bottom of a deck of n cards. How many shuffles does it take until this
one card is close to uniformly distributed on {1, 2, . . . , n}? We analyze this problem by writing down the
transition matrix following a single card through an otherwise indistinguishable deck.

Proposition 3.1 Let Pa(i, j) be the chance that the card at position i moves to position j after an a-
shuffle. For 1 ≤ i, j ≤ n, Pa(i, j) is given by

1
an

a∑
k=1

u∑
r=l

(
j−1
r

)(
n−j
i−r−1

)
kr(a− k)j−1−r(k − 1)i−1−r(a− k + 1)(n−j)−(i−r−1)

where r ranges from l = max(0, (i+ j)− (n+ 1)) to u = min(i− 1, j − 1).

Proof: Consider the number of ways that an inverse a-shuffle can bring the card at position j to position
i. First, the card at position j must have come from some pile, say k, 1 ≤ k ≤ a. Say r of the cards above
this came from piles 1 to k, and so the remaining j − 1 − r came from piles k + 1 to a. Those r cards
all must appear before the card at position j in

(
j−1
r

)
ways. This leaves i− 1− r cards below position j

which came from piles 1 to k − 1 in
(
n−j
i−r−1

)
ways, and the remaining cards must be from piles k to a. 2

For example, the n× n transition matrices for n = 2, 3 are given below.

1
2a

(
a+ 1 a− 1
a− 1 a+ 1

)
1

6a2

 (a+ 1)(2a+ 1) 2(a2 − 1) (a− 1)(2a− 1)
2(a2 − 1) 2(a2 + 2) 2(a2 − 1)

(a− 1)(2a− 1) 2(a2 − 1) (a+ 1)(2a+ 1)


These matrices share many properties, given in Proposition 3.2, with the ‘amazing matrix’ discovered

by Holte [20] in his study of the ‘carries process’ of ordinary addition. Diaconis and Fulman [12] show
that Holte’s matrix is also the transition matrix for the number of descents in repeated a-shuffles. We have
not been able to find a closer connection between the two matrices.

Proposition 3.2 The transition matrices following a single card have the following properties:

1. they are cross-symmetric, i.e. Pa(i, j) = Pa(n− i+ 1, n− j + 1);

2. they are multiplicative, i.e. Pa · Pb = Pab;

3. the eigenvalues form the geometric series 1, 1/a, 1/a2, . . . , 1/an−1;

4. the right eigen vectors are independent of a and have the simple form:
Vm(i) = (i− 1)i−1

(
m−1
i−1

)
+ (−1)n−i+m

(
m−1
n−i
)

for 1/am, m ≥ 1.

Proof: The cross-symmetry (1) follows from Proposition 3.1, and the multiplicative property (2) follows
from the shuffling interpretation and equation (2). Property (1) implies that the eigen structure is quite
constrained. Properties (3) and (4) follow from results of Cuicu [7]. 2

The following Corollary also follows as a special case of Theorem 2.2 in [8].
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Corollary 3.3 Consider a deck of n cards with the ace of spades starting at the bottom. The chance that
the ace of spades is at position j from the top after an a-shuffle is

Qa(j) = Pa(n, j) =
1
an

a∑
k=1

(k − 1)n−jkj−1. (6)

From the explicit formula, we are able to give exact numerical calculations and sharp asymptotics
for any of the distances to uniformity. The results below show that log2 n + c shuffles are necessary
and sufficient for both separation and total variation (and there is a cutoff for these). This is surprising
since, on the full permutation group, separation requires 2 log2 n+c steps whereas total variation requires
3
2 log2 n+ c. Of course, for any specific n, these asymptotic results are just indicative.

Tab. 1: Distance to uniformity for a deck of 52 cards. The upper table assumes distinct cards, and the lower table
follows a single card starting at the bottom of the deck.

1 2 3 4 5 6 7 8 9 10 11 12

TV 1.00 1.00 1.00 1.00 .924 .614 .334 .167 .085 .043 .021 .010

SEP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .996 .931 .732 .479 .278

1 2 3 4 5 6 7 8 9 10 11 12

TV .873 .752 .577 .367 .200 .103 .052 .026 .013 .007 .003 .002

SEP 1.00 1.00 .993 .875 .605 .353 .190 .098 .050 .025 .013 .006

Remarks on Table 1. We use Proposition 3.1 to give exact results when n = 52. For comparison, the
upper table gives exact results for the full deck using [3]. The lower table shows that it takes about half
as many shuffles to achieve a given degree of mixing for a card at the bottom of the deck. For example,
the widely cited ‘7 shuffles’ for total variation drops this distance to .334 for the full ordering, but this
requires only 4 shuffles to achieve a similar degree of randomness for a single card at the bottom.

For asymptotic results, we first derive an approximation to separation, which also serves as an upper
bound for total variation. Finally, we derive a matching lower bound for total variation. Proofs have been
omitted for brevity, but again full details are available in [?].

Proposition 3.4 After an a-shuffle, the probability that the bottom card is at position i satisfies

1
a

αn−i+1

1− αn
≤ Qa(i) ≤

1
a

αn−i

1− αn−1
,

where for brevity we have set α = 1− 1/a. In particular, the separation distance satisfies

1− n

a

αn

1− αn
≤ SEP(a) ≤ 1− n

a

αn−1

1− αn−1
.
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If a = 2log2(n)+c = n2c, then our result shows that the SEP(a) is approximately

1− 1
2c

e−2−c

1− e−2−c ,

and for large c this is ≈ 2−c−1. The fit to the data in Table 1 is excellent: for example after ten shuffles
of a fifty-two card deck we have 2−c−1 = 26

1024 which is very nearly the observed separation distance of
0.025.

Remark 3.5 Proposition 3.4 gives a local limit for the probability that the original bottom card is at
position j from the bottom. When the number of shuffles is log2 n+c, the density of this (with respect to the
uniform measure) is asymptotically z(c)e−j/2

c

, with z a normalizing constant (z(c) = 1/2c(ej/2
c − 1)).

The result is uniform in j for c fixed, n large.

Proposition 3.6 Consider a deck of n cards with the ace of spades at the bottom. With α = 1− 1/a, the
total variation distance for the mixing of the ace of spades after an a-shuffle is at most

αn+1

1− αn
− aα2(1− αn−1)

n(1− αn)
+

1
n log(1/α)

log
(
a

n

1− αn

αn+1

)
,

and at least
αn

1− αn−1
− a(1− αn)
nα(1− αn−1)

+
1

n log(1/α)
log
(a
n

1− αn−1

αn−1

)
.

After log2 n+ c shuffles, that is when a = 2cn, Proposition 3.6 shows that the total variation distance
is approximately (with C = 2c)

C log
(
C(e1/C − 1)

)
+

1− C log(e1/C − 1)
(e1/C − 1)

.

Thus when c is ‘large and negative,’ the total variation is close to 1, and when c is large and positive,
the total variation is close to 0. Thus total variation and separation converge at the same rate. This is an
asymptotic result and, for example, Table 1 supports this.

Similar, but more demanding, calculations show that if the ace of spades starts at position i, and
max(i/n, (n − i)/n) ≥ A > 0 for some fixed positive A, then 1

2 log2 n shuffles suffice for convergence
in any of the metrics. We omit further details.

4 Separation distance for the general case
A main result of Bayer and Diaconis [3] is the simple formula for an a-shuffle of a deck of n distinct
cards:

Qa(σ) =
1
an

(
n+ a− r

n

)
, (7)

where r = r(σ) is the number of rising sequences in σ, equivalently one more than the number of
descents in σ−1. This formula allows simple closed form expressions for a variety of distances as well as
asymptotic analysis.
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In this section we work with general decks containing Di cards labelled i, 1 ≤ i ≤ m. The formulae of
this section hardly resemble the elegant expression above. Further, we only give precise formula for the
least likely deck. The following lemma shows that this deck, where the separation distance is achieved, is
the reverse the initial deck configuration. This is equivalent to Theorem 2.1 from [8].

Proposition 4.1 Let D be a deck as above. After an a-shuffle of the deck with 1’s on top down to m’s on
bottom, the least likely configuration is the reverse deck w∗ with m’s on top down to 1’s on the bottom.

Proof: The only cuts of the initial deck resulting in w∗ are those containing no pile with distinct letters.
For all such cuts, each rearrangement of the deck is equally likely to occur. 2

While finding a completely general formula for Qa(w) for arbitrary w is infeasible, below we do this
for w∗.

Theorem 4.2 Consider a deck with n cards and Di cards labeled i, i = 1, . . . ,m. Then the separation
distance after an a-shuffle of the sorted deck (1’s followed by 2’s, etc) is given by

SEP(a) = 1− 1
an

(
n

D1 . . . Dm

) ∑
0=k0<···<km−1<a

(a−km−1)Dm

m−1∏
j=1

(
(kj−kj−1)Dj−(kj−kj−1−1)Dj

)
.

Proof: From the analysis in the proof of Proposition 4.1, Qa(w∗) is given by

Qa(w∗) =
∑

A1+···+Aa=n
A refines D

1
an

(
n

A1, . . . , Aa

)
1(
n

D1,...,Dm

) ,
where ‘A refines D’ means there exist indices k1, . . . , km−1 such that A1 + · · · + Ak1 = D1 and, for
i = 2, . . . ,m− 1, Aki−1+1 + · · ·+Aki

= Di. Taking the ki’s to be minimal, the expression for Qa(w∗)
simplifies to

1
an

∑
0=k0<···<km−1<a

(a−km−1)Dm

m−1∏
j=1

(
(kj−kj−1)Dj − (kj−kj−1−1)Dj

)
. (8)

The result now follows from Proposition 4.1. 2

Remarks on Table 2. We calculate SEP after repeated 2-shuffles for various decks using Theorem 4.2:
(blackjack) 9 ranks with 4 cards each and another rank with 16 cards; (♣♦♥♠) 4 distinct suits of 13 cards
each; (A♠) the ace of spades and 51 other cards; (redblack) a two color deck with 26 of either color; and
( ) a deck with 5 cards in each of 5 suits. The missing entries in Table 2 highlight the limitations
of exact calculations using Theorem 4.2.

Remark 4.3 Comparing the data in Table 2 for A♠ and redblack shows that these two cases are remark-
ably similar. Indeed, both cases exhibit the same asymptotic behavior, which is remarkable since the A♠
has a state space of size 52 while redblack has a state space of size around 5× 1014.
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Tab. 2: Separation distance for k shuffles of 52 cards.
k 1 2 3 4 5 6 7 8 9 10 11 12

BD-92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .995 .928 .729 .478 .278

blackjack 1.00 1.00 1.00 1.00 .999 .970

♣♦♥♠ 1.00 .997 .997 .976 .884 .683 .447 .260 .140 .073

A♠ 1.00 1.00 .993 .875 .605 .353 .190 .098 .050 .025 .013 .006

redblack .890 .890 .849 .708 .508 .317 .179 .095 .049 .025 .013 .006

1.00 1.00 .993 .943 .778 .536 .321 .177

Now we derive a basic asymptotic tool which allows asymptotic approximations for general decks.

Proposition 4.4 Let m ≥ 2 and a be natural numbers, let ξ1, . . ., ξm be real numbers in [0, 1]. Let r1,
. . ., rm be natural numbers all at least r ≥ 2. Let

Sm(a; ξ, r) =
∑

a1,...,am≥0
a1+...+am=a

(a1 + ξ1)r1 · · · (am + ξm)rm .

Then ∣∣∣Sm(a; ξ, r)− r1! · · · rm!
(r1 + . . .+ rm +m− 1)!

(a+ ξ1 + . . .+ ξm)r1+...+rm+m−1
∣∣∣

≤ r1! · · · rm!
m−1∑
j=1

(
m− 1
j

)( 1
3(r − 1)

)j (a+ ξ1 + . . .+ ξm)r1+...+rm+m−1−2j

(r1 + . . .+ rm +m− 1− 2j)!
.

Consider a general deck of n cards with Di cards labelled i. We use Proposition 4.4 to find asymptotics
for the separation distance given in Theorem 4.2. The following is our ‘rule of thumb.’

Theorem 4.5 For a deck of n cards as above, suppose Di ≥ d ≥ 3 for all 1 ≤ i ≤ m. Then we have

SEP(a) = 1− (1 + η)
am−1

(n+ 1) · · · (n+m− 1)

m−1∑
j=0

(−1)j
(
m− 1
j

)(
1− j

a

)n+m−1

,

where η is a real number satisfying

|η| ≤
(
1 +

n2

3(d− 2)(a−m+ 1)2

)m−1

− 1.

Proof: To evaluate the expression in Theorem 4.2, we require an understanding of∑
a1+...+am=a

aj≥1

aDm
m

m−1∏
j=1

(aDj

j − (aj−1)Dj ) =
∫ 1

0

· · ·
∫ 1

0

∑
a1+...+am=a

aj≥1

aDm
m

m−1∏
j=1

(
Dj(aj−1+ ξj)Dj−1dξj

)
.
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We now invoke Proposition 4.4. Thus the above equals for some |θ| ≤ 1

m∏
j=1

Dj !
∫ 1

0

· · ·
∫ 1

0

( (a− (m− 1) + ξ1 + . . .+ ξm−1)n

n!
+

+θ
m−1∑
j=1

(
m−1
j

)( 1
3(d−2)

)j (a−(m−1)+ξ1+. . .+ξm−1)n−2j

(n− 2j)!

)
dξ1· · ·dξm−1.

We may simplify the above as(
1+θ

{(
1+

n2

3(d−2)(a−m+1)2

)m−1

−1
})D1! · · ·Dm!

n!

∫ 1

0

. . .

∫ 1

0

(a−m+1+ξ1+· · ·+ξm−1)ndξ1 · · · dξm−1,

and evaluating the integrals above this is(
1 + θ

{(
1 +

n2

3(d− 2)(a−m+ 1)2

)m−1

− 1
}) D1! · · ·Dm!

n!

m−1∑
j=0

(−1)j
(
m− 1
j

)
(a− j)n−m+1.

The Theorem follows. 2

For simplicity we have restricted ourselves to the case when each pile has at least three cards. With
more effort we could extend the analysis to include doubleton piles. The case of some singleton piles
needs some modifications to our formula, but this variant can also be worked out. Below we use our rule
of thumb to calculate separation for the same decks as in Table 2.

Tab. 3: Rule of Thumb for the separation distance for k shuffles of 52 cards.
k 1 2 3 4 5 6 7 8 9 10 11 12

BD-92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .995 .928 .729 .478 .278

blackjack 1.00 1.00 1.00 1.00 .999 .970 .834 .596 .366 .204 .108 .056

♣♦♥♠ 1.00 1.00 .997 .976 .884 .683 .447 .260 .140 .073 .037 .019

redblack .962 .925 .849 .708 .508 .317 .179 .095 .049 .025 .013 .006

1.00 1.00 .993 .943 .778 .536 .321 .177 .093 .048 .024 .012

Remarks on Table 3. The first row gives exact results from the Bayer-Diaconis formula for the full per-
mutation group. The other numbers are from the rule of thumb. Roughly, the single card or red-black
numbers suggest that half the usual number of shuffles suffice. The Black-Jack (equivalently Baccarat)
numbers suggest a savings of two or three shuffles, and the suit numbers lie in between. The final row is
the rule of thumb for the Zener deck with 25 cards, 5 cards for each of 5 suits.

While asymptotic, Theorem 4.5 is astonishingly accurate for decks of practical interest. For instance,
comparing exact calculations in Table 2 with approximations using this rule of thumb in Table 3 shows
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that after only 3 shuffles, the numbers agree to the given precision. Moreover, the simplicity of the formula
in Theorem 4.5 allows much further computations than are possible using the formula in Theorem 4.2.

We now give a heuristic for why our rule of thumb is numerically so accurate. For k ≥ 0, define

fk(z) =
∞∑
r=0

rkzr =
Ak(z)

(1− z)k+1
,

where Ak(z) denotes the k-th Eulerian polynomial. The sum over a1, . . ., am appearing in our proof of
Theorem 4.5 is simply the coefficient of za in the generating function (1−z)m−1fD1(z) · · · fDm

(z). Our
rule of thumb may be interpreted as saying that

(1− z)m−1fD1(z) · · · fDm
(z) ≈ D1! · · ·Dm!

(n+m− 1)!
(1− z)m−1fn+m−1(z). (9)

To explain the sense in which (9) holds, note that fk(z) extends meromorphically to the complex plane,
and it has a pole of order k + 1 at z = 1. Moreover it is easy to see that fk(z) − k!/(1 − z)k+1 has a
pole of order at most k at z = 1. Therefore, the LHS and RHS of (9) have poles of order n+ 1 at z = 1,
and their leading order contributions match. Therefore the difference between the RHS and LHS of (9)
has a pole of order at most n at z = 1. But in fact, this difference can have a pole of order at most n− d
at z = 1, and thus the approximation in (9) is tighter than what may be expected a priori. To obtain our
result on the order of the pole, we record that one can show

fk(z) =
k!

(1− z)k+1

( (z − 1)
log z

)k+1

+ ζ(−k) +O(1− z).

5 Gilbreath principle at work
Conger and Viswanath note that the initial configuration can affect the speed of convergence to stationary.
Perhaps this is most striking in the case of Section 3 where a single card is tracked. Recall Table 1, giving
calculations for the distinguished card beginning at the bottom of a deck of 52 cards. In contrast, Table 4
gives calculations for the distinguished card starting in the middle, at position 26. For the latter, both total
variation and separation are indistinguishable from zero after only four shuffles.

Tab. 4: Distance to uniformity for a single card starting at the middle of a 52 card deck.
1 2 3 4

TV .494 .152 .001 .000

SEP 1.00 .487 .003 .000

Consider next a deck with n red and n black cards. First take the starting condition of all reds atop all
blacks. If the initial cut is at n (the most likely value) then the red-black pattern is perfectly mixed after a
single shuffle. More generally, the chance of the deck w resulting from a single 2-shuffle of a deck with n
red cards atop n black cards is given by

Q2(w) =
1

22n

(
2h(w) + 2t(w) − 1

)
,
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where h(w) is the number of red cards before the first black card and t(w) is the number of black cards
after the final red card; see [?]. In particular, the total variation after a single 2-shuffle is

‖Q2 − U‖TV =
1
2

(2n+1−1
22n

− 1(
2n
n

))+
n−1∑
i=0

n−1∑
j=0

∣∣∣∣∣2i+2j−1
22n

− 1(
2n
n

) ∣∣∣∣∣
(

2n− (i+j+2)
n− (i+1)

) (10)

Evaluating this formula for 2n = 52 give a total variation of 0.579.
Now take the starting condition to alternate red black red black, etc. As motivation, we recall a popular

card trick: Begin with a deck of 2n cards arranged alternately red, black, red, black, etc. The deck may be
cut any number of times. Have the deck turned face up and cut (with cuts completed) until one of the cuts
results in the two piles having cards of opposite color uppermost. At this point, ask one of the participants
to riffle shuffle the two piles together. The resulting arrangement has the top two cards containing one
red and one black, the next two cards containing one red and one black, and so on throughout the deck.
This trick is called the Gilbreath Principle after its inventor, the mathematician Norman Gilbreath. It is
developed, with many variations, in Chapter 4 of [18]. From the trick we see that beginning with an
alternating deck severely limits the possibilities. Analyzing the trick reveals the following formula,

22n ·Q2(w) =


2n−1 + 2n if w is the initial alternating deck,

2n−1 if w can result from an odd cut,
2n if w can result from an even cut,
0 otherwise,

(11)

where an odd (resp. even) cut refers to the parity of cards in either pile. From this we compute

‖Q2 − U‖TV =
1
2

(
1− 2n + 2n−1 − 1(

2n
n

) )
, (12)

which goes to .5 exponentially fast as n goes to infinity, and indeed is already .500 for 2n = 52. In
contrast, starting with reds above blacks, asymptotic analysis of (10) shows that the total variation tends
to 1 after a single shuffle when n is large. Thus again an alternating start leads to faster mixing.
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In the early 1990s, Garsia and Haiman conjectured that the dimension of the Garsia-Haiman moduleRµ is n!, and
they showed that the resolution of this conjecture implies the Macdonald Positivity Conjecture. Haiman proved these
conjectures in 2001 using algebraic geometry, but the question remains to find an explicit basis forRµ which would
give a simple proof of the dimension. Using the theory of Orbit Harmonics developed by Garsia and Haiman, we
present a ”kicking basis” forRµ whenµ has two columns.

Keywords: Macdonald polynomials, Garsia-Haiman modules, combinatorial basis

1 Introduction
In 1988, Macdonald [14] found a remarkable new basis of symmetric functions in two parameters which
specializes to Schur functions, complete homogeneous, elementary and monomial symmetric functions
and Hall-Littlewood functions, among others. With an appropriate analog of the Hall inner product,
the transformed Macdonald polynomials̃Hµ(Z; q, t) are uniquely characterized by certain triangularity
and orthogonality conditions, from which their symmetry follows. TheKostka-Macdonaldpolynomials,
K̃λµ(q, t), are defined by

H̃µ(Z; q, t) =
∑

λ

K̃λµ(q, t)sλ(Z).

The Macdonald Positivity Conjecture states thatK̃λµ(q, t) ∈ N[q, t].
In 1993, Garsia and Haiman [6] conjectured that the transformed Macdonald polynomials could be

realized as the bigraded characters for a diagonal action ofSn on two sets of variables. Moreover, they
were able to show that knowing the dimension of this module isenough to determine its character. There-
fore then! Conjecture, which states that the dimension of the Garsia-Haiman module isn!, implies the
Macdonald Positivity Conjecture.

By analyzing the algebraic geometry of the Hilbert scheme ofn points in the plane, Haiman [13] was
able to prove then! Conjecture and consequently establish Macdonald Positivity. However, it remains
an important open problem in the theory of Macdonald polynomials to prove then! Theorem directly by
finding an explicit basis for the module. After reviewing Macdonald polynomials and the Garsia-Haiman

1365–8050c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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modules in Section 2, we give an explicit basis for the Garsia-Haiman modules indexed by a partition with
at most two columns in Section 3. A new basis for hooks is also given in Section 4.

2 Macdonald polynomials and graded Sn-modules
We assume the definitions and notations from [15] of partitions and the classical bases for symmetric
functions. So as to avoid confusions when defining various modules, we use the alphabetZ = z1, . . . , zn

for symmetric functions. For example, theSchur functionsshall be denotedsλ(Z).

2.1 Macdonald positivity
Departing slightly from Macdonald’s convention of definingPµ(Z; q, t) [14], we instead use the trans-
formed Macdonald polynomials̃Hµ(Z; q, t) as presented in [6].

Definition 2.1 The transformed Macdonald polynomials̃Hµ(Z; q, t) are the unique functions satisfying
the following triangularity and orthogonality conditions:

(i) H̃µ(Z; q, t) ∈ Q(q, t){sλ[Z/(1 − q)] : λ ≥ µ};

(ii) H̃µ(Z; q, t) ∈ Q(q, t){sλ[Z/(1 − t)] : λ ≥ µ′};

(iii) H̃µ[1; q, t] = 1.

The square brackets in Definition 2.1 stand forplethystic substitution. In short,sλ[A] meanssλ applied
as aΛ-ring operator to the expressionA, whereΛ is the ring of symmetric functions. For a thorough
account of plethysm, see [12].

The existence of such a family of functions is a theorem, following in large part from Macdonald’s
original proof of existence. Once established, the symmetry of H̃µ(Z; q, t) follows by definition. Of
particular importance are the change of basis coefficients from the transformed Macdonald polynomials
to the Schur functions, defined by

H̃µ(Z; q, t) =
∑

λ

K̃λ,µ(q, t)sλ(Z). (1)

A priori, theK̃λ,µ(q, t) are rational functions inq andt with rational coefficients.

Theorem 2.2 ([13]) We haveK̃λ,µ(q, t) ∈ N[q, t].

Macdonald originally conjectured Theorem 2.2 when he introduced the polynomials in 1988. The orig-
inal proof, due to Haiman in 2001, realizes̃Hµ(Z; q, t) as the bigraded character of certain modules for
the diagonal action ofSn onQ[X,Y ]; see sections 2.2 and 2.3. From this it follows that the character can
be written as a sum of irreducible representations ofSn with coefficients inN[q, t]. Under the Frobenius
image, these coefficients exactly givẽKλ,µ(q, t). The aim of this paper is to follow this method of proof
until it departs the realm of representation theory for algebraic geometry.

It is worth noting that there are now two additional proofs ofMacdonald positivity, both of which
utilize an expansion of Macdonald polynomials in terms of LLT polynomials conjectured by Haglund
[10] and proved along with Haiman and Loehr [11]. Grojnowskiand Haiman [9] have a proof using
Kazhdan-Lusztig theory and the first author [3] has a purely combinatorial proof.
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2.2 Garsia-Haiman modules

To define the modules mentioned in Section 2.1, we consider the diagonal action of the symmetric group
Sn on the polynomial ringQ[X,Y ] = Q[x1, . . . , xn; y1, . . . , yn] permuting thexi’s andyj ’s simultane-
ously and identically. Let the coordinates of the diagram ofa partitionµ of n be{(p1, q1), . . . , (pn, qn)},
wherep gives the row coordinate andq the column coordinate indexed from zero; see Figure 1.

(0,0) (0,1)

(1,0) (1,1)

(2,0)

(0,2)

Fig. 1: The coordinates for each cell ofµ = (3, 2, 1).

Define the polynomial∆µ ∈ Q[X,Y ] by

∆µ(X,Y ) = det




xp1

1 y
q1

1 xp1

2 y
q1

2 · · · xp1

n y
q1

n

xp2

1 y
q2

1 xp2

2 y
q2

2 · · · xp2

n y
q2

n

...
...

...
xpn

1 yqn

1 xpn

2 yqn

2 · · · xpn
n yqn

n



. (2)

Since the bi-exponents are all distinct,∆µ is a non-zero homogeneousSn-alternating polynomial with top
degreen(µ) =

∑
i(i − 1)µi in X andn(µ′) in Y . Takingµ = (1n) or µ = (n) gives the Vandermonde

determinant inX or Y , respectively.
Let Iµ ⊂ Q[X,Y ] be the ideal of polynomialsϕ such that

ϕ(∂/∂x1, . . . , ∂/∂xn; ∂/∂y1, . . . , ∂/∂yn)∆µ = 0.

Clearly this defines anSn invariant doubly homogeneous ideal. Define theGarsia-Haiman moduleHµ to
be the quotient ringQ[X,Y ]/Iµ with its natural structure of a doubly gradedSn-module.

Garsia and Haiman [7] proved that if this module has the correct dimension (then! Conjecture), then
the bi-graded character is given by the transformed Macdonald polynomial.

Theorem 2.3 ([7]) If Hµ affords the regular representation ofSn, then the bi-graded Frobenius character,
given by

FrobHµ
(Z; q, t) =

∑

i,j

tiqjψ ((Hµ)i,j) ,

whereψ is the usual Frobenius map sending the Specht moduleSλ to the Schur functionsλ, is equal to
the transformed Macdonald polynomials̃Hµ(Z; q, t). In particular,K̃λ,µ(q, t) ∈ N[q, t].

The following theorem is the famedn! Conjecture of Garsia and Haiman [6], proved by Haiman [13]
in 2001.

Theorem 2.4 ([13]) The dimension ofHµ is n!.
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By Theorem 2.3, Haiman’s proof of then! Conjecture provided the first proof of the Macdonald positiv-
ity conjecture. Haiman’s proof analyzes the isospectral Hilbert scheme ofn points in a plane, ultimately
showing that it is Cohen-Macaulay (and Gorenstein). As thisproof uses difficult machinery in algebraic
geometry, it remains an important open problem to prove Theorem 2.4 directly by finding an explicit basis
for the moduleHµ.

2.3 Orbit Harmonics

Let α1, . . . , αn andβ1, . . . , βn be sequences of distinct rational numbers. Let(p1, q1), . . . , (pn, qn) be
the coordinates of the cells ofµ taken in some order, recorded by the standard fillingS of µ given by
placing the entryi in the cell(pi, qi). To eachS, associate theorbit point ofS, denotedpS , defined by

pS = (αp1+1, . . . , αpn+1;βq1+1, . . . , βqn+1). (3)

Here the shift in indices is a notational convenience. For example,

p
5 3
6 1
2 4

= (α2, α1, α3, α1, α3, α2;β2, β1, β2, β2, β1, β1).

Let Sn act onQ2n by permuting the firstn and secondn coordinates simultaneously and identically.
Let [pS ] denote theregular orbit of pS under this action. RegardingQ[X,Y ] as the coordinate ring of
Q2n, defineJµ ⊂ Q[X,Y ] to be the ideal of polynomials vanishing on[pS ]. Define the moduleRµ to be
the coordinate ring of[pS ], i.e. Q[X,Y ]/Jµ, with its naturalSn action.

SinceRµ clearly affords the regular representation, the aim is to relate this module toHµ. To do
this, construct the associated graded modulegrRµ = Q[X,Y ]/grJµ. Garsia and Haiman showed that
if Hµ andgrRµ have the same Hilbert series, thenHµ = grRµ. While this would demonstrate then!
Conjecture, the obvious problem is that one needs first to know the Hilbert series ofHµ, in which case the
dimension can be directly calculated. The way around this problem lies in the theory of Orbit Harmonics
developed by Garsia and Haiman. The main result is the following.

Theorem 2.5 ([5]) LetΦµ be a basis forRµ. LetFµ(q, t) =
∑

ϕ∈Φµ
ϕ̂(t, . . . , t; q, . . . , q), whereϕ̂ is the

leading term ofϕ. If Fµ is symmetric in the following sense,

[
tiqj

]
Fµ(q, t) =

[
tn(µ)−iqn(µ′)−j

]
Fµ(q, t), (4)

thenΦ̂µ = {ϕ̂ | ϕ ∈ Φµ} is a basis forgrRµ. Moreover,grRµ
∼= Hµ as doubly-gradedSn modules. In

particular,dimHµ = n!.

Theorem 2.5 suggests the following strategy for constructing a basis for the Garsia-Haiman module
Hµ. To each fillingS of µ, define a polynomialϕS ∈ Q[X,Y ] so that the evaluation matrix(ϕS(pT )) of
polynomials on orbit points is nonsingular and the corresponding degree polynomialFµ(q, t) is symmetric
in the sense of equation (4). The remainder of this paper is devoted to carrying out this strategy in the
cases whenµ is a two column shape (Section 3).
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3 Two columns
Throughout this section, we restrict our attention to partitions with at most two columns. Following the
procedure laid out in Section 2.3, we will construct a basis for Rµ such that the degree polynomial is
symmetric. Following the idea of the kicking basis for the Garsia-Procesi modules described in [8], we
will construct the basis together with a linear order on fillings ofµ so that the evaluation matrix has nice
triangularity properties. While the Garsia-Procesi case results in an upper triangular matrix with nonzero
diagonal entries, our matrix will only be block triangular with respect to the largest entry.

3.1 The kicking tree

The kicking tree ofµ provides a nice visualization of the recursive construction of the proposed basis.
Though proving that the resulting collection is a basis withsymmetric Hilbert series is better done from
the recursive definition, the construction is better motivated from this viewpoint.

To construct the kicking tree, entries will be added to an empty shape one at a time in all possible ways
in some specified order, ultimately resulting in a total ordering for the fillings. We begin by recalling the
Garsia-Procesi ordering for row-increasing tableaux [8].

Let S be a partial filling ofµ with distinct entries. Define a total ordering on the rows ofS containing
at least one empty cell, called therow preference order, as follows: empty rows of length2 from top to
bottom followed by (empty) rows of length1 from top to bottom followed by rows of length2 with a
single occupant beginning with the largest occupant. Giventwo rowsi andj of a (partial) fillingS, say
that k prefers rowj over row i, denotedj ≻k i, if j occurs beforei in the row ordering on the filling
obtained by removing entries less thank+1 fromS. For example, Figure 2 shows the ranking of the rows
(on the left) for two partial fillings of(2, 2, 2, 1, 1).

3

4

5

1

2

8

7
6

2

4

1

3

Fig. 2: The row preference order for partial fillings.

The row preference order is enough to define a total order on fillings with unsorted rows. The basic
construction of the tree is to fill entries into unsorted rowsone at a time according to row preference,
where a row of length2 is sorted, increasing then decreasing, as soon as it is fullyoccupied. The real
power of the kicking tree lies in the weights assigned at eachstage which we now describe.

LetS be a partial, partially sorted filling ofµ with entriesn > n− 1 > · · · > k+1. That is, each entry
is assigned a row ofµ, and an entry is assigned a specific column if and only if the row is fully occupied.
BelowS with arrows going down, placek into a row, ordered from left to right by row preference with
respect tok. Label the arrow going down fromS to the filling withk by

∏

j≻krow(k)

(xk − αj) .
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If k completed a row of length2, say withm > k already in the row, then below this with arrows going
down make two partial fillings: the left one havingk beforem and the right havingm beforek. Label the
left branch put1, and label the right branch

(yk − β1) .

If ignoring entries larger thanm does not form a rectangle, then move the label from the arrow going
down fromS to the left-hand arrow just added, and add to the right-hand arrow

∏

row(k)≻ki

(xk − αi) .

The tree so constructed beginning with the empty shapeµ is called thekicking tree forµ. For example,
the kicking tree for(2, 1) is constructed in Figure 3. For this example, we omit vertical lines to indicate
an unsorted row.

3
3
1 2

2
1 3

1
2 3

3
1 2

3
2 1

2
1 3

2
3 1

1
2 3

1
3 2

1 x3−α1

1

x2−α2

1 y1−β1

1 y1−β1 1 y2−β1

Fig. 3: The kicking tree for (2,1). Here the circled termx2−α2 indicates that this term is pushed to the leftmost branch
below. From left to right, the corresponding polynomials are1 , y1−β1 , x2−α2 , y2−β1 , x3−α1, (x3−α1)(y1−β1).

From the construction of the kicking tree, the product of thebranch labels from a leafS back to the
empty shapeµ is clearly a polynomial. The collection of polynomials for each filling of µ forms the
proposed kicking basis forRµ.

3.2 A recursive construction

In order to give an alternative recursive description of thekicking basis, we first need a bit more terminol-
ogy.

For S a standard filling of sizen, defineS \ n to be the standard filling of sizen − 1 obtained by
removing the cell containingn andstraighteningthe shape as follows. Ifn lies in a row of length2, then
move the remaining cell in the same row asn above rows of length2 and below rows of length1 and
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5 3
6 1
2 4

S\6
−→ 1

5 3
2 4

S\5
−→ 1

3
2 4

S\4
−→ 1

3
2

S\3
−→ 1

2

S\2
−→ 1

Fig. 4: An illustration of straightening after removing the largest entry.

push it to the left if necessary. Otherwise slide the cells down, preserving their order, to close the gap; see
Figure 4. Notice that row dominance order commutes with straightening.

In Definition 3.1, when the largest entry of a tableau is removed and the remaining shape is straightened,
the orbit point of the resulting tableau is defined using the original labelling of the rows and columns. That
is, the orbit point ofS \n is the orbit point ofS with thenth and2nth coordinates removed. For example,
in Figure 4, the orbit point of the filling of shape(2, 1, 1) will be (α2, α1, α3, α1;β2, β1, β2, β2).

Definition 3.1 Defineϕ 1 = 1. For S a standard filling ofµ, |µ| > 1, defineϕS recursively by

ϕS = ϕS\n ·
∏

j≻nrow(n)

(xn − αj) ·





1 if n at the end of row(n)

(yk − β1) if µ = (2b) and col(n) = 1

(yk − β1)
∏

row(k)≻ki

(xk − αi)

∏

j≻krow(k)

(xk − αj)
otherwise

wherek is such that row(k)=row(n).

Using the example in Figure 4, we compute

ϕ
5 3
6 1
2 4

=

6
︷ ︸︸ ︷
(x6 − α3)(y1 − β1) ·

5
︷ ︸︸ ︷
(y3 − β1)

(
x3 − α1

x3 − α2

)
·

4
︷︸︸︷
1 ·

3
︷ ︸︸ ︷
(x3 − α2) ·

2
︷ ︸︸ ︷
(x2 − α2) ·1,

where each step in the recursion is indicated by the cell removed to obtain the given terms.
The above formula associates to each standard fillingS of µ the same polynomial as the kicking tree

from Section 3.1. Notice that the denominator in the last case is precisely the label which is ‘pushed
down’ when constructing the kicking tree. Analyzing this statement in terms of the recursive definition
yields the following result.

Proposition 3.2 For S a standard filling ofµ, ϕS is a polynomial.

Proof: The result forµ = (1) is clear, so we proceed by induction onn = |µ|. It suffices to assumek, n
reside in the same length2 row with n in column1. We must show that each term in the denominator
occurs in the numerator ofϕS\n. The only terms that ever appear in any denominator arexi − αj where
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i lies in the second column and the entry to its left is greater.In particular, ifxk − αj ever occurs in a
numerator in the construction ofϕ, it remains there throughϕS\n. Now notice that the product outside of
the brace (fork, notn) is precisely the denominator in question. 2

To show that these polynomials form a basis forRµ, we show that the evaluation matrix of polynomials
on orbit points is nonsingular. The argument uses a nested induction to show that the matrix is almost
block triangular.

Theorem 3.3 Then! × n! matrix (ϕS(pT )), whereS, T range over all fillings ofµ, is nonsingular. In
particular, the set{ϕS} of polynomials associated to fillings ofµ forms a basis forRµ.

Proof: We proceed by induction onn = |µ|, the casen = 1 being trivial. The row preference order with
respect ton makes(ϕS(pT )) block triangular with respect to the row ofn. Therefore we must show that
each block, corresponding ton in a particular row, is nonsingular. Ifn lies in a row of length1, this is
immediate by induction, so assumen lies in a row of length2.

Fork < n, letTk be a partial, partially sorted filling ofµwith entriesk+1, k+2, . . . , n (herenmust lie
in its designated row of length2). By partially sorted, we mean that the row of each entry is determined,
but the column is determined if and only if the row is fully occupied; see Figure 5 for an example. LetTk

be the set of standard fillings ofµ which restrict toTk on{k+ 1, . . . , n}, where here again the restriction
allows the column of an entry to be undetermined exactly whenthe other occupant of the same row is at
mostk; again, see Figure 5. We will show that the evaluation matrixfor Tk is nonsingular by induction
onk. As usual, the base case,k = 1, is trivial.

4

5 3
6

4
2
5 3
1 6

4
2
5 3
6 1

4
1
5 3
2 6

4
1
5 3
6 2︸ ︷︷ ︸

T2 T2

Fig. 5: An illustration ofTk andTk.

Restricting our attention to the set of polynomials and orbit points associated to standard fillingsS ∈ Tk,
we put the following block ordering based on the position ofk: k is the largest entry in a row of length2
from highest row to lowest row;k lies in a row of length1 from highest row to lowest;k lies to the left
of a larger entry from largest entry to smallest; andk lies to the right of a larger entry again from smallest
entry to largest. Note that the order for the first three blocks comes from the kicking tree, but the order
of the fourth block is the reverse of the kicking order. By thedefinition ofϕS , each of the four blocks is
triangular with respect to the row ofk, therefore by induction each block is nonsingular since each is a
fixed polynomial times the polynomials associated withTk−1 for a fixed partial fillingTk−1.

Also from the definition ofϕS , the first three blocks are triangular with respect to one another in the
given order, and the third and fourth blocks are triangular with respect to each other as well. Moreover, for
S in one of the first three cases, the monomial(ym − βi) does not divideϕS for i = 1, 2 and anym ≥ k
that appears by itself in a row of length two inTk. Therefore the block structure of the evaluation matrix
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<k
∗ ∗ ∗

0
k

∗ ∗

0 0
k<

∗

∗ ∗ 0
k>




Fig. 6: Block structure of the evaluation matrix ofTk.

is as depicted in Figure 6. Since the first two blocks are nonsingular, we may perform row reductions to
eliminate the nonzero elements in the bottom block-row of the matrix. These reductions will change the
bottom block-row0 into some matrix, sayM , and so by previous remarks the reductions will alter the
fourth block byM as well. Hence using the row reductions from the third block to restore the0 will also
restore the fourth block. Hence the matrix can be made block triangular. Since the determinant of the
matrix is the product of the determinants of the blocks, the full matrix is nonsingular. 2

3.3 Symmetry of the Hilbert series

Now that we have a basis forRµ, we must show that the associated degree polynomial, denotedFµ(q, t),
is symmetric. Recall thatFµ(q, t) is given by

Fµ(q, t) =
∑

S:µ
∼

−→[n]

ϕ̂S(t, . . . , t; q, . . . , q), (5)

whereϕ̂S is the highest degree term ofϕS . That is,Fµ(q, t) is the polynomial inq andt obtained by
adding leading terms of the kicking basis and recording the total x degree witht and the totaly degree
with q.

Our aim is to show thatFµ(q, t) is symmetric, i.e.

Fµ(q, t) = tn(µ) qn(µ′) Fµ(1/q, 1/t). (6)

For example, from Figure 3 we see thatF(2,1)(q, t) = 1+ 2q+ 2t+ qt, which indeed exhibits the desired
symmetry.

In order to establish symmetry, we will exploit a recurrencerelation that follows naturally from the
recursive definition ofϕS . To do this, we must first define a more general degree polynomial, denoted
Jm

a,b, by

Jm
a,b(q, t) =

1

qm

∑

S:µ
∼

−→[n]s.t.
for j=0,...,m−1
row(n−j)=b−j,

col(n−j)=1

ϕ̂S(t, . . . , t; q, . . . , q), (7)
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wherea ≥ b ≥ m ≥ 0. Note thatJm
a,b is a polynomial with maximumq andt exponents given byb−m

and
(
a−m

2

)
+

(
b
2

)
, respectively. Pictorially,Jm

a,b is the degree polynomial of fillings of(2b, 1a−b) with the
topm cells on the left-hand side of the rectangle(2b) deleted. In particular, we have

J0
a,b(q, t) = Fµ(q, t). (8)

Therefore it is enough to show thatJm
a,b is symmetric.

Proposition 3.4 The degree polynomialsJm
a,b satisfy the following recurrence relations

Jm
a,b = [m]tJ

m−1
a−1,b−1 + tb−m[a−b]tJ

m
a−1,b + tm[b−m]tJ

m
a,b−1 + q[b−m]tJ

m+1
a,b , (9)

Jm
a,b = tb−m[m]tJ

m−1
a−1,b−1 + [a−b]tJ

m
a−1,b + q[b−m]tJ

m
a,b−1 + ta−b[b−m]tJ

m+1
a,b , (10)

with initial conditions

Jb
a,b =

(
a

b

)
[b]t! [a− b]t! and Jm

b,b = J0
b,b−m,

whereJm
a,b = 0 unlessa ≥ b ≥ m ≥ 0.

The above recurrence relations follow from the recursive description in Definition 3.1. Expanding
Jm

a,b twice using both recurrence relations in Proposition 3.4 taken in one order followed by the other
establishes the desired symmetry.

Theorem 3.5 For a ≥ b ≥ m ≥ 0, we have

Jm
a,b(q, t) = t(

a−m
2 )+(b

2) qb−m Jm
a,b(1/q, 1/t).

In particular, by equation (8), Theorem 3.5 shows that the degree polynomial for the two column kicking
basis is indeed symmetric. Therefore by Theorem 2.5, we havethe following consequence.

Corollary 3.6 For µ a two column partition,{ϕ̂S | S : µ
∼
−→ [n]} is a basis forgrRµ and so too forHµ.

In particular,dim(Hµ) = n! andK̃λ,µ(q, t) ∈ N[q, t].

4 Hooks
We next treat the case of hooks, i.e. partitionsµ = (n−m, 1m). Though there exist several known bases
for Garsia-Haiman modules indexed by hooks, the first in [7] and several more in [16, 4, 2, 1]. we present
this new construction because it is compatible with our two column case, i.e. the definitions ofϕS will
agree on shapes of the form(2, 1n−2), and thus suggests how to extend this approach to arbitrary shapes.

As with the two column case, we will construct a basis forRµ such that the degree polynomial is
symmetric following the idea of the kicking basis for the Garsia-Procesi modules [8]. In this case, the
linear order on fillings ofµ will have the property that the evaluation matrix is upper triangular with
nonzero diagonal entries with respect to this basis. In the interest of brevity, we omit the direct description
of the kicking tree in favor of the recursive description.
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Definition 4.1 Defineϕ 1 = 1. For S a standard filling ofµ, |µ| = n, defineϕS by

ϕS = ϕS\n

∏

j≻nrow(n)

(xn − αj) ·





∏

col(n)<i≤µ1

(yn − βi) if µ is a single row;

∏

col(n)<col(k)

(yk − βlk)
if row(n) > 1
or col(n) > 1,

∏

col(n)<col(k)

(yk − βlk)

∏

j≻K1

(xK − αj)
∏

1≻jrow(j)
j>k ∀k∈row(n)\n

(xj − α1)
otherwise,

wherelk is the maximum column index of all entries in row1 larger than and to the left ofk, andK is the
entry in the second column of the bottom row.

For example, we compute

ϕ
1
4
5 3 6 2

=

6
︷ ︸︸ ︷
(y2 − β3) ·

5
︷ ︸︸ ︷
(y3 − β1)(y2 − β2)

(x4 − α1)
·

4
︷ ︸︸ ︷
(x4 − α1)(x4 − α3) ·

3
︷ ︸︸ ︷
(y2 − β1)

(x2 − α2)
·

2
︷ ︸︸ ︷
(x2 − α2) ·1,

where each step in the recursion is indicated by the cell removed to obtain the given terms.
Both Proposition 4.2 and Theorem 4.3 are evident from the kicking tree description and are straightfor-

ward from the recursive definition.

Proposition 4.2 For S a standard filling of a hookµ, ϕS is a polynomial.

Theorem 4.3 Then! × n! evaluation matrix(ϕS(pT )), whereS, T range over all fillings ofµ, is upper
triangular with nonzero diagonal entries. In particular, the set{ϕS} forms a basis forRµ.

As before, letΦµ denote the kicking basis and define

Fµ(q, t) =
∑

S:µ
∼

−→[n]

ϕ̂S(t, . . . , t; q, . . . , q),

whereϕ̂S is the leading term ofϕS . Note that for a hookµ = (n−m, 1m), the largest powers ofq andt
are(n−m)(n−m− 1)/2 andm(m+ 1)/2, which again agree withn(µ′) andn(µ), respectively.

Similar to the two column case, we can show the desired symmetry for Fµ(q, t) by defining a more
general functionJµ(q, t). By deriving suitable recurrence relations forF andJ in order to establish the
following theorem.

Theorem 4.4 For µ a hook partition, bothFµ(q, t) andJµ(q, t) exhibit the desired symmetry. In partic-
ular, we have a basis forHµ of sizen!, and soK̃λ,µ(q, t) ∈ N[q, t].
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Abstract. The aim of this work is to enumerate alternating sign matrices (ASM) that are quasi-invariant under a
quarter-turn. The enumeration formula (conjectured by Duchon) involves, as a product of three terms, the number of
unrestrited ASm’s and the number of half-turn symmetric ASM’s.

Résuḿe.L’objet de ce travail est d’énumérer les matrices à signes alternants (ASM) quasi-invariantes par rotation d’un
quart-de-tour. La formule d’énumération, conjecturéepar Duchon, fait apparaı̂tre trois facteurs, comprenant lenombre
d’ASM quelconques et le nombre d’ASM invariantes par demi-tour.

1 Introduction
An alternating sign matrix is a square matrix with entries in{−1, 0, 1} and such that in any row and
column: the non-zero entries alternate in sign, and their sum is equal to1. Their enumeration formula was
conjectured by Mills, Robbins and Rumsey (5), and proved by Zeilberger (9), and almost simultaneously
by Kuperberg (3). Kuperberg used a bijection between the ASM’s and the states of the statistical square-ice
model, for which he studied and computed the partition function. He also used this method in (4) to obtain
many enumeration or equinumeration results for various classes of symmetries of ASM’s, most of them
having been conjectured by Robbins (7). Among these resultscan be found the following remarkable one.

Theorem 1 (Kupeberg). The numberAQT(4N) of ASM’s of size4N invariant under a quarter-turn
(QTASM’s) is related to the numberA(N) of (unrestricted) ASM’s of sizeN and to the numberAHT(2N)
of ASM’s of size2N invariant under a half-turn by the formula:

AQT(4N) = AHT(2N)A(N)2. (1)

More recently, Razumov and Stroganov (6) applied Kuperberg’s strategy to settle the following result,
also conjectured by Robbins (7) and relative to QTASM’s of odd size.

Theorem 2 (Razumov, Stroganov).The numbers of QTASM’s of odd size are given by the following
formulas, whereAHT(2N + 1) is the number of HTASM’s of size2N + 1:

AQT(4N − 1) = AHT(2N − 1)A(N)2 (2)

AQT(4N + 1) = AHT(2N + 1)A(N)2. (3)

It is easy to observe (and will be proved in Section 2) that theset of QTASM’s of size4N + 2 is empty.
But, by slightly relaxing the symmetry condition at the center of the matrix, Duchon introduced in (2) the
notion of ASM’s quasi-invariant under a quarter turn (the definition will be given in Section 2) whose class
is non-empty in size4N + 2. Moreover, he conjectured for these qQTASM’s an enumeration formula that
perfectly completes the three previous enumeration results on QTASM. This is the aim of this paper to
establish this formula.

†This work has been supported by the ANR project MARS (BLAN06-2 0193)

1365–8050c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Theorem 3 The numberAQT(4N + 2) of qQTASM of size4N + 2 is given by:

AQT(4N + 2) = AHT(2N + 1)A(N)A(N + 1). (4)

This paper is organized as follows: in Section 2, we define qQTASM’s; in Section 3, we recall the
definitions of square ice models, precise the parameters andthe partition functions that we shall study, and
give the formula corresponding to equation (4) at the level of partition functions; the Section 4 is devoted
to the proofs.

2 ASM’s quasi-invariant under a quarter-turn
The class of ASM’s invariant under a rotation by a quarter-turn (QTASM) is non-empty in size4N − 1,
4N , and4N + 1. But this is not the case in size4N + 2.

Lemma 4 There is no QTASM of size4N + 2.

Proof: Let us suppose thatM is a QTASM of even size2L. Now we use the fact that the size of an ASM
is given by the sum of its entries, and the symmetry ofM to write:

2L =
∑

1≤i,j≤2L

Mi,j = 4 ×
∑

1≤i,j≤L

Mi,j (5)

which implies that the size ofM has to be a multiple of4. 2

Duchon introduced in (2) a notion of ASM’s quasi-invariant under a quarter-turn, by slightly relaxing
the symmetry condition at the center of the matrix. The definition is more simple when considering the
height matrix associated to the ASM, but can also been given directly.

Definition 5 An ASMM of size4N + 2 is said to bequasi-invariant under a quarter-turn(qQTASM) if its
entries satisfy the quarter-turn symmetry

M4N+2−j+1,4N+2−i+1 = Mi,j (6)

except for the four central entries(M2N,2N , M2N,2N+, M2N+1,2N , M2N+1,2N+1) that have to be either
(0,−1,−1, 0) or (1, 0, 0, 1).

We give below two examples of qQTASM’s of size6, with the two possible patterns at the center.
















0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 −1 1 0
0 1 −1 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0

































0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 −1 0 1 0 0
0 1 0 −1 1 0
0 0 0 1 0 0

















In the next section, we associate square ice models to ASM’s with various types of symmetry.

3 Square ice models and partition functions
3.1 Notations
Using Kuperberg’s method we introduce square ice models associated to ASM, HTASM and QTASM. We
recall here the main definitions and refer to (4) for details and many examples.

Let a ∈ C be a global parameter. Forx any complex number different from zero, we denotex = 1/x,
and we define:

σ(x) = x − x. (7)
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b

x
=

σ(a2) σ(a2) σ(ax) σ(ax) σ(ax) σ(ax)

Fig. 1: The 6 possible orientations and associated weights

If G is a tetravalent graph, anice stateof G (we will sometimes call them configurations) is an orientation
of the edges such that every tetravalent vertex has exactly two incoming and two outcoming edges.

A parameterx 6= 0 is assigned to any tetravalent vertex of the graphG. Then this vertex gets a weight,
which depends on its orientations, as shown on Figure 1.

It is sometimes easier to assign parameters, not to each vertex of the graph, but to the lines that compose
the graph. In this case, the weight of a vertex is defined as:

x

y

=

xy

When this convention is used, a parameter explicitly written at a vertex replaces the quotient of the
parameters of the lines.

We will put a dashed line to mean that the parameter of a line isdifferent on the sides of the dashed line.
We will also use divalent vertices, and in this case the two edges have to be both in, or both out, and the
corresponding weight is1:

b =

1 1

b b

The partition function of a given ice model is then defined as the sum over all its states of the product of
the weights of the vertices.

To simplify notations, we will denote byXN the vector of variables(x1, . . . , xN ). We use the notation
X\x to denote the vectorX without the variablex.

3.2 Partition functions for classes of ASM’s
We give in Figures 2, 3, and 4 the ice models corresponding to the classes of ASM’s that we shall study, and
their partition functions. The bijection between ASM’s andstates of the square ice model with “domain
wall boundary” is now well-known (cf. (4)), and the bijections for the other classes of symmetry may be
easily checked in the same way.

Z(N ; x1, . . . , xN , xN+1, . . . , x2N ) =

x1

x2

xN

xN+1 x2N

Fig. 2: Partition function for ASM’s of sizeN

With these notations, Theorem 3 will be a consequence of the following one which addresses the con-
cerned partition functions.
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ZHT(2N ; x1, . . . , xN−1, xN , . . . , x2N−1, x, y) =

x1

xN−1

y
x

xN x2N−1

x1

x2

xN

x

xN+1 x2Ny

= ZHT(2N + 1; x1, . . . , xN , xN+1, . . . , x2N , x, y)

Fig. 3: Partition functions for HTASM’s

ZQT(4N ; x1, . . . , x2N−1, x, y) =

b

b

b

b

b

b

x1

x2

x2N−1

x

y

b

b

b

b

b

b

x1

x2

x2N

x

y

= ZQT(4N + 2; x1, . . . , x2N , x, y)

Fig. 4: Partition functions for (q)QTASM of even size
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Theorem 6 Whena = ω6 = exp(iπ/3), one has forN ≥ 1:

ZQT(4N ; X2N−1, x, y) = σ(a)−1ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y) (8)

and

ZQT(4N + 2; X2N , x, y) = σ(a)−1ZHT(2N + 1; X2N , x, y)Z(N ; X2N)Z(N + 1; X2N , x, y). (9)

Equation (9) is new; equation (8) is due to Kuperberg (4) for the casex = y. To see that Theorem
6 implies Theorem 3, we just have to observe that whena = ω6 and all the variables equal to1, then
the weights at each vertex isσ(a) = σ(a2) thus the partition function reduces (up to multiplication by
σ(a)number of vertices) to the number of states.

4 Proofs
In this extended abstract, we shall only give the main ideas of the proofs. Most of them are greatly inspired
from (4). To prove Theorem 6, the method is to identify both sides of equations (8) and (9) as Laurent
polynomials, and to produce as many specializations of the variables that verify the equalities, as needed
to imply these equations in full generality.

4.1 Laurent polynomials
Since the weight of any vertex is a Laurent polynomial in the variablesxi, x andy, the partition functions
are Laurent polynomials in these variables. Moreover they are centered Laurent polynomials,i.e. their
lowest degree is the negative of their highest degree (called the half-width of the polynomial). In order
to divide by two the number of required specializations inx, we shall deal with Laurent polynomials of
given parity in this variable. To do so, we group together thestates with a given orientation (indicated as
subscripts in the following notations) at the edge where theparametersx andy meet.

So let us consider the partition functionsZQT(4N, X2N−1, x, y) andZQT(4N, X2N−1, x, y), respec-

tively odd and even parts ofZQT(4N ; X2N−1, x, y) in x; ZQT(4N + 2; X2N , x, y) andZQT(4N +

2; X2N , x, y), respectively odd and even parts ofZQT(4N + 2; X2N , x, y)in x; ZHT(2N ; X2N−1, x, y)

andZHT(4N ; X2N−1, x, y), respectively parts with the parity ofN and ofN−1 of ZHT(4N ; X2N−1, x, y)

in x; andZHT(2N + 1; X2N , x, y) andZHT(2N + 1; X2N , x, y), respectively parts with the parity of
N − 1 and ofN of ZHT(2N + 1; X2N , x, y) in x.

With these notations, the equations (8) et (9) are equivalent to the following:

σ(a)ZQT(4N ; X2N−1, x, y) = ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y) (10)

σ(a)ZQT(4N ; X2N−1, x, y) = ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y) (11)

σ(a)ZQT(4N + 2; X2N , x, y) = ZHT(2N + 1; X2N , x, y)Z(N + 1; X2N , x, y)Z(N ; X2N ) (12)

σ(a)ZQT(4N + 2; X2N , x, y) = ZHT(2N + 1; X2N , x, y)Z(N + 1; X2N , x, y)Z(N ; X2N ) (13)

Lemma 7 Both left-hand side and right-hand side of equations (10-13) are centered Laurent polynomials
in the variablex, odd or even, of respective half-widths2N − 1, 2N − 2, 2N , and2N − 1. Thus to prove
each of these identities we have to exhibit specializationsof x for which the equality is true, and in number
strictly exceeding the half-width.

Proof: To compute the half-width of these partition functions, just count the number of vertices in the ice
models, and take care that non-zero entries of the ASM (i.e. the first two orientations of Figure 1) give
constant weightσ(a2). 2
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4.2 Symmetries
To produce many specializations from one, we shall use symmetry properties of the partition functions.
The crucial tool to prove this is the Yang-Baxter equation that we recall below.

Lemma 8 [Yang-Baxter equation]If xyz = a, then

x

y

z

=

x

y

z

. (14)

The following lemma gives a (now classical) example of use ofthe Yang-Baxter equation.

Lemma 9

x

y
. . . =

y

x
. . . . (15)

Proof: We multiply the left-hand side byσ(az), with z = axy. We get

σ(az)
x

y
. . . =

y

x
z . . .

=
y

x
z . . .

=
y

x
. . . z

=
y

x
. . . z

=
y

x
. . . σ(az)

2

The same method, together with the easy transformation

z =
(

σ(az) + σ(a2)
)

(

+
)

(16)

gives the following lemma.

Lemma 10

x

y
. . . =

σ(a2) + σ(xy)

σ(a2yx) y

x
. . . (17)

x

y
. . . =

σ(xy)

σ(a2yx) y

x
. . . +

σ(a2)

σ(a2yx) y

x
. . . (18)

x

y
. . . =

σ(xy)

σ(a2yx) y

x
. . . +

σ(a2)

σ(a2yx) y

x
. . . (19)

We use Lemmas 9 and 10 to obtain symmetry properties of the partition functions, that we summarize
below, wherem denotes either2N or 2N + 1.
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Lemma 11 The functionsZ(N ; X2N) and ZHT(2N + 1; X2N , x, y) are symmetric separately in the
two sets of variables{xi, i ≤ N} and{xi, i ≥ N + 1}, the functionZHT(2N ; X2N−1, x, y) is sym-
metric separately in the two sets of variables{xi, i ≤ N − 1} and {xi, i ≥ N}, and the functions
ZQT(2m; XN−1, x, y) are symmetric in their variablesxi.

Moreover,ZQT(4N + 2; . . .) is symmetric in its variablesx andy, and we have a pseudo-symmetry for
ZQT(4N ; . . .) andZHT(2N ; . . .):

ZQT(4N ; X2N−1, x, y) =
σ(a2) + σ(xy)

σ(a2yx)
ZQT(4N ; X2N−1, y, x) (20)

ZHT(2N ; X2N−1, x, y) =
σ(a2) + σ(xy)

σ(a2yx)
ZHT(2N ; X2N−1, y, x). (21)

Proof: For Z(N ; . . .) andZHT(m; . . .), the symmetry in two “consecutive” variablesxi andxi+1 is a
direct consequence of Lemma 9. ForZQT(2m; . . .), we again apply Lemma 9 together with the easy
observations:

= b

b

b

b and = b b (22)

which allow us to bring the Yang-Baxter triangle through thedotted lines of Figure 4.
For the (pseudo-)symmetries in(x, y), let us deal withZQT(4N ; . . .), the other cases being similar or

simpler. We use equation (22) to put together the lines of parameterx andy:

ZQT(4N ; X2N−1, x, y) = b
b
b
b
b

bx

y

=

y x

b
b
b
b
b

and then apply Lemma 10. 2

It should be clear that we have analogous properties for the even and odd parts of the partition functions.
The next (and last) symmetry property was proved by Stroganov (8) (a recent and elementary proof may
be found in (1)). It appears when the parametera equals the special valueω6 = exp(iπ/3).

Lemma 12 Whena = ω6, the partition functionZ(N ; X2N) is symmetric inall its variables.

4.3 Specializations, recurrences
The aim of this section is to give the value of the partition functions in some specializations of the variable
x or y. The first result is due to Kuperberg, the other are very similar.
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Lemma 13 [specialization ofZ; Kuperberg]If we denote

A(xN+1, X2N\{x1, xN+1}) =
∏

2≤k≤N

σ(axkxN+1)
∏

N+1≤k≤2N

σ(a2xN+1xk),

A(xN+1, X2N\{x1, xN+1}) =
∏

2≤k≤N

σ(axN+1xk)
∏

N+1≤k≤2N

σ(a2xkxN+1),

then we have:

Z(N ; axN+1, X2N\x1) = A(xN+1, X2N\{x1, xN+1})Z(N − 1; X2N\{x1, xN+1}) (23)

Z(N ;axN+1, X2N\x1) = A(xN+1, X2N\{x1, xN+1})Z(N − 1; X2N\{x1, xN+1}). (24)

Proof: We recall the method to prove equation (23). We observe that whenx1 = āxN+1, the parameter
of the vertex at the crossing of the two lines of parameterx1 andxN+1 is ā. Thus the weight of this vertex
is σ(aā) = σ(1) = 0 unless the orientation of this vertex is the second on Figure1. But this orientation
implies the orientation of all vertices in the rowxN+1 and in the columnx1, as shown on Figure 5. The
fixed part gives the partition functionZ in sizeN − 1, without parametersx1 andxN+1, and the weights
of the fixed part gives the factorA(. . .).

x1 = axN+1

xN

x2

xN+1 x2N

x1 = ax1

xN

x2

xN+1 x2N

Fig. 5: Fixed edges for (23) on the left and (24) on the right

The case of (24) is similar, after using Lemma 11 to put the linexN+1 at the top of the grid.
2

We will need the following application of the Yang-Baxter equation, which allows, under certain condi-
tion, a line with a change of parameter to go through a grid.

Lemma 14
x

ax

=

x

ax

(25)

Proof: We iteratively apply Lemma 8 on the rows, and row by row:

x

ax

=
x

xax
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=
x

xax

=
x

xax

=
ax

x
.

2

Lemma 15 [specialization ofZHT] If we denote

A1
H(x1, X2N\x1) =

∏

1≤k≤N

σ(a2x1xk)
∏

N+1≤k≤2N

σ(axkx1)

A
1

H(x1, X2N\x1) =
∏

1≤k≤N

σ(a2xkx1)
∏

N+1≤k≤2N

σ(ax1xk)

A0
H(xN , X2N−1\xN) =

∏

1≤k≤N−1

σ(axkxN )
∏

N≤k≤2N−1

σ(a2xNxk)

A
0

H(xN , X2N−1\xN) =
∏

1≤k≤N−1

σ(axNxk)
∏

N≤k≤2N−1

σ(a2xkxN ),

then for⋆ = , , , and� = , , , respectively, we have

Z⋆

HT(2N + 1; X2N , x,ax1) = A1
H(x1, X2N\x1)Z

�

HT(2N ; X2N\x1, x1, x) (26)

Z�

HT(2N + 1; X2N , x,ax1) = A
1

H(x1, X2N\x1)Z
⋆

HT(2N ; X2N\x1, x, x1) (27)

Z⋆

HT(2N ; X2N−1, x,axN) = σ(axxN )A0
H(xN , X2N−1\xN )Z�

HT(2N − 1; X2N−1\xN , x, xN ) (28)

Z�

HT(2N ; X2N−1,axN, y) = σ(axNy)A
0

H(xN , X2N−1\xN )Z⋆

HT(2N − 1; X2N−1\xN , y, xN ) (29)

Proof:
The proof is similar to the previous one, with the differencethat before looking at fixed edges, we need to

multiply the partition function by a given factor; we interpret this operation by a modification of the graph
of the ice model and apply Lemma 14. It turns out that in each case, the additional factors are exactly
cancelled by the weights of fixed vertices.

To prove (26), we multiply the left-hand side by
∏

N+1≤k≤2N

σ(a2xky),

which is equivalent to adding to the line of parametery a new lineay just below the grid; the Lemma 14
transforms the graph of Figure 6(a) into the graph of Figure 6(b). When we puty = ax1,we get the
indicated fixed edges, which gives as partition function

∏

N+1≤k≤2N

σ2(axkx1)
∏

1≤k≤N

σ(a2x1xk)ZHT(2N ; X2N\x1, x1, x).

Sincea2xky = axkx1, the equation simplifies. Ton conclude, we observe that if westart with an edge
going out from the crossingx/x2N (functionZHT) we get at the end the same orientation (functionZHT).
2
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x1

xN

x

ay

xN+1 x2N

y

(a)

x1

xN

x

y xN+1 x2N

ay = x1

(b)
Fig. 6: Proof of (26)

Lemma 16 [specialization ofZQT] If we denote

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ(a2xkx1)σ(ax1xk),

AQ(x1; Xm−1\x1) =
∏

1≤k≤m−1

σ(a2x1xk)σ(axkx1),

then for⋆ = , , , and� = , , , respectively, we have:

Z⋆

QT(2m; Xm−1,ax1, y) = σ(ax1y)AQ(x1, Xm−1)Z
�

QT(2m − 2; Xm−1\x1, y, x1) (30)

Z�

QT(2m; Xm−1, x,ax1) = σ(axx1)AQ(x1; Xm−1\x1)Z
⋆

QT(2m − 2; Xm−1\x1, x1, x) (31)

Proof: Similar to the proof of Lemma 15. 2

Remark 17 By using the (pseudo-)symmetry in(x, y), we may transform any specialization of the variable
y into a specialization of the variablex. Moreover, by using Lemma 11 and (whena = ω6) Lemma 12, we
obtain forZ, ZHT andZQTZ 2N specializationse now have to compare them.

4.4 Special value of the parameter a; conclusion
Whena = ω6 = exp(iπ/3), two new ingredients may be used. The first one is Lemma 12, as mentionned
in Remark 17. The second one is that with this special value ofa:

σ(a) = σ(a2) σ(a2x) = −σ(āx) = σ(ax̄). (32)

which implies that the products appearing in Lemmas 13, 15 and 16 may be written in a more compact
way:

A(xN+1, X2N\{x1, xN+1}) = σ(a)
∏

k 6=1,N+1

σ(axkxN+1),

A(xN+1, X2N\{x1, xN+1}) = σ(a)
∏

k 6=1,N+1

σ(axN+1xk),

A1
H(x1, X2N\x1) =

∏

1≤k≤2N

σ(axkx1),
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A
1

H(x1, X2N\x1) =
∏

1≤k≤2N

σ(ax1xk),

A0
H(xN , X2N−1\xN ) =

∏

1≤k≤2N−1

σ(axkxN )

A
0

H(xN , X2N−1\xN ) =
∏

1≤k≤2N−1

σ(axNxk),

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ2(ax1xk),

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ2(axkx1).

Thus we get by comparing:

A(xi, X2N\xi, x)A1
H(xi, X2N\xi) = σ(axxi)AQ(xi, X2N\xi)

A(xi, X2N\xi, x)A
1

H(xi, X2N\xi) = σ(axix)AQ(xi, X2N\xi),

whence (10) and (11) imply that (12) and (13) are true (in size4N + 2) for the2N specializationsy =

a
(+,−)

1xi (1 ≤ i ≤ N ). It is enough to prove (13) (Laurent polynomials of half-width2N −1), but we still
need one specialization to get (12) (half-width2N ).

For (10) and (11), we observe the same kind of simplification

A(xi, X2N−1\xi)σ(axxi)A
0
H(xi, X2N−1\xi) = σ(axxi)AQ(xi, X2N−1\xi),

whence (13) and (12) for the size4N − 2 imply that (10) and (11) are true for theN specializations
x = axi, N ≤ i ≤ 2N − 1. We obtain in the same way the coincidence for theN specializationsx = axi,
N ≤ i ≤ 2N − 1. Thus we have2N specialiations ofx: it is enough both for (10) (half-width2N − 1),
and for (11) (half-width2N − 2).

At this point, we havealmostproved

((10) and (11), size4N ) =⇒ (((12) and (13), size4N + 2) =⇒ ((10) and (11), size4N + 4);

almost, because we still needonespecialization for (12).
We get this missing speciazation, not directly forZQT, ZQT, ZHT andZHT, but for the original

seriesZQT(4N + 2; X2N , x, y) andZHT(2N + 1; X2N , x, y): indeed if we setx = ay we may apply
Lemma 14.

b

b

b

b

x1

x2N

ay

y

=

b

b

b

b

y

x1

x2N

ay

ZQT(4N + 2; X2N ,ay, y) = σ(a)
∏

1≤k≤2N

σ(axky)σ(a2yxk)ZQT(4N ; X2N\x2N , x2N , x2N )
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x1

xN

ay

xN+1 x2N y

=

x1

xN

y

xN+1 x2N

ay

ZHT(2N + 1; X2N , ay, y) =





∏

1≤k≤N

σ(axky)
∏

N+1≤k≤2N

σ(a2yxk)



 ZHT(2N ; X2N\xN , xN , xN )

This way, we get another point where (9) is true, and thus, because we already have (13), by difference
we obtain that (12) holds fory = ax.

This completes the proof of Theorem 6.
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Abstract. Benkart, Sottile, and Stroomer have completely characterized by Knuth and dual Knuth equivalence a bi-
jective proof of the Littlewood–Richardson coefficient conjugation symmetry, i.e. cλµ,ν = cλ

t

µt,νt . Tableau–switching
provides an algorithm to produce such a bijective proof. Fulton has shown that the White and the Hanlon–Sundaram
maps are versions of that bijection. In this paper one exhibits explicitly the Yamanouchi word produced by that con-
jugation symmetry map which on its turn leads to a new and very natural version of the same map already considered
independently. A consequence of this latter construction is that using notions of Relative Computational Complexity
we are allowed to show that this conjugation symmetry map is linear time reducible to the Schützenberger involution
and reciprocally. Thus the Benkart–Sottile–Stroomer conjugation symmetry map with the two mentioned versions,
the three versions of the commutative symmetry map, and Schützenberger involution, are linear time reducible to
each other. This answers a question posed by Pak and Vallejo.

Résumé. Benkart, Sottile, et Stroomer ont complètement caractérisé par équivalence et équivalence duelle à Knuth
une preuve bijective de la symétrie de la conjugaison des coefficients de Littlewood–Richardson, i.e. cλµ,ν = cλ

t

µt,νt .
Le tableau-switching donne un algorithme par produire une telle preuve bijective. Fulton a montré que les bijections
de White et de Hanlon et Sundaram sont des versions de celle bijection. Dans ce papier on exhibe explicitement le
mot de Yamanouchi produit par cette bijection de conjugaison lequel à son tour conduit à une nouvelle version très
naturelle de la même bijection déjà considérée indépendantement. Une conséquence de cette dernière construction
c’est que en utilisant des notions de Complexité Computationnelle Relative nous pouvons montrer que cette bijection
de symétrie de la conjugaison est linéairement réductible à la involution de Schützenberger et réciproquement. À cette
cause la bijection de symétrie de la conjugaison de Benkart, Sottile et Stroomer avec les deux versions mentionnées,
aussi bien les trois versions de la bijection de la commutativité, et la involution de Schützenberger sont linéairement
réductibles à chacune de les autres. Ça répond à une question posée par Pak et Vallejo.
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1 Introduction
Given partitions µ and ν, the product sµsν of the corresponding Schur functions is a non-negative integral
linear combination of Schur functions

sµsν =
∑
λ

cλµ νsλ,

where cλµ ν is called the Littlewood-Richardson coefficient (LiRi; Mac; Sa; St). Let λt denote the conju-
gate or transpose of the partition λ. It is obvious from the commutativity of multiplication that cλµ ν = cλν µ,
called the commutativity symmetry, and it is less obvious the conjugation symmetry cλµ ν = cλ

t

µt νt . As
there are several Littlewood-Richardson rules to compute these numbers, the combinatorics of their sym-
metries is quite intriguing since in all of them the commutativity is hidden, and the conjugation is either
hidden or partially hidden (BZ; KT; PV1). This is in contrast with the fact that most of the symmetries
are explicitly exhibited by simple means (PV1). By ”hidden” or ”simple” we are referring to the com-
putational complexity of the operations needed to reveal such symmetries. Let LR(λ/µ, ν) be the set
of Littlewood-Richardson (LR for short) tableaux (LiRi) of shape λ/µ and content ν. Then cλµ ν counts
the number of elements of this set. If one writes cλµ ν =: cµ ν λ∨ , with λ∨ the complement partition of
λ regarding some rectangle containing λ, the Littlewood-Richardson coefficients are invariant under the
following action of Z2 × S3: the non–identity element of Z2 transposes simultaneously µ, ν and λ∨, and
S3 sorts µ, ν and λ∨ (BSS).

The Berenstein-Zelevinsky interpretation of the Littlewood-Richardson coefficients (BZ trian-
gles for short) (BZ) manifests all the S3-symmetries except the commutativity. Pak and Vallejo have
defined in (PV1) bijections, which are explicit linear maps, between LR tableaux, Knutson-Tao hives
(KT) and BZ triangles. These bijections combined with the symmetries of BZ triangles give all the S3-
symmetries except the commutativity. The conjugation symmetry is also hidden in BZ triangles. In (GP),
it is shown that it can be revealed from a bijection between web diagrams and BZ-triangles. On the other
hand, the Knutson-Tao-Woodward puzzles (KTW), the most symmetrical objects, manifest only partially
the conjugation symmetry through the puzzle duality, viz. cµ ν λ = cνt µt λt , since the commutativity
is hidden. Interestingly, as we shall see, a similar partial conjugation symmetry, cµ ν λ = cλt νt µt , is
obtained on LR tableaux through a simple bijection, denoted by �. In (KTW; K1; K2) bijections between
hives and puzzles can be found. Recently, Purbhoo (Pu) introduced a new tool called mosaics, a square-
triangle-rhombus tiling model with all the rhombi arranged in the shape of a Young diagram in the corners
of an hexagon. Mosaics are in bijection with puzzles and with LR tableaux, and the operation migration
on mosaics, which correspond to some sequence of jeu de taquin operations on LR tableaux, reveals the
hidden symmetries of puzzles. The carton rule (TY) is a recent S3-symmetric rule but the computational
complexity of the resulted visual symmetry does not seem to be improved as it is based on non trivial
properties of jeu de taquin.

In (PV2), a number of Young tableau commutative symmetry maps are considered and it is
shown that two of them are linear time reducible to each other and to the Schützenberger involution.
(Subsequently in (DK2) and in (A3) it has been shown that the two remaining ones are identical to the
others.) In this paper, we consider three Young tableau conjugation symmetry maps that appeared in
(W; HS; BSS; Z; A1; A2) and one shows that these three Young tableau conjugation symmetry maps
and the commutative symmetry maps, considered in (PV2), are linear time reducible to each other and
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to the Schützenberger involution. In addition, as in the commutative case, the Young tableau conjugation
symmetry maps coincide. This answers a question posed by Pak and Vallejo in (PV2).

1.1 Summary of the results
The conjugation symmetry map is a bijection (PV2)

% : LR(λ/µ, ν) −→ LR(λt/µt, νt).

Let T be a tableau and T̂ its standardization. The Benkart-Sottile-Stroomer conjugation symmetry map
(BSS), denoted by %BSS , is the bijection

%BSS : LR(λ/µ, ν) −→ LR(λt/µt, νt)
T 7→ %BSS(T ) = [Y (νt)]K ∩ [(T̂ )t]d

,

where [Y (νt)]K is the Knuth class of all tableaux with rectification the Yamanouchi tableau Y (νt) of
shape the conjugate of ν, and [T̂ t]d is the dual Knuth class of all tableaux of shape λt/µt with Q-symbol
the transpose of T̂ . The image of T by the BSS-bijection is the unique tableau of shape λt/µt in both
those two equivalence classes. Fulton showed in (F) that the White-Hanlon-Sundaram map %WHS (W;
HS) coincides with %BSS . Thus %BSS(T ) can be obtained either by tableau-switching or by the White-
Hanlon-Sundaram transformation %WHS .

Given a totally ordered finite alphabet, let σi denote the reflection crystal operator acting on a
subword over the alphabet {i, i + 1}, for all i (LS; Loth), and let σ0 = σi · · ·σj · · ·σk be such that
si · · · sj · · · sk, with sl the transposition (l, l + 1), is the longest permutation of Sνt

1
. The column reading

word of %BSS(T ) is the Yamanouchi word of weight νt whose Q-symbol is the one given by the column
reading word of T̂ t. The following transformation %3 (Z; A1; A2; ACM) makes clear the construction of
that word and affords a simple way to construct %BSS(T )

%3 : LR(λ/µ, ν) −→ LR(λt/µt, νt)
T with word w %3(T ) with column word

(σ0w)∗ �

T =
1 1 1 1

1 2 2
2 3 3

e→
reversal

Te =
1 1 3 3

2 2 2
3 3 3

transposition→
of λ/µ

3
2 3

1 2 3
1 2
3
3

→

1
1 2

1 2 3
2 3
4
5

= %3(T)

w = 1111221332 σ0→ σ0w = 3311222333 reverse→
the word

3332221133 → 1231231245

column word of

%3(T ) = %BSS(T ),

where ∗ denotes the dualization of a word; and � is the operator which transforms a Yamanouchi word
of weight ν, into a Yamanouchi word of weight νt, by replacing the subword iνi with 12 . . . νi, for all
i. The action of the operator � is extended to dual Yamanouchi words by putting (w∗) � := w� ∗. More
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precisely, the � operator is a bijection between the Knuth classes of the Yamanouchi tableaux Y (ν) and
Y (νt), and also between the corresponding dual Yamanouchi tableaux. The reversal e of a LR tableau
can be computed by the action of σ0 on its word. The image of a LR or dual LR tableau U under rotation
of the skew-diagram by 180 degrees, with the dualization ∗ of its word is denoted by U•; and the image
of U under the rotation and transposition of the skew-diagram, with the action of the operation � on its
word is denoted by U�. Again • and � are involution maps. Then

%3(T ) = T e •� = T�• e = T •� e and

(σ0w)∗ � = (σ0w)� ∗ = σ0(w� ∗) is the column word of T e•� = [Y (νt)]K ∩ [(T̂ )t]d.

In the two next sections we shall develop the necessary machinery to show the above identities. Bijection
�• appeared originally in (Z) with a different formulation. In (A1; A2) the bijection e, defined differently
and based on a modified insertion, is composed with the last one to give ρ3. Here we stress the composition
of e • with �.

Following the ideas introduced in (PV2), we address, in Section 4, the problem of studying the
computational cost of the conjugation symmetry map %BSS utilizing what is known as Relative Com-
plexity, an approach based on reduction of combinatorial problems. To this aim we use the version %3.
We consider only linear time reductions; since the bijections we consider require subquadratic time the
reductions have to preserve that. Let A and B be two possibly infinite sets of finite integer arrays, and let
δ : A −→ B be an explicit map between them. We say that δ has linear cost if δ computes δ (A) ∈ B
in linear time O (〈A〉) for all A ∈ A, where 〈A〉 is the bit–size of A. The transposition of the recording
matrix of a LR tableau is the recording matrix of a tableau of normal shape. We have then a linear map
τ which defines a bijection between tableaux of normal shape and LR tableaux (Lee1; Lee2; PV2; O).
As the rotation map • and τ are linear maps, so maps of linear cost, the reversal T e of a LR tableau T
can be linearly reduced to the evacuation E of the corresponding tableau τ(T ) = P of normal shape, i.e.
τ(PE) = T e •. Additionally, in Algorithm 4.1, it is proved that the bijection �, exhibiting the symme-
try cµ ν λ = cλt νt µt , is of linear cost. The following commutative scheme shows that the conjugation
symmetry map %3, and therefore %BSS and %WHS , is linear equivalent to the Schützenberger involution
or evacuation map on tableaux of normal shape,

Theorem 1.1 The following commutative scheme holds

T
e •←→ T e•

�←→ T e•�

τ l τ l
P

evacuation←→
E

PE .

Theorem 1.2 The conjugation symmetry maps %BSS , %WHS and %3 are identical, and linear time equiv-
alent with the Schützenberger involution E and with the reversal map e.

We may now extend the list of linear equivalent Young tableau maps established in (PV2), Sec-
tion 2, Theorem 1.

Theorem 1.3 (PV2) The following maps are linearly equivalent:
(1) RSK correspondence.
(2) Jeu de taquin map.
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(3) Littlewood–Robinson map.
(4) Tableau switching map s.
(5) Evacuation (Schützenberger involution) E for normal shapes.
(6) Reversal e.
(7) First fundamental symmetry map.
(8) Second fundamental symmetry map.

Corollary 1.1 The following maps are linearly equivalent:
(1) RSK correspondence.
(2) Jeu de taquin map.
(3) Littlewood–Robinson map.
(4) Tableau switching map s.
(5) Evacuation (Schützenberger involution) E for normal shapes.
(6) Reversal e.
(7) First fundamental symmetry map.
(8) Second fundamental symmetry map.
(9) Third fundamental symmetry map.
(10) %WHS conjugation symmetry map.
(11) %BSS conjugation symmetry map.
(12) %3 conjugation symmetry map.
In particular, first and second fundamental symmetry maps are identical (DK2); first and third

fundamental symmetry maps are identical (A3); %WHS and %BSS are identical conjugation symmetry
maps (F), and the same happens with %BSS and %3.

2 Preliminaries
2.1 Young diagrams and transformations
A partition (or normal shape) λ is a sequence of non–negative integers λ = (λ1, λ2, . . . , λ`), with λ1 ≥
λ2 ≥ · · · ≥ λ` ≥ 0. The number of parts is `(λ) = ` and the weight is |λ| = λ1 + λ2 + · · · + λ`. (For
convenience we allow zero parts.) The Young diagram of λ is the collection of boxes {(i, j) ∈ Z2| 1 ≤
i ≤ `, 1 ≤ j ≤ λi}. The English convention is adopted in drawing such a diagram. Throughout the paper
we do not make distinction between a partition λ and its Young diagram (P). Given partitions λ, µ, we say
that µ ⊆ λ if µi ≤ λi for all i > 0. If (r`) is a r×` rectangle containing λ, the complement of λ regarding
that rectangle is the partition λ∨ = (r − λ`, . . . , r − λ1). We define λt the conjugation or transposition
of λ as the image of λ under the transposition (i, j) → (j, i). For example, let r = 4 and ` = 3. The
Young diagram of λ = (3, 2, 2) and its transpose λt = (3, 3, 1) are depicted below; and λ∨ = (2, 2, 1),
(λt)∨ = (λ∨)t = (3, 2, 0) are depicted by dotted boxes

λ = ,
�

� �
� �

= λ∨ , λt = ,
� �

� � �

= (λ∨)t.

A skew-diagram (skew-shape) λ/µ is {(i, j) ∈ Z2| (i, j) ∈ λ, (i, j) /∈ µ} the collection of boxes in λ
which are not in µ. When µ is the null partition, the skew-diagram λ/µ equals the Young diagram λ. The
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number of boxes in λ/µ is |λ/µ| = |λ|−|µ|. The transpose (conjugate shape) (λ/µ)t is the skew-diagram
λt/µt obtained by transposing the skew-diagram λ/µ. Let r = λ1. The rotation (dual shape) (λ/µ)∗ is
the image of λ/µ by rotation of 180 degrees, or the image of λ/µ under (i, j) −→ (`− i+ 1, r− j + 1).
Equivalently (λ/µ)∗ = µ∨/λ∨. In particular, λ∗ is the skew-diagram r`/λ∨. The dual conjugate shape
(λ/µ)♦ is the image of λ/µ under (i, j) −→ (r − j + 1, ` − i + 1). The map ♦ is the composition of
the transposition with the rotation maps ♦ = ∗t = t∗. In particular, λ♦ = `r/(λ∨)t. For instance, if
µ = (2) ⊂ λ = (4, 3, 1), we have

λ/µ = (λ/µ)t = (λ/µ)∗ = (λ/µ)♦ = .

2.2 Tableaux and words
The Littlewood–Richardson (LR for short) numbering (reading) of the boxes of a skew-diagram λ/µ is
an assignment of the labels 1, 2, . . . which sorts the boxes of λ/µ in increasing order from right to left
along each row, starting in the top row and moving downwards; and the column LR numbering of the
boxes sorts in increasing order, from right to left along each column, starting in the rightmost column and
moving downwards. Analogously the reverse LR numbering and the column LR numbering of λ/µ are
defined.

Example 2.1 If λ/µ = , the LR-numbering, column LR-numbering and the corresponding re-

verse LR-numberings of λ/µ are, respectively, 2 1
6 5 4 3

3 1
6 5 4 2

5 6
1 2 3 4

4 6
1 2 3 5.

Clearly, the column LR-numbering of λ/µ is the LR-numbering of (λ/µ)♦, and the reverses of LR-
numbering and column LR-numbering of λ/µ are, respectively, the LR-numbering of (λ/µ)∗ and (λ/µ)t.

A Young tableau T of shape λ/µ is a filling of the boxes of the skew-diagram λ/µ with positive
integers in {1, . . . , t} which is increasing in columns from top to bottom and non-decreasing in rows from
left to right. When µ is the empty partition we say that T has normal shape λ. The word w(T ) of a
Young tableau T is the sequence obtained by reading the entries of T according to its LR numbering,
that is, reading right-to-left the rows of T , from top to bottom. The column word wcol(T ) is the word
obtained according the column LR numbering. The weight of T is the weight of of its word. Denote by
Y T (λ/µ,m) the set of Young tableaux of shape λ/µ and weight m = (m1, . . . ,mt).

Example 2.2 T =
1 1 1 1

1 2 2
2 3 3

, w(T ) = 1111221332 and wcol(T ) = 1112123132.

A Young tableau with s boxes is standard if it is filled with {1, . . . , s}without repetitions. Given a tableau
T of weight m, the standardization of T , denoted by T̂ , is obtained by replacing, west to east, the letters
1 in T with 1, 2, . . . ,m1; the letters 2 with m1 + 1, . . . ,m1 +m2; and so on. The standardization ŵ of a
word w is defined accordingly, from right to left. For instance, the standardization of the tableau T in the

previous example is T̂ =
2 3 4 5

1 7 8
6 9 10

, and ŵ(T ) := w(T̂ ) = 54328711096. If w = w1w2 . . . ws is

a word and α is a permutation in the symmetric group Ss, define αw = wα(1) . . . wα(s). In the case T is
standard we have wcol(T̂ ) = rev w(T̂ t), with rev the reverse permutation.



Linear time equivalence of Littlewood–Richardson coefficient symmetry maps 133

A Young tableau T is said a Littlewood–Richardson (LR for short) tableau if its word, when read
from the beginning to any letter, contains at least as many letters i as letters i + 1, for all i. More gener-
ally, a word such that every prefix satisfies this property is called a lattice permutation or a Yamanouchi
word. Notice that the column word of a LR–tableau is also a Yamanouchi word of the same weight.
Denote by LR(λ/µ, ν) the set of LR tableaux of shape λ/µ and weight ν. When µ = 0 we get the
Yamanouchi tableau Y (ν), the unique tableau of shape and weight ν. In Example 2.2, T is a LR tableau
with Yamanouchi word w(T ) = 1111221332 and column word wcol(T ) = 1112123132.

There is an one–to–one correspondence between Yamanouchi words of weight ν and standard
tableaux of shape ν. Let w = w1w2 · · ·ws be a Yamanouchi word and put the number k in the wkth
row of the diagram ν. The labels of the ith row are the k’s such that wk = i, thus the length is νi
and the shape is ν. We denote this standard tableau by U(w). In Example 2.2, w = 1111221332, and

U(w) =
1 2 3 4 7
5 6 10
8 9

where the entries of the ith row are the positions of the i’s in the LR reading of T .

2.3 Matrices and tableaux
Given T ∈ Y (λ/µ,m), let M = (Mij)1≤i≤`(λ),1≤j≤t be a matrix with non–negative entries such that
Mij is the number of j′s in the ith row of T , called the recording matrix of T (Lee1; Lee2; PV2). The
recording matrix of a tableau of normal shape is an upper triangular matrix, and the recording matrix of
an LR tableau is a lower triangular matrix. Thus we have an one–to–one correspondence between LR
tableaux and tableaux of normal shape as follows. Considering T in Example 2.2, the recording matrix

of T is M =

 4 0 0
1 2 0
0 1 2

. On the other hand, the transposition M t =

 4 1 0
0 2 1
0 0 2

 encodes

the tableau B =
1 1 1 1 2
2 2 3
3 3

of normal shape ν and weight λ − µ. For two Young diagrams µ and

ν, define ν ◦ µ = (ν1 + µ1, . . . , ν1 + µ`, ν1, . . . , νr)/(µ1 + ν1, . . . , µ` + ν1), ` = `(µ), r = `(ν).

Then with µ = (1), B ◦ Y (µ) =

1
1 1 1 1 2
2 2 3
3 3

∈ LR(ν ◦ µ, λ). Given partitions λ, µ, ν such that

|λ| = |µ|+ |ν|, define CF (ν, µ, λ) = {B ∈ Y T (ν, λ− µ) : B ◦ Y (µ) ∈ LR(ν ◦ µ, λ)} (PV2). The map
τ : LR(λ/µ, ν)→ CF (ν, µ, λ) such that τ(M) is the tableau of normal shape with recording matrixM t,
where M is the recording matrix of T , is a bijection. Taking again Example 2.2, we have τ(T ) = B.

2.4 Rotation and transposition of LR tableaux
Given an integer i in {1, . . . , t}, let i∗ := t − i + 1. Given a word w = w1w2 · · ·ws, over the
alphabet {1, . . . , t}, of weight m = (m1, . . . ,mt), w∗ := w∗s · · ·w∗2w∗1 is the dual word of w and
m∗ = (mt, . . . ,m1) its weight. Indeed w∗∗ = w. A dual Yamanouchi word is a word whose dual
word is Yamanouchi. Given a Young tableau T of shape λ/µ and weight (m1, . . . ,mt), T• denotes the
Young tableau of shape (λ/µ)∗ and weight m∗, obtained from T by replacing each entry i with i∗, and
then rotating the result by 180 degrees. The word of T• is w(T)∗, and T•• = T. A dual LR tableau is
a tableau whose word is a dual Yamanouchi word. LR(λ/µ, ν∗) denotes the set of dual LR tableaux of
shape λ/µ and weight ν∗, and is the image of LR((λ/µ)∗, ν) under the rotation map •. Thus the rotation
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map • defines a bijection between LR((λ/µ)∗, ν∗) and LR(λ/µ, ν). Given a Yamanouchi word w of
weight ν, define the standard tableau U(w∗) of shape ν∗ such that the label k is in row i if and only if
ws−i+1 = k∗. Thus U(w∗) = U(w)• and this affords a bijection between dual Yamanouchi words of
weight ν∗ and standard tableaux of shape ν∗. The rotation map • is a linear map: M = (Mij) is the
recording matrix of T if and only if the recording matrix of T • is (Ms+1−i,t−j+1).

There is another natural bijection, denoted by �, between LR tableaux of conjugate weight and
dual conjugate shape, see (Z; A1; A2). Given a Yamanouchi word w of weight ν = (ν1, . . . , νt), write
νt = (νt1, . . . , ν

t
k) and observe that w is a shuffle of the words 12 . . . νti for all i, and its dual word is

a shuffle of the words t t − 1 · · · t − νti + 1, for all i. Thus, we define w� as the Yamanouchi word of
weight νt obtained by replacing the subword consisting only on the letters i with the subword 12 · · · νi,
for each i. The operation � is defined on dual Yamanouchi words by w∗� := w�∗ =, giving rise to
a dual Yamanouchi word of weight ν∗t. The word w�∗ can be obtained in just only one step: replace
the subword of w consisting only on the letters i with the subword ν1 ν1 − 1 · · · ν1 − νi + 1, for all i.
Clearly, U(w�) = U(w)t is of shape νt, and U(w∗�) = U(w)•t is of shape ν∗. Given T ∈ LR(λ/µ, ν)
(LR(λ/µ, ν∗)) with word w, define T� as the LR tableau of shape (λ/µ)♦ and weight νt obtained from
T by replacing the word w with w�, and then rotating the result by 180 degrees and transposing. Then
� : LR(λ/µ, ν)(LR(λ/µ, ν∗)) −→ LR((λ/µ)♦, νt)LR((λ/µ)♦, ν∗t) is a bijection such that T� has
column word w� and T�� = T. Since �• = •�, T�• = T •� ∈ LR((λ/µ)t, νt∗) (LR((λ/µ)t, νt)) has
column word w∗�.

Example 2.3 T =
1 1

1 2 2
1 3

is a LR tableau with word w = 1122131 of weight ν = (4, 2, 1). Then

T =
1 1

1 2 2
1 3

replace w(T)←→
by w(T)�

2 1
3 2 1

4 1

rotate←→
transpose

1 1
2 2

1 3
4

= T�←→
•

1
2 4

3 3
4 4

= T�• . T� is

a LR tableau with shape (λ/µ)♦ and column word w� = 1212314 of weight νt. T�• is a dual LR

tableau with shape (λ/µ)t and column word w�∗ = 1423434 of weight νt∗, where U(w) =
1 2 5 7
3 4
6

,

U(w�) =

1 3 6
2 4
5
7

= U(w)t, and U(w�∗) =

1
3

4 6
2 5 7

= U(w)•t.

3 Conjugation symmetry maps
3.1 Knuth equivalence and dual Knuth equivalence
Whenever partitions ν ⊂ µ ⊂ λ, we say that λ/µ extends µ/ν. An inside corner of λ/µ is a box in the
diagram µ such that the boxes below and to the right are not in µ. When a box extends λ/µ, this box is
called an outside corner. Let T be a Young tableau and let b be an inside corner for T . A contracting
slide (Sch; BSS) of T into the box b is performed by moving the empty box at b through T, successively
interchanging it with the neighboring integers to the south and east according to the following rules: (i) if
the empty box has only one neighbor, interchange with that neighbor; (ii) if it has two unequal neighbors,
interchange with the smaller one; and (iii) if it has two equal neighbors, interchange with that one to the



Linear time equivalence of Littlewood–Richardson coefficient symmetry maps 135

south. The empty box moves in this fashion until it has become an outside corner. This contracting slide
can be reversed by performing an analogous procedure over the outside corner, called an expanding slide.
Performing a contracting slide over each inside corner of T reduces T to a tableau T n of normal shape.
This procedure is known as jeu de taquin. T n is independent of the particular sequence of inside corners
used (Th), and so Tn is called the rectification of T. A word w corresponds by RSK–correspondence to a
pair (P (w), Q(w)) of tableaux of the same shape, with Q(w) standard, called the Q–symbol or recording
tableau of w. Here we consider a variation of RSK-correspondence known as the Burge correspondence
(B; F). Given w = w1w2 · · ·ws, P (w) is the insertion tableau obtained by column insertion of the
letters of w from left to right (F). The corresponding recording tableau Q(w) is obtained by placing in
1, 2, . . . , s. If w is the word of T then P (w) = T n. Insertion can be translated into the language of
Knuth elementary transformations. Two words w and v are said Knuth equivalent if they have the same
insertion tableau. Each Knuth class is in bijection with the set of standard tableaux with shape equal to the
unique tableau in that class. Two tableaux T and R are Knuth equivalent, written T ≡ R, if and only if
P (w(T )) = P (w(R)). Equivalently, T n = Rn, i.e. one of them can be transformed into the other one by
a sequence of jeu de taquin slides. The insertion tableau of a Yamanouchi word w with partition weight
ν, is the Yamanouchi tableau Y (ν). The recording tableau of a Yamanouchi word w is U(w).

Two tableaux T and R of the same shape are dual equivalent, written T
d≡ R, if any sequence

of contracting slides and expanding slides that can be applied to one of them, can also be applied to the
other, and the sequence of shape changes is the same for both (H; F). Dual equivalence may also be

characterized by recording tableaux: T
d≡ R if and only if Q(w(T )) = Q(w(R)). Thus two tableaux of

the same normal shape are dual equivalent. Let S and T be tableaux such that T extends S, and consider
the set union S∪T. The tableau switching (BSS) is a procedure based on jeu de taquin elementary moves
on two alphabets that transforms S ∪ T into A ∪ B, where B is a tableau Knuth equivalent to T which
extends A, and A is a tableau Knuth equivalent to S. We write S ∪ T s−→ A ∪ B. In particular, if S is of
normal shape, A = Tn, and S = Bn. Switching of S with T may be described as follows: T̂ is a set of
instructions telling where expanding slides can be applied to S. Thus switching and dual equivalence are
related as below and tableaux are completely characterized by dual and Knuth equivalence.

Theorem 3.1 (H) Let T and U be tableaux with the same normal shape and let W be a tableau which

extends T . (1) If T ∪W s−→ Z ∪X and U ∪W s−→ Z ∪ Y , then X
d≡ Y .

(2) Let D be a dual equivalence class and K be a Knuth equivalence class, both corresponding
to the same normal shape. Then, there is a unique tableau in D ∩K.

Algorithm to construct D ∩K: Let U ∈ D and let V ∈ K be the only tableau with normal shape

in this class, and W any tableau that U extends:
W ∪ U W ∪X
s↓ ↑s

Un ∪ Z → V ∪ Z.
Thus X

d≡ U , X ≡ V , and

D ∩K = {X}. since two words in the same Knuth class can not have the same Q–symbol.

3.2 The transposition of the rotated reversal LR tableau
Given a tableau T of normal shape, the evacuation TE is the rectification of T•, that is, TE = T•n.
TE is also obtained either as the insertion tableau of the word w(T)∗; or according to the Schützenberger
evacuation algorithm; or applying the reverse jeu de taquin slides to T , in the smallest rectangle containing
T , to obtain T a the anti-normal form T . Thus T a• = TE = T •n. If w is a Yamanouchi word, by duality
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of Burge correspondence,Q(w∗) = U(w)E = U(w)•n = U(w)a•. Givenw ≡ Y(ν), we may now define
the wordw� as being the unique word satisfyingw� ≡ Y(νt) such thatQ(w�) = Q(w)T = U(w)t. Since
(w�)� = w, the map w 7→ w� establishes a bijection between the Knuth classes of Y (ν) and Y (νt). The
word w∗ is the unique word satisfying w ≡ Y(ν∗) such that Q(w∗) = U(w)•n, and w�∗ is the unique
word satisfying w�∗ ≡ Y(νt ∗) such that Q(w�∗) = U(w)E t.

Given a tableau T of any shape, the reversal T e is the unique tableau Knuth equivalent to T•, and
dual equivalent to T (BSS). By Theorem 3.1, T e = [T n E]K ∩ [T ]d, where [ ]K denotes Knuth class and
[ ]d dual Knuth class. If T has normal shape, TE = T e. If T ∈ LR(λ/µ, ν), then T e is the only tableau
Knuth equivalent to Y (ν∗) and dual equivalent to T . Since crystal reflection operators, for the definition
see (LS; Loth), preserve the Q–symbol, we may in the case of LR tableaux characterize explicitly the
word of T e as follows. Let w be a Yamanouchi word of weight ν = (ν1, . . . , νt), and let σi denote the
reflection crystal operator acting on the subword over the alphabet {i, i + 1}, for all i. If sir · · · si1 is
the longest permutation in St, put σ0 := σir · · ·σi1 . Then σ0w is a dual Yamanouchi word of weight ν∗.
Moreover, w ≡ w′ if and only if σi(w) ≡ σi(w′), and Q(w) = Q(σi(w)). Thus, we have proven the
following

Theorem 3.2 Let T be a LR tableau with shape λ/µ and word w. Then Te is the dual LR tableau of
shape λ/µ and word σ0w, and T e�• is the LR tableau of shape (λ/µ)t and column word (σ0w)� ∗.

Corollary 3.1 T e�• is the unique tableau Knuth equivalent to Y (νt) and dual equivalent to T̂ t.

Proof: It is enough to see that the column words of T e�• and T̂ t have the same Q–symbol. Let ŵ be the
word of T̂ . As rev ŵ, the reverse word of T̂ , is the column word of T̂ t, then Q(rev ŵ) = Q(ŵ)E t =
Q(w)E t = Q(w� ∗) = Q(σ0(w� ∗)) = Q((σ0w)� ∗). 2

We recall that the action of crystal reflection operators on words corresponds to jeu de taquin
slides on two-row tableaux. In particular, if w is a Yamanouchi word of weight ν and θi denotes the
jeu de taquin action on the consecutive rows i and i + 1 of U(w), then θiU(w) is a tableau of skew-
shape (i i + 1)ν such that any two consecutive rows define a two-row tableau of normal or anti-normal
shape. The labels of the j-th row of θiU(w) are precisely the k’s such that (σiw)k = j. Put θ0 :=
θir . . . θi1 with ir, . . . , i1 as in σ0. Thus θ0U(w) = U(w)a and Q(σ0w) = U(w)a n. This defines the

commutative scheme
w ←→ σi1w ←→ σi2σi1w ←→ · · · ←→ σ0w
l l l l

U(w) ←→ θi1U(w) ←→ θi2θi1U(w) ←→ · · · ←→ θ0U(w).
(This

was the procedure in (A1).) Similarly, if σiT denotes the tableau obtained by the action of σi on its word,

we get the commutative scheme
T ←→ σi1T ←→ σi2σi1T ←→ · · · ←→ σ0T
τ l τ l τ l τ l
P ←→ θi1P ←→ θi2θi1P ←→ · · · ←→ θ0P = P a.

Theorem 3.3 Let T be a LR tableau and τ(T ) = P . Then, the following commutative scheme holds

T
e←→ T e

•←→ T e•

τ l τ l τ l
P ←→

a
P a •←→ PE .
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3.3 Main bijections
As already mentioned bijections %WHS and %BSS are identical. Let

%BSS : LR(λ/µ, ν) → LR(λt/µt, νt)
T 7→ %BSS(T ) = [Y (νt)]K ∩ [T̂ t]d

(BSS).

The image of T by the BSS-bijection is the unique tableau of shape λt/µt whose rectification is Y (νt)
and the Q–symbol of the column reading word is Q(T )Et. The idea behind this bijection can be told as
follows: T̂ constitutes a set of instructions telling where expanding slides can be applied to Y (µ). Then
T̂ t is a set of instructions telling where expanding slides can be applied to Y (µ)t. Tableau–switching
provides an algorithm to give way to those instructions:

Y (µ) ∪ T standardization−→
of T

Y (µ) ∪ T̂ transposition−→
of bT Y (µt) ∪ T̂ t Y (µt) ∪ %BSS(T )

↓s ↑s
(T̂ t)n ∪ Z 7→ Y (νt) ∪ Z

.

Then %BSS(T ) ≡ Y (νt) and %BSS(T ) ≡d T̂ t.

Example 3.4 Let T in LR(λ/µ, ν) with µ = (2, 1), ν = (5, 3, 2) and λ = (6, 4, 3) :

T =
1 1 1 1

1 2 2
2 3 3

→ T̂ =
2 3 4 5

1 7 8
6 9 10

→ T̂ t =

6
1 9

2 7 10
3 8
4
5

→

→ Y (µt) ∪ T̂ t =

1 1 6
2 1 9
2 7 10
3 8
4
5

1 1 1
2 1 2
1 2 3
2 3
4
5

= Y (νt) ∪ %BSS(T )

s↓ ↑s

(T̂ t)n ∪ Z =

1 6 9
2 7 10
3 8 1
4 2
5
1

−→

1 1 1
2 2 2
3 3 1
4 2
5
1

= Y (νt) ∪ Z

.

Let
%3 : LR(λ/µ, ν) → LR(λt/µt, νt)

T 7→ %3(T ) = T e •�

w 7→ σ0w
∗�

(Z; A1; A2).

As T e•� is the unique tableau Knuth equivalent to Y (νt) and dual equivalent to (T̂ )t, we have

Corollary 3.2 %BSS and %3 are identical bijections.
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Example 3.5 Let T in LR(λ/µ, ν) as before:

T =
1 1 1 1

1 2 2
2 3 3

e→
reversal

Te =
1 1 3 3

2 2 2
3 3 3

transpose→
of λ/µ

3
2 3

1 2 3
1 2
3
3

→

1
1 2

1 2 3
2 3
4
5

= %BSS(T)

w = 1111221332 → σ0w = 3311222333 reverse→ 3332221133 → 1231231245
column word of

%3(T ) = %BSS(T )

or

T =
1 1 1 1

1 2 2
2 3 3

e→ Te =
1 1 3 3

2 2 2
3 3 3

•→ Te• =
1 1 1

2 2 2
1 1 3 3

�→ Te•� =

1
1 2

1 2 3
2 3
4
5

.

4 Computational complexity of bijection � and reduction of con-
jugation symmetry map

We show that the computational complexity of bijection � is linear on the input. We follow closely (PV2)
for this section. Using ideas and techniques of Theoretical Computer Science, see (AHU; CLRS), each
bijection can be seen as an algorithm having one type of combinatorial objects as input, and another as
output. We define a correspondence as an one–to–one map established by a bijection; therefore, obviously
several different defined bijections can produce the same correspondence. In this way one can think of a
correspondence as a function which is computed by the algorithm, viz. the bijection. The computational
complexity is, roughly, the number of steps in the bijection. Two bijections are identical if and only if they
define the same correspondence. Obviously one task can be performed by several different algorithms,
each one having its own computational complexity, see (AHU; CLRS). For example we recall that there
are several ways to multiply large integers, from naive algorithms, e.g. the Russian peasant algorithm,
to that ones using FFT (Fast Fourier Transform), e.g. Schönhage–Strassen algorithm; see e.g. (GG) for
a comprehensive and update reference. Formally, a function f reduces linearly to g, if it is possible to
compute f in time linear in the time it takes to compute g; f and g are linearly equivalent if f reduces
linearly to g and vice versa. This defines an equivalence relation on functions, which can be translated
into a linear equivalence on bijections.

Let D = (d1, . . . , dn) be an array of integers, and let m = m (D) := maxi di. The bit–size of
D, denoted by 〈D〉, is the amount of space required to store D; for simplicity from now on we assume
that 〈D〉 = n dlog2m+ 1e. We view a bijection δ : A −→ B as an algorithm which inputs A ∈ A
and outputs B = δ (A) ∈ B. We need to present Young tableaux as arrays of integers so that we can
store them and compute their bit–size. Suppose A ∈ Y T (λ/µ;m): a way to encode A is through its
recording matrix (ci,j), which is defined by ci,j = ai,j − ai,j−1; in other words, ci,j is the number of
j’s in the i–th row of A; this is the way Young tableaux will be presented in the input and output of the
algorithms. Finally, we say that a map γ : A −→ B is size–neutral if the ratio 〈γ(A)〉

〈A〉 is bounded for
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all A ∈ A. Throughout the paper we consider only size–neutral maps, so we can investigate the linear
equivalence of maps comparing them by the number of times other maps are used, without be bothered by
the timing. In fact, if we drop the condition of being size–neutral, it can happen that a map increases the
bit–size of combinatorial objects, when it transforms the input into the output, and this affects the timing
of its subsequent applications. Let A and B be two possibly infinite sets of finite integer arrays, and let
δ : A −→ B be an explicit map between them. We say that δ has linear cost if δ computes δ (A) ∈ B in
linear time O (〈A〉) for all A ∈ A. There are many ways to construct new bijections out of existing ones:
we call such algorithms circuits and we define below several of them that we need.

◦ Suppose δ1 : A1 −→ X1, γ : X1 −→ X2 and δ2 : X2 −→ B, such that δ1 and δ2 have linear cost, and
consider χ = δ2 ◦ γ ◦ δ1 : A −→ B. We call this circuit trivial and denote it by I (δ1, γ, δ2).

◦ Suppose γ1 : A −→ X and γ2 : X −→ B, and let χ = γ2 ◦ γ1 : A −→ B. We call this circuit
sequential and denote it by S (γ1, γ2).

◦ Suppose δ1 : A −→ X1 ×X2, γ1 : X1 −→ Y1, γ2 : X2 −→ Y2, and δ1 : Y1 ×Y2 −→ B, such that δ1
and δ1 have linear cost. Consider χ = δ2 ◦ (γ1 × γ2) ◦ δ1 : A −→ B: we call this circuit parallel
and denote it by P (δ1, γ1, γ2, δ2).

For a fixed bijection α, we say that i is an α–based ps–circuit if one of the following holds:

• i = δ, where δ is a bijection having linear cost.

• i = I (δ1, α, δ2), where δ1, δ2 are bijections having linear cost.

• i = P (δ1, γ1, γ2, δ2), where γ1, γ2 are α–based ps–circuits and δ1, δ2 are bijections having linear
cost.

• i = S (γ1, γ2), where γ1, γ2 are α–based ps–circuits.

In other words, i is an α–based ps–circuit if there is a parallel–sequential algorithm which uses
only a finite number of linear cost maps and a finite number of application of map α. The α–cost of i is
the number of times the map α is used; we denote it by s (i).

Let γ : A −→ B be a map produced by the α–based ps–circuit i. We say that i computes γ at
cost s (i) of α. A map β is linearly reducible to α, write β ↪→ α, if there exist a finite α–based ps–circuit
i which computes β. In this case we say that β can be computed in at most s (i) cost of α. We say
that maps α and β are linearly equivalent, write α ∼ β, if α is linearly reducible to β, and β is linearly
reducible to α. We recall, gluing together, results proved in Section 4.2 of (PV2).

Proposition 4.1 Suppose α1 ↪→ α2 and α2 ↪→ α3, then α1 ↪→ α3. Moreover, if α1 can be computed in at
most s1 cost of α2, and α2 can be computed in at most s2 cost of α3, then α1 can be computed in at most
s1s2 cost of α3. Suppose α1 ∼ α2 and α2 ∼ α3, then α1 ∼ α3 Suppose α1 ↪→ α2 ↪→ . . . ↪→ αn ↪→ α1,
then α1 ∼ α2 ∼ . . . ∼ αn ∼ α1.

We state now the computational complexity of bijection � and the reduction of conjugation symmetry
map.
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Algorithm 4.1 [Bijection �.]
Input: LR tableau T of skew shape λ/µ, with λ = (λ1 ≥ . . . ≥ λn),
µ = (µ1 ≥ . . . ≥ µn), and filling ν = (ν1 ≥ . . . ≥ νn), having A = (ai,j) ∈ Mn×n (N) (ai,j = 0 if
j > i) as (lower triangular) recording matrix.

Write Ã, a copy of the matrix A.
For j := n down to 2 do

For i := 1 to n do
Begin

If i = j then ãi,i := ãi,i + λ1 − λi
else

If j > i then ãi,j = 0 else ãi,j := ãi,j + ãi,j+1.
End

So far the computational cost is O
(
n2
)

= O (〈A〉).

Set a matrix B = (bi,j) ∈Mλ1×λ1 (N) such that bi,j = 0 for all i, j.
For i := 1 to n do

Begin
Set c := 0.
For j := 0 to n do

Begin
r := ãi+j,i − ai+j,i, see Remark 4.2.
For t := 1 to ai+j,i do br+t,c+t := br+t,c+t + 1.
c := c+ ai+j,i.

End
End

This part has total computational cost at most equal to

O

 ∑
1≤i.j≤n

ai,j

 = O (|λ \ µ|) = O (|λ| − |µ|) = O (〈T 〉) .

Output: B recording matrix of the output tableau.

Remark 4.2 For all 1 ≤ i ≤ n and 0 ≤ j ≤ n− i+ 1, we have

ãi+j+1,i − ãi+j,i ≥ ai+j+1,i.

From Theorem 3.3 and this algorithm we have

Theorem 4.3 The conjugation symmetry maps %BSS , %WHS and %3 are identical, and linear equivalent
to the Schützenberger involution E,

T
e •←→ T e•

�←→ T e•�

τ l τ l
P

evacuation←→
E

PE .

Thus conjugation symmetry maps and commutative symmetry maps are linearly reducible to each other.
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Abstract. Let W be a finite crystallographic reflection group, with root system Φ. Associated to W
there is a positive integer, the generalized Catalan number, which counts the clusters in the associated
cluster algebra, the noncrossing partitions for W , and several other interesting sets. Bijections have been
found between the clusters and the noncrossing partitions by Reading and Athanasiadis et al.
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number for W , which we will denote Cm(W ). Here m is a positive integer, and C1(W ) is the usual
generalized Catalan number. Cm(W ) counts the m-noncrossing partitions for W and the m-clusters for
Φ. In this abstract, we will give an explicit description of a bijection between these two sets.

The proof depends on a representation-theoretic reinterpretation of the problem, in terms of exceptional
sequences of representations of quivers.
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1 Fuss-Catalan numbers

Let W be a finite reflection group, with a set of simple reflections S of cardinality n. For basic
facts on reflections groups, see [Hu]. We will assume throughout that W is irreducible, that is to
say, W is not the direct product of two smaller reflection groups; all our statements generalize in
a completely straightforward way to the reducible case.

A Coxeter element for W is the product of the simple reflections of W , taken in some order.
All Coxeter elements are conjugate, so they have a well-defined order, called the Coxeter number,
and denoted h.

Associated to W are a collection of positive integers called its exponents, e1, . . . , en. The
Fuss-Catalan number for W is given by the following formula:

Cm(W ) =
∏n
i=1mh+ ei + 1∏n

i=1 ei + 1
.

If we set m = 1, we get the generalized Catalan number for W .
In the case that W is the symmetric group Sn+1, the Coxeter element is an n+1-cycle, h = n+1,

and the exponents are the numbers from 1 to n. In this case, the generalized Catalan numbers
are just the usual Catalan numbers.

As we shall explain in more detail below, the Fuss-Catalan numbers count the maximal faces in
the m-cluster complex associated to W and the m-noncrossing partitions for W . Bijections have
been constructed between these two sets in the m = 1 case by Reading [Re] and Athanasiadis et
al. [ABMW]. Our goal in this extended abstract is to construct a bijection for arbitrary m.

In order for m-clusters and m-noncrossing partitions to be well-defined, we do not need to
assume that W is crystallographic. However, the techniques of our proof, which rely on quiver
representations, do require that assumption. We will make clear at what point we have to add
the crystallographic assumption.

The Fuss-Catalan numbers also arise in the study of the Shi arrangement and its generalizations
(see [At]). At this point, even for m = 1, no type-free bijection is known from either clusters or
noncrossing partitions to the regions of the Shi arrangement inside the dominant chamber (which
are also counted by the generalized Catalan number).

2 Reflection group conventions

Let T be the set of all reflections for W . By definition, T = {wsw−1 | w ∈ W, s ∈ S}. Let N be
the cardinality of T .

Associated to W is a Coxeter diagram whose vertices correspond to elements of S, and where
two vertices are connected by an edge iff the corresponding simple reflections do not commute.

The Coxeter diagram of a finite reflection group is always a tree, so in particular it is a bipartite
graph. Therefore, we can divide S into two parts, S+ and S− such that no two vertices in either
part are adjacent. (This division is unique up to the labelling of the parts.) Number the reflections
in S+ as s1 to sr, and the reflections in S− as sr+1 to sn.

Fix the Coxeter element c = s1 . . . sn.
For 1 ≤ i ≤ N , let ri be defined as s1s2 . . . si−1sisi−1 . . . s1, where the indexing of simple

reflections is taken mod n, so that sn+1 = s1, etc.
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Each reflection in T occurs as ri for exactly one value of i with 1 ≤ i ≤ N . Define a total order
on T by saying that ri < rj iff i < j.

3 m-noncrossing partitions

In this section we discuss m-noncrossing partitions for a reflection group W . The definition is
due to Armstrong; for further information, see [Ar1].

Define `T : W → N by letting `T (w) be the minimal length of an expression for w as a product
of elements of T . (Note that this is not the classical length function for W , which would consider
instead only expressions for w as a product of elements of S.) We also note, for future use, that
`T (c) = n.

We can partially order W as follows: u <T v iff there is a minimal-length expression for v
as a product of elements of T which has a minimal-length expression for u as a prefix. The
usual (type-free) definition of noncrossing partitions is to take NC(W ) to be the interval from
the identity element e to c in this order [BW1, Be]. The number of elements of NC(W ) is the
generalized Catalan number C1(W ).

We now give an m-ified version. For w ∈ W , define a minimal k-factorization of w to be a
k-tuple (u0, . . . , uk−1) of elements of W such that

w = u0 . . . uk−1 and `T (w) =
∑
i

`T (ui).

We define NC(m)(W ), the m-noncrossing partitions of W to be the collection of minimal m+1-
factorizations of c. (Note that there is a bijection from NC(1) to NC, defined by sending (u, v)
to u.)

Armstrong obtained the following enumeration of the m-noncrossing partitions.

Theorem 1 ([Ar1]) |NC(m)(W )| = Cm(W ).

4 Coloured factorizations

A coloured factorization of the Coxeter element c is simply an expression for c as a product of n
elements of T , where each reflection has an associated colour in Z. We will write the colour as a
superscript in parentheses.

We define an m-increasing coloured factorization to be a coloured factorization whose colours
are chosen from 0 to m, such that the colours appear in weakly increasing order, and among the
reflections of a given colour, the order of the reflections is increasing with respect to the total
order on T .

Proposition 1 There is a bijection between m-noncrossing partitions and m-increasing coloured
factorizations.

To construct the bijection, we use the following result:

Theorem 2 ([ABW]) Let u ≤T c, with `T (u) = r. There is a unique factorization of u as a
product of r reflections u = t1 . . . tr such that t1 < . . . < tr.
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This factorization appears in [ABW] as the set of labels on the increasing chain from e to u in
an EL-labelling for NC.

We now return to the problem of constructing an m-increasing factorization of c from an m-
noncrossing partition. Let u = (u0, . . . , um) be an m-noncrossing partition. Note that ui <T c
for all i, so Theorem 2 applies to each ui. Let (ti1, . . . , tiri) be the factorization of ui obtained
from Theorem 2. The m-increasing coloured factorization associated to u is

(t(0)01 , . . . , t
(0)
0r0
, t

(1)
11 , . . . , t

(1)
1r1
, . . . , t(m)

mrm
).

In other words, we take the factorizations of each of the ui from Theorem 2, concatenate them,
and colour the reflections corresponding to ui with the colour i.

It is clear that this map from m-noncrossing partitions to m-increasing factorizations can be
inverted, and thus defines a bijection.

5 m-clusters

Let Φ be a root system for W , with simple roots Π = {α1, . . . , αn} corresponding (in order)
to the simple reflections s1, . . . , sn. We do not (yet) assume that Φ is crystallographic. The
m-coloured almost positive roots consist of m copies of Φ>0, each indexed by a number from 0
to m − 1, together with a single copy of −Π, the negative simple roots. The set of m-coloured
almost positive roots is denoted Φ(m)

≥−1.
The m-cluster complex was defined by Fomin and Reading [FR] as a certain simplicial complex

on this set. We will give an equivalent definition, which is due to Tzanaki [Tz] (up to some changes
of convention).

Define an m-decreasing coloured factorization of c as follows:

• The colours of the reflections are integers from 0 to m.

• The colours appear in weakly decreasing order.

• Among the reflections of a fixed colour, the reflections appear in decreasing order with
respect to the total order on T .

• The only reflections of colour m which are allowed are {ri = s1s2 . . . si . . . s2s1 | 1 ≤ i ≤ n}.

There is a bijection φ from the set of roots Φ(m)
≥−1, to the set of coloured reflections that can

appear in an m-decreasing factorization of c. It is defined as follows:

• φ sends the coloured positive root β(i) to the coloured reflection t(i)β , where tβ is the reflection
through the hyperplane perpendicular to β,

• φ sends the negative simple root −αi to the reflection r
(m)
i .

Note that for si ∈ S−, φ(−αi) is not the reflection si.
The result of Tzanaki (which generalizes a result of [BW2] in the m = 1 case), and which we

can take as the definition of m-clusters, is the following:
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Theorem 3 ([Tz]) m-clusters can be characterized as those sets of n elements from Φ(m)
≥−1 such

that, if their corresponding reflections under φ are ordered in decreasing order (by colour and
then with respect to the total order on T ), the result is an m-decreasing factorization of c.

The enumeration of m-clusters was carried out by Fomin and Reading:

Theorem 4 ([FR]) The number of m-clusters for Φ is NC(m)(W ).

We have now defined the objects which we are interested in, the m-noncrossing partitions for
W and the m-clusters for Φ, and have recalled that they have the same cardinality. We will now
proceed to define a bijection between them, or rather, between the m-increasing and m-decreasing
factorizations of c.

6 Mutation of coloured factorizations
There is a mutation procedure which allows one to replace one coloured factorization of c by
another. The term mutation does not come from cluster algebras, but rather from the theory of
exceptional sequences. See the final section for more details and references.

For 1 ≤ i ≤ n− 1, define an operation µi on coloured factorizations as follows.

µi(t
(c1)
1 , . . . , t

(ci)
i , t

(ci+1)
i+1 , . . . , t(cn)

n ) = (t(c1)1 , . . . , t
(ci+1)
i+1 , (ti+1titi+1)(d), . . . , t(cn)

n )

where d = ci + 1 if ti+1titi+1 < ti, otherwise d = ci.

Lemma 1 The operations µi satisfy the braid relations, that is to say, µiµi+1µi = µi+1µiµi+1,
and µiµj = µjµi if |i− j| ≥ 2.

Define µrev = µ1(µ2µ1)(µ3µ2µ1) . . . (µn−1µn−2 . . . µ1). (Note that, since the µi satisfy the
braid relations, there are many equivalent ways to define µrev.)

Then we have the following theorem:

Theorem 5 µrev defines a bijection from the m-decreasing coloured factorizations of c to the
m-increasing coloured factorizatons of c.

Together with the bijections we have already established between m-clusters and m-decreasing
factorizations of c, and between m-noncrossing partitions and m-increasing factorizations of c,
this defines a bijection between m-clusters and m-noncrossing partitions, as desired.

7 Example: A2, m = 2
In this section, we consider a small example. W is the symmetric group on 3 letters, generated
by s1 = (12) and s2 = (23). Let m = 2.
S+ = {s1}, S− = {s2}. c = s1s2 = (123). h = 3. Write t for s1s2s1 = (13), the unique

non-simple reflection. The total order on the reflections is s1 < t < s2. Write α1 and α2 for the
simple roots, and β for the unique non-simple positive root. The Fuss-Catalan number is 12.

In the table below, we list the twelve 2-clusters for A2, their corresponding decreasing coloured
factorizations as in Theorem 3, the result of applying µrev = µ1 to the 2-decreasing coloured
factorization (which yields a 2-increasing factorization), and the corresponding 2-noncrossing
partition.



150 Aslak Bakke Buan, Idun Reiten and Hugh Thomas

{β(0), α
(0)
1 } → (t(0), s(0)1 )→ (s(0)1 , s

(0)
2 )→ (s1s2, e, e)

{β(1), α
(0)
1 } → (t(1), s(0)1 )→ (s(0)1 , s

(1)
2 )→ (s1, s2, e)

{−α2, α
(0)
1 } → (t(2), s(0)1 )→ (s(0)1 , s

(2)
2 )→ (s1, e, s2)

{α(0)
2 , β(0)} → (s(0)2 , t(0))→ (t(0), s(1)1 )→ (t, s1, e)

{α(1)
2 , β(0)} → (s(1)2 , t(0))→ (t(0), s(2)1 )→ (t, e, s1)

{α(1)
1 , α

(0)
2 } → (s(1)1 , s

(0)
2 )→ (s(0)2 , t(1))→ (s2, t, e)

{−α1, α
(0)
2 } → (s(2)1 , s

(0)
2 )→ (s(0)2 , t(2))→ (s2, e, t)

{β(1), α(1)} → (t(1), s(1)1 )→ (s(1)1 , s
(1)
2 )→ (e, s1s2, e)

{−α2, α
(1)
1 } → (t(2), s(1)1 )→ (s(1)1 , s

(2)
2 )→ (e, s1, s2)

{α(1)
2 , β(1)} → (s(1)2 , t(1))→ (t(1), s(2)1 )→ (e, t, s1)

{−α1, α
(1)
2 } → (s(2)1 , s

(1)
2 )→ (s(1)2 , t(2))→ (e, s2, t)

{−α2,−α1} → (t(2), s(2)1 )→ (s(2)1 , s
(2)
2 )→ (e, e, s1s2)

8 Positive parts
There is a subcomplex of the m-cluster complex which is called its positive part, that is, the
part which does not involve any of the negative simple roots. Under the correspondence of The-
orem 3, the positive m-clusters (the m-clusters in the positive part) correspond to m-decreasing
factorizations of c in which no reflections with the colour m appear.

Theorem 6 ([FR]) The number of m-clusters in the positive part of the cluster complex for Φ
is:

|C−m−1(W )| =
∏n
i=1mh+ ei − 1∏n

i=1 ei + 1
.

We can give the following description of the image of the positive m-clusters under our bijection.
We use the definition of ri from Section 2.

Theorem 7 The image under µrev of the m-decreasing factorizations of c corresponding to pos-
itive m-clusters, consists of those m-increasing factorizations in which the coloured reflections
{r(m)
N−i+1 | 1 ≤ i ≤ n} do not appear.

In fact, as was conjectured by Armstrong [Ar2], there is a whole family of natural bijections.
In Section 2 we defined r1, . . . , rN . We will now extend that definition. For i ≥ 1, define ri to be
the coloured reflection (s1s2 . . . si . . . s1)(bi/Nc).

Totally order the coloured reflections by ri < rj iff i < j. Define a decreasing coloured
factorization of c to be a factorization of c into coloured reflections such that the factors are
decreasing with respect to this order, and define an increasing coloured factorization of c similarly.

Then Proposition 1 can be restated as saying that m-noncrossing partitions are in bijection with
increasing factorizations of c using coloured reflections from the set {r1, . . . , r(m+1)N}. Theorem 3
can be restated as saying that m-clusters are in bijection with decreasing factorizations of c using
coloured reflections from the set {r1, . . . , rmN+n}, while the positive m-clusters are in bijection
with decreasing factorizations using coloured reflections from the set {r1, . . . , rmN}.

We have the following generalization of Theorems 5 and 7:
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Theorem 8 For any 0 ≤ m and 0 ≤ k, the image under µrev of the decreasing factorizations
of c using coloured reflections {ri} with 1 ≤ i ≤ Nm + (k + 1)n, consists of the increasing
factorizations of c using coloured reflections {ri} with 1 ≤ i ≤ N(m+ 1) + kn.

Other than the cases described by Theorems 5 and 7, there do not seem to be enumerative
results known for these families.

9 Representation theory

In this section, we shall sketch the approach taken in our proofs of the preceding results. This
approach depends heavily on the theory of quiver representations, of which we will attempt to
sketch some elements. The interested reader is urged to consult [ARS, ASS] for an accessible
introduction to this topic.

Assume that W is a finite, simply laced reflection group, with root system Φ. (We shall discuss
more general settings at the end of the section.) Let Q be the directed graph obtained by taking
the Coxeter diagram of W and orienting the edges from S− to S+. Fix an algebraically closed
ground field k.

A representation V of Q is an assignment of a finite dimensional vector space Vi over k to each
vertex i of Q, and a linear map Vα between the corresponding vector spaces to each arrow α of
Q. A morphism from V to W is a collection of linear maps fi : Vi →Wi which makes all squares
commute. The representations of Q form an abelian category, which is denoted rep(Q). This
category is equivalent to the category of finitely generated modules over the path algebra of Q.

If V,W ∈ rep(Q), we can define a k-vector space Hom(V,W ). Using standard homological
algebra, one can then define Exti(V,W ) for i > 0. Note that rep(Q) is hereditary, that is to say,
Exti(V,W ) = 0 for i ≥ 2.

A representation of Q is called indecomposable if it is not the direct sum of two subrepre-
sentations. By Gabriel’s theorem, the indecomposable representations of Q are naturally in 1-1
correspondence with Φ>0, or, equivalently, with T . (If Q is non-Dynkin, the situation is more
complex.)

Following [Cr], define an exceptional sequence of representations of Q to be a sequence of
indecomposable representations (F1, . . . , Fr) such that Hom(Fi, Fj) = 0 = Ext1(Fi, Fj) for i < j.
(Note that this reverses the usual convention for the order of an exceptional sequence. Also, one
normally must also require that Ext1(Fi, Fi) = 0 for all i, but this is automatic in the present
setting where Q is Dynkin.) The maximal length of an exceptional sequence is n.

The notion of exceptional sequence is related to the concepts we have been discussing via the
following theorem:

Theorem 9 ([IT]) For β1, . . . , βn a collection of n positive roots, (Eβ1 , . . . , Eβn) is an excep-
tional sequence iff tβ1 . . . tβn = c.

(This theorem is shown in [IT] in the case which we need here, when Q is Dynkin, and also
when Q is affine; for arbitrary Q without oriented cycles, it is proved in [IS].)

There are well-defined mutation operations on the set of exceptional sequences of a given length.
Given an exceptional sequence (E1, . . . , En), which, for convenience, we assume to have maximal
length, for 1 ≤ i ≤ n− 1, the operation µi is defined by:
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µi(E1, . . . , Ei, Ei+1, . . . , En) = (E1, . . . , Ei+1,M, . . . , En)

where M is uniquely determined by the fact that µi(E1, . . . , En) forms an exceptional sequence.
Now, consider the collection of all factorizations of c as a product of n reflections. Clearly,

there is also a mutation operation on such factorizations: just consider the mutation operation
from Section 6, but ignore colour. It is a theorem of [Cr] that mutation of exceptional sequences
can also be defined in more Coxeter-theoretic terms, from which it follows that mutation of
exceptional sequences agrees via Theorem 9 with the mutation operation which we have just
defined on factorizations of c.

In order to interpret coloured factorizations representation-theoretically, we must pass from
rep(Q) to its bounded derived category Db(Q). As usual, we think of rep(Q) sitting inside Db(Q)
in degree 0. Thanks to the shift functor [1] of Db(Q), for any indecomposable V ∈ rep(Q), we have
indecomposable objects V [i] ∈ Db(Q) for all i ∈ Z. Because rep(Q) is hereditary, there are no
other indecomposable objects in Db(Q). Thus, there is a bijection between coloured reflections
and indecomposable objects in Db(Q). The notions of exceptional sequences and mutations
extend naturally to Db(Q), and these mutation operations agree precisely with those of Section
6.

Next, one has to study the special types of exceptional sequences which correspond to m-
increasing and m-decreasing coloured factorizations. One has:

Proposition 2 If (t(c1)1 , . . . , t
(cn)
n ) is a coloured factorization of c, and (E1, . . . , En) is the corre-

sponding exceptional sequence in Db(Q), then the factorization is m-increasing iff:

• For all i, Ei ∈ rep(Q)[k] for some 0 ≤ k ≤ m,

• For all i 6= j, Extk(Ei, Ej) = 0 for −m ≤ k ≤ 0.

Proposition 3 If (t(c1)1 , . . . , t
(cn)
n ) is a coloured factorization of c, and (E1, . . . , En) is the corre-

sponding exceptional sequence in Db(Q), then the factorization is m-decreasing iff:

• For all i, Ei ∈ rep(Q)[k] for some 0 ≤ k < m or Ei = P [m] for some indecomposable
projective P ,

• For all i, j, Extk(Ei, Ej) = 0 for 1 ≤ k ≤ m.

Note that this latter proposition is closely related to the usual approach to categorifying the
m-cluster combinatorics of [FR], see [Zh, Th, Wr] and subsequent papers.

Theorem 5 is then proved by showing that µrev transforms the exceptional sequences of Propo-
sition 3 into those of Proposition 2. Theorems 7 and 8 are proved similarly.

If W is a non-simply laced but crystallographic reflection group, then our techniques can be
made to apply by a folding argument, or by working over a non-algebraically closed ground field
and applying [Ri]. If W is non-crystallographic, our techniques do not apply. Note that the
definition we have given of the bijection from m-increasing factorizations of c to m-decreasing
factorizations of c still makes sense, but we cannot prove that it is a bijection.

There is nothing in our approach which really requires that W be finite; all we really need is
the much weaker condition that Q have no oriented cycles. In this much more general setting,
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however, there are some additional aspects which must be taken care of. We are preparing a
paper in which we will explain these extra aspects, and provide the proofs of the assertions in
this extended abstract.
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A shuffle of two words is a word obtained by concatenating the two original words in either order and then sliding
any letters from the second word back past letters of the first word, in such a way that the letters of each original word
remain spelled out in their original relative order. Examples of shuffles of the words 1234 and 5678 are, for instance,
15236784 and 51236748. In this paper, we enumerate the distinct shuffles of two permutations of any two lengths,
where the permutations are written as words in the letters 1, 2, 3, . . . , m and 1, 2, 3, . . . , n, respectively.

Keywords: shuffles, permutations, enumeration, Catalan numbers, Shuffle Algebra

1 Introduction
Mathematicians have recently studied several notions of ‘shuffling’, including shuffling of a deck of cards
(see [Aldous & Diaconis (1986)][Bayer & Diaconis (1992)] [Diaconis (1988)] [Diaconis (2002)] [Di-
aconis et al. (1983)] [Trefethen & Trefethen (2002)] [van Zuylen & Schalekamp (2004)]), ‘shuffling’
algorithms, such as the Fisher-Yates shuffle (also known as the Knuth shuffle) that generate random per-
mutations of a finite set (see [Fisher & Yates (1948)] [Knuth (1973)] [Knuth (1998)]), and the perfect
shuffle permutation (see [Diaconis et al. (1983)] [Ellis et al. (2000)] [Mevedoff & Morrison (1987)]).

We shall be interested in shuffles of words, where a word is defined to be a finite string of elements
(known as letters) of a given set (known as an alphabet); in general repetitions of letters are allowed.
We define the length of a word u = a1 . . . am to be l(u) = m and the support of u to be supp(u) =
{a1, . . . , am}. A subword x of a word u is defined to be a word obtained by crossing out a (possibly
empty) subset of the letters of u.

For example, for the alphabet A = {1, 2, 3, 5, 7}, the words u = 25372 and v = 123 have supports
supp(u) = {2, 3, 5, 7} and supp(v) = {1, 2, 3}, and lengths l(u) = 5 and l(v) = 3. Two subwords of u
are 232 and 537.
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2 Shuffles of Words
Given two words u = a1a2 . . . am and v = b1b2 . . . bn in some alphabet A, we obtain a shuffle of u and v
by concatenating u and v to get

c1c2 . . . cm+n = a1a2 . . . amb1b2 . . . bn (1)

and then permuting letters in such a way to achieve

w = cρ(1)cρ(2) . . . cρ(m+n), (2)

for some permutation ρ ∈ Sm+n on m+ n letters satisfying the order-preserving conditions

ρ−1(1) < ρ−1(2) < · · · < ρ−1(m) (3)

and

ρ−1(m+ 1) < ρ−1(m+ 2) < · · · < ρ−1(m+ n). (4)

In other words, we intersperse the letters of u with those of v to get w in such a way that the subword
obtained by restricting w to the letters that came from u is simply u itself (and similarly for the subword
obtained by restriction to the letters of v). Two different shuffles of the words 1234 and 5678 are, for
instance, 15236784 and 51236748.

In the literature, the shuffle w is sometimes denoted by u ttv (see [Hersh (2002)]). Since tt depends
on a choice of ρ, however, and since u ttv sometimes denotes instead the shuffle product of u and v in
the shuffle algebra (see [Reutenauer (1993)], page 24), we will use the notation ttρ to avoid ambiguity.
We define

sh(u, v) = {u ttρv | ρ ∈ Sm+n satisfies (3) and (4)} (5)

to be the set of all shuffles of u with v. For ease of reference, we shall also set

Sm,n = {ρ ∈ Sm+n | ρ satisfies (3) and (4)}. (6)

The shuffle algebra A (see [Crossley (2006)] [Ehrenborg (1996)] [Reutenauer (1993)]), a commutative
Hopf algebra structure on the free Z-module generated by finite words in a given alphabet A, has as
multiplication the shuffle product 4, which is given by

4 (u⊗ v) =
∑

w∈sh(u,v)

µww (7)

for words u and v, where

µw = #{ρ ∈ Sl(u),l(v) | u ttρv = w} (8)

is the multiplicity of w. The shuffle algebra has applications, for instance, in number theory: the multipli-
cation of two multiple zeta values can be expressed as the sum of other multiple zeta values via a shuffle
relation or a quasi-shuffle (stuffle) relation (see [Guo & Xie (2008)] [Ihara et al. (2006)]).
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We can define, analogously, a shuffle of k words (or k-shuffle) to be a permutation of the concatenation
of k words (with lengths n1, n2, . . . , nk) in such a way that the inverse permutation preserves order when
restricted to the index subsets [n1], [n1 + 1, n1 +n2], . . . , [n1 +n2 + · · ·+nk−1 + 1, n1 +n2 + · · ·+nk],
where the interval notation [n1+1, n1+n2] denotes the set of integers from n1+1 to n1+n2. A k-shuffle
is also sometimes referred to as an α-shuffle, where α = (n1, n2, . . . , nk) ∈ Pk is any k-tuple of positive
integers. (But we reserve the notation ttρ for 2-shuffles, as they are the main focus of our research.)

Shuffles of words arise in several contexts. For instance, given a subset

T = {s1, s2, . . . , sk−1} ⊆ [n− 1], (9)

it can be seen that a permutation τ ∈ Sn is a k-shuffle of the sets [s1], [s1 + 1, s2], . . . , [sk−2 +
1, sk−1], [sk−1 + 1, n] if and only if the descent set D(τ−1) of the inverse permutation is a subset of
T (see [Stanley (1997)], page 70). Shuffles appear in the representation theory of finite groups; the left
cosets of the Young Subgroup Sα1×Sα2×· · ·×Sαk

in the Symmetric Group Sn (where n =
∑k
j=1 αj)

correspond exactly to the unique α-shuffles associated with α = (α1, α2, . . . , αk) (see [Stanley (1999)],
page 351).

Shuffles play a role in the multiplication of fundamental quasisymmetric functions Lγ ; in fact, if u ∈
Sm and v ∈ S[m+1,m+n], then

Lco(u)Lco(v) =
∑

w∈sh(u,v)

Lco(w), (10)

where co(u) denotes the composition associated with the descent set D(u) (see [Stanley (1999)], page
482, exercise 7.93). Moreover, shuffle posets on the words u and v can be defined by considering the set of
subwords of all possible shuffles of u with v, taking u as the minimal element, v as the maximal element,
and defining the cover relation to be x ≺ y if y can be obtained from x either by deleting one letter of u
or inserting one letter of v. Greene [Greene (1988)] introduced shuffle posets, and Doran [Doran (2002)]
and Hersh [Hersh (2002)] generalized them (see also [Ehrenborg (1996)] [Simion & Stanley (1999)]).

3 The Main Question
A natural question to ask is how to enumerate the distinct shuffles of words.

Question 1 Given words u and v, how many distinct shuffles are there of u with v?

Assuming m and n to be the lengths of u and v, respectively, note that if supp(u)∩ supp(v) = ∅, then
there are

(
m+n
m

)
distinct shuffles (all shuffles are distinct).

Observation 2 For any given words u and v, we can define an equivalence relation on Sl(u),l(v) by ρ ∼ τ
if u ttρv = u ttτv.

The equivalence relation is nontrivial only when supp(u) ∩ supp(v) 6= ∅. So one could reformulate
Question 1 to ask how many different equivalence classes are induced on Sl(u),l(v) by shuffling a given u
with a given v.

In various applications of shuffles, the supports of the words are usually assumed to be disjoint, but we
investigate the consequences of discarding this assumption while seeking an answer to Question 1.
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We resolve this question for the important case where the words u and v are assumed to be permutations
on the letters {1, 2, 3, . . . ,m} and {1, 2, 3, . . . , n}, respectively. Our answer is given by the following
theorem, for which we shall give details in Section 5 below.

Theorem 3 The number of distinct shuffles of a permutation α ∈ Sm with a permutation β ∈ Sn, with
m ≤ n, is given by the following formula:

#sh(α, β) =
bm

2 c∑
k=0

∑
a={0=a0<a1<···<a2k<a2k+1=m+1}

(−1)h(a)Fσ(a), (11)

where σ = α−1 ◦ β, α ∈ Sn is the natural extension of α, and Fσ(a) is a product of determinants which
enumerate the shuffles on a ‘local’ level.

For an explanation of the notation used and a description of the determinants involved, see Section 5
below.

4 Enumeration of the Distinct Shuffles of Permutations
We shall start by enumerating shuffles of the identity permutation with itself.

Proposition 4 The number of distinct shuffles of the identity permutation on n letters with itself is the nth

Catalan number Cn, that is

#sh(idn, idn) =
1

n+ 1

(
2n
n

)
. (12)

Proof: A straightforward proof entails showing that set of shuffles of idn with itself corresponds bijec-
tively with the set of ballot sequences of length 2n (which is known to have cardinality Cn). For a given
w ∈ sh(idn, idn), simply substitute a 1 for the first occurrence of each integer between 1 and n, and a −1
for the second occurrence to get a ballot sequence of length 2n (that is, a sequence of n ones and n minus
ones whose partial sums are all nonnegative). 2

It is possible to show the following formula for the number of distinct shuffles of the identity in two
different lengths.

Proposition 5 For m 6= n, the number of distinct shuffles of the identity permutation on m letters with
the identity permutation on n letters is given by

#sh(idm, idn) =
bn−m

2 c∑
r=0

(−1)r
(
n−m− r

r

)
Cn−r. (13)

We get Proposition 5 from the following recursion for shuffles of the identity in two different lengths.

Lemma 6 For m 6= n, the number of distinct shuffles of the identity permutation on m elements with the
identity permutation on n elements is determined by

#sh(idm, idn) = #sh(idm−1, idn) + #sh(idm, idn−1). (14)
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Proof: Lemma 6 is easily verified by considering the bijection

γ : sh(idm, idn)→ sh(idm−1, idn) ∪ sh(idm, idn−1)

given by dropping the last letter of each w ∈ sh(idm, idn) to get either γ(w) ∈ sh(idm−1, idn) or
γ(w) ∈ sh(idm, idn−1). As long as m 6= n, we have sh(idm−1, idn) ∩ sh(idm, idn−1) = ∅. 2

More generally, for m ≤ n and any α ∈ Sm and β ∈ Sn, it can be assumed without loss of generality
that α = idm, due to the following fact.

Fact 7 For any m ≤ n and any α ∈ Sm, β ∈ Sn, we have

#sh(α, β) = #sh(idm, (α)−1 ◦ β), (15)

where α ∈ Sn is the natural extension of α to a permutation on n letters.

Here we are simply reordering the alphabet A = [m] so that α now behaves like the identity permutation
idm on the reordered alphabet. It is also easy to note that #sh is symmetric: #sh(u, v) = #sh(v, u) is
true for any words u and v (they need not be permutations).

Now let the reverse permutation word n, n− 1, . . . , 2, 1 be denoted by revn. The following result can
be shown via a bijective proof.

Proposition 8

#sh(idm, revn) =
(
m+ n

m

)
−
(
m+ n− 2
m− 1

)
. (16)

Proof: To verify Proposition 8, simply note that for each w ∈ sh(idm, revn), we have either µw = 2 or
µw = 1. (Either w has a pair of double elements, or it doesn’t.)

Consider the map κ : {w ∈ sh(idm, revn) | µw = 2} → sh(+m−1,−n−1) that sends each duplicated
shuffle w to a sequence κ(w) ∈ sh(+m−1,−n−1) obtained by excising the double elements and then
sending each letter from idm to a + and each letter from revn to a −. For example, for 1243321 ∈
sh(123, 4321), obtain κ(1243321) by excising 33 to get 12421. Then replace elements with pluses and
minuses to get + +−−−.

Noting that #sh(+m−1,−n−1) =
(
(m−1)+(n−1)

m−1

)
, we subtract this number of duplicates from

(
m+n
m

)
,

the total number of shuffles, counted with multiplicity, of words of lengths m and n. 2

5 The Main Theorem
Let us now enumerate the number of shuffles of the identity on m letters with any permutation σ ∈
Sn (throughout, we shall assume without loss of generality that m ≤ n). We shall first provide some
terminology and motivation and then state the main theorem.

Let us call a subword x obtained from any word u consecutive if the letters of x appear consecutively
in u. For instance, 364 is a consecutive subword of 136425. We call a shuffle w ∈ sh(idn, idn) indecom-
posable if there is no consecutive subword w′ of w such that w′ ∈ sh(idk, idk) for some 1 ≤ k < n. For
ease of notation, let

indc(x) = {indecomposable shuffles of x with itself}. (17)
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Observe that, when a shuffle w has multiplicity µw > 1, this occurs because some consecutive subword
x of σ is in fact a string of consecutive elements in the alphabet of w; we call such a subword of σ an
embedded identity subword. On the local level we then have, embedded in w, a shuffle of the identity
permutation on a consecutive subset of the intersection of the given alphabets with itself. That is,

w = · · · ∗ (x ttηx) ∗ . . . (18)

for some η ∈ Sl(x),l(x), where ∗ denotes concatenation. We shall denote the set of embedded identity
subwords of σ as

idsub(σ) = {embedded identity subwords of σ}. (19)

If id4 is shuffled with 52341, for example, we can obtain the shuffle

512342341 ∈ {51 ∗ (234 ttη234) ∗ 1 | η ∈ S3,3}, (20)

which has multiplicity 2 because the local shuffle 234234 ∈ sh(234, 234) is indecomposable and can
be obtained in exactly two ways, whereas there are no additional ways of obtaining the global shuffle
512342341 ∈ sh(id4, 52341).

We say that a set X = {x1, . . . , xr} of embedded identity subwords of a permutation is compatible if
the xi have pairwise disjoint supports and if there exists some shuffle w ∈ sh(idm, σ) in which each of the
xi is locally shuffled with itself. For instance, {23, 45} is a set of compatible embedded identity subwords
of 23145 because in the shuffle 1232314455 ∈ sh(id5, 23145) both 23 and 45 are locally shuffled with
themselves.

Given a permutation word u and a compatible set X = {x1, . . . , xj} of embedded identity subwords
of u, note that u is the concatenation u = g0 ∗ x1 ∗ g1 ∗ · · · ∗ xj ∗ gj for some consecutive subwords
g0, g1, . . . , gj of u whose supports are pairwise disjoint. We say that the gi are the subwords of u cut out
by the set X .

For instance, in the permutation 23145, the set {23, 45} cuts out the subwords [], 1, and [] (where []
denotes the empty word). Likewise, for the permutation word 52341, the set {23, 4} cuts out the subwords
5, [], and 1.

Proposition 9 For σ ∈ Sn and any w ∈ sh(idm, σ), we have µw = 2t for some integer t ≥ 0, where t is
the maximal number of compatible embedded identity permutation subwords in σ that are locally shuffled
with themselves in w.

To illustrate this statement, we can see that for 311223 ∈ sh(id3, 312), we have µ(311223) = 4 and
t = 2. The embedded identity subwords that are locally shuffled with themselves in 311223 are 1, 2,
and 12; but {1, 2} is the largest set of such subwords that is compatible. In general, we shall call the
integer t = dup(w) the number of sites of duplication in w. Moreover, we shall set Nσ

t = #{w ∈
sh(idm, σ) | dup(w) = t}.

We can actually enumerate #sh(idm, σ) by applying the Inclusion-Exclusion principle. First we take
the total number of shuffles counted with multiplicity, and then alternately subtract and add the cardinal-
ities of certain subsets counted with multiplicity until we arrive at a count of the total number of shuffles
without multiplicity.
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Indeed,

#sh(idm, σ) =
(
m+ n

m

)
+

m∑
j=1

(−1)jTσj , (21)

where Tσj =
∑m
t=j

(
t
j

)
2t−jNσ

t .

Observation 10 Tσj is the number of (not necessarily distinct shuffles) in sh(idm, σ) with j or more sites
of duplication, enumerated by choosing a j-element subset X = {x1, . . . , xj} of compatible embedded
identity permutation subwords of σ and assuming, in turn, that each element xi ∈ X is shuffled locally
and indecomposably with itself, then counting with multiplicity all local shuffles of each subword of idm
cut out by X with the corresponding subword of σ also cut out by X .

That is, Tσj can be computed as

Tσj =
∑

compatible {x1,...,xj}⊆idsub(σ)

(
l(f0) + l(g0)

l(f0)

)
·#indc(x1) ·

(
l(f1) + l(g1)

l(f1)

)
· · ·

·#indc(xj) ·
(

l(fj) + l(gj)
l(fj)

)
, (22)

where the fi and gi are the subwords of idm and of σ, respectively, that are cut out by the set {x1, . . . , xj}.
Recall that the number of local shuffles of fi with gi counted with multiplicity is

(
l(fi)+l(gi)

l(fi)

)
.

In the example of sh(id3, 312), we can compute

T 312
1 =

(
1
0

)
· C0 ·

(
3
2

)
+
(

3
1

)
· C0 ·

(
1
1

)
+
(

2
2

)
· C0 ·

(
2
0

)
+
(

1
0

)
· C1 ·

(
1
1

)
= 8 (23)

because we can fix first double 1’s to count shuffles of the form ([] ttρ13) ∗ 11 ∗ (23 ttρ22), then fix
double 2’s to count those of the form (1ttρ331) ∗ 22 ∗ (3ttρ4 []), next, fix double 3’s to count shuffles of
the form (12ttρ5 []) ∗ 33 ∗ ([]ttρ612), and lastly, fix the unique indecomposable shuffle of 12 with itself
to count those of the form ([] ttρ73) ∗ 1212 ∗ (3 ttρ8 []). Note that in each case the local identity shuffle
we fix (such as 11 or 1212) is indecomposable, and so the factor Ck−1 counts the distinct indecomposable
shuffles of a local identity subword of length k with itself. Similarly,

T 312
2 =

(
1
0

)
· C0 ·

(
0
0

)
· C0 ·

(
1
1

)
= 1, (24)

as we can see by counting shuffles of the form ([] ttρ93) ∗ 11 ∗ ([] ttρ10 []) ∗ 22 ∗ (3 ttρ11 []), whereas
T 312

3 = 0 because there is no compatible 3-subset of embedded identity permutation subwords, and so

#sh(id3, 312) =
(

3 + 3
3

)
− 8 + 1− 0 = 13. (25)

We will use the notation zσi,j to denote the number of local shuffles counted with multiplicity of the
subword a occurring between (and not including) the letters i < j in idm with the subword b occurring
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between the letters i < j in σ. That is, if such words a and b exist, then we have zσi,j =
(
l(a)+l(b)

l(a)

)
;

otherwise, zσi,j = 0. For example, z312
0,2 =

(
3
1

)
= 3, z312

1,2 =
(
0
0

)
= 1, and z312

1,3 = 0.
We use zσi,j to construct a square matrix with all ones on the subdiagonal and all zeros below the

subdiagonal. For entries on or above the diagonal, zσi,j keeps track of whether or not i and j are inverted
in σ, and if they are not inverted, zσi,j takes on the value of the total number of possible ways of shuffling
the letters between paired occurrences of i and j, including any repeated shuffles.

By defining a matrix Zσc,d = [zσi,j ]c≤i≤d−1, c+1≤j≤d below and taking its determinant, we are taking an
alternating sum that systematically looks for compatible sets of letters (that is, compatible length 1 em-
bedded identity subwords of σ) that occur between the letters c and d (not including c and d themselves).
When the set of letters, say {b1, b2, . . . , bq}, is compatible, then we get a nonzero term of absolute value
zσc,b1 · z

σ
b1,b2
· · · zσbq,m+1.

For example,

Z312
0,4 =


1 3 1 20
1 1 0 3
0 1 0 1
0 0 1 1

 . (26)

For 1 ≤ e < f ≤ m, if the word e, e+ 1, . . . , f is a simultaneous consecutive subword for idm and σ,
we will say that θσ(e, f) denotes the number of indecomposable local shuffles of the word e, e+ 1, . . . , f
with itself; otherwise we will set θσ(e, f) = 0. The purpose of the yσi,j below is to construct this function
θσ(e, f) by defining a matrix Y σe,f = [yσi,j ]e≤i,j≤f−1 in such a way that θσ(e, f) = detY σe,f .

For example,

Y 312
1,3 =

(
C0 C1

0 0

)
, (27)

whereas

Y 312
1,2 =

(
C0

)
(28)

and

Y 312
2,3 =

(
0
)
. (29)

The subsets a = {0 = a0 < a1 < · · · < a2k < a2k+1 = m + 1} ⊆ [0,m + 1] below determine
the endpoints of the subwords a1 . . . a2, a3 . . . a4, through a2k−1 . . . a2k of idm, each of which has length
greater than one and may possibly be an embedded identity subword for σ. The exponent h(a) ensures
the correct sign for purposes of applying the principle of Inclusion-Exclusion.

We are now ready for the main theorem.

Theorem 11 (Theorem 3, restated in detail)

#sh(idm, σ) =
bm

2 c∑
k=0

∑
a={0=a0<a1<···<a2k<a2k+1=m+1}

(−1)h(a)
k∏
r=0

detZσa2r,a2r+1

k∏
s=1

detY σa2s−1,a2s
, (30)
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where

h(a) = m−
k∑
t=1

(a2t − a2t−1), (31)

and we define the matrices

Zσc,d = [zσi,j ]c≤i≤d−1, c+1≤j≤d, (32)

with

zσi,j =



0, i > j

1, i = j

0, 0 < i < j < m+ 1 and σ−1(i) > σ−1(j)(
j−i−1+σ−1(j)−σ−1(i)−1

j−i−1

)
, 0 < i < j < m+ 1 and σ−1(i) < σ−1(j)(

j−1+σ−1(j)−1
j−1

)
, i = 0, j < m+ 1(

m−i+n−σ−1(i)
m−i

)
, j = m+ 1, i > 0(

m+n
m

)
, i = 0, j = m+ 1,

(33)

and the matrices

Y σe,f = [yσi,j ]e≤i,j≤f−1, (34)

with

yσi,j =


0, i− j > 1 or σ−1(i+ 1) 6= σ−1(i) + 1
−1, i− j = 1 and σ−1(i+ 1) = σ−1(i) + 1
Cj−i, i ≤ j and σ−1(i+ 1) = σ−1(i) + 1

(35)

where

Cj−i =
1

j − i+ 1

(
2(j − i)
j − i

)
, the (j − i)th Catalan number. (36)

While equation (30) may look unwieldy, it is relatively easy to write a computer algorithm for Maple
that will calculate the number of distinct shuffles of any two permutations. If at least one of the per-
mutations has length bounded by 13, the processor on a laptop can easily handle the calculation. Ex-
amples of calculations include #sh(id3, 321) = 14, #sh(id2, 3421) = 11, #sh(2431, 1432) = 44,
#sh(id6, 126354) = 374, and if σ = 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6 ∈ S13, then #sh(id13, σ) =
10104590.

6 Future Directions
Open problems related to the work in this paper include the following projects:



164 Camillia Smith Barnes

6.1 Enumerating Distinct Shuffles of Multiset Permutations
Compute the number of distinct shuffles of any two multiset permutations; for example, #sh(12322, 33214).
This is a significant generalization of the current problem, because the possible ways that duplications in
such shuffles can occur are much more complicated than with ordinary permutations, and multiplicities
of shuffles no longer need to be powers of 2. We believe, however, that once we can classify the types of
multiplicities that can occur the problem will become tractable, and that the intuitions gained in solving
the current problem will help me to reach that point.

6.2 Enumerating Distinct k-Shuffles of Permutations
Compute the number of distinct k-shuffles of k permutations of any k lengths, where k is any positive
integer; for example, #sh(132, 231, 1324). This is another important generalization. Again, multiplic-
ities need not be powers of 2; rather, they appear to be related to products of factorials, but it is not
yet clear how exactly to compute them. It seems that making progress on counting shuffles of multiset
permutations should give insight into what occurs with k-shuffles of ordinary permuations; observe that
#sh(132, 231, 1324) is equal to

∑
w∈sh(132,231) #sh(w, 1324) minus a certain number of shuffles y such

that y ∈ sh(w, 1324)∩sh(w′, 1324) for some w′ 6= w ∈ sh(132, 231). Note that w and w′ can be thought
of as multiset permutations.

6.3 Deducing Monotonicity Results
Deduce monotonicity results for the number of distinct shuffles on permutation groups. Such results would
help to clarify the meaning of the formula given in Theorem 11. For 1 ≤ n ≤ 6, the minimal number
of distinct shuffles of a permutation with the identity permutation of the same length is Cn, achieved by
identity permutation (see Proposition 4). We conjecture that this is the case for all n.

For n = 1, 2, 3, the maximal number of shuffles of a permutation with the identity is achieved by
the reverse permutation. For n = 4, 5, 6, however, the maximal number of distinct shuffles with the
identity is achieved by the halfway-shifted permutations 3412, 34512, and 456123, respectively. Together,
these cases give the first six terms of the sequence of maximal shuffle counts: 1, 4, 14, 54, 197, 792 (now
catalogued as sequence A145211 in the On-Line Encyclopedia of Integer Sequences; see also sequence
A145208). We would like to extend this sequence and to determine whether, as we conjecture, maximality
is actually achieved by the halfway-shifted permutations for all n ≥ 4.

Indeed, we would like more generally to find a poset structure on Sn for which the function σ 7→
#sh(idn, σ) is always monotone increasing. The Bruhat order fails to provide such a structure for n =
4, 5, 6, but perhaps a modification of the Bruhat order would provide the desired poset structure.

6.4 Enumerating Distinct Shuffles according to Permutation Statistics
Enumerate distinct shuffles according to various permutation statistics, such as descent sets, number of
inversions, or major index. Enumeration by statistics could yield insights into the above problems and
refine our current results.
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1 Introduction
One description of the crystalB(Λ0) of ŝl` has as nodes `-regular partitions. In this paper we give another
combinatorial description of B(Λ0), called the ladder crystal, which we denote B(Λ0)L. Our crystal
satisfies the following properties:

• The nodes of B(Λ0)L are partitions, and there is an i-arrow from λ to µ only when the difference
µ \ λ is a box of residue i.

• There exists elementary combinatorial arguments which generalize crystal theoretic results of
B(Λ0) to B(Λ0)L.

• B(Λ0) ∼= B(Λ0)L and the isomorphism is a well studied (but never before in this context) map on
partitions.

• The nodes of B(Λ0)L have a simple combinatorial description.

The new description of the crystal B(Λ0) is in many ways more important than the theorems which
were proven by the existence of it. Besides the fact that it is a useful tool in proving theorems about
B(Λ0), our new description also highlights a set of partitions (in bijection to `-regular partitions), which
can be interpreted in terms of the representation theory of the finite Hecke algebra Hn(q).

Remark 1.0.1 All proofs are absent from this text in the interest of space, as several of them require
tedious calculations.

1.1 Combinatorial definitions on partitions
Let λ be a partition of n (written λ ` n) and ` ≥ 3 be an integer. We will use the convention (x, y)
to denote the box which sits in the xth row and the yth column of the Young diagram of λ. We denote
the transpose of λ by λ′. Throughout this paper, all of our partitions are drawn in English notation. An
`-regular partition is one in which no part occurs ` or more times.

The hook length of the (a, c) box of λ is defined to be the number of boxes to the right and below the
box (a, c), including the box (a, c) itself. It will be denoted hλ(a,c). The arm of the (a, c) box of λ is
defined to be the number of boxes to the right of the box (a, c), not including the box (a, c). It will be
denoted arm(a, c). Similarly, the leg is below (a, c), not including (a, c) and will be denoted leg(a, c).

Remark 1.1.1 From the definitions, it is clear that hλ(a,c) = arm(a, c) + leg(a, c) + 1.

2 Hecke Algebras
2.1 Representation theory of Hn(q)

Definition 2.1.1 For a fixed field F of characteristic zero and 0 6= q ∈ F, the finite Hecke Algebra Hn(q)
is defined to be the F-algebra generated by T1, ..., Tn−1 with relations

TiTj = TjTi for |i− j| > 1
TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i < n− 1
T 2
i = (q − 1)Ti + q for 1 ≤ i ≤ n− 1.



The Ladder Crystal 169

In this paper we will always assume that q 6= 1 and that q ∈ F is a primitive `th root of unity in a field
F of characteristic zero (so necessarily ` ≥ 2).

Remark 2.1.2 When q is specialized to 1 the Hecke algebra becomes the group algebra of the symmetric
group.

Similar to the symmetric group, a construction of the Specht module Sλ = Sλ[q] exists for Hn(q) (see
(2)). The Specht modules need not remain irreducible when q is a primitive `th root of unity. Conditions
for the irreducibility of these modules was conjectured by James and Mathas, and recently proven in work
of Fayers (3) and Lyle (11).

All of the irreducible representations of Hn(q) have been constructed when q is a primitive `th root of
unity. These modules are indexed by `-regular partitions λ, and are called Dλ. Dλ is the unique simple
quotient of Sλ (see (2) for more details). In particular Dλ = Sλ if and only if Sλ is irreducible and λ is
`-regular. For λ not necessarily `-regular, Sλ is irreducible if and only if there exists an `-regular partition
µ so that Sλ ∼= Dµ.

3 Misra-Miwa Description of B(Λ0)

3.1 Introduction
In this section, we recall a description of the crystal graph B(Λ0) currently used in the literature, first
described by Misra and Miwa (13) .

3.2 Classical description of the crystal B(Λ0)

We will assume some familiarity with the theory of crystals (see (8) for details). We will look at the
crystal B(Λ0) of the irreducible highest weight module V (Λ0) of the affine Lie algebra ŝl` (also called
the basic representation of ŝl`). In the model of B(Λ0) given by Misra and Miwa, the nodes are `-regular
partitions. The set of nodes will be denoted B := {λ ∈ P : λ is `-regular}. We will describe the arrows
of B(Λ0) below.

We view the Young diagram for λ as a set of boxes, with their corresponding residues b − a mod `
written into the box (a, b). A box in λ is said to be a removable i-box if it has residue i and after removing
that box the remaining diagram is still a partition. A space not in λ is an addable i-box if it has residue i
and adding that box to λ yields a partition.

Example 3.2.1 Let λ = (8, 5, 4, 1) and ` = 3. Then the residues are filled into the corresponding Young
diagram as follows:

λ = 0 1 2 0 1 2 0 1

2 0 1 2 0

1 2 0 1

0

2

1

2

1

2
Here λ has two removable 0-boxes (boxes (2,5) and (4,1)), two removable 1-boxes (boxes (1,8) and

(3,4)), no removable 2-boxes, no addable 0-boxes, two addable 1-boxes (in positions (2,6) and (4,2)), and
three addable 2-boxes (in positions (1,9), (3,5) and (5,1)).
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For a fixed i, (0 ≤ i < `), we place − in each removable i-box and + in each addable i-box. The
i-signature of λ is the word of + and −’s in the diagram for λ, written from bottom left to top right. The
reduced i-signature is the word obtained after repeatedly removing from the i-signature all adjacent pairs
−+. The resulting word will now be of the form + · · ·+ + +−−− · · ·−. The boxes corresponding to
−’s in the reduced i-signature are called normal i-boxes, and the boxes corresponding to +’s are called
conormal i-boxes. εi(λ) is defined to be the number of normal i-boxes of λ, and ϕi(λ) is defined to be
the number of conormal i-boxes. If a leftmost − exists, the box corresponding to such a − is called the
good i-box of λ. If a rightmost + exists, the box corresponding to such a + is called the cogood i-box.
All of these definitions can be found in Kleshchev’s book (9).

Example 3.2.2 Let λ = (8, 5, 4, 1) and ` = 3 be as above. Fix i = 1. The diagram for λ with removable
and addable 1-boxes marked is:

−

+

−

+

The 1-signature of λ is + − +−, so the reduced 1-signature is + − and the diagram has a good
1-box in the first row, and a cogood 1-box in the fourth row. Here ε1(λ) = 1 and ϕ1(λ) = 1.

We recall the action of the crystal operators on B. The crystal operator ẽi : B i−→ B ∪ {0} assigns
to a partition λ the partition ẽi(λ) = λ \ x, where x is the good i-box of λ. If no such box exists, then
ẽi(λ) = 0. It is clear then that εi(λ) = max{k : ẽki λ 6= 0}.

Similarly, f̃i : B i−→ B ∪ {0} is the operator which assigns to a partition λ the partition f̃i(λ) = λ ∪ x,
where x is the cogood i-box of λ. If no such box exists, then f̃i(λ) = 0. It is clear then that ϕi(λ) =
max{k : f̃ki λ 6= 0}.

For i ∈ Z/`Z, we write λ i−→ µ to stand for f̃iλ = µ. We say that there is an i-arrow from λ to µ. Note
that λ i−→ µ if and only if ẽiµ = λ. A maximal chain of consecutive i-arrows will be called an i-string.
We note that the empty partition ∅ is the unique highest weight node of the crystal ( i.e. ẽi∅ = 0 for every
i ∈ Z/`Z) and that B(Λ0) is connected. For a picture of a part of this crystal graph, see (10) for the cases
` = 2 and 3.

Example 3.2.3 Continuing with the above example, we see that ẽ1(8, 5, 4, 1) = (7, 5, 4, 1) and
f̃1(8, 5, 4, 1) = (8, 5, 4, 2). Also, ẽ21(8, 5, 4, 1) = 0 and f̃2

1 (8, 5, 4, 1) = 0. The sequence (7, 5, 4, 1) 1−→
(8, 5, 4, 1) 1−→ (8, 5, 4, 2) is a 1-string of length 3.

4 The Ladder Crystal: B(Λ0)
L

4.1 Ladders
We first recall what a ladder is in regards to a partition. Let λ be a partition and let ` > 2 be a fixed integer.
For any box (a, b) in the Young diagram of λ, the ladder of (a, b) is the set of all positions (c, d) which
satisfy c−a

d−b = `− 1 and c, d > 0.
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Remark 4.1.1 The definition implies that two boxes in the same ladder will share the same residue. An
i-ladder will be a ladder all of whose boxes have residue i.

Example 4.1.2 Let λ = (3, 3, 1), ` = 3. Then there is a 1-ladder which contains the boxes (1, 2) and
(3, 1), and a different 1-ladder which has the box (2, 3) in λ and the boxes (4, 2) and (6, 1) not in λ. In
the picture below, lines are drawn through the different 1-ladders.

�
�
�
�
�� �

�
�
�
�
�
�
�
�
��

0 1 2

2 0 1

1

4.2 The ladder crystal
We will construct a new crystal B(Λ0)L recursively as follows. First, the empty partition ∅ is the unique
highest weight node of our crystal. From ∅, we will build the crystal by applying the operators f̂i for
0 ≤ i < `. We define f̂i to act on partitions, taking a partition of n to a partition of n+ 1 (or to 0) in the
following manner. Given λ ` n, first draw all of the i-ladders of λ onto its Young diagram. Label any
addable i-box with a +, and any removable i-box with a −. Now, write down the word of +’s and −’s
by reading from leftmost i-ladder to rightmost i-ladder and reading from top to bottom on each ladder.
This is called the ladder i-signature of λ. From here, cancel any adjacent −+ pairs in the word, until
you obtain a word of the form + · · · + − · · ·−. This is called the reduced ladder i-signature of λ. All
boxes associated to a − in the reduced ladder i-signature are called ladder normal i-boxes and all boxes
associated to a + in the reduced ladder i-signature are called ladder conormal i-boxes. The box associated
to the leftmost − is called the ladder good i-box and the box associated to the rightmost + is called the
ladder cogood i-box. Then we define f̂iλ to be the partition λ union the ladder cogood i-box. If no such
box exists, then f̂iλ = 0. Similarly, êiλ is the partition λ with the ladder good i-box removed. If no such
box exists, then êiλ = 0. We then define ϕ̂i(λ) to be the number of ladder conormal i-boxes of λ and
ε̂i(λ) to be the number of ladder normal i-boxes. It is then obvious that ϕ̂i(λ) = max{k : f̂ki λ 6= 0} and
that ε̂i(λ) = max{k : êki λ 6= 0}.

Example 4.2.1 Let λ = (5, 3, 1, 1, 1, 1, 1) and ` = 3. Then there are four addable 2-boxes for λ. In
the leftmost 2-ladder (containing box (2,1)) there are no addable (or removable) 2-boxes. In the next
2-ladder (containing box (1,3)) there is an addable 2-box in box (3,2). In the next 2-ladder (containing
box (2,4)), there are two addable 2-boxes, in boxes (2,4) and (8,1). In the last drawn 2-ladder (containing
box (1,6)) there is one addable 2-box, in box (1,6). There are no removable 2-boxes in λ. Therefore the
ladder 2-signature (and hence reduced ladder 2-signature) of λ is +(3,2) +(2,4) +(8,1)+(1,6) (Here, we
have included subscripts on the + signs so that the reader can see the correct order of the +’s). Hence
f̂2λ = (6, 3, 1, 1, 1, 1, 1), (f̂2)2λ = (6, 3, 1, 1, 1, 1, 1, 1), (f̂2)3λ = (6, 4, 1, 1, 1, 1, 1, 1) and (f̂2)4λ =
(6, 4, 2, 1, 1, 1, 1, 1). (f̂2)5λ = 0.
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Remark 4.2.2 The weight function of this crystal is exactly the same as the weight function for B(Λ0).
Explicitly, the weight of λ is Λ0 −

∑
ciαi where ci is the number of boxes of λ with residue i (or

equivalently,
∑
i(ϕi−εi)Λi). Throughout this paper we will suppress the weight function as it is irrelevant

to the combinatorics involved.

5 Regularization
5.1 The operation of regularization
In this section we describe a map from the set of partitions to the set of `-regular partitions. The map is
called regularization and was first defined by James (see (6)). For a given λ, and for a ladder L in λ, one
can count the number of boxes ηL on L. Create a new partition where on ladder L the top ηL positions in
L have boxes and all other positions on L are vacant. The result is called the regularization of λ, and is
denoted R`λ. It can also be thought of as pushing all boxes in each ladder of λ as far up their respective
ladders as is possible. Although R` depends on `, we will usually just write R. The following theorem
contains facts about regularization originally due to James (6) (see also (7)).

Theorem 5.1.1 Let λ be a partition. Then

• Rλ is `-regular

• Rλ = λ if and only if λ is `-regular.

• If λ is `-regular and Dλ ∼= Sν for some partition ν, thenRν = λ.

Regularization provides us with an equivalence relation on the set of partitions. Specifically, we say
λ ∼ µ ifRλ = Rµ. The equivalence classes are called regularization classes, and the class of a partition
λ is denotedRC(λ) := {µ ∈ P : Rµ = Rλ}.

Example 5.1.2 Let λ = (2, 2, 2, 1, 1, 1) and let ` = 3. ThenRλ = (3, 3, 2, 1). Also,

RC(λ) = {(2, 2, 2, 1, 1, 1), (2, 2, 2, 2, 1), (3, 2, 1, 1, 1, 1),

(3, 2, 2, 2), (3, 3, 1, 1, 1), (3, 3, 2, 1)}

.
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0 1

2 0

1 2

0

2

1

R−→ 0 1 2

2 0 1

1 2

0

6 Deregularization

The goal of this section is to provide an algorithm for finding the smallest partition in dominance order in
a given regularization class. It is nontrivial to show that a smallest partition exists. We use this result to
show that our new description of the crystal B(Λ0)L has nodes which are smallest in dominance order in
their regularization class. All of the work of this section is joint with Brant Jones of UC Davis, who gave
the first definition of a locked box.

6.1 Locked Boxes

We recall a partial ordering on the set of partitions of n. For two partitions λ and µ of n, we say that
λ ≤ µ if

∑i
j=1 λj ≤

∑i
j=1 µj for all i. This order is usually called the dominance order.

Finding all of the partitions which belong to a regularization class is not easy. The definition of locked
boxes below formalizes the concept that some boxes in a partition cannot be moved down their ladders if
one requires that the new diagram remain a partition.

Definition 6.1.1 For a partition λ, we label boxes of λ as locked by the following procedure:

I. If a box x has a locked box directly above it (or is on the first row) and every unoccupied space in
the same ladder as x, lying below x, has an unoccupied space directly above it then x is locked.
Boxes locked for this reason are called type I locked boxes.

II. If a box y is locked, then every box to the left of y in the same row is also locked. Boxes locked for
this reason are called type II locked boxes.

Boxes which are not locked are called unlocked.

Remark 6.1.2 Locked boxes can be both type I and type II.

Example 6.1.3 Let ` = 3 and let λ = (6, 5, 4, 3, 1, 1). Then labeling the locked boxes for λ with an L
and the unlocked boxes with a U yields the picture below.
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L L L U U U

L L L U U

L L U U

L L U

L

L

6.2 Algorithm for finding the smallest partition in a regularization class
The algorithm from here is simple. For any partition λ, to find the smallest partition (with respect to
dominance order) in a regularization class we first label each box of λ as either locked or unlocked as
above. Then we move all of the unlocked boxes in each ladder to the lowest unoccupied positions on their
ladder. The resulting partition will be denoted Sλ. It is unclear that this algorithm will yield the smallest
partition inRC(λ), or even that it is a partition. The following theorem resolves these issues.

Theorem 6.2.1 Sλ is the unique smallest partition in its regularization class with respect to dominance
order. It can be classified as being the unique partition (in its regularization class) which has all its boxes
locked.

Example 6.2.2 Continuing from the example above (λ = (6, 5, 4, 3, 1, 1) and ` = 3), we move all of the
unlocked boxes down to obtain the smallest partition inRC(λ), which is:

Sλ = (3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1).

The boxes labeled L are the ones which were locked in (6, 5, 4, 3, 1, 1) (and did not move).

L L L

L L L

L L

L L

L

L
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6.3 The nodes of B(Λ0)
L are smallest in dominance order

The nodes of B(Λ0)L have been defined recursively by applying the operators f̂i. We now give a simple
description which determines when a partition is a node of B(Λ0)L.

Proposition 6.3.1 Let λ be a partition of n. Let RC(λ) be its regularization class. Then λ is a node of
B(Λ0)L if and only if λ is the smallest partition inRC(λ) with respect to dominance order.

One can view B(Λ0) as having nodes {RC(λ) : λ ` n, n ≥ 0}. The usual model of B(Λ0) takes the
representative Rλ ∈ RC(λ), which happens to be the largest in dominance order. Here, we will take a
different representative ofRC(λ), the partitions Sλ, which are smallest in dominance order.

7 Crystal Isomorphism
7.1 The isomorphism B(Λ0) ∼= B(Λ0)

L

Using the theory of locked boxes described above, we were able to prove the following theorem.

Theorem 7.1.1 Regularization commutes with the crystal operators. In other words if λ ∈ B(Λ0)L then:

1. (R ◦ f̂i)(λ) = (f̃i ◦ R)(λ),

2. (R ◦ êi)(λ) = (ẽi ◦ R)(λ).

A corollary to this theorem is that the crystals are isomorphic, the isomorphism being regularization in
one direction. The inverse to regularization is the map S described above.

Corollary 7.1.2 The crystal B(Λ0) is isomorphic to B(Λ0)L.

Example 7.1.3 Let λ = (2, 1, 1, 1) and ` = 3. Then Rλ = (2, 2, 1). Also f̂2λ = (2, 1, 1, 1, 1) and
f̃2(2, 2, 1) = (3, 2, 1). ButR(2, 1, 1, 1, 1) = (3, 2, 1).

(2, 1, 1, 1) 2−→ (2, 1, 1, 1, 1)

(2, 2, 1) 2−→ (3, 2, 1)

??R R

8 The Mullineux Map
The operation on the category of Hn(q) modules of tensoring with the sign module (the 1-dimensional
module of Hn(q) where each Ti acts as −1) is a functor which takes irreducible modules to irreducible
modules. For instance, when q is not a root of unity, then Sλ ⊗ sign = Sλ

′
, where λ′ is the transpose

of λ. When λ is an `-regular partition, and Dλ denotes the irreducible module corresponding to λ then
Dλ ⊗ sign is some irreducible module Dm(λ). This describes a map m between `-regular partitions
called the Mullineux map. Recent results of Fayers (4) settle a conjecture of Lyle (12) which effectively
computes the Mullineux map in certain cases by means of regularization and transposition. This section
will highlight the interpretation of Fayers result in terms of the ladder crystal. It should be noted that Ford
and Kleshchev gave a recursive construction for computing the Mullineux map in all cases (5).
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8.1 Connections with Fayers results
Since the Mullineux map is the modular analog of transposition, a natural attempt to compute m(λ) for
an `-regular partition λ would be to transpose λ and then regularize. If a partition is not `-regular, we
could similarly guess thatm(Rλ) was just transposing λ and then regularize the result. This is not always
the case. However, a conjecture of Lyle (12), which was proven recently by Fayers (4) gives a precise
classification for when this holds. The definition below was taken from Fayers (4).

Definition 8.1.1 An L-partition is a partition which has no box (i, j) in the diagram of λ such that ` | hλi,j
and either arm(i, j) < (`− 1)leg(i, j) or leg(i, j) < (`− 1)arm(i, j).

Theorem 8.1.2 (Fayers (4)) A partition is an L-partition if and only if m(Rλ) = Rλ′.

It was pointed out to the author by Fayers that a classification of the nodes of B(Λ0)L can be described
in terms of hook lengths and arm lengths. We now include this classification.

Theorem 8.1.3 A partition λ belongs to the crystal B(Λ0)L if and only if there does not exist a box (i, j)
in the Young diagram of λ such that hλ(i,j) = ` ∗ arm(i, j).

This classification of the partitions in B(Λ0)L implies the following theorem.

Theorem 8.1.4 All L-partitions are nodes of the crystal B(Λ0)L.

It is easy to show that any partition λ for which the Specht module Sλ is irreducible is an L-partition.
This implies the following corollary.

Corollary 8.1.5 All partitions λ for which Sλ is irreducible (when q is an `th root of unity) are nodes of
the crystal B(Λ0)L.

9 Conclusion
We have built a model of the crystalB(Λ0) which has different partitions representing each regularization
class. It has the surprising property that every partition λ for which the Specht module Sλ is irreducible
appears. Other results relating to the representation theory ofHn(q) and the crystalB(Λ0) can be obtained
using the isomorphism between B(Λ0) and B(Λ0)L. In particular, generalizations of theorems from (1)
can be proven with the use of B(Λ0)L. We have left these out to save space, but can be found in the
authors upcoming thesis.
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1 Introduction
Let V be a vector space overC with basis{x1, x2, . . . , xn} andG a finite subgroup ofGL(V ), then

T (V ) = C ⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ · · · ≃ C〈x1, x2, . . . , xn〉

is the ring of non-commutative polynomials in the basis elements where we use the notationV ⊗d =
V ⊗V ⊗ · · · ⊗V . We will consider the subalgebraT (V )G ≃ C 〈x1, x2, . . . , xn〉

G as the graded space of
invariants with respect to the action ofG. It is convenient to conserve the information on the dimension of
each homogeneous componentC〈x1, x2, . . . , xn〉

G
d ≃ (V ⊗d)G of degreed in theHilbert-Poincaŕe series

P (T (V )G) =
∑

d≥0

dim(V ⊗d)Gqd.

Several algebraic tools allow us to study the invariants forT (V ) with respect to the groupG. The graded
character ofT (V ) can be found in terms by what we might identify as a ‘master theorem’ for the tensor
space,

χ(V ⊗d)(g) = tr(M(g))d =
[

qd
] 1

1 − tr(M(g))q
,

where
[

qd
]

represents taking the coefficient ofqd in the expression to the right andM(g) is a matrix
which represents the action of the group elementg on a basis ofV . The analogue of Molien’s theorem [3]
for the tensor algebra says that

dim (V ⊗d)G =
[

qd
] 1

|G|

∑

g∈G

1

1 − tr(M(g))q
.

In general, we can say that the invariantsT (V )G are freely generated [4] by an infinite set of generators
(except whenG is scalar,i.e. whenG is generated by a nonzero scalar multiple of the identity matrix)
[3]. No simple general description of the invariants or the generators is known for large classes of groups
and these algebraic tools do not clearly show the underlyingcombinatorial structure of these invariant
algebras.

Our goal is to find a combinatorial method for computing the graded dimensions ofT (V )G. The main
idea of a general theorem would be the following. To aG-moduleV , we associate a subalgebra of the
group algebra together with a homomorphism of algebras intothe ring of characters. Then we get as
a consequence a combinatorial description of the invariants of T (V ) as words generated by a particular
Cayley graph ofG. To compute the coefficient ofqd in the Hilbert-Poincaré series ofT (V )G, it then
suffices to look at the multiplicity of the trivial in(V ⊗d). At this point, since there is not a general relation
between the group algebra and the character ring, we are onlyable to treat some examples that we decided
to present here and the method used gives rise to objects thatare a priori not natural in that context. In
particular, we compute the graded dimensions ofT (V )G for V being the geometric module (see below)
of the symmetric group and forV being any module of the dihedral group in term of words generated by a
Cayley graph ofG in some specific generators. The subalgebra we use in the caseof the symmetric group
is the Solomon’s descent algebra, that will make the bridge between words in a particular Cayley graph
in those generators and the decomposition ofT (V ) into simpleSn-module. In the case of the dihedral
group, we present a new non-commutative realization of the character ring as a subalgebra of the group
algebra.
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When the groupG is generated by pseudo-reflections acting on a vector spaceV , then ifV is simple,V
is called the geometric G-module. WhenG is the symmetric groupSn onn letters and acts on the vector
spaceV spanned by the vectors{x1, x2, . . . , xn} by the permutation action thenG is generated by pseudo-
reflections, but is not a simpleSn-module. The spaceC〈x1, x2, . . . , xn〉

Sn is known as the symmetric
functions in non-commutative variables which was first studied by Wolf [8] and more recently by Rosas-
Sagan [6]. The dimension of(V ⊗d)Sn is the number of set partitions of the numbers{1, 2, . . . , d} into
at mostn parts. If G is the symmetric group but acting on the vector space spannedby the vectors
{x1 − x2, x2 − x3, . . . , xn−1 − xn} (again with the permutation action on thexi) then this is also a
group generated by pseudo-reflections but the invariant space T (V )Sn is not as well understood. The
graded dimensions of the invariant space are given by the number of oscillating tableaux studied by
Chauve-Goupil [1]. This interpretation for the graded dimensions has a very different nature to that
of set partitions. By applying the results in this paper we find a combinatorial interpretation for the graded
dimensions of these spaces, and many others, which unifies the interpretations of their graded dimensions.

The paper is organized as follows. In section 2 we recall the definition of a Cayley graph and present
a technical lemma that we will need to link the number of wordsof lengthd in a particular Cayley graph
of G to some coefficients in thed-th power of a particular element of the group algebra. We will then
present in section 3 the particular case of the symmetric group Sn and make explicit the result forV
being the geometricSn-module. Since the bridge between the words in the Cayley graph of Sn and
the decomposition ofT (V ) is the descent algebra, we will recall in section 3.3 some results about the
Solomon’s descent algebra ofSn. Section 3.6 contains some results about the invariant algebraT (V )Sn

where we present a conjecture for a closed formula for the Hilbert-Poincaré series ofT (V )Sn , whereV
is the geometricSn-module. Finally in section 4, we apply our general method inthe case of the dihedral
groupDm and then study in section 4.3 the particular case of the invariant algebraT (V )Dm whenV is
the geometric module and give a closed formula for the Hilbert-Poincaré series ofT (V )Dm .

2 Cayley graph of a group G

Let us recall the definition of a Cayley graph given in Coxeter[2]. A presentation of a finite groupG with
generating setS can be encoded by its Cayley graph. ACayley graphis an oriented graphΓ = Γ(G, S),
having one vertex for each element of the groupG and the edges associated with generators inS. Two
verticesg1 andg2 are joined by a directed edge associated tos ∈ S if g2 = g1s. Then a path along the
edges corresponds to a word in the generators inS. A word whichreduces tog ∈ G in Γ will be a path
along the edges from the vertex corresponding to the identity to the one corresponding to the elementg.
We will denote byw(g; d; Γ) the set of words of lengthd which reduce tog in Γ. We will say that a word
does not cross the identityif it has no proper prefix which reduces to the identity.

More generally, we will considerweightedCayley graphsΓ(G, S). In other words, we will associate
a weightω(s) to each generators ∈ S. Then we will define theweight of a wordw = s1s2 · · · sr in the
generators to be the product of the weights of the generators, ω(w) = ω(s1)ω(s2) · · ·ω(sr). To simplify
the image, undirected edges will represent bidirectional edges and non-labelled edges will represent edges
of weight one .

Example 2.1 Consider the dihedral groupDm with presentation〈s, r | s2 = rm = srsr = e〉. The
Cayley graphsΓ(D3, {s, r}), Γ(D4, {s, r}) and more generallyΓ(Dm, {s, r}) will look like
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e r2

r

s

rs

r2s

e r3

r

s

rs

r3s

r2

r2s

e

Example 2.2 The symmetric groupSn onn letters is generated by the permutations(12) and(1 n · · · 432)
(see [2]), hence also by the permutations(12), (132), (1432), . . . , (1 n · · · 432), written in cyclic nota-
tion. The Cayley graphΓ(S3, {(12), (132)}) is

e (123)

(132)

(12)

(23)

(13)

Lemma 2.3 LetΓ = Γ(G, {s1, s2, . . . , sr}) be a Cayley graph ofG with associated weightsω(si) = ωi.
Then the coefficient ofσ ∈ G in the element(ω1s1 + ω2s2 + · · · + ωrsr)

d of the group algebraCG is
equal to

∑

w∈w(σ,d;Γ)

ω(w),

wherew(σ, d; Γ) is the set of words of lengthd which reduce toσ in Γ.

Example 2.4 Let us consider the Cayley graphΓ = (S3, {(12), (132)}) of Example 2.2. Seta = (12)
andb = (132) to simplify. Then the table below shows that the coefficient of a specific element in(a+ b)4

coincides with the number of words of length three which reduce to that specific element inΓ.

(a + b)4 = 3 e + 2 (12) + 3 (23) + 3 (123) + 2 (132) + 3 (13)

e (12) (23) (123) (132) (13)

aaaa

abab

baba

abbb

bbba

aaba

baaa

bbab

aabb

baab

bbaa

abba

bbbb

aaab

abaa

babb

3 Symmetric group Sn

We will give in that section a combinatorial way to decomposethe tensor algebra onV into simpleSn-
modules, forV being the geometricSn-module, by means of words in a particular Cayley graph ofSn.
We will also give a combinatorial way to compute the graded dimensions of the invariant spaceT (V )Sn ,
which is the multiplicity of the trivial in the decomposition of T (V ). But first let us recall some definition
and the theory of the descent algebra.

3.1 Partitions and tableaux
To fix the notation, recall the definition of a partition. Apartition λ of a positive integern is a decreasing
sequenceλ1 ≥ λ2 ≥ . . . ≥ λℓ > 0 of positive integers such thatn = |λ| = λ1 + λ2 + . . . + λℓ. We will
write λ = (λ1, λ2, . . . λℓ) ⊢ n. For example, the partitions of3 are

(1, 1, 1) (2, 1) (3).
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It is natural to represent a partition by a diagram. TheFerrers diagramof a partitionλ = (λ1, λ2, . . . λℓ)
is the finite subsetλ = {(a, b) | 0 ≤ a ≤ ℓ − 1 and0 ≤ b ≤ λa+1 − 1} of N × N. Visually, each element
of λ corresponds to the bottom left corner of a square of dimension 1 × 1 in N × N. A tableauof shape
λ ⊢ n, denotedsh(t) = λ, with values inT = {1, 2, . . . , n} is a functiont : λ −→ T. We can visualize
it with filling each squarec of a Ferrers diagramλ with the valuet(c). A tableau is said to bestandardif
its entries form an increasing sequence along each line and along each column. We will denote bySTabn

the set of standard tableau withn squares. For example,STab3 contains the four standard tableaux

3
2
1

2
1 3

3
1 2 1 2 3 .

TheRobinson-Schensted correspondenceis a bijection between the elementsσ of the symmetric group
Sn and pairs(P (σ), Q(σ)) of standard tableaux of the same shape, whereP (σ) is the insertion tableau
andQ(σ) the recording tableau.

3.2 Simple Sn-modules
Since the conjugacy classes inSn are in bijection with the partitions ofn, it is natural to index the
simpleSn-modules by the partitionsλ of n and we will denote them byV λ. In particular, the simple
Sn-moduleV (n) indexed by the partition(n) is the the trivial one. Let us consider the linear spanV =
L{x1, x2, . . . , xn} on whichSn acts by permuting the coordinates. Then we have

V = L{x1 + x2 + x3 + . . . + xn} ⊕ L{x1 − x2, x2 − x3, . . . , xn−1 − xn},

so the decomposition ofV into simpleSn-modules isV = V (n) ⊕ V (n−1,1). Note that theSn-module
V (n−1,1) corresponds to the geometricSn-module. LetXn denote the set of variablesx1, x2, . . . , xn and
Yn−1 denote the set of variablesy1, y2, . . . , yn−1. If we identifyT (V ) with R〈Xn〉, thenT (V (n−1,1)) ≃
R〈Xn〉/〈x1 + x2 + · · · + xn〉 can be identified withR〈Yn−1〉, whereyi = xi − xi+1 for 1 ≤ i ≤ n − 1.

3.3 Solomon’s descent algebra of Sn

Surprisingly, the key to prove the general result is the theory of descent algebra of the symmetric group.
Let us recall some of that theory here. LetI = {1, 2, . . . , n − 1}. The descent set ofσ ∈ Sn is the set
Des(σ) = {i ∈ I |σ(i) > σ(i + 1)}. ForK ⊆ I, set

dK =
∑

σ∈Sn
Des(σ)=K

σ.

The Solomon’s descent algebraΣ(Sn) is a subalgebra of the group algebraZSn with basis{dK |K ⊆ I}
[7]. For a standard tableaut of shapeλ ⊢ n define

zt =
∑

σ∈Sn
Q(σ)=t

σ,

whereQ(σ) corresponds to the recording tableau in the Robinson-Schenstead correspondence. Then
consider the linear spanQn = L{zt| t ∈ STabn}. Note in general thatQn is not a subalgebra ofZSn,
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for n ≥ 4. Define the descent set of a standard tableaut by Des(t) = {i|i + 1 is above i int}. Then

dK =
∑

t∈ST abn
Des(t)=K

zt.

andΣ(Sn) ⊆ Qn. There is an algebra morphismθ : Σ(Sn) → ZIrr(Sn) due to Solomon [7]. Moreover,
there is a linear map [5]̃θ : Qn → ZIrr(Sn) defined byθ̃(zt) = χsh(t), and θ̃ restricted toΣ(Sn)
corresponds toθ. We can observe that

z
2
1 3 4 ···n

= (12) + (132) + (1432) + · · · + (1 n · · · 432) = d{1}

henceθ(d{1}) = χ(n−1,1).

3.4 General method for Sn

We are developing a general combinatorial method for determining the multiplicity ofV λ in V ⊗d, when
V is anySn-module. To this end, we will consider the algebra morphismθ : Σ(Sn) → ZIrr(Sn) of
section 3.3. The next proposition says that this multiplicity is given as the sum of some coefficients infd,
whenf is an element ofΣ(Sn) such thatθ(f) = χV .

Proposition 3.1 Let V be anSn-module such thatθ(f) = χV , for somef ∈ Σ(Sn). For λ ⊢ n, the
multiplicity ofV λ in V ⊗d is equal to

∑

t∈ST abn
sh(t)=λ

[zt]f
d,

where[zt]f
d is the coefficient ofzt in fd.

Although the next theorem is an easy consequence of the Lemma2.3 and Proposition 3.1, it provides
us with an interesting interpretation for the multiplicityof V λ in thed-fold Kronecker product of aSn-
module. This multiplicity is the weighted sum of words in a particular Cayley graph ofSn which reduce
to the elementσt, whereσt has recording tableaut of shapeλ in the Robinson-Schensted correspondance.
Recall that thesupportof an elementf of the group algebra is defined by supp(f) = {g ∈ G|[g]f 6= 0}.

Theorem 3.2 Let V be anSn-module such thatθ(f) = χV , for somef ∈ Σ(Sn). For λ ⊢ n, the
multiplicity ofV λ in V ⊗d is

∑

t∈ST abn
sh(t)=λ

∑

w∈w(σt,d;Γ)

ω(w),

whereσt is such thatQ(σt) = t, Γ = Γ(Sn, supp(f)) with ω(σ) = [σ](f) for eachσ ∈ supp(f) and
w(σt, d; Γ) is the set of words of lengthd which reduce toσt in Γ.
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3.5 Decomposition of T (V (n−1,1)) and words in a Cayley graph of Sn

Since we are particularly interested in the geometricSn-module, we make explicit the following two
corollaries respectively of Proposition 3.1 and Theorem 3.2 needed to draw a connection between the
multiplicity of V λ in (V (n−1,1))⊗d and words of lengthd in a particular Cayley graph ofSn. To this end,
we use the fact that the elementd{1} of the descent algebra, which is the sum of elements ofSn having
descent set{1}, is sent toχ(n−1,1) under theθ morphism.

Corollary 3.3 Letλ ⊢ n. The multiplicity ofV λ in (V (n−1,1))⊗d is
∑

t∈ST abn
sh(t)=λ

[zt]d{1}
d.

Corollary 3.4 Letλ ⊢ n. The multiplicity ofV λ in (V (n−1,1))⊗d is equal to
∑

t∈ST abn
sh(t)=λ

|w(σt, d; Γ)|,

whereσt ∈ Sn is such thatQ(σt) = t andΓ = Γ(Sn, {(12), (132), . . . , (1 n · · · 432)}). In particular,
the multiplicity of the trivial is|w(e, d; Γ)|.

Example 3.5 TheS3-module(V (2,1))⊗4 decomposes as3 V (3) ⊕ 5 V (2,1) ⊕ 3 V (1,1,1) since

d{1}
4 = 3 d∅ + 3 d{2} + 2 d{1} + 3 d{1,2}

= 3 z
1 2 3

+ 3 z
3
1 2

+ 2 z
2
1 3

+ 3 z
3
2
1

.

These multiplicities can also be computed using Corollary 3.4 in the following way. The Cayley graph
Γ = Γ(S3, {(12), (132)}) looks like

e (123)

(132)

(12)

(23)

(13)

-

RS
1 2 3 3

1 2

2
1 3

2
1 3

3
1 2

3
2
1

and if we writea for (12) andb for (132) to simplify, and choose the representatives

σ
1 2 3

= e σ
3
1 2

= (23) σ
2
1 3

= (12) σ
1
2
3

= (13)

the multiplicities are respectively given by the cardinalities of the sets of words (see Example 2.4)

V (3) : |w(e , 4; Γ)| = |{aaaa, abab, baba}| = 3,
V (2,1) : |w((23) , 4; Γ)| + |w((12) , 4; Γ)| = |{aaba, baaa, bbab}|+ |{abbb, bbba}| = 5,

V (1,1,1) : |w((13) , 4; Γ)| = |{aaab, abaa, babb}| = 3.
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3.6 Invariant algebra T (V (n−1,1))Sn ≃ R〈Yn−1〉
Sn

We have an interpretation of the invariant algebraT (V (n−1,1))Sn in terms of words which reduce to the
identity in the Cayley graphΓ(Sn, {(12), (132), . . . , (1 n · · · 432)}). As a corollary of Corollary 3.4,
we can now show that the dimension ofT (V (n−1,1))Sn in each degreed, which is also the multiplicity of
the trivial representation in(V (n−1,1))⊗d, can be indexed by those precise words of lengthd.

Corollary 3.6 The dimension of((V (n−1,1))⊗d)Sn ≃ R〈Yn−1〉
Sn

d is equal to the number of words of
lengthd which reduce to the identity in the Cayley graphΓ(Sn, {(12), (132), . . . , (1 n · · · 432)}).

Example 3.7 Consider the symmetric groupS3. Using the Reynold’s operator
∑

σ∈Sn
σ acting on the

monomials, a basis for the invariant spaceR〈y1, y2〉
S3
4 is given by the three following polynomials

y
2
1y

2
2 − y1y

2
2y1 − y2y

2
1y2 + y

2
2y

2
1 ,

y1y2y1y2 − y1y
2
2y1 − y2y

2
1y2 + y2y1y2y1,

2y
4
1 + y

3
1y2 + y

2
1y2y1 + y1y2y

2
1 + 3y1y

2
2y1 + y1y

3
2 + y2y

3
1 + 3y2y

2
1y2 + y2y1y

2
2 + y

2
2y1y2 + y

3
2y1 + 2y

4
2 .

which agree with the number of words{aaaa, abab, baba} in the lettersa = (12) andb = (132) which
reduce to the identity in the Cayley graphΓ(S3, {(12), (132)}) (see Example 2.4).

Proposition 3.8 The number of free generators ofT (V (n−1,1))Sn as an algebra are counted by the words
which reduce to the identity without crossing the identity in Γ(Sn, {(12), (132), . . . , (1 n · · · 432)}).

Example 3.9 The number of free generators ofT (V (2,1))S3 are counted by the number of words in the fol-
lowing subsets of words which reduce to the identity withoutcrossing the identity inΓ(S3, {(12), (132)})

{aa}, {bbb}, {abab, baba}, {abbba, baabb, bbaab}, {abaaab, abbabb, baaaba, babbab, bbabba}, . . .

with cardinalities corresponding to the Fibonacci numbers.

We present next a conjecture for a closed formula giving the Hilbert-Poincaré series ofT (V (n−1,1))Sn

which does not seem to obviously follow from our combinatorial interpretations for the dimensions.

Conjecture 3.10 The Hilbert-Poincaŕe series ofT (V (n−1,1))Sn is

P (T (V (n−1,1))Sn) =
1

1 + q
+

q

1 + q

n−1
∑

k=0

qk

(1 − q) (1 − 2 q) · · · (1 − k q)
.

4 Dihedral group Dm

The same kind of results can be observed for other finite groups, for example in the case of cyclic and
dihedral groups. We will present in this section the case of the dihedral groupDm with presentation
Dm = 〈s, r | s2 = rm = srsr = e〉. We will give a combinatorial way to decompose the tensor
algebra on anyDm-module into simple modules by looking to words in a particular Cayley graph of
Dm. The bridge between those words and the decomposition of thetensor algebra into simple modules
is made possible via a subalgebra of the group algebraRDm and a surjective algebra morphism from this
subalgebra into the algebra of characters that we will present in next section.
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4.1 Simple Dm-modules
For our purpose, let us first compute the irreducible characters of the dihedral groupDm. For m = 2 k
even, there arek + 3 simpleDm-modules (up to isomorphisms)V id, V γ , V ǫ, V γǫ andV i, for 1 ≤ i ≤
k − 1 with associated irreducible characters

id : Dm → C

rη 7→ 1
s 7→ 1

rs 7→ 1

γ : Dm → C

rη 7→ (−1)η

s 7→ −1
rs 7→ 1

χi : Dm → C

rη 7→ 2 cos( 2πηi

m
)

s 7→ 0
rs 7→ 0

ǫ : Dm → C

rη 7→ 1
s 7→ −1

rs 7→ −1

γǫ : Dm → C

rη 7→ (−1)η

s 7→ 1
rs 7→ −1

Form = 2 k + 1 odd, thek + 2 simpleDm-modules (up to isomorphisms) areV id, V ǫ andV i, for 1 ≤
i ≤ k and the associated irreducible characters are respectively id, ǫ andχi. The next two propositions
define the surjective algebra morphism needed to link the decomposition ofT (V ) to words in a Cayley
graph ofDm.

Proposition 4.1 Let yi = r1−is + ri. For m = 2k even,Q = L{e, rk, rs, rk+1s, yi, yirs}1≤i≤k−1 is a
subalgebra ofZDm, and there is a surjective algebra morphismθ : Q → ZIrr(Dm) defined byθ(e) = id,
θ(rs) = ǫ, θ(rk) = γ, θ(rk+1s) = γǫ andθ(yi) = θ(yirs) = χi.

Proposition 4.2 Letyi = r1−is + ri. For m = 2k + 1 odd, the linear spanQ = L{e, rs, yi, yirs}1≤i≤k

is a subalgebra ofZDm, and there is a surjective algebra morphismθ : Q → ZIrr(Dm) defined by
θ(e) = id, θ(rs) = ǫ andθ(yi) = θ(yirs) = χi.

4.2 Decomposition of T (V ) and words in a Cayley graph of Dm

To simplify the notation, we will denote the subalgebras of Proposition 4.1 and 4.2 byQ = L{bi}i∈I ,
where each elementbi of the basis is sent to an irreducible character byθ andV (i) will denote a simple
Dm-module with irreducible characterχ(i). As for the symmetric group, we have the following two
results. Recall that supp(f) = {g ∈ G|[g]f 6= 0}.

Proposition 4.3 LetV be aDm-module. Iff ∈ Q is such thatθ(f) = χV , then the multiplicity ofV (k)

in V ⊗d is equal to
∑

bi

θ(bi)=χ(k)

[bi]f
d.

Theorem 4.4 Let V be aDm-module. Iff ∈ Q is such thatθ(f) = χV , then the multiplicity ofV (k) in
V ⊗d is equal to

∑

bi

θ(bi)=χ(k)

∑

w∈w(σi,d;Γ)

ω(w),

whereσi ∈ supp(bi), Γ = Γ(Dm, supp(f)) with ω(g) = [g](f) for eachg ∈ supp(f).
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Example 4.5 Consider theD4-module(2 V 1 ⊕ V γǫ)⊗2. By Theorem 4.1 , there is a subalgebraQ =
L{e, r2, rs, r3s, s + r, r3 + r2s} of the group algebra andθ : Q → ZIrr(D4) defined by

θ(e) = id, θ(rs) = ǫ, θ(r2) = γ, θ(r3s) = γǫ, θ(s + r) = θ(r3 + r2s) = χ1.

Letf = 2 (r3 + r2s) + r3s. Applyingθ, f2 = 5 e + 4 rs + 4 r2 + 4 r3s + 2 (s + r) + 2 (r3 + r2s) is sent
to (2 χ1 + γǫ)2 = 5 id + 4 ǫ + 4 γ + 4 γǫ + 2 χ1 + 2 χ1 so the decomposition into simple modules is

(2 V 1 ⊕ V γǫ)⊗2 = 5 V id ⊕ 4 V ǫ ⊕ 4 V γ ⊕ 4 V γǫ ⊕ 4V 1.

These multiplicities can also be computed using words in theCayley graphΓ = Γ(D4, {r
3, r2s, r3s})

with weightsω(r3) = ω(r2s) = 2 andω(r3s) = 1. Applying Theorem 4.4, the multiplicities are

V id :
∑

w∈w(e,2;Γ)

ω(w) = ω(aa) + ω(cc) = 2 · 2 + 1 · 1 = 5

V ǫ :
∑

w∈w(rs,2;Γ)

ω(w) = ω(ba) = 2 · 2 = 4

V γ :
∑

w∈w(r2,2;Γ)

ω(w) = ω(bb) = 2 · 2 = 4

V γǫ :
∑

w∈w(r3s,2;Γ)

ω(w) = ω(ab) = 2 · 2 = 4

V 1 :
∑

w∈w(r,2;Γ)

ω(w) +
∑

w∈w(r3,2;Γ)

ω(w) = ω(ca) + ω(ac) = 1 · 2 + 2 · 1 = 4.

e r

r3

r2s

rs

r3s

r2

s

2 2

22
2

2

2

22

2

2

2

4.3 Invariant algebra T (V 1)Dm ≃ R〈x1, x2〉
Dm

We were particularly interested in studying the invariant space of the tensor algebra on the geometric rep-
resentationV 1 and we have the following results. Since the dimension of((V 1)⊗d)Dm ≃ R〈x1, x2〉

Dm

d

is equal to the multiplicity of the trivial in(V 1)⊗d ≃ R〈x1, x2〉d, the following Corollary follows from
Theorem 4.4 and the fact thatθ(s + r) = χ1.

Corollary 4.6 The dimension of((V 1)⊗d)Dm ≃ R〈x1, x2〉
Dm

d is equal to the number of words of length
d which reduce to the identity in the Cayley graphΓ(Dm, {r, s}).

Proposition 4.7 The number of free generators ofT (V 1)Dm as an algebra are counted by the words in
the Cayley graphΓ(Dm, {r, s}) which reduce to the identity without crossing the identity.

Proposition 4.8 The Hilbert-Poincaŕe series ofT (V 1)Dm ≃ R〈x1, x2〉
Dm is

P (T (V 1)Dm) = 1 +
1

2

(

(2q)m +
∑⌊m/2⌋

i=0 (
(

m+1
2i+1

)

− 2
(

m
2i

)

)(1 − 4q2)i

∑⌊m/2⌋
i=0

(

m
2i

)

(1 − 4q2)i − (2q)m

)

.

5 Appendix
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Sn\d 0 1 2 3 4 5 6 7 8 9 10 11 12 13

S3 1 0 1 1 3 5 11 21 43 85 171 341 683 1365
S4 1 0 1 1 4 10 31 91 274 820 2461 7381 22144 66430
S5 1 0 1 1 4 11 40 147 568 2227 8824 35123 140152 559923
S6 1 0 1 1 4 11 41 161 694 3151 14851 71621 350384 1729091

Tab. 1: Dimension of((V (n−1,1))⊗d)Sn ≃ R〈Yn−1〉
Sn
d . Number of words of lengthd which reduce to the identity

in Γ(Sn, {(12), (132), (1432), . . . , (1n · · · 432)}).

d\Sn S3 S4 S5 S6

2 aa aa aa aa

3 bbb bbb bbb bbb

4
aaaa

abab

baba

aaaa

abab

baba

cccc

aaaa

abab

baba

cccc

aaaa

abab

baba

cccc

5

aabbb

abbba

baabb

bbaab

bbbaa

aabbb

abbba

baabb

bbaab

bbbaa

accbc

bcacc

caccb

cbcac

ccbca

aabbb

abbba

baabb

bbaab

bbbaa

accbc

bcacc

caccb

cbcac

ccbca

ddddd

aabbb

abbba

baabb

bbaab

bbbaa

accbc

bcacc

caccb

cbcac

ccbca

ddddd

Tab. 2: Words of lengthd in the lettersa = (12), b = (132), c = (1432), d = (15432) which reduce to the identity
in Γ(Sn, {(12), (132), (1432), . . . , (1n · · · 432)}).

Dm\d 0 1 2 3 4 5 6 7 8 9 10 11 12 13

D3 1 0 1 1 3 5 11 21 43 85 171 341 683 1365
D4 1 0 1 0 4 0 16 0 64 0 256 0 1024 0
D5 1 0 1 0 3 1 10 7 35 36 127 165 474 715
D6 1 0 1 0 3 0 11 0 43 0 171 0 683 0

Tab. 3: Dimension of((V 1)⊗d)Dm ≃ R〈x1, x2〉
Dm

d . Number of words in the lettersr ands of lengthd which
reduce to the identity inΓ(Dm, {r, s}).

d\Dm D3 D4 D5 D6

2 ss ss ss ss

3 rrr

4
ssss

srsr
rsrs

ssss

srsr

rsrs

rrrr

ssss

srsr
rsrs

ssss

srsr
rsrs

5
ssrrr

srrrs

rssrr

rrssr

rrrss
rrrrr

Tab. 4: Words of lengthd in the lettersr ands which reduce to the identity inΓ(Dm, {r, s}).
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Shortest path poset of finite Coxeter
groups

Saúl A. Blanco†

Department of Mathematics, Cornell University, Ithaca, NY, 14853.

Abstract. We define a poset using the shortest paths in the Bruhat graph of a finite Coxeter group W from the identity
to the longest word in W , w0. We show that this poset is the union of Boolean posets of rank absolute length of w0;
that is, any shortest path labeled by reflections t1, . . . , tm is fully commutative. This allows us to give a combinatorial
interpretation to the lowest-degree terms in the complete cd-index of W .

Résumé. Nous définons un poset en utilisant le plus court chemin entre l’identité et le plus long mot de W, w0, dans le
graph de Bruhat du groupe finie Coxeter, W . Nous prouvons que ce poset est l’union de posets Boolean du même rang
que la longueur absolute de w0; ça signifie que tous les plus courts chemins, étiquetés par reflections t1, . . . , tm sont
totalement commutatives. Ça nous permet de donner une interpretation combinatorique aux terms avec le moindre
grade dans le cd-index complet de W .

Keywords: Coxeter group, Bruhat order, Boolean poset, complete cd-index.

1 Introduction
Let (W,S) be a Coxeter system, and let T (W ) = {wsw−1 : s ∈ S,w ∈ W} be the set of reflections of
(W,S). The Bruhat graph of (W,S), denoted by B(W,S) or simply B(W ), is the directed graph with
vertex set W , and a directed edge w1 → w2 between w1, w2 ∈ W if `(w1) < `(w2) and there exists
t ∈ T (W ) with tw1 = w2. ` denotes the length function of (W,S). The edges of B(W ) are labeled
by reflections; for instance the edge w1 → w2 is labeled with t. The Bruhat graph of an interval [u, v],
denoted by B([u, v]), is the subgraph of B(W ) obtained by only considering the elements of [u, v]. A
path in the Bruhat graph B([u, v]), will always mean a directed path from u to v. As it is the custom, we
will label these paths by listing the edges that are used.

A reflection ordering <T (W ) = <T is a total order of T (W ) so that r <T rtr <T rtrtr <T . . . <T
trt <T t or t <T trt <T trtrt <T . . . <T rtr <T r for each subgroup W ′ = 〈t, r〉 where t, r ∈ T (W ).
Let ∆ = (t1, t2, . . . , tk) be a path in B([u, v]), and define the descent set of ∆ by D(∆) = {j : tj+1 <T
tj} ⊂ [k − 1].

Let w(∆) = x1x2 · · ·xk−1, where xi = a if ti < ti+1, and xi = b, otherwise. In other words, set xi to
a if i 6∈ D(∆) and to b if i ∈ D(∆). In [3], Billera and Brenti showed that

∑
∆∈B([u,v]) w(∆) becomes

†The author was supported in part by NSF grant DMS-0555268.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
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a polynomial in the variables c and d, where c = a + b and d = ab + ba. This polynomial is called the
complete cd-index of [u, v], and it is denoted by ψ̃u,v(c,d). Notice that the complete cd-index of [u, v] is
an encoding of the distribution of the descent sets of each path ∆ in the Bruhat graph of [u, v], and thus
seems to depend on <T . However, it can be shown that this is not the case. For details on the complete
cd-index, see [3].

As an example, consider A2, the symmetric group on 3 elements with generators s1 = (1 2) and
s2 = (2 3). Then t1 = s1 < t2 = s1s2s1 < t3 = s2 is a reflection ordering. The paths of length 3 are:
(t1, t2, t3), (t1, t3, t1), (t3, t1, t3), and (t3, t2, t1), that encode to a2 + ab + ba + b2 = c2. There is one
path of length 1, namely t2, which encodes simply to 1. So ψ̃u,v(c,d) = c2 + 1.

Consider the paths in B([u, v]) of minimum length. Using these paths, we can define a ranked poset by
thinking of the edges of these paths as cover relations. We call this poset SP ([u, v]), and when the interval
[u, v] is the full group, we simply use the notation SP (W ). The rank of an element x in SP ([u, v]) is
given by its distance from u (and so if [u, v] is the whole group, the rank of x is given by its distance from
the identity e). Here we are interested in SP (W ), where W is a finite Coxeter group. To illustrate the
definition consider B2 and SP (B2) as depicted below. The rank of SP (B2) is two since that is the length
of the shortest paths in B(B2).

Fig. 1: B(B2) and SP (B2).

For any finite Coxeter group, there is a word wW0 of maximal length. It is a well known fact that
`(wW0 ) = |T (W )|. For any w ∈ W , one can write t1t2 · · · tn = w for some t1, t2, . . . , tn ∈ T (W ).
If n is minimal, then we say that w is T (W )-reduced, and that the absolute length of w is n. We write
`T (W )(w) = n, or simply `T (w) = n.

Notice that for w ∈ W , if `T (w) = `, then t1t2 · · · t` = w for some reflections in T (W ), but this does
not mean that (t1, t2, . . . , t`) is a (directed) path in B([e, w]). Nevertheless, we will show that for finite
W and w = wW0 , (t1, t2, . . . , t`) and any of its permutations (tτ(1), tτ(2), . . . , tτ(`)), τ ∈ A`−1, is a path
in B(W ). To be more specific, we show the following theorem.

Theorem 1.1 Let W be a finite Coxeter group and `0 = `T (W )(wW0 ), the absolute length of the longest
element of W . Then SP (W ) is isomorphic to the union of Boolean posets of rank `0.
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In Section 2 we present the proof of the theorem for the infinite families (groups of type A,B, and D
and Dihedral groups). In Section 3 we discussed the validity of the Theorem for the exceptional groups.
Computer search was used for F4, H3, H4, and E6, and a geometric argument was used to prove the case
E7 and E8. We summarize the number of Boolean posets that form SP (W ) and the rank of SP (W ) for
each finite Coxeter group in Table 1.

In Section 4 we discuss why Theorem 1.1 implies that the lowest-degree terms of the complete cd-index
ofW is given byαW ψ̃(B`0), where ψ̃(B`0) is the cd-index of the Boolean poset of rank `0 = `T (W )(wW0 ),
and αW is the number of Boolean posets that form SP (W ).

The following lemma will be used in our proofs.

Lemma 1.2 (Shifting Lemma, [1], Lemma 2.5.1) If w = t1t2 · · · tr is a T (W )-reduced expression for
w ∈W and 1 ≤ i < r, thenw = t1t2 · · · ti−1(titi+1ti)titi+2 · · · tr andw = t1t2 · · · ti−2ti(titi−1ti)ti+1 · · · tr
are T (W )-reduced.

As a consequence, there exists a T (W )-reduced expression for w having ti as last reflection (or first), for
1 ≤ i ≤ r. Furthermore, for any two reflections ti, tj , i < j there exists a T (W )-reduced expression for
w with ti, tj as the last two reflections (or the first two).

2 Groups of type A, B and D

2.1 The poset SP (An−1)

Lemma 2.1 `T (An−1)(w
An−1
0 ) = bn2 c.

Proof: Recall thatwAn−1
0 is the reverse of the identity 123 . . . n; that is, wAn−1

0 = n (n−1) (n−2) . . . 21.
So `T (An−1)(w

An−1
0 ) ≥ bn2 c since a reflection in An−1 is just a transposition, and thus cannot permute

more than two elements of [n] at a time.
For 1 ≤ i ≤ bn2 c = k, let ri be the transposition permuting i and n+ 1− i; that is, ri = (i n+ 1− i).

Notice that r1 · · · rk = w
An−1
0 , and so `T (An−1)(w

An−1
0 ) ≤ bn2 c. 2

Lemma 2.2 For σ ∈ An−1, let k = bn2 c,

fA(σ) =

⌊
|{i ∈ [n] | σ(i) = w

An−1
0 (i)}|

2

⌋
and

gA(σ) = min{` : there exists t1, t2, . . . , t` ∈ T (An−1) with t1t2 . . . t`σ = w
An−1
0 }.

Then fA(σ) = i =⇒ gA(σ) ≥ bn2 c − i for 0 ≤ i ≤ bn2 c.

Proof: We proceed by reverse (downward) induction. The case i = k holds, since gA is a non-negative
function. Suppose that the statement holds for i. We now show that it also holds for i− 1. Let σ ∈ An−1

with fA(σ) = i− 1. Consider t1, t2, . . . , t` ∈ T (An−1) with t1t2 · · · t`σ = w
An−1
0 and ` = gA(σ). No-

tice that there exists an positive integer m with fA(t`−m+1t`−m+2 · · · t`σ) = i, since fA(t1t2 · · · t`σ) =
k and a reflection can fix at most two elements in their position in wAn−1

0 , and so fA(tτ) ≤ fA(τ) + 1
for t ∈ T (An−1) and τ ∈ An−1. The last equality yields gA(σ) = ` ≥ k +m− i ≥ k + 1− i. 2

We can now show the proposition below, which gives Theorem 1.1 for type A.
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Proposition 2.3 Let k = bn2 c, and R = {r1, r2, . . . , rk}, where ri = (i n+ 1− i) is the transposition
permuting i ∈ [k] and n+ 1− i. If t1t2 · · · tk = w

An−1
0 , then:

(a) {t1, . . . , tk} = R
(b) titj = tjti for all i, j ∈ [k].
(c) (tτ(1), tτ(2), . . . , tτ(k)) is a path in B(An−1) for all τ ∈ Ak−1.

Proof: (a) Suppose that there exists ti ∈ T \R. Without loss of generality, using the Shifting Lemma, we
can assume that i = k. Say tk = (m j) where m < j ≤ n and j 6= n+ 1− k. Hence fA(tk) = 0, and
thus by Lemma 2.2 we have that gB(tk) ≥ k. But this contradicts t1t2 · · · tk−1tk = w

An−1
0 , which gives

that gA(tk) ≤ k − 1.
(b) Notice that ri and rj are disjoint transpositions for i 6= j, and thus commute.
(c) By (b) it is enough to show that `(t1t2 · · · tm) > `(t1t2 · · · tm−1) for 1 < m ≤ n. To do this, we

use Proposition 1.5.2 in [4]: If w ∈ An−1 then

`(w) = inv(w) = |{(i, j) ∈ [n]× [n] | i < j, w(i) > w(j)}|.

Let w ∈ An−1, if i < j, w(i) > w(j) then we say that (i, j) is an inversion pair of w.
Suppose that wm = t1t2 · · · tm; we now compare inv(wm) and inv(wm−1). By (a) we have that the

ti’s are inR, so tm = (i n+1−i) for some i ∈ [k]. Moreover, wm−1(i) = i, wm−1(n+1−i) = n+1−i
and wm(l) = wm−1(l) for all l ∈ [n] \ {i, n+ 1− i}. Now consider that:

1. If (l, i) is an inversion pair of wm−1 then l < i and wm−1(l) > i. If wm−1(l) > n + 1 − i then
(l, i) and (l, n + 1 − i) are inversion pairs of both wm−1 and wm. If wm−1(l) ≤ n + 1 − i, then
(l, n+ 1− i) is not an inversion pair of wm−1, but since wm(n+ 1− i) = i, it is an inversion pair
of wm.

2. If (l, n+1−i) in an inversion pair ofwm−1 then l < n+1−i andwm(l) = wm−1(l) > n+1−i >
i = wm(n+ 1− i). Hence (l, n+ 1− i) is also an inversion pair of wm

3. If (i, l) an inversion pair of wm−1 then i < l and i > wm−1(l). Since wm(i) = n + 1 − i > i >
wm−1(l) = wm(l), (i, l) is also an inversion pair of wm.

4. If (n + 1 − i, l) is an inversion pair of wm−1 then n + 1 − i < l and n + 1 − i > wm−1(l). If
i > wm−1(l) then (i, l) and (n+1−i, l) are inversion pairs of bothwm−1 andwm. If i ≤ wm−1(l),
then (i, l) is not an inversion pair of wm−1, but since wm(i) = n + 1− i, it is an inversion pair of
wm.

Thus inv(wm) ≥ inv(wm−1). To show that inv(wm) ≥ inv(wm−1) + 1, consider the pair (i n+ 1− i)
which is not an inversion pair of wm−1. But since wm(i) = n + 1 − i > i = wm(n + 1 − i), this is an
inversion pair of wm. 2

We remark that the above proposition shows that SP (An−1) is isomorphic to the Boolean poset of rank
k. Moreover, SP (An−1) is the poset of subsets of R ordered by inclusion.
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2.2 The poset SP (Bn)

We used the combinatorial description of Bn and T (Bn) in [4], Section 8.1.
Recall that Bn is the group of signed permutations; that is, the group of permutations σ of the set

[±n] = {−n,−n+ 1, . . . ,−1, 1, 2, . . . , n− 1, n} with the property σ(−i) = −σ(i) for all i ∈ [±n]. We
used the notation i to denote −i for i ∈ [±n]. We have that wBn

0 = 1 2 . . . n. Further, T (Bn) = {(i i) :
i ∈ [n]} ∪ {(i j)(i j) : 1 ≤ i < |j| ≤ n}. We call the set {(i i) : i ∈ [n]} reflections of type I and
the set {(i j)(i j) : 1 ≤ i < |j| ≤ n} reflections of type II. We now prove the analogous versions of the
propositions in Section 2.1.

Proposition 2.4 `T (Bn)(w
Bn
0 ) = n.

Proof: Notice that a reflection of type II changes the sign of either zero or two elements in [n] and swaps
them. So at least another reflection must be used to place them back in their respective order. That is, at
least two reflections of type II are needed to place two elements in [n] in their positions in wBn

0 . Hence
at least 2m reflections of type II are needed to place 2m elements of [n] in their position in wBn

0 , with
0 ≤ m ≤ bn2 c, and after that n − 2m reflections of type I are needed to place the remaining n − 2m
elements in their position in wBn

0 . So `T (Bn) ≥ n.
Now, notice that (1 1)(2 2) · · · (n n) = wBn

0 , and so `T (Bn)(w
Bn
0 ) ≤ n. 2

Lemma 2.5 For σ ∈ Bn, let

fB(σ) = |{i ∈ [n] | σ(i) = wBn
0 (i) = i}|+ |{(i, j) ∈ [n]× [n], i < j | (σ(i), σ(j)) ∈ {(j, i), (j, i)}|

and
gB(σ) = min{` : there exists t1, t2, . . . , t` with t1t2 . . . t`σ = wBn

0 }.

Then fB(σ) = i =⇒ gB(σ) ≥ n− i for 0 ≤ i ≤ n.

Proof: We proceed by reverse induction. The case i = n holds, since gB is a non-negative function.
Suppose that the statement holds for i. We now show that it also holds for i − 1. Let σ ∈ Bn with
fB(σ) = i − 1. Consider t1, t2, . . . , t` ∈ T (Bn) with t1t2 · · · t`σ = wBn

0 and ` = gB(σ). Notice that
there exists m with fB(t`−m+1 · · · t`−1t`σ) = i, since fB(t1t2 · · · t`σ) = n and a reflection can fix at
most one element in its position inwBn

0 or create a pair (i, j) that is sent to (j, i) or (j, i). The last equality
yields gB(σ) = ` ≥ k +m− i ≥ k + 1− i. 2

Let t1, t2 be two reflections of type II satisfying {t1, t2} = {(k l)(k l), (k l)(k l)} for some k, l
with 1 ≤ k < l ≤ n. Then we see that t1t2(k) = t2t1(k) = k and t1t2(l) = t2t1(l) = l. We call the pair
t1, t2 a good pair. Good pairs play a special role in the shortest paths in B(Bn), as seen in the theorem
below.

Proposition 2.6 If t1t2 . . . tn = wBn
0 , then:

(a) For every i ∈ [n] either ti is of type I or there exists j ∈ [n], i 6= j so that ti, tj is a good pair.
(b) titj = tjti for all i, j ∈ [n].
(c) (tτ(1), tτ(2), . . . , tτ(n)) is a path in B(Bn) for all τ ∈ An−1.
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Proof: (a) Suppose that some reflection in {t1, . . . , tn} is of type II, say ti = (k l)(k l), and suppose
that there is no tj so that ti, tj is a good pair. Since wBn

0 (k) = k and wBn
0 (l) = l, there must be another

reflection tm that is not disjoint from ti. Without loss of generality, we can assume that {ti, tm} =
{tn−1, tn}. Since tn−1, tn is not a good pair, then fB(tn−1tn) = 0. Hence gB(tn−1tn) ≥ n, which
contradicts t1t2 · · · tn = wBn

0 .
(b) Notice that since all the reflections in t1 · · · tn = wBn

0 of type I are distinct, they commute with each
other. Furthermore, if ti, tj are a good pair, then they also commute. We need to verify that (i) if ti, tj are
of type II and not a good pair, then they are commuting reflections, and (ii) if ti, tj are of mixed types,
then they commute. Using the Shifting Lemma again, we can assume that the reflections in both cases are
tn−1 and tn. Suppose that tn−1 and tn do not commute. In both (i) and (ii) we see that fB(tn−1tn) = 0,
and so gB(tn−1tn) ≥ n by Lemma 2.5, which contradicts t1t2 · · · tn−1tn = wBn

0 .
(c) By Proposition 8.1.1 in [4], if w ∈ Bn then

`(w) = inv(w) + Neg(w)

where
inv(w) = inv(w(1), w(2), . . . , w(n)) and Neg(w) = −

∑
j∈[n]:w(j)<0

v(j).

For i ∈ [n], let wi = t1t2 · · · ti. Notice that from (b) it is enough to prove that `(wm) > `(wm−1) for
1 < m ≤ n. We have the following cases:

1. tm is of type I, say tm = (j j), with j ∈ [n]. (a) and (b) give that no other reflection involves the
element j, and so wm−1(j) = j. Furthermore, we have that wm(k) = wm−1(k) for k ∈ [n] \ {j}.
Now,

• If (i, j) is an inversion pair of wm−1, then i < j and wm−1(i) > wm−1(j) = j, which
gives that wm−1(i) > 0. So wm(i) = wm−1(i) > j = wm(j), and the pair (i, j) is also an
inversion pair of wm. Since Neg(wm) = Neg(wm−1) + j, we have that `(wm−1) < `(wm).

• If (j, i) is an inversion pair of wm−1, then j < i and wm−1(j) = j > wm−1(i). Suppose
that (j, i) is not an inversion pair of wm. There are at most j − 1 such inversion pairs (j, i) of
wm−1, since 1 < wm−1(i) < j. On the other hand, notice that Neg(wm) = Neg(wm−1) + j.
So

`(wm)− `(wm−1) = inv(wm) + Neg(wm)− (inv(wm−1) + Neg(wm−1))
≥ inv(wm−1)− (j − 1) + (Neg(wm−1) + j)− (inv(wm−1) + Neg(wm−1))
≥ 1

2. tm is of type II but does not change any element’s signs, say tm = (i j)(i j) with 1 ≤ i < j ≤ n.
Then by the same argument as in the proof of Proposition 2.3 (c), we have that `(wm) > `(wm−1).

3. If tm = (i j)(i j), with 1 ≤ i < j ≤ n; that is, tm swaps i and j and changes their sign.
(a) and (b) give that (wm−1(i), wm−1(j)) ∈ {(i, j), (j, i)}, (wm(i), wm(j)) ∈ {(j, i), (i, j)}, and
wm−1(k) = wm(k) for k ∈ [±n] \ {±i,±j}. Then
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• If (k, i) is an inversion pair of wm−1 then k < i and either wm−1(k) > i or wm−1(k) > j.
In either case (k, i) is also an inversion pair of wm since wm(k) = wm−1(k) > 0 and
wm(i) < 0. Further, Neg(wm) = Neg(wm−1) + i+ j, and so `(wm−1) < `(wm).

• If (i, k) is an inversion pair of wm−1 then i < k and either i > wm−1(k) or j > wm−1(k).
If we assume that (i, k) is not an inversion pair of wm, then in the former case, there are at
most i − 1 pairs lost, and in the latter there are at most j − 1. However, since Neg(wm) =
Neg(wm−1) + i+ j, we still have that `(wm−1) < `(wm).

• If (j, k) is an inversion pair of wm−1 then j < k and either j > wm−1(k) or i > wm−1(k).
If we assume that (j, k) is not an inversion pair of wm, then in the former case, there are at
most j − 1 pairs lost, and in the latter there are at most i − 1. However, since Neg(wm) =
Neg(wm−1) + i+ j, we still have that `(wm−1) < `(wm).

• If (k, j) is an inversion pair of wm−1 then k < j and either wm−1(k) > j or wm−1(k) > i.
In either case (k, j) is also an inversion pair of wm since wm(k) = wm−1(k) > 0 and
wm(j) < 0. Further, Neg(wm) = Neg(wm−1) + i+ j, and so `(wm−1) < `(wm).

In all cases, we have the desired result. 2

The previous proposition says that SP (Bn) is (isomorphic to) the union of Boolean posets of rank
n, one for each set {t1, t2, . . . , tn} with t1t2 · · · tn = wBn

0 . As an example, Figure 1 illustrates that
SP (B2) is the union of two Boolean posets. In general, one can compute the number of Boolean posets
in SP (Bn).

2.2.1 Number of Boolean posets in SP (Bn)

Let bn be the number of Boolean posets in Bn. We obtain a Boolean poset for each set {t1, . . . , tn} with
t1t2 · · · tn = wBn

0 . It is easy to see that b1 = 1 and b2 = 2 (see Figure 1). For n ≥ 2, notice that
if t1t2 · · · tn(1) = 1, then by Proposition 2.6 there are two possible cases: (i) there exists tj = (1 1)
or there exists a good pair of reflections of the form (1 k)(k 1), (1 k)(k 1). There are bn−1 such
reflections in case (i) and (n− 1)bn−2 in case (ii). So bn satisfies the recurrence relation

bn = bn−1 + (n− 1)bn−2

with initial conditions b1 = 1 and b2 = 2. Notice that this count is the same as the number of partitions
of a set of n distinguishable elements into sets of size 1 and 2.

It is easy to see that

bn = 1 +
bn

2 c∑
j=1

1
j!

j−1∏
i=0

(
n− 2i

2

)
.

2.3 The poset SP (Dn)

As in the previous section, we used the combinatorial description of Dn and T (Dn) in [4] Section 8.2.
Dn (n > 1) is the group of signed permutations with an even number of negative elements (e,g, 1 2 3 is

an element inD3 whereas 1 2 3 is not). LikeBn, if σ ∈ Dn then σ(−i) = −σ(i) for i ∈ [±n]. Moreover,
wDn

0 = 1 2 . . . n if n is even and wDn
0 = 1 2 . . . n if n is odd. Further, T (Dn) = {(i j)(i j) : 1 ≤ i <

|j| ≤ n}; that is, the reflections of Dn are the reflections of Bn of type II.



198 Saúl A. Blanco

Proposition 2.7 `T (Dn)(w
Dn
0 ) = n if n is even, and `T (Dn) = n− 1 if n is odd.

Proof: Same as for Proposition 2.4, but only using reflections of type II. Notice that that for n even,
r1r
′
1r2r

′
2 · · · rkr′k = wDn

0 , where k = n/2 and ri = (2i−1 2i)(2i 2i−1), r′i = (2i−1 2i)(2i 2i− 1) 1 ≤
i ≤ n/2. Similarly, for n odd, we have that t1t′1t2t

′
2 · · · tkt′k = wDn

0 , where k = (n − 1)/2 and
ri = (2i 2i+ 1)(2i+ 1 2i), r′i = (2i 2i+ 1)(2i+ 1 2i), 1 ≤ i ≤ (n− 1)/2. 2

Lemma 2.8 For σ ∈ Dn, for n even, define

fD(σ) = |{i ∈ [n] | σ(i) = wDn
0 (i) = i}|+ |{(i, j) ∈ [n]× [n], i < j | (σ(i), σ(j)) ∈ {(j, i), (j, i)}|

and for n odd, define

fD(σ) = |{i ∈ [n]\{1} | σ(i) = wDn
0 (i) = i}|+|{(i, j) ∈ [n]×[n], i < j | (σ(i), σ(j)) ∈ {(j, i), (j, i)}|.

Moreover, let

gD(σ) = min{` : there exists t1, t2, . . . , t` wih t1t2 . . . t`σ = wDn
0 }.

Then fD(σ) = i =⇒ gD(σ) ≥ m− i for 0 ≤ i ≤ m and m = n if n is even, m = n− 1 if n is odd.

Proof: Same as in Lemma 2.5, using only reflections of type II. 2

Proposition 2.9 Suppose that t1t2 . . . tm = wDn
0 , where m = n if n is even and m = n − 1 if n is odd.

Then:
(a) For every i ∈ [m] there exists j ∈ [m], i 6= j so that ti, tj is a good pair.
(b) titj = tjti for all i, j ∈ [m].
(c) (tτ(1), tτ(2), . . . , tτ(m)) is a path in B(Dn) for all τ ∈ Am−1.

Proof: The proof for (a) and (b) is the same as in Proposition 2.6, but only using reflections of type II.
For (c), even though the length function is not the same as described in the Section 2.2, we recall that

B(Dn) is the induced graph of B(Bn) on the elements of Dn by Proposition 8.2.6 in [4]. 2

2.3.1 Number of Boolean posets in SP (Dn)

Let dn be the number of Boolean posets in SP (Dn) for each set {t1, t2, . . . , tn} ⊂ T (Dn) with t1t2 · · · tn =
wDn

0 . Counting these subsets is equivalent to counting the partitions of [n], if n is even, or [n− 1], if n is
odd, into subsets of two elements (these represents the good pairs). That is,

dm =
1
bm2 c!

bm
2 c−1∏
i=0

(
m− 2i

2

)
where m = n if n is even, and m = n − 1 if n is odd. Since m is even, notice that this is the same as
counting the number of partitions of [m] into sets of size 2.
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2.4 Finite Dihedral groups
Let I2(m),m ≥ 1 be the dihedral group of order 2m with generating set {s1, s2}, and let T = T (I2(m))
its reflection set. If n is odd, then

w
I2(m)
0 = s1s2s1 · · · s1︸ ︷︷ ︸

m

= s2s1s2 . . . s2︸ ︷︷ ︸
m

is a reflection, and so `T (w0) = 1. Hence SP (I2(m)) is isomorphic to the Boolean poset of rank 1, if m
is odd.

The case where m is even is more interesting, as wI2(m)
0 6∈ T . We readily see that `T (w0) = 2, since

for instance wI2(m)
0 = s1 s2s1 · · · s2︸ ︷︷ ︸

m−1

. Thus SP (I2(m)) is the union of Boolean posets of rank 2, if m is

even.
Fix w0 to start with s1. We now count number of Boolean posets in SP (I2(m)) for m even. This

number is the same as the number of sets {t1, t2} with t1t2 = w
I2(m)
0 . There is one such set for each

element of odd rank that starts with s1, since for each such element t1 there exists a unique element t2
with t1t2 = w

I2(m)
0 . Since there are m

2 such elements, there are m
2 Boolean posets in SP (I2(m)).

3 Exceptional Coxeter groups
3.1 F4, H3, H4, and E6

We were able to verify through computer search that the the results in the previous sections also worked
for the following exceptional groups: F4, H3, H4, E6. That is, the shortest path poset for these groups
form a union of Boolean posets of rank the absolute length of the longest word wW0 . We summarize the
results in Table 1. The computer search was done using Stembridge’s coxeter Maple package [7], and
it basically consisted of finding all shortest paths and verifying the analogous of Propositions 2.3, 2.6, 2.9
for those groups; that is, that the paths are given by reflections that are fully commutative.

An interesting observation is that the 3 Boolean posets that form SP (E6) are almost disjoint, sharing
only e and wE6

0 (the bottom and top elements of each poset).

3.1.1 E7 and E8

For E7 and E8 we were not able to verify by computer that the shortest paths form a union of Boolean
posets, since it involved more computer power (or a better code) than was available to us. However, we
can argue that this is indeed the case using geometric arguments. Let (W,S) be Coxeter system, and
consider the geometric representation of W , σ : W ↪→ GL(V ), where V is a vector space with basis
Π = {αs | s ∈ S} (Π is called the set of simple roots). It is shown in [6] Section 5.4 that σ is a faithful
representation.

The root system of the Coxeter system (W,S) is the set Φ = {σ(w)(αs) : s ∈ S,w ∈W}. Let β ∈ Φ,
then β =

∑
s∈S csαs. It is a well-known result that either cs ≥ 0 or cs ≤ 0 for all s ∈ S. In the former

case we say that β is a positive root, and in the latter case we say that β is negative root. The set of
positive roots is denoted by Φ+ and the set of negative roots is denoted by Φ−. It is also a well known
fact (Proposition 4.4.5 in [4]) that there is a bijection between the set of reflections of W , T (W ) and Φ+

given by t = wsw−1 7→ σ(w)(αs).
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Finally , we shall use the fact that σ(wEn
0 ) = − id, where id is the identity matrix of dimension n, and

n = 7, 8. We point out that σ(wEn
0 ) 6= − id, and thus rank(SP (E6)) < 6). For details, see [2] Chapter

VI, §4.10 and §.11. With this in mind we can show

Proposition 3.1 For En, where n = 7, 8 we have that:
(a) `T (wEn

0 ) = n.
(b) If wEn

0 = t1t2 · · · tn then titj = tjti for all i, j ∈ [n].
(c) (tτ(1), tτ(2), . . . , tτ(n)) is a path in B(En) for all τ ∈ An−1.

Proof: (a) Since a reflection fixes a hyperplane, the product of k reflections fixes the intersection of the k
hyperplanes that are fixed by each reflection. This intersection has codimension at most k, and so it’s not
empty unless k ≥ n. In particular, σ(wEn

0 ) = − id leaves no points fixed (except for 0) and so cannot
be written as a product of fewer than n reflections; that is `T (wEn

0 ) ≥ n. Moreover by Carter’s Lemma
(Lemma 2.4.5 in [1]), we have that `T (wEn

0 ) ≤ n. Thus `T (wEn
0 ) = n.

(b) Now consider − id = st1st2 · · · stn , where σ(ti) = sti for 1 ≤ i ≤ n are the reflections (in V )
with respect to the hyperplanesH1,H2, . . . ,Hn that are perpendicular to the unit vectors v1,v2, . . . ,vn.
The space fixed by the product st1st2 · · · stn−1 is Rvn (since the product of everything is − id) which has
co-dimension n− 1 and then by the previous argument,⋂

i<n

Hi = Rvn,

that is, vn ∈ Hi for all i < n. Hence, vi ⊥ vn, which means that tn commutes with ti for i < n. By the
Shifting Lemma, we have that any two reflections ti, tj commute.

(c) Let t1 · · · tn = wEn
0 . We are going to show that `(t1t2 · · · tk) > `(t1t2 · · · tk−1) for 1 < k ≤ n.

As before, let sti = σ(ti) be the reflection on V corresponding to ti about the hyperplane Hi, and let
vi be the normal vector to Hi. Since vi ⊥ vj for all i 6= j, we have that st1st2 · · · sti−1(αi) = αi,
where αi ∈ Φ+ is the positive root corresponding to ti. Thus by Proposition 4.4.6 in [4], we have that
`(t1t2 · · · ti) > `(t1t2 · · · ti−1) for 1 ≤ i ≤ n. 2

As a consequence of the above theorem, SP (E7) and SP (E8) are both formed by the union of Boolean
posets that share at least the bottom and top elements. We are now done with the proof of Theorem 1.1.

3.1.2 Number of Boolean posets in SP (E7) and SP (E8)

To count the number of paths (chains) in SP (En) where n = 7, 8 we simply count the number n-tuples
of perpendicular roots, since σ(wEn

0 ) = − id. Each one of these n-tuples up to signs and permutations
represents a Boolean poset. Direct computation yields 135 Boolean posets in SP (E7) and 2025 Boolean
posets in SP (E8). These results are included in Table 1.

Remark 3.2 The above geometric argument can be used to obtain the results that were proven in Section
2. As was the case in our proofs, each group type requires its own argument, since σ(wW0 ) is different
for each case. However we believe that the combinatorial proofs are more appropriate for the FPSAC
audience.
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4 Lowest-degree terms of the complete cd-index of finite
Coxeter groups

For any Eulerian poset P , one can define the cd-index of P . This polynomial encodes the flag h-vector.
The interested reader is referred to [5] for more information on the cd-index of Eulerian posets. Since
Bruhat intervals are Eulerian and the reflection ordering has the property of having a unique chain (path
in the Bruhat graph) with no descents for every interval [u, v], the highest-degree terms of the complete
cd-index coincide with the cd-index.

Let ψ̃(Bn) be cd-index of the Boolean poset Bn (so Bn is the poset of subsets of [n] ordered by
inclusion). We can use Theorem 5.2 in [5] to compute ψ̃(Bn). First ψ̃(B1) = 1 and for n > 1,

ψ̃(Bn) = ψ̃(Bn−1) · c +G(ψ̃(Bn−1)) (1)

where G is is the derivation G(c) = d and G(d) = cd. In particular, we have that ψ̃(B2) = c, ψ̃(B3) =
c2 + d, ψ̃(B4) = c3 + 2cd + 2dc, and so on.

Propositions 2.3, 2.6 and 2.9, and the results and computer search of Section 3 give that for a finite
Coxeter group W , the corresponding SP (W ) is the union of Boolean posets (that share at least the
bottom and top elements). So any interval in SP (W ) belongs to a Boolean poset corresponding to a set
R = {t1, t2, . . . , t`} ⊂ T (W ) with `T (W )(wW0 ) = ` and t1t2 · · · t` = wW0 . Thus any interval of SP (W )
(thought of as paths in B(W ) labeled with T (W ), where T (W ) is ordered by a reflection ordering) has a
unique chain (path) with empty descent set. Hence counting descent sets in the chains given by R is the
same as counting the flag h-vector of the Boolean poset of rank `.

As a consequence, the lowest-degree terms in the complete cd-index of W add up to a multiple N of
the cd-index of the Boolean poset of ranks `T (W )(wW0 ). N is the number of Boolean posets in SP (W );
that is, the number of sets {t1, . . . , t`T (wW

0 )} with t1t2 · · · t`T (wW
0 ) = wW0 . These terms can be computed

using (1) and Table 1. So we have

Theorem 4.1 Let W be a finite Coxeter group, αW is the number of Boolean posets that form SP (W )
and `0 = `T (wW0 ). Then lowest degree terms of ψ̃e,wW

0
are given by αW ψ̃(B`0).

In particular, the lowest-degree terms of ψ̃e,wW
0

are minimized by ψ̃(B`0).
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Tab. 1: Finite coxeter groups W , rank(SP (W )), and the number of Boolean posets in SP (W )

W rank(SP (W )) # of Boolean posets in SP (W )
An−1 bn−1

2 c 1
Bn n bn
Dn n if n is even; n− 1 if n is odd dn
I2(m) 2 if m is even; 1 if m is odd m

2 if m is even; 1 if m is odd
F4 4 24
H3 3 5
H4 4 75
E6 4 3
E7 7 135
E8 8 2025
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We propose an experimental mathematics approach leading to the computer-driven discovery of various conjectures about
structural properties of generating functions coming from enumeration of restricted lattice walks in 2D and in 3D.
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1 Introduction
There is a strange phenomenon about the generating functions that count lattice walks restricted to the quarter
plane: depending on the choice of the set S ⊆ {↙,←,↖, ↑,↗,→,↘, ↓} of admissible steps, the generating
function is sometimes rational, sometimes algebraic [but not rational], sometimes D-finite [but not algebraic],
and sometimes not even D-finite. This is quite in contrast to the corresponding problem in 1D, where the
generating functions invariably are algebraic [3]. Much progress was made recently on understanding why
this is so, and only very recently, Bousquet-Mélou and Mishna [9] have announced a classification of all the
256 possible step sets into algebraic, transcendental D-finite, and non-D-finite cases, together with proofs for
the algebraic and D-finite cases and strong evidence supporting the conjectured non-D-finiteness of the others.

As usual, a power series S(t) ∈ Q[[t]] is called algebraic if there exists a bivariate polynomial P (T, t) in
Q[T, t] such that P (S(t), t) = 0, and transcendental otherwise. Also as usual, a power series S(t) is called
D-finite if it satisfies a linear differential equation with polynomial coefficients. (Every algebraic power series
is D-finite, but not vice versa.) At first glance, it might seem easy to prove that a power series is algebraic
or D-finite: just come up with an appropriate equation, and then verify that the series satisfies this equation.
But as far as lattice walks are concerned, most proofs given so far are indirect in that they avoid exhibiting the
equation explicitly but merely are satisfied showing its existence. This is probably so because the equations
appearing in this context are often too big to be dealt with by hand.

Nevertheless, it is interesting to know the equations explicitly, because they provide a standard canonical
representation for a series, from which lots of further information can be extracted in a straightforward manner.
By applying a well-known technique from computer algebra (in modern fashion, cf. Section 2), we have
systematically searched for differential equations and algebraic equations that the series counting the walks in
the quarter plane satisfy. These are given in Section 3. We have also made a first step towards classifying walks
in Z3 confined to the first octant (cf. Section 4) by considering all step sets S with up to five elements, and
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performed a systematic search for equations of the corresponding series. More than 2000 hours of computation
time have been spent in order to analyze about 3500 different sequences.

We do not provide proofs that the equations we found are indeed correct, but the computational evidence in
favor of our equations is striking. We have no doubt that all the equations we found are correct. In principle,
it would be possible to supplement the “automatically guessed” equations by computer proofs in a systematic
fashion, using techniques that have recently been applied to some special cases [25, 24, 6]. But we found that
the computational cost for performing these automated proofs would be by far higher than what was needed
for the mere discovery.

2 Methodology
To study generating functions for lattice walks, we follow a classical scheme in experimental mathematics.
It is based on the following steps: (S1) computation of high order expansions of generating power series;
(S2) guessing differential and/or algebraic equations satisfied by those power series; (S3) empirical certifi-
cation of the guessed equations (sieving by inspection of their analytic, algebraic and arithmetic properties);
(S4) rigorous proof, based on (exact) polynomial computations.

In what follows, we only explain Steps (S1), (S2) and (S3). A full description of Step (S4) is given in [6].
By way of illustration, we choose an example requiring computations with human-sized outputs, namely the
classical case, initially considered by Kreweras [27, 7, 8], of walks in the quarter plane restricted to the step
set S = {←,↗, ↓}.

2.1 Basic Definitions and Facts
We focus on 2D and 3D lattice walks. The 2D walks that we consider are confined to the quarter plane N2,
they join the origin of N2 to an arbitrary point (i, j) ∈ N2, and are restricted to a fixed subset S of the step set
{↙,←,↖, ↑,↗,→,↘, ↓}. If f(n; i, j) denotes the number of such walks of length n (i.e., using n steps
chosen from S), the sequence f(n; i, j) satisfies the multivariate recurrence with constant coefficients

f(n+ 1; i, j) =
∑

(h,k)∈S

f(n; i− h, j − k) for n, i, j ≥ 0. (1)

Together with the appropriate boundary conditions

f(0; 0, 0) = 1 and f(n; i, j) = 0 if i < 0 or j < 0 or n < 0,

the recurrence relation (1) uniquely determines the sequence f(n; i, j). As is customary in combinatorics, we
let

F (t;x, y) =
∑
n≥0

(∑
i,j≥0

f(n; i, j)xiyj
)
tn

be the trivariate generating power series of the sequence f(n; i, j). As f(n; i, j) = 0 as soon as i > n or
j > n, the inner sum is actually finite, and so we may regard F (t;x, y) as a formal power series in t with
polynomial coefficients in Q[x, y].

Specializing F (t;x, y) to selected values of x and y leads to various combinatorial interpretations. Set-
ting x = y = 1 yields the power series F (t; 1, 1) whose coefficients count the total number of walks with
prescribed number of steps (and arbitrary endpoint); the choice x = y = 0 gives the series F (t; 0, 0) whose
coefficients count the number of walks returning to the origin; setting x = 1, y = 0 yields the power series
whose coefficients count the number of walks ending somewhere on the horizontal axis, etc.

By [10, Th. 7], multivariate sequences that satisfy recurrences with constant coefficients have moderate
growth, and thus their generating series are analytic at the origin. The next theorem refines this result in our
context.
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Theorem 1 The following inequality holds

f(n; i, j) ≤ |S|n for all (i, j, n) ∈ N3. (2)

In particular, the power series F (t; 0, 0), F (t; 1, 0), F (t; 0, 1) and F (t; 1, 1) are convergent in C[[t]] at t = 0
and their radius of convergence is at least 1/|S|.

Proof: The total number of unrestricted n-step walks starting from the origin is |S|n, so the number of walks
restricted to a certain region is bounded by this quantity. This implies that the coefficient of tn in F (t; 1, 1) is
at most |S|n. The bound also applies to the coefficient of tn in F (t;α, β) for α, β ∈ {0, 1}, as these series
count walks which are subject to further restrictions. 2

2.1.1 D-finite generating series of walks are G-functions
A power series S(t) =

∑
n≥0 ant

n in Q[[t]] is called a G-function(i) if (a) it is D-finite; (b) its radius of
convergence in C[[t]] is positive; (c) there exists a constant C > 0 such that for all n ∈ N, the common
denominator of a0, . . . , an is bounded by Cn.

Examples ofG-functions are the power series expansions at the origin of log(1− t) and (1− t)α for α ∈ Q.
More generally, the Gauss hypergeometric series 2F1(α, β, γ; t) with rational parameters α, β, γ, is also a G-
series [17]. A celebrated theorem of Eisenstein assures that any algebraic power series must be a G-function
(if S is algebraic, there exists an integer C ∈ N such that anCn+1 is an integer for all n.) The fact that
G-functions arise frequently in combinatorics was recently pointed out by Garoufalidis [20].
G-functions enjoy many remarkable properties. Chudnovsky [14] proved that the minimal order differential

equation satisfied by a G-series must be globally nilpotent (see Section 2.4.4 below for the definition and
an algorithmic use of this notion). By a theorem of Katz and Honda [22, 21], the global nilpotence of a
differential operator implies that all of its singular points are regular singular points with rational exponents.
See also [1, 13, 17] for more details on this topic.

Theorem 2 Let S(t) be one of the power series F (t; 0, 0), F (t; 1, 0), F (t; 0, 1) and F (t; 1, 1). If S is D-finite,
then S is a G-series. In particular, its minimal order homogeneous linear differential equation is Fuchsian
and it has only rational exponents. Moreover, the coefficient sequence of S(t) is asymptotically equivalent to
a sum of terms of the form κρnnα(log n)β for some constants κ ∈ R, α ∈ Q, ρ ∈ Q, and β ∈ N.

Proof: The conditions (a) and (c) in the definition of a G-function are clearly satisfied. The only non-trivial
point is the fact that the series S has a positive radius of convergence in C. This follows from Theorem 1.
The Fuchsianity of the minimal equation for S, and the rationality of its exponents, follow by combining the
results by Katz, Honda and Chudnovsky cited above. The claim on the asymptotics of the coefficients of S(t)
is a consequence of [20, Prop. 2.5]. 2

For 3D walks, the definitions are analogous. The trivariate power series F (t;x, y) is simply replaced by
the generating series G(t;x, y, z) ∈ Q[x, y, z][[t]] of the sequence g(n; i, j, k) that counts walks in N3 starting
at (0, 0, 0) and ending at (i, j, k) ∈ N3. Note that the appropriate versions of Theorems 1 and 2 hold; in
particular, the generating series of octant walks G(t; 1, 1, 1) is a G-series whenever it is D-finite.

2.2 Computing large series expansions
The recurrence (1) can be used to determine the value of f(n; i, j) for specific integers n, i, j ∈ N. Theorem 1
implies that f(n; i, j) is a non-negative integer whose bit size is at most O(n). If N ∈ N, the values f(n; i, j)

(i) The usual definition is more general, the coefficients of S can be taken in an arbitrary algebraic number field. For our purposes it is
sufficient and convenient to restrict to rational coefficients.
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for 0 ≤ n, i, j ≤ N can thus be computed altogether by a straightforward algorithm that uses O(N3) arith-
metic operations and Õ(N4) bit operations. (We assume that two integers of bit-size N can be multiplied in
Õ(N) bit operations; here, the soft-O notation Õ( ) hides logarithmic factors.) The memory storage require-
ment is proportional to N3. The same is also true for the truncated power series FN = F (t;x, y) mod tN .
For our experiments in 2D, we have chosen N = 1000. With this choice, the computation of the f(n; i, j) is
the step which consumes by far the most computation time in our calculations.(ii)

Example 1 The Kreweras walks satisfy the recurrence

f(n+ 1, i, j) = f(n, i+ 1, j) + f(n, i, j + 1) + f(n, i− 1, j − 1) for n, i, j ≥ 0,

which allows the computation of the first terms of the series F (t;x, y)

F (t;x, y) = 1 + xyt+ (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

and also the first terms of the generating series F (t; 1, 1) for the total number of Kreweras walks

F (t; 1, 1) = 1 + t+ 3t2 + 7t3 + 17t4 + 47t5 + 125t6 + 333t7 + 939t8 + 2597t9+

7183t10 + 20505t11 + 57859t12 + 163201t13 + 469795t14 + · · ·

In the 3D case, the values g(n; i, j, k) for 0 ≤ n, i, j, k ≤ N can be computed in O(N4) arithmetic
operations, Õ(N5) bit operations andO(N4) memory space. In practice, we found that computingG mod tN

with N = 400 is feasible.

2.3 Guessing
Once the first terms of a power series are determined, our approach is to search systematically for candidates
of linear differential equations or of algebraic equations which the series may possibly satisfy. This technique
is classical in computer algebra and mathematical physics, see for example [11, 31, 28]. Differential and
algebraic guessing procedures are available in some computer algebra systems like Maple and Mathematica.

2.3.1 Differential guessing
If the first N terms of a power series S ∈ Q[[t]] are available, one can search for a differential equation
satisfied by S at precision N , that is, for an element L in the Weyl algebra Q[t]〈Dt〉 of differential operators
in the derivation Dt = d

dt with polynomial coefficients in t, such that

L(S) = cr(t)S(r)(t) + · · ·+ c1(t)S′(t) + c0(t)S(t) = 0 mod tN . (3)

Here, the coefficients c0(t), . . . , cr(t) ∈ Q[t] are not simultaneously zero, and their degrees are bounded
by a prescribed integer d ≥ 0. By a simple linear algebra argument, if d and r are chosen such that (d +
1)(r + 1) > N , then such a differential equation always exists. On the other side, if d, r and N are such that
(d + 1)(r + 1) � N , the equation (3) translates into a highly over-determined linear system, so it has no
reason to possess a non-trivial solution.

The idea is that if the given power series S(t) happens to be D-finite, then for a sufficiently large N , a
differential equation of type (3) (thus satisfied a priori only at precision N ) will provide a differential equation

(ii) We have carried out our computations on various different machines whose main memory ranges from 8 Gb to 32 Gb and which are
equipped with (multiple) processors all running at about 3GHz.
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which is really satisfied by S(t) in Q[[t]] (i.e., at precision infinity). In other words, the D-finiteness of a power
series can be (conjecturally) recognized using a finite amount of information.

Given the values d, r,N , and the first N terms of the series S, a candidate differential equation of type (3)
for S can be computed by Gaussian elimination in O(N3) arithmetic operations and Õ(N4) bit operations.
Actually, a modular approach is preferred to a direct Gaussian elimination over Q. Precisely, the linear algebra
step is performed modulo several primes p, and the results (differential operators modulo p) are recombined
over Q via rational reconstruction based on an effective version of the Chinese remainder theorem. (See [23]
for an implementation of this technique in Mathematica.)

If no differential equation is found, this definitely rules out the possibility that a differential equation of
order r and degree d exists. This does not, however, imply that the series at hand is not D-finite. It may
still be that the series satisfies a differential equation of order higher than r or an equation with polynomial
coefficients of degree exceeding d.

Asymptotically more efficient guessing algorithms exist, based on fast Hermite-Padé approximation [4] of
the vector of (truncated) power series [S, S′, . . . , S(r)]; they have arithmetic complexity quadratic or even
softly-linear in N . Such sophisticated algorithms were not needed to obtain the results of this paper, but they
have provided crucial help in the treatment of examples of critical sizes (e.g. guessing with higher values of
d, r,N and/or over a parametric base field like Q(x) instead of Q) needed for the proof in [6].

Example 2 (continued) N = 100 terms of the generating series F (t; 1, 1) of the total number of Krew-
eras walks are sufficient to conjecture that F (t; 1, 1) is D-finite, since it verifies the differential equation
L1,1(F (t; 1, 1)) = 0 mod tN , where

L1,1 = 4t2(t+ 1)(3t− 4)(3t− 1)3(9t2 + 3t+ 1)D4
t

+ 2t(3t− 1)2(2916t5 − 1296t4 − 3564t3 − 477t2 − 93t+ 52)D3
t

+ 3(3t− 1)(29808t6 − 26244t5 − 28440t4 + 2754t3 + 431t2 + 448t− 40)D2
t (4)

+ 6(68040t6 − 88452t5 − 37206t4 + 16758t3 + 954t2 + 253t− 126)Dt

+ 18(6480t5 − 8856t4 − 3078t3 + 714t2 + 211t+ 2).

Thus, with high probability, F (t; 1, 1) verifies the differential equation L1,1(F (t; 1, 1)) = 0.

Sometimes (see Section 2.4.4) one needs to guess the minimal-order differential equation Lmin(S) = 0
satisfied by the given generating power series. Most of the time, the choice (d, r) of the target degree and
order does not lead to this minimal operator. Worse, it may even happen that the number of initial terms N
is not large enough to allow the recovery of Lmin, while these N terms suffice to guess non-minimal order
operators. (The explanation of why such a situation occurs systematically was given in [5], for the case of
differential equations satisfied by algebraic functions.) A good heuristic is to compute several non-minimal
operators and to take their greatest common right divisor; generically, the result is exactly Lmin.

As a final general remark, let us point out that a power series satisfies a linear differential equation if and only
if its coefficients satisfy a linear recurrence equation with polynomial coefficients. A recurrence equation can
be computed either from a differential equation, or it can be guessed from scratch by proceeding analogously
as described above for differential equations.

Example 3 (continued) N = 100 terms of the series S(t) = F (t; 1, 1) suffice to guess that its coefficients
satisfy the order-6 recurrence

2(n+ 6)(n+ 7)(2n+ 13)(7n+ 34)un+6 − (n+ 6)(140n3 + 2402n2 + 13687n+ 25843)un+5

+ 3(28n4 + 626n3 + 5123n2 + 18281n+ 24070)un+4

− 18(n+ 4)(28n3 + 311n2 + 897n+ 304)un+3 + 108(n+ 3)(35n3 + 443n2 + 1787n+ 2309)un+2

− 324(n+ 2)(7n3 + 90n2 + 382n+ 545)un+1 − 972(n+ 1)(n+ 2)(n+ 4)(7n+ 41)un = 0.
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2.3.2 Algebraic guessing
If the first N terms of a power series S ∈ Q[[t]] are available, one can also search for an algebraic equation
satisfied by S at precision N , that is, for a bivariate polynomial P (T, t) in Q[T, t] such that

P (S(t), t) = cr(t)S(t)r + · · ·+ c1(t)S(t) + c0(t) = 0 mod tN . (5)

A similar discussion shows that candidate algebraic equations of type (5) for S can be “guessed” by performing
either Gaussian elimination or Hermite-Padé approximation on the vector [1, S, . . . , Sr], followed by a gcd
computation in Q[T, t] applied to two (or more) different guesses.

Example 4 (continued) N = 100 terms of the series S(t) = F (t; 1, 1) counting the total number of Kreweras
walks suffice to guess that F (t; 1, 1) is very probably algebraic, namely solution of the bivariate polynomial

P1,1(T, t) = t5(3t− 1)3T 6 + 6t4(3t− 1)3T 5 + t3(3t− 1)(135t2 − 78t+ 14)T 4

+ 4t2(3t− 1)(45t2 − 18t+ 4)T 3 + t(3t− 1)(135t2 − 26t+ 9)T 2 (6)

+ 2(3t− 1)(27t2 − 2t+ 1)T + 43t2 + t+ 2.

2.4 Empirical certification of guesses
Once discovered a differential equation (3) or an algebraic equation (5) that the power series S(t) seems
to satisfy, we inspect several properties of these equations, in order to provide more convincing evidence
that they are correct. These properties have various natures: some are computational features (moderate bit
sizes), others are algebraic, analytic and even arithmetic properties. We check them systematically on all the
candidates; if they are verified, as in the Kreweras example, this offers striking evidence that the guessed
equations are not artefacts.

2.4.1 Size sieve: Reasonable bit size
The differential equation (3) has typically much lower bit size than a differential equation produced by the
same guessing procedure applied to the same order, degree and precision, but to an arbitrary series having
coefficients of bit-size comparable to that of S(t). A similar observation holds for the algebraic equation (5).

Example 5 (continued) If we perturb the coefficients of S(t) = F (t; 1, 1) by just adding a random integer
between −100 and 100 to each of its coefficients, then the differential guessing procedures at order r = 4,
degree d = 9 and precision N = 100 will either give no result (the over-determined system approach) or
produce fake candidates (the Hermite-Padé approach) with polynomial coefficients in t, whose coefficients
in Q have numerators and denominators of about 500 decimal digits each, instead of 4 digits for L1,1.

2.4.2 Algebraic sieve: High order series matching
The equations (3) and (5) were obtained starting from N coefficients of the power series S(t). They are
therefore satisfied a priori only modulo tN . We compute more terms of S(t), say 2N , and check whether the
same equations still hold modulo t2N . If this is the case, chances increase that the guessed equations also hold
at infinite precision.

2.4.3 Analytic sieve: Singularity analysis
By Theorem 2, the minimal order operators for power series like S(t) = F (t; 0, 0) and S(t) = F (t; 1, 1) must
have only regular singularities (including the point at infinity) and their exponents must be rational numbers.

Example 6 (continued) The differential operator L1,1 is Fuchsian. Indeed, a (fully automated) local sin-
gularity analysis shows that the set of its singular points

{
−1, 0,∞, 1

3 ,
4
3 ,−

1
6 (1± i

√
3)
}

is formed solely
of regular singularities. Moreover, the indicial polynomials of L1,1 are, respectively: t(t − 1)(t − 2)(2t −
1), t(t− 1)(2t+ 1)(t+ 1), (t− 5)(t− 1)(t− 2)(t− 4), (t+ 1)t(4t− 1)(4t+ 1), t(t− 1)(t− 2)(t− 4), and
t(t− 2)(2t− 3)(t− 1). Their roots are the rational exponents of the singularities.
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2.4.4 Arithmetic sieve: G-series and global nilpotence
Last, but not least, we check an arithmetic property of the guessed differential equations by exploiting the fact
that those expected to arise in our combinatorial context are very special.

Indeed, by a theorem due to the Chudnovsky brothers [14], the minimal order differential operator L ∈
Q[t]〈Dt〉 killing a G-series enjoys a remarkable arithmetic property: L is globally nilpotent. By definition,
this means that for almost every prime number p (i.e., for all with finitely many exceptions), there exists an
integer µ ≥ 1 such that the remainder of the Euclidean (right) division of Dpµ

t by L is congruent to zero
modulo p [21, 16].

From a computational view-point, a fine feature is that the nilpotence modulo p is checkable. If r denotes
the order of L, let Mp be the p-curvature matrix of L, defined as the r × r matrix with entries in Q(t) whose
(i, j) entry is the coefficient ofDj−1

t in the remainder of the Euclidean (right) division ofDp+i−1
t by L. Then,

L is nilpotent modulo p if and only if the matrix Mp is nilpotent modulo p [16, 32].
In combination with Theorem 2, this yields a fast algorithmic filter: as soon as we guess a candidate

differential equation satisfied by a generating series which is suspected to be a G-series (e.g. by F (t; 1, 1)),
we check whether its p-curvature is nilpotent, say modulo the first 50 primes for which the reduced operator
L mod p is well-defined. If the p-curvature matrix of L is nilpotent modulo p for all those primes p, then the
guessed equation is, with very high probability, the correct one.

We push even further this arithmetic sieving. A famous conjecture, attributed to Grothendieck, asserts that
the differential equation L(S) = 0 possesses a basis of algebraic solutions (over Q(x)) if and only if its p-
curvature matrix Mp is zero modulo p for almost all primes p. Even if the conjecture is, for the moment, fully
proved only for order one operators and partially in the other cases [13], we freely use it as an oracle to detect
whether a guessed differential equation has a basis of algebraic solutions. For instance, the computation of the
p-curvature of an order 11 differential operator with polynomial coefficients of degree 96 in t, was one of the
key points in our discovery [6] that the trivariate generating function for Gessel walks is algebraic.

Example 7 (continued) The 5-curvature matrix M5(t) of the differential operator L1,1 in (4) has the form
1
d(t)M̃5(t), where d(t) = (3t − 1)7t6(t + 1)5(9t2 + 3t + 1)5(3t − 4) and M̃5(t) is a 4 × 4 matrix with
polynomial entries in Q[t] of degree at most 27. The characteristic polynomial χM5 of M5 reads

T 4 +
3 · 5
25

N3(t) t5 (3t− 1)10 T 3 +
33 · 5
210

N2(t) (3t− 1)5 T 2 +
35 · 52 · 7

27
N1(t)T +

39 · 53 · 72

23
N0(t),

where N0, N1, N2, N3 are irreducible polynomials in Z[t], of degree, respectively, 21, 26, 26, 21 and with
coefficients having at most 20 decimal digits.

The polynomial χM5 obviously equals T 4 modulo p = 5, so the 5-curvature of L1,1 is nilpotent (but
not zero(iii)) modulo 5. In fact, for all the primes 7 ≤ p < 100, the p-curvature matrix of L1,1 is also
nilpotent modulo p; it is even zero modulo p. Under the assumption that Grothendieck’s conjecture is true,
this indicates that L1,1 admits a basis of algebraic solutions, and so provides independent evidence that also
S(t) = F (t; 1, 1) is algebraic.

3 Empirical Results in 2D
In this section, we consider the total number of walks only, i.e., the generating function F (t; 1, 1). Because
of symmetries, the 256 possible step sets give rise to 92 different sequences only. By inspection of the first
N = 1000 terms, we found that 36 of them appear to be D-finite: 19 are algebraic and 17 are transcendental.
The D-finite step sets, together with the sizes of the equations we discovered, are listed in Table 1 in the
appendix. (There, and below, step sets are represented by compact pictograms, e.g. · • ·• ·

· · •
for S = {←,↗, ↓}.)

(iii) Modulo 5, the curvature matrix M5(t) has T 2 as minimal polynomial.
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3.1 Combinatorial Observations
Our classification matches the results of Bousquet-Mélou and Mishna [9]: for every sequence they prove D-
finite our software found a recurrence and a differential equation, and whenever a series is algebraic indeed, our
programs recognized it. Moreover, we found no recurrence or differential equation for any step set conjectured
non-D-finite by Bousquet-Mélou and Mishna. This strengthens the evidence in favor of the conjectured non-
D-finiteness of these cases.

3.2 Algebraic Observations
All but two of the minimal polynomials of the algebraic series share the property that they define a curve of
genus 0. As a consequence, there exists a rational parametrization in all these cases. For example, for the
Kreweras step set · • ·• ·

· · •
, the minimal polynomial P1,1 given in (6) defines a curve parameterized by

T (u) =
(u2 + 24u+ 151)a(u)

(u+ 9)(u2 + 24u+ 147)
and t(u) =

2
a(u)

,

where a(u) =
(
u6+66u5+1827u4+27180u3+229431u2+1042866u+1995717

)/
(u+11)(u2+22u+125)2,

i.e., for these rational functions we have

P1,1(T (u), t(u)) = 0.

The two algebraic series that do not admit a rational parametrization belong to the step sets • · ·· •
· • ·

(reverse
Kreweras) and •• ·· ·

· ••
(Gessel’s). Their genus is 1.

Another feature of the series which we found to be algebraic is that they all admit closed forms in terms of
(nested) radical expressions. For example, for the Kreweras step set, we find that F (t; 1, 1) is equal to

−1
t

+

√(
i−
√

3
)

(216t3 + 1) (t− 3t2)2 − 2it(36t2 − 15t+ 1)a(t) +
(
i+
√

3
)
a(t)2

6it3(3t− 1)3a(t)

where i =
√
−1 and a(t) =

3

√
24
√

3t9(3t− 1)9 (9t2 + 3t+ 1)3 − t3(3t− 1)3 (5832t6 + 540t3 − 1). Such
representations can be found by appealing to the built-in equation solvers of Maple and Mathematica applied
to the equation P1,1 = 0. Both features are remarkable because, among all algebraic power series, only a few
are rationally parameterizable or expressible in terms of radicals.

Also the transcendental D-finite series appear to have some special properties. Being D-finite, these series
are annihilated by some linear differential operator

L = c0(t) + c1(t)Dt + · · ·+ cr(t)Dr
t ∈ Q[t]〈Dt〉.

According to the DFactor command from Maple’s DEtools package, all the operators can be factorized into a
product of one irreducible operator of order 2 and several operators of order 1. As all the operators are globally
nilpotent, so are all their factors [16, 17].

We can therefore expect that every solution of these factors can be written as a sum of terms of the form

R(t)δ · 2F1

(
α β
γ

∣∣∣∣Z(t)
)
, (7)

where R and Z are rational functions in Q(t) and α, β, γ, δ are rational numbers. Indeed, Dwork [16, Item
7.4] has conjectured that any globally nilpotent second order differential equation has either algebraic solu-
tions or is gauge equivalent to a weak pullback of a Gauss hypergeometric differential equation with rational
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parameters. This conjecture was disproved by Krammer [26] and recently by Dettweiler and Reiter [15];
the counter-examples given in these papers require involved tools in algebraic geometry (arithmetic triangle
groups, systems associated to periods of Shimura curves, . . . )

We are therefore in a win-win situation: either the second order operators appearing as factors of our oper-
ators admit only solutions which are indeed sums of terms of the form (7), or there is a simple combinatorial
counter-example to Dwork’s conjecture. Let us illustrate this on one of the most simple examples, the step set
• · •· ·
• · •

. We find here the differential operator

4(32t2 − 12t− 1) + 4(8t− 1)(20t2 − 3t− 1)Dt + t(4t− 1)(112t2 − 5)D2
t + t2(4t− 1)2(4t+ 1)D3

t

which Maple factors into(
2(192t3 − 56t2 − 6t+ 1) + 4(24t2 − 1)(4t− 1)tDt + (4t− 1)2(4t+ 1)t2D2

t

)(
1/t+Dt

)
.

With the help of Maple’s built-in differential equation solver (the dsolve command), it can be found that the
differential operator gives rise to the representation

F (t; 1, 1) = − 1
4t

+
(

1 +
1
4t

)
2F1

(
1/2 1/2

1

∣∣∣∣ 16t2
)
.

(Incidentally, this solution can also be expressed in terms of elliptic functions.) We believe that all the tran-
scendental D-finite generating functions for any step set admit a representation as (a nested integral of) such
an expression. The solvers of Maple and Mathematica, however, are able to discover such a representation
only in the simplest cases. (Note that at present, no complete algorithm is known that is capable of finding
general pullback representations.)

3.3 Analytic Observations
By Theorem 2, all the coefficient sequences grow like κnαρn log(n)β for some constants κ, ρ, α, β (we only
care about the dominant part of their asymptotic expansions). From the differential equation or the recurrence
equation, we can determine ρ, α, and β exactly as roots of characteristic polynomials and indicial equations,
respectively. (See [33, 19] on how this is done.) We find that β = 0 in all cases. Knowing the recurrence,
we can also compute easily tens of thousands of sequence terms. With the help of convergence acceleration
techniques [12] applied to so many terms, it is possible to determine the remaining constant κ to an accuracy
of thirty digits or more. With that many digits, it makes sense to search systematically for potential exact
expressions of these constants using Plouffe’s inverter [30] and/or algorithms like LLL and PSLQ [2]. We
actually found “closed form” expressions for all these constants. They are included in Table 1 in the appendix.

By Theorem 1, the numbers ρ are bounded by the cardinality of the step set S. It turns out that ρ = |S|
unless the vector sum of the elements of the step set points outside the first quadrant. In these cases, ρ is an
algebraic number of degree 2 (e.g., ρ = 1 + 2

√
2 for the step set · · ·• ·

•••
). For α, we found only non-positive

numbers. Note that α being a negative integer implies that the corresponding series is transcendental [18].
All the constants κ have the form uρe0φe11 φ

e2
2 · · ·φer

r , where the φi are usually small integers, the ei are
rational numbers, and u is 1/π if F (t; 1, 1) is transcendental, and 1/Γ(α+ 1) if F (t; 1, 1) is algebraic.

There are some cases where the φi are not integers. Among them, very strange is only the case of the step
set •••• ·

•••
, for which we found r = 1, e0 = 7/2, e1 = 1/2, ρ = 2 + 2

√
6 and φ1 = (1137 + 468

√
6)/152000.

This last number may look like a guessing artefact at first glance, but we trust in its correctness, because the
number of correct digits exceeds by far the number of correct digits to be expected from an artefact.

4 Empirical Results in 3D
We have investigated walks in three dimensions confined to the first octant with step sets of up to five elements.
A priori, there are 83682 such step sets, and they give rise to 3334 different sequences. Of those, we have
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computed the first N = 400 terms of the generating function G(t; 1, 1, 1) of general walks, and searched for
potential differential equations, algebraic equations, and recurrence equations. We found that 134 sequences
appear to be D-finite, and among those, 50 appear to be algebraic.

4.1 Combinatorial Observations
For some of the sequences, it can be realized that their D-finiteness or algebraicity is a consequence of the
D-finiteness or algebraicity of a certain 2D walk. For example, the sequence corresponding to the step set

· · ·· · ·
· · ·

· · ·• •
· • ·

· · ·· • ·
· • ·

1, 4, 17, 75, 339, 1558, 7247, 34016, 160795, 764388, . . . (A026378)

is readily seen to be D-finite, since it may be regarded as a variation of the 2D step set · · ·• •
· • ·

in which the
step ↑ appears in two copies and empty steps are allowed. (Here and below, a three dimensional step set is
depicted in three separate slices: first the arrows tops of the forms (x, y,−1), then (x, y, 0), then (x, y, 1). For
example, the step set above is {(−1, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1), (0, 1, 1)}. The given numbers are the
first coefficients in the expansion of G(t; 1, 1, 1).)

Discarding these cases from consideration, we are left with 35 different sequences whose generating series
appear to be D-finite; among those, three appear to be algebraic. Their step sets are given in the appendix.

We were not able to find an equation for the step set

· · •· · ·
• · ·

· · ·· ·
· · ·

• · ·· · ·
· · •

1, 1, 4, 7, 28, 70, 280, 787, 3148, 9526, 38104, . . . (A149080)

which is symmetric about all three axes, not even with 800 terms instead of 400. Also the step set

· · ·· • ·
· · ·

· • ·• ·
· · ·

· · ·· · ·
· · •

1, 1, 4, 13, 40, 136, 496, 1753, 6256, 22912, 85216, . . . (A149424)

which enjoys a rotational symmetry about the middle line of the first octant, and which may be viewed as a
three dimensional analogue of Kreweras’s step set, appears to be non-D-finite, even when 800 terms are taken
into account.

For walks in the quarter plane, it is conjectured in [29, Section 3] that D-finiteness is preserved under re-
versing arrows, i.e., the generating function for a step set S is D-finite if and only if the generating function for
the step set S′ is, when S′ is obtained from S by reversing all arrows. Our computations do not suggest that
this criterion also applies in 3D. Among the 134 sequences we found D-finite, there are 42 which correspond
to step sets in S for whose counterpart in S′ we were not able to find an equation. Among those, there are
some which satisfy only very large equations, so that chances are that they remain D-finite upon reversing
arrows, but with equations which are too large for us to find. Others satisfy quite small equations, for example
the sequence A026378 whose step set is given above.

4.2 Algebraic Observations
As in the 2D case, it turns out that most of the minimal polynomials of the algebraic series define curves of
genus 0, which therefore can be rationally parameterized. There are twelve cases of genus 1, these are elliptic
curves. Some of them turn out to be isomorphic (over Q). For example, those corresponding to the cases

· · ·· · ·
· · ·

· • ·• ·
· · •

· · ·• · ·
· · ·

1, 1, 4, 11, 32, 110, 360, 1163, 4112, 14066, 47848, . . . (A149232)

· · ·· · ·
· · ·

· • ·• ·
· · •

· · ·•• ·
· · ·

1, 2, 7, 27, 105, 426, 1787, 7590, 32633, 142152, 624659, . . . (A150591)

· · ·· · ·
· · ·

· • ·• ·
· · •

· · ·• · ·
· · •

1, 2, 10, 40, 176, 808, 3720, 17152, 81440, 384448, . . . (A151023)
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all have 1728 as j-invariant. They originate from the 2D Kreweras walks. Most interestingly, there are also
three step sets originating from the 2D reverse Kreweras walks ( • · ·· •

· • ·
) for which the genus is 5 (!).

For the transcendental series, we could observe the same phenomenon as in 2D: all the operators factor as
a product of a single irreducible operator of order two and several operators of order one. We therefore expect
again that all these series admit a representation as a hypergeometric pullback. As an example, the generating
function G(t; 1, 1, 1) of the sequence

· · ·· · •
· · ·

· · ·• ·
· • ·

· • ·· · ·
· · ·

1, 1, 2, 4, 10, 25, 70, 196, 588, 1764, . . . (A005817)

can be written in the form

4t+ 1
2t 2F1

(
1/2 1/2

3

∣∣∣∣ 16t2
)
− 2t− 1

4t3 2F1

(
−1/2 −1/2

2

∣∣∣∣ 16t2
)
− 4t2 − 2t+ 1

4t3
.

This representation was found by Mark van Hoeij. It is beyond the scope of the standard tools of Maple or
Mathematica.

4.3 Analytic Observations
Also concerning asymptotics, similar remarks apply as in 2D. All coefficient sequences grow like κnαρn for
some constants κ, α, ρ, where ρ is an integer or an algebraic number of degree 2 and α is a non-positive
number. We have not gone through the laborious task of determining the constants κ.
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to improve the presentation of this paper. We thank Pierre Nicodème and Bruno Salvy, who carefully read
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Appendix
Table 1 D-finite series and their step sets in 2D. The equation sizes columns refer to (minimal) recurrence
equation, differential equation, and algebraic equation, respectively. Example: The series F (t; 1, 1) for Krew-
eras walks (A151265) satisfies a differential equation of order 4 with polynomial coefficients of degree 9 and
an algebraic equation P (F (t; 1, 1), t) = 0 for a polynomial P (T, t) of degree 6 in T and 8 in t. The coefficient
sequence of F (t; 1, 1) satisfies a recurrence equation of order 6 with polynomial coefficients of degree 4. The
labels used in the columns “OEIS Tag” are taken from Sloane’s On-Line Encyclopedia of Integer Sequences
http://www.research.att.com/˜njas/sequences/. Constants in the asymptotics columns are

abbreviatedA = 1+
√

2, B = 1+2
√

2, C = 1+
√

3, D = 1+2
√

3, E =
√

6(379 + 156
√

6) (!), F = 1+
√

6.

OEIS Tag Steps Equation sizes Asymptotics OEIS Tag Steps Equation sizes Asymptotics

A000012 · · ·
· ·
· · •

1, 0 1, 1 1, 1 1 A000079 · · ·
· ·
· ••

1, 0 1, 1 1, 1 2n

A001405 · · ·
· ·
• · •

2, 1 2, 3 2, 2

√
2

Γ( 1
2

)

2n

√
n

A000244 · · ·
· •
· ••

1, 0 1, 1 1, 1 3n

A001006 · · •
• ·
· • ·

2, 1 2, 3 2, 2
3
√

3

2Γ( 1
2

)

3n

n3/2
A005773 · · ·

· ·
•••

2, 1 2, 3 2, 2

√
3

Γ( 1
2

)

3n

√
n

A126087 · · ·
• ·
• · •

3, 1 2, 5 2, 2
12
√

2

Γ( 1
2

)

23n/2

n3/2
A151255 • · ·

· •
• · ·

6, 8 4, 16 –
24
√

2

π

23n/2

n2

A151265 · • ·
• ·
· · •

6, 4 4, 9 6, 8
2
√

2

Γ( 1
4

)

3n

n3/4
A151266 · · •

• ·
· · •

7, 10 5, 16 –

√
3

2Γ( 1
2

)

3n

√
n

A151278 • · ·
· •
· • ·

7, 4 4, 12 6, 8
3
√

3
√

2Γ( 1
4

)

3n

n3/4
A151281 · · ·

· •
• · •

3, 1 2, 5 2, 2
1

2
3n

A005558 · · •
• •
• · ·

2, 3 3, 5 –
8

π

4n

n2
A005566 · • ·

• •
· • ·

2, 2 3, 4 –
4

π

4n

n

A018224 • · •
· ·
• · •

2, 3 3, 5 –
2

π

4n

n
A060899 · · ·

• •
• · •

2, 1 2, 3 2, 2

√
2

Γ( 1
2

)

4n

√
n

A060900 • · ·
• •
· · •

2, 3 3, 5 8, 9
4
√

3

3Γ( 1
3

)

4n

n2/3
A128386 • · ·

• ·
• · •

3, 1 2, 5 2, 2
6
√

2

Γ( 1
2

)

2n3n/2

n3/2

A129637 · · ·
· •
•••

3, 1 2, 5 2, 2
1

2
4n A151261 • · ·

• •
• · ·

5, 8 4, 15 –
12
√

3

π

2n3n/2

n2

A151282 · · ·
• ·
•••

3, 1 2, 5 2, 2
A2B3/2

23/4Γ( 1
2

)

Bn

n3/2
A151291 · · •

• •
· · •

6, 10 5, 15 –
4

3Γ( 1
2

)

4n

√
n

A151275 • · •
• ·
• · •

9, 18 5, 24 –
12
√

30

π

(
√

24)n

n2
A151287 • · •

• •
· • ·

7, 11 5, 19 –

√
8A7/2

π

(2A)n

n2

A151292 • · ·
• ·
•••

3, 1 2, 5 2, 2
4√3C2D3/2

8Γ( 1
2

)

Dn

n3/2
A151302 • · •

· ·
•••

9, 18 5, 24 –

√
5

3
√

2Γ( 1
2

)

5n

√
n

A151307 · • ·
• •
• · •

8, 15 5, 20 –

√
5

2
√

2Γ( 1
2

)

5n

√
n

A151318 · · ·
• •
•••

2, 1 2, 3 2, 2

p
5/2

Γ( 1
2

)

5n

√
n

A129400 · ••
• •
•• ·

2, 1 2, 3 2, 2
3
√

3

2Γ( 1
2

)

6n

n3/2
A151297 •• ·

• •
•• ·

7, 11 5, 18 –

√
3C7/2

2π

(2C)n

n2

A151312 • · •
• •
• · •

4, 5 3, 8 –

√
6

π

6n

n
A151323 •• ·

• •
· ••

2, 1 2, 3 4, 4

√
2 33/4

Γ( 1
4

)

6n

n3/4

A151326 · • ·
• •
•••

7, 14 5, 18 –
2
√

3

3Γ( 1
2

)

6n

√
n

A151314 •••
• ·
•••

9, 18 5, 24 –
EF 7/2

5
√

95π

(2F )n

n2

A151329 • · •
• •
•••

9, 18 5, 24 –

p
7/3

3Γ( 1
2

)

7n

√
n

A151331 •••
• •
•••

3, 4 3, 6 –
8

3π

8n

n

http://www.research.att.com/~njas/sequences/
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Table 2 Conjecturally algebraic series and their step sets in 3D. Step set figures are as in Section 4. Equation
sizes are as in Table 1.

First terms (OEIS Tag) Step sets Equation sizes

1, 1, 4, 10, 37, 121, 451, 1639, . . . (A025237)
· · ·
· • ·
· · ·

· · ·
· ·
· · •

• · ·
• · ·
• · ·

· · ·
· · ·
· • ·

· · ·
· ·
· · •

• · ·
• · ·
• · ·

2, 1 2, 3 2, 2

1, 1, 5, 15, 51, 199, 755, 2789, . . . (A149576)
· · ·
· • ·
· · ·

• · ·
• ·
• · ·

· · ·
· · ·
· · •

· · ·
· · ·
· • ·

• · ·
• ·
• · ·

· · ·
· · ·
· · •

11, 22 7, 31 12, 17

1, 2, 4, 14, 46, 134, 502, 1820, . . . (A149847)
• · ·
• · ·
• · ·

· · ·
· ·
· · •

· · ·
· • ·
· · ·

• · ·
• · ·
• · ·

· · ·
· ·
· · •

· · ·
· · ·
· • ·

8, 6 4, 16 6, 9

Table 3 Conjecturally transcendental D-finite generating series and their step sets in 3D. The equation sizes
columns refer to (minimal) recurrence equations, and differential equations, respectively.

OEIS Tag Step sets Equation sizes OEIS Tag Step sets Equation sizes

A148060
• · ·
• · ·
• · ·

· · ·
· ·
· · •

• · ·
· · ·
· · ·

9, 17 5, 28 A148438
· · ·
· · ·
· · •

• · ·
• ·
• · ·

· · ·
· • ·
· · ·

7, 10 5, 17

• · ·
• · ·
• · ·

· · ·
· ·
· · •

· · ·
• · ·
· · ·

· · ·
· · •
· · ·

• · ·
• ·
• · ·

· · ·
· · ·
· • ·

• · ·
• · ·
• · •

· · ·
· ·
· · ·

· · ·
· • ·
· · ·

· · ·
· · ·
· · •

• · ·
• ·
• · ·

· · ·
· · ·
· • ·

• · ·
• · ·
• · •

· · ·
· ·
· · ·

· · ·
· · ·
· • ·

A149090
• · ·
· · ·
· · ·

· · ·
· ·
· · •

• · ·
• · ·
• · ·

9, 17 5, 28

A149589
· · ·
· • ·
· · ·

· · ·
· ·
· · ·

• · ·
• · ·
• · •

10, 21 6, 29
· · •
• · •
· · •

· · ·
· ·
· · ·

· · ·
· · ·
· • ·

· · ·
· · ·
· • ·

· · ·
· ·
· · ·

• · ·
• · ·
• · •

· · ·
· · ·
• · ·

· · ·
· ·
· · •

• · ·
• · ·
• · ·

A005817
· · ·
· · •
· · ·

· · ·
• ·
· • ·

· • ·
· · ·
· · ·

2, 2 3, 4 A148005
· · ·
· · ·
• · ·

• · ·
· •
· · ·

· · ·
• · ·
· · ·

5, 8 4, 15

A148052
· · ·
· · ·
• · ·

• · ·
· •
• · ·

• · ·
· · ·
· · ·

7, 18 6, 27 A148068
• · ·
· · ·
• · ·

· · ·
· •
· · ·

• · ·
· · ·
• · ·

7, 17 6, 25

A148072
· · ·
· · •
· · ·

• · ·
· ·
• · ·

· · ·
· • ·
· · ·

12, 57 10, 69 A148162
· · ·
· • ·
· · ·

· · ·
· •
· · ·

• · ·
· · ·
• · ·

4, 3 3, 6

A148284
· · ·
· · •
· · ·

• · ·
• ·
• · ·

· · ·
· • ·
· · ·

14, 57 10, 71 A148331
· · ·
· · ·
• · •

• · •
· ·
· · ·

· · ·
· • ·
· · ·

11, 43 9, 53

A148507
· · ·
· · ·
• · ·

• · ·
• •
· · ·

· · ·
• · ·
· · ·

4, 6 4, 11 A148525
· · ·
• · ·
· · ·

• · ·
· •
• · ·

· · ·
• · ·
· · ·

7, 16 6, 25

A148548
• · ·
· · ·
· · ·

• · ·
· •
• · ·

· · ·
· · ·
• · ·

7, 19 6, 28 A148689
· · ·
· · •
· · ·

• · ·
· ·
• · ·

· · ·
· · •
· · ·

8, 25 8, 31

A148703
· · ·
· • ·
· · ·

· · ·
· •
· · ·

• · ·
• · ·
• · ·

4, 3 3, 6 A148790
· · ·
· · ·
· · •

· · •
• ·
· · ·

· · ·
· · •
· · ·

6, 12 5, 18

A148934
· · ·
· · ·
· • ·

• · •
· ·
· · ·

· · ·
• · •
· · ·

5, 5 4, 11 A149279
· · ·
· · •
· · ·

• · ·
• ·
• · ·

· · ·
· · •
· · ·

14, 62 10, 75

A149290
· · ·
· • ·
· · ·

· · ·
· ·
• · •

• · •
· · ·
· · ·

11, 53 9, 61 A149363
· · ·
· · ·
· · •

· · •
• ·
· · •

· · •
· · ·
· · ·

7, 16 6, 24

A149632
· · ·
· · ·
· · •

• · ·
• ·
• · ·

· · ·
· · ·
· · •

7, 11 5, 16 A149713
· · ·
· • ·
· · ·

· · ·
· ·
· · ·

• · •
· · ·
• · •

8, 22 7, 29

A150054
· · ·
· • ·
· · ·

• · ·
· •
• · ·

· · ·
· • ·
· · ·

12, 39 9, 52 A150370
· · ·
· · •
· · ·

• · ·
· •
• · ·

· · ·
· · •
· · ·

14, 62 10, 75

A150410
· · ·
· · ·
· · •

· · •
• •
· · ·

· · ·
· · •
· · ·

4, 6 4, 11 A150471
· · ·
· • ·
· · ·

· • ·
• ·
· · •

· · ·
· • ·
· · ·

12, 33 8, 42

A150499
· · ·
· · ·
· • ·

· • ·
• •
· · ·

· · ·
· · ·
· • ·

14, 48 9, 61 A150764
· · ·
· · •
· · ·

· · •
• ·
· · •

· · ·
· · •
· · ·

7, 13 6, 19

A150950
· · ·
· • ·
· · ·

· · ·
· ·
· · ·

• · ·
• · •
· · •

8, 23 7, 29 A151053
· · ·
· • ·
· · ·

• · ·
· •
· • ·

· · ·
· • ·
· · ·

14, 38 9, 48



Automatic Classification of Restricted Lattice Walks 217



FPSAC 2009, Hagenberg, Austria DMTCS proc. AK, 2009, 218–230

Unlabeled (2 + 2)-free posets, ascent
sequences and pattern avoiding permutations

Mireille Bousquet-Mélou1†, Anders Claesson2‡, Mark Dukes3

and Sergey Kitaev2
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1 Introduction
This paper presents correspondences between four seemingly unrelated structures; unlabeled (2 + 2)-free
posets on n elements, certain sequences of n nonnegative integers called ascent sequences, a new class of
permutations on n letters, and finally certain involutions on 2n points.

A poset is said to be (2 + 2)-free if it does not contain an induced subposet that is isomorphic to 2 + 2,
the union of two disjoint 2-element chains. Fishburn [6] showed that a poset is (2 + 2)-free precisely
when it is isomorphic to an interval order. Another characterization is that a poset is (2 + 2)-free if and
only if the collection of strict principal down-sets can be linearly ordered by inclusion [5; 4].

Our ascent sequences have a simple recursive definition, given in Section 2. We also define there the
class of permutations we consider: they avoid a particular pattern of length three, but this type of pattern
is new, in the sense that it does not admit an expression in terms of the dashed(i) patterns introduced by
Babson and Steingrı́msson [1]. It is our hope that the results of this paper will stimulate research into
these new patterns. We show how to deconstruct these permutations element by element, and how this
gives a bijection with ascent sequences. In Section 3 we perform a similar task for (2 + 2)-free posets.

In Section 4 we present a simple algorithm that given an ascent sequence x computes what we call the
modified ascent sequence, denoted x̂. Some of the properties of the permutation and the poset correspond-
ing to x are more easily read from x̂ than from x. We also explain how to go directly from a given poset
to the corresponding permutation as opposed to via the ascent sequence. As an additional application, we
show that the fixed points under x 7→ x̂ are in one-to-one correspondence with permutations avoiding the
barred pattern 31̄524̄. We count ascent sequences that are left unchanged by the map x 7→ x̂, thus proving
a conjecture of Lara Pudwell on the number of 31̄524̄-avoiding permutations.

In Section 5 we present statistics on the objects that are preserved under the stated bijections. In
Section 6, we determine the generating function of ascent sequences (and thus, of (2 + 2)-free posets
and pattern avoiding permutations), which turns out to be a rather complicated, non-D-finite series. This
series has already been shown by Zagier [13] to count certain chord diagrams, or involutions, introduced
by Stoimenow [12] to give upper bounds on the dimension of the space of Vassiliev’s knot invariants of
a given degree. In Section 7 we give a new proof of this result by establishing a bijection between these
involutions and (2 + 2)-free posets.

The proofs are omitted in this abstract, but can be found in the full version of the paper [2].

2 Ascent sequences and pattern avoiding permutations
Let (x1, . . . , xi) be an integer sequence. The number of ascents of this sequence is

asc(x1, . . . , xi) = |{ 1 ≤ j < i : xj < xj+1 }|.

Let us call a sequence x = (x1, . . . , xn) ∈ Nn an ascent sequence of length n if it satisfies x1 = 0 and
xi ∈ [0, 1+asc(x1, . . . , xi−1)] for 2 ≤ i ≤ n. For instance, (0, 1, 0, 2, 3, 1, 0, 0, 2) is an ascent sequence.
The length (number of entries) of a sequence x is denoted |x|.

Let Sn be the symmetric group on n elements. Let V = {v1, v2, . . . , vn} with v1 < v2 < · · · <
vn be any finite subset of N. The standardisation of a permutation π on V is the permutation std(π)

(i) Babson and Steingrı́msson call these patterns “generalized” rather than “dashed”, but we wish to promote a change of terminology
here, since “dashed” is more descriptive.
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on [n] := {1, 2, . . . , n} obtained from π by replacing the letter vi with the letter i. As an example,
std(19452) = 15342. LetRn be the following set of permutations:

Rn = {π1 . . . πn ∈ Sn : if std(πiπjπk) = 231 then j 6= i+ 1 or πi 6= πk + 1 }.

Equivalently, if πiπi+1 forms an ascent, then πi − 1 is not found to the right of this ascent. This class
of permutations could be more descriptively written asRn = Sn

( )
, the set of permutations avoiding

the pattern in the diagram. Dark lines indicate adjacent entries (horizontally or vertically) whereas lighter
lines indicate an elastic distance between the entries.

As illustrated here, the permutation 31524 avoids the pattern
while the permutation 32541 does not.

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

Consider the following three symmetries of a square: reflection in a centered vertical line, reflection
in a centered horizontal line, and reflection in the diagonal x = y. In the context of permutations these
operations are known as reverse, complement and inverse, respectively. Together they generate the dihe-
dral group D8, the symmetry group of a square. This is the symmetry of classical patterns. The dashed
patterns of Babson and Steingrı́msson [1] can be seen as those patterns that allow dark vertical (but not
horizontal) lines in their diagram. That set of patterns is not closed under inverse: under reflection in
the diagonal x = y a (dark) vertical line turns into a (dark) horizontal line. Thus dashed patterns only
enjoy the symmetry of a rectangle. Our patterns provide the minimal extra generality needed to contain
the dashed patterns and have the full symmetry of a square.

Let us return to the set R := ∪nRn of permutations avoiding . Let π be a permutation of Rn,
with n > 0. Let τ be obtained by deleting the entry n from π. Then τ ∈ Rn−1. Indeed, if τiτi+1τj
is an occurrence of the forbidden pattern in τ (but not in π), then this implies that πi+1 = n. But then
πiπi+1πj+1 would form an occurrence of the forbidden pattern in π.

This property allows us to construct the permutations of Rn inductively, starting from the empty per-
mutation and adding a new maximal value at each step. Given τ = τ1 . . . τn−1 ∈ Rn−1, the sites where
n can be inserted in τ so as to produce an element of Rn are called active. It is easily seen that the site
before τ1 and the site after τn−1 are always active. The site between the entries τi and τi+1 is active if and
only if τi = 1 or τi − 1 is to the left of τi. Label the active sites, from left to right, with labels 0, 1, 2...

Our bijection Λ between permutations of Rn and ascent sequences of length n is defined recursively
on n as follows. For n = 1, we set Λ(1) = (0). Now let n ≥ 2, and suppose that π ∈ Rn is obtained by
inserting n in the active site labeled i of a permutation τ ∈ Rn−1. Then the sequence associated with π
is Λ(π) := (x1, . . . , xn−1, i), where (x1, . . . , xn−1) = Λ(τ).

Example 1 The permutation π = 61832547 corresponds to the sequence x = (0, 1, 1, 2, 2, 0, 3, 1), since
it is obtained by the following insertions (the subscripts indicate the labels of the active sites):

011
x2=17−−−→ 01122

x3=17−−−→ 0113 22
x4=27−−−→ 0113 2243

x5=27−−−→ 0113 225 43

x6=07−−−→ 06 113 225 43
x7=37−−−→ 06 113 225 4374

x8=17−−−→ 6 1 8 3 2 5 4 7.

Theorem 2 The map Λ is a bijection fromRn to the set of ascent sequences of length n.



222 Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes and Sergey Kitaev

The proof proceeds by induction. The key is to understand how the number of actives sites of π, and the
label located just before its maximal entry, can be read in the ascent sequence.

3 Ascent sequences and unlabeled (2 + 2)-free posets
Let Pn be the set of unlabeled (2 + 2)-free posets on n elements. In this section we shall give a bijection
between Pn and the set An of ascent sequences of length n. As in the previous section, this bijection
encodes a recursive way of decomposing (2 + 2)-free posets by removing one maximal element. This
removal procedure is less elementary than in the case of permutations. Before giving these operations we
need to introduce some terminology.

Let D(x) = { y : y < x } be the set of predecessors of x (the strict down-set of x). It is well-known—
see for example Khamis [8]—that a poset is (2 + 2)-free if and only if the set {D(x) : x ∈ P} can be
linearly ordered by inclusion. Let

D(P ) = {D0, D1, . . . , Dk}

with ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk. In this context we define Di(P ) = Di and we write `(P ) = k. We
say the element x is at level i in P if D(x) = Di and we write `(x) = i . The set of all elements at
level i we denote Li(P ) = {x ∈ P : `(x) = i } = {x ∈ P : D(x) = Di }. For instance, L0(P ) is the
set of minimal elements. All the elements of Lk(P ) are maximal, but there may be maximal elements of
P at level less than k. If Li(P ) contains a maximal element, we say that the level i contains a maximal
element. Let `?(P ) be the minimum level containing a maximal element.

Example 3
Consider the following (2 + 2)-free poset P , which we
have labeled for convenience. The diagram on the right
shows the poset redrawn according to the levels of the
elements. We have D(a) = {b, c, d, f, g, h}, D(b) = ∅,
D(c) = D(d) = {f, g, h}, D(e) = D(f) = D(g) =
{h} and D(h) = ∅. These may be ordered by inclusion
as

a

c

f

db

g

h

e

=
c

f

d

g

h

e

b

a

0

1

2

3

D(h) = D(b)︸ ︷︷ ︸ ⊂ D(e) = D(f) = D(g)︸ ︷︷ ︸ ⊂ D(c) = D(d)︸ ︷︷ ︸ ⊂ D(a)︸ ︷︷ ︸ .
`(h) = `(b) = 0 `(e) = `(f) = `(g) = 1 `(c) = `(d) = 2 `(a) = 3

Thus `(P ) = 3. The maximal elements of P are e and a, and they lie respectively at levels 3 and 1.
Thus `?(P ) = 1. In addition, D0 = ∅, D1 = {h}, D2 = {f, g, h} and D3 = {b, c, d, f, g, h}. With
Li = Li(P ) we also have L0 = {h, b}, L1 = {e, f, g}, L2 = {c, d} and L3 = {a}.

3.1 Removing an element from a (2 + 2)-free poset
The removal operation will be the counterpart of the deletion of the last entry in an ascent sequence (or the
deletion of the largest entry in a permutation of R). Let P be a (2 + 2)-free poset of cardinality n ≥ 2,
and let i = `?(P ) be the smallest level of P containing a maximal element. All the maximal elements
located at level i are order-equivalent in the unlabeled poset P . We will remove one of them. Let Q be
the poset that results from applying:
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(Rem1) If |Li(P )| > 1 then simply remove one of the maximal elements at level i.

(Rem2) If |Li(P )| = 1 and i = `(P ) then remove the unique element lying at level i.

(Rem3) If |Li(P )| = 1 and i < `(P ) then setN = Di+1(P ) \Di(P ). Make each element ofN a maximal
element by deleting from the order all relations x < y where x ∈ N . Finally, remove the unique
element lying at level i.

Example 4 Let P be the unlabeled (2 + 2)-free poset with the following Hasse diagram.

= *

0

1

2

3

4

# #

The second diagram shows the poset re-
drawn according to the levels of the ele-
ments. There is a unique maximal element
of minimal level, which is marked with ∗,
and `?(P ) = 2. Since 2 < `(P ), apply
Rem3 to remove this maximal element.
The elements of N are indicated by #’s.

In order to delete all relations of the
form x ≤ y where x ∈ N , one deletes
all edges corresponding to coverings
of elements of N , and adds an edge
between the elements at level 0 and 3
to preserve their relation. Finally, one
removes the element at level 2. This
gives a new (2 + 2)-free poset, with
level numbers shown on the right.

7→

0

1

3

2

=

3

2

0

1 * *

There are now two maximal elements of min-
imal level `? = 1, both marked by ∗. Remove
one of them according to rule Rem1. This
gives the first poset shown to the right, for
which `? is still 1. Apply Rem1 again to ob-
tain the second poset on the right.

7→
*1

0

2

3

7→
1

0

2

3 *

There is now a single maximal element, lying
at maximal level 3, so we apply rule Rem2.
In the poset thus obtained, `?(P ) = 1 <
`(P ) and there is a unique element at level
1, so apply Rem3. The set N consists of the
rightmost point at level 0.

7→ 1

0

2

*

#

7→

0

1

*

In the new poset, the star element is not alone
at level 0, so apply Rem1, and finally Rem2. 7→

0

1 *

7→ 0

We have thus reduced P to a one element poset by removing the elements in a canonical order.
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3.2 From (2 + 2)-free posets to ascent sequences

Our bijection Ψ between (2 + 2)-free posets of cardinality n and ascent sequences of length n is defined
recursively on n as follows. For n = 1, we associate with the one-element poset the sequence (0). Now let
n ≥ 2, and suppose that the removal operation, applied to P ∈ Pn, gives the poset Q. Then the sequence
associated with P is Ψ(P ) := (x1, . . . , xn−1, i), where i = `?(P ) and (x1, . . . , xn−1) = Ψ(Q).

For instance, the poset of Example 4 corresponds to the sequence (0, 1, 0, 1, 3, 1, 1, 2).

Theorem 5 The map Ψ is a one-to-one correspondence between (2 + 2)-free posets of size n and ascent
sequences of length n.

4 Modified ascent sequences and their applications
In this section we introduce a transformation on ascent sequences and show some applications. For
instance, this transformation can be used to give a non-recursive description of the bijection Λ between
permutations of R and ascent sequences. It is also useful to characterize the image by Λ of a subclass of
R, which we will enumerate in Subsection 4.4. We also describe how to transform (2 + 2)-free posets
into permutations without resorting to ascent sequences.

4.1 Modified ascent sequences

Let x = (x1, x2, . . . , xn) be any finite sequence of integers. Define

asc(x) =
(
i : i ∈ [n− 1] and xi < xi+1

)
;

so asc(x) = |asc(x)|. In terms of an algorithm we shall now describe a function from integer sequences
to integer sequences. Let x = (x1, x2, . . . , xn) be the input sequence. Do

for i ∈ asc(x):
for j ∈ [i− 1]:

if xj ≥ xi+1 then xj := xj + 1

and denote the resulting sequence by x̂. Assuming that x is an ascent sequence we call x̂ the modi-
fied ascent sequence. As an example, consider the ascent sequence x = (0, 1, 0, 1, 3, 1, 1, 2). We have
asc(x) = (1, 3, 4, 7) and the algorithm computes the modified ascent sequence x̂ in the following steps:

x = 0 1 0 1 3 1 1 2
0 1 0 1 3 1 1 2
0 2 0 1 3 1 1 2
0 2 0 1 3 1 1 2
0 3 0 1 4 1 1 2 = x̂

In each step every element strictly to the left of and weakly larger than the boldface letter is incremented
by one. Observe that the positions of ascents in x and x̂ coincide, and that the number of ascents in x
(or x̂) is asc(x) = asc(x̂) = max(x̂). The above procedure is easily invertible and the map x 7→ x̂ is
therefore injective.
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The modified ascent sequence x̂ is related to the level distribution of
the poset P associated with x. First, observe that the removal operation
of Section 3.1 induces a canonical labelling of the size n poset P by
elements of [n]: the first element that is removed gets label n, and so
on. Applying this to the poset of Example 4 we get the labelling shown
on the right.
The following lemma is easily proved by induction.

0

1

2

3

4

8

7

2

5

46

1 3

Lemma 6 Let P be a (2 + 2)-free poset equipped with its canonical labelling. Let x be the associated
ascent sequence, and x̂ = (x̂1, . . . , x̂n) the corresponding modified ascent sequence. Then for all i ≤ n,
the element i of the poset lies at level x̂i.

For instance, listing the elements of the poset above and their respective levels gives

1 2 3 4 5 6 7 8
0 3 0 1 4 1 1 2 = x̂,

where we recognize the modified ascent sequence of (0, 1, 0, 1, 3, 1, 1, 2) = Ψ(P ).

4.2 From posets to permutations
The canonical labelling of the poset P can also be used to set up the bijection from (2 + 2)-free posets
to permutations of R without using ascent sequences. We read the elements of the poset by increas-
ing level, and, for a fixed level, in descending order of their labels. This gives a permutation f(P ).
In our example we get 31764825, which is the permutation of R8 associated with the ascent sequence
(0, 1, 0, 1, 3, 1, 1, 2) = Ψ(P ).

Proposition 7 For any (2 + 2)-free poset P equipped with its canonical labelling, the permutation f(P )
described above is the permutation ofR corresponding to the ascent sequence Ψ(P ). In other words,

Λ−1 ◦Ψ(P ) = L̂0L̂1 . . . L̂`(P ) := π,

where L̂j is the word obtained by reading the elements of Lj(P ) is decreasing order. Moreover, the active
sites of the above permutation are those preceding and following π, as well as the sites separating two
consecutive factors L̂j .

4.3 From ascent sequences to permutations, and vice-versa
By combining Lemma 6 and Proposition 7, we obtain a non-recursive description of the bijection be-
tween ascent sequences and permutations of R. Let x be an ascent sequence, and x̂ its modified se-
quence. Take the sequence x̂ and write the numbers 1 through n below it. In our running example,
x = (0, 1, 0, 1, 3, 1, 1, 2), this gives

x̂ = 0 3 0 1 4 1 1 2
1 2 3 4 5 6 7 8 .
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Let P be the poset associated with x. By Lemma 6, the element labeled i in P lies at level x̂i. This
information is not sufficient to reconstruct the poset P but it is sufficient to reconstruct the word f(P )
obtained by reading the elements of P by increasing level: Sort the pairs

(bxi

i

)
in ascending order with

respect to the top entry and brake ties by sorting in descending order with respect to the bottom entry. In
the above example, this gives

0 0 1 1 1 2 3 4
3 1 7 6 4 8 2 5 .

By Proposition 7, the bottom row, here 31764825, is the permutation Λ−1(x). We have thus established
the following direct description of Λ−1.

Corollary 8 Let x be an ascent sequence. Sorting the pairs
(bxi

i

)
in the order described above gives the

permutation π = Λ−1(x). Moreover, the number of entries of π between the active sites i and i+ 1 is the
number of entries of x̂ equal to i, for all i ≥ 0.

The second statement gives a non-recursive way of deriving x = Λ(π) (or, rather, x̂) from π. Take a
permutation π ∈ Rn, and indicate its actives sites. For instance, π =0 3117642832455. Write the letter i
below all entries πj that lie between the active site labeled i and the active site labeled i+ 1:

3 1 7 6 4 8 2 5
0 0 1 1 1 2 3 4 → Sort the pairs

(
πj

i

)
by increasing order of the πj →

1 2 3 4 5 6 7 8
0 3 0 1 4 1 1 2 .

We have recovered, on the bottom row, the modified ascent sequence x̂ corresponding to π.

4.4 Permutations avoiding 31̄524̄ and self modified ascent sequences
A permutation π avoids the barred pattern 31̄524̄ if every occurrence of the (classical) pattern 231 plays
the role of 352 in an occurrence of the (classical) pattern 31524. In other words, for every i < j < k such
that πk < πi < πj , there exists ` ∈ (i, j) and m > k such that πiπ`πjπkπm is an occurrence of 31524.
Note that every such permutation avoids the pattern , and thus belongs to the set R. A conjecture
concerning the enumeration of these permutations was given by Pudwell [10, p. 84]. Here, we describe
the ascent sequences corresponding to these permutations via the bijection Λ from which we can settle
her conjecture.

An ascent sequence x is self modified if it is fixed by the map x 7→ x̂ defined above. For instance,
(0, 0, 1, 0, 2, 2, 0, 3, 1, 1) is self modified. In view of the definition of the map x 7→ x̂, this means that, if
xi+1 > xi, then xj < xi+1 for all j ≤ i.
Proposition 9 The ascent sequence x is self modified if and only if the corresponding permutation π
avoids 31̄524̄. In this case, max(x) = asc(π) = rmin(π)− 1, where rmin(π) is the number of right-to-
left minima of π, that is, the number of i such that πi < πj for all j > i.

Recall that asc(x) = max(x̂). It is not hard to see that (x1, . . . , xn) is a self modified ascent sequence if
and only if x1 = 0 and, for all i ≥ 1, either xi+1 ≤ xi or xi+1 = 1 + max{xj : j ≤ i}. Consequently,
a modified ascent sequence x with max(x) = k reads 0A01A12A2 . . . k Ak, where Ai is a (possibly
empty) weakly decreasing factor, and each element of Ai is less than or equal to i. This structure is the
key to count these sequences, and thus permutations avoiding 31̄524̄.

Proposition 10 The length generating function of 31̄524̄-avoiding permutations is
∑
k≥1 t

k/(1− t)(
k+1
2 ).

The k-th term of this sum counts those permutations that have k right-to-left minima, or, equivalently, k−1
ascents. This is also the number of self modified ascent sequences of length n with largest element k − 1.
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5 Statistics
We shall now look at statistics on ascent sequences, permutations and posets—statistics that we can trans-
late between using our bijections.

Let x = (x1, x2, . . . , xn) be any sequence of nonnegative integers. Let last(x) = xn. Define zeros(x)
as the number of zeros in x. A right-to-left maximum of x is a letter with no larger letter to its right; the
number of right-to-left maxima is denoted rmax(x). For example,

rmax(0, 1, 0,2,2, 0,1) = 3;

the right-to-left maxima are in bold. For sequences x and y of nonnegative integers, let x⊕y = xy′, where
y′ is obtained from y by adding 1+max(x) to each of its letters, and juxtaposition denotes concatenation.
For example, (0, 2, 0, 1)⊕ (0, 0) = (0, 2, 0, 1, 3, 3). We say that a sequence x has k components if it is the
sum of k, but not k + 1, nonempty nonnegative sequences. Note that y ⊕ z is a modified ascent sequence
(as defined in Section 4) if and only if y and z are themselves modified ascent sequences. This is the case
in the above example.

For any permutation π = π1 . . . πn, the statistic ldr(π) (the leftmost decreasing run) is defined as the
largest integer i such that π1 > π2 > · · · > πi. For permutations π and σ, let π ⊕ σ = πσ′, where σ′ is
obtained from σ by adding |π| to each of its letters. We say that π has k components if it is the sum of k,
but not k + 1, nonempty permutations. Observe that π ⊕ σ avoids if and only if both π and σ avoid
it. This is the case for instance for 314265 = 3142⊕ 21, which corresponds to the above modified ascent
sequence (0, 2, 0, 1, 3, 3) = (0, 2, 0, 1)⊕ (0, 0).

For π ∈ Rn, label the active sites with 0, 1, 2, etc. Then b(π) denotes the label immediately to the left
of the maximal entry of π.

The number of minimal (resp. maximal) elements of a poset P is denoted min(P ) (resp. max(P )).
The ordinal sum of two posets P and Q is the poset P ⊕ Q on the union P ∪ Q such that x ≤P⊕Q y if
x ≤P y, or x ≤Q y, or x ∈ P and y ∈ Q. The definition applies to labeled or unlabeled posets. Let us
say that P has k components if it is the ordinal sum of k, but not k + 1, nonempty posets. Observe that
P ⊕Q is (2 + 2)-free if and only if both P and Q are (2 + 2)-free.

Theorem 11 Given an ascent sequence x = (x1, . . . , xn) with modified ascent sequence x̂, let P and π
be the poset and permutation corresponding to x under the bijections described in Sections 2 and 3. Then

(min(P ), `?(P ), `(P ),max(P ), comp(P )) = (zeros(x), last(x), asc(x), rmax(x̂), comp(x̂))
=

(
ldr(π), b(π), asc(π−1), rmax(π), comp(π)

)
,

where comp denotes the number of components of the individual structures, as defined above.

Example 12 LetP be the poset from Example 4 and let x and π be the corresponding ascent sequence and
permutation. One checks that the above theorem holds with (min(P ), `?(P ), `(P ),max(P ), comp(P )) =
(2, 2, 4, 2, 1).

P =

0

1

2

3

4

;
x = (0, 1, 0, 1, 3, 1, 1, 2);
x̂ = (0, 3, 0, 1, 4, 1, 1, 2);

π =0 3117642832455,

π−1 = 27158436.
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6 Enumeration
Theorem 13 Let pn be the number of (2 + 2)-free posets of cardinality n and let P (t) =

∑
n≥0 pnt

n be
the associated generating function. Then

P (t) =
∑
n≥0

n∏
i=1

(
1− (1− t)i

)
.

This series also counts permutations ofR, and ascent sequences, by length.

To our knowledge, this result is new. El-Zahar [4] and Khamis [8] used a recursive description of (2 + 2)-
free posets, different from that of Section 3, to derive a pair of functional equations that define the series
P (t). However, they did not solve these equations. Haxell, McDonald and Thomasson [7] provided an
algorithm, based on a complicated recurrence relation, to produce the first numbers pn.

These numbers, and the above expression of P (t), occur in the Encyclopedia of Integer Sequences
as sequence A022493 [11]. But there, P (t) is described as counting certain involutions, or chord dia-
grams [12; 13], that form the topic of Section 7. It is known [13] that

pn
n!
∼ κ

(
6
π2

)n√
n,

which proves that the series P (t) is not D-finite (the exponential growth constant would be algebraic).
The proof of Theorem 13 exploits the recursive structure of ascent sequences. The structure translates

into a functional equation that defines a 3-variable generating function F (t;u, v), which counts these
sequences by length (t), ascent number (u) and last entry (v):

(v − 1− tv(1− u))F (t;u, v) = (v − 1)(1− tuv)− tF (t;u, 1) + tuv2F (t;uv, 1).

The so-called kernel method then gives:

F (t;u, 1) =
∑
k≥1

(1− u)uk−1(1− t)k

(u− (u− 1)(1− t)k)
∏k
i=1(u− (u− 1)(1− t)i)

.

Observe that this expression is divergent when u = 1. In a final step, we transform it into

F (t;u, 1) =
∑
n≥0

n∑
`=0

(u− 1)n−`u`
n∑

m=`

(−1)n−m
(
n

m

)
(1− t)m−`

m∏
i=m−`+1

(
1− (1− t)i

)
,

which specializes to Theorem 13 when u = 1.

7 Involutions with no neighbour nesting
As discussed above, the series of Theorem 13 is known to count certain involutions on 2n points, called
regular linearized chord diagrams (RLCD) by Stoimenow [12]. This result was proved by Zagier [13],
following Stoimenow’s paper. In this section, we give a new proof of Zagier’s result, by constructing a
bijection between RLCDs on 2n points and unlabeled (2 + 2)-free posets of size n.
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Let I2n be the collection of involutions π in S2n that have no fixed points and for which every descent
crosses the main diagonal in its dot diagram. Equivalently, if πi > πi+1 then πi > i ≥ πi+1. An
alternative description can be given in terms of the chord diagram of π, which is obtained by joining
the points i and π(i) by a chord (Figure 1, left). Indeed, π ∈ I2n if and only if, for any i, the chords
attached to i and i + 1 are not nested, in the terminology used recently for matchings [3; 9]. That is,
the configurations shown on the left of the rules of Fig. 2 are forbidden (but a chord linking i to i + 1 is
allowed).

Recall that a poset P is (2 + 2)-free if and only if it is an interval order [5]. This means that there
exists a collection of intervals on the real line whose relative order is P , under the order relation:

[a, b] < [c, d] ⇐⇒ b < c.

Let π ∈ I2n with transpositions {(αi, βi)}ni=1 where αi < βi for all i. Define O(π) to be the interval
order (or equivalently, poset) associated with the collection of intervals {[αi, βi]}ni=1.

Example 14 Consider π = 4 5 7 1 2 8 3 6 10 9 ∈ I10. The transpositions of π are shown in the chord
diagram of Figure 1. Beneath the chord diagram is the collection of intervals that corresponds to π, and
the (2 + 2)-free poset O(π) is illustrated on the right hand side. We have added labels to highlight the
correspondence between intervals and poset elements.

b

a d e

c

1 2 3 4 5 6 7

a b c

d

e
8 9 10

Fig. 1: An involution in I10, the corresponding collection of intervals and the associated (2 + 2)-free poset.

Theorem 15 The map O is a bijection between involutions of I2n and (2 + 2)-free posets on n elements.

It is not very hard to prove that O is a surjection. That is, for every (2 + 2)-free order P , one can find an
involution π such that O(π) = P . The proof uses the transformations of Fig. 2. We then explain that the
involution is uniquely determined by the poset.

π
i+1

π
i

i i+1 π
i+1

π
i

i i+1 π π
i+1 i

i i+1 π π
i+1 ii i+1

Fig. 2: Two operations on chord diagrams.
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Application of graph combinatorics to rational
identities of type A
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Abstract. To a wordw, we associate the rational functionΨw =
Q

(xwi
−xwi+1)−1. The main object, introduced by

C. Greene to generalize identities linked to Murnaghan-Nakayama rule, is a sum of its images by certain permutations
of the variables. The sets of permutations that we consider are the linear extensions of oriented graphs. We explain
how to compute this rational function, using the combinatorics of the graphG. We also establish a link between an
algebraic property of the rational function (the factorization of the numerator) and a combinatorial property of the
graph (the existence of a disconnecting chain).

Résuḿe. À un motw, nous associons la fonction rationnelleΨw =
Q

(xwi
− xwi+1)

−1. L’objet principal, introduit
par C. Greene pour généraliser des identités rationnelles liées à la règle de Murnaghan-Nakayama, est une somme de
ses images par certaines permutations des variables. Les ensembles de permutations considérés sont les extensions
linéaires des graphes orientés. Nous expliquons commentcalculer cette fonction rationnelle à partir de la combinatoire
du grapheG. Nous établissons ensuite un lien entre une propriété algébrique de la fonction rationnelle (la factorisation
du numérateur) et une propriété combinatoire du graphe (l’existence d’une chaı̂ne le déconnectant).

Keywords: Rational functions, posets, maps

1 Introduction
A partially ordered set (poset)P is a finite setV endowed with a partial order. By definition, a word
w containing exactly once each element ofV is called alinear extensionif the order of the letters is
compatible withP (if a ≤P b, thena must be beforeb in w). To a linear extensionw = v1v2 . . . vn, we
associate a rational function:

ψw =
1

(xv1 − xv2 ) · (xv2 − xv3) . . . (xvn−1 − xvn
)
.

We can now introduce the main object of the paper. If we denoteby L(P) the set of linear extensions
of P , then we defineΨP by:

ΨP =
∑

w∈L(P)

ψw.

∗ This paper is an extended abstract of the paper on arXiv 0811.2562, which contains all detailed proofs.

1365–8050c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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1.1 Background
The linear extensions of posets contain very interesting subsets of the symmetric group: for example, the
linear extensions of the poset considered in the article (3)are the permutations smaller than a permutation
π for the weak Bruhat order. In this case, our construction is close to that of Demazure characters (4). S.
Butler and M. Bousquet-Mélou characterize the permutationsπ corresponding to acyclic posets, which
are exactly the cases where the function we consider is the simplest.
Moreover, linear extensions are hidden in a recent formula for irreducible character values of the sym-
metric group: if we use the notations of (7), the quantityNλ(G) can be seen as a sum over the linear
extensions of the bipartite graphG (bipartite graphs are a particular case of oriented graphs). This ex-
plains the similarity of the combinatorics in article (6) and in this one.

The functionΨP was considered by C. Greene (8), who wanted to generalize a rational identity linked
to Murnaghan-Nakayama rule for character values of the symmetric group. He has given in his article a
closed formula for planar posets (µP is the Möbius function ofP):

ΨP =

{

0 if P is not connected,
∏

y,z∈P
(xy − xz)

µP (y,z) if P is connected,

However, there is no such formula for general posets, only the denominator of the reduced form ofΨP is
known (see article (2)). In this paper, the first author has investigated the effects of elementary transfor-
mations of the Hasse diagram of a poset on the numerator of theassociated rational function. He has also
noticed, that in some case, the numerator is a Schur function(2, paragraph 4.2) (we can also find Schubert
polynomials or sums of multiSchur functions).

In this paper, we obtain some new results on this numerator, thanks to a simple local transformation in
the graph algebra, preserving linear extensions.

1.2 Main results
An inductive algorithm The first main result of this paper is an induction relation onlinear extensions

(Theorem 3.1). When one appliesΨ on it, it gives an efficient algorithm to compute the numerator
of the reduced fraction ofΨP (the denominator is already known).

A combinatorial formula If we iterate our first main result in a clever way, we can describe combinato-
rially the final result. The consequence is our second main result: if we give to the graph of a poset
P a rooted map structure, we have a combinatorial non-inductive formula for the numerator ofΨP

(Theorem 3.7).

A condition for ΨP to factorize Green formula’s for the function associated to a planar poset is a quo-
tient of products of polynomials of degree1. In the non-planar case, the denominator is still a
product of degree 1 terms, but not the numerator. So we may wonder when the numeratorN(P)
can be factorized.
Our third main result is a partial answer (a sufficient but notnecessary condition) to this question:
the numeratorN(P) factorizes if there is a chain disconnecting the Hasse diagram ofP (see The-
orem 3.8 for a precise statement). An example is drawn on figure 1 (the disconnecting chain is
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(2, 5)). Note that we use here and in the whole paper a unusual convention: we draw the posets
from left (minimal elements) to right (maximal elements).
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Fig. 1: Example of chain factorization

1.3 Open problems

Necessary condition for factorization The conclusion of the factorization Theorem 3.8 is sometimes
true, even when the separating path is not a chain: see for example Figure 2 (the path(5, 6, 3)
disconnects the Hasse diagram, but is not a chain).
This equality, and many more, can be easily proved using the same method as Theorem 3.8. Can we
give a necessary (and sufficient) condition for the numerator of a poset to factorize into a product
of numerators of subposets? Are all factorizations of this kind?

Characterization of the numerator Let us consider a posetP , which has only minimal and maximal
elements (respectivelya1, . . . , al and b1, . . . , br). The numeratorN(P) of ΨP is a polynomial
in b1, . . . , br which degree in each variable can be easily bounded (2, Proposition 3.1). Thanks
to Proposition 3.4, we see immediately thatN(P) = 0 on some affine subspaces of the space of
variables. Unfortunately, these vanishing relations and its degree do not characterizeN(P) up to a
multiplicative factor. Is there a bigger family of vanishing relations, linked to the combinatorics of
the Hasse diagram of the poset, which characterizesN(P)?
This question comes from the following observation: for some particular posets, the numerator
is a Schubert polynomial and Schubert polynomials are knownto be easily defined by vanishing
conditions (9).

2 Graphs, posets and rational functions
Oriented graphs are a natural way to encode information of posets. To avoid confusions, we recall all
necessary definitions in paragraph 2.1. The definition of linear extensions and hence of our rational
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Fig. 2: An example of factorization, not contained in Theorem 3.8.
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function can be easily formulated directly in terms of graphs (paragraphs 2.2 and 2.3).
We will also define some elementary removal operations on graphs (paragraph 2.4), which will be used in
the next section. Due to transitivity relations, it is not equivalent to perform these operation on the Hasse
diagram or on the complete graph of a poset, that’s why we prefer to formulate everything in terms of
graphs.

2.1 Definitions and notations on graphs

In this paper, we deal with finitedirected graphs. So we will use the following definition of a graphG:

• A finite set of verticesVG.

• A set of edgesEG defined byEG ⊂ VG × VG.

If e ∈ EG, we will note byα(e) ∈ VG the first component ofe (calledorigin of e) andω(e) ∈ VG its
second component (calledendof e). This means that each edge has an orientation.
Let e = (v1, v2) be an element ofVG × VG. Then we denote bye the pair(v2, v1).

With this definition of graphs, we have four definitions of injective walks on the graph.

can not go backwards can go backwards
closed circuit cycle

non-closed chain path

More precisely,

Definition 2.1 LetG be a graph andE its set of edges.

chain A chain is a sequence of edgesc = (e1, . . . , ek) of G such thatω(e1) = α(e2), ω(e2) = α(e3),
. . . andω(ek−1) = α(ek).

circuit A circuit is a chain(e1, . . . , ek) ofG such thatω(ek) = α(e1).

path A path is a sequence(e1, . . . , eh) of elements ofE ∪ E such thatω(e1) = α(e2), ω(e2) = α(e3),
. . . andω(ek−1) = α(ek).

cycle A cycleC is a path with the additional property thatω(ek) = α(e1). If C is a cycle, then we denote
byE(C) the setC ∩ E.

In all these definitions, we add the condition that all edges and vertices are different (except of course, the
equalities in the definition).

Remark 1 The difference between a cycle and a circuit (respectively apath and a chain) is that, in a
cycle (respectively in a path), an edge can appear in both directions (not only in the direction given by the
graph structure). The edges, which appear in a cycleC with the same orientation than their orientation
in the graph, are exactly the elements ofE(C).

To make the figures easier to read,α(e) is always the left-most extremity ofe andω(e) its right-most
one. Such drawing construction is not possible if the graph contains a circuit. But its case will not be very
interesting for our purpose.
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Fig. 3: Example of a chain and a cycleC (we recall that orientations are from left to right).

Example 1 An example of graph is drawn on figure 3. In the left-hand side,the non-dotted edges form
a chain c, whereas, in the right-hand side, they form a cycleC, such thatE(C) contains 3 edges:
(1, 6), (6, 8) and(5, 7).

The cyclomatic numberof a graphG is |EG| − |VG| + cG, wherecG is the number of connected
components ofG. A graph contains a cycle if and only if its cyclomatic numberis not0 (see (5)). If it
is not the case, the graph is calledforest. A connected forest is, by definition, a tree. Beware that, inthis
context, there are no rules for the orientation of the edges of a tree (often, in the literature, an oriented tree
is a tree which edges are oriented from theroot to theleaves, but we do not consider such objects here).

2.2 Posets, graphs, Hasse diagrams and linear extensions
In this paragraph, we recall the link between graphs and posets.

Given a graphG, we can consider the binary relation on the setVG of vertices ofG:

x ≤ y
def

⇐⇒

(

x = y or ∃ e ∈ EG such that

{

α(e) = x
ω(e) = y

)

This binary relation can be completed by transitivity. If the graph has no circuit, the resulting relation
≤ is antisymmetric and, hence, endows the setVG with a poset structure, which will be denotedposet(G).

The applicationposet is not injective. Among the pre-images of a given posetP , there is a minimum
one (for the inclusion of edge set), which is called Hasse diagram ofP .

The definition of linear extensions given in the introduction can be formulated in terms of graphs:

Definition 2.2 A linear extension of a graphG is a total order≤w on the set of verticesV such that, for
each edgee ofG, one hasα(e) ≤w ω(e).

The set of linear extensions ofG is denotedL(G). Let us also define the formal sumϕ(G) =
∑

w∈L(G)

w.

We will often see a total order≤w defined byvi1 ≤w vi2 ≤w . . . ≤w vin
as a wordw = vi1vi2 . . . vin

.

Remark 2 If G contains a circuit, then it has no linear extensions. Else, its linear extensions are the
linear extensions ofposet(G). Thus considering graphs instead of posets does not give more general
results.
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2.3 Rational functions on graphs
Given a graphG with n verticesv1, . . . , vn, we are interested in the following rational functionΨG in the

variables(xvi
)i=1...n: ΨG =

∑

w∈L(G)

1

(xw1 − xw2) . . . (xwn−1 − xwn
)
.

We also consider the renormalization:N(G) := ΨG ·
∏

e∈EG

(xα(e) − xω(e)).

The following properties ofN(G) have been proved in (2): the value ofN on forests is essential in the
next section because we will computeN by induction on the cyclomatic number.

Lemma 2.1 (Pruning-invariance) Let G be a graph with a vertexv of valence1 and e the edge of
extremity (origin or end)v. Then one hasN(G) = N

(

G\{v}
)

.

Proposition 2.2 If T is a tree,N(T ) = 1. If F is a disconnected forest,N(F ) = 0.

2.4 Removing edges and vertices in graphs
The main tool of this paper consists in removing some edges ofa graphG.

Definition 2.3 LetG be a graph andE′ a subset of its set of edgesEG. We will denote byG\E′ the
graphG′ with

• the same set of vertices asG ;

• the setEG′ := EG\E′ as set of edges.

Definition 2.4 If G is a graph andV ′ a subset of its set of verticesV , V ′ has an induced graph structure:
its edges are exactly the edges ofG, which have both their extremities inV ′.

If V \V ′ = {v1, . . . , vl}, this graph will be denoted byG\{v1, . . . , vl}. The symbol is the same than in
definition 2.3, but it should not be confusing.

3 Computation and properties of the numerator
In the previous section, we have defined a simple operation ongraphs consisting in removing edges.
Thanks to this operation, we will be able to construct an operator which lets invariant the formal sum
of linear extensions (paragraph 3.1). Due to the definition of Ψ, this implies immediately an inductive
relation on the rational functionsΨG (paragraph 3.2).
In paragraph 3.3, we solve the induction and obtain an additive formula forN(G). But this formula has
never a factorized form (even in the planar case), so we give in the last paragraph (3.4) a simple graphical
condition which implies the partial factorization ofN(G).

3.1 Equality on linear extensions
In this paragraph, we prove an induction relation on the formal sums of linear extensions of graphs. More
exactly, we write, for any graphG with at least one cycle,ϕ(G) as a linear combination ofϕ(G′), where
G′ runs over graphs with a strictly lower cyclomatic number. Inthe next paragraphs, we will iterate this
relation and applyΨ to both sides of the equality to studyΨG.
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Fig. 4: Example of application of theorem 3.1

If G is a finite graph andC a cycle ofG, let us denote byTC(G) the following formal alternate sum of
subgraphs ofG:

TC(G) =
∑

E′⊂E(C)
E′ 6=∅

(−1)|E
′|−1G\E′.

The functionϕ(G) =
∑

w∈L(G)

w can be extended by linearity to the free abelian group spanned by

graphs. One has the following theorem:

Theorem 3.1 LetG be a graph andC a cycle ofG then,ϕ(G) = ϕ(TC(G)).

An example is drawn on figure 4 (to make it easier to read, we didnot write the operatorϕ in front of
each graph).

Remark 3 In the case whereE(C) = ∅, this theorem says that a graph with a circuit has no linear
extensions (see remark 2).

If it is a singleton, it says that we do not change the set of linear extensions by erasing an edge if there
is a chain going from its origin to its end (thanks to transitivity).

To prove Theorem 3.1, we will need the two following lemma:

Lemma 3.2 Letw ∈ L(G\E(C)). There existsE′(w) ⊂ E(C) such that

∀E′′ ⊂ E(C), w ∈ L(G\E′′) ⇐⇒ E′(w) ⊂ E′′ ⊂ E(C).
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Proof: Left to the conscientious reader. 2

Lemma 3.3 Letw ∈ L(G\E(C)), there existsE′′ ( E(C) such thatw ∈ L(G\E′′).

Proof: Suppose that we can find a wordw for which the lemma is false. Sincew ∈ L(G\E(C)), the
wordw fulfills the relations given by the edges ofG, which are not inE(C).
But, if e ∈ E(C), one hasw /∈ L(G\(E(C)\{e})). That means thatw does not fulfill the relation corre-
sponding to the edgee. Asw is a total order, it fulfills the opposite relation:w ∈ L

[(

G\E(C)
)

∪ {e}
]

.

With the same argument applied for eache ∈ E(C), one hasw ∈ L
[

(

G\E(C)
)

∪ E(C)
]

. But this

graph contains a circuit, so its set of linear extension is empty. 2

Let us come back to the proof of Theorem 3.1. Letw be a word containing exactly once each element
of VG. We will compute its coefficient inϕ(G) − ϕ(TC(G)) =

∑

E′⊂E(C)(−1)|E
′|ϕ(G\E′):

• If w /∈ L(G\E(C)), its coefficient is zero in each summand.

• If w ∈ L(G\E(C)), thanks Lemma 3.2, we know that there existsE′(w) ⊂ E(C) such that

∀E′′ ⊂ E(C), w ∈ L(G\E′′) ⇐⇒ E′(w) ⊂ E′′ ⊂ E(C).

So the coefficient ofw in ϕ(G) − ϕ(TC(G)) is
∑

E′(w)⊂E′′⊂E(C)

(−1)|E
′′| = 0 becauseE′(w) 6=

E(C) (Lemma 3.3).

3.2 Consequences on rational functions
In the previous paragraph, we have established an inductionformula for the formal sum of linear exten-
sions (Theorem 3.1). One can applyΨ to both sides of this equality to computeN(G):

Proposition 3.4 LetG be a graph containing a cycleC. Then,

N(G) =
∑

E′⊂E(C)
E′ 6=∅

[

(−1)|E
′|−1N(G\E′)

∏

e∈E′

(xα(e) − xω(e))

]

.

By Proposition 2.2, one hasN(T ) = 1 if T is a tree andN(F ) = 0 if F is a disconnected forest. So
this Proposition gives us an algorithm to computeN(G): we just have to iterate it with any cycles until
all the graphs in the right hand side are forests. More precisely, if after iterating transformations of type
TC onG, we obtain the formal linear combination

∑

cFF of subforests ofG, then:

N(G) =
∑

T subtree ofG

cT
∏

e∈EG\ET

(xα(e) − xω(e)).

In this formula,N(G) appears as a sum of polynomials. So the computation ofN(G), using this formula,
is easier than a direct application of the definition

N(G) =
∑

w∈L(G)

(

Ψw ·
∏

e∈EG

(xα(e) − xω(e))

)

,
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where the summands may have poles.

Corollary 3.5 For any graphG, the rational functionN(G) is a polynomial. Moreover, ifG is discon-
nected,N(G) = 0.

In fact, if a connected graphG is the Hasse diagram of poset, the fractionΨG = N(G)
Q

e∈EG

(xα(e)−xω(e))
is

irreducible (see (2) for a proof of this fact).

Example 2 (explicit computation) Let G2,4 be the graph with a set of verticesV partitioned in two
subsetsV1 = {a1, a2} and V2 = {b1, b2, b3, b4} andE = V1 × V2 as set of edges. After iterating
Theorem 3.1, we obtain the equality of Figure 5 (the operatorϕ has been once again omitted).

a1

a2

b1

b2

b3

b4

=

a1

a2

b1

b2

b3

b4

+

a1

a2

b1

b2

b3

b4

+

a1

a2

b1

b2

b3

b4

+

a1

a2

b1

b2

b3

b4

−

a1

a2

b1

b2

b3

b4

−

a1

a2

b1

b2

b3

b4

−

a1

a2

b1

b2

b3

b4

Fig. 5: Decomposition ofϕ(G2,4).

Thus,N(G2,4) =
∑4

i=1

(

∏

j<i(bj − a1) ·
∏

k>i(bk − a2)
)

.

3.3 A combinatorial formula for N
To compute the polynomialN of a graphG, we only have to find the coefficient of trees in a formal
linear combination of forests obtained by iterating transformationsTC onG. But there are many possible
choices of cycle at each step and these coefficients depend onthese choices.

A way to avoid this problem is to give toG a rooted map structureM and to look at the particular
decompositionD(M) introduced in the paper (6, section 3). We will not describe here this particular
choice of cycles (see the complete version), but we have a combinatorial description of the trees with
coefficient+1 in D(M), all other trees having0 as coefficient.

Definition 3.1 A (combinatorial oriented) map is a connected graph with, for each vertexv, a cyclic
order on the edges whose origin or end isv. This definition is natural when the graph is drawn on a two
dimensional surface (see for example (10)).
It is more convenient when we deal with maps, to consider edges as couples of two darts(h1, h2), the first
one of extremityα(e) and the second one of extremityω(e). A rooted map is a map with an external dart
h0, that is to say a dart which do not belong to any edge, but has anextremity and a place in the cyclic
order given by this extremity.

We will need the following definition:

Definition 3.2 If T is a spanning subtree of a rooted mapM , the tour of the treeT beginning ath0

defines an order on the darts which do not belong toT . The definition is easy to understand on a figure:
for example, on Figure 6, the tour ish1

1, h
1
2, h

2
1, h

2
2, h

3
1, h

4
1, h

3
2, h

4
2 (see (1) for a precise definition).
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Fig. 6: Tour of a spanning tree of a rooted map.

We are now able to describe the coefficients of trees inD(M):

Proposition 3.6 LetM be a rooted map andT a spanning tree ofM .

• If there is an edgee = (h1, h2) ∈ M\T such thath2 appears beforeh1 in the tour ofT , then the
coefficient ofT in D(M) is 0.

• Else, the coefficient ofT in D(M) is +1 (in this case,T is said to begood).

For example, the spanning tree of Figure 6 is good. Note that the property of being a good spanning tree
does not depend on the orientations of the edges of the tree, but only on the orientations of those which
do not belong to it.

This Proposition is not very hard to prove, once we have the good definition ofD(M), but the latter
is quite technical and requires a non-easy proof of confluence. As an immediate consequence of the
proposition, we have the following formula forN(G):

Theorem 3.7 The polynomialN associated to the underlying graphG of a rooted mapM is given by the
following combinatorial formula:

N(G) =
∑

T good spanning
tree ofM





∏

e∈EG\ET

(

xα(e) − xω(e)

)



 . (1)

3.4 Chain factorization
In the previous paragraph, we have given an additive formulafor the numerator of the reduced fraction
of ΨP . Green formula for planar posets (see subsection 1.1) and the example of Figure 1 show that, in
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some cases, it can also be written as a product. In this paragraph we give a simple graphical condition on
a graphG, which implies the factorization ofN(G).

Remark 4 In this section, we assume thatG has no circuit and no transitivity relation (an edge going
from the beginning to the end of a chain). This is always true in the case of Hasse diagrams of posets
so we do not lose in generality. With this assumption, if we consider a chainc, there is no extra edges
between the vertices of the chain.

Let G be a connected graph,c a chain ofG, Vc the set of vertices ofc (including the origin and the
end of the chain) andG1, . . . ,Gk be all the connected components ofG \ Vc. The complete subgraphs
Gi = Gi ∪ Vc (for 1 ≤ i ≤ k) will be called regions ofG. An example (withk = 4) is drawn on Figure
7 (we consider the chain withVc = {1, 2, 13, 3, 4, 5, 6, 14}).

G = 1 2 3 4 5 613 14

7 8

9 10 11 12 15

16

17

18 19

G1 = 9 10 G2 = 7 818 19 G3 = 11 12 G4 =

15

16

17

G1 = 1 5 6 142 3 4

9 10

13

G2 =

1 2 3 4 5 613 14

7 818 19

G3 = 1 2 3 413 145 6

11 12

G4 = 1 2 3 4 5 613 14

15

16

17

Fig. 7: A graphG with a chainc, the connected componentsGi of G \ Vc and the corresponding regionsGi.

We can now state our third main result:

Theorem 3.8 Let G be a connected graph,c a chain ofG andG1, G2, . . . , Gk be the corresponding
regions ofG. Then one has:

N(G) =
k
∏

j=1

N(Gj).

In the example 7, the numeratorN(G) can be factorized into four non-trivial factors. This theorem is
proved in the complete version of the paper. It relies on a clever application of Proposition 3.4 and is a
little technical.

In the case of planar posets considered by Greene (8), this theorem explains the fact that the numerator
of the associated rational function is a product of polynomials of degree1. We can even give a new proof
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N









1 2 3 4 5 6

7 8

9









= N

(

1 2 3 4

7
)

·N

(

2 3 4 5

8
)

· N

(

3 4 5 6

9

)

= (x1 − x4).(x2 − x5).(x3 − x6)

Fig. 8: A non-planar (with Greene’s definition) poset for which Greene’s formula is true.

of Greene’s formula (stated in subsection 1.1), which worksin a context a little more general than planar
posets (see Figure 8).
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[6] V. Féray,Combinatorial interpretation and positivity of Kerov’s character polynomials, Journal of
Algebraic Combinatorics, (2008) to appear.
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Introduction
A fundamental problem in algebraic combinatorics is the Clebsch-Gordan problem: given a linearly re-
ductive group G, give a combinatorial description of the coefficients mλ

µν in the decomposition into irre-
ducibles of the tensor product of two (finite-dimensional complex) irreducible representation Vµ(G) and
Vν(G):

Vµ(G)⊗ Vν(G) ∼=
⊕
λ

mλ
µνVλ(G)

While this problem has been solved satisfactorily for the general linear group,GL(n), the most elementary
linear group, this is not the case for the symmetric group, Sn, the most fundamental finite group.

In the case of GL(n), the coefficients mλ
µν = cλµν are the well known Littlewood-Richardson coeffi-

cients. There exists several combinatorial descriptions for them. One of these descriptions was given by
Berenstein and Zelevinsky (1992) that showed that cλµν counts the integral points in a well-defined family
of polytopes. This initiated a series of works concerning the stretching functions associated to these co-
efficients that culminated with the proof by Knutson and Tao (1999) of the saturation conjecture. Finally,
Rassart (2004) showed that the Littlewood-Richardson coefficients cλµν are given by polynomial functions
of the parts of λ, µ and ν, on the maximal cells of a fan.

For the symmetric group Sn, the coefficients mλ
µν = gλµν are called the Kronecker coefficients. Amaz-

ingly, there is no combinatorial description of these coefficients in general. Particular families have been
investigated. In this paper the Kronecker coefficients indexed by two two–row shapes are considered. They
are the coefficients gλµν such that both µ and ν have two rows. Formulas for them have already been given
by Remmel and Whitehead (1994) and Rosas (2001). Recent works by Luque and Thibon (2003); Garsia
et al. (2008); Brown et al. (2008) have revived the interest of obtaining better formulas for the Kronecker
coefficients indexed by two two–row shapes as Hilbert series related to these coefficients have been linked
to problems in quantum information theory.

New problems about the Clebsch–Gordan coefficients have been raised recently by the specialists of
computational complexity. Narayanan (2006) showed that the computation of the Littlewood–Richardson
coefficients is a #P–complete problem. Bürgisser and Ikenmeyer (2008) showed that the computation
of the Kronecker coefficients is #P–hard. On the other hand, the saturation property implies that the
non–vanishing of a Littlewood–Richardson coefficient can be decided in polynomial time (Mulmuley and
Sohoni, 2005). Is it also the case for the Kronecker coefficients? This question lies at the heart of a detailed
plan, Geometric Complexity Theory, that Mulmuley and Sohoni (2001) elaborated to prove that P 6= NP
over the complex numbers (an arithmetic, non–uniform version of P 6= NP ). This lead Mulmuley (2007)
to state a series of conjectures about the stretching functions associated to the Kronecker coefficients. The
scarce information available about Kronecker coefficients made difficult even the experimental checking
of these conjectures. By means of the formulas by Remmel and Whitehead (1994) and Rosas (2001) it
was only possible to check them on large samples of Kronecker coefficients indexed by two two–row
shapes (see Mulmuley, 2007).

The present article obtains a new description for the Kronecker coefficients indexed by two two–row
shapes, given by quasi–polynomial functions on the chambers of fans, resembling the description of Ras-
sart (2004) for the Littlewood–Richardson coefficients. It is efficient enough to check Mulmuley’s con-
jectures for all Kronecker coefficients indexed by two two–row shapes (and, actually, disprove them by
providing explicit counter–examples). We start our investigation by looking at Murnaghan’s reduced
Kronecker coefficients ḡγαβ (Murnaghan, 1938), a related family of coefficients indexed by triples of parti-
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tions, which are stable values of stationary sequences of Kronecker coefficients. Our first result expresses
the Kronecker coefficients in terms of the reduced Kronecker coefficients (Theorem 3). Exploiting the
work of Rosas (2001) we are able to show that the reduced Kronecker polynomials related to the two-row
family count integral points in a polygon of R2. From this we describe an explicit piecewise quasipoly-
nomial formula for these reduced Kronecker coefficients. The pieces are the 26 maximal cells of a fan.
Last, using our formula that recovers the Kronecker coefficients from the reduced Kronecker coefficients,
we obtain, with the help of the Maple package convex by Franz (2006), explicit piecewise quasipolyno-
mial formulas for the Kronecker coefficients indexed by two two-row shapes. It is given by 74 quadratic
quasipolynomials whose domains are the maximal cells of a fan.

As an application, we list all Kronecker coefficients indexed by two two-row shapes that are equal to
zero. This made possible the discovery of counter–examples to Mulmuley’s conjectures (Briand et al.,
2008). In short, the advantage of our results is that for the first time we can completely study a complete
nontrivial family of the Kronecker coefficients.

The detailed proofs will be presented in a full version (Briand et al., In preparation) of this extended
abstract.

1 Piecewise Quasipolynomials
We now give a more detailed description of the main result. A quasipolynomial is a function on Zn
given by polynomial formulas, whose domains are the cosets of a full rank sublattice of Zn. Remarkable
examples of (univariate) quasipolynomials are the Ehrhart functions of polytopes of Rk with rational
vertices, that count the integral points in the dilations of the polytope (see Stanley, 1997, chap. 4).

We will obtain a description for the Kronecker coefficients indexed by two two–row shapes as a function
of the following kind.

Definition 1 A vector partition–like function is a function φ on Zn fulfilling the following: (i) There exists
a convex rational polyhedral cone C such that φ is zero outside C. (ii) Inside C, the function φ is given
by quasipolynomial formulas whose domains are (the sets of integral points of) the maximal (closed) cells
of a fan F.

If C and F are as above and Q is the family of quasipolynomial formulas, indexed by the maximal cells
of F, we say that the triple (C,F, Q) is a presentation of φ as a vector partition–like function.

Remark 1 A sum of vector partition–like functions φ1, φ2 is not necessarily vector partition–like. It is,
however, the case when the functions admit presentations (C,F, Q) and (C ′,F′, Q′) with the same cone:
C = C ′.

Examples of vector partition–like functions are the vector partition functions, whose corresponding
fans are the chamber complexes (see Sturmfels, 1995; Brion and Vergne, 1997).

Vector partition–like functions also arise as functions counting integral solutions to some systems of
linear inequalities depending on parameters. Precisely, consider a system of inequalities of the form

ui(x) + ci(h) ≥ 0, i = 1, . . . , N (1)

where the functions ui and ci are integral, homogeneous linear forms on Rm and Rn respectively. The
unknown is x and the parameter is h. Assume that for any h ∈ Rn the set of solutions x of the system is
bounded. Let h 7→ φ(h) be the function that counts the integral solutions x of the system. This function φ
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is vector partition–like. This follows from the reduction of this function to a vector partition function (see
Brion and Vergne, 1997). Here the cone C in Definition 1 is the set of values of the parameter h making
the system feasible.

Let ` be a positive integer. The function (λ, µ, ν) 7→ cλµ,ν from triples of partitions with at most ` parts
to Littlewood–Richardson coefficients is vector partition–like. This is because this function counts the
integral solutions of a system of inequalities depending on parameters (the parts of the partitions) of the
form (1). Indeed, such a system can be derived from the Littlewood–Richardson rule (see Mulmuley and
Sohoni, 2005). Alternatively, one can use the system defining Knutson and Tao’s Hive polytopes (see the
exposition by Buch, 2000).

It is natural to ask if similar results also hold for the Kronecker coefficients. Let `1 and `2 be positive
integers. If µ and ν are partitions of length at most `1 and `2 respectively then gλµ,ν can be nonzero only
if λ has at most `1`2 parts. The analogous function to consider is thus G`1,`2 : (λ, µ, ν) 7→ gλµ,ν defined
on triples of partitions with at most `1`2, `1 and `2 parts respectively. No interpretation of the functions
G`1,`2 as counting integral solutions to systems of inequalities of the form (1) is known. Nevertheless,
very close results were obtained by Mulmuley (2007): (i) The functions G`1,`2 fulfill the conditions in
Definition 1 with F a complex of polyhedral cones instead of a fan. (ii) For any λ, µ, ν, the stretching
function N ∈ N 7→ gN

λ

Nµ,Nν is a univariate quasipolynomial. Here Nλ stands for the partitions obtained
from λ by multiplying all parts by N . Combining these two results, one gets that the functions G`1,`2
fulfill the conditions in the definition of vector partition–like with “maximal closed cells” replaced with
“open cells” in (ii).

The simplest non–trivial case is G2,2, describing the Kronecker coefficients indexed by two two–row
shapes. Even this case is somehow difficult. In this work we prove the following:

Theorem 1 The function

G2,2 : (λ1, . . . , λ4, µ1, µ2, ν1, ν2) ∈ Z8 7→ g
(λ1,λ2,λ3,λ4)
(µ1,µ2)(ν1,ν2)

is vector partition–like.

Remark 2 A Kronecker coefficient gλµ,ν can be nonzero only if its three indexing partitions have the same

weight. This and the formula g(λ1,λ2,λ3,λ4)
(µ1,µ2)(ν1,ν2) = g

(λ1−1,λ2−1,λ3−1,λ4−1)
(µ1−2,µ2−2)(ν1−2,ν2−2) reduce the study of G2,2 to the

study of the function
(n, γ1, γ2, r, s) 7→ g

(n−γ1−γ2,γ1,γ2)
(n−r,r)(n−s,s)

2 Murnaghan’s Theorem and reduced Kronecker coefficients
In this section we introduce Murnaghan’s reduced Kronecker coefficients gγα,β . They are integers indexed
by triples of partitions closely related to the Kronecker coefficients. The Kronecker coefficients indexed
by two two–row shapes will be re–obtained from the reduced Kronecker coefficients indexed by two
one–row shapes (Section 3) which will be easy to describe (Theorem 4 and Section 4).

The Jacobi–Trudi formula expresses the Schur functions as determinants in the complete sums hk.
When λ has at most k parts, it asserts that:

sλ = det(hj−i+λi)i,j=1,...,k

(where hk = 0 when k < 0, h0 = 1 and λi = 0 for i greater than the length of λ.)
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This formula can also be applied in the case when λ is not a partition, i.e. is not nondecreasing. The
functions sλ obtained are either 0, or Schur functions up to a sign.

Let n be an integer and λ a partition. Then |λ| stands for the sum of the parts of λ and for any integer n,
we denote with (n−|λ|, λ) the sequence (n−|λ|, λ1, λ2, . . .). This is a partition if and only if n ≥ |λ|+λ1.
Last λ stands for the partition (λ2, λ3, . . .), which is obtained by removing the first part of λ.

Theorem 2 (Murnaghan (1938, 1955)) There exists a family of nonnegative integers (gγα,β) indexed by
triples of partitions (α, β, γ) such that, for fixed partitions α and β, only finitely many terms gγα,β are
non–zero, and for all n ≥ 0,

s(n−|α|,α) ∗ s(n−|β|,β) =
∑
γ

gγα,βs(n−|γ|,γ)

Following Klyachko (2004), we call the coefficients gγα,β the reduced Kronecker coefficients. They are
called extended Littlewood–Richardson numbers in Kirillov (2004) because of the following property,
observed first in Murnaghan (1955) and proved in Littlewood (1958): if α, β and γ are three partitions
such that |γ| = |α|+ |β| then gγαβ = cγαβ .

Remark 3 It follows from Murnaghan’s Theorem that for fixed partitions α, β, γ, the sequence of Kro-
necker coefficients g(n−|γ|,γ)

(n−|α|,α),(n−|β|,β) (n big enough so that all three indices are partitions) is stationary
with limit gγαβ .

3 From reduced to non–reduced Kronecker coefficients
In this section we give a formula that allows us to recover the Kronecker coefficients from the reduced
Kronecker coefficients, and we apply it for the Kronecker coefficients indexed by two two–row shapes.

For any infinite sequence u = (u1, u2, . . .) and any positive integer i we denote with u†i the sequence
obtained from u by incrementing by 1 its i − 1 first terms and removing its i–th term, that is: u†i =
(u1+1, u2+1, . . . , ui−1+1, ui+1, ui+2 . . .). Partitions are identified with infinite sequences by appending
trailing zeros. Under this identification, if λ is a partition then so is λ†i for all i.

Theorem 3 Let `1, `2 and n be positive integers. Let λ, µ, ν be partitions of n such that µ has length at
most `1 and ν has length at most `2. Then:

gλµν =
`1`2∑
i=1

(−1)i+1gλ
†i

µ,ν (2)

For `1 = `2 = 2, Formula (2) applies as follows:

g
(λ1,λ2,λ3)
(n−r,r)(n−s,s) = g

(λ2,λ3)
(r)(s) − g

(λ1+1,λ3)
(r)(s) + g

(λ1+1,λ2+1)
(r)(s) (3)

where n = |λ|, because the last expected summand g(λ1+1,λ2+1,λ3+1)
(r)(s) is always zero.

The reduced Kronecker coefficients that appear in this formula are all of the form g
(γ1,γ2)
(r)(s) . These co-

efficients admit the following description, derived in Briand et al. (2008) from the description for the
Kronecker coefficients indexed by two two–row shapes provided by Rosas (2001). An equivalent descrip-
tion for the reduced Kronecker coefficients indexed by two one–row shapes is given by Thibon (1991).
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Theorem 4 (Briand et al. (2008)) Let r, s and γ1 ≥ γ2 be nonnegative integers and h = (r, s, γ1, γ2).
The reduced Kronecker coefficient g(γ1,γ2)

(r)(s) counts the integral solutions to the system of inequalities
ui(X,Y ) + ci(h) ≥ 0 for i = 0, . . . , 6, where:

u0(v) + c0(h) = X − s
u1(v) + c1(h) = X − r
u2(v) + c2(h) = X + Y − r − s+ γ1

u3(v) + c3(h) = Y

u4(v) + c4(h) = Y −X + |γ|
u5(v) + c5(h) = −X − Y + r + s− γ2

u6(v) + c6(h) = X − Y − γ1

(4)

In particular, the function R : (r, s, γ1, γ2) ∈ Z4 7→ g
(γ1,γ2)
(r)(s) is vector partition–like.

Theorem 4 and Formula (3) provide a piecewise quasipolynomial description for G2,2 (see Remark
2). But the corresponding domains of quasipolynomiality obtained are neither closed, nor cones. The
remainder of this work is devoted to correct this and obtain, still from Theorem 4 and Formula (3) a
vector partition–like presentation for G2,2.

The main tools are the Lemma 1, below, and an explicit vector partition–like presentation for the func-
tion R (section 4) showing that the lemma applies.

Let F0, F1, F2 be the linear maps from R5 to R4 that send (n, r, s, γ1, γ2) to (r, s, γ1, γ2), (r, s, n −
γ1 − γ2, γ2), (r, s, n − γ1 − γ2, γ1) respectively. Let T1 and T2 be the translations in R4 of vector
v1 = (0, 0, 1, 0) and v2 = (0, 0, 1, 1) respectively.

Let ∆ (resp. ∆′) be the cone of R5 (resp. of R4) generated by all (n, r, s, γ1, γ2) ∈ Z5 (resp. all
(r, s, γ1, γ2) ∈ Z4) such that the Kronecker coefficient g(n−γ1−γ2,γ1,γ2)

(n−r,r)(n−s,s) (resp. the reduced Kronecker

coefficient g(γ1,γ2)
(r)(s) ) is defined and positive. The explicit description of ∆ is provided by Bravyi (2004)

(see also the general approach by Klyachko (2004)). The cone ∆′ is the image of ∆ under F0.
For x ∈ Z5 set χ∆(x) = 1 if x ∈ ∆ and χ∆(x) = 0 otherwise. Then we can rewrite Formula 3 as

follows:
G(x) = R ◦ F0(x)− χ∆(x) ·R ◦ T1 ◦ F1(x) + χ∆(x) ·R ◦ T2 ◦ F2(x)

where G(x) = G(n, r, s, γ1, γ2) = g
(n−γ1−γ2,γ1,γ2)
(n−r,r)(n−s,s) when (n− r, r), (n− s, s), (n− γ1− γ2, γ1, γ2) are

partitions, and G(n, r, s, γ1, γ2) = 0 otherwise.
After Remark 1, Theorem 1 will be proved if we show that all three vector partition–like functions

R ◦ F0, χ∆ · R ◦ T1 ◦ F1 and χ∆ · R ◦ T2 ◦ F2 admit presentations with the same cone: (∆,F0, Q0),
(∆,F1, Q1) and (∆,F2, Q2).

That R ◦ F0 admits a presentation (∆,F0, Q0) is immediate because F−1
0 (∆′) = ∆. To show that

χ∆ · R ◦ T1 ◦ F1 and χ∆ · R ◦ T2 ◦ F2 also admit presentations with cone ∆ we will need to apply two
times Lemma 1 below, with p = 5, q = 4, C = ∆, C ′ = ∆′, φ = R and F = Fi, v = vi for i = 1, 2.

Given subsets A, B of Rq we denote with A+ B the set {a+ b | a ∈ A, b ∈ B}. Given v ∈ Rq and I
subset of R we denote with I v the set {xv |x ∈ I}.

Lemma 1 Let φ be a vector partition–like function on Zq with presentation (C ′,F′, Q). Let C be a
convex rational polyhedral cone of Rp and F an integral linear map from Rp onto Rq . Let v ∈ Zq and T
be the translation of Rq of vector v. Let F be the fan subdividing C ∩ F−1(C ′), whose cells are all sets
of the form C ∩ F−1(σ′) for σ′ cell of F′.

Assume that the cone C ∩ F−1(C ′) is full–dimensional in Rp. Assume also that:
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(a) Whenever H is a hyperplane separating two adjacent maximal cells σ′1, σ′2 of F′ such that F (C) is
not included in H+ R+v, the following holds: The quasipolynomials Qσ′1 and Qσ′2 coincide on the
integral points of the strip H + ]0; 1] v.

(b) Whenever H is a hyperplane containing a facet of C ′, such that R+ v + F (C) is not contained in
the half–plane H +C ′, the following holds: For all maximal cells σ′ of F′ having a facet contained
in H , the quasipolynomial Qσ′ vanishes on the integral points of the strip H + ]0; 1] v.

Then

(i) The function φ ◦ T ◦ F is zero on the integral points of the closure of C \ F−1(C ′).

(ii) IfC∩F−1(σ′) is a maximal cell of F (where σ′ is a maximal cell of F′) then φ◦T ◦F andQσ◦T ◦F
coincide on its integral points.

Applying the lemma as indicated requires a precise description of a presentation (∆′,FR, QR) of R.
The next section provides such a description.

4 Formulas for the reduced Kronecker coefficients indexed by two
one–row shapes

Let ui and ci, for i = 0, 1, . . . , 6 be the integral linear forms defined in (4). After Brion and Vergne (1997),
the function ψ that associates to y ∈ Z7 the number of integral solutions of the system ui(X,Y )+yi ≥ 0,
i = 0, . . . , 6 is a vector partition function. In particular, it admits a very well–described vector partition–
like presentation (Cψ,Fψ, Qψ). The corresponding fan is the chamber complex of ψ, see Brion and
Vergne (1997); Sturmfels (1995).

Remember (Theorem 4) thatR is the function that associates the reduced Kronecker coefficient g(γ1,γ2)
(r)(s)

to (r, s, γ1, γ2) ∈ Z4. ThenR = ψ◦c, where c is the linear map from R4 to R7 that maps h = (r, s, γ1, γ2)
to (c0(h), c1(h), . . . , c6(h)). Therefore, one obtains a very explicit vector partition–like presentation
(c−1(Cψ),FR, QR) for R by taking for FR the inverse image of Fψ under c, and for QR the family of
functions QR,c−1(σ) = Qψ,σ ◦ c for σ maximal cell of Fψ . We present this description.

Let h ∈ R7. Denote with Π(h) the set of real solutions of the system (4). For i = 0, 1, . . . , 6, let Li(h)
be the line with equation aiX + biY + ci(h) = 0 where ui(X,Y ) = aiX + biY .

For any three elements i, j, k of {0, 1, . . . , 6} define:

fijk(h) = −

∣∣∣∣∣∣
ai aj ak
bi bj bk

ci(h) cj(h) ck(h)

∣∣∣∣∣∣ (5)

Define also f25 = γ1 − γ2 and f46 = γ2. The linear form f25 (resp. f46) is proportional to f25k for all
k 6= 2, 5 (resp.: to f46k for all k 6= 4, 6) and its vanishing is the condition for the two parallel lines L2 and
L5 (resp. L4 and L6) to coincide.

• The cone c−1(Cψ) is equal to the cone ∆′ introduced in Section 3. It is defined by the system of
linear inequalities:

f145 ≤ 0, f045 ≤ 0, f356 ≤ 0, f035 ≤ 0, f135 ≤ 0, f25 ≥ 0, f46 ≥ 0.
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Fig. 1: The graph G.

• The fan FR: Let S be the locus of parameters h such that three lines Li(h), Lj(h), Lk(h) meet in
Π(h). The fan FR is the fan whose chambers (maximal open cells) are the connected components
of ∆′ \S. In each chamber σ the set of indices i such that Li(h) supports a side of Π(h) is constant.
Denote this set with Sides(σ). This set Sides(σ) determines σ. Therefore we denote a chamber
σ with σI when Sides(σ) = I , e.g. σ1245 for the chamber σ such that Sides(σ) = {1, 2, 4, 5}.
There are 26 chambers σI in FR. The corresponding indices I = Sides(σI) are the vertices of the
graph G in Figure 1. Adjacency in G represents adjacency in FR: chambers σI and σJ are adjacent
(i.e. their closures have a common facet) if and only if I and J are adjacent vertices in G. Observe
that when σI and σJ are adjacent then:

– either I and J are obtained from each other by exchanging 0 and 1. Then σI and σJ are
separated by the hyperplane of equation r = s. There is r > s on σI if 1 ∈ I .

– or one of the sets is obtained from the other by inserting a unique element. Say J = I ∪ {j}
with j 6∈ I . If the elements of J are p1 < p2 < · · · < pt say that the successor of pq is pq+1,
for q = 1, . . . , t− 1, and that the successor of pt is p1. This defines a cyclic order on J . Let i
and k be the predecessor and successor of j in this cyclic order. Then σI and σJ are separated
by the hyperplane of equation fijk = 0, and fijk > 0 on σI .

• The quasipolynomial formulas on each maximal cell: For simplicity we set qI = QR,σI . This is
the quasipolynomial formula for R valid on the cell σI (the topological closure of the chamber σI ).
Rather than displaying explicit expressions for all quasi–polynomials qI , it is enough to present one
of them (we choose q135) and display all differences qI − qJ for σI and σJ adjacent. All quasi–
polynomials qI can be recovered easily from this information by chasing on the graph G (Figure 1),
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ijk qI(h)− qJ(h)
Values δ s. t.
qI = qJ

on fijk = δ

613, 123, 134
603, 023, 034

1
2fijk(h) (fijk(h)− 1) 0, 1

234 1
4 (fijk(h))2 +

{
0 if fijk(h) ≡ 0 mod 2
−1/4 else. −1, 0, 1

345, 124, 561
024, 560

1
4fijk(h) (fijk(h)− 2) +

{
0 if fijk(h) ≡ 0 mod 2

1/4 else 0, 1, 2

Tab. 1: The differences qI − qJ for σI and σJ adjacent chambers of F.

e.g.
q1456 = (q1456 − q13456) + (q13456 − q1356) + (q1356 − q135) + q135

There is:
q135(r, s, γ1, γ2) =

1
2

(s− γ2 + 1) (s− γ2 + 2)

Let σI and σJ be two adjacent chambers of F.

– If I and J are obtained from each other by exchanging 0 and 1 then qI = qJ .

– If J = I ∪ {j} with j 6∈ I then qI − qJ depend only of j and its predecessor i and successor
k in J , and is as indicated in Table 1.

If σI and σJ are adjacent, the quasi–polynomials qI and qJ coincide not only on the affine hyperplane
spanned by the facet σI ∩ σJ but also on close parallel hyperplanes.

Proposition 1 Let σI and σJ be two adjacent chambers of F such that J = I ∪ {j} with j 6∈ I . Let i and
k be the predecessor and successor, respectively, of j in J .

Then qI − qJ coincide on the affine hyperplanes fijk = δ for the values of δ given by the third column
in Table 1.

Similarly, if the hyperplane H supports a facet of a maximal cell σI , and this facet is contained in the
border of ∆′, then qI vanishes on affine hyperplanes close and parallel to H .

Proposition 2 Let σI be a chamber of F and τ an external facet of σI (i.e. a facet contained in the border
of ∆′). The hyperplane supporting τ admits as equation f = 0 where f is one of the linear forms f145,
f045, f356, f035, f135, f25, f46.

The set of values δ ∈ Z such that f vanishes identically on the affine hyperplane of equation f = δ is
provided by Table 2.

It is immediate that R ◦ F0 has a vector partition–like presentations (∆,F0, Q0). Propositions 1 and 2
are used to apply Lemma 1 and show that χ∆ ·R ◦T1 ◦F1 and χ∆ ·R ◦T2 ◦F2 have vector partition–like
presentations (∆,F1, Q1) and (∆,F2, Q2). After Remark 1, this proves Theorem 1 and provides a way
to compute a vector partition–like presentation for G and G2,2.
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Form f Chambers having a facet
supported by f = 0

Values δ such that
qI vanishes identically

on f = δ

f46 = γ2 3456, 1456, 0456 −1
f25 = γ1 − γ2 1245, 0245, 1235, 0235 −1

f145 = r − s− γ1 145 1, 2, 3
f045 = s− r − γ1 045 1, 2, 3
f356 = |γ| − r − s 356 1, 2, 3
f035 = γ2 − r 035 1, 2
f135 = γ2 − s 135 1, 2

Tab. 2: The linear forms defining the facets of ∆′.

5 Formulas for the Kronecker coefficients indexed by two two–
row shapes

Once the presentations (∆,F0, Q0), (∆,F1, Q1), (∆,F2, Q2) forR◦F0, χ∆·R◦T1◦F1 and χ∆·R◦T2◦F2

have been determined, an explicit presentation (∆,F3, Q3) for G is obtained: The cells of F3 are the
intersection σ0 ∩ σ1 ∩ σ2 for σi a cell of Fi, i ∈ {0, 1, 2}. If σ0 ∩ σ1 ∩ σ2 is a maximal cell of F3 then the
corresponding quasipolynomial formula for G is Q0,σ0 − Q1,σ1 + Q2,σ2 . We computed the description
for F3 by using the Maple Package CONVEX by Franz (2006): it has 177 maximal cells. It turns out that
on some of them G is given by the same quasipolynomial formulas, and that they can be glued together to
form the maximal cells of a new fan FK . In the new presentation (∆,FK , P ) obtained for G the fan FK
has only 74 maximal cells.

All 74 quasipolynomial formulas Pσ have the following form:

Pσ = 1/4 Qσ + 1/2 Lσ +Mσ/4 (6)

where Qσ and Lσ are integral homogeneous polynomials in (n, r, s, γ1, γ2) respectively quadratic and
linear. The function Mσ takes integral values, fulfills Mσ(0)/4 = 1 and is constant on each coset of Z5

modulo the sublattice defined by r + s ≡ n ≡ γ1 ≡ γ2 ≡ 0 mod 2.
Moreover, for all maximal cells σ, the functions Qσ , Lσ are nonnegative on σ. This also holds for Mσ ,

for all cells σ except four. This makes specially easy studying the support of the Kronecker coefficients
indexed by two two–row shapes. This is the set of all triples (λ, µ, ν) such that gλµ,ν > 0 and µ and ν have
at most two parts.

We obtain the following result. Let (n, r, s, γ1, γ2) ∈ ∆. Then g(n−γ1−γ2,γ1,γ2)
(n−r,r)(n−s,s) is zero if and only if at

least one of the following five systems of conditions is fulfilled:{
n = 2 s = 2 r
γ1 or γ2 odd. n = max(2 r, 2 s)
γ1 = γ2

r + s+ γ1 odd.

 n = max(2 r, 2 s, |γ|+ γ1)
γ2 = 0
r + s+ γ1 odd.{
n = |γ|+ γ1 = max(2 r, 2 s)
r + s+ γ1 odd.


n = max(2 r, 2 s)
|r − s| = 1
min(2 r, 2 s) ≥ |γ|+ γ1

γ1 or γ2 even.

(7)
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This exhaustive description led us to a family of counterexamples for SH, a saturation conjecture for-
mulated by Mulmuley (2007). The stretching functions g̃λµ,ν : N 7→ gNλNµ,Nν attached to the Kronecker
coefficients are quasipolynomials (Mulmuley, 2007). This means that for any fixed λ, µ, ν there exist
an integer k and polynomials p1, p2, . . . , pk such that for any N ≥ 1, g̃λµ,ν(N) = pi(N) when N ≡ i

mod k. Mulmuley’s SH conjecture stated that for any such description, gλµ,ν = 0 ⇔ F1 = 0. The right-
most system of conditions in (7) above provides a family of counterexamples to this conjecture (Briand
et al., 2008). The discovery of these counterexamples led Mulmuley (2008) to propose a weaker form of
the conjecture SH, still strong enough for the aims of Geometric Complexity Theory.
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Abstract. We use the polynomial ring C[x1,1, . . . , xn,n] to modify the Kazhdan-Lusztig construction of irreducible Sn-
modules. This modified construction produces exactly the same matrices as the original construction in [Invent. Math
53 (1979)], but does not employ the Kazhdan-Lusztig preorders. We also show that our modules are related by uni-
triangular transition matrices to those constructed by Clausen in [J. Symbolic Comput. 11 (1991)]. This provides a
C[x1,1, . . . , xn,n]-analog of results of Garsia-McLarnan in [Adv. Math. 69 (1988)].

Résumé. Nous utilisons l’anneau C[x1,1, . . . , xn,n] pour modifier la construction Kazhdan-Lusztig des modules-Sn ir-
reductibles dans C[Sn]. Cette construction modifiée produit exactement les mêmes matrices que la construction originale
dans [Invent. Math 53 (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Nous montrons aussi que nos
modules sont relies par des matrices unitriangulaires aux modules construits par Clausen dans [J. Symbolic Comput. 11
(1991)]. Ce résultat donne un C[x1,1, . . . , xn,n]-analogue des résultats de Garsia-McLarnan dans [Adv. Math. 69 (1988)].

Keywords: Kazhdan-Lusztig, immanants, irreducible representations, symmetric group

1 Introduction

In 1979, Kazhdan and Lusztig introduced [8] a family of irreducible modules for Coxeter groups and related
Hecke algebras. These modules, which have many fascinating properties, also aid in the understanding of
modules for quantum groups and other algebras. Important ingredients in the construction of the Kazhdan-
Lusztig modules are the computation of certain polynomials in Z[q] known as Kazhdan-Lusztig polynomials,
and the description of preorders on Coxeter group elements known as the Kazhdan-Lusztig preorders. These
two tasks, which present something of an obstacle to one wishing to construct the modules, have become
fascinating research topics in their own right. Even in the simplest case of a Coxeter group, the symmetric
group Sn, the Kazhdan-Lusztig polynomials and preorders are somewhat poorly understood.

As an alternative to the “traditional” Kazhdan-Lusztig construction of type-A modules in terms of sub-
spaces of the type-A Hecke algebra Hn(q) (or of its specialization Sn), one may construct modules in terms
of subspaces of a noncommutative “quantum polynomial ring” (or of its specialization C[x1,1, . . . , xn,n]).
Theoretically, this alternative offers no special advantage over the original construction. On the other hand, a
simple modification of this alternative completely eliminates the need for the Kazhdan-Lusztig preorders in
a new construction of Sn modules.
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In Sections 2-3, we review essential definitions for the symmetric group, Hecke algebra, and Kazhdan-
Lusztig modules. In Section 4 we review definitions related to the polynomial ring C[x1,1, . . . , xn,n] and
a particular n!-dimensional subspace of C[x1,1, . . . , xn,n] called the immanant space. We recall the defini-
tion of the bideterminant basis of the immanant space, which gained notoriety in the work of Désarménien,
Kung, and Rota [3], and Clausen’s use of this basis to construct irreducible Sn-modules [2]. In Section 5,
we use the basis of Kazhdan-Lusztig immanants studied in [12] to transfer the traditional Kazhdan-Lusztig
representations to the immanant space.

Aspects of Clausen’s work will then motivate us to modify the above representations in Section 6 and to
apply vanishing properties of Kazhdan-Lusztig immanants obtained in [13]. This leads to our main result that
the resulting representations, which do not rely upon the Kazhdan-Lusztig preorders, have matrices equal to
those corresonding to the original Kazhdan-Lusztig representations in [8]. We finish in Section 7 by showing
that the relationship between the bideterminant and Kazhdan-Lusztig immanant bases studied in [13] leads
to unitriangular transition matrices relating Clausen’s irreducible representations of Sn to those of Kazhdan-
Lusztig. This provides an analog in C[x1,1, . . . , xn,n] of the Garsia-McLarnan result [6, Thm. 5.3] relating
Young’s natural representations to those of Kazhdan-Lusztig in C[Sn].

2 Tableaux and the symmetric group

We call a weakly decreasing sequence λ = (λ1, . . . , λ`) of positive integers with
∑`
i=1 λi = r an integer

partition of r, and we denote this by λ ` r or |λ| = r. A partial ordering on integer partitions of r called
dominance order is given by λ � µ if and only if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi, for all i = 1, . . . , `. (1)

From an integer partition λ we can construct a Ferrers diagram which has λi left justified dots in row i.
When we replace the dots in a diagram with 1, . . . , r we have a Young tableau where the shape of the tableau
is λ. An injective tableau is merely one in which the replacing is performed injectively, i.e. the 1, . . . , r
appear exactly once in the tableau. We call a tableau column-(semi)strict if its entries are (weakly) increasing
downward in columns. A tableau is row-(semi)strict if entries (weakly) increase from left to right in rows.
We call a tableau semistandard if it is column-strict and row-semistrict, and standard if it is semistandard and
injective. We define transposition of partitions λ 7→ λ> (also known as conjugation) and tableaux T 7→ T> in
a manner analogous to matrix transposition. We define a bitableau to be a pair of tableaux of the same shape,
and say that it posesses a certain tableau property if both of its tableaux posess this property.

For each partition λ we define the superstandard tableau of shape λ to be the tableau U(λ) having entries
in reading order. For example,

U((4, 2, 1)) =
1 2 3 4
5 6
7

. (2)

The standard presentation of Sn is given by generators s1, . . . , sn−1 and relations

s2
i = 1, for i = 1, . . . , n− 1,

sisjsi = sjsisj , if |i− j| = 1,
sisj = sjsi, if |i− j| ≥ 2.

(3)

Let Sn act on rearrangements of the letters [n] = {1, . . . , n} by

si ◦ v1 · · · vn =
def

v1 · · · vi−1vi+1vivi+2 · · · vn. (4)
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For each permutation w = si1 · · · si` ∈ Sn we define the one-line notation of w to be the word

w1 · · ·wn =
def

si1 ◦ (· · · (si` ◦ (1 · · ·n)) · · · ). (5)

For each w ∈ Sn we define two tableaux, P (w), Q(w) which are obtained from the Robinson-Schensted
correspondence using row insertion to the one-line notation of w. (See, e.g., [14, Sec. 3.1].) It is well known
that these tableaux satisfy P (w−1) = Q(w). Since sh(P (w)) = sh(Q(w)) we can define the shape of a
permutation as sh(w) = sh(P (w)).

Given a permutation w ∈ Sn expressed in terms of generators w = si1 · · · si` we say this expression is
reduced if w cannot be expressed as a shorter product of generators of Sn. We call the length of a permu-
tation w ∈ Sn `(w) = `, in the previous equation. We define the Bruhat order on Sn by v ≤ w if some
(equivalently every) reduced expression for w contains a reduced expression for v as a subword (The reader
is referred to [1] for more on this topic). Throughout this paper we will use w0 to denote the unique maximal
element in the Bruhat order. Multiplying a permutation on the right by w0 also changes the bitableau of the
Robinson-Schensted correspondence for that permutation. Specifically, this change can be described in terms
of transposition and Schützenberger’s evacuation algorithm. (See [1, Appendix].)

Lemma 2.1 If v ∈ Sn, then P (v) = evac(P (vw0))>.

3 Kazhdan-Lusztig representations

Given an indeterminate q we define the Hecke algebra,Hn(q), to be theC[q
1
2 , q¯

1
2 ]-algebra with multiplicative

identity T̃e generated by {T̃si
}n−1
i=1 with relations

T̃ 2
si

= (q
1
2 − q¯1

2 )T̃si
+ T̃e, for i = 1, . . . , n− 1, (6)

T̃si
T̃sj

T̃si
= T̃sj

T̃si
T̃sj

, if |i− j| = 1, (7)

T̃si T̃sj = T̃sj T̃si , if |i− j| ≥ 2. (8)

We then can define T̃w for any w ∈ Sn by T̃w = T̃si1
· · · T̃sil

where w = si1 · · · sil is any reduced
expression. Inverses of generators are given by

T̃−1
si

= T̃si
− (q

1
2 − q¯1

2 )T̃e = T̃si
− q¯1

2 (q − 1)T̃e. (9)

When q = 1 we see that this presentation is simply that of the group algebra, C[Sn].

An important involution of the Hecke algebra is the so called bar involution. The involution is defined as∑
w

awT̃w 7→
∑
w

awT̃w =
∑
w

aw T̃w (10)

where
q = q−1, T̃w =

(
T̃w−1

)−1

. (11)

The Kazhdan-Lusztig basis, {Cw(q) |w ∈ Sn}, is the unique basis of Hn(q) such that the basis elements
are invariant under the bar involution, Cw = Cw for all w ∈ Sn, and that Cw in terms of the {T̃v} is given
by

Cw =
∑
v≤w

εv,wqv,wPv,w(q) T̃v, (12)
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where Pv,w(q) are polynomials in q of degree at most `(w)−`(v)−1
2 and where we define the convenient

notation εv,w = (−1)`(w)−`(v), qv,w = (q
1
2 )`(w)−`(v). These polynomials are known as the Kazhdan-Lusztig

polynomials and in fact belong to N[q].

Kazhdan and Lusztig also introduced another basis {C ′w(q) |w ∈ Sn} with similar properties which we
shall call the signless Kazhdan-Lusztig basis. Cw(q) and C ′w(q) are related by C ′w(q) = ψ(Cw(q)), where ψ
is the semilinear map defined by

ψ : q
1
2 7→ q¯

1
2 and T̃w 7→ εe,wT̃w. (13)

Thus C ′w(q) is also bar invariant and its expression in terms of {T̃v} is

C ′w(q) =
∑
v≤w

q−1
v,wPv,w(q)T̃v. (14)

As a preliminary to the proof of the existence and uniqueness of their bases Kazhdan and Lusztig also
defined the following function

µ(u, v) =
def

{
coefficient of q(`(v)−`(u)−1)/2 in Pu,v(q) if u < v,

0 otherwise.
(15)

Note that µ(u, v) = 0 if `(v)−`(u) is even since Pu,v(q) has only integer powers of q. Also, it is well known
that Pu,v(q) = Pw0uw0,w0vw0(q), and therefore that µ(u, v) = µ(w0uw0, w0vw0). Kazhdan and Lusztig
showed further [8, Cor. 3.2] µ(u, v) = µ(w0v, w0u), even though Pu,v(q) and Pw0v,w0u(q) are not equal in
general.

In the existence proof of the Kazhdan-Lusztig basis in [8, Pf. of Thm. 1.1] an expression for the action of
T̃si

on the basis element Cw(q) is given by

T̃si
Cw(q) =


q

1
2Cw(q) + Csiw(q) +

∑
v<w
siv<v

µ(v, w)Cv(q) if siw > w,

−q¯1
2Cw(q) if siw < w.

(16)

Along with these bases Kazhdan-Lusztig defined a preorder on Sn in order to construct representations of
Hn(q). This preorder, called the left preorder, is denoted by≤L and is defined as the transitive closure oflL
where u lL v if Cu(q) has nonzero coefficient in the expression of T̃wCv(q) for some w ∈ Sn. It is known
that w ≤L v implies sh(v) � sh(w).

We follow the desription in [7, Appendix] of the Kazhdan-Lusztig construction of an irreducible Hn(q)-
module (Sn-module) indexed by partition λ ` n. Choosing tableau T of shape λ, we allow Hn(q) to act by
left multiplication on

Kλ =
def

span{Cw(q) |P (w) = T}, (17)

regarded as the quotient span{Cv(q) | v ≤L w}/span{Cv(q) | v ≤L w, v 6≥L w}. The quotient is necessary
because Kλ is not in general closed under the action of Hn(q). In particular, for λ 6= (n) we have the
containments Kλ ⊂ Hn(q)Kλ ⊆ Kλ ⊕ span{Cv(q) | v ≤L w, v 6≥L w}.
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4 The polynomial ring and Clausen’s representations
Let x = (xi,j) be an n × n-matrix of variables. The polynomial ring C[x] has a natural grading C[x] =
⊕r≥0Ar, where Ar is the span of all monomials of total degree r. Further decomposing each space Ar, we
define a multigrading

C[x] =
⊕
r≥0

Ar =
⊕
r≥0

⊕
L,M

AL,M , (18)

where L = {`(1) ≤ . . . ≤ `(r)} and M = {m(1) ≤ . . . ≤ m(r)} are r-element multisets of [n], written as
weakly increasing sequences, and where AL,M is the span of monomials whose row and column indices are
given by L and M , respectively. We define the generalized submatrix of x with respect to (L,M) by

xL,M =


x`(1),m(1) · · · x`(1),m(r)

x`(2),m(1) · · · x`(2),m(r)

...
...

x`(r),m(1) · · · x`(r),m(r)

 . (19)

We refer to the space
A[n],[n] = span{x1,w1 · · ·xn,wn

|w ∈ Sn}, (20)

as the immanant space, and define the notation xu,v = xu1,v1 · · ·xun,vn
for permutations u, v ∈ Sn.

Given subsets I, J ⊂ [n] we define the I, J minor of x to be the determinant ∆I,J(x) = det(xI,J), and
given a column-strict, semistandard bitableau (S, T ) we define the bideterminant

(S |T )(x) = ∆I1,J1(x) · · ·∆Ik,Jk
(x), (21)

where I1, . . . , Ik are the sets of entries in columns 1, . . . , k of S and J1, . . . , Jk are the sets of entries in
columns 1, . . . , k of T . For example,(

1 2 4
3

1 3 4
2

)
(x) = ∆13,12(x)x2,3x4,4 = x1,1x3,2x2,3x4,4 − x1,2x3,1x2,3x4,4. (22)

For each permutation w in Sn, define

Rw(x) =
def

(Q(w)> |P (w)>)(x) (23)

where (P (w), Q(w)) is the bitableau obtained from the Robinson-Schensted row insertion algorithm. With
little effort one can see that each semistandard bideterminant can be viewed as a standard bideterminant of
a generalized submatrix. Similarly, standard bideterminants evaluated at generalized submatrices are either
zero or a semistandard bideterminant. Therefore, for multisets L,M of [n] with |L| = |M | = r we have that
the set {Rw(xL,M ) |w ∈ Sr} is a spanning set for the space AL,M .

A natural Sn-action on C[x] is given by

si ◦ g(x) =
def

g(six), (24)

where g ∈ C[x] and six is interpreted as the product of the permutation matrix of si and x. Clausen [2,
Thm. 8.1] constructed an irreducible Sn-module indexed by λ ` n by letting M = 1λ1 · · ·nλn and defining

Bλ =
def

span{Rw(x[n],M ) |P (w)> = U(λ)}. (25)

The matrix representations arising from these modules are the exactly the same as those of Young’s natural
representation. This fact follows from the isomorphism found in [10, Sec. 4.2] between bideterminants and
the polytabloids, which are the basis of the irreducible Sn-modules in Young’s natural representation.
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5 Kazhdan-Lusztig immanants

We now define a generalization of the polynomial ring C[x] called the quantum polynomial ring, A(n; q).
The ringA(n; q) is a noncommutativeC[q

1
2 , q¯

1
2 ]-algebra on n2 generators x = (x1,1 . . . , xn,n) with relations

(assuming i < j and k < `),

xi,`xi,k = q
1
2xi,kxi,`,

xj,kxi,k = q
1
2xi,kxj,k,

xj,kxi,` = xi,`xj,k,

xj,`xi,k = xi,kxj,` + (q
1
2 − q¯1

2 )xi,`xj,k.

(26)

A natural basis for the quantum polynomial ring consists of the set of monomials in lexicographic order.
Analogous to the multigrading of C[x] is the multigrading

A(n; q) =
⊕
r≥0

Ar(n; q) =
⊕
r≥0

⊕
L,M

AL,M (n; q), (27)

whereAr(n; q) is the span of all monomials of total degree r, and whereAL,M (n; q) is the span of monomials
whose row and column indices are given by r-element multisets L and M of [n]. We again call the space
A[n],[n](n; q) = span{xe,w |w ∈ Sn} the immanant space of A(n; q).

Define a left action of the Hecke algebra on A[n],[n](n; q) by

T̃si ◦ xe,v = xsi,v =

{
xe,siv if siv > v,

xe,siv + (q
1
2 − q¯1

2 )xe,v if siv < v.
(28)

Related to the bar involution on Hn(q) is another bar involution on A[n],[n](n; q) defined by∑
w

awx
e,w 7→

∑
w

awxe,w =
∑
w

aw xe,w (29)

where
q = q−1, xe,w = xw0,w0w = xn,wn

· · ·x1,w1 . (30)

Lemma 5.1 The bar involutions of (10) and (29) are compatible with the action of Hn(q) on A[n],[n](n; q).
That is,

T̃si
◦ xe,v = T̃si

◦ xe,v (31)

for all v ∈ Sn.

Proof: Omitted. 2

It is known that there is a unique, bar-invariant basis ofA[n],[n](n; q) closely related to the Kazhdan-Lusztig
basis of the Hecke algebra. We call the elements of this basis the Kazhdan-Lusztig immanants {Immv(x; q)}.
Further description of the Kazhdan-Lusztig immanants can be found in [12, Sec. 2], [4], and also [5]. For the
benefit of the reader we provide a proof analogous to that in [8, Thm. 1.1].
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Theorem 5.2 For any v ∈ Sn, there is a unique element Immv(x; q) ∈ A[n],[n](n; q) such that

Immv(x; q) = Immv(x; q) (32)

Immv(x; q) =
∑
w≥v

εv,wq
−1
v,wQv,w(q)xe,w, (33)

where Qv,w(q) are polynomials in q of degree ≤ `(w)−`(v)−1
2 if v < w and Qv,v(q) = 1.

Proof: Omitted. 2

The polynomials Qu,v(q) in the above proof are actually the inverse Kazhdan-Lusztig polynomials, found
in [8, Sec. 3]. They are related to the Kazhdan-Lusztig polynomials by

Qu,v(q) = Pw0v,w0u(q) = Pvw0,uw0(q). (34)

We can now describe a left action of Hn(q) on the immanant space by its action on the Kazhdan-Lusztig
immanants.

Corollary 5.3 The left action of the Hecke algebra on A[n],[n](n; q) is described by

T̃si
Immv(x; q) =


q

1
2 Immv(x; q) + Immsiv(x; q) +

∑
w>v
siw>w

µ(v, w)Immw(x; q) if siv < v,

−q¯1
2 Immv(x; q) if siv > v.

(35)

Proof: Omitted. 2

A deeper connection between the Kazhdan-Lusztig immanants and the Kazhdan-Lusztig basis is evident in
the C[q

1
2 , q¯

1
2 ]-bilinear form onA[n],[n](n; q)×Hn(q) defined by by 〈xe,v, T̃w〉 = δv,w. Specifically, we have

〈Immv(x; q), C ′w(q)〉 = δv,w, so the signless Kazhdan-Lusztig basis is dual to the basis of Kazhdan-Lusztig
immanants.

In the following lemma we relate the definition of the left preorder in the Hecke algebra with these
Kazhdan-Lusztig immanants. The results in the proof will also be essential in describing the relationship
of the Hn(q) representations associated with the Kazhdan-Lusztig basis and immanants.

Lemma 5.4 Let v, v′ ∈ Sn. Then v lL v′ if Immv′(x; q) appears with nonzero coefficient in T̃uImmv(x; q)
for some u ∈ Sn.

Proof: Omitted. 2

With Lemma 5.4 we can now express the preorder in terms of the Kazhdan-Lusztig immanants. We
can now construct Hn(q)-modules indexed by λ ` n, like in [7, Appendix], with the Kazhdan-Lusztig
immanants. We choose a tableau T of shape λ and allow Hn(q) to act by left multiplication on

V λ =
def

span{Immw(x; q) |P (w)> = T}, (36)

regarded as the quotient span{Immv(x; q) | v ≥L w}/span{Immv(x; q) | v ≥L w, v 6≤L w}. The quotient
is necessary because like Kλ, V λ is not in general closed under the action of Hn(q). In particular, whenever
λ 6= (1n) we have the containments

V λ ⊂ Hn(q)V λ ⊆ V λ ⊕ span{Immv(x; q) | v ≥L w, v 6≤L w}. (37)
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6 Generalized submatrices in Kazhdan-Lusztig immanants

In [13] Rhoades and Skandera found vanishing conditions for immanants and bideterminants of matrices hav-
ing repeated rows and columns. Using these results we will evaluate the Kazhdan-Lusztig immanants at gen-
eralized submatrices, similar to Clausen’s construction. It turns out that if we evaluate the Kazhdan-Lusztig
immanants at specific generalized submatrices we can eliminate the quotient needed in the construction of
the Sn-modules.

To express the vanishing results we need to define the column repetition partition of an n×n-matrix A by

ν[j](A) =
def

(ν1, . . . , νk), (38)

where k is the number of distinct columns in the n×j-submatrixA[n],[j], and ν1, . . . , νk are the multiplicities
with which distinct columns appear, written in weakly decreasing order.

We will write Immw(x) = Immw(x; 1) for Kazhdan-Lusztig immanants in A[n],[n]. The following van-
ishing results found in [13, Thms. 4.10-4.11] will be instrumental in later proofs.

Lemma 6.1 Let w ∈ Sn and A be an n × n matrix. If sh(w−1
[j] ) � ν[j](A) for some 1 ≤ j ≤ n, then

Immw(A) = Rw(A) = 0.

We can now see that the left Sn-action defined in Corollary 5.3 (setting q = 1) actually describes an
Sn-module if we evaluate the immanants at generalized submatrices.

Theorem 6.2 Let λ ` n and set M = 1λ1 · · ·nλn . Define

Wλ =
def

span{Immw(x[n],M ) |P (w)> = U(λ)}, (39)

where U(λ) is the superstandard tableau of shape λ. Then Wλ is an Sn-module.

Proof: By (37) we know that it suffices to show that Immv(x[n],M ) = 0 for v >L w where P (w)> =
U(λ). Since v >L w then we know that sh(w) � sh(v). The column multiplicity partition of x[n],M is
ν(x[n],M ) = λ. So sh(v) ≺ sh(w) = ν(x[n],M ). Thus sh(v) = sh(v−1) � ν(x[n],M ). Therefore, by Lemma
6.1, Immv(x[n],M ) = 0 for all v >L w. 2

The condition for inclusion in the basis of this module is P (w)> = U(λ) unlike the condition, P (w)> = T
where sh(T ) = λ, used in the definition of V λ above. The need for the change in conditions will become
clear later on in Proposition 7.2.

We would now like to show that these modules, Wλ, are isomorphic to the modules constructed by the
action Sn on the Kazhdan-Lusztig basis. We will actually achieve this result by generalizing to the action
of the Hecke algebra on the Kazhdan-Lusztig basis and immanants. We shall then show that the action of
T̃si

on either basis yields equal matrices, up to ordering of the basis elements. Let ρ1 : Sn → GL(Kλ) and
ρ2 : Sn → GL(Wλ) be the representations of Sn defined by letting q = 1 in the left actions described in
(16) and Corollary 5.3, respectively.

Theorem 6.3 Let X1(v), X2(v) be the matrices of ρ1(v), ρ2(v) with respect to the Kazhdan-Lusztig basis
and the Kazhdan-Lusztig immanant basis. Then X1(v) = X2(v).
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Proof: First, we construct Kλ as in (17) with T = evac(U(λ)). Let B = {v ∈ Sn |P (v) = evac(U(λ))}.
From Lemma 2.1 we see that ifCw(1) is a basis element ofKλ, i. e. w ∈ B, then P (ww0)> = evac(P (w)) =
U(λ). Thus if w ∈ Bw0, then Immw(x[n],M ) is a basis element of Wλ, as in (39). Define coefficients asi

v,w

for each generators si of Sn and v, w ∈ B so that

T̃si
Cv(1) =

∑
w∈B

asi
v,wCw(1). (40)

Then from the proof of Lemma 5.4 we see that for all v ∈ B

T̃siImmvw0(x[n],M ) =
∑
w∈B

asi
v,wImmww0(x[n],M ). (41)

ThusX1(si) = X2(si). Since any element of v ∈ Sn is a product of generators we have thatX1(v) = X2(v).
2

Corollary 6.4 The modules Wλ indexed by partitions λ ` n are the irreducible Sn-modules.

This result follows immediately from the fact that the modules Kλ are the irreducible Sn-modules.

7 Transition matrices

The goal of this section is to show that the Sn representations constructed with the bideterminant basis and
the Kazhdan-Lusztig immanant basis are related by unitriangular matrices. The inspiration for this result
comes from the work of Garsia and McLarnan where they showed a similar relationship between the Sn rep-
resentations constructed with Young’s natural basis and the Kazhdan-Lusztig basis [6, Thm. 5.3]. The results
of this section are also similar to the work of McDonough and Pallikaros where they found a unitriangular
relationship between the Hn(q) representations constructed with Specht modules and the cell modules of
Kazhdan and Lusztig [11, Thm. 4.1].

For two standard tableaux S, T with sh(S), sh(T ) ` n we can define iterated dominance of tableaux by
S EI T if for all j ∈ [n] we have sh(T[j]) � sh(U[j]), where T[j] is the subtableau of T consisting of all
entries less then or equal to j. Also we define the permutationw[j] ∈ Sj fromw ∈ Sn by arranging 1, . . . , j in
the same relative order of the first j terms in the one line notation of w. For two standard bitableaux we define
iterated dominance of bitableaux by componentwise iterated dominance of the tableaux. Thus we have that
(T,U) EI (T ′, U ′) if T EI T

′ and U EI U
′. Using this order on bitableaux and the Robinson-Schensted

association we can define iterated dominance of permutations by v ≤I w if and only if (P (v)>, Q(v)>) EI

(P (w)>, Q(w)>) (see [13]).

The following result can be found in [9, Thm. 5.1.4 C] and is usually attributed to Schützenberger.

Lemma 7.1 If v ∈ Sn and 1 ≤ i ≤ n then sh(w[i]) = sh(Q(w)>[i]).

The following proposition was alluded to earlier in the construction of the irreducible Sn-modules with
Kazhdan-Lusztig immanants with repeated columns.

Proposition 7.2 Let λ ` n and M be defined as above. If sh(w) ≺ λ or if sh(w) = λ and P (w)> 6= U(λ)
then Immw(x[n],M ) = 0.
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Proof: When sh(w) ≺ λ then we see that

sh(w−1) = sh(w) ≺ λ = ν(x[n],M ). (42)

Thus by Lemma 6.1 we see that Immw(x[n],M ) = 0. Suppose P (w)> 6= U(λ). It follows that P (w)>/IU(λ)
sinceU(λ) is maximal in iterated dominance of tableaux among all tableaux of shape λ. Since P (w)>/IU(λ)
then there exists an index j such that

sh(P (w)>[j]) � sh(U(λ)[j]). (43)

Let i be the greatest index so that λ1 + · · ·+λi ≤ j. By Lemma 7.1 we can see that sh(w−1
[j] ) = sh(P (w)>[j]).

For the generalized submatrix x[n],M we can see that

ν[j](x[n],M ) = (λ1, . . . , λi, j − (λ1 + · · ·+ λi)) (44)
= sh(U(λ)[j]), (45)

since the entries of U(λ) are in reading order. Thus after combining results we have

sh(w−1
[j] ) = sh(P (w)>[j]) � sh(U(λ)[j]) = ν[j](x[n],M ). (46)

Thus Immw(x[n],M ) = 0 if P (w)> /I U(λ) by Lemma 6.1. 2

An analogous result for the bideterminants has essentially the same proof.

Proposition 7.3 Let λ ` n and M be defined as above. If sh(w) ≺ λ or if sh(w) = λ and P (w)> 6= U(λ)
then Rw(x[n],M ) = 0.

In [13, Sec. 6] Rhoades-Skandera described a filtration of the immanant space. Define for a partition λ ` n
the permutation w(λ) to be the unique element of Sn where P (w(λ))> = Q(w(λ))> = U(λ). We then can
define

Uλ(x) = span{Rv(x) | v ≤I w(λ)}. (47)

Rhoades and Skandera showed that the space Uλ(x) also has a spanning set of certain Kazhdan-Lusztig
immanants. Specifically their result [13, Thm. 6.4] implies the following.

Lemma 7.4 Fix a partition λ ` n then

Uλ(x) = span{Rv(x) | sh(v) � λ} = span{Immv(x) | sh(v) � λ}. (48)

We now can conclude that the modules constructed with the bideterminants and the Kazhdan-Lusztig
immanants, both specialized at a generalized submatrix, are the same Sn-module.

Theorem 7.5 Let λ ` n then Bλ = Wλ, where Bλ is defined in (25) and Wλ is defined in (39).

Proof: With M = 1λ1 · · ·nλn we can specialize Uλ(x) at the generalized submatrix x[n],M to get

Uλ(x[n],M ) = span{Rv(x[n],M ) | sh(v) � λ} = span{Immv(x[n],M ) | sh(v) � λ}. (49)

Then by Proposition 7.3

span{Rv(x[n],M ) | sh(v) � λ} = span{Rv(x[n],M ) |P (v)> = U(λ)} = Bλ. (50)
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Similarly, by Proposition 7.2

span{Immv(x[n],M ) | sh(v) � λ} = span{Immv(x[n],M ) |P (v)> = U(λ)} = Wλ. (51)

Thus
Uλ(x[n],M ) = Bλ = Wλ. (52)

2

By [13, Cor. 5.11], the Kazhdan-Lusztig immanant basis, evaluated at generalized submatrices, is related
to the bideterminant basis by a unitriangular matrix. Specifically we have the following result.

Proposition 7.6 Fix a permutation v ∈ Sn and n-element multisetM of [n]. Define coefficients {d[n],M
u,v |u ∈

Sn} by

Rv(x[n],M ) =
∑
u∈Sn

d[n],M
u,v Immu(x[n],M ). (53)

Then we have d[n],M
u,v = 0 if u 6≤I v and d[n],M

v,v = 1 for all v ∈ Sn.

Proposition 7.6 describes the change of basis matrix between the bideterminants and the Kazhdan-Lusztig
immanant basis of A[n],M (n; q). The change-of-basis matrix is given by

Z =
[
d[n],M
u,v

]
, (54)

where the permutations are in any linear extension of the iterated dominance order. These change-of-basis
matrices imply a close relationship between the Sn representations generated by the Kazhdan Lusztig im-
manants, evaluated at generalized submatrices, and the bideterminant representations. Let ρ3 : Sn →
GL(Bλ) be the representation of Sn defined in (25) and let X3(v) be the matrix of this representation with
respect to the Clausen basis. By the above argument, the matrix X2(v) defined before Theorem 6.3 is the
matrix of ρ3(v) with respect to the Kazhdan-Lusztig immanant basis.

Theorem 7.7 For all v ∈ Sn, X3(v) = Z−1X2(v)Z, where Z is a unitriangular matrix.

Proof: Let Z be the principal submatrix of the matrix Z (54) corresponding to rows and columns indexed by
permutations u satisfying P (u) = U(λ)>. 2

Since the matrix representation arising from the bideterminants is the equivalent to that of Young’s natural
representation then the previous theorem gives a new interpretation of Garsia and McLarnan’s result [6,
Thm. 5.3], in the setting of the polynomial ring.
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A max-flow algorithm for positivity of
Littlewood-Richardson coefficients
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Abstract. Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irre-
ducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in com-
binatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the
positivity of Littlewood-Richardson coefficients in polynomial time. This follows by combining the saturation prop-
erty of Littlewood-Richardson coefficients (shown by Knutson and Tao 1999) with the well-known fact that linear
optimization is solvable in polynomial time. We design an explicit combinatorial polynomial time algorithm for de-
ciding the positivity of Littlewood-Richardson coefficients. This algorithm is highly adapted to the problem and it is
based on ideas from the theory of optimizing flows in networks.

Résumé. Les coefficients de Littlewood-Richardson sont les multiplicités dans la décomposition du produit ten-
soriel de deux représentations irréductibles du groupe général linéaire GL(n,C). Ces coefficients ont plusieurs in-
terprétations en combinatoire, en théorie des représentations et en géométrie. Mulmuley et Sohoni ont observé qu’on
peut décider si un coefficient de Littlewood-Richardson est positif en temps polynomial. C’est une conséquence de la
propriété de saturation des coefficients de Littlewood-Richardson (démontrée par Knutson et Tao en 1999) et le fait
bien connu que la programmation linéaire est possible en temps polynomial. Nous décrivons un algorithme combina-
toire pour décider si un coefficient de Littlewood-Richardson est positif. Cet algorithme est bien adapté au problème
et il utilise des idées de la théorie des flots maximaux sur des réseaux.
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1 Introduction
The Schur polynomials form a Z-basis of the ring Λ ⊆ Z[X1, . . . , Xn] of symmetric polynomials in n
variables. They are indexed by partitions λ into at most n parts, which are vectors λ ∈ Nn of weakly
decreasing natural numbers. There are various characterizations of the Schur polynomials sλ. The short-
est one is algebraic and states that sλ = ∆−1 det[xλi+n−i

j ]1≤i,j≤n, where ∆ =
∏
i<j(Xi − Xj). A
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combinatorial characterization is sλ =
∑
T X

α1(T )
1 · · ·Xαn(T )

n , where the sum is over all semistandard
tableaux T of shape λ and αi(T ) counts the number of occurences of i in T . We note that sλ has degree
|λ| :=

∑
i λi. For more information see Stanley (Sta99).

The Littlewood-Richardson coefficients cνλµ are the coefficients in the expansion of the product of two
Schur functions in the basis of Schur functions: sλsµ =

∑
ν c

ν
λµsν , where the sum is over all partitions ν

such that |ν| = |λ| + |µ|. The Littlewood-Richardson coefficients play an important role in various
mathematical disciplines (combinatorics, representation theory, algebraic geometry). For instance, they
describe the multiplicities in the tensor product decomposition of irreducible representations of the general
linear group GL(n,C). Also, they determine the multiplication in the cohomology ring of the Grassmann
varieties.

The well-known Littlewood-Richardson rule provides a combinatorial description of the numbers cνλµ
and leads to several algorithms for computing them, e.g., see (CS84). However, all of these algo-
rithms take exponential time in the size of the input partitions (consisting of integers encoded in binary).
Narayanan (Nar06) proved that this is unavoidable: the computation of cνλµ is a #P-complete problem.
Hence there does not exist a polynomial time algorithm for computing cνλµ under the widely believed
hypothesis P 6= NP. Surprisingly, as pointed out by Mulmuley and Sohoni (MS05), the positivity of cνλµ
can be decided by a polynomial time algorithm. This can be seen as follows.

Knutson and Tao (KT99) proved the following saturation property: cNνNλNµ > 0 implies cνλµ > 0,
where N denotes a positive integer. This has implications for various, seemingly unrelated mathematical
problems, see Fulton (Ful00). It also has algorithmic consequences: the Littlewood-Richardson rule
implies that ∃N cNνNλNµ > 0 can be rephrased as the feasibility problem of a rational polyhedron. It is
well-known that the latter can be solved in polynomial time, cf. (GLS93). Hence by the above saturation
property, cνλµ > 0 can be decided in polynomial time.

In (MS05) it was asked whether there is a purely combinatorial algorithm for deciding cνλµ > 0 in
polynomial time that does not use linear programming, i.e., one similar to the max-flow or weighted
matching problems in combinatorial optimization. The polytopes arising in that setting are integral, i.e.
all of its vertices are integral. However, the polytopes occuring in the Littlewood-Richardson situation are
not integral, cf. (KTT04).

In this paper we answer the above question in the affirmative by exhibiting a combinatorial polynomial
time algorithm for deciding cνλµ > 0. Our algorithm also yields a proof of the saturation property. Knut-
son, Tao and Woodward (KTW04) proved a conjecture by Fulton stating that cνλµ = 1 iff cNνNλNµ = 1
for all N . As a by-product of our developments, we obtain a new proof of this conjecture as well as a
combinatorial polynomial time algorithm for deciding multiplicity freeness. (So far this works for strictly
descreasing partitions λ, µ, ν only.)

Here is a rough outline of the main ideas underlying our algorithm. By the description in (KT99;
Buc00), cνλµ counts the integral hives with border labels prescribed by λ, µ, ν on the big triangle graph ∆
(see §2 for the notation). We establish a bijection between the integral hives and certain integral flows on
the dual graph of ∆, which we call hive flows. Using this, we convert the problem of deciding the positivity
of cνλµ into the problem of optimizing a certain linear function (the throughput) on the set of integral
points of the polyhedron P b of b-bounded hive flows. We solve this combinatorial optimization problem
in analogy to the well-known Ford-Fulkerson algorithm (AMO93) for maximizing flows in networks. We
start with the zero flow and iteratively increase the flow f by a fixed integer amount along a cycle while
staying in P b. The set of feasible directions in which to increase can be interpreted as the convex cone of
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feasible flows of an auxiliary network RESb(f). It is essential and nontrival that one can increase at least
by one unit. This key property is expressed in Theorem 11. All of this only works when f is shattered,
but this nondegeneracy condition is easy to obtain.

In order to obtain a polynomial time algorithm we replace our algorithm by a scaled version that in-
creases flows by integral multiplies of 2k, but several technical difficulties have to be overcome.

Due to page restrictions in this extended abstract we can only provide sketchs for some of the proofs.
The symbol 2 at the end of a statement indicates the complete omission of proof. For detailed arguments
we refer to the diploma thesis of the second author (Ike08).

Acknowledgment We thank Fritz Eisenbrand for valuable discussions.

2 Preliminaries
2.1 Saturation Property and hive description
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Fig. 1: The big triangle graph ∆ with additional border
labels resulting from partitions λ, µ and ν, (n = 5).

Let λ, µ, ν ∈ Nn be partitions such that |ν| = |λ| +
|µ|. We start with a triangular array of vertices, n+1
on each side, as seen in Figure 1.

This graph is called the big triangle graph ∆ with
vertex set H . To avoid confusion with vertices in
other graphs that will be introduced later, vertices in
∆ are denoted by underlined capital letters (A, B,
etc.). The vertices on the border of the big triangle
graph form the set B. Denote with T the top ver-
tex of ∆ and set H ′ := H \ {T}. The graph ∆ is
subdivided into n2 small triangles whose corners are
graph vertices. We call a triangle in ∆ an upright
triangle if it is of the form ‘4’. Otherwise (‘5’) we
call the triangle an upside down triangle. By a rhom-
bus ♦(A,B,C,D) with A,B,C,D ∈ H we mean
the union of two small triangles next to each other,
where A is the acute vertex of the upright triangle
and B, C and D are the other vertices in counter-
clockwise direction (see Figure 2). Two rhombi are
called overlapping if they share exactly one triangle.
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Fig. 2: Rhombus labelings in all possible ways.

Let h ∈ RH be a labeling of the vertices of ∆ with
real numbers. We call h integral iff h ∈ ZH . The h-
slack σ

(
♦, h

)
of a rhombus ♦ := ♦(A,B,C,D) is de-

fined as

σ
(
♦, h

)
:=
(
h(B) + h(D)

)
−
(
h(A) + h(C)

)
(note thatA andC are the acute vertices of ♦). The rhom-
bus ♦ is called h-flat iff σ

(
♦, h

)
= 0.

A vertex labeling h ∈ RH is called a hive iff the hive
inequalities σ

(
♦, h

)
≥ 0 are satisfied for all rhombi ♦. We note that the set of hives is a convex cone.
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For partitions λ, µ and ν with |ν| = |λ| + |µ|, let b(λ, µ, ν) ∈ ZB denote the border with labels as
in Figure 1. This vertex labeling of B is called the target border of λ, µ, ν. A border b ∈ RB is called
regular if for all border vertices A,B,C ∈ B, that are consecutive vertices on the same side of the big
hive triangle, we have b(A) + b(C) < 2b(B). If λ, µ and ν are strictly decreasing partitions, then the
target border b(λ, µ, ν) is regular.

The following theorem is a consequence of the Littlewood-Richardson rule (KT99; Buc00; PV05).

Theorem 1 Let λ, µ, ν be three partitions such that |ν| = |λ| + |µ|. Then cνλµ is the number of integral
hives with border labels b(λ, µ, ν).

2.2 Flows in networks
In this section we introduce basic terminology and facts about flows and augmenting-path algorithms, cf.
(AMO93).

Graphs A graph G = (V,E) consists of a finite set V of vertices and a finite set E ⊆
(
V
2

)
of edges

whose elements are unordered pairs of distinct vertices. Vertices v and w are called adjacent if {v, w} ∈
E. We call a vertex v and an edge e incident if v ∈ e.

Flows on digraphs Given a graph G = (V,E) we can assign an edge direction to each edge in E by
endowing G with an orientation function o : E → V that maps each edge to one of its vertices. This turns
G into a directed graph (digraph). We call an edge {v, w} directed away from v (or directed towards w)
iff o({v, w}) = v. The set of edges incident to a vertex v ∈ V can then be divided into the set δin(v) of
edges that are directed towards v and the set δout(v) of edges that are directed away from v. For a mapping
f : E → R we define

δin(v, f) :=
∑

e∈δin(v)

f(e) and δout(v, f) :=
∑

e∈δout(v)

f(e).

Definition 2 (Flow and throughput) A flow f on a digraph G = (V,E, o) is a mapping f : E → R
which satisfies δin(v, f) = δout(v, f) for all v ∈ V . We call δ(v, f) := δin(v, f) the throughput of f in v.
The flow f is called integral iff it only takes integral values.

We note that negative flows on edges are allowed and that therefore the flows on a digraph G form a
real vector space F (G).

Capacities We can assign capacities to a digraph G = (V,E, o) by defining two functions u : E →
[0,∞], e 7→ ue and l : E → [−∞, 0], e 7→ le, which we call the upper bound and lower bound, respec-
tively. A digraph with capacities is sometimes called a network in the literature. We will tacitly assume
that ue =∞ and le = −∞ if no other requirement for the edge e is made.

Definition 3 (Feasible flow) LetG = (V,E, o) be a digraph with capacities u and l. A flow f onG is said
to be feasible with respect to u and l if le ≤ f(e) ≤ ue for each edge e ∈ E. The set Pfeas(G) ⊆ F (G)
of feasible flows on G is said to be the polyhedron of feasible flows on G.

Definition 4 (Cycle) (1) A cycle c = (v1, . . . , v`, v`+1 = v1) on a graph G = (V,E) is a finite sequence
of at least 3 vertices in V in which for all 1 ≤ i < j ≤ ` we have that vi 6= vj and for all 1 ≤ i ≤ ` we
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have {vi, vi+1} ∈ E. We call e = {vi, vi+1} the edges of c and write e ∈ c. The length `(c) := ` of c is
defined as the number of edges in c.

(2) Suppose an orientation function o is fixed. We call e = {vi, vi+1} a forward edge of c iff e is
directed away from vi, and a backwards edge of c otherwise. The cycle c is called well-directed iff all of
its forward edges e satisfy u(e) > 0 and all of its backward edges e satisfy l(e) < 0.

(3) We assign to c the cycle flow fc by setting fc(e) = 1 for its forward edges e and fc(e) = −1 for its
backward edges e. All other edges carry flow zero.

To simplify notation, we will identify a cycle c with its cycle flow fc. We remark that c is well-directed
iff there is an ε > 0 such that εc is a feasible flow.

It is well-known and easy to see that feasible flows can be decomposed into cycles as follows.

Lemma 5 (Flow decomposition) Given a digraph G = (V,E, o) and a flow f on G. Then there exist
cycles c1, . . . , cm on G, m ≤ |E|, and α1, . . . , αm ∈ R>0 such that f =

∑m
i=1 αici and for all i and all

e ∈ ci we have sgn(f(e)) = sgn(ci(e)). We call αi the multiplicity of the cycle ci in the decomposition.
Moreover, if f is feasible, then c1, . . . , cm are well-directed. 2

3 Hives and flows
We transfer the problem of finding an integral hive into the language of flows.
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Fig. 3: The digraph G and graph ∆.

The graph structure We now define a bipar-
tite planar digraph G = (V,E, o), which is es-
sentially the dual graph of ∆. The definition is
similar to one in (Buc00): G has one fat black
vertex in the middle of each small triangle of ∆.
In addition there is one circle vertex on every
triangle side (see Figure 3). We denote a circle
vertex between two vertices A and B of upright
triangles (read in counterclockwise direction) as
[A,B]. Each fat black vertex is adjacent to the
three circle vertices on the sides of its triangle.
There is an additional fat black vertex o with
edges from o to all circle vertices that lie on the
border of the big triangle. The graph G is em-
bedded in the plane in a way such that the top
vertex T lies in the outer face, where a face is
a region bounded by edges, including the outer,
infinitely-large region.

Next we assign a direction to each edge in G (see Figure 3). The edges incident to o are directed from
o towards the border of the big triangle graph. The edges in an upright triangle are directed towards the
incident fat black vertex, while the edges in an upside down triangle are directed towards the incident
circle vertex.

Let F = F (G) denote the vector space of flows on G. Note that a flow f on G is completely defined
by its throughput δ([A,B], f) on each circle vertex [A,B].
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Winding numbers Let A ∈ H . We define N W (A) to be the set of circle vertices in V that lie on the
northwest diagonal drawn from A. This diagonal hits a border vertex B ∈ B. Define N E (A) to be the
set of circle vertices in V that lie on the northeast diagonal drawn from that border vertex B. Now define
the winding number of a vertex A ∈ H with respect to a flow f ∈ F as

wind(A, f) =
∑

v∈N W (A)

δ(v, f)−
∑

v∈N E (A)

δ(v, f).

The winding number is linear in the flow f . We note that for a cycle flow fc, this coincides with the
familiar topological notion of the winding number of the cycle c with respect to the point A.

Lemma 6 There is an isomorphism η : RH′ → F between the real vector space RH′ of vertex labels
in ∆, in which the top vertex T has value 0, and the real vector space F of flows on G. For h ∈ RH′

the flow η(h) is defined by requiring δ([A,B], η(h)) = h(A) − h(B). The inverse of η is given by
η−1(f)(A) = wind(A, f) for f ∈ F . Both η and η−1 preserve integrality. 2

Hive inequalities on flows As η is an isomorphism, we can identify a flow f ∈ F with its vertex labeling
h = η−1(f) ∈ RH′ . We define the f -slack of a rhombus ♦ = ♦(A,B,C,D) as σ

(
♦, f

)
:= σ

(
♦, h

)
.

Note that σ
(
♦, f

)
= δ([D,C], f)−δ([A,B], f) = δ([D,A], f)−δ([C,B], f). Thus the hive inequalities

σ
(
♦, h

)
≥ 0 translate into the following simpler linear inequalities

δ([A,B], f) ≤ δ([D,C], f). (1)

We call f a hive flow if η−1(f) is a hive. Similarly, we speak of f -flat rhombi.

4 The algorithmic idea
We now introduce the optimization problem to be solved for deciding whether a Littlewood-Richardson
coefficient is positive.

Define the set S ⊂ V of source vertices as the set of all circle border vertices of G lying on the right
or bottom border of the big triangle. Define the set T ⊂ V of sink vertices as the set of all circle border
vertices of G lying on the left border of the big triangle. We call δ(f) :=

∑
s∈S δ(s, f) the (global)

throughput of f . Note that δ : F → R, f 7→ δ(f) is a linear map.
For a given border vertex labeling b ∈ RB we define now the network Gb on the digraph G by intro-

ducing the capacities u{o,s} := b(A) − b(B) for all s = [A,B] ∈ S and l{o,t} := b(A) − b(B) for
all t = [A,B] ∈ T . We call the feasible flows of Gb b-bounded. The set of b-bounded hive flows is a
polyhedron that will be denoted by P b.

We call an edge {o, s} used to capacity with respect to a flow f ∈ P b iff δ(s, f) = u{o,s}. Similarly,
we say that the edge {o, t} is used to capacity with respect to f iff δ(t, f) = l{o,t}.

The following lemma shows the significance of the polyhedron P b of b-bounded hive flows.

Lemma 7 Let b = b(λ, µ, ν) be the target border of partitions λ, µ and ν with |ν| = |λ|+ |µ|. Then
(1) For all f ∈ P b we have δ(f) ≤ |ν|.
(2) cνλµ equals the number of integral f ∈ P b such that δ(f) = |ν| .
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Fig. 4: The subgraph replacement for an f -flat rhombus ♦(A,B,C,D).

Proof: (1) We have δ(f) =
∑
s∈S δ(s, f) ≤ |λ|+ |µ| = |ν|.

(2) According to Theorem 1, cνλµ equals the number of integral hives with border labels b. Lemma 6
shows that this number equals the number of b-bounded integral hive flows with throughput |ν|. 2

Lemma 7 translates the problem of deciding positivity of Littlewood-Richardson coefficients to the
problem of optimizing the linear function δ on the integer points of the polyhedron P b. We will solve this
combinatorial optimization problem in analogy to the well-known Ford-Fulkerson algorithm (AMO93)
for maximizing flows in networks. We start with the zero flow and iteratively increase the flow f by
one unit along a cycle while staying in P b. The set of feasible directions in which to increase can be
interpreted as the convex cone of feasible flows of an auxiliary network, that we introduce in the next
section. We will thus be able to replace the hive inequalities (1) locally by capacity constraints.

5 The residual network
We start with a general definition. Given a polyhedron P in a real vector space V and a vector f ∈ P . We
define the cone of feasible directions Cf (P ) of P at f as

Cf (P ) := {d ∈ V | ∃ε > 0 : f + εd ∈ P}.

We note that P ∩ U = (f + Cf (P )) ∩ U for a small neighborhood U of f .
Recall that a rhombus ♦ is called f -flat with respect to a flow f iff σ

(
♦, f

)
= 0. The flow f is called

shattered iff there is no pair of overlapping f -flat rhombi.

Lemma 8 (Shattering) Let λ, µ, ν be strictly decreasing partitions and let f ∈ P b. Then one can algo-
rithmically find a shattered integral flow shatter(f) ∈ P b such that δ(shatter(f)) = δ(f).

Proof: This was basically shown by Buch in his proof of the Saturation Property (Buc00). 2

Fix a b-bounded shattered hive flow f . We now introduce the residual network RESb(f).
The residual digraph RES(f) w.r.t. f is constructed as follows. The vertex and edge set of RES(f)

are initially the vertex and edge set ofG. Then each f -flat rhombus ♦ = ♦(A,B,C,D) is replaced by the
digraph illustrated in Figure 4. We remove all inner vertices of ♦, keep [A,B], [C,B], [D,C] and [D,A],
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and add 14 vertices as in the figure. Then we add edges, some of which are fat black, some of which are
fat white and some of which are normal as in the figure.

Note that in RES(f), the circle vertex [B,D] is no longer present. The graph RES(f) is still bipartite,
but may not be planar.

We next define the residual network RESb(f). For each fat black edge e we set le := 0. This enforces
that a well-directed cycle can only pass such e in the direction of e (compare Definition 4). For each fat
white edge e we set ue := 0. This enforces that a well-directed cycle can only pass such e in the reverse
direction of e.

We now introduce additional capacities that are dependent on b. For the edges e = {o, s}, s ∈ S , that
are used to capacity with respect to the flow f in Gb we set ue := 0. Moreover, for the edges e = {o, t},
t ∈ T , that are used to capacity with respect to the flow f in Gb we set le := 0. We note that the feasible
flows on RESb(f) form a convex cone.

The following lemma shows that feasible flows on RESb(f) give the directions from f ∈ P b that do
not point out of P b.

Lemma 9 (Residual Correspondence) Let f be a b-bounded shattered hive flow. There is a natural
surjective linear map

γ : F (RES(f))→ F (G)

that preserves the throughput on all circle vertices that are both in RES(f) and G. We have

Pfeas(RESb(f)) = γ−1(Cf (P b)).

The map γ preserves integrality and the global throughput δ. 2

For example, the flow γ(f)(e) on the edge e directed away from [A,B] in G is just the sum of flows
f(e1) + f(e2) + f(e3) of the edges ei directed away from [A,B] in RES(f).

The following lemma gives an optimality criterion for optimizing the linear function δ on P b.

Lemma 10 (Optimality Test) Let f be a shattered b-bounded hive flow and let δ : F (G)→ R be a linear
function. Then f maximizes δ on P b iff RESb(f) has no well-directed cycle c with δ(γ(c)) > 0.

Proof: As δ is linear, f does not maximize δ on P b iff there exists d ∈ F such that d ∈ P b − f and
δ(d) > 0. Since P b − f equals Cf (P b) in a small neighborhood of 0, the latter condition is equivalent
to the existence of some d ∈ Cf (P b) with δ(d) > 0. According to Lemma 9, this is equivalent to the
existence of a some d′ ∈ Pfeas(RESb(f)) with δ(γ(d′)) > 0. We now show that this is equivalent to the
existence of a well-directed cycle c on RESb(f) with δ(γ(c)) > 0.

Let d′ ∈ Pfeas(RESb(f)) with δ(γ(d′)) > 0. Lemma 5 states that d′ can be decomposed as d′ =∑M
i=1 αici where ci are well-directed cycles on RESb(f) and αi > 0. Thus δ (γ(d′)) =

∑M
i=1 αiδ(γ(ci))

is positive and hence there is a well-directed cycle ci with δ(γ(ci)) > 0.
Conversely, if c is a well-directed cycle on RESb(f) with δ(γ(c)) > 0, then εc is a feasible flow on

RESb(f) for sufficiently small ε > 0. 2
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6 The main algorithm LRPA
The algorithm LRPA (Littlewood-Richardson Positivity Algorithm) is listed below.

Algorithm LRPA
Input: λ, µ, ν ∈ Nn strictly decreasing partitions with |ν| = |λ|+ |µ|.
Output: Decide whether cνλµ > 0.

1: Create the regular target border b and the digraph G.
2: Start with f ← 0, done ← false.
3: while not done do
4: f ← shatter(f).
5: Construct RESb(f).
6: if there is a well-directed cycle in RESb(f) with δ(γ(c)) > 0 then
7: Find a shortest well-directed cycle c in RESb(f) with δ(γ(c)) > 0.
8: Augment 1 unit over c: f ← f + γ(c).
9: // We have f ∈ P b, due to Theorem 11.

10: else
11: done ← true.
12: end if
13: end while
14: if δ(f) = |ν| then return true.
15: else return false.

The shattering in line 4 is done by the algorithm mentioned in Lemma 8. Searching for shortest well-
directed cycles in line 7 with positive δ-value can be done by a variant of the well-known Bellman-Ford
algorithm (CLRS01).

The most interesting property of LRPA is that shortest well-directed cycles on RESb(f) can be used
to increase δ(f) by one unit (see line 8) while still remaining in P b. The reason for this is the following
crucial Theorem 11.

Theorem 11 (Shortest Cycle) Let f be a b-bounded integral shattered hive flow. Assume that c is a
shortest cycle among all well-directed cycles c̃ on RESb(f) with δ(c̃) > 0. Then f + γ(c) ∈ P b.

Proof sketch: The proof is rather involved. Assume that c is a cycle on RESb(f) with δ(c) > 0 and
f + γ(c) /∈ P b. Let ε := max{ε′ ∈ R | f + ε′γ(c) ∈ P b} and put g := f + εγ(c). We can show that
ε ∈ { 1

3 ,
1
2 ,

2
3}. Rhombi which are not f -flat, but g-flat, are called critical rhombi. Since f + γ(c) /∈ P b,

there is at least one critical rhombus. A g-flatspace is a maximal connected union of small triangles such
that any rhombus contained in it is g-flat.

In the case where there exists a critical rhombus that is not overlapping with any other g-flat rhombi,
we can find well-directed cycles c1, c2 on RESb(f) that split c in the sense that γ(c1 + c2) = γ(c) and
`(c1) ≤ `(c2) < `(c). One of these cycles must satisfy δ(ci) > 0 and we are done, because we found a
cycle with positive throughput that is shorter than c.

In the other case we have overlapping g-flat rhombi and thus g is not shattered. So we can find a chain
of g-flatspaces as described in (Buc00). We get a flow Ψ on G corresponding to raising the inner vertices
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of the chain by one unit. Moreover g + εΨ ∈ P b and δ(Ψ) = 0. Our goal is to find well-directed cycles
c1, . . . , cm such that γ(

∑
i ci) = γ(c) + Ψ with `(ci) < `(c) for all i. Then we are done, because one of

these cycles must satisfy δ(ci) > 0.
We achieve this by a complete classification of the possible shapes of g-flatspaces and the possible ways

in which c passes through those shapes. Having understood this, we can do local changes to c such that it
decomposes into smaller cycles that have the desired property. 2

Theorem 11 allows us to prove the correctness of LRPA.

Theorem 12 If given as input three strictly decreasing partitions λ, µ, ν ∈ Nn with |ν| = |λ|+ |µ|, then
the LRPA returns true iff cνλµ > 0.

Proof: Note that during the algorithm f stays integral all the time and f ∈ P b, because shattering
preserves these properties according to Lemma 8 and we have f + γ(c) ∈ P b according to Theorem 11.
After the while loop, the flow f maximizes δ on P b according to Lemma 10. Lemma 7 tells us that
cνλµ > 0 iff δ(f) = |ν|. 2

7 Polynomial running time
We briefly sketch the ideas needed to transform LRPA into a combinatorial polynomial-time algorithm.

Theorem 13 There is a polynomial-time algorithm that decides for given partitions λ, µ, ν ∈ Nn with
|ν| = |λ|+ |µ| whether cνλµ > 0. The running time is polynomial in n and log |ν|.

Proof sketch: We first note that by a perturbation argument, the general case can be reduced to the case
where all the input partitions λ, µ, ν are strictly decreasing. This is done by exhibiting a special target
border b such that for any partitions λ, µ, ν ∈ Nn and N sufficiently large, but of bitsize polynomial in n,
we have cνλµ > 0 iff cν̃

λ̃µ̃
> 0, where λ̃ = Nλ+ λ, µ̃ = Nµ+ µ, and ν̃ = Nν + ν.

We use a scaling method similar to that described in (AMO93) in the scaling of the Ford-Fulkerson
algorithm. For z ∈ R a flow f is called z-integral iff it only takes values that are integral multiples of z.
The algorithm now works as follows:

Put k ← dlog |ν|e + 1. We efficiently construct an initial 2k-integral f ∈ P b that is shattered and has
regular border.

(*) We construct a modification RESb2k(f) of the residual network RESb(f) that excludes certain
circle border vertices. Then we search for a shortest well-directed cycle c in RESb2k(f) with δ(γ(c)) > 0.
If there is no such cycle, we set k ← k − 1 and go to (*). Otherwise we augment 2k units over c:
f ← f + 2kγ(c). A variation of Theorem 11 guarantees that f is still in P b. Moreover, by construction
of RESb2k(f), f has still regular border. By an auxiliary optimization procedure, we can turn f into a
shattered 2k-integral flow in P b. This is a refinement of Lemma 8 for which we need regularity on the
border, as long as k > 0. We decrease now k ← k − 1 and go to (*).

The algorithm terminates when k < 0. Its output is an integral flow f ∈ P b with optimal δ-value. We
have cνλµ > 0 iff δ(f) = |ν| by Lemma 7. The algorithm can be shown to work in polynomial time. 2
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8 Deciding multiplicity freeness
Let RES×(f) denote the network that results from deleting in RESb(f) the vertex o and all incident
edges. Note that RES×(f) is independent of b.

The proof of Theorem 11 also yields the following result.

Proposition 14 Given a b-bounded integral shattered hive flow f and a shortest well-directed cycle c on
RES×(f). Then f + γ(c) ∈ P b. 2

Corollary 15 Let f be a b-bounded integral shattered hive flow with δ(f) = |ν|. Then we have cνλµ > 1
if and only if there exists a well-directed cycle in RES×(f).

Proof: Suppose that c is a shortest well-directed cycle in RES×(f). Proposition 14 tells us that g :=
f + γ(c) lies in P b. It is easy to see that γ(c) 6= 0 and δ(γ(c)) = 0. Hence g is another integral flow on
P b with throughput |ν|. Lemma 7 implies cνλµ > 1.

To show the converse, suppose that cνλµ > 1. Lemma 7 implies that there exists an integral flow g ∈ P b,
g 6= f , with δ(g) = |ν|. The flow d := g − f satisfies δ(d) = 0 and hence uses no circle border vertex,
which means that its support lies inside ∆. By Lemma 9 there exists d′ ∈ Pfeas(RESb(f)) such that
d = γ(d′). It is obvious that in fact d′ ∈ Pfeas(RES×(f)). Decomposing d′ according to Lemma 5 shows
the existence of a well-directed cycle in RES×(f). 2

For strictly decreasing partitions we get a new proof of Fulton’s conjecture, first shown by Knutson,
Tao and Woodward (KTW04).

Corollary 16 Let λ, µ, ν be strictly decreasing partitions with |ν| = |λ| + |µ|. Then the following three
conditions are equivalent:

(1) cνλµ = 1, (2) ∃N cNνNλNµ = 1, (3) ∀N cNνNλNµ = 1.

Proof: It suffices to show the implication from (2) to (3). Suppose that cNνNλNµ = 1 for some N , hence
cνλµ > 0 by the saturation property. Since cνλµ > 1 implies cNνNλNµ > 1 we must have cνλµ = 1. Let f be a
b(λ, µ, ν)-bounded integral shattered hive flow f with δ(f) = |ν|. Corollary 15 says that RES×(f) has no
well-directed cycle. Since RES×(f) = RES×(N ′f) for all N ′, RES×(N ′f) contains no well-directed
cycle as well. Corollary 15 implies now that cN

′ν
N ′λN ′µ = 1. 2

Theorem 17 There is a polynomial-time algorithm that decides for given strictly decreasing partitions
λ, µ, ν ∈ Nn with |ν| = |λ|+ |µ| whether cνλµ = 1. The running time is polynomial in n and log |ν|.

Proof: Using the algorithm of Theorem 13 one can compute an integral shattered f ∈ P b with δ(f) = |ν|.
It is easy to check in polynomial time whether RES×(f) contains a well-directed cycle. Hence the
assertion follows with Corollary 15. 2
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Combinatorial invariant theory of
projective reflection groups

Fabrizio Caselli
Dipartimento di matematica, Università di Bologna,
Piazza di Porta San Donato 5,
Bologna 40126, Italy

Abstract. We introduce the class of projective reflection groups which includes all complex reflection groups. We
show that several aspects involving the combinatorics and the representation theory of complex reflection groups find
a natural description in this wider setting.

Résumé. On introduit la classe des groupes de réflexions projectifs, ce qui généralises la notion de groupe engendré
par des réflexions. On montre que plusieurs aspects concernants la combinatoire et la théorie des representations des
groupes de reflexions complèxes trouvent une description naturelle dans ce cadre plus général.

Keywords: Reflection groups, descent statistics, invariant algebras, Young tableaux.

1 Introduction
A complex reflection (or simply a reflection) is an endomorphism of a complex vector space V which
is of finite order and such that its fixed point space is of codimension 1. Finite reflection groups are
finite subgroups of GL(V ) generated by reflections. They have probably been introduced by Shephard
in (16) and have been characterized by means of their ring of invariants and completely classified by
Chevalley (11) and Shephard-Todd (17) in the fifties, generalizing the well-known fundamental theorem
of symmetric functions. In this classification there is an infinite family G(r, p, n) of irreducible reflection
groups, where r, p, n are positive integers (with r ≡ 0 mod p) and 34 other exceptional groups. The
relationship between the combinatorics and the (invariant) representation theory of symmetric groups is
fascinating from both combinatorial and algebraic points of view, and the problem of generalizing these
sort of results to all reflection groups has been faced in many ways. Besides several results that holds in
the full generality of reflection groups, there are some relevant generalizations which have been obtained
only for the wreath product groups G(r, n) = G(r, 1, n) (see, e.g., (21; 22; 3; 5; 2)). Some attempts to
extend these results to other reflection groups have been made, in particular for Weyl groups of type D,
(see, e.g., (8; 9; 4)) though they are probably not completely satisfactory as in the case of wreath products.

In this work we introduce a new class of groups, the projective reflection groups, which are a gen-
eralization of reflection groups. We will concentrate our attention on an infinite family G(r, p, q, n) of
such groups (where G(r, p, 1, n) = G(r, p, n) in the previous notation). Fundamental in this theory is the
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following notion of duality: if G = G(r, p, q, n) then we denote by G∗ = G(r, q, p, n) (where the roles
of p and q have been interchanged). We note in particular that reflection groups G satisfying G = G∗

are exactly the wreath products G(r, n) = G(r, 1, 1, n) and that in general if G is a reflection group then
G∗ is not. We show that much of the theory of reflection groups can be extended to projective reflection
groups and that the combinatorics of a projective reflection group G = G(r, p, q, n) is strictly related to
the (invariant) representation theory of G∗, generalizing several known results for wreath products in a
very natural way.

The paper is organized as follows. We present definitions and a characterization in terms of invariants
of projective reflection groups in §2. We exploit those combinatorial aspects of these groups that we need
in §3. In §4 we further consider the action of a projective reflection group on a ring of polynomials to
define and study its coinvariant algebra. In §5 we analyze the structure of the irreducible representations
of a projective reflection group G(r, p, q, n) and we provide a combinatorial interpretation for their di-
mensions. In §6 we consider a decomposition of the homogeneous components of the coinvariant algebra
that leads us to define the descent representations of a projective reflection group: these representations
are used in §7 to describe the main new results of this paper. Here we show an explicit basis of the di-
agonal invariant algebra as a free module over the tensorial invariant algebra of all projective reflection
groups G(r, p, q, n). It is in this description that the interplay between a group G and its dual G∗ attains
its apex. In §8 we deduce some properties of the Kronecker coefficients of a projective reflection group
that can be deduce from the main results. In §9 we extend the Robinson-Schensted correspondence on
wreath products to all projective reflection groups of the form G(r, p, q, n): in this general context it is
not a bijection but it will be the key point to solve in §10 a problem posed by Barcelo, Reiner and Stanton
on the Hilbert series of a certain diagonal invariant module twisted by a Galois automorphism.

2 Definitions and characterizations
Let V be a finite dimensional complex vector space and consider the natural map ϕ : GL(V ) →
GL(Sq(V )), where Sq(V ) is the q-th symmetric power of V . We clearly have kerϕ = Cq , where

Cq is the cyclic group of scalar matrices of order q generated by ζqI , with ζq
def= e

2πi
q .

Now, ifW ⊆ GL(V ) is a finite reflection group we have ϕ(W ) ∼= W/(W ∩Cq). In particular, ifCq ⊂W
we have that W/Cq can be identified with a subgroup of GL(Sq(V )) by means of the map ϕ.

Definition 2.1 Let G be a finite subgroup of GL(Sq(V )). We say that G is a projective reflection group
if there exists a reflection group W ⊂ GL(V ) such that Cq ⊆W and G = W/Cq .

Note that we obtain standard reflection groups in the case q = 1.
It follows from the previous definition that to classify all possible projective reflection groups we only

have to describe all possible scalar subgroups of a reflection group. We know by the work of Shephard
and Todd (17) that all but a finite number of irreducible reflection groups are the groups G(r, p, n) that
we are going to describe. If A is a matrix with complex entries we denote by |A| the real matrix whose
entries are the absolute values of the entries of A. The groups G(r, n) = G(r, 1, n) are given by all n×n
matrices satysfying the following conditions:

• the non-zero entries are r-th roots of unity;

• there is exactly one non-zero entry in every row and every column (i.e. |A| is a permutation matrix).
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If p divides r then the reflection group G(r, p, n) is the subgroup of G(r, n) given by all matrices A ∈
G(r, n) such that detA

det |A| is a r
p -th root of unity.

It is easy to characterize all possible scalar subgroups of the groups G(r, p, n): in fact we can easily
observe that the scalar matrix ζqI belongs to G(r, p, n) if and only if q|r and pq|rn.

Definition 2.2 Let r, p, q, n ∈ N be such that p|r, q|r and pq|rn. Then we let

G(r, p, q, n) def= G(r, p, n)/Cq,

where Cq is the cyclic group generated by ζqI .

We observe that starting from the wreath product group G(r, n) we could have done first the quotient by
the subgroup Cq and then taken the subgroup of this quotient consisting of elements A satysfing detA

det |A| is
a r
p -th root of unity (note that this requirement would have been well-defined). We would have obtained

the same group G(r, p, q, n) and one of the targets of this paper is to convince the reader that these two
operations of “taking subgroups” and “taking quotients” have the same dignity and for many aspects their
are dual to each other. In fact, we note the symmetry on the conditions for the parameters p and q in the
definition of the group G(r, p, q, n). In particular if G = G(r, p, q, n) then the group G∗ def= G(r, q, p, n),
where the roles of the parameters p and q are interchanged, is always well-defined. The classical Weyl
groups of type A,B and D are respectively in this notation the groups G(1, 1, 1, n), G(2, 1, 1, n) and
G(2, 2, 1, n). Note that while Weyl groups of type A and B are fixed by the ∗-operatator, Weyl groups
of type D and general reflection groups are not. The main target of this work is to show that the several
aspects of the invariant theory of a projective reflection groupG is strongly related to and easily described
by the combinatorics of G∗.

One may ask for which choice of the parameters one has G ∼= G∗ as abstract groups.

Proposition 2.3 Let G = G(r, p, q, n), with n 6= 2. Then G ∼= G∗ if and only if GCD( rnpq ,
r
p ) =

GCD( rnpq ,
r
q ).

Any finite subgroup of GL(V ) acts naturally on the symmetric algebra S(V ∗). A well-known theorem
due to Chevalley and Shephard-Todd says that a finite group G of GL(V ) is a reflection group if and only
if its invariant ring S(V ∗)G is itself a polynomial algebra. Our next target is to generalize this result to the
present context. We recall that a projective reflection group is equipped with an action on the symmetric
power Sq(V ). The dual action can be extended to Sq[V ∗], the algebra of polynomial functions on V
generated by homogeneous polynomial functions of degree q.

Theorem 2.4 Let V be a complex vector space, n = dimV , and G be a finite group of graded auto-
morphisms of Sq[V ∗], the algebra generated by homogeneous polynomial functions on V of degree q.
Then G is a projective reflection group if and only if the invariant algebra Sq[V ∗]G is generated by n
algebraically independent homogeneous elements.

3 Statistics
In this section we introduce the main combinatorial tools of projective reflection groups that we need.
If g ∈ G(r, n) we write g = [σ; c1, . . . , cn] if the non-zero entry in the i-th row of g is ζcir and σ ∈ Sn
is the permutation associated to |g| (i.e. σ(i) = j if gi,j 6= 0). We observe that g determines σ uniquely
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while the integers ci are determined only modulo r. We also note that in this notation we have that
g = [σ; c1, . . . , cn] belongs to G(r, p, n) if and only if

∑
ci ≡ 0 mod p.

If g ∈ G(r, p, q, n) we also write g = [σ; c1, . . . , cn] to mean that g can be represented by [σ; c1, . . . , cn]
in G(r, p, n) and we let

HDes(g) def= {i ∈ [n− 1] : ci ≡ ci+1 and σi > σi+1}

hi(g) def= #{j ≥ i : j ∈ HDes(g)}

ki(g) def=
{

[cn]r/q if i = n
ki+1 + [ci − ci+1]r if i ∈ [n− 1],

where [c]s is the smallest non negative representative of the class of the integer c modulo s.
Note that these statistics do not depend on the choice of the integers c1, . . . , cn for representing g. For
example, let g = [27648153; 2, 3, 3, 5, 1, 7, 3, 2] ∈ G(6, 2, 3, 8). Then HDes(g) = {2, 5}, (h1, . . . , h8) =
(2, 2, 1, 1, 1, 0, 0, 0) and (k1, . . . , k8) = (18, 13, 13, 9, 5, 5, 1, 0).

If q = p = 1 these statistics give an alternative definition for the flag-major index of Adin and Roichman
(see (3)) for wreath products G(r, n). In fact, if we let

Des(g) = {i : either [ci]r < [ci+1]r or [ci]r = [ci+1]r and σi > σi+1},

then the flag-major index is defined as

fmaj(g) def= r
∑

i∈Des(g)

i+
∑
i

[ci]r

and we can easily verify that in this case we have fmaj(g) =
∑

(r · hi(g) + ki(g)).

We note that if λi(g) def= r · hi(g) + ki(g) then the sequence λ(g) def= (λ1(g), . . . , λn(g)) is a partition.
We may also observe that λ(g) is such that g = [|g|;λ(g)] and that λ(g) is the minimal partition (with
respect to containment of the corresponding Ferrers diagram) satysfing this condition.
Extending the notion of flag-major index we define the flag-major index for the projective reflection group
G(r, p, q, n) by fmaj(g) def= |λ(g)|.

4 The coinvariant algebra
As we observed in §2 we have an action of any projective reflection group G on the algebra Sq[V ∗]
generated by homogeneous polynomial functions on V of degree q. We denote by IG+ the ideal of Sq[V ∗]
generated by homogeneous elements in Sq[V ∗]G of positive degree, and define the coinvariant algebra of
G by

RG
def= Sq[V ∗]/IG+ .

The coinvariant algebraRG is a graded representation ofG and, as it was the case for reflection groups,
it is isomorphic as a G-module to the group algebra CG.

Proposition 4.1 If G is any projective reflection group, we have an isomorphism of G-modules RG ∼=
CG.
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If the projective reflection group G is of the form G = G(r, p, q, n) we can describe the coinvariant
algebra in a more explicit way. It could be natural to expect a basis for the algebra RG indexed by
elements of G. As it was mentioned in the introduction, this is the first occurrence of the invariant theory
of a projective reflection group G which is naturally described by its dual group G∗. Generalizing and
unifying results and definitions in (1; 8; 4), we associate to any element g ∈ G a monomial ag ∈ C[X] def=
C[x1, . . . , xn] of degree fmaj(g) in the following way

ag(X) def=
∏
i

x
λi(g)
|g|(i).

We denote by Sq[X] the algebra of polynomials in C[X] generated by the monomials of degree q. Then
it is not difficult to verify that

ag ∈ Sp[X],

for all g ∈ G(r, p, q, n).

Theorem 4.2 If G = G(r, p, q, n) then the set {ag : g ∈ G∗} represents a basis for RG.

5 The irreducible representations
In this section we describe explicitly a natural parametrization of the irreducible representations of a
projective reflection group G(r, p, q, n). Given a partition µ of n, the Ferrers diagram of shape µ is a
collection of boxes, arranged in left-justified rows, with µi boxes in row i. We denote by Fer(r, p, n)
the set of r-tuples of Ferrers diagrams whose shapes (λ(0), . . . , λ(r−1)) are such that

∑
|λ(i)| = n and∑

i i|λ(i)| ≡ 0 mod p. This may recall the definition of G(r, p, n) where the role of
∑
i ci(g) is played

by
∑
i i|λ(i)|. In an extreme parallelism with the groups G(r, p, n) we have the following result.

Lemma 5.1 Let (λ(0), . . . , λ(r−1)) ∈ Fer(r, p, n) (and q ∈ N be such that q|r and pq|rn). Then

(λ(r/q), . . . , λ(r−1+r/q)) ∈ Fer(r, p, n),

where λ(j) def= λ(j−r) if j ≥ r.

If µ ∈ Fer(r, p, n) we denote by ST µ the set of all possible fillings of the boxes in µ with all the
numbers from 1 to n appearing once, in such way that rows are increasing from left to right and columns
are incresing from top to bottom in every single Ferrers diagram of µ. Moreover we let ST (r, p, n) def=
∪µ∈Fer(r,p,n)ST µ.
By Lemma 5.1 we have a natural action of Cq on both Fer(r, p, n) and ST (r, p, n). We denote the
corresponding quotient sets by Fer(r, p, q, n) and ST (r, p, q, n). If T ∈ ST (r, p, q, n) we denote by µ(T )
its corresponding shape in Fer(r, p, q, n) and if µ ∈ Fer(r, p, q, n) we let ST µ

def= {T ∈ ST (r, p, q, n) :

µ(T ) = µ}. Finally, if Fer = Fer(r, p, q, n), we let Fer∗ def= Fer(r, q, p, n).

Proposition 5.2 The irreducible representations ofG(r, p, q, n) are naturally parametrized by pairs (µ, ρ),
where µ ∈ Fer∗ and ρ ∈ (Cp)µ, the stabilizer of any element in the class µ. Moreover the dimension of
the irreducible representation indexed by (µ, ρ) is independent of ρ and it is equal to |ST µ|.

If φ is an irreducible representation of G indexed by a pair (µ, ρ) we let µ(φ) def= µ ∈ Fer∗.
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6 The descent representations
If M is a monomial in C[X] we denote by λ(M) its exponent partition, i.e. the partition obtained by
rearranging the exponents of M . We say that a polynomial is homogeneous of partition degree λ if it is a
linear combination of monomials whose exponent partition is λ. IfG = G(r, p, q, n) and |λ| ≡ 0 mod q,
we can consider the submoduleRG�λ ofRG spanned by monomials of total degree |λ| and partition degree
�λ and we can similarly define RG�λ. Here � and � mean smaller and strictly smaller in the dominance
order of partitions. Following and generalizing (1; 8; 4) we denote the quotient module by

RGλ
def= RG�λ/R

G
�λ.

We call the modules RGλ the descent representations of G. A straightforward application of Maschke’s
theorem implies that, for any k ≡ 0 mod q, we have an isomorphism

ϕ : RGi
∼=−→
⊕
λ`i

RGλ

such that every element in ϕ−1(RGλ ) can be represented by a homogeneous polynomial in Sq[X] of
partition degree λ. We recall that if g ∈ G∗ then the monomial ag has partition degree λ(g) and so it
represents an element in RGλ(g).

Lemma 6.1 Let λ be a partition such that |λ| ≡ 0 mod q. Then the set

{ag : g ∈ G∗ and λ(g) = λ}

is a system of representatives of a basis of RGλ . In particular dim(RGλ ) = |{g ∈ G∗ : λ(g) = λ}|.
Our next target is an explicit description of the irreducible decomposition of the modules RGλ . We can

define the statistics hi and ki in ST (r, p, q, n) similarly to the case ofG(r, p, q, n). Let T ∈ ST (r, p, q, n)
be represented by (T1, . . . , Tr). For i ∈ [n] we let ci = j if i ∈ Tj .

HDes(T ) def= {i ∈ [n− 1] : ci = ci+1 and i appears strictly above i+ 1}

hi(T ) def= #{j ≥ i : j ∈ HDes(T )}

ki(T ) def=
{

[cn]r/q if i = n
ki+1 + [ci − ci+1]r if i ∈ [n− 1]

It is clear that these definitions do not depend on the choice of the representative (T1, . . . , Tr). For
example if

T =
(

5
1 4

3
2

9
8 6 7, ,

)
∈ ST (3, 1, 3, 9),

we have (h1, . . . , h9) = (3, 3, 2, 2, 1, 1, 1, 1, 0) and (k1, . . . , k9) = (5, 3, 3, 2, 2, 1, 1, 0, 0). We define
λi(T ) def= rhi(T ) + ki(T ), λ(T ) = (λ1(T ), . . . , λn(T ) and fmaj(T ) = |λ(T )|.
Proposition 6.2 Let φ be an irreducible representation of G. Then the multiplicity of φ in RGλ is given by

〈χφ, χR
G
λ 〉 = |{T ∈ ST µ(φ) : λ(T ) = λ|,

where µ(φ) ∈ Fer∗ is defined at the end of §5.
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This proposition unifies and generalizes the corresponding coarse results of Lusztig (unpublished) and
Kraśkiewicz-Weyman (14) in Type A and Stembridge (22) for reflection groups and the corresponding
refined results of Adin-Brenti-Roichman (1) in Type A and B and of Bagno-Biagioli (4) for reflection
groups.

7 Tensorial and diagonal actions
In this section we describe the main result of this work (Theorem 7.5) which present an explicit basis
for the diagonal invariant algebra of a projective reflection group G = G(r, p, q, n) (considered as a
free module over the tensorial invariant algebra) in terms of the dual group G∗. This result is new also
in the generality of reflection groups (see (7; 6) for related results in type A and B). Here it is really
apparent that not only the combinatorics of G∗ (as in the previous sections) but also its algebraic structure
play a crucial role in the invariant theory of G. Let Sq[X]⊗k be the k-th tensor power of the algebra
of polynomials Sq[X] defined in §4. On this algebra we consider the natural action of the group Gk

(where the i-th coordinate of Gk acts on the i-th factor in Sq[X]⊗k) and of its diagonal subgroup ∆G.
We are particularly interested in the corresponding invariant algebras. Every monomial in Sq[X]⊗k can
be described by a k × n-matrix with non negative integer entries such that the sum in each row is divided
by q. To any such matrix A we associate the monomial XA def=

∏
i,j x

ai,j
i,j . Here and in what follows we

identify Sq[X]⊗k with the algebra of polynomials Sq[X1, . . . , Xk] = Sq[xi,j ] (where i ∈ [k] and j ∈ [n])
spanned by monomials whose degree in xi,1, . . . , xi,n is a multiple of q for all i ∈ [k]. We refer to the
algebra Sq[X1, . . . , Xk]∆G as the diagonal invariant algebra of G. It is clear that Sq[X1, . . . , Xk]∆G is
generated by the polynomials

(XA)# def=
1
|G|

∑
g∈∆G

g(XA).

Lemma 7.1 Let A be a k×n matrix with row sums divided by q and let si be the sum of the entries in its
i-th column. Then (XA)# 6= 0 if and only if the following two conditions are satisfied

1. si ≡ sj for all i, j;

2. psi ≡ 0 for all i.

We recall that a k-partite partition (see (12; 13)) is a k × n matrix A = (ai,j) with non-negative integer
entries such that ai,j ≥ ai,j+1 whenever ah,j = ah,j+1 for all h < i. We denote by Bk(r, p, q, n) the set
of k × n-matrices which are k-partite partitions, with row sums divided by q and column sums satisfying
(1) and (2) in Lemma 7.1.

Corollary 7.2 The set {(XA)# : A ∈ Bk(r, p, q, n)} is a basis for the diagonal invariant algebra of G.

We recall that the algebra Sq[X1, . . . , Xk]∆G, being Cohen-Macaulay (see (19, Proposition 3.1)), is a
free module over its subalgebra Sq[X1, . . . , Xk]G

k

and our next target is the description of a basis for
Sq[X1, . . . , Xk]∆G as a free Sq[X1, . . . , Xk]G

k

-module.

Definition 7.3 Let λ be a partition with n parts and g ∈ G(r, p, q, n). We say that λ is g-compatible if
λ− λ(g) is a partition and g = [|g|; λ].
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We note that in the case of the symmetric group the condition g = [|g|; λ] in the previous definition is
empty and we obtain an equivalent definition of a σ-compatible partition given in (12). The special case
of the following result where G is the symmetric group is proved in (12).

Theorem 7.4 There is a bijection between Bk(r, p, q, n) and (2k)-tuples (g1, . . . , gk;λ(1), . . . , λ(k))
where

• g1, . . . , gk ∈ G∗ are such that g1 · · · gk = 1;

• λ(i) is a gi-compatible partition.

The bijection is given by

Φ(g1, . . . , gk;λ(1), . . . , λ(k)) =


λ

(1)
1 λ

(1)
2 · · · λ

(1)
n

λ
(2)
σ1(1) λ

(2)
σ1(2) · · · λ

(2)
σ1(n)

λ
(k)
(σ1...σk−1)(1) λ

(k)
(σ1...σk−1)(2) · · · λ

(k)
(σ1...σk−1)(n)

 ,

where σi = |gi| and the composition of permutations is from left to right.

If g1, . . . , gk ∈ G∗ and g1 · · · gk = 1 we let

A(g1, . . . , gk) def= Φ(g1, . . . , gk;λ(g1), . . . , λ(gk)).

With this terminology Theorem 7.4 can be restated as follows: ifA ∈ Bk(r, p, q, n) then there exist unique
g1, . . . , gk ∈ G∗ with g1 · · · gk = 1 such that

XA = XA(g1,...gk)M1(X1) · · ·Mk(Xk),

where, for all i ∈ [k], Mi is a monomial such that λ(Mi) = λi(XA)−λ(gi) is a partition whose parts are
all congruent to the same multiple of r/p modulo r. Here λi(XA) is the exponent partition of XA with
respect to the variables xi,1, . . . , xi,n. This is the main point in the proof of the following result.

Theorem 7.5 The set of polynomials

{(XA(g1,...,gk))# : g1, . . . , gk ∈ G∗ and g1 · · · gk = 1},

is a basis for Sq[X1, . . . , Xk]∆G as a free module over Sq[X1, . . . , Xk]G
k

.

An immediate consequence of Theorem 7.5 is the following equality

Hilb(Sq[X1, . . . , Xk]∆G)(y1, . . . , yk)
Hilb(Sq[X1, . . . , Xk]Gk)(y1, . . . , yk)

=
∑

g1,...,gk∈G∗:
g1···gk=1

y
fmaj(g1)
1 · · · yfmaj(gk)

k .

Theorem 7.5 and its proof allow us to obtain an important refinement of the previous identity. The algebra
Sq[X1, . . . , Xk] is multigraded by k-tuples of partitions with at most n parts: we just say that a monomial
M is homogeneous of multipartition degree (λ(1), . . . , λ(k)) if its exponent partition with respect to the
variables xi,1, . . . xi,n is λ(i) for all i. If we consider the Hilbert series of the invariant algebras above
with respect to this multipartition degree we obtain the following result.
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Corollary 7.6 We have

Hilb(Sq[X1, . . . , Xk]∆G)(Y1, . . . , Yk)
Hilb(Sq[X1, . . . , Xk]Gk)(Y1, . . . , Yk)

=
∑

g1,...,gk∈G∗:
g1···gk=1

Y
λ(g1)
1 · · ·Y λ(gk)

k ,

where Yi = (yi,1, . . . , yi,n).

8 The Kronecker coefficients
We can use the descent representations of a projective reflection group introduced in §6 to give to the
coinvariant algebra the structure of a partition-graded module. By means of this grading of the coinvariant
algebra we can also decompose the algebra

Sq[X1, . . . , Xk]
IG

k

+

∼= RG ⊗ · · · ⊗RG︸ ︷︷ ︸
k

and its diagonal invariant subalgebra(
Sq[X1, . . . , Xk]

IG
k

+

)∆G

∼=
Sq[X1, . . . , Xk]∆G

JG
k

+

in homogeneous components whose degrees are k-tuples of partitions with at most n parts. Here IG
k

+

and JG
k

+ are the ideals generated by homogeneous Gk-invariant polynomials of positive degree inside
Sq[X1, . . . , Xk] and Sq[X1, . . . , Xk]∆G respectively.

We define the refined fake degree polynomial fφ(y1, . . . , yn) of a projective reflection group G as the
polynomial whose coefficient of yλ1

1 · · · yλnn is the multiplicity of the irreducible representation φ of G in
RGλ . If φ1, . . . , φk are k irreducible representations of G we define the Kronecker coefficients of G by

gφ1,...,φk
def=

1
|G|

∑
g∈G

χφ1(g) · · ·χφk(g),

If G = G(r, p, q, n) and µ1, . . . , µk ∈ Fer∗ = Fer(r, q, p, n), we define the coarse Kronecker coefficients
of G by

gµ1,...,µk
def=
∑
i

∑
φi:µ(φi)=µi

gφ1,...,φk .

The following result is a consequence of (18, Theorem 5.11).

Theorem 8.1 We have

Hilb
(Sq[X1, . . . , Xk]∆G

JG
k

+

)
(Y1, . . . , Yk) =

∑
φ1,...,φk∈Irr(G)

gφ1,...,φkf
φ1(Y1) · · · fφk(Yk)

where the sum is taken over all k-tuples of irreducible representations of G.
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By Proposition 6.2 we deduce that Theorem 8.1 can be restated as follows

Hilb
(Sq[X1, . . . , Xk]∆G

JG
k

+

)
(Y1, . . . , Yk) =

∑
T1,...,Tk∈ST ∗

gµ(T1),...,µ(Tk)Y
λ(T1)
1 · · ·Y λ(Tk)

k ,

where ST ∗ def= ST (r, q, p, n). So, by Theorem 7.5 and Corollary 7.6 we have the following result.

Corollary 8.2 Let G = G(r, p, q, n) and ST = ST (r, p, q, n). Then∑
g1,...,gk∈G
g1···gk=1

Y
λ(g1)
1 · · ·Y λ(gk)

k =
∑

T1,...,Tk∈ST
gµ(T1),...,µ(Tk)Y

λ(T1)
1 · · ·Y λ(Tk)

k .

We observe that Corollary 8.2 provides us a purely combinatorial algorithm to compute the coarse
Kronecker coefficients of G. This can be achieved in a way which is similar to the corresponding result
for the symmetric group (see (10, §4)).

In the next section we describe a bijective proof of Corollary 8.2 in the case k = 2.

9 The Robinson-Schensted correspondence
Recall the classical Robinson-Schensted correspondence from (20, §7.11)). This correspondence has
been extended to wreath product groups G(r, n) in (21) in the following way. Given g ∈ G(r, n) and
j ∈ [0, r − 1], we let {i1, . . . , ih} = {l ∈ [n] : cl(g) = j} and we consider the two-line array Aj =(

i1 i2 · · · ih
σ(i1) σ(i2) · · · σ(ih)

)
, where σ = |g|, and the pair of tableaux (Pj , Qj) obtained by applying

the Robinson-Schensted correspondence to Aj . Then the Stanton-White correspondence

g 7→ (P (g), Q(g)) def=
(

(P0, . . . , Pr−1), (Q0, . . . , Qr−1)
)

is a bijection between G(r, n) and pairs of tableaux of the same shape in ST (r, 1, n). Furthermore we
have λ(g) = λ(Q(g)) and λ(ḡ−1) = λ(P (g)).
Now let g ∈ G(r, p, q, n) and g̃ ∈ G(r, p, n) be a lifting of g. Then the classes in ST (r, p, q, n) of the
tableaux P (g̃) and Q(g̃) obtained by applying the previous correspondence depend uniquely on g and not
on the lifting g̃. Therefore one can define a map g 7→ (P (g), Q(g)) which associates to any element in
G(r, p, q, n) a pair of tableaux in ST (r, p, q, n) of the same shape. The following result is the natural
generalization of the Stanton-White correspondence to projective reflection groups.

Theorem 9.1 Let P,Q be two tableaux in ST (r, p, q, n) of the same shape µ. Then

|{g ∈ G(r, p, q, n) : P (g) = P and Q(g) = Q}| = |(Cq)µ|,

where (Cq)µ is the stabilizer in Cq of any element in the class µ.

We observe that Theorem 9.1 provides a bijective proof that

|G| =
∑

φ∈Irr(G∗)

(dimφ)2,

since dimφ = |ST µ(φ)| and, given µ ∈ Fer, we have |{φ ∈ Irr(G∗) : µ(φ) = µ}| = |(Cq)µ|.
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10 Galois automorphisms
The next target is to use the theory developed in the previous sections to solve a problem posed in (5,
Question 6.3). The objects of our study here are again Hilbert series of invariant algebras as in §7 but
with a new ingredient given by a Galois automorphism. Given any projective reflection group G (not
necessarily of the form G(r, p, q, n)) we consider a cyclotomic field Q[e

2πi
m ] which contains the entries of

the (representatives of the) elements in G. Then we observe that for any σ ∈ Gal(Q[e
2πi
m ],Q) we have

σ(Cq) = Cq and so we can consider the group Gσ def= σ(G) obtained by applying σ to the entries of the
representatives of the elements of G. We observe that if G = G(r, p, q, n) then, since σ(ζr) = ζdr for
some d such that GCD(r, d) = 1, we have that Gσ = G, i.e. σ ∈ Aut(G). The setting is similar to that
of §7 with k = 2: we consider the following twisted diagonal subgroup of G×Gσ

∆σG
def= {(g, gσ) : g ∈ G},

where gσ def= σ(g). We recall that G×Gσ acts on the symmetric algebra Sq[X1, X2] and that this algebra
has a bipartition degree given by the exponent partitions in the two sets of variables. The coinvariant
algebra of RG×G

σ

is canonically isomorphic to RG ⊗ RG
σ

and so it also affords a bipartition degree
given by

RG×G
σ

λ(1),λ(2)
∼= RGλ(1) ⊗RG

σ

λ(2) .

We are interested in the subalgebra ofRG×G
σ

consisting of ∆σG-invariants and in particular to its Hilbert
series with respect to the bipartition degree defined above.

The following result was proved in (5) for reflection groups in its unrefined version (i.e. considering
only the bidegree in N2 and not the bipartition degree).

Theorem 10.1 Let G be any projective reflection group. Then

Gσ(Y1, Y2) def= Hilb

(
Sq[X1, X2]∆

σG

JG×G
σ

+

)
(Y1, Y2) =

∑
φ∈Irr(G)

fσφ(Y1)f φ̄(Y2).

IfG is of the formG = G(r, p, q, n), by Theorem 9.1, then the polynomialGσ(Y1, Y2) takes the following
simple form in terms of the dual group G∗.

Corollary 10.2 For any projective reflection group G = G(r, p, q, n) and any Galois automorphism
σ ∈ Gal(Q[e

2πi
m ]/Q) we have

Gσ(Y1, Y2) =
∑
g∈G∗

Y
λ(gσ)
1 Y

λ(g−1)
2 .

The unrefined version of the previous corollary

Gσ(y1, y2) =
∑
g∈G∗

y
fmaj(gσ)
1 y

fmaj(g−1)
2

provides an answer to (5, Question 6.3). We believe that one can generalize these facts to a multivariate
setting using Corollaries 7.6 and 8.2 instead of Theorem 9.1.
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A new combinatorial identity for unicellular
maps, via a direct bijective approach.
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Abstract. We give a bijective operation that relates unicellular maps of given genus to unicellular maps of lower
genus, with distinguished vertices. This gives a new combinatorial identity relating the number εg(n) of unicellular
maps of size n and genus g to the numbers εj(n)’s, for j < g. In particular for each g this enables to compute the
closed-form formula for εg(n) much more easily than with other known identities, like the Harer-Zagier formula.
From the combinatorial point of view, we give an explanation to the fact that εg(n) = Rg(n)Cat(n), where Cat(n)
is the n-th Catalan number and Rg is a polynomial of degree 3g, with explicit interpretation.

Résumé. On décrit une opération bijective qui relie les cartes à une face de genre donné à des cartes à une face de
genre inférieur, portant des sommets marqués. Cela conduit à une nouvelle identité combinatoire reliant le nombre
εg(n) de cartes à une face de taille n et genre g aux nombres εj(n), pour j < g. En particulier, pour tout g, cela
permet de calculer la formule close donnant εg(n) bien plus facilement qu’à l’aide des autres identités connues,
comme la formule d’Harer-Zagier. Du point de vue combinatoire, nous donnons une explication au fait que εg(n) =
Rg(n)Cat(n), où Cat(n) est le nième nombre de Catalan et Rg est un polynôme de degré 3g, à l’interprétation
explicite.

Keywords: Polygon gluings, combinatorial identity, bijection.

1 Introduction.
A unicellular map is a graph embedded on a compact orientable surface, in such a way that its complement
is a topological polygon. Equivalently, a unicellular map can be viewed as a polygon, with an even number
of edges, in which edges have been pasted pairwise in order to create a closed orientable surface. The
number of handles of this surface is called the genus of the map.

These objects are reminiscent in combinatorics, and have been considered by several authors, with
different methods, and under different names. According to the context, unicellular maps can also be
called polygon gluings, one-border ribbon graphs, or factorisations of a cycle. The most famous example
of unicellular maps are planar unicellular maps, which, from Jordan’s lemma, are exactly plane trees,
enumerated by the Catalan numbers.

The first result in the enumeration of unicellular maps in positive genus was obtained by Lehman
and Walsh [WL72]. Using a direct recursive method, relying on multivariate recurrence equations, they
expressed the number εg(n) of unicellular maps with n edges on a surface of genus g as follows:

εg(n) =
∑
γ`g

(n+ 1) . . . (n+ 2− 2g − l(γ))
22g
∏
i ci!(2i+ 1)ci

Cat(n), (1)

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
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where the sum is taken over partitions γ of g, ci is the number of parts i in γ, l(γ) is the total number of
parts, and Cat(n) is the n-th Catalan number. This formula has been extended by other authors ([GS98]).

Later, Harer and Zagier [HZ86], via matrix integrals techniques, obtained the two following equations,
known respectively as the Harer-Zagier recurrence and the Harer-Zagier formula:

(n+ 1)εg(n) = 2(2n− 1)εg(n− 1) + (2n− 1)(n− 1)(2n− 3)εg−1(n− 2), (2)∑
g≥0

εg(n)yn+1−2g =
(2n)!
2nn!

∑
i≥1

2i−1

(
n

i− 1

)(
y

i

)
. (3)

Formula 3 has been retrieved by several authors, by various techniques. A combinatorial interpreta-
tion of this formula was given by Lass [Las01], and the first bijective proof was given by Goulden and
Nica [GN05]. Generalizations were given for bicolored, or multicolored maps [Jac87, SV08].

The purpose of this paper is to give a new angle of attack to the enumeration of unicellular maps, at a
level which is much more combinatorial than what existed before. Indeed, until now no bijective proof (or
combinatorial interpretation) of Formulas 1 and 2 are known. As for Formula 3, it is concerned with some
generating polynomial of the numbers εg(n): in combinatorial terms, the bijections in [GN05, SV08]
concern maps which are weighted according to their genus, by an additional coloring of their vertices,
but the genus does not appear explicitely in the constructions. Moreover, these bijections concern those
weighted maps, more than the unicellular maps themselves.

On the contrary, this article is concerned with the structure of unicellular maps themselves, at given
genus. We investigate in details the way the unique face of such a map ”interwines” with itself in order to
create the handles of the surface. We show that, in each unicellular map of genus g, there are 2g ”special
places”, which we call trisections, that concentrate, in some sense, the handles of the surface. Each of
these places can be used to slice the map to a unicellular map of lower genus. Conversely, we show that
a unicellular map of genus g can always be obtained in 2g different ways by gluing vertices together in a
map of lower genus. In terms of formulas, this leads us to the new combinatorial identity:

2g · εg(n) =
(
n+ 3− 2g

3

)
εg−1(n) +

(
n+ 5− 2g

5

)
εg−2(n) + . . .+

(
n+ 1
2g + 1

)
ε0(n) (4)

=
g−1∑
p=0

(
n+ 1− 2p
2g − 2p+ 1

)
εp(n). (5)

This identity enables to compute, for each g, the closed formula giving εg(n) in terms of the n-th Catalan
number much more easily than Formulas 1,2,3 (indeed, even Formula 1 has quite a big number of terms).
In combinatorial terms, this enables to perform either exhaustive or random sampling of unicellular maps
of given genus and size easily. When iterated, our bijection really shows that all unicellular maps can
be obtained in a canonical way from plane trees by successive gluings of vertices, hence giving the first
explanation to the fact that εg(n) is the product of a polynomial in n by the n-th Catalan number.

Acknowledgements. I am indebted to Olivier Bernardi, and to my advisor Gilles Schaeffer, for very
stimulating discussions.
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H = J1, 22K
α = (1, 22)(2, 5)(3, 11)(4, 12)(6, 21)(7, 16)
(8, 9)(10, 15)(13, 18)(14, 19)(17, 20)

σ = (1, 5, 21)(2, 11, 4)(3, 12, 18, 14, 10)
(6, 16, 20)(7, 9, 15)(8)(13, 19, 17)(22)

γ = ασ = (1, 2, 3, . . . , 22)

Figure 1: A unicellular map with 11 edges, 8 vertices, and genus 2: (a) ribbon graph; (b) permutations; (c) topological
embedding.

2 Unicellular maps.
2.1 Permutations and ribbon graphs.
Rather than talking about topological embeddings of graphs, we work with a combinatorial definition of
unicellular maps:

Definition 1. A unicellular map M of size n is a triple M = (H,α, σ), where H is a set of cardinality
2n, α is an involution of H without fixed points, and σ is a permutation of H such that γ = ασ has only
one cycle. The elements of H are called the half-edges of M . The cycles of α and σ are called the edges
and the vertices of M , respectively, and the permutation γ is called the face of M .

Given a unicellular map M = (H,σ, α), its associated (multi)graph G is the graph whose edges are
given by the cycles of α, vertices by the cycles of σ, and the natural incidence relation v ∼ e if v and e
share an element. Moreover, we draw each edge ofG as a ribbon, where each side of the ribbon represents
one half-edge; we decide which half-edge corresponds to which side of the ribbon by the convention
that, if a half-edge h belongs to a cycle e of α and v of σ, then h is the right-hand side of the ribbon
corresponding to e, when considered entering v. Furthermore, we draw the graph G in such a way that
around each vertex v, the counterclockwise ordering of the half-edges belonging to the cycle v is given
by that cycle: we obtain a graphical object called the ribbon graph associated to M , as in Figure 1(a).
Observe that the unique cycle of the permutation γ = ασ interprets as the sequence of half-edges visited
when making the tour of the graph, keeping the graph on its left.

A rooted unicellular map is a unicellular map carrying a distinguished half-edge r, called the root.
These maps are considered up to relabellings of H preserving the root, i.e. two rooted unicellular maps
M and M ′ are considered the same if there exists a permutation π : H → H ′, such that π(r) = r′,
α = π−1α′π, and σ = π−1σ′π. In this paper, all unicellular maps will be rooted, even if not stated.

Given a unicellular map M of root r and face γ = ασ, we define the linear order <M on H by setting:
r <M γ(r) <M γ2(r) <M . . . <M γ2n−1(r).
In other words, if we relabel the half-edge set H by elements of J1, 2nK in such a way that the root is 1
and the tour of the face is given by the permutation (1, . . . , 2n), the order <M is the natural order on the
integers. However, since in this article we are going to consider maps with a fixed half-edge set, but a
changing permutation γ, it is more convenient (and prudent) to define the order <M in this way.

Unicellular maps can also be interpreted as graphs embedded in a topological surface, in such a way that
the complement of the graph is a topological polygon. If considered up to homeomorphism, and suitably
rooted, these objects are in bijection with ribbon graphs. See [MT01], or the example of Figure 1(c). The
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genus of a unicellular map is the genus, or number of handles, of the corresponding surface. If a unicellular
map of genus g has n edges and v vertices, then Euler’s characteristic formula says that v = n+ 1− 2g.
From a combinatorial point of view, this last equation can also be taken as a definition of the genus.

2.2 The gluing operation.

a3

a1

a2

a3

a1

a2

slicing

gluing

a3

a1

a2

(a) (b)

to k1
1

from kl2
2

from kl3
3

from kl1
1

to k1
3

to k1
2

a3

from kl2
2

a2

from kl1
1

a1
from kl3

3

to k1
1

to k1
3

to k1
2

γ γ̄

Figure 2: (a) The gluing and slicing operations. (b) The ”proof” of Lemma 1.

We let M = (H,α, σ) be a unicellular map of genus g, and a1 <M a2 <M a3 be three half-edges of
M belonging to three distinct vertices. Each half-edge ai belongs to some vertex vi = (ai, h1

i , . . . h
mi
i ),

for some mi ≥ 0. We define the permutation

v̄ := (a1, h
1
2, . . . h

m2
2 , a2, h

1
3, . . . h

m3
3 , a3, h

1
1, . . . h

m1
1 ),

and we let σ̄ be the permutation of H obtained by deleting the cycles v1, v2, and v3, and replacing them
by v̄. The transformation mapping σ on σ̄ interprets combinatorially as the gluing of the three half-edges
a1, a2, a3, as shown on Figure 2(a). We have:

Lemma 1. The map M̄ := (H,α, σ̄) is a unicellular map of genus g + 1. If we let γ = ασ =
(a1, k

1
1, . . . k

l1
1 , a2, k

1
2, . . . k

l2
2 , a3, k

1
3, . . . k

l3
3 ) be the face permutation of M , then the face of M̄ is given

by:
γ̄ = (a1, k

1
2, . . . k

l2
2 , a3, k

1
1, . . . k

l1
1 , a2, k

1
3, . . . k

l3
3 )

Proof: In order to prove that M is a well-defined unicellular map, it suffices to check that its face is given
by the long cycle γ̄ given in the lemma. This is very easy to check by observing that the only half-edges
whose image is not the same by γ and by γ̄ are the three half-edges a1, a2, a3, and that by construction
γ̄(ai) = ασ̄(ai) = ασ(ai+1) = γ(ai+1). For a more ”visual” explanation, see Figure 2(b).

Now, by construction, M ′ has two less vertices than M , and the same number of edges, so from Euler’s
formula it has genus g + 1 (intuitively, the gluing operation has created a new ”handle”).

2.3 Some intertwining hidden there, and the slicing operation.
The aim of this paper is to show that all unicellular maps of genus g+1 can be obtained in some canonical
way from unicellular maps of genus g from the operation above. This needs to be able to ”revert” (in some
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tour of the
face

1st

2nd
3rd

4th
1st

2nd
3rd 4th

(a) (b)

Figure 3: (a) In a plane tree, the tour of the face always visits the half-edges around one vertex in counterclockwise
order; (b) in positive genus (here in genus 1), things can be different.

sense) the gluing operation, hence to be able to determine, given a map of genus g + 1, which vertices
may be ”good candidates” to be sliced-back to a map of lower genus.

Observe that in the unicellular map M̄ obtained after the gluing operation, the three half-edges a1,
a2, a3 appear in that order around the vertex v̄, whereas they appear in the inverse order in the face γ̄.
Observe also that this is very different from what we observe in the planar case: if one makes the tour of a
plane tree, with the tree on its left, then one necessarily visits the different half-edges around each vertex
in counterclockwise order (see Figure 3). Informally, one could hope that, in a map of positive genus,
those places where the vertex-order does not coincide with the face-order hide some ”intertwining” (some
handle) of the map, and that they may be used to slice-back the map to lower genus.

We now describe the slicing operation, which is nothing but the gluing operation, taken at reverse. We
let M̄ = (H,α, σ̄) be a map of genus g+1, and three half-edges a1, a2, a3 belonging to a same vertex v̄ of
M̄ . We say that a1, a2, a3 are intertwined if they do not appear in the same order in γ̄ = ασ̄ and in σ̄. In
this case, we write v̄ = (a1, h

1
2, . . . h

m2
2 , a2, h

1
3, . . . h

m3
3 , a3, h

1
1, . . . h

m1
1 ), and we let σ be the permutation

ofH obtained from σ̄ by replacing the cycle v̄ by the product (a1, h
1
1, . . . h

1
m1

)(a2, h
2
1, . . . h

2
m2

)(a3, h
3
1, . . . h

3
m3

).

Lemma 2. The map M = (H,α, σ) is a well-defined unicellular map of genus g. If we let γ̄ =
(a1, k

1
2, . . . k

l2
2 , a3, k

1
1, . . . k

l1
1 , a2, k

1
3, . . . k

l3
3 ) be the unique face of M̄ , then the unique face of M is given

by: γ = ασ = (a1, k
1
1, . . . k

l1
1 , a2, k

1
2, . . . k

l2
2 , a3, k

1
3, . . . k

l3
3 ).

The gluing and slicing operations are inverse one to the other.

Proof: The proof is the same as in Lemma 1: it is sufficient to check the expression given for γ in terms
of γ̄, which is easily done by checking the images of a1, a2, a3.

2.4 Around one vertex: up-steps, down-steps, and trisections.
Let M = (H,α, σ) be a map of face permutation γ = ασ. For each vertex v of M , we let minM(v) be
the minimal half-edge belonging to v, for the order <M . Equivalently, minM(v) is the first half-edge from
which one reaches v when making the tour of the map, starting from the root. Given a half-edge h ∈ H ,
we note V (h) the unique vertex it belongs to (i.e. the cycle of σ containing it).

Definition 2. We say that a half-edge h ∈ H is an up-step if h <M σ(h), and that it is a down-step if
σ(h) ≤M h. A down-step h is called a trisection if σ(h) 6= minM V (h), i.e. if σ(h) is not the minimum
half-edge inside its vertex.

As illustrated on Figure 3, trisections are specific to the non-planar case (there are no trisections in a
plane tree), and one could hope that trisections ”hide” (in some sense) the handles of the surface. Before
making this more precise, we state the following lemma, which is the cornerstone of this paper:
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i

j

σ(j)

σ(i)

tour of the face

tour of the face

Figure 4: The main argument in the proof of the trisection lemma:
the tour of the face visits i before σ(i) if and only if it visits σ(j)
before j, unless σ(i) or σ(j) is the root of the map.

1
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12

5 6

3
12

11

2

Figure 5: A vertex (6, 3, 12, 11, 2, 5) in a
map with 12-half-edges, and its diagram rep-
resentation (the marked half-edge is 6).

Lemma 3 (The trisection lemma). Let M be a unicellular map of genus g. Then M has exactly 2g
trisections.

Proof: We let M = (H,α, σ), and γ = ασ. We let n+ and n− denote the number of up-steps and down-
steps, respectively. Then, we have n− + n+ = 2n, where n is the number of edges of M . Now, let i be a
half-edge of M , and j = σ−1ασ(i). Observe that we have σ(j) = γ(i), and γ(j) = σ(i). Graphically, i
and j lie in two ”opposite” corners of the same edge, as shown on Figure 4. On the picture, it seems clear
that if we visit i before σ(i), then we necessarily visit σ(j) before j (except if the root is one of these four
half-edges) so that, roughly, there must be almost the same number of up-steps and down-steps. More
precisely, let us distinguish three cases.

First, assume that i is an up-step. Then we have i <M σ(i) = γ(j). Now, by definition of the total
order <M , i <M γ(j) implies that γ(i) ≤M γ(j). Hence, σ(j) ≤M γ(j), which, by definition of <M

again, implies that σ(j) ≤M j (here, we have used that σ(j) 6= γ(j) since α has no fixed point). Hence,
if i is an up-step, then j is a down-step.

Second, assume that i is a down-step, and that γ(j) is not equal to the root of M . In this case, we have
j <M γ(j), and γ(j) = σ(i) ≤M i = σ(j). Hence j <M σ(j), and j is an up-step.

The third and last case is when i is a down step, and γ(j) is the root r of M . In this case, j is the
maximum element of H for the order <M , so that it is necessarily a down-step.

Therefore we have proved that each edge of M (more precisely, each cycle of σ−1ασ) is associated to
one up-step and one down-step, except a special one that has two down-steps. Consequently, there are
exactly two more down-steps that up-steps in the mapM , i.e.: n− = n++2. Recalling that n−+n+ = 2n,
this gives n− = n+ 1.

Finally, each vertex of M carries exactly one down-step which is not a trisection (its minimal half-
edge). Hence, the total number of trisections equals n− − v, where v is the number of vertices of M .
Since from Euler’s characteristic formula, v equals n+ 1− 2g, the lemma is proved.

3 Making the gluing operation injective.
We have defined above an operation that glues a triple of half-edges, and increases the genus of a map. In
this section, we explain that, if we restrict to certain types of triples of half-edges, this operation can be
made reversible.
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3.1 A diagram representation of vertices.
We first describe a graphical visualisation which should make the exposition more easy. Let v be a vertex
of M , with a distinguished half-edge h. We write v = (u0, u1, . . . , um), with u0 = h. We now consider
a grid with m+ 1 columns and 2n rows. Each row represents an element of H , and the rows are ordered
from the bottom to the top by the total order <M (for example the lowest row represents the root). Now,
for each i, inside the i-th column, we plot a point at the height corresponding to the half-edge ui. We
say that the obtained diagram is the diagram representation of v, starting from h. In other words, if we
identify J1, 2nK with H via the order <M , the diagram representation of v is the graphical representation
of the sequence of labels appearing around the vertex v. If one changes the distinguished half-edge h,
the diagram representation of v is changed by a circular permutation of its columns. Figure 5 gives an
example of such a diagram (where the permutation γ is in the form γ = (1, 2, 3, . . .)).

The gluing operation is easily visualised on diagrams. We let as before a1 <M a2 <M a3 be three half-
edges belonging to distinct vertices in a unicellular mapM , and we let ∆1,∆2,∆3 be their corresponding
diagrams. We now consider the three horizontal rows corresponding to a1, a2, and a3: they separate each
diagram ∆i into four blocks (some of which may be empty). We give a name to each of these blocks:
Ai, Bi, Ci, Di, from bottom to top, as on Figure 6(a).

a1

a2

a3

A1

B1

D1

C1

A2

B2

D2

C2

A3

B3

D3

C3

∆1 ∆2 ∆3

ccw. tour of the
first vertex

ccw. tour of the
second vertex

ccw. tour of the
third vertex

(a)

ccw. tour of the vertex v̄

a3

a2

a1

(b)

ccw. tour of the vertex v̄

a2

a3

a1

(c)
rearrange the
colums as they
appear around v̄

swap the blocks
B and C, and the
rows a2 and a3

order
<M

order
<M

order
<M

A2

B2

D2

C2

A3

B3

D3

C3

A1

B1

D1

C1

A2

B2

D2

C2

A3

B3

D3

C3

A1

B1

D1

C1

Figure 6: The gluing operation visualized on diagrams. (a) the diagrams before gluing; (b) a temporary diagram,
where we the columns represent the counterclockwise turn around v̄, but the rows still represent the original permu-
tation γ; (c) the final diagram of the new vertex in the new map, where the rows represent the permutation γ̄.

We now juxtapose ∆2,∆3,∆1 together, from left to right, and we rearrange the three columns con-
taining a1, a2, a3 so that these half-edges appear in that order: we obtain a new diagram (Figure 6(b)),
whose columns represent the order of the half-edges around the vertex v̄. But the rows of that diagram
are still ordered according to the order <M . In order to obtain the diagram representing v̄ in the new
map M̄ , we have to rearrange the rows according to <M̄ . We let A be the union of the three blocks
Ai (and similarly, we define B, C, and D). We know that the face permutation of M has the form
γ = (−−A−−, a1,−−B −−, a2,−− C −−, a3,−−D −−), where by −−A−−, we mean ”all the elements
of A, appearing in a certain order”. Now, from the expression of γ̄ given in Lemma 1, the permutation
γ̄ is: γ̄ = (−− A −−, a1,−− C −−, a3,−− B −−, a2,−−D −−), where inside each block, the half-edges
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appear in the same order as in γ. In terms of diagrams, this means that the diagram representing v̄ in the
new map M̄ can be obtained by swapping the block B with the block C, and the row corresponding to a2

with the one corresponding to a3: see Figure 6(c). To sum up, we have:

Lemma 4. The diagram of the vertex v̄ in the map M̄ is obtained from the three diagrams ∆1,∆2,∆3 by
the following operations, as represented on Figure 6:
- Juxtapose ∆2,∆3,∆1 (in that order), and rearrange the columns containing a1, a2, a3, so that they
appear in that order from left to right.
- Exchange the blocks B and C, and swap the rows containing a2 and a3.

Observe that, when taken at reverse, Figure 6 gives the way to obtain the diagrams of the three vertices
resulting from the slicing operation of three intertwined half-edges a1, a2, a3 in the map M̄ .

3.2 Gluing three vertices: trisections of type I.
In this section, we let v1, v2, v3 be three distinct vertices in the map M . We let ai := minM vi, and, up to
re-arranging the three vertices, we may assume (and we do) that a1 <M a2 <M a3. We let ∆1, ∆2, ∆3 be
the three corresponding diagrams. Since in each diagram the marked edge is the minimum in its vertex,
observe that the blocks A1, A2, B2, A3, B3, C3 do not contain any point. We say that they are empty, and
we note: A1 = A2 = B2 = A3 = B3 = C3 = ∅.

We now glue the three half-edges a1, a2, a3 in M : we obtain a new unicellular map M̄ , with a new
vertex v̄ resulting from the gluing. Now, let τ be the element preceding a3 around v̄ in the map M̄ . Since
A3 = B3 = C3 = ∅, we have either τ ∈ D3 or τ = a2, so that in both case a3 <M̄ τ . Moreover, a3

in not the minimum inside its vertex (the minimum is a1). Hence, τ is a trisection of the map M̄ . We let
Φ(M, v1, v2, v3) = (M̄, τ) be the pair formed by the new map M̄ and the newly created trisection τ .

It is clear that given (M̄, τ), we can inverse the gluing operation. Indeed, it is easy to recover the three
half-edges a1 (the minimum of the vertex), a3 (the one that follows τ ), and a2 (observe that, since B2 and
B3 are empty, a2 is the smallest half-edge on the left of a3 which is greater than a3). Once a1, a2, a3 are
recovered, it is easy to recover the map M by slicing v̄ at those three half-edges. This gives:

Lemma 5. The mapping Φ, defined on the set of unicellular maps with three distinguished (unordered)
vertices, is injective.

It is natural to ask for the image of Φ: in particular, can we obtain all pairs (M̄, τ) in this way ? The
answer needs the following definition (see Figure 7):

Definition 3. Let M̄ = (H,α, σ̄) be a map of genus g + 1, and τ be a trisection of M̄ . We let v̄ = V (τ),
b1 = minM̄(v̄), and we let ∆ be the diagram representation of v̄, starting from the half-edge b1. We let
b3 = σ(τ) be the half-edge following τ around v̄, and we let b2 be the minimum half-edge among those
which appear before b3 around v̄ and which are greater than b3 for the order <M̄ .

The rows and columns containing b1, b2, b3 split the diagram ∆ into twelve blocks, five of which are
necessarily empty, as in Figure 7. We let K be second-from-left and second-from-bottom block. We say
that τ is a trisection of type I is K is empty, and that τ is a trisection of type II otherwise.

The following proposition is the half way to our main result:

Proposition 1. The mapping Φ is a bijection between the set U3
g (n) of unicellular maps of genus g, with

n edges, and three distinguished vertices, and the set DIg+1(n)of unicellular maps of genus g + 1 with n
edges and a distinguished trisection of type I.
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τ
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*
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K = ∅ : τ is of type I,
K 6= ∅ : τ is of type II.

∅∅

∅ ∅ ∅

* *

*
”block-decomposition”

Figure 7: Trisections of type I and II.

Proof: We already know that Φ is injective.
We letM be a unicellular map of genus g with three distinguished vertices v1, v2, v3, and M̄ be the map

obtained, as above, by the gluing of M by the half-edges a1 = minM v1, a2 = minM v2, a3 = minM v3
(we assume again that a1 <M a2 <M a3). We let ∆̄ be the diagram representation of the new vertex v̄
obtained from the gluing in the map M̄ , and we use the same notations for the blocks as in Section 3.1.
We also let τ = σ−1(a3) be the created trisection, and we use the notations of Definition 3 with respect
to the trisection τ , so that b3 = a3. Then, since a1 = minM̄ v̄, we have a1 = b1, and since the blocks
B2, B3, are empty, we have b2 = a2. Hence, the block C3 of Figure 6(c) coincides with the block K of
Figure 7. Since C3 is empty, τ is a trisection of type I. Therefore the image of Φ is included in DIg+1(n).

Conversely, let M̄ = (H,α, σ̄) be a map of genus g + 1, and τ be a trisection of type I in M̄ . We let
b1, b2, b3 and K be as in Definition 3. First, since b1 <M̄ b3 <M̄ b2, these half-edges are intertwined,
and we know that the slicing of M̄ by these half-edges creates a well-defined unicellular map M of
genus g (Lemma 2). Now, if we compare Figures 7 and 6, we see that the result of the slicing is a triple
of vertices v1, v2, v3, such that each half-edge bi is the minimum in the vertex vi: indeed, the blocks
A1, A2, A3, B2, B3 are empty by construction, and the block C3 = K is empty since τ is a trisection
of type I. Hence we have Φ(M, v1, v2, v3) = (M̄, τ), so that the image of Φ exactly equals the set
DIg+1(n).

3.3 Trisections of type II.
Of course, it would be nice to have a similar result for trisections of type II. Let M̄ = (H,α, σ̄) be a map
of genus g + 1 with a distinguished trisection τ of type II. We let b1, b2, b3 and K be as in Definition 3
and Figure 7, and we let M be the result of the slicing of M̄ at the three half-edges b1, b2, b3. If we use
the notations of Figure 6, with ai = bi, we see that we obtain three vertices, of diagrams ∆1,∆2,∆3,
such that A1 = A2 = B2 = A3 = B3 = ∅. Hence, we know that a1 = minM(v1), that a2 = minM(v2),
and that a2 < minM(v3). Observe that, contrarily to what happened in the previous section, the block
C3 = K is not empty, therefore a3 is not the minimum inside its vertex.

Now, we claim that τ is still a trisection in the map M . Indeed, by construction, we know that τ
belongs to D3 (since, by definition of a trisection, it must be above a3 in the map M̄ , and since B3 is
empty). Hence we still have a3 <M τ in the map M . Moreover, we have clearly σ(τ) = a3 in M (since
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τ is the rightmost point in the blocks C3 ∪D3), and it follows that τ is a trisection in M .
We let Γ(M̄, τ) = (M,v1, v2, τ) be the 4-tuple consisting of the new map M , the two first vertices v1

and v2 obtained from the slicing, and the trisection τ . It is clear that Γ is injective: given (M̄, v1, v2, τ),
one can reconstruct the map M̄ by letting a1 = min v1, a2 = min v2, and a3 = σ(τ), and by gluing back
together the three half-edges a1, a2, a3. Conversely, we define:

Definition 4. We let Vg(n) be the set of 4-tuples (M, v1, v2, τ), where M is a unicellular map of genus g
with n edges, and where v1, v2, and τ are respectively two vertices and a trisection of M such that:

min
M

v1 <M min
M

v2 <M min
M

V (τ). (6)

Given (M,v1, v2, τ) ∈ VG(n), we let M̄ be the map obtained from the gluing of the three half-edges
min v1, min v2, and σ(τ), and we let Ψ(M, v1, v2, τ) := (M̄, τ).

We can now state the following proposition, that completes Proposition 1:

Proposition 2. The mapping Ψ is a bijection between the set Vg(n) of unicellular maps of genus g with
n edges a distinguished triple (v1, v2, τ) satisfying Equation 6, and the set DIIg+1(n) of unicellular maps
of genus g + 1 with n edges and a distinguished trisection of type II.

Proof: In the discussion above, we have already given a mapping Γ : DIIg+1(n)→ Vg(n), such that Ψ ◦Γ
is the identity on DIIg+1(n).

Conversely, let (M,v1, v2, τ) ∈ Vg(n), and let a1 = min v1, a2 = min v2, and a3 = σ(τ). By
definition, we know that a2 < minV (τ), so that in the diagram representation of the three vertices
v1, v2, V (τ) (Figure 6(a)) we know that the blocks A1, A2, A3, B2, B3 are empty. Moreover, since τ is
a trisection, a3 is not the minimum inside its vertex, so the block C3 is not empty. Hence, comparing
Figures 6(c) and 7, and observing once again that the blocks C3 and K coincide, we see that after the
gluing, τ is a trisection of type II in the new map M̄ . Moreover, since the slicing and gluing operations
are inverse one to the other, it is clear that Γ(M̄, τ) = (M, v1, v2, τ). Hence, Γ ◦Ψ is the identity, and the
proposition is proved.

4 Iterating the bijection.
Of course Proposition 1 looks nicer than its counterpart Proposition 2: in the first one, one only asks to
distinguish three vertices in a map of lower genus, whereas in the second one, the marked triple must
satisfy a nontrivial constraint (Equation 6). In this section we will work a little more in order to get rid of
this problem. We start with two definitions (observe that for k = 3 this is coherent with what precedes):

Definition 5. We let Ukg (n) be the set of unicellular maps of genus g with n edges, and k distinct distin-
guished vertices, undistinguishable one from the others.

Definition 6. We let Dg(n) = DIg(n) ∪ DIIg (n) be the set of unicellular maps of genus g with n edges,
and a distinguished trisection.

4.1 Training examples: genera 1 and 2.
Observe that the set V0(n) is empty, since there are no trisections in a plane tree. Hence, from Proposi-
tion 2, there are no trisections of type II in a map of genus 1 (i.e. DII1 (n) = ∅). Proposition 1 gives:
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Corollary 1. The set D1(n) of unicellular maps of genus 1 with n edges and a distinguished trisection is
in bijection with the set U3

0 (n) of rooted plane trees with n edges and three distinguished vertices.

We now consider the case of genus 2. Let M be a unicellular map of genus 2, and τ be a trisection
of M . If τ is of type I, we know that we can use the application Φ−1, and obtain a unicellular map of
genus 1, with three distinguised vertices.

Similarly, if τ is of type II, we can apply the mapping Ψ−1, and we are left with a unicellular map
M ′ of genus 1, and a marked triple (v1, v2, τ), such that minM′ v1 <M′ minM′ v2 <M′ minM′ V (τ).
From now on, we use the more compact notation: v1 <M′ v2 <M′ V (τ), i.e. we do not write the min’s
anymore. The map (M ′, τ) is a unicellular map of genus 1 with a distinguished trisection: therefore we
can apply the mapping Φ−1 to (M ′, τ). We obtain a plane tree M ′′, with three distinguished vertices
v3, v4, v5 inherited from the slicing of τ in M ′; since those three vertices are undistinguishable, we can
assume that v3 <M′′ v4 <M′′ v5. Observe that in M ′′ we also have the two marked vertices v1 and v2
inherited from the slicing of τ in M . Moreover the fact that v1 <M′ v2 <M′ V (τ) in M ′ implies that
v1 <M′′ v2 <M′′ v3 in M ′′: indeed, the gluing operation does not modify the part of cycle γ appearing
between the root and the smallest glued half-edge, so that appearing before V (τ) in M ′ is equivalent to
appearing before v3 in M ′′. Hence, we are left with a plane tree M ′′, with five distinguished vertices
v1 <M′′ v2 <M′′ v3 <M′′ v4 <M′′ v5. Conversely, given such a 5-tuple of vertices, it is always possible
to glue the three last ones together by the mapping Φ to obtain a triple (v1, v2, τ) satisfying Equation 6,
and then to apply the mapping Ψ to retrieve a map of genus 2 with a marked trisection of type II. This
gives:

Corollary 2. The set DII2 (n) is in bijection with the set U5
0 (n) of plane trees with five distinguished

vertices.
The set D2(n) of unicellular maps of genus 2 with one marked trisection is in bijection with the set
U3

1 (n) ∪ U5
0 (n).

4.2 The general case, and our main theorem.

We let p ≥ 0 and q ≥ 1 be two integers, and (M,v∗) = (M,v1, . . . , v2q+1) be an element of U2q+1
p (n).

Up to renumbering the vertices, we can assume that v1 <M v2 <M . . . <M v2q+1.

Definition 7. We consider the following procedure:
i. Glue the three last vertices v2q−1, v2q, v2q+1 together, via the mapping Φ, in order to obtain a new map
M1 of genus p+ 1 with a distinguished trisection τ of type I.
ii. for i from 1 to q − 1 do:
Let (v2q−2i−1, v2q−2i, τ) be the triple consisting of the last two vertices which have not been used until
now, and the trisection τ . Apply the mapping Ψ to that triple, in order to obtain a new map Mi+1 of genus
p+ i+ 1, with a distinguished trisection τ of type II.
end for.
We let Λ(M,v∗) := (Mq, τ) be the map with a distinguished trisection obtained at the end of this proce-
dure. Observe that if q = 1, the distinguished trisection is of type I, and that it is of type II otherwise.

The following Theorem can easily be proved from Propositions 1 and 2 by adapting the arguments we
used in the particular case of genus 2:
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Theorem 1 (Our main result). The application Λ defines a bijection:

Λ :
g−1⊎
p=0

U2g−2p+1
p (n) −→ Dg(n).

In other words, all unicellular maps of genus g with a distinguished trisection can be obtained in a
canonical way by starting with a map of lower genus with an odd number of distinguished vertices, and
then applying once the mapping Φ, and a certain number of times the mapping Ψ.

Given a map with a marked trisection (M, τ), the converse application consists in slicing recursively
the trisection τ while it is of type II, then slicing once the obtained trisection of type I, and remembering
all the vertices resulting from the successive slicings.

Finally, our new identity (Equation (4)) follows from the theorem and the Trisection lemma (Lemma 3).
Further developments: - It is known that labelled unicellular maps are in bijection with general maps of
the same genus (this is the Marcus-Schaeffer bijection). Hence our bijection also leads to a full description
of maps of positive genus in terms of plane labelled trees with distinguished vertices.
- It is straightforward to obtain a formula analogous to (4) for the numbers βg(k, l) of bipartite unicellular
maps with k white and l black vertices (just be careful to glue only vertices of the same color).
- It is possible to iterate the mapping Λ in order to obtain only plane trees at the end. This leads to the
following formula, which interestingly reminds of Equation 1:

εg(n) =

( ∑
0=g0<g1<...<gr=g

r∏
i=1

1
2gi

(
n+ 1− 2gi−i

2(gi − gi−1) + 1

))
Cat(n).
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Indecomposable permutations with a given
number of cycles

Robert Cori1† and Claire Mathieu2

1Labri, Université Bordeaux 1, F-33405, Talence Cedex, France
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Abstract. A permutation a1a2 . . . an is indecomposable if there does not exist p < n such that a1a2 . . . ap is a
permutation of {1, 2, . . . , p}. We compute the asymptotic probability that a permutation of Sn with m cycles is
indecomposable as n goes to infinity with m/n fixed. The error term is O( log(n−m)

n−m
). The asymptotic probability

is monotone in m/n, and there is no threshold phenomenon: it degrades gracefully from 1 to 0. When n = 2m, a
slight majority (51.1 . . . percent) of the permutations are indecomposable. We also consider indecomposable fixed
point free involutions which are in bijection with maps of arbitrary genus on orientable surfaces, for these involutions
with m left-to-right maxima we obtain a lower bound for the probability of being indecomposable.

Résumé. Une permutation a1a2 . . . an est indécomposable, s’il n’existe pas de p < n tel que a1a2 . . . ap est une
permutation de {1, 2, . . . , p}. Nous calculons la probabilité pour qu’une permutation de Sn ayant m cycles soit
indécomposable et plus particulièrement son comportement asymptotique lorsque n tend vers l’infini et que m/n est
fixé. Cette valeur décroı̂t régulièrement de 1 à 0 lorsque m/n croı̂t, et il n’y a pas de phénomène de seuil. Lorsque
n = 2m, une faible majorité (51.1 . . . pour cent) des permutations sont indécomposables. Nous considerons aussi les
involutions sans point fixe indécomposables qui sont en bijection avec les cartes de genre quelconque plongées dans
une surface orientable, pour ces involutions ayantmmaxima partiels (ou records) nous obtenons une borne inférieure
pour leur probabilité d’êtres indécomposables.

Keywords: Permutations, enumeration, asymptotics.

1 Introduction.
Indecomposable permutations (also often called connected) have been considered by many authors trying
to show that they play the same role for permutations as connected graphs play in graph theory. Mar-
shall Hall [Hal49] was probably the first to implicitly consider them while enumerating subgroups of
finite index of the free group with 2 generators. They were studied in more detail 20 years later by A.
Lentin[Len72] and L. Comtet [Com72] and are quoted in good place in many classical books in Com-
binatorics and Algorithms (see for instance [Com74], [Knu05], [GJ83], and [Sta99]). More recently, a
bijection was given by P. Ossona de Mendez and P. Rosenstiehl in [dMR04] with hypermaps (or equiva-
lently bicolored maps) is such a way that the number of cycles of the permutation is equal to the number
†Work done while visiting the CS Department at Brown University.
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of vertices of the hypermap (equivalently the number of vertices of a given color of the bipartite map).
Hence in order to generate at random a hypermap with a fixed number m of vertices, a natural algorithm
consists in generating permutations with m cycles until obtaining an indecomposable one, then to build
the hypermap in bijection with it. The efficiency of this algorithm depends on the value of the probability
for a permutation with m cycles to be indecomposable. Intuitively this probability is expected to be a de-
creasing function of mn ; we will prove this fact asymptotically in this paper and give a precise description
of the asymptotic limit of this function when n and m tend to infinity keeping n

m constant.
In a second part of the paper we restrict these permutations to be involutions with no fixed points and

take as parameter the number of left-to-right maxima instead of the number of cycles, note that these two
statistics are equal for general permutations. Similarly the above bijection associates to indecomposable
involutions maps on orientable surfaces having the same number of vertices as the involution has left-to-
right maxima. We obtain a lower bound on the probability for an involution with no fixed points and a
given number of let-to-right maxima to be indecomposable. We use combinatorial arguments and a coding
of these involutions by labeled Dyck words, often called histoires d’Hermite, (see [dMV94], [Dra09]).

Notation
A permutation will be denoted a1a2 . . . an, it is called decomposable if there exists p < n such that
a1a2 . . . ap is a permutation of {1, 2, . . . , p}, and is called indecomposable otherwise. Let Sn denote the
set of permutations of {1, 2, . . . , n}. In [Com72], Comtet proved that almost all permutations of Sn are
indecomposable, more precisely:

Pr
Sn

{α indecomposable} = 1− 2
n

+O(
1
n2

).

The event that α is decomposable depends heavily on the number of cycles of α. The permutation
with n cycles (the identity) is decomposable, and among the

(
n
2

)
permutations with n − 1 cycles (the

transpositions), all but one are decomposable. At the other extreme, a permutation with only one cycle
is never decomposable. Intuitively, it seems clear that a permutation with more cycles is more likely to
be decomposable. In this note we prove this statement, up to lower order terms; we prove that a permu-
tation with n/2 cycles is indecomposable with probability about .5117 . . .; and for any µ ∈ (0, 1], we
calculate the asymptotic probability that a permutation over {1, . . . , n} with approximatively µn cycles
is decomposable.

Let Sn,m denote the set of permutations of Sn with m cycles, sn,m, the unsigned Stirling number of
the first kind, denote the cardinality of Sn,m, and µ = m/n. Let α = a1a2 . . . an denote a permutation of
{1, 2, . . . n}.

2 Main result and proof overview

Theorem 1 Let µ be a rational number less than 1. If m and n tend to infinity while keeping their ratio
fixed at m/n = µ, then the probability pn,m that a permutation of Sn,m is indecomposable tends to p(µ),

p(µ) =
(eu − 1)2

e2u
, (1)
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Fig. 1: Asymptotic probability p∞(µ) that a permutation of Sn with µn cycles is indecomposable, as a function of
µ.

where u > 0 is defined implicitly by the equation

µ =
u

eu − 1
. (2)

Moreover, |pn,m − p(µ)| = O(log(n−m)/(n−m)).

The asymptotic probability of indecomposability of a permutation as a function of µ is depicted in
Figure 1.

The value for µ = 1/2 computed with Maple is 0.511699676. The proof of Theorem 1 follows directly
from the following three lemmas. The first lemma states some simple facts and has a short proof.

Lemma 1 If the following condition holds, then α is decomposable:

(a1 = 1) or (an = n) (3)

If the following condition holds, then α is indecomposable:

(∃i, i ≤ a1 and ai > an) (4)

Proof: If condition (3) holds then either a1 is a permutation of S1 or a1 . . . an−1 is a permutation of Sn−1.

If α is decomposable then there exist p < n such that a1a2 . . . ap is a permutation of Sp, this implies
an > ai for all 1 ≤ i ≤ p. Moreover all i such that p < i ≤ n either i ≤ p satisfies ai > a1 contradicting
(4). Note that there is a simple way to represent indecomposability as a simple drawing: put n points on a
horizontal segment numbered 1 to n from left to right draw a half circle from i to ai when ai 6= i then the
permutation is decomposable if and only if there is no vertical line intersecting the segment but not any of
the half circles. As an example the proof of the above Lemma is illustrated on Figure 2.

2

The second Lemma will be proved in the next section using an evaluation of the asymptotics of Stirling
numbers due to Moser and Wyman [MW58]
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Fig. 2: Illustration of Condition 4 guaranteeing indecomposability.

Lemma 2 Let m,n, µ, u be defined as in Theorem 1. Then the probability that a permutation of Sn,m
satisfies condition (3) tends to

2eu − 1
e2u

.

The third lemma, is the main technical point in our paper and will be proved in a following section:

Lemma 3 The probability that a permutation of Sn,m satisfies neither condition (3) nor condition (4) is
O( log(n−m)

n−m ).

3 Proofs
3.1 Proof of Lemma 2.
We use the inclusion-exclusion formula. The number of permutations of Sn,m such that a1 = 1 is equal
to sn−1,m−1, the number of those such that an = n is also equal to sn−1,m−1, and the number of those
such that a1 = 1 and an = n is equal to sn−2,m−2; hence the number satisfying condition (3) is equal to

tn,m = 2sn−1,m−1 − sn−2,m−2.

Moser and Wyman ([MW58] Equation (5.7)) give the following formula for Stirling numbers of the
first kind in the asymptotic regime where n and m tend to infinity such that m/n = µ is fixed:

sn,m = b
n!

an
√
n

um

m!
(1 +Oµ(1/m)), (5)

where u satisfies Equation (2) with µ = m/n, a = 1− e−u, b =
√

u
2π(ueu−eu+1) (note that since µ < 1,

we have u > 0 and b is well defined,) and the constants in the Oµ(1/m) are continuous functions of µ.
Using continuity, it is easy to prove that tn,m

sn,m
tends to 2eu−1

e2u . The details will be given in the extended
version of the paper.
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3.2 Proof of Lemma 3.
Let Sn,m denote the set of permutations of Sn,m such that neither condition (3) nor condition (4) hold. We
will partition the permutations of Sn,m according to their shape, defined below, and prove by probabilistic
arguments that within each class of permutations having the same shape, the fraction of those which are
in En,m is negligeable.

To each permutation α in En,m, we associate a shape (n1, . . . , nm; p, q, b, r) defined as follows. n1 ≥
n2 ≥ · · · ≥ nm are the lengths of the m cycles of α; p and q are the lengths of the cycles containing 1 and
n; when p = q, b is a boolean indicating whether 1 and n are in the same cycle; and when b is true, r > 1
is the smallest integer such that αr(1) = n. The shape of a permutation in Sn,m may be represented by a
directed graph with n vertices of indegree and outdegree 1, consisting of the union of m (directed) cycles
of lengths n1, n2, . . . , nm, and of two distinguished vertices, belonging to cycles of length not less than 2
and called the “initial”and the “last” vertices. We identify a shape and the associated graph.

Fig. 3: The shape (6, 5, 2, 2, 1, 1, 1, 1, 1; 5, 6), the initial vertex is indicated by a circle and the last one by a double
circle; the marked edges are in bold.

Given any shape σ, the following process defines a permutation drawn uniformly at random among the
permutations of Sn,m with shape σ:

• To each undistinguished vertex, independently assign a real number drawn uniformly at random
from the interval [0, 1]; assign 0 to the initial vertex and 1 to the last vertex.

• Give integer labels 1, 2, . . . n to the n vertices of the diagram in such a way that the labels are in the
same order as the reals assigned to them. This defines the permutation a1, a2, . . . , an such that the
edge with head labeled i has tail labeled ai.

Lemma 4 In the graph representing a shape σ there exist (n −m)/2 − 2 edges, called marked edges,
such that no head of a marked edge is the tail of another marked edge and such that the initial and the
last vertex are neither a head nor a tail of a marked edge.

Proof: There are m cycles, of which m1 have length 1. In each of the cycles of length ni ≥ 2, we can
mark at least (ni−1)/2 disjoint edges, for a total of [(n−m1)−(m−m1)]/2 marked edges. Discounting
the marked edges that touch the initial or the last vertex yields the result. 2

Lemma 3 follows by summing Equation (6) below over all shapes.
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Lemma 5 Given a shape σ, let sσn,m and eσn,m be the number of permutations with shape σ in Sn,m and
in En,m. Then

eσn,m ≤ sσn,m
4 log((n−m− 4)/2)

n−m− 4
(1 + o(1)). (6)

Proof: (of Lemma 5.) Let α = a1, a2, . . . , an be a permutation of shape σ = (n1, . . . , nm; p, q, b, r)
obtained by the process. We may suppose p, q > 1 since this means a1 6= 1, an 6= n. Then α in En,m, if
for all i the following condition holds

¬(i ≤ a1 and ai > an)

The probability of this event is less than if the condition holds only for the i corresponding to the heads of
marked edges. But since the marked edges have no common end points, the conditions on each marked
edges are independent. Hence an upper bound for the probability of decomposability is the `-th power of
the satisfaction of one of the conditions.

Let x and y be the real numbers assigned to the tails of the edges which heads are the first and the last
vertex respectively. For every marked edge, the values xi and yi associated to its head and tail respectively
are such that we do not have (xi < x and yj > y).

Fix x, y; for each marked edge, the probability of the event (xi < x and yi > y) is x(1 − y). By
definition of the marked edges, the values xi, yi are independent, and so the probability that no (xi, yi)
among the (n −m − 4)/2 marked edges has (xi < x and yi > y) is : (1 − x(1 − y))(n−m−4)/2. Then,
denoting ` = (n−m− 4)/2, the proportion εn,m of permutations with shape σ in En,m is bounded by:

εn,m ≤
∫ 1

0

∫ 1

x

(1− x(1− y))`dydx.

Using the well known inequality 1− z ≤ e− z
2 for z ∈ [0, 1] (with z = x(1− y)) we obtain:

εn,m ≤
∫ 1

0

∫ 1

x

e−
x(1−y)`

2 dydx =
∫ 1

0

∫ 1−x

0

e−
xy`
2 dydx =

∫ 1

0

2
x`

(1− e−
x(1−x)

2 )dx.

We decompose [0, 1] in two intervals [0, 1
` ] and [ 1` , 1]. When x ≥ 1/` the function inside the integral can

be bounded by 2/(x`). When x < 1/` we use again 1− e− z
2 ≤ z for z ∈ [0, 1] (with z = x(1− x)) and

write:

εn,m ≤
∫ 1

`

0

2(1− x)
`

dx+
∫ 1

1
`

2
x`
dx ≤ 2 log `

`
+

2
`2

=
2 log `
`

(1 + o(1)).

Substituting ` = (n−m− 4)/2, the lemma follows. 2

4 Remarks
4.1 Numerical results
It is well-known that (sn,m) satisfies sn,p = 0 for p = 0 or p > n, s1,1 = 1, and:

sn,p = sn−1,p−1 + (n− 1)sn−1,p (7)
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The numbers cn,m of indecomposable permutations of Sn,m, can be computed by a formula similar to
that giving the number of those in Sn, (see for instance [Cor09], Proposition 2)

cn,k = sn,k −
n−1∑
p=1

min(k,p)∑
i=1

cp,isn−p,k−i (8)

Thus the exact value of cn,k

sn,k
can be computed exactly by using the above formulas inductively for small

n.
We have proved that the error term |pn,m − p(µ)| is bounded by O(log(n −m)/(n −m)). The error

is actually very small. For instance we find for n = 20 and n = 100:

m/n 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1

p20,m 1 0.968 0.883 0.774 0.644 0.5 0.35 0.207 0.090 0.02 0.005 0

p100,m 0.981 0.95 0.868 0.764 0.643 0.51 0.371 0.236 0.116 0.03 0.006 0

p∞(m/n) 0.978 0.946 0.865 0.762 0.642 0.511 0.374 0.241 0.122 0.035 0.009 0

4.2 Left-to-right maxima

A left-to-right maximum of a permutation α = a1 . . . an is an aj such that for any i < j one has aj > ai.
A classical result states that the number of permutations of Sn with m cycles is equal to the number of
those with m left-to-right maxima. Moreover the so called First Fundamental Transform (see [Lot83]
chap. 10) is a bijection between permutations of Sn which maps a permutation with m cycles to a per-
mutation with m left-to right maxima. It is not difficult to prove (see [Cor09] Proposition 1) that the
permutation is indecomposable if and only if its image under this transformation is. Hence the probabili-
ties obtained above are also those for a permutation with m left-to-right maxima to be indecomposable.

4.3 Comments

• The majority (51.1 . . . percent) of permutations of S2m with m cycles are indecomposable.

• Since there is a bijection between indecomposable permutations and hypermaps (see [dMR04])
our result shows that the probability for an ordered pair of permutations σ, α on Sn to generate a
transitive group when σ is supposed to have m cycles is about the same as the probability for a
permutation of Sn+1,m to be indecomposable. Hence this probability is about 0.511 when n = 2m.

• It would be interesting to know the structure of the group generated by two permutations when their
number of cycles is given. When these numbers are not fixed then Dixon (see [Dix05]) proved that
the probability that they generate the symmetric or alternating group is near to 1, his proof uses the
fact that they generate a transitive group with probability 1. But as we saw transitivity cannot be
assumed when the number of cycles is given and large.
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5 Fixed point free involutions.
We now consider involutions with no fixed points (which we will call fpf-involutions for short in the
sequel), that is, permutations of S2m with m cycles, all of length 2, hence belonging the subset of S2m for
which the probability of being indecomposable is close to 0.51. However assuming that the cycles are all
of length 2 implies that the probability increases to 1− 1

m . This can easely be proved using the recursion
formula giving the number cm of indecomposable fpf-involutions namely :

cm = (2m− 1)!!−
m−1∑
k=1

ck(2m− 2k − 1)!!

where (2k − 1)!! =
∏k
i=1(2i− 1) is the total number of fpf-involutions of S2k.

Ossona de Mendez and Rosenstiehl in [dMR05] gave a bijection between rooted maps on orientable
surfaces with m − 1 edges, and indecomposable fpf-involutions of S2m; in this bijection the number of
vertices of the map is equal to the number of left-to-right maxima of the corresponding involution. This
allows a new proof of the results in [AB00], see also: [BJ02], [Dra09].

Hence it is interesting to find the number am,k of fpf-involutions of length m having k left-to-right
maxima. No simple formula for these numbers are known unlike for Stirling numbers, which the statistics
of the same parameter for general permutations.

Let cm,k be the number of indecomposable fpf-involutions of S2m with k lef-to-right maxima; it is also
the number of rooted maps with m− 1 edges and k vertices.

In order to calculate the numbers an,k and cn,k we use a bijection between these involutions and labeled
Dyck words which will be recalled in Section 6. The values obtained allowed us to conjecture that the
probability for an fpf-involution to be indecomposable increases smoothly when the number of left-to-
right maxima decreases.

We are not able to prove this conjecture, but we obtain as a partial result a lower bound for the the
proportion of indecomposable fpf-involutions with a given number of left-to-right maxima:

Theorem 2 The numbers of decomposable fpf-involutions dm,k = am,k − cm,k of S2m, having k left-to-
right maxima satisfy:

dm,k ≤
4k
m
cm,k

Hence the probability that a random fpf-involution of S2m with λm left-to-right maxima is decomposable
is at most 4λ/(1 + 4λ).

In Section 6 we recall the bijection between fixed point free involutions and labeled Dyck words. In
Section 7 we give a sketch of the proof of Theorem 2.

6 Labeled Dyck words.
Dyck words.
We consider words over the two letters alphabet {a, b}. We denote the length of a word w by |w|, and
the number of occurrences of the letter x by |w|x. A Dyck word u is a word such that |u|a = |u|b and
|u′|a ≥ |u′|b for any of its prefixes u′ (i. e. u = u′u′′). The height of the occurrence of a letter x in
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w = w′xw” is defined as |w′x|a − |w′x|b. A Dyck word is decomposable if there exist two non-empty
Dyck words u′, u” such that u = u′u”. It is indecomposable otherwise.

Labeling
We consider the infinite alphabet {a, b0, b1, b2, . . . , bi, . . .}, and use the notation |w|b =

∑
i≥0 |w|bi

al-
lowing to define the heights of occurence of letters as above. A labeled Dyck word is a word f on this
alphabet such that

1. Replacing every bi for i ≥ 0 by b in f gives a Dyck word, and

2. Every occurrence of bi in f has height at least i.

A labeled Dyck word is decomposable if replacing every bi for i ≥ 0 by b gives a decomposable Dyck
word. Let Lm denote the set of labeled Dyck words of length 2m, and Lm,k denote the subset of those
having k occurrences of b0. Let am,k be the number of words of Lm,k and cm,k the number of indecom-
posable ones. We define the polynomials Am and Cm by :

Am(x) =
m∑
k=0

am,kx
k Cm(x) =

m∑
k=0

cm,kx
k (9)

Then we have, where A0 is set equal to 1 :

Proposition 1 For any m ≥ 1 the polynomials Am and Cm satisfy the following recursion equations:

Cm(x) = xAm−1(x+ 1) Am(x) =
m∑
k=1

Ck(x)Am−k(x) (10)

Proof: For the first equations note that an indecomposable Labeled Dyck word w is equal to avb0 where
v is obtained from a a labbeled Dyck word u by choosing a subset of occurrences of bi and replacing
them by bi+1. The seoncd one follows from the fact that any labeled Dyck word is the concatenation of
an indecomposable one and another labeled Dyck word (possibly empty). 2

Bijection.
The following algorithm describes a well-known bijection between fpf-involutions of Sm and labeled
Dyck words of length 2m, such that the labeled Dyck word is indecomposable if and only if the involution
is indecomposable. Less known is the fact that the number of left-to-right maxima of α is equal to the
number of occurrences of b0 in the corresponding word. It takes as input a fpf-involution α ∈ S2m and
outputs the labeled Dyck word f = f1f2 · · · f2m. It uses an ordered list Q.
for i = 1 to 2m do

if (α(i) > i)
then { add i at the end of Q, and set fi = a; }
else { let j be the position of α(i) in Q; set fi = bj−1, and remove α(i) from Q; }

For instance, for the involution α = (1, 4)(2, 7)(3, 10)(5, 9)(6, 8)(11, 14)(12, 13), we get

f = a a a b0 a a b0 b2 b1 b0 a a b1 b0
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Fig. 4: Labeled Dyck word corresponding to the involution
(1, 4)(2, 7)(3, 10)(5, 9)(6, 8)(11, 14)(12, 13)

6.0.1 Enumeration
A consequence of this bijection is that the number of fpf-involutions of S2m with k left-to-right maxima is
am,k and that of indecomposable ones is cm,k. These numbers can be computed thanks to Equation (10).
Moreover we have am,1 = cm,1 = (2m − 3)!! since any fpf-involution with one left-to-right maximum
is indecomposable and is equal to (1, 2m)β, where β is any fpf-involutions over 2, . . . 2m − 1 a. We
also have: am,m = Cm and cm,m = Cm−1 where Ck denotes the k-th Catalan number since the fpf-
involutions with of S2m with m left-to-right maxima correspond to labbelled Dyck words with all the bi
equal to b0 and the indecomposable ones to indecomposable Dyck words with the same property.

This gives some values for this numbers and allows to compare our result in Theorem 2 with values of
cm,k

am,k
for m = 100 showing an important gap except when k is close to 1 or close to m.

k/m 0.001 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1

m/(m+ 4k) 0.96 0.71 0.55 0.45 0.38 0.33 0.29 0.26 0.24 0.22 0.20

cm,k/am,k 1 0.98 0.95 0.90 0.86 0.80 0.74 0.67 0.58 0.46 0.25

7 Sketch of proof of Theorem 2
In order to explain this proof we consider a much simple result for Dyck words which we will try to
genralise for labeled Dyck words.

7.1 A simpler result
Proposition 2 The number of decomposable Dyck words of length 2m is less than 4 times the number of
indecomposable ones.

Proof: There is a very simple proof since we know that the number of decomposable Dyck words of
length 2m is Cm − Cm−1 and that of indecomposable ones is Cm−1. 2

Note that this simple proof shows also that we could have a better result replacing 4 by 3 in the Propo-
sition. But it is impossible to generalize this simple proof in ordrer to obtain a result for labeled Dyck
words with k occurrences of b0, since we do not know a nice formula for the number of such words of
length 2m. Hence we need another proof which do not uses any formula and which has a bijective flavour.
For that we define admissible factorisations of decomposable Dyck words and prooced in three steps.
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An admissible factorisation of a decomposable Dyck word w consists of a pair of words (u, v) such
that uv = w, u ends with an a and contains a prefix which is an indecomposable (hence non empty) Dyck
word. So that we can write u = u1u

′a where u1 is an indecomposable Dyck word.

Let dm and cm be the number of decomposable and indecomposable Dyck words of length 2m. Denote
Fm the set of all admissible factorisations of decomposable ones and fm the number of elements of Fm

Step 1: mdm ≤ 2fm

Proof: A decomposable Dyck word w writes w = u1u2 . . . uk where the ui are indecomposable Dycl
words. Let 2mi denote the length of ui for i = 1, k, the number of admissible factorisations of w is
m −m1. If this number is less than m/2 then the word w = uku1u2 . . . uk−1 has m −mk admissible
factorisations and the sum of these two numbers is greater or equal to m. Hence proving the result. 2

Step 2: factorisations of indecomposable Dyck words
Consider the set F ′m of pair of words (u, v) such that uv is an indecomposable Dyck word of length 2m
and u ends with an occurrence of a. Then the number f ′m of elements of F ′m is equal to mcm.

Step 3: fm < 2f ′m
We build a mapping Φ from the set Fm into F ′m such that each element of F ′m is the image of at most 2
elements of Fm. Let (u1w

′a, v) ∈ Fm be such that u1 is an indecomposable Dyck word and u1w
′av is a

decomposable one.

• If u1 = ab then we set Φ((u1w
′a, v)) = (aw′a, vb)

• If u1 6= ab then u1 = aaw1bw2b where w1, w2 are (not necessarily indecomposable) Dyck words.
In that case we set Φ((u1w

′a, v)) = (aw1aw
′a, vbw2b).

It is clear that for any factorisation (u′, v′) in F ′m there are only two candidates (u, v) to be such that
Φ(u, v) = (u′, v′).

Putting all together we obtain :

mdm ≤ 2fm < 4f ′m = 4mcm

Ingredients for the generalisation
In order to prove Theorem 2 we consider the set L2m,k of Dyck words of length 2m on the alphabet with
3 letters: {a, b0, b}, having k occurrences of b0 and such that no occurrence of b has height less than 1.
For each word w ∈ L2m,k denote λ(w) the number of labeled Dyck words that are obtained from w by
replacing the occurrences of b by a bi. Then the numbers cm,k and dm,k in Theorem 2 are the sums of the
λ(w) for indecomposable and decomposable words of L2m,k respectively. Then we modify the proof in
three steps above to make it work for words in L2m,k. The main difficulty is in Step 3, since the mapping
Φ has to be modified in such a way that Φ((u, v)) = (u′, v′) implies λ(uv) ≤ m

k λ(u′v′).
The detailed construction of such a mapping Φ will be given in the extended version of this paper.
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Abstract. We give two combinatorial interpretations of the Matrix Ansatz of the PASEP in terms of lattice paths
and rook placements. This gives two (mostly) combinatorialproofs of a new enumeration formula for the partition
function of the PASEP. Besides other interpretations, thisformula gives the generating function for permutations of a
given size with respect to the number of ascents and occurrences of the pattern 13-2, the generating function according
to weak exceedances and crossings, and thenth moment of certainq-Laguerre polynomials.

Résuḿe.Nous donnons deux interprétations combinatoires du Matrix Ansatz du PASEP en termes de chemins et de
placements de tours. Cela donne deux preuves (presque) combinatoires d’une nouvelle formule pour la fonction de
partition du PASEP. Cette formule donne aussi par exemple lafonction génératrice des permutations de taille donnée
par rapport au nombre de montées et d’occurrences du motif 13-2, la fonction génératrice par rapport au nombre
d’éxcédences faibles et de croisements, et lenième moment de certains polynômes deq-Laguerre.

Keywords: Enumeration, Permutation tableaux, Rook placements, Lattice paths

1 Introduction
In recent work of Postnikov [17], permutations were given a new description as pattern-avoiding fill-
ings of Young diagrams. More precisely, Postnikov made a correspondence between positive Grassmann
cells, pattern-avoiding fillings called

Γ

-diagrams, and decorated permutations (which are permutations
where the fixed points are bi-coloured). In particular, the usual permutations are in bijection with per-
mutation tableaux, a subclass of

Γ

-diagrams. Permutation tableaux have subsequently been studied by
Steingrı̀msson, Williams, Burstein, Corteel, Nadeau [4, 7, 8, 20], and proved to be very useful for work-
ing on permutations.
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Corteel and Williams established a link between permutation tableaux and the stationary distribution
of a classical process studied in statistical physics, the Partially Asymmetric Exclusion Process (PASEP).
This process is described in [8, 9]. Briefly, the stationary probability of a given state in the process is
proportional to the sum of weights of permutation tableaux of a given shape. The factor behind this
proportionality is the partition function, which is the sumof weights of permutation tableaux of a given
half-perimeter.

An alternative way of finding the stationary distribution ofthe PASEP is given by the Matrix Ansatz
[9]. Suppose that we have operatorsD andE, a row vector〈W | and a column vector|V 〉 such that:

DE − qED = D + E, 〈W |E = 〈W |, D|V 〉 = |V 〉, and 〈W ||V 〉 = 1. (1)

Then, coding any state of the process by a wordw of lengthn in D andE, the probability of the statew
is given by〈W |w|V 〉 normalised by the partition function〈W |(D + E)n|V 〉.

We briefly describe how the Matrix Ansatz is related to permutation tableaux [8]. First, notice that there
are unique polynomialsni,j ∈ Z[q] such that

(D + E)n =
∑

i,j≥0

ni,jE
iDj

This sum is called the normal form of(D+E)n. It is useful since, for example, the sum of coefficientsni,j

gives an evaluation of〈W |(D + E)n|V 〉. Each coefficientni,j is a generating function for permutation
tableaux satisfying certain conditions, or equivalently,alternative tableauxas defined by Viennot [27].

We give here two combinatorial interpretations of the Matrix Ansatz in terms in lattice paths and rook
placements, and get two semi-combinatorial proofs of the following theorem:

Theorem 1 For anyn > 0, we have:

〈W |(yD+E)n−1|V 〉 = 1
y(1−q)n

n
∑

k=0

(−1)k





n−k
∑

j=0

yj
(

(

n
j

)(

n
j+k

)

−
(

n
j−1

)(

n
j+k+1

)

)





(

k
∑

i=0

yiqi(k+1−i)

)

.

The combinatorial interpretation of this polynomial, in terms of permutations, is given in Proposition 1.
Fory = 1 this specialises to:

Corollary 1 For anyn > 0, we have:

〈W |(D + E)n−1|V 〉 =
1

(1 − q)n

n
∑

k=0

(−1)k
(

(

2n
n−k

)

−
(

2n
n−k−2

)

)

(

k
∑

i=0

qi(k+1−i)

)

.

Besides the references mentioned earlier, we have to point out an article of Williams [29], where we
find the following formula for the coefficient ofym−1 in 〈W |(yD + E)n|V 〉:

Em,n(q) =
m−1
∑

i=0

(−1)i[m− i]nq q
mi−m2

(

(

n
i

)

qm−i +
(

n
i−1

)

)

. (2)

It was obtained by enumerating

Γ

-diagrams of a given shape and then computing the sum of all possible
shapes. Until now it was the only known polynomial formula for the distribution of a permutation pattern
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of length greater than two (See Proposition 1). Although thearticle [29] focuses on

Γ

-diagrams, Williams
and her coauthors sketched in Section 4 of [16] how this couldhave been done directly on permutation
tableaux. Recently, Williams’s formula has been obtained also by Kasraoui, Stanton and Zeng in their
work on orthogonal polynomials [12]. We will show in the lastsection how our formula can be applied to
prove and extend a conjecture presented in [29].

The polynomialy〈W |(yD + E)n−1|V 〉 was already heavily studied.

Proposition 1 For anyn ≥ 1 the following polynomials are equal:

• y〈W |(yD + E)n−1|V 〉,

• the generating function for permutation tableaux of sizen, the number of lines counted byy and
the number of superfluous 1’s counted byq [8, 28],

• the generating function for permutations of sizen, the number of ascents counted byy and the
number of 13-2 patterns counted byq [7, 20],

• the generating function for permutations of sizen, the number of weak exceedances counted byy
and the number of crossings counted byq [6, 20],

• the generating function of PDSAWs (partially directed self-avoiding walks) in the asymmetric wedge
of lengthn where the number of descents is counted byy and the number of north steps is counted
byq [23],

• thenth moment of the Al-Salam-Chiharaq-Laguerre polynomials [12, 23].

Remark. We can view the formula in Corollary 1 as an analog of the Touchard-Riordan formula [24] for
the number of matchings of2n according to the number of crossings:

∑

M matching of2n

qcr(M) =
1

(1 − q)n

n
∑

k=0

(−1)k

((

2n

n− k

)

−
(

2n

n− k − 1

))

q
k(k+1)

2 .

We remark that this formula also gives the2nth moment of theq-Hermite polynomials.
In [22], Penaud gave a combinatorial proof of this formula. By generalising Penaud’s method we

conjectured Theorem 1 and were hoping for a completely combinatorial proof thereof. However, at the
time of writing the last step of this combinatorial proof is still missing.

This article is organised as follows: we first show how the Matrix Ansatz is naturally related to lattice
paths. Then we give two proofs of our main Theorem, one based on lattice paths and the other one based
on rook placements. We end with a discussion and some applications.

2 A first proof using lattice paths and functional equations
2.1 The Matrix Ansatz and lattice paths

We follow the ideas developed in [2, 3]. Looking for a solution of the system defined in Equation (1) we
find:



318 S. Corteel, M. Josuat-Vergès, T. Prellberg and M. Rubey

Proposition 2 LetD = (Di,j)i,j≥0 andE = (Ei,j)i,j≥0 such that

Di,j =

{

1 + . . .+ qi if i equalsj − 1 or j,
0 otherwise,

Ei,j =

{

1 + . . .+ qi if i equalsj or j + 1,
0 otherwise,

〈W | = (1, 0, 0, . . .), and

|V 〉 = (1, 0, 0, . . .)T .

Then these matrices and vectors satisfy the Ansatz of Equation (1).

We can interprety〈W |(yD + E)n−1|V 〉 as the generating polynomial of paths of lengthn − 1. The
weight of a path is the product of the weight of its steps and the weight of the starting and ending points.
If a path starts (resp. ends) at(0, i) (resp.(n− 1, i)) the weight of the starting (resp. ending) point isWi

(resp.Vi). The weight of a step going from(x, i) to (x+ 1, j) isDi,j +Ei,j . We calli the starting height
of the step. See [2, 3] for details.

Proposition 2 implies that the paths we are dealing with hereare bi-coloured Motzkin paths, i.e., paths
that start and end at height zero and consist of north-east, south-east and two types of east steps. Using a
classical bijection we can transform these paths of lengthn− 1 into Motzkin paths of lengthn where east
steps of type 2 can not appear at height zero.

Proposition 3 y〈W |(yD + E)n−1|V 〉 is the generating polynomial of weighted bi-coloured Motzkin
paths of lengthn such that the weight of steps starting at heighti is

• y + yq + . . .+ yqi = y 1−qi+1

1−q
for north-east steps and east steps of type 1, and

• 1 + q + . . .+ qi−1 = 1−qi

1−q
for south-east steps and east steps of type 2.

This can also be done combining results in [6, 8, 20].

2.2 The proof
The method used in this subsection is inspired by an article of Penaud [22]. We extract a factor of(1−q)n

from the generating polynomial of the weighted bi-colouredMotzkin paths from Proposition 3 and obtain
that

y〈W |(yD + E)n−1|V 〉 =
1

(1 − q)n

∑

p∈P (n)

w(p),

whereP (n) is the set of labelled bi-coloured Motzkin paths of lengthn such that the weight of steps
starting at heighti is either

• y or−yqi+1 for north-east steps or east steps of type 1,

• 1 or−qi for south-east steps or east steps of type 2,

andw(p) is the total weight of the path.
LetM(n) be the subset of the paths inP (n) such that the weight of any east step and the weight of any

peak (a north-east step followed by a south-east step) is neither1 nory. LetMn,k,j be the number of left
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factors of bi-coloured Motzkin paths of lengthn, final heightk, and withj south-east and east steps of
type 1.

Lemma 1 There is a bijection between paths inP (n) and pairs of paths such that for somek ∈ {0, . . . , n}

• the first path is a left factor of a bi-coloured Motzkin path oflengthn and final heightk,

• the second path is inM(k).

In particular, we have
∑

p∈P (n)

w(p) =

n
∑

k=0

n−k
∑

j=0

Mn,k,jy
j
∑

p∈M(k)

w(p).

Proof: Let p be a path inP (n). We decomposep into a sequencem1q1m2q2 . . .mkqkmk+1 such that

• themi are maximal (but possibly empty) sub-paths ofp with all steps having weight1 or y, and
returning to their starting height,

• theqi are single steps.

It follows thatq1q2 . . . qk is a path inM(k). Replacing in the sequencem1q1m2q2 . . .mkqkmk+1 each
stepqi by a north-east step, and taking into account the number of south-east steps and east steps of type 1,
we obtain a path inMn,k,j of weightyj. 2

It remains to computeMn,k,j andMk =
∑

p∈M(k) w(p).

Proposition 4 The numberMn,k,j of left factors of bi-coloured Motzkin paths of lengthn, final height
k, and withj south-east steps and east steps of type 1, is

(

n
j

)(

n
j+k

)

−
(

n
j−1

)(

n
j+k+1

)

.

Proof: We note that the formula can be seen as a2 × 2 determinant. By the Lindström-Gessel-Viennot
lemma, this equals the number of pairs of non-intersecting lattice paths taking north and east steps from
(1, 0) to (n− j, j) and(0, 1) to (n− j − k, j + k) respectively.

We transform such a pair of paths step by step into a single Motzkin path according to the following
translation table:

ith step of lower path upper path Motzkin path
north north east type 1
east east east type 2
north east north-east
east north south-east.

It is easy to see that the condition that the two lattice pathsdo not intersect corresponds to the condition
that the Motzkin path does not run below thex-axis. Furthermore, we see that the number of east and
south-east steps equalsj, the number of north steps of the lower path. 2

Proposition 5 The generating polynomialMk equals
∑k

i=0 y
iqi(k+1−i).

Proof: We add an extra parameter on the paths inM(n), that marks the number of steps that have a
weight different from1 andy. More precisely, the weight of steps starting at heighti is
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• y or−yzqi+1 for north-east steps or east steps of type 1, and

• 1 or−zqi for south-east steps or east steps of type 2.

LetM(z) =
∑

n≥0 t
n
∑

p∈M(n) w(p). We can obtain a functional equation forM(z) by considering
the following decomposition: A path is either (a) empty, (b)a north-east step of weight1, followed by
a path, followed by a south east step of weight−qyz, followed by another path, (c) a north-east step of
weight−qz, followed by a path, followed by a south east step of weight−qyz, followed by another path,
(d) a north-east step of weight−qz, followed by a path, followed by a south east step of weighty, followed
by another path, (e) a north-east step of weight1, followed by anon-emptypath, followed by a south east
step of weighty, followed by another path, (f) an east step of type 1 followedby another path, or (g)
an east step of type 2 followed by a path. The corresponding weight is (a)1, (b) −M(qz)qyzM(z)t2,
(c) qzM(qz)qyzM(z)t2, (d) −qzM(qz)yM(z)t2, (e) (M(qz) − 1) yM(z)t2, (f) −qyzM(z)t, or (g)
−zM(z)t, respectively. Thus, we have:

M(z) = 1 − (qyzt+ zt+ yt2)M(z) + yt2(1 − qz)2M(z)M(qz) .

Proceeding similar to [18], we use the linearising Ansatz

M(z) =
1

1 − z

H(qz)

H(z)

to obtain

H(z) − (1 + yt2)H(qz) + yt2H(q2z) = z
(

H(z) + (1 + qy)tH(qz) + qyt2H(q2z)
)

.

Solving recursively for the coefficientscn ofH(z) =
∑∞

n=0 cnz
n, we obtain a solution in terms of a basic

hypergeometric series,

H(z) = 2φ1(−t,−tqy; t2qy; q, z) =

∞
∑

n=0

(−t,−tqy; q)n

(t2qy, q; q)n

zn .

Note that we are dealing with a series of the type2φ1(a, b; ab; q, z) wherea = −t andb = −tqy. In order
to take the limitz → 1, we need to transform using Heine’s transformation

2φ1(a, b, ab; q, z) =
(az, b; q)∞
(ab, z; q)∞

2φ1(a, z; az; q, b) .

We find that

M(z) =
1

1 − az
2φ1(a, qz; aqz; q, b)

2φ1(a, z, az; q, b)

and therefore

M(1) =
1

1 − a
2φ1(a, q; aq; q, b) =

∞
∑

n=0

bn

1 − aqn
.

Changing back toa = −t andb = −tqy,

Mk = (−1)k[tk]M(1) =
∑

m+n=k

ynqn(m+1) =

k
∑

i=0

yiqi(k−i+1).

2

Combining the previous results, we get a proof of Theorem 1.
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3 A second proof using the Matrix Ansatz and rook placements
For further details about material in this section, see [11]. One of the ideas at the origin of this proof is
the following. FromD andE of the Matrix Ansatz, we define new operatorsD̂ andÊ as

D̂ =
q − 1

q
D +

1

q
, Ê =

q − 1

q
E +

1

q
.

An immediate consequence is that

D̂Ê − qÊD̂ =
1 − q

q2
, 〈W |Ê = 〈W |, and D̂|V 〉 = |V 〉. (3)

This commutation relation is somewhat simpler than the one satisfied byD andE, as it has no terms
linear inD̂ or Ê. Moreover, we haveq(yD̂+ Ê)+ (1− q)(yD+E) = 1+ y, for any parametery. Using
this identity, we obtain the following inversion formulae between(yD + E)n and(yD̂ + Ê)n:

(1 − q)n(yD + E)n =
n
∑

k=0

(

n

k

)

(1 + y)n−k(−1)kqk(yD̂ + Ê)k, and (4)

qn(yD̂ + Ê)n =

n
∑

k=0

(

n

k

)

(1 + y)n−k(−1)k(1 − q)k(D + E)k. (5)

In particular, the first formula means that in order to compute the coefficients of the normal form of
(yD + E)n, it is sufficient to compute the ones of(yD̂ + Ê)k for all 0 ≤ k ≤ n (as taking the normal
form is a linear operation).

Except for a factor−q, the operatorŝD andÊ are also defined in [25] and [1]. In the first reference,
Uchiyama, Sasamoto and Wadati used the commutation relation between̂D andÊ to find explicit matrices
for these operators. They derive the eigenvalues and eigenvectors ofD̂ + Ê, and consequently the ones
of D + E, in terms of orthogonal polynomials. In the second reference, Blythe, Evans, Colaiori and
Essler also use these eigenvalues and obtain an integral form for 〈W |(D + E)n|V 〉. They also provide
an exact integral-free formula of this quantity, somewhat complicated since it contains three summations
and severalq-binomial coefficients, but more general since it contains two other parameters.

In this article, instead of working on representations ofD̂ andÊ and their eigenvalues, we study the
combinatorics of the rewriting in the normal form of(D̂ + Ê)n, and more generally(yD̂ + Ê)n for
some parametery. In the case ofD̂ and Ê, the objects that appear are therook placements in Young
diagrams, long-known by combinatorists since the results of Kaplansky, Riordan, Goldman, Foata and
Schützenberger (see [19] and references therein). This method is described in [26], and is the same that
the one leading to permutation tableaux or alternative tableaux in the case ofD andE.

Definition 1 Letλ be a Young diagram. A rook placement of shapeλ is a partial filling of the cells ofλ
with rooks (denoted by a circle◦), such that there is at most one rook per row (resp. per column).

For convenience, we distinguish with a cross (×) each cell of the Young diagram that is not below (in the
same column) or to the left (in the same row) of a rook (we are using the French convention). The number
of crosses is an important statistic on rook placements, which was introduced in [10] as a generalisation of
the inversion number for permutations. Indeed, ifλ is a square of side lengthn, a rook placementR with
n rooks may be visualised as the graph of a permutationσ ∈ Sn, and in this interpretation the number of
crosses inR is the inversion number ofσ.
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Definition 2 The weight of a rook placementR with r rooks,s crosses andt columns isw(R) = prqsyt,
wherep = 1−q

q2 .

With the definition of rook placements and their weights we can give the combinatorial interpretation
of 〈W |(yD̂ + Ê)n|V 〉. This is similar to theq-Wick theorem given in [14], and our rook placements are
equivalent to the Feynman diagram of this reference.

Proposition 6 For anyn, 〈W |(yD̂ + Ê)n|V 〉 is equal to the sum of weights of all rook placements of
half-perimetern.

The enumeration of rook placements leads to an evaluation of〈W |(yD̂+Ê)n−1|V 〉, hence of〈W |(yD+
E)n−1|V 〉 via the inversion formula (4).

3.1 Rook placements and involutions
Given a rook placementR of half-perimetern, we define an involutionα(R) by the following construc-
tion: label the north-east boundary ofR with integers from 1 ton. This implies that each column or row
has a label between 1 andn. If a column, or row, is labelled byi and does not contain a rook, it is a fixed
point ofα(R). Also, if there is a rook at the intersection of columni and rowj, thenα(R) sendsi to j
(andj to i).

Given a rook placementR of half-perimetern, we also define a Young diagramβ(R) by the following
construction: if we remove all rows and columns ofR containing a rook, the remaining cells form a Young
diagram, which we denote byβ(R). We also defineφ(R) = (α(R), β(R)). See Figure 1 for an example.

R =

××

◦ ×××

◦ ×

◦ ×

× ×

φ(R) =

(

b b b b b b b b b b ,

)

Fig. 1: Example of a rook placement and its image by the mapφ.

Proposition 7 The mapφ is a bijection between rooks placements in Young diagrams ofhalf-perimetern,
and ordered pairs(I, λ) whereI is an involution on{1, . . . , n} andλ a Young diagram of half-perimeter
|Fix(I)|. If φ(R) = (I, λ), the number of crosses inR is the sum of|λ| and some parameterµ(I).

Proof: This kind of bijection rather classical, see for instance [4, 13]. Note that the pairs(I, λ) may
be seen as involutions on{1, . . . , n} with a weight 2 on each fixed point. For the second part of the
proposition, we just have to distinguish different kinds ofcrosses in the rook placementR. For example,
the crosses with no rook in the same line and column are enumerated by|λ|. 2

Corollary 2 Let Tj,k,n be the sum of weights of rook placements of half perimetern, with k lines andj
lines without rooks. Then for any j,k,n, we have:

Tj,k,n =

[

n− 2k + 2j

j

]

q

yjT0,k−j,n. (6)

Proof: The previous proposition means that the number of crosses isan additive parameter with respect
to the decompositionR 7→ (I, λ). This naturally lead to a factorisation of the generating function. 2
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3.2 The recurrence
Proposition 8 We have the following recurrence relation:

T0,k,n = T0,k,n−1 + py[n+ 1 − 2k]qT0,k−1,n−1. (7)

Proof: We have the relationT0,k,n = T0,k,n−1 + pT1,k,n−1. Indeed, we can distinguish two cases,
whether a rook placement enumerated byT0,k,n has a rook in its first column or not. These two cases
give respectively the two terms of the previous identity. Toend the proof we can apply identity (6) to the
second term. 2

The recurrence (7) is solved by the following formula.

Proposition 9

T0,k,n = q−2k

k
∑

i=0

(−1)iq
i(i+1)

2

[

n− 2k + i

i

]

q

((

n

k − i

)

−
(

n

k − i− 1

))

. (8)

It is worth noticing that we can get the Touchard-Riordan formula as a special case whenn is even and
k = n

2 . Actually there is also a bijective proof of (8), which generalizes Penaud’s bijective proof of the
Touchard-Riordan formula [22].

From this proposition, identity (6), and aq-binomial identity, we derive a formula forTj,k,n.

Proposition 10

k
∑

j=0

Tj,k,n =

k
∑

j=0

(

(

n

j

)

−
(

n

j−1

)

) (

q(k+1−j)(n−k−j)−q(k−j)(n−k−j)+q(k−j)(n+1−k−j)−q(k+1−j)(n+1−k−j)

(1−q)qn

)

.

Summing this identity overk gives the following result.

Proposition 11
〈W |(yD̂ + Ê)|V 〉 = (1 + y)G(n) −G(n+ 1), (9)

where G(n) =

⌊n
2 ⌋
∑

j=0

((

n

j

)

−
(

n

j − 1

)) n−2j
∑

i=0

yi+j−1qi(n+1−2j−i).

This formula is a linear combination of the polynomialsPk =
∑k

i=0 y
iqi(k+1−i), the coefficients being

polynomials iny, just as in Theorem 1. With this result and the inversion formula (4), we can prove
Theorem 1: the last step is an elementary binomial simplification.

4 Applications
Among all the objects of the list in Proposition 1, the most studied are probably permutations and the
pattern 13-2, see for example [5, 7, 20, 21, 15]. In particular, in [5, 21] we can find methods for obtaining,
as a function ofn for a givenk, the number of permutations of sizen with exactlyk occurrences of
pattern 13-2. By taking the Taylor series of (1), we obtain direct and quick proofs for these results. As an
illustration we give the formulae fork ≤ 3 in the following proposition.
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Proposition 12 The order 3 Taylor series of〈W |(D + E)n−1|V 〉 is:

〈W |(D + E)n−1|V 〉 = Cn +

(

2n

n− 3

)

q +
n

2

(

2n

n− 4

)

q2 +
(n+ 1)(n+ 2)

6

(

2n

n− 5

)

q3 +O(q4),

whereCn is thenth Catalan number.

More generally, a computer algebra system can provide higher order terms, for example it takes no
more than a few seconds to obtain the following closed formula for [q10]〈W |(D + E)n−1|V 〉:

(2n)!
10!(n+12)!(n−8)!

(

n13 + 70n12 + 2093n11 + 32354n10 + 228543n9 − 318990n8

−17493961n7 − 104051458n6 − 6828164n5 + 2022876520n4

+6310831968n3 + 5832578304n2 + 14397419520n+ 5748019200
)

,

which is quite an improvement compared to the methods of [21]. In addition to exact formula, we can give
asymptotic estimates, for example for the number of permutations with a given number of occurrences of
pattern 13-2.

Theorem 2 For any fixedm ≥ 0,

[qm]〈W |(D + E)n−1|V 〉 ∼ 4nnm− 3
2

√
πm!

asn→ ∞.

Proof: Whenn → ∞, the numbers
(

2n

n−k

)

−
(

2n

n−k−2

)

are dominated by the Catalan number1
n+1

(

2n

n

)

.
This implies that in(1 − q)n〈W |(D + E)n−1|V 〉, each higher order term grows at most as fast as the
constant termCn. On the other side, the coefficient ofqm in (1 − q)−n is asymptoticallynm/m!. 2

Since any occurrence of the pattern 13-2 in a permutation is also an occurrence of the pattern 1-3-2,
a permutation withk occurrences of the pattern 1-3-2 has at mostk occurrences of the pattern 13-2.
So we get the following corollary. This could also be obtained with the methods of [15], which gives an
algorithm to obtain the generating functions of permutations with a given number of occurrences of 1-3-2.

Corollary 3 Letψk(n) be the number of permutations inSn with at mostk occurrences of the pattern
1-3-2. For any constantC > 1 andk ≥ 0, we have

ψk(n) ≤ C
4nnk− 3

2

√
πk!

whenn is sufficiently large.

So far we have only used Corollary 1. Now we illustrate what can be done with the refined formula
given in Theorem 1. For example, whenq = 0 then the coefficient ofym is given by the expres-

sion
∑n

k=0(−1)k
(

(

n
m

)(

n
m+k

)

−
(

n
m−1

)(

n
m+k+1

)

)

. This is equal to the Narayana numberN(n,m) =
1
n

(

n
m

)(

n
m−1

)

(see [29] for a combinatorial proof).
We can also get the coefficients for higher powers ofq. For example it is conjectured in [29] that the

coefficient ofqym in 〈W |y(yD+E)n−1|V 〉 is equal to
(

n
m+1

)(

n
m−2

)

. Applying our results we can prove:
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Proposition 13 The coefficients ofqym andq2ym in 〈W |y(yD + E)n−1|V 〉 are respectively:
(

n

m+ 1

)(

n

m− 2

)

and

(

n+ 1

m− 2

)(

n+ 1

m+ 2

)

nm+m−m2 − 4

2(n+ 1)
.

Proof: A naive expansion of the Taylor series inq gives a lengthy formula, which is simplified easily after
noticing that it is the product of

(

n

m

)2
and a rational fraction ofn andm. 2
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We consider the class of bases B of tropical Plücker functions on the Boolean n-cube such that B can be obtained by
a series of flips from the basis formed by the intervals of the ordered set of n elements. We show that these bases are
representable by special wiring diagrams and by certain arrangements generalizing rhombus tilings on a zonogon.

Keywords: Plücker relations, octahedron recurrence, wiring diagram, rhombus tiling, TP-mutations

1 Introduction
This paper deals with bases of tropical Plücker functions defined on a Boolean (hyper)cube and is devoted
to a combinatorial description of a wide class of such bases via a relationship to certain classes of wiring
and rhombus tiling diagrams.

For a positive integer n, let [n] denote the ordered set of elements 1, 2, . . . , n. Consider a real-valued
function f on the subsets of [n], or on the Boolean cube 2[n]. Following [1], f is said to be a tropical
Plücker function, or a TP-function for short, if it satisfies

f(Xik) + f(Xj) = max{f(Xij) + f(Xk), f(Xi) + f(Xjk)} (1.1)

for any triple i < j < k in [n] and any subset X ⊆ [n] − {i, j, k}. Hereinafter for brevity we write
Xi′ . . . j′ instead of X ∪ {i′} ∪ . . . ∪ {j′}. The set of TP-functions on 2[n] is denoted by T Pn.
Definition. A collection B ⊆ 2[n] is called a TP-basis, or simply a basis, if the restriction map res :
T Pn → RB is a bijection. In other words, each TP-function is determined by its values on B, and the
values on B can be chosen arbitrarily.

Such a basis does exist and the simplest instance is the set In of all intervals {p, p + 1, . . . , q} in [n]
(including the empty set); see, e.g., [2]. In particular, the dimension of the polyhedral conic complex T Pn

is equal to |In| =
(
n+1

2

)
+ 1. The basis In is called standard.

(Note that the notion of a TP-function is extended to other domains, of which most popular are an
integer box Bn,a := {x ∈ Z[n] : 0 ≤ x ≤ a} for a ∈ Z[n] and a hyper-simplex ∆m

n := {S ⊆ [n] : |S| =
m} for m ∈ Z (in the later case, (1.1) should be replaced by a relation on quadruples i < j < k < `).
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Aspects involving TP-bases or related objects are encountered in [1, 5, 8, 9, 10, 11, 12] and some other
works. Generalizing some earlier known examples, [2] constructs a TP-basis for a “truncated integer box”
{x ∈ Bn,a : m ≤ x1 + . . . + xn ≤ m′}, where 0 ≤ m ≤ m′ ≤ a1 + . . . + an. The domains different
from Boolean cubes are beyond this paper; for some generalizations, see [3].)

Once we are given a basis B, we can produce more bases by making a series of elementary transfor-
mations relying on (1.1). More precisely, suppose (X, i, j, k) is a cortege such that the four sets occurring
in the right hand side of (1.1) and one set Y ∈ {Xj,Xik} in the left hand side belong to B. Then the
replacement in B of Y by the other set Y ′ in the left hand side results in a basis B′ as well (and we
can further transform the latter basis in a similar way). The basis B′ is said to be obtained from B by
the flip (or mutation) with respect to X, i, j, k. When Xj is replaced by Xik, the flip is called raising;
otherwise the flip is called lowering. The standard basis In does not admit lowering flips, whereas its
complementary basis co-In := {[n]− I : I ∈ In} does not admit raising flips.

We further distinguish between two sorts of flips, inspiring consideration of two classes of bases.

Definitions. For a TP-basis B and a cortege (X, i, j, k) as above, the corresponding flip is called strong if
both sets X and Xijk belong to B as well, and weak in general. A basis is called normal (in terminology
of [2]) if it can be obtained by a series of strong flips starting from In. A basis is called semi-normal if it
can be obtained by a series of weak flips starting from In.

Leclerc and Zelevinsky [8] showed that the normal bases (in our terminology) are exactly the collections
C ⊆ 2[n] of maximum possible size |C| that possess the strong separation property (defined later). Also
the normal bases admit a nice “graphical” representation, even for a natural generalization to the integer
boxes (see [2, 4]): such bases correspond to the rhombus tilings on the related zonogon.

The purpose of this paper is to characterize the class of semi-normal TP-bases for the Boolean cube
2[n], denoted as Bn. (It should be noted that it is still open at present whether there exists a non-semi-
normal, or “wild”, basis; we conjecture that there is none.) We give two characterizations for Bn: via a
bijection to special collections of curves, that we call proper wirings, and via a bijection to certain graph-
ical arrangements, that we call generalized tilings, or g-tilings for short (in fact, these characterizations
are interrelated via planar duality). We associate to a proper wiring W (a g-tiling T ) a certain collection
of subsets of [n] called its spectrum. It turns out that proper wirings and g-tilings are rigid objects, in the
sense that any of these is determined by its spectrum (see Theorem 3.3).

Roughly speaking, by a wiring we mean a set of n directed non-self-intersecting curves w1, . . . , wn

in a region R of the plane homeomorphic to a circle, where each wi begins at a point si and ends at
a point s′i, and the points s1, . . . , sn, s

′
1, . . . , s

′
n are different and occur in this order in the boundary of

R. A special wiring W is defined by three axioms (W1)–(W3). Axiom (W1) is standard, it says that W
preserves (topologically) under small deformations. (W2) says that the common points ofwi, wj follow in
the opposed orders along these wires. The crucial axiom (W3) says that in the planar graph induced byW ,
there is a certain bijection between the faces whose boundary is a directed cycle and the regions (“lenses”)
surrounded by pieces of two wires between their consecutive common points. W is called proper if none
of “cyclic” faces is a whole lens. The spectrum ofW is the collection of subsetsX ⊆ [n] associated to the
“non-cyclic” faces F , whereX consists of the elements i such that F “lies on the left” fromwi. When any
two wires intersect exactly once, the dual planar graph is realized by a rhombus tiling, and vice versa (for
a more general result of this sort, see [6]). The construction of a g-tiling is more intricate. Axiom (W2)
occurs in [9]. Another sort of wirings, related to hyper-simplexes, is studied in [9, 10].

Our main result is the following
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Theorem 1.1 For B ⊆ 2[n], the following statements are equivalent:
(i) B is a semi-standard TP-basis;
(ii) B is the spectrum of a proper wiring;
(iii) B is the spectrum of a generalized tiling.

The paper is organized as follows. Section 2 gives precise definitions of proper wirings and generalized
tilings. Section 3 outlines ideas of the proof of Theorem 1.1. It consists of four subsections, concerning
implications (i)→(iii), (iii)→(i), (iii)→(ii), and (ii)→(iii), respectively. (In fact, g-tilings are the central
objects of treatment; we take advantages from their nice graphical visualization and structural features,
and all implications that we explicitly prove involve just g-tilings. Another advantage of g-tilings is that
they admit “local” defining axioms; see the Remark in Section 2.)

Complete proofs of the above-mentioned results are given in the full version [3] of this paper. More-
over, combinatorial methods and technical tools elaborated in those proofs give rise to additional results
presented there. Apparently the most important among them is the affirmative answer to a conjecture of
Leclerc and Zelevinsky [8] on weakly separated set-systems having maximum possible cardinality.

A commentary: For A,B ⊆ [n], let us write A ≺ B if i < j for any i ∈ A and j ∈ B. Following [8],
a pair A,B is called strongly separated if A − B ≺ B − A or B − A ≺ B − A, and is called weakly
separated if, up to renaming (A,B) as (B,A), one holds: |A| ≥ |B| and B −A can be partitioned into a
disjoint union B′ t B′′ so that B′ ≺ A− B ≺ B′′. Accordingly, a collection C ⊆ 2[n] is called strongly
(weakly) separated if any two members of C are strongly (resp. weakly) separated. It is shown in [8] that:
(a) any weakly separated collection in 2[n] has cardinality at most

(
n+1

2

)
+1; and (b) the set Cn of weakly

separated collections C ⊆ 2[n] with |C| =
(
n+1

2

)
+ 1 includes Bn. In fact, the above-mentioned conjecture

in [8, Conjecture 1.8] is that this inclusion turns into equality: Cn = Bn.
(As is seen from a discussion in [8], an interest in studying weakly separated collections is inspired, in

particular, by the problem of characterizing all families of quasicommuting quantum flag minors, which
in turn comes from exploration of Lusztig’s canonical bases for certain quantum groups. It is proved in [8]
that, in an n× n generic q-matrix, the flag minors with column sets I, J ⊆ [n] quasicommute if and only
if the sets I, J are weakly separated. See also [7].)

2 Wirings and tilings
Wiring and tiling diagrams that we deal with live within a zonogon, which is defined as follows.

In the upper half-plane R× R+, take n non-colinear vectors ξ1, . . . , ξn so that:

(2.1) (i) ξ1, . . . , ξn follow in this order clockwise around (0, 0), and
(ii) all integer combinations of these vectors are different.

Then the set
Z = Zn := {λ1ξ1 + . . .+ λnξn : λi ∈ R, 0 ≤ λi ≤ 1, i = 1, . . . , n}

is a 2n-gone. Moreover, Z is a zonogon, as it is the sum of n line-segments {λξi : 1 ≤ λ ≤ 1}, i =
1, . . . , n. Also it is the image by a linear projection π of the solid cube conv(2[n]) into the plane R2,
defined by π(x) := x1ξ1 + . . .+xnξn. The boundary bd(Z) of Z consists of two parts: the left boundary
lbd(Z) formed by the points (vertices) pi := ξ1 + . . . + ξi connected by the line-segments pi−1pi :=
pi−1 + {λξi : 0 ≤ λ ≤ 1}, and the right boundary rbd(Z) formed by the points p′i := ξi+1 + . . . + ξn
connected by the segments p′ip

′
i−1 (i = 0, . . . , n). So p0 = p′n is the minimal vertex and pn = p′0 is the
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maximal vertex of Z. We orient each segment pi−1pi from pi−1 to pi and orient each segment p′ip
′
i−1

from p′i to p′i−1. Let si (resp. s′i) denote the median point in the segment pi−1pi (resp. p′ip
′
i−1).

Although the generalized tiling model will be used more extensively later on, we prefer to start with
describing the special wiring model, which looks more transparent.

2.1 Wiring diagrams
A special wiring diagram, also called a W-diagram or a wiring for brevity, is a collection W of n wires
w1, . . . , wn satisfying three axioms below. A wire wi is a continuous injective map of the segment [0, 1]
into Z (or the curve in the plane induced by this map) such that wi(0) = si, wi(1) = s′i, and wi(λ) lies
in the interior of Z for 0 < λ < 1. We say that wi begins at si and ends at s′i, and orient wi from si to s′i.
The diagram W is considered up to a homeomorphism of Z stable on bd(Z), and up to parameterizations
of the wires. Axioms (W1)–(W3) specify W as follows.

(W1) No three different wires wi, wj , wk have a common point, i.e., there are no λ, λ′, λ′′ such that
wi(λ) = wj(λ′) = wk(λ′′). Any two different wires wi, wj intersect at a finite number of points,
and at each of their common points v, the wires cross, not touch (i.e., when passing v, the wire wi

goes from one connected component of Z − wj to the other).

(W2) for 1 ≤ i < j ≤ n, the common points of wi, wj follow in opposed orders along these wires, i.e., if
wi(λq) = wj(λ′q) for q = 1, . . . , r and if λ1 < . . . < λr, then λ′1 > . . . > λ′r.

Since the order of si, sj in `bd(Z) is different from the order of s′i, s
′
j in rbd(Z), wires wi, wj always

intersect; moreover, the number r = rij of their common points is odd. Assuming that i < j, we denote
these points as xij(1), . . . , xij(r) following the direction of wi. When r > 1, the region in the plane
surrounded by the pieces of wi, wj between xij(q) and xij(q + 1) (where q = 1, . . . , r − 1) is denoted
by Lij(q) and called the q-th lens for wi, wj . The points xij(q) and xij(q + 1) are regarded as the lower
and upper points of Lij(q), respectively. When q is odd (even), we say that Lij(q) is an odd (resp. even)
lens. Note that at each point xij(q) with q odd the wire with the bigger number, namely, wj , crosses the
wire with the smaller number (wi) from left to right w.r.t. the direction of the latter; we call such a point
white. In contrast, when q is even, wj crosses wi at xij(q) from right to left; in this case, we call xij(q)
black, or orientation-reversing, and say that this point is the root of the lenses Lij(q − 1) and Lij(q).
In the simplest case, when any two distinct wires intersect exactly once, there are no lenses at all and all
intersection points for W are white. (The adjectives “white” and “black” for intersection points of wires
will match terminology that we use for corresponding elements of tilings.)

The wiring W is associated, in a natural way, with a planar directed graph GW embedded in Z. The
vertices of GW are the points pi, p

′
i, si, s

′
i and the intersection points of wires. The edges of GW are

the corresponding directed line-segments in bd(Z) and the pieces of wires between neighboring points
of intersection with other wires or with the boundary, which are directed according to the direction of
wires. We say that an edge contained in a wire wi has color i, or is an i-edge. Let FW be the set of
(inner) faces of GW . Here each face F is considered as the closure of a maximal connected component
in Z − ∪(w ∈W ). We say that a face F is cyclic if its boundary bd(F ) is a directed cycle in GW .

(W3) There is a bijection φ between the set L(W ) of lenses in W and the set Fcyc
W of cyclic faces in GW .

Moreover, for each lens L, φ(L) is the (unique) face lying in L and containing its root.
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We say that W is proper if none of cyclic faces is a whole lens, i.e., for each lens L ∈ L(W ), there is
at least one wire going across L. An instance of proper wirings for n = 4 is illustrated in the picture; here
the cyclic faces are marked by circles and the black rhombus indicates the unique black point.

PP
PP

PP
PPPi

A
A
AK

�
�
��

�
�
�
��3

ξ1
ξ2 ξ3

ξ4

PP
PP

PP
PP

PA
A
A
�
�
�
�
�
�
��

PP
PP

PP
PP

P

A
A
A

�
�
�

�
�
�
��r r

r r
r r

r r

��
�XXXXz

��
�1XXXX

�
�
�
��3Q

Q
Q
QQs

�ee

∅

1 414

12 24 34

123 23 234

1234

s1

s2

s3

s4

w4

w3

w2

w1

s′1

s′2

s′3

s′4

BW = {∅, 1, 4, 12,

14, 23, 24, 34,

123, 234, 1234}

Now we associate to W a set-system BW ⊆ 2[n] as follows. For each face F , let X(F ) be the set of
elements i ∈ [n] such that F lies on the left from the wire wi, i.e., F and the maximal point pn lie in the
same of the two connected components of Z − wi. We define

BW := {X ⊆ [n] : X = X(F ) for some F ∈ FW −Fcyc
W },

referring to it as the effective spectrum, or simply the spectrum of W ; this is just the object occurring
in (ii) of Theorem 1.1. Sometimes it is also useful to consider the full spectrum B̂W consisting of all sets
X(F ), F ∈ FW . (One proves that when W is proper, all sets in B̂W are different. When W is not proper,
there are different faces F, F ′ with X(F ) = X(F ′). One can turn W into a proper wiring W ′ by getting
rid of lenses forming faces (by making a series of Reidemeister moves of type II: )( → )( operations).
This preserves the effective spectrum: BW ′ = BW , whereas the full spectrum may decrease.)

Note that when any two wires intersect at exactly one point (i.e., when no black points exist), BW is a
normal basis, and conversely, any normal basis is obtained in this way (see [2]).

2.2 Generalized tilings
When it is not confusing, we identify a subset X ⊆ [n] with the corresponding vertex of the n-cube and
with the point

∑
i∈X ξi in the zonogon Z. Due to (2.1)(ii), all such points in Z are different.

Assuming that the vectors ξi have the same Euclidean norm, a rhombus tiling diagram is a subdivision
T of Z into rhombi of the form x + {λξi + λ′ξj : 0 ≤ λ, λ′ ≤ 1} for some i < j and some point x in
Z, i.e., the rhombi are pairwise non-overlapping (have no common interior points) and their union is Z.
It follows that for i, j, x as above, x represents a subset in [n] − {i, j}. We associate to T the directed
planar graph GT whose vertices and edges are the vertices and side segments of the rhombi, respectively.
An edge connecting X and Xi is directed from the former to the latter. It is shown in [2, 4] that the vertex
set of GT forms a normal basis and that each normal basis is obtained in this way.

In fact, it makes no difference whether we take vectors ξ1, . . . , ξn with equal or arbitrary norms (subject
to (2.1)); to simplify technical details and visualization, we further assume that these vectors have unit
height, i.e., each ξi is of the form (x, 1). Then we obtain a subdivision T of Z into parallelograms of
height 2, and for convenience refer to T as a tiling and to its elements as tiles. A tile τ defined by X, i, j
(with i < j) is called an ij-tile at X and denoted by τ(X; i, j). Its vertices X,Xi,Xj,Xij are called the
bottom, left, right, top vertices of τ and denoted by b(τ), `(τ), r(τ), t(τ), respectively.
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In a generalized tiling, or a g-tiling, the union of tiles is again Z but some tiles may overlap. It is a
collection T of tiles partitioned into two subcollections Tw and T b, of white and black tiles (say), respec-
tively, obeying axioms (T1)–(T4) below. When T b = ∅, we will obtain a tiling as before, for convenience
referring to it as a pure tiling. Let VT andET denote the sets of vertices and edges, respectively, occurring
in tiles of T , not counting multiplicities. For a vertex v ∈ VT , the set of edges incident with v is denoted
by ET (v), and the set of tiles having a vertex at v is denoted by FT (v).

(T1) All tiles are contained in Z. Each boundary edge of Z belongs to exactly one tile. Each edge in ET

not contained in bd(Z) belongs to exactly two tiles. All tiles in T are different (in the sense that no
two coincide in the plane).

(T2) Any two white tiles having a common edge do not overlap. If a white tile and a black tile share an
edge, then these tiles do overlap. No two black tiles share an edge.

(T3) Let τ be a black tile. None of b(τ), t(τ) is a vertex of another black tile. All edges in ET (b(τ))
leave b(τ) (i.e., are directed from b(τ)). All edges in ET (t(τ)) enter t(τ) (are directed to t(τ)).

We distinguish between three sorts of vertices by saying that v ∈ VT is: (a) a terminal vertex if it is the
bottom or top vertex of some black tile; (b) an ordinary vertex if all tiles in FT (v) are white; and (c) a
mixed vertex otherwise (i.e. v is the left or right vertex of some black tile). Note that a mixed vertex may
belong, as the left or right vertex, to several black tiles.

Each tile τ ∈ T is associated, in a natural way, to a square in the solid cube conv(2[n]), denoted by
σ(τ): if τ = τ(X; i, j) then σ(τ) is the convex hull of the points X,Xi,Xj,Xij in the cube. In view
of (T1), the interiors of these squares are disjoint, and ∪(σ(τ) : τ ∈ T ) forms a 2-dimensional surface,
denoted by DT , whose boundary is the preimage by π of the boundary of Z. The last axiom is:

(T4) DT is a disc (i.e., is homeomorphic to {x ∈ R2 : x2
1 + x2

2 ≤ 1}).

The reversed g-tiling T rev of a g-tiling T is formed by replacing each tile τ(X; i, j) of T by the tile
τ([n] − Xij; i, j) (or by changing the orientation of all edges in ET , in particular, in bd(Z)). Clearly
(T1)–(T4) remain valid for T rev .

The effective spectrum, or simply the spectrum, of a g-tiling T is the collection BT of (the subsets of
[n] represented by) non-terminal vertices in GT ; this is just the object occurring in (iii) of Theorem 1.1.
The full spectrum B̂T is formed by all vertices in GT . An example of g-tilings for n = 4 is drawn in the
picture, where the unique black tile is indicated in bold and the terminal vertices are surrounded by circles
(this corresponds to the wiring on the previous picture).
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It turns out that for each semi-normal basis B, there are precisely one proper wiring W and precisely
one g-tiling T such that BW = BT = B (see Theorem 3.3); this is similar to the one-to-one correspon-
dence between the normal bases and pure tilings.

In the rest of this section we point out some (relatively simple) consequences from axioms (T1)–(T4).
1. For a g-tiling T , an edge e of the graphGT = (VT , ET ) is called black if there is a black tile containing
e (as a side edge); otherwise e is called white. The sets of white and black edges incident with a vertex v
are denoted by Ew

T (v) and Eb
T (v), respectively. For a vertex v of a tile τ , let C(τ, v) denote the minimal

cone at v containing τ (i.e., generated by the pair of edges of τ incident to v), and let α(τ, v) denote the
angle of this cone taken with sign + if τ is white, and − if τ is black. The full rotation angle at v is the
sum

∑
(α(τ, v) : τ ∈ FT (v)), denoted by ρ(v). The terminal vertices behave as follows.

Corollary 2.1 Let v be a terminal vertex belonging to a black ij-tile τ . Then:
(i) v is not connected by edge with another terminal vertex (whence |Eb

T (v)| = 2);
(ii) |ET (v)| ≥ 3 (whence Ew

T (v) 6= ∅);
(iii) each edge e ∈ Ew

T (v) lies in the cone C(τ, v) (whence e is a q-edge for some i < q < j);
(iv) ρ(v) = 0;
(v) v does not belong to the boundary of Z (whence any tile containing a boundary edge of Z is white).

2. The rotation angles at non-terminal vertices behave as follows (this is proved by using Euler formula
applied to the planar embedding of GT in the disc DT ).

Lemma 2.2 Let v ∈ VT be a non-terminal vertex.
(i) If v is in bd(Z), then ρ(v) is equal to the angle between the boundary edges incident to v.
(ii) If v is inner (i.e., not in bd(Z)), then ρ(v) = 2π.

Remark One shows that if property (ii) in Lemma 2.2 is postulated as axiom (T4’) and added to axioms
(T1)–(T3), then one can eliminate axiom (T4); in other words, (T4’) and (T4) are equivalent subject to
(T1)–(T3). Note that each of axioms (T1)–(T3),(T4’) is “local”; due to Theorem 1.1, this gives rise to a
local characterization for the semi-normal TP-bases.

3. An important fact following immediately from (2.1)(ii) is that for any g-tiling T , the graph GT is
graded for each color i ∈ [n], which means that for any closed path P in GT , the numbers of forward
i-edges and backward i-edges in P are equal.

3 Ideas of proofs
As mentioned in the Introduction, the proof of Theorem 1.1 falls into four stages, each consisting in
showing one of the implications involved there. Below we outline ideas of our approach.

3.1 From semi-normal bases to generalized tilings
The first stage is devoted to showing that any semi-normal TP-basis is representable as the spectrum of
some g-tiling, yielding (i)→(iii) in Theorem 1.1.

Consider a g-tiling T on the zonogon Z = Zn. By an M-configuration in T we mean a quintuple of ver-
tices of the formXi,Xj,Xk,Xij,Xjk with i < j < k (as it resembles the letter “M”), which is denoted
as CM(X; i, j, k). By a W-configuration in T we mean a quintuple of vertices Xi,Xk,Xij,Xik,Xjk
with i < j < k (as resembling “W”), denoted as CW (X; i, j, k). A configuration is called feasible if all
five vertices are non-terminal, i.e., they belong to BT .
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Since any normal basis B (in particular, B = In) is expressed as BT for some pure tiling T , it suffices
to prove the following assertion saying that the set of g-tilings is closed under transformations analogous
to flips for semi-normal bases.

Proposition 3.1 Let a g-tiling T contain five non-terminal verticesXi,Xk,Xij,Xjk, Y , where i < j <
k and Y ∈ {Xik,Xj}. Then there exists a g-tiling T ′ such that BT ′ is obtained from BT by replacing Y
by the other member of {Xik,Xj}.

To prove this, one may assume that Y = Xik, in which case we have a feasible W-configuration
CW (X; i, j, k) (since any M-configuration in T turns into a W-configurations in the reversed g-tiling
T rev). We rely on the following two facts (whose proofs are nontrivial).

(P1) Any pair of non-terminal vertices X ′, X ′i′ in GT is connected by edge.

(Note that vertices X ′, X ′i′ need not be connected by edge if some of them is terminal.) So, by (P1),
GT contains the edges (Xi,Xij), (Xi,Xik), (Xk,Xik) and (Xk,Xjk).

(P2) There exist two white tiles τ, τ ′ in T such that τ contains the edges (Xi,Xij) and (Xi,Xik), and
τ ′ contains the edges (Xk,Xik) and (Xk,Xjk). (These τ, τ ′ share the edge (Xik,Xijk).

In addition, one shows (which is not difficult) that the vertex v := Xik is ordinary.
Based on the these facts, the construction of the desired g-tiling T ′ is as follows. Let e0, . . . , eq be

the sequence of edges entering v in the counterclockwise order. Since v is ordinary, e0 = (Xi,Xik)
and eq = (Xk,Xik), and each pair ep−1, ep (p = 1, . . . , q) belongs to a white tile τp. We consider two
possible cases, each case being divided into two subcases.

Case 1: The edges e := (Xij,Xijk) and e′ := (Xjk,Xijk) do not belong to the same black tile.

Subcase 1a: q = 1. We replace in T the tiles τ, τ ′, τ1 by three new white tiles: τ(X; i, j), τ(X; j, k)
and τ(Xj; i, k) (so the vertex v is replaced by Xj). See the picture.
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Subcase 1b: q > 1. We remove the tiles τ, τ ′ and add four new tiles: the white tiles τ(X; i, j),
τ(X; j, k), τ(Xj; i, k) (as before) and the black tile τ(X; i, k) (so v becomes terminal). See the picture;
here q = 3 and the added black tile is indicated in bold.
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Case 2: Both edges e and e′ belong to a black tile τ (which is τ(Xj; i, k)). We act as in Case 1 with
the only differences that τ is removed from T and that the white ik-tile at Xj (which is a copy of τ )
is not added. Then the vertex Xijk vanishes, v either vanishes or becomes terminal, and Xj becomes
non-terminal. See the picture. Here (a’) and (b’) concern Subcase 2a: q = 1, and Subcase 2b: q > 1,
respectively, and the arc above the vertex Xj indicates the bottom cone of τ in which some white edges
(not indicated) are located.
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One proves that in all cases the resulting collection T ′ of tiles satisfies axioms (T1)–(T4). Also it is
seen from the construction that BT ′ = (BT − {Xik}) ∪ {Xj}, as required in Proposition 3.1.

3.2 From generalized tilings to semi-normal bases
The second stage consists in showing that for any g-tiling T , its spectrum BT is a semi-normal TP-basis,
yielding (iii)→(i) in Theorem 1.1.

If T has no black tile, then BT is a normal basis, and we are done. So assume T b 6= ∅. Our aim is to
show the existence of a feasible W-configuration CW (X; i, j, k) for T . Then we can transform T into a
g-tiling T ′ as in Proposition 3.1, i.e., with BT ′ = (BT −{Xik})∪{Xj}. Under such a lowering flip, the
sum of sizes of the sets in B• decreases. Then the result will follow by induction on

∑
(|X ′| : X ′ ∈ BT ).

By the height h(v) of a vertex v ∈ VT we mean the size of the corresponding subset of [n]. The height
h(τ) of a tile τ ∈ T is defined to be the height of its left (or right) vertex.

In fact, we present a sharper version of the desired property.

Proposition 3.2 Let h ∈ [n]. If a g-tiling T has a black tile τ of height h, then there exists a feasible
W-configuration CW (X; i, j, k) with |X| = h − 2. Moreover, such a CW (X; i, j, k) can be chosen so
that Xijk is the top vertex of some black tile (of height h).

To prove this, starting from τ0 := τ , choose a vertex u0 adjacent to v0 := t(τ0) and different from
`(τ0), r(τ0) (it exists by (ii) in Corollary 2.1). Then there are white tiles τ ′, τ ′′ such that t(τ ′) = t(τ ′′) =
v0 and r(τ ′) = `(τ ′′) = u0. One easily shows that if u0 is ordinary, then both vertices b(τ ′), b(τ ′′) are
non-terminal, implying that these vertices together with u0, `(τ ′), r(τ ′′) form a feasible W-configuration
(as required in the proposition). And if u0 is mixed, then there is a black tile τ1 (of the same height h)
having u0 as the left or right vertex. We treat τ1 in a similar way as τ0, by choosing a vertex u1 adjacent
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to v1 := t(τ1) and different from `(τ1), r(τ1). If u1 is mixed again, we continue the process. Sooner or
later, we obtain a black tile τk and a chosen vertex uk such that either uk is ordinary, in which case we
are done, or τk coincides with τ0. In the latter case, one shows (a key) that there exists i ∈ [n] such that in
the cycle passing v0, u0, v1, u1, v2, . . . , uk−1, vk = v0, the numbers of forward and backward edges with
color i are not equal, contrary to the fact that GT is graded.

3.3 From generalized tilings to proper wirings

The third stage consists in showing that for any g-tiling T on the zonogon Z = Zn, there exists a proper
wiring W on Z such that BW = BT , yielding (iii)→(ii) in Theorem 1.1.

To prove this, we use the notion of an i-strip (or a dual i-path) for T , where i ∈ [n]. This is a maximal
sequence Q = (e0, τ1, e1, . . . , τr, er) of edges and tiles such that: (a) τ1, . . . , τr are different tiles, each
being an ij- or ji-tile for some j, and (b) for p = 1, . . . , r, ep−1 and ep are the opposite i-edges of τp
(recall that when speaking of an i′j′-tile, one assumes i′ < j′.) Clearly Q is determined uniquely, up to
reversing it and shifting cyclically (when e0 = er), by any of its edges or tiles. Using the fact that GT is
graded, one shows that Q cannot be cyclic, i.e., the edges e0 and er are different. Then one of e0, er lies
on the left boundary, and the other on the right boundary of Z; we may assume that e0 ∈ `bd(Z).

For convenience we identify the tiles in T with the corresponding squares in the disc DT (whose inte-
riors are pairwise disjoint). To construct the desired wiring W , each i-strip Qi = (e0, τ1, e1, . . . , τr, er)
for T is regarded as a sequence of straight-line segments and squares on DT , and we draw the “median”
piece-wise linear curve ζi within Qi. More precisely, for q = 1, . . . , r, draw the line-segment on τq con-
necting the median points of the edges er−1 and er. This segment meets the central point of τq , denoted
by c(τq). The concatenation of these segments is just ζi; we direct it according to the direction of Qi.

Now fix a homeomorphic map γ : DT → Z that brings the boundary of DT to bd(Z) in a natural
way. This turns the above curves into the wires wi := γ(ζi) on Z, where wi begins at the median point
si of pi−1pi on `bd(Z) and ends at the medial point s′i of p′ip

′
i−1 on rbd(Z)). We assert that the wiring

W = (w1, . . . , wn) is as required.
Clearly W satisfies axiom (W1). To verify the other axioms, we first should explain how the planar

graphs GT and H := γ−1(GW ) on DT are related to each other. The vertices of H are the central points
c(τ) of squares τ and the points si, s

′
i (identifying the boundaries of DT and Z by γ). Each vertex v of

GT corresponds to the face of H where v is located, denoted by v∗. The edges of color i in H correspond
to the i-edges of GT . More precisely, if an i-edge e ∈ ET belongs to squares τ, τ ′ and if τ, e, τ ′ occur
in this order in the i-strip, then the i-edge e∗ of H corresponding to e is the piece of ζi between c(τ) and
c(τ ′), and this e∗ is directed from c(τ) to c(τ ′). Observe that e crosses e∗ from right to left on the disc.
The first (last) piece of ζi corresponds to the boundary i-edge pi−1pi (resp. p′ip

′
i−1) of GT .

Consider an ij-tile τ ∈ T , and let e, e′ be its i-edges, and u, u′ its j-edges, where e, u leave b(τ) and
e′, u′ enter t(τ). One can see that: (a) if τ is white, then e occurs in Qi before e′, while u occurs in Qj

after u′, and (b) if τ is black, then e occurs in Qi after e′, while u occurs in Qj before u′. In the disc DT ,
both e, e′ cross the wire ζi from right to left (w.r.t. the direction of ζi), and similarly both u, u′ cross ζj
from right to left. Axioms (T1),(T2) for T imply that when τ is white, the orientations of τ in Z and inDT

are the same, whereas when τ is black, the clockwise orientation of τ in Z turns in the counterclockwise
orientation of τ in DT . It follows that: in case (a), ζj crosses ζi at c(τ) from left to right, and in case (b),
ζj crosses ζi at c(τ) from right to left; see the picture. So the white (black) tiles of T generate the white
(resp. black) vertices of GW .
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For a vertex v of GT and an edge e ∈ ET (v), the edge e∗ belongs to the boundary of the face v∗ of H .
Since e crosses e∗ from right to left, e∗ is directed clockwise around v∗ if e leaves v, and counterclockwise
if e enters v. Then axiom (T3) for T implies that the terminal vertices ofGT and only them generate cyclic
faces of GW , yielding validity of (W3).

Next, for each i ∈ [n], removing from DT the interior of the i-strip Qi results in two closed regions
Ω1,Ω2 containing the vertices ∅ and [n], respectively. Also all edges in Qi go from Ω1 to Ω2, whence
each vertex v of GT occurring in Ω1 (Ω2) is a subset of [n] not containing (resp. containing) the element
i. So i 6∈ X(v∗) if and only if v ∈ Ω1. This implies the desired equality for spectra: BW = BT .

A verification of (W2) for W is less trivial; this is done by using the fact that GT is graded (we omit
the details). Finally, since |ET (v)| ≥ 3 for each terminal vertex v in GT , each cyclic face in GW is
surrounded by at least three edges, and therefore, this face cannot be a lens. So the wiring W is proper.

3.4 From proper wirings to generalized tilings
The final, fourth, stage is devoted to showing that for any proper wiring W on the zonogon Z = Zn, there
exists a g-tiling T on Z such that BT = BW , yielding (ii)→(iii) in Theorem 1.1. The construction of T
is converse, in a sense, to that described in the previous subsection; it combines planar duality techniques
and geometric arrangements.

We associate to each inner face F of the graph GW the point (viz. the subset) X(F ) in the zonogon,
also denoted as F ∗. These points are just the vertices of tiles in T . The edges of GT are defined as
follows. Let faces F, F ′ ∈ FW have a common edge e formed by a piece of a wire wi, and let F lie on
the right from wi according to the direction of this wire. Then the vertices F ∗, F ′∗ are connected by edge
e∗ going from F ∗ to F ′∗. Note that in view of the evident relation X(F ′) = X(F )∪ {i}, the direction of
e∗ matches the edge direction for g-tilings.

The tiles in T correspond to the intersection points of wires in W . More precisely, let v be a common
point of wires wi, wj with i < j. Then the vertex v of GW has four incident edges ei, ei, ej , ej such
that: ei, ei ⊂ wi; ej , ej ⊂ wj ; ei, ej enter v; and ei, ej leave v. One can see that for the four faces F
containing v, the subsetsX(F ) are of the formX,Xi,Xj,Xij for someX ⊂ [n]. The tile surrounded by
the edges e∗i , e

∗
i , e
∗
j , e
∗
j connecting these subsets (regarded as points) is just the ij-tile in T corresponding

to v, denoted as v∗. Observe that the edges ei, ej , ei, ej follow in this order clockwise around v if v is
white, and counterclockwise if v is black. According to this, the tile v∗ is assigned to be white in T if v is
white, and black otherwise. Both cases are illustrated in the picture:
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A proof that T is indeed a correct g-tiling on Z and that BT = BW consists of several verifications of
which some are not straightforward; we omit the details.
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Properties of g-tilings and proper wirings established during the whole proof of Theorem 1.1 enable us
to obtain the following rigidity result.

Theorem 3.3 For each semi-normal basis B, there are a unique g-tiling T and a unique proper wiring
W such that B = BT = BW .

Also one can offer an efficient (polynomial-time) algorithm that, given a collection B ⊂ 2[n], decides
whether B is representable as the spectrum of a g-tiling, and if so, explicitly constructs this g-tiling.
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Free cumulants are nice and useful functionals of the shape of a Young diagram, in particular they give the asymptotics
of normalized characters of symmetric groups S(n) in the limit n→∞. We give an explicit combinatorial formula
for normalized characters of the symmetric groups in terms of free cumulants. We also express characters in terms of
Frobenius coordinates. Our formulas involve counting certain factorizations of a given permutation. The main tool
are Stanley polynomials which give values of characters on multirectangular Young diagrams.

Résumé. Les cumulants libres sont des fonctions agréables et utiles sur l’ensemble des diagrammes de Young, en
particulier, ils donnent le comportement asymptotiques des caractères normalisés du groupe symétrique S(n) dans
la limite n → ∞. Nous donnons une formule combinatoire explicite pour les caractères normalisés du groupe
symétrique en fonction des cumulants libres. Nous exprimons également les caractères en fonction des coordonnées
de Frobenius. Nos formules font intervenir le nombre de certaines factorisations d’une permutation donnée. L’outil
principal est la famille de polynômes de Stanley donnant les valeurs des caractères sur les diagrammes de Young
multirectangulaires.
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1 Introduction
This contribution is an extended abstract of a full version [DFŚ08] which will be published elsewhere.

1.1 Dilations of Young diagrams and normalized characters
For a Young diagram λ and an integer s ≥ 1 we denote by sλ the dilation of λ by factor s. This operation
can be easily described on a graphical representation of a Young diagram: we just dilate the picture of λ
or, alternatively, we replace each box of λ by a grid of s× s boxes.
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0 1 2 3 4 5

1

2

3

4

Fig. 1: Young diagram (4, 3, 1) drawn in the French convention

Any permutation π ∈ S(k) can be also regarded as an element of S(n) if k ≤ n (we just declare that
π ∈ S(n) has additional n− k fixpoints). For any π ∈ S(k) and an irreducible representation ρλ of the
symmetric group S(n) corresponding to the Young diagram λ we define the normalized character

Σλπ =


n(n− 1) · · · (n− k + 1)︸ ︷︷ ︸

k factors

Tr ρλ(π)

dimension of ρλ
if k ≤ n,

0 otherwise.

We shall concentrate our attention on the characters on cycles, therefore we will use the special notation

Σλk = Σλ(1,2,...,k),

where we treat the cycle (1, 2, . . . , k) as an element of S(k) for any integer k ≥ 1.
The notion of dilation of a Young diagram is very useful from the viewpoint of the asymptotic repre-

sentation theory because it allows us to ask the following question:

Problem 1 What can we say about the characters of the symmetric groups in the limit when the Young
diagram λ tends in some sense to infinity in a way that λ preserves its shape?

This informal problem can be formalized as follows: for fixed λ and k we ask about (asymptotic) prop-
erties of the normalized characters Σsλk in the limit s → ∞. The reason why we decided to study this
particular normalization of characters is the following well-known yet surprising result.

Fact 2 For any Young diagram λ and integer k ≥ 2 the normalized character on a dilated diagram

N 3 s 7→ Σsλk−1 (1)

is a polynomial function of degree (at most) k.

1.2 Generalized Young diagrams
Any Young diagram drawn in the French convention can be identified with its graph which is equal to the
set {(x, y) : 0 ≤ x, 0 ≤ y ≤ f(x)} for a suitably chosen function f : R+ → R+, where R+ = [0,∞),
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cf. Figure 1. It is therefore natural to define the set of generalized Young diagrams Y (in the French
convention) as the set of bounded, non-increasing functions f : R+ → R+ with a compact support; in
this way any Young diagram can be regarded as a generalized Young diagram. Notice that with the notion
of generalized Young diagrams we may consider dilations sλ for any real s ≥ 0.

1.3 How to describe the shape of a Young diagram?
Our ultimate goal is to explicitly express the polynomials (1) in terms of the shape of λ. However, before
we start this task we must ask ourselves: how to describe the shape of λ in the best way? In the folowing
we shall present two approaches to this problem.

We define the fundamental functionals of shape of a Young diagram λ by an integral over the area of λ

Sλk = (k − 1)
∫∫

(x,y)∈λ
(contents(x,y))k−2 dx dy

for integer k ≥ 2, and where contents(x,y) = x−y is the contents of a point of a Young diagram. When it
does not lead to confusions we will skip the explicit dependence of the fundamental functionals on Young
diagrams and instead of Sλk we shall simply write Sk. Clearly, each functional Sk is a homogeneous
function of the Young diagram with degree k, i.e. Ssλk = skSλk .

For a Young diagram with Frobenius coordinates λ =
[
a1 · · · al
b1 · · · bl

]
we define its shifted Frobenius

coordinates withAi = ai+ 1
2 andBi = bi+ 1

2 . Shifted Frobenius coordinates have a simple interpretation
as positions (up to the sign) of the particles and holes in the Dirac sea corresponding to a Young diagram
[Oko01]. Functionals Sλk can be nicely expressed in terms of (shifted) Frobenius coordinates as follows:

Sλk =
∑
i

∫ 1
2

− 1
2

[
(Ai + z)k−1 − (−Bi − z)k−1

]
dz,

Sλk
|λ|k−1

=
∑
i

[
αk−1
i − (−βi)k−1

]
+O

(
1
|λ|2

)
, where αi =

Ai
|λ|

and βi =
Bi
|λ|

. (2)

Another way of describing the shape of a Young diagram λ is to use its free cumulants Rλ2 , R
λ
3 , . . .

which are defined as the coefficients of the leading terms of the polynomials (1):

Rλk = [sk]Σsλk−1 = lim
s→∞

1
sk

Σsλk−1 for integer k ≥ 2.

Later on we shall show how to calculate free cumulants directly from the shape of a Young diagram. Rk
is a homogeneous function of the Young diagram with degree k, i.e. Rsλk = skRλk .

The importance of homogeneity of Sλk and Rλk becomes clear when one wants to solve asymptotic
problems, such as understanding coefficients of the polynomial (1).

1.4 Character polynomials and their applications
It is not very difficult to show [DFŚ08] that for each integer k ≥ 1 there exists a polynomial with rational
coefficients Jk(S2, S3, . . . ) with a property that

Σλk = Jk(Sλ2 , S
λ
3 , . . . )
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holds true for any Young diagram λ. For example, we have

Σ1 = S2, Σ2 = S3, Σ3 = S4 −
3
2
S2

2 + S2, Σ4 = S5 − 4S2S3 + 5S3,

Σ5 = S6 − 5S2S4 −
5
2
S2

3 +
25
6
S3

2 + 15S4 −
35
2
S2

2 + 8S2.

The polynomials Jn are very useful, when one studies the asymptotics of characters in the limit when
the parameters α1, α2, . . . , β1, β2, . . . converge to some limits and the number of boxes of λ tends to
infinity. Equation (2) shows that for such scaling it is convenient to consider a different gradation, in
which the degree of Sk is equal to k− 1. We leave it as an exercise to the Reader to use the results of this
paper to show that with respect to this gradation polynomial Jk has the form

Σk = Sk+1 −
k

2

∑
j1+j2=k+1

Sj1Sj2 + (terms of smaller degree).

The dominant part of the right-hand side (the first summand) coincides with the estimate of Wassermann
[Was81] and with Thoma character on S(∞) [VK81]. In a similar way it is possible to obtain next terms
in the expansion.

One can also show that for each integer k ≥ 1 there exists a polynomial with integer coefficients
Kk(R2, R3, . . . ), called Kerov character polynomial [Ker00, Bia03] with a property that

Σλk = Kk(Rλ2 , R
λ
3 , . . . )

holds true for any Young diagram λ. For example,

Σ1 = R2, Σ2 = R3, Σ3 = R4 +R2, Σ4 = R5 + 5R3,

Σ5 = R6 + 15R4 + 5R2
2 + 8R2, Σ6 = R7 + 35R5 + 35R3R2 + 84R3.

The advantage of Kerov polynomialsKk over polynomials Jk comes from the fact that they usually have a
much simpler form, involve smaller number of summands and are more suitable for studying asymptotics
of characters in the case of balanced Young diagrams, i.e. for example in the case of characters Σsλk of
dilated Young diagrams [Bia03].

1.5 The main result: explicit form of character polynomials
For a permutation π we denote by C(π) the set of the cycles of π.

Theorem 3 (Dołęga, Féray, Śniady [DFŚ08]) The coefficients of polynomials Jk are explicitly described
as follows:

∂

∂Sj1
· · · ∂

∂Sjl
Jk

∣∣∣∣
S2=S3=···=0

is equal to (−1)l−1 times the number of the number of the triples (σ1, σ2, `) where

• σ1, σ2 ∈ S(k) are such that σ1 ◦ σ2 = (1, 2, . . . , k),

• ` : C(σ2)→ {1, . . . , l} is a bijective labeling,
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• for each 1 ≤ i ≤ l there are exactly ji − 1 cycles of σ1 which intersect cycle `−1(i) and which do
not intersect any of the cycles `−1(i+ 1), `−1(i+ 2), . . . .

Theorem 4 (Dołęga, Féray, Śniady [DFŚ08]) The coefficient ofRs22 R
s3
3 · · · in the Kerov polynomialKk

is equal to the number of triples (σ1, σ2, q) with the following properties:

(a) σ1, σ2 ∈ S(k) are such that σ1 ◦ σ2 = (1, 2, . . . , k);

(b) the number of cycles of σ2 is equal to the number of factors in the product Rs22 R
s3
3 · · · ; in other

words |C(σ2)| = s2 + s3 + · · · ;

(c) the total number of cycles of σ1 and σ2 is equal to the degree of the product Rs22 R
s3
3 · · · ; in other

words |C(σ1)|+ |C(σ2)| = 2s2 + 3s3 + 4s4 + · · · ;

(d) q : C(σ2) → {2, 3, . . . } is a coloring of the cycles of σ2 with a property that each color i ∈
{2, 3, . . . } is used exactly si times (informally, we can think that q is a map which to cycles of
C(σ2) associates the factors in the product Rs22 R

s3
3 · · · );

(e) for every set A ⊂ C(σ2) which is nontrivial (i.e., A 6= ∅ and A 6= C(σ2)) there are more than∑
i∈A

(
q(i)− 1

)
cycles of σ1 which intersect

⋃
A.

Only condition (e) is rather complicated, therefore we will provide two equivalent combinatorial con-
ditions below.

1.6 Marriage and transportation interpretations of condition (e)
Let (σ1, σ2, q) be a triple which fulfills conditions (a)–(d) of Theorem 4. We consider the following
polyandrous interpretation of Hall marriage theorem. Each cycle of σ1 will be called a boy and each cycle
of σ2 will be called a girl. For each girl j ∈ C(σ2) let q(j) − 1 be the desired number of husbands of j.
We say that a boy i ∈ C(σ1) is a possible candidate for a husband for a girl j ∈ C(σ2) if cycles i and j
intersect. Hall marriage theorem applied to our setup says that there exists an arrangement of marriages
M : C(σ1) → C(σ2) which assigns to each boy his wife (so that each girl j has exactly q(j) − 1
husbands) if and only if for every set A ⊆ C(σ2) there are at least

∑
i∈A

(
q(i) − 1

)
cycles of σ1 which

intersect
⋃
A. As one easily see, the above condition is similar but not identical to (e). The following

Proposition shows the connection between these two problems.

Proposition 5 Condition (e) is equivalent to each of the following two conditions:

(e2) for every nontrivial set of girls A ⊂ C(σ2) (i.e., A 6= ∅ and A 6= C(σ2)) there exist two ways
of arranging marriages Mp : C(σ1) → C(σ2), p ∈ {1, 2} for which the corresponding sets of
husbands of wives from A are different:

M−1
1 (A) 6=M−1

2 (A),

(e3) there exists a strictly positive solution to the following system of equations:

Set of variables{
xi,j : i ∈ C(σ1) and j ∈ C(σ2) are intersecting cycles

}
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Equations
{
∀i,
∑
j xi,j = 1

∀j,
∑
i xi,j = q(j)− 1

Note that the possibility of arranging marriages can be rephrased as existence of a solution to the above
system of equations with a requirement that xi,j ∈ {0, 1}.

The system of equations in condition (e3) can be interpreted as a transportation problem where each
cycle of σ1 is interpreted as a factory which produces a unit of some ware and each cycle j of σ2 is
interpreted as a consumer with a demand equal to q(j)− 1. The value of xi,j is interpreted as amount of
ware transported from factory i to the consumer j.

1.7 General conjugacy classes

An analogue of Theorem 3 holds true with some minor modifications also for the analogues of polynomi-
als J giving the values of characters on general permutations, not just cycles.

In case of the analogues of the Kerov polynomials giving the values of characters on more complex
permutations π than cycles the situation is slightly more diffcult. Namely, an analogue of Theorem 4
holds true if the character Σπ is replaced by some quantities which behave like classical cumulants of
cycles constituting π and the sum on the right-hand side is taken only over transitive factorizations. Since
the expression of characters in terms of classical cumulants of cycles is straightforward, we obtain an
expression of characters in terms of free cumulants.

1.8 Applications of the main result

The results of this article (Theorem 4 in particular) can be used to obtain new asymptotic inequalities
for characters of the symmetric groups. This vast topic is outside of the scope of this article and will be
studied in a subsequent paper.

1.9 Contents of this article

In this article we shall prove Theorem 3. Also, since the proof of Theorem 4 is rather long and technical
[DFŚ08], in this overview article we shall highlight just the main ideas and concentrate on the first non-
trivial case of quadratic terms of Kerov polynomials.

Due to lack of space we were not able to show the full history of the presented results and to give to
everybody the proper credits. For more history and bibliographical references we refer to the full version
of this article [DFŚ08].

2 Ingredients of the proof of the main result
2.1 Polynomial functions on the set of Young diagrams

Surprisingly, the normalized characters Σλπ can be extended in a natural way for any generalized Young
diagram λ ∈ Y. The algebra they generate will be called algebra of polynomial functions on (generalized)
Young diagrams. It is well-known that many natural families of functions on Young diagrams generate
the same algebra, for example the family of free cumulants (Rλk) or the family of fundamental functionals
(Sλk ).
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p
1

q1

p
2

q2

p
3

q3

Fig. 2: Generalized Young diagram p× q drawn in the French convention

2.2 Stanley polynomials

For two finite sequences of positive real numbers p = (p1, . . . , pm) and q = (q1, . . . , qm) with q1 ≥
· · · ≥ qm we consider a multirectangular generalized Young diagram p×q, cf Figure 2. In the case when
p1, . . . , pm, q1, . . . , qm are natural numbers p× q is a partition

p× q = (q1, . . . , q1︸ ︷︷ ︸
p1 times

, q2, . . . , q2︸ ︷︷ ︸
p2 times

, . . . ).

Proposition 6 Let F : Y→ R be a polynomial function on the set of generalized Young diagrams. Then
(p,q) 7→ F(p×q) is a polynomial in indeterminates p1, . . . , pm, q1, . . . , qm, called Stanley polynomial.

Proof: It is enough to prove this proposition for some family of generators of the algebra of polynomial
functions on Y. In the case of functionals S2, S3, . . . it is a simple exercise. 2

Lemma 7 If we treat p as variables and q as constants then for every k ≥ 2 and all i1 < · · · < is

[pi1 · · · pis ]S
p×q
k =

{
(−1)s−1 (k − 1)s−1 q

k−s
is

if 1 ≤ s ≤ k − 1,
0 otherwise.

(3)
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Proof: The integral over the Young diagram p × q can be split into several integrals over rectangles
constituting p× q therefore

Sp×q
k = (k − 1)

∫∫
(x,y)∈p×q

(x− y)k−2 dx dy =

(k − 1)!
∑

1≤r≤k−1

(−1)r−1

∫∫
(x,y)∈p×q

xk−1−r

(k − 1− r)!
yr−1

(r − 1)!
dx dy =

(k − 1)!
∑

1≤r≤k−1

(−1)r−1
∑
j

qk−rj

(k − r)!
(p1 + · · ·+ pj)r − (p1 + · · ·+ pj−1)r

r!
.

For any i1 < · · · < is

∂s

∂pi1 · · · ∂pis
(p1 + · · ·+ pj)r − (p1 + · · ·+ pj−1)r

r!

∣∣∣∣
p1=p2=···=0

=

{
1 if s = r and is = j,
0 otherwise

which finishes the proof. 2

Theorem 8 Let F : Y→ R be a polynomial function on the set of generalized Young diagrams, we shall
view it as a polynomial in S2, S3, . . . Then for any j1, . . . , jl ≥ 2

∂

∂Sj1
· · · ∂

∂Sjl
F
∣∣∣∣
S2=S3=···=0

= [p1q
j1−1
1 · · · plqjl−1

l ]Fp×q.

Proof: By linearity is enough to consider the case when F = Sm1 · · ·Smr . Clearly, the left hand side
is equal to the number of permutations of the sequence (m1, . . . ,mr) which are equal to the sequence
(j1, . . . , jl). Lemma 7 shows that the same holds true for the right-hand side. 2

Corollary 9 If j1, . . . , jl ≥ 2 then

[p1q
j1−1
1 · · · plqjl−1

l ]Fp×q

does not depend on the order of the elements of the sequence (j1, . . . , jl).

2.3 Stanley polynomials for characters
The following theorem gives explicitly the Stanley polynomial for normalized characters of symmetric
groups. It was conjectured by Stanley [Sta06] and proved by Féray [Fér06] and therefore we refer to it as
Stanley-Féray character formula. For a more elementary proof we refer to [FŚ07].

Theorem 10 The value of the normalized character on π ∈ S(k) for a multirectangular Young diagram
p× q for p = (p1, . . . , pr), q = (q1, . . . , qr) is given by

Σp×q
π =

∑
σ1,σ2∈S(k)
σ1◦σ2=π

∑
φ2:C(σ2)→{1,...,r}

(−1)σ1

 ∏
b∈C(σ1)

qφ1(b)

∏
c∈C(σ2)

pφ2(c)

 , (4)
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where φ1 : C(σ1)→ {1, . . . , r} is defined by

φ1(c) = max
b∈C(σ2),

b and c intersect

φ2(b).

Notice that Theorem 8 and the above Theorem 10 give immediately the proof of Theorem 3.

2.4 Relation between free cumulants and fundamental functionals
Corollary 11 The value of the k-th free cumulant for a multirectangular Young diagram p × q for p =
(p1, . . . , pr), q = (q1, . . . , qr) is given by

Rp×q
k =

∑
σ1,σ2∈S(k−1)

σ1◦σ2=(1,2,...,k−1)
|C(σ1)|+|C(σ2)|=k

∑
φ2:C(σ2)→{1,...,r}

(−1)σ1

 ∏
b∈C(σ1)

qφ1(b)

∏
c∈C(σ2)

pφ2(c)

 , (5)

where φ1 : C(σ1)→ {1, . . . , r} is defined as in Theorem 10.

Proof: It is enough to consider the homogeneous part with degree k of both sides of (4) for π =
(1, . . . , k − 1) ∈ S(k − 1). 2

Proposition 12 For any integer n ≥ 2

Rk =
∑
l≥1

1
l!

(−k + 1)l−1
∑

j1,...,jl≥2
j1+···+jl=k

Sj1 · · ·Sjl .

Before the proof notice that the above formula shows that free cumulants can be explicitly and directly
calculated from the shape of a Young diagram.

Proof: For simplicity, we shall proof a weaker form of this result, namely

Rk = Sk −
k − 1

2

∑
j1+j2=k

Sj1Sj2 + (terms involving at least three factors Sj). (6)

Theorem 8 shows that the expansion ofRk in terms of (Sj) involves coefficients of Stanley polynomials
and the latter are given by Corollary 11. We shall use this idea in the following.

Notice that the condition |C(σ1)|+ |C(σ2)| = k appearing in (5) is equivalent to |σ1|+ |σ2| = |σ1 ◦σ2|
where |π| denotes the length of the permutation, i.e. the minimal number of factors necessary to write π as
a product of transpositions. In other words, π1 ◦π2 = (1, . . . , k− 1) is a minimal factorization of a cycle.
Such factorizations are in a bijective correspondence with non-crossing partitions of k − 1-element set
[Bia96]. It is therefore enough to enumerate appropriate non-crossing partitions. We present the details
of this reasoning below.

The linear term [Sk]Rk = [p1q
k−1
1 ]Rp×q

k is equal to the number of minimal factorizations such that
σ2 consists of one cycle and σ1 consists of k − 1 cycles. Such factorizations corresponds to non-crossing
partitions of k − 1 element set which have exactly one block and clearly there is only one such partition.
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Since both free cumulants (Rj) and fundamental functionals of shape are homogeneous, by comparing
the degrees we see that [Sj ]Rk = 0 if j 6= k. The same argument shows that [Sj1Sj2 ]Rk = 0 if
j1 + j2 6= k.

Instead of finding the quadratic terms [Sj1Sj2 ]Rk is better to find the derivative ∂2

∂Sj1∂Sj2
Rk

∣∣∣
Sj1=Sj2=0

since it better takes care of the symmetric case j1 = j2. The latter derivative is equal (up to the sign) to
the number of minimal factorizations such that σ2 consists of two labeled cycles c1, c2 and σ1 consists
of k − 2 cycles. Furthermore, we require that there are j2 − 1 cycles of σ1 which intersect cycle c2.
This is equivalent to counting non-crossing partitions of k − 1-element set which consist of two labeled
blocks b1, b2 and we require that the block b2 consists of j2 − 1 elements. It is easy to see that all such
non-crossing partitions can be transformed into each other by a cyclic rotation hence there are k − 1 of
them which finishes the proof.

The general case can be proved by analogous but more technically involved combinatorial considera-
tions. 2

2.5 Identities fulfilled by coefficients of Stanley polynomials
The coefficients of Stanley polynomials [ps11 q

r1
1 · · · ]Fp×q for a polynomial function F are not linearly

independent; in fact they fulfill many identities. In the following we shall show just one of them.

Lemma 13 For any polynomial function F : Y→ R

(j1 + j2 − 1)
[
p1q

j1+j2−1
1

]
Fp×q = −

[
p1p2q

j1+j2−2
2

]
Fp×q. (7)

Proof: It is enough to prove the Lemma if F = Sk1 . . . Skr is a monomial in fundamental functionals.
Lemma 7 shows that the left-hand side of (7) is non-zero only if F = Sj1+j2 (it is also a consequence of
Theorem 8); otherwise every monomial in p and q with a nonzero coefficient would be at least quadratic
with respect to the variables p. The same argument shows that if the right-hand side is non-zero then
either F = Sk is linear (in this case k = j1 + j2 by comparing the degrees) or F = Sk1Sk2 is quadratic.
In the latter case, an inspection of the coefficient

[p1p2]Sp×q
k1

Sp×q
k2

= [p1]Sp×q
k1
· [p2]Sp×q

k2
+ [p1]Sp×q

k2
· [p2]Sp×q

k1
= qk1−1

1 qk2−1
2 + qk2−1

1 qk1−1
2

thanks to (3) leads to a contradiction.
It remains to show that for F = Sj1+j2 the Lemma holds true, but this is an immediate consequence of

Lemma 7. 2

3 Toy example: Quadratic terms of Kerov polynomials
We shall prove Theorem 4 in the simplest non-trivial case of the quadratic coefficients [Rj1Rj2 ]Kk. In
this case Theorem 4 takes the following equivalent form.

Theorem 14 For all integers j1, j2 ≥ 2 and k ≥ 1 the derivative

∂2

∂Rj1∂Rj2
Kk

∣∣∣∣
R2=R3=···=0

is equal to the number of triples (σ1, σ2, q) with the following properties:
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(a) σ1, σ2 is a factorization of the cycle; in other words σ1, σ2 ∈ S(k) are such that σ1 ◦ σ2 =
(1, 2, . . . , k);

(b) σ2 consists of two cycles;

(c) σ1 consists of j1 + j2 − 2 cycles;

(d) ` : C(σ2)→ {1, 2} is a bijective labeling of the two cycles of σ2;

(e) for each cycle c ∈ C(σ2) there are at least j`(c) cycles of σ1 which intersect nontrivially c.

Proof: Equation (6) shows that for any polynomial function F on the set of generalized Young diagrams

∂2

∂Rj1∂Rj2
F =

∂2

∂Sj1∂Sj2
F + (j1 + j2 − 1)

∂

∂Sj1+j2
F ,

where all derivatives are taken at R2 = R3 = · · · = S2 = S3 = · · · = 0. Theorem 8 shows that the
right-hand side is equal to[

p1p2q
j1−1
1 qj2−1

2

]
Fp×q + (j1 + j2 − 1)

[
p1q

j1+j2−1
1

]
Fp×q.

Lemma 13 applied to the second summand shows therefore that

∂2

∂Rj1∂Rj2
F =

[
p1p2q

j1−1
1 qj2−1

2

]
Fp×q −

[
p1p2q

j1+j2−2
2

]
Fp×q. (8)

On the other hand, let us compute the number of the triples (σ1, σ2, `) which contribute to the quantity
presented in Theorem 14. By inclusion-exclusion principle it is equal to(

number of triples which fulfill conditions (a)–(d)
)
+

(−1)
(
number of triples for which the cycle `−1(1) intersects at most j1 − 1 cycles of σ1

)
+

(−1)
(
number of triples for which the cycle `−1(2) intersects at most j2 − 1 cycles of σ1

)
. (9)

At first sight it might seem that the above formula is not complete since we should also add the number
of triples for which the cycle `−1(1) intersects at most j1 − 1 cycles of σ1 and the cycle `−1(2) intersects
at most j2 − 1 cycles of σ1, however this situation is not possible since σ1 consists of j1 + j2 − 2 cycles
and 〈σ1, σ2〉 acts transitively.

By Stanley-Féray character formula (4) the first summand of (9) is equal to

(−1)
∑

a+b=j1+j2−2,
1≤b

[
p1p2q

a
1q
b
2

]
Σp×q
k , (10)

the second summand of (9) is equal to ∑
a+b=j1+j2−2,

1≤a≤j1−1

[
p1p2q

b
1q
a
2

]
Σp×q
k , (11)
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and the third summand of (9) is equal to ∑
a+b=j1+j2−2,

1≤b≤j2−1

[
p1p2q

a
1q
b
2

]
Σp×q
k .

We can apply Corollary 9 to the summands of (11); it follows that (11) is equal to∑
a+b=j1+j2−2,

1≤a≤j1−1

[
p1p2q

a
1q
b
2

]
Σp×q
k . (12)

It remains now to count how many times a pair (a, b) contributes to the sum of (10), (11), (12). It is
not difficult to see that the only pairs which contribute are (0, j1 + j2 − 2) and (j1 − 1, j2 − 1), therefore
the number of triples described in the formulation of the Theorem is equal to the right-hand of (8) which
finishes the proof. 2
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k-distant crossings and nestings of matchings
and partitions

Dan Drake1† and Jang Soo Kim1

1Department of Mathematical Sciences
Korea Advanced Institute of Science and Technology
Daejeon, Korea

Abstract. We define and considerk-distant crossings and nestings for matchings and set partitions, which are a
variation of crossings and nestings in which the distance between vertices is important. By modifying an involution
of Kasraoui and Zeng (Electronic J. Combinatorics 2006, research paper 33), we show that the joint distribution of
k-distant crossings and nestings is symmetric. We also studythe numbers ofk-distant noncrossing matchings and
partitions for smallk, which are counted by well-known sequences, as well as the orthogonal polynomials related to
k-distant noncrossing matchings and partitions. We extend Chen et al.’sr-crossings and enhancedr-crossings.

Résuḿe.Nous définissons les notions de croisements et imbrications k-distants sur les appariements et les partitions
d’ensemble, qui sont une variation sur les notions usuellesprenant en compte la distance entre les sommets. En modi-
fiant une involution de Kasraoui et Zeng (Electronic J. Combinatorics 2006, research paper 33), nous montrons que la
distribution jointe des croisements et imbricationsk-distants est symétrique. Nous étudions le nombre d’involutions
et de partitions sans croisementk-distant pour de petites valeurs dek, qui sont des suites d’entiers bien connues, ainsi
que les polynômes orthogonaux qui leur sont reliés. Nous ´etendons les notions der-croisements etr-croisements
amliorés dues à Chen et al.

Keywords: crossings, nestings, set partitions, matchings

1 Introduction
A (set) partitionof [n] = {1, 2, . . . , n} is a set of disjoint subsets of[n] whose union is[n]. Each
element of a partition is called ablock. We will write a partition as a sequence of blocks, for instance,
{1, 4, 8}{2, 5, 9}{3}{6, 7}. Let Πn denote the set of partitions of[n].

Let π be a partition of[n]. A vertexof π is an integeri ∈ [n]. An edgeof π is a pair(i, j) of
vertices satisfying either (1)i < j, andi andj are in the same block with no vertex between them in
that block, or (2)i = j and the block containingi has no other vertex. Thus when we arrange vertices
of π = {1, 5}{2, 4, 9}{3}{6, 12}{7, 10, 11}{8}, in a line in increasing order and draw edges we get
Figure 1.

†The first author was supported by the second stage of the BrainKorea 21 Project, The Development Project of Human Resources
in Mathematics, KAIST in 2008.

1365–8050c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1: Diagram for{1, 5}{2, 4, 9}{3}{6, 12}{7, 10, 11}{8}.

A vertexv of π is called anopener(resp.closer) if v is the smallest (resp. largest) element of a block
consisting of at least two integers. A vertexv is called asingletonif v itself makes a block. A vertex
v is called atransient if there are two edges connected tov. Let O(π) (resp. C(π), S(π), T (π)) be
the set of openers (resp. closers, singletons, transients)of π. Let type(π) = (O(π), C(π),S(π), T (π))
andtype′(π) = (O(π), C(π),S(π) ∪ T (π)). For the partition in Figure 1, the type ofπ is type(π) =
({1, 2, 6, 7}, {5, 9, 11, 12}, {3, 8}, {4, 10}).

A (complete) matchingis a partition without singletons or transients; this is thesame thing as a partition
in which all blocks have size2.

Now we can define the main object of our study.

Definition. Letk be a nonnegative integer. Ak-distant crossingof π is a pair of edges(i1, j1) and(i2, j2)
of π satisfyingi1 < i2 ≤ j1 < j2 andj1 − i2 ≥ k. A k-distant nestingof π is a set of two edges(i1, j1)
and(i2, j2) of π satisfyingi1 < i2 ≤ j2 < j1 andj2 − i2 ≥ k.

Let dcrk(π) (resp.dnek(π)) denote the number ofk-distant crossings (k-distant nestings) inπ. Thus
dcr1(π) is the number of usual crossings ofπ.

For example, in the partition in Figure 1, the edges(4, 9) and(6, 12) form a3-distant crossing (as well
as ani-distant crossing fori = 0, 1, 2), the edges(1, 5) and(2, 4) form a 2-distant nesting, the edges
(2, 4) and(4, 9) form a0-distant crossing, and the edges(7, 10) and(8, 8) form a0-distant nesting. That
partition hasdcr0(π) = 5, dcr2(π) = 2, anddne2(π) = 2.

Kasraoui and Zeng [5] found an involutionϕ : Πn → Πn such thattype(ϕ(π)) = type(π) and
dcr1(ϕ(π)) = dne1(π), dne1(ϕ(π)) = dcr1(π). Modifying this involution, fork ≥ 0, we find an invo-
lution ϕk : Πn → Πn such thatdcrk(ϕk(π)) = dnek(π), dnek(ϕk(π)) = dcrk(π) andtype(ϕk(π)) =
type(π) if k ≥ 1; type′(ϕk(π)) = type′(π) if k = 0.

Noncrossing partitions and matchings are interesting and pervasive objects that arise frequently in di-
verse areas of mathematics; see [10] and [11] and the references therein for an introduction to noncrossing
partitions. A partitionπ is calledk-distant noncrossingif π has nok-distant crossing. LetNCMk(n) de-
note the number ofk-distant noncrossing matchings of[n]. LetNCPk(n) denote the number ofk-distant
noncrossing partitions of[n].

Table 1 and Table 2 showNCMk(n) andNCPk(n) for small values ofn andk. We usek = ∞ to
indicate thati-distant crossing is allowed for any positive integeri, so thatNCM∞(n) andNCP∞(n)
equal the total number of matchings of[2n] and partitions of[n], respectively. A matching or partition
cannot have ak-distant crossing fork > n− 3, so for fixedn, NCMk(n) andNCPk(n) will “converge”
to the number of matchings and number of partitions, respectively; for readability we omit those numbers
in the tables. Then = 0 column is all1’s for both tables, of course.

It is well known that noncrossing matchings of[2n] and noncrossing partitions of[n] are counted by
the Catalan numberCn. ThusNCM0(2n) = NCM1(2n) = NCP1(n) = Cn. We will show that
NCM2(2n) = sn andNCP0(n) = Mn, wheresn andMn are the little Schröder numbers (A001003 in
[12]) and the Motzkin numbers (A001006 in [12]) respectively. We will also find the generating functions
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k \n 2 4 6 8 10 12 14 16 18 20
1 1 2 5 14 42 132 429 1430 4862 16796
2 3 11 45 197 903 4279 20793 103049 518859
3 14 71 387 2210 13053 79081 488728 3069007
4 15 91 581 3906 27189 194240 1416168 10494328
5 102 753 5752 45636 372360 3101523 26266917
6 105 873 7541 66690 607128 5657520 53631564
7 930 8985 88450 885394 9067611 94719138
8 945 9885 107847 1187376 13233511 150234570
9 10290 122115 1476948 17933348 219754737

10 10395 130515 1715475 22701570 300724081
11 134190 1881495 26969370 386669322
12 135135 1975995 30306045 468680940
13 2016630 32546745 538581120
14 2027025 33794145 591287445
15 34324290 625810185
16 34459425 652702050
17 644729085
18 654729075
∞ 1 3 15 105 945 10395 135135 2027025 34459425 654729075

Tab. 1: k-distant noncrossing matchings. Thek = 0 row is omitted because, as matchings have no transient vertices,
thek = 0 row is the same ask = 1 row; both, of course, are counted by the Catalan numbers (A000108). Thek = 2
row is the little Schröder numbers (A001003).

k \n 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 4 9 21 51 127 323 835 2188 5798 15511
1 5 14 42 132 429 1430 4862 16796 58786 208012
2 15 51 188 731 2950 12235 51822 223191 974427
3 52 201 841 3726 17213 82047 400600 1993377
4 203 872 4037 19796 101437 537691 2926663
5 877 4125 20802 110950 618777 3575688
6 4140 21095 114663 657698 3943294
7 21147 115772 673019 4118232
8 115975 677693 4187838
9 678570 4209457

10 4213597
∞ 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597

Tab. 2: k-distant noncrossing partitions. Thek = 0, 1, and2 rows are counted by Motzkin numbers (A001006), the
Catalan numbers, and A007317, respectively.
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1 2 3 4 5 6 7 84 6 7

Fig. 2: The8-th traceT8(π) of π in Figure 1. The vacant vertices are4, 6 and7.

for NCP2(n) andNCM3(2n).
Throughout this paper we will frequently refer to sequencesin the Online Encyclopedia of Integer

Sequences [12] using their “A number”; we will usually omit the citation to [12] and consider it understood
that things like “A000108” are a reference to the corresponding sequence in the OEIS.

The rest of this paper is organized as follows. In section 2, we modify Kasraoui and Zeng’s involution
to prove the joint distribution ofk-distant crossings and nestings is symmetric. In section 3,we review a
bijection between partitions and Charlier diagrams. In section 4 and section 5, we study the number of
k-distant noncrossing matchings and partitions, and, in section 6, we consider the orthogonal polynomials
related to these numbers. In section 7, we extendr-crossings and enhancedr-crossings of Chen et al. [1].

2 Modification of the involution of Kasraoui and Zeng
Kasraoui and Zeng [5] found an involutionϕ : Πn → Πn such thatdcr1(ϕ(π)) = dne1(π), dne1(ϕ(π)) =
dcr1(π) andtype(ϕ(π)) = type(π). In this section, for fixedk ≥ 0, we find an involutionϕk : Πn → Πn

such thatdcrk(ϕk(π)) = dnek(π) anddnek(ϕk(π)) = dcrk(π).
We will follow Kasraoui and Zeng’s notations. We will identify a partitionπ to its diagram as shown

in Figure 1.
Thei-th traceTi(π) of π is the diagram obtained fromπ by removing vertices greater thani. If a vertex

v ≤ i is connected tou > i in π then make ahalf edgefrom v in Ti(π). Each vertex with a half edge is
calledvacantvertex. For an example, see Figure 2.

Let k be a fixed nonnegative integer. We defineϕk : Πn → Πn as follows.

1. SetT (k)
0 = ∅.

2. For1 ≤ i ≤ n, T
(k)
i is obtained as follows.

(a) LetT (k)
i (resp.T ′

i (π)) beT
(k)
i−1 (resp.Ti−1(π)) with new vertexi.

(b) If i ∈ O(π) ∪ S(π) ∪ T (π), then make a half edge fromi both inT
(k)
i andT ′

i (π).

(c) If i ∈ C(π) ∪ S(π) ∪ T (π), let j be the vertex connected toi in π.

i. If i − j < k, thenj must be a vacant vertex inT (k)
i . Remove the half edge fromj and

add an edge(i, j) in T
(k)
i .

ii. If i − j ≥ k, then letU (resp.V ) be the set of all vacant verticesv in T
(k)
i (resp.T ′

i (π))

such thati−v ≥ k. Letγ(k)
i (π) denote the integerr such thatj is ther-th largest element

of V . Let j′ be theγ(k)
i (π)-th smallest element ofU . Remove the half edge fromj′ and

add an edge(j′, i) in T
(k)
i .
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i γ
(0)
i (π) γ

(2)
i (π) Ti(π) T

(0)
i T

(2)
i

1 11 11 11

2 11 22 11 22 11 22

3 1 11 22 3 1 2 32 3 11 22 3

4 2 1 11 2 3 44 1 2 32 44 1 22 3 44

5 1 11 2 3 4 5 1 2 3 544 1 22 3 4 5

6 1 1
1 2 3 4 5 6 1 2 3 5 64 1 2 3 4 5 6

Fig. 3: Construction ofϕ0(π) = T
(0)
6 andϕ2(π) = T

(2)
6 for π = {1, 6}{2, 4, 5}{3}.

3. Setϕk(π) = T
(k)
n .

For example, see Figure 3. Using the same argument as in [5], we can prove thatϕk is an involution
and satisfiesdcrk(ϕk(π)) = dnek(π), dnek(ϕk(π)) = dcrk(π), type(ϕk(π)) = type(π) if k ≥ 1;
type′(ϕk(π)) = type′(π) if k = 0. Thus we have the following.

Theorem 2.1. Letk be a nonnegative integer. Then

∑

π∈Πn

xdcrk(π)ydnek(π) =
∑

π∈Πn

xdnek(π)ydcrk(π).

3 Motzkin paths and Charlier diagrams
In this section, we recall a bijection between partitions and Charlier diagrams [4, 5].

A stepis a pair(p, q) of pointsp, q ∈ Z × Z. Theheightof a step(p, q) is the second component
of p, i.e, if p = (a, b) then the height of the step(p, q) is b. A step(p, q) is called anup (resp. down,
horizontal) step if the component-wise differenceq − p is (1, 1) (resp.(1,−1), (1, 0)). A pathof length
n is a sequence(p0, p1, p2, . . . , pn) of n + 1 points inZ × Z. Thei-th stepof a path(p0, p1, p2, . . . , pn)
is (pi−1, pi). A nonnegative pathof lengthn is a path from(0, 0) to (n, 0), which never goes below the
x-axis. A Motzkin pathof lengthn is a nonnegative path of lengthn consisting of up steps, down steps
and horizontal steps. ACharlier diagramof lengthn is a pair(M, e) whereM = (p0, p1, . . . , pn) is a
Motzkin path of lengthn ande = (e1, e2, . . . , en) is a sequence of integers such that

1. if thei-th step is an up step thenei = 0,

2. if thei-th step is a down step of heighth then1 ≤ ei ≤ h,

3. if thei-th step is a horizontal step of heighth then0 ≤ ei ≤ h.
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b

bb

b 0b b 1b b
2

b

bb

bb

b 0b b
3

b

b 1b b
1

b

b
1

b

b

Fig. 4: The Charlier diagram for the partition of Figure 1. The labelei is written above the horizontal and down steps.

We will identify a Charlier diagram(M, e) with the sequence(s1, s2, . . . , sn) of labeled letters in
{U, D1, D2, . . . , H0, H1, H2, . . .} such thatsi = U (resp.si = Dei

, si = Hei
) if the i-th step ofM is an

up (resp. down, horizontal) step.
Let π be a partition of[n]. Recall that in the previous section, ifi is a closer or transient, thenγ(1)

i (π)

is the integerr such thati is connected to ther-th largest integer inT (1)
i−1(π).

The corresponding Charlier diagramCh(π) = (s1, s2, . . . , sn) is defined as follows:

1. if i is an opener inπ thensi = U ,

2. if i is a closer inπ andγ
(1)
i (π) = r thensi = Dr,

3. if i is a singleton inπ thensi = H0,

4. if i is a transient inπ andγ
(1)
i (π) = r thensi = Hr.

For example, see Figure 4.
It is easy to see that if there is a stepDℓ or Hℓ with ℓ ≥ 2 in Ch(π), thanπ has an(ℓ − 1)-distant

crossing.

4 k-distant noncrossing matchings
In this section we will find the number ofk-distant noncrossing matchings fork = 0, 1, 2 and3. Note that
since there is no matching of[2n + 1] we haveNCMk(2n + 1) = 0 for all n andk. Thus we will only
considerNCMk(2n).

4.1 0- and 1-distant noncrossing matchings

Since matchings have no transient vertices, being0-distant crossing is equivalent to being1-distant cross-
ing.

We can easily see that a matchingπ is 1-distant noncrossing if and only ifCh(π) consists ofU andD1.
Thus a1-distant noncrossing matching corresponds to a Dyck path.

Theorem 4.1. We have

NCM0(2n) = NCM1(2n) = Cn =
1

n + 1

(

2n

n

)

.
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4.2 2-distant noncrossing matchings
Let π be a2-distant noncrossing matching. ThenCh(π) consists ofU, D1, andD2. By definition of
Ch(π), D2 is of height at least2. Moreover, sinceπ has no2-distant crossing,D2 must immediately
follow U . Thus we can considerCh(π) as a nonnegative path consisting of the three stepsU = (1, 1),
D1 = (1,−1) andUD2 = (2, 0) such thatUD2 never touches thex-axis. This is exactly the definition
of a little Schr̈oder path, see [13]. Thus we get the following theorem.

Theorem 4.2. We have
NCM2(2n) = sn,

wheresn is the little Schr̈oder number (A001003).

4.3 3-distant noncrossing matchings
Let π be a3-distant noncrossing matching. One can check thatCh(π) consists ofU , D1, D2, andD3

satisfying the following.

1. Dℓ is of height at leastℓ for ℓ = 1, 2, 3.

2. D3 can only occur after two consecutiveU , and

3. D2 can only occur afterU or after eitherD2 or D3 which followsU .

Thus we can considerCh(π) as a nonnegative path consisting of the6 stepsU , D1, UD2, UUD3,
UD2D2, UUD3D2 such that the last four steps must be above the liney = 1. Let g(n) be the number of
nonnegative paths of lengthn consisting ofU, D1, UD2, UUD3, UD2D2, andUUD3D2. Let F (x) =
∑

n≥0 NCM3(2n)xn andG(x) =
∑

n≥0 g(2n)xn.

Decomposing nonnegative paths, we get thatG(x) = 1 + (x + x2)G(x) + (x
1

2 + x
3

2 )2G(x)2 and
F (x) = 1 + xG(x)F (x). Thus we get

G(x) =
1 − x − x2 −

√
1 − 6x − 9x2 − 2x3 + x4

2x(x + 1)2
.

Now we get the generating function forNCM3(2n).

Theorem 4.3. We have

∑

n≥0

NCM3(2n)xn =
2(x + 1)2

1 + 5x + 3x2 +
√

1 − 6x − 9x2 − 2x3 + x4

= 1 + x + 3 x2 + 14 x3 + 71 x4 + 387 x5 + 2210 x6 + 13053 x7 + · · · .

5 k-distant noncrossing partitions
5.1 0-distant noncrossing partitions
Let π be a0-distant noncrossing partition. ThenCh(π) consists ofU, D1, H0. ThusCh(π) is a Motzkin
path.

Theorem 5.1. The number of0-distant noncrossing partitions of[n] is equal to the number of Motzkin
paths of length[n] (A001006).
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5.2 1-distant noncrossing partitions

Let π be a1-distant noncrossing partition. Thenπ is a usual noncrossing partition. It is well known that
the number of noncrossing partitions of[n] is the Catalan numberCn.

Theorem 5.2. We have
NCP1(n) = Cn.

5.3 2-distant noncrossing partitions

Let π be a2-distant noncrossing partition. ThenCh(π) consists ofU, D1, D2, H0, H1, andH2 and
satisfies

1. Dℓ andHℓ are of height at leastℓ,

2. H2 andD2 can only occur afterU , H1, or H2.

Thus we can considerCh(π) as a nonnegative path with the following steps:

UHk
2 , UHk

2 D2, H1H
k
2 , H1H

k
2 D2, H0, andD1,

wherek is a nonnegative integer andHk
2 meansk consecutiveH2 steps.

Let a(n) (resp.b(n)) denote the number of nonnegative paths of lengthn consisting of the above steps
such thatDℓ andHℓ is of height at leastℓ − 2 (resp. at leastℓ − 1). In fact, the height condition is
unnecessary fora(n) since every step is of height at least0. Let F (x) =

∑

n≥0 NCP2(n)xn, A(x) =
∑

n≥0 a(n)xn, andB(x) =
∑

n≥0 b(n)xn.
Note that the steps which increase they-coordinate by1 are

UHk
2 , k ≥ 0,

the steps which do not change they-coordinate are

H0, H1H
k
2 , UHk

2 D2, k ≥ 0,

and the steps which decrease they-coordinate by1 are

D1, H1H
k
2 D2, k ≥ 0.

Thus, by decomposing nonnegative paths, we get

A(x) = 1 +

(

x +
x

1 − x
+

x2

1 − x

)

A(x) +
x

1 − x
·
(

x +
x2

1 − x

)

A(x)2,

B(x) = 1 +

(

2x +
x2

1 − x

)

B(x) +
x

1 − x
·
(

x +
x2

1 − x

)

A(x)B(x),

F (x) = 1 + xF (x) + x2B(x)F (x).

Solving these equations, we get the following theorem.
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Theorem 5.3. We have

∑

n≥0

NCP2(n)xn =
3 − 3x −

√
1 − 6x + 5x2

2(1 − x)
=

3

2
− 1

2

√

1 − 5x

1 − x

= 1 + x + 2 x2 + 5 x3 + 15 x4 + 51 x5 + 188 x6 + 731 x7 + 2950 x8 + · · · .

This sequence is A007317. Mansour and Severini [9] proved that the generating function for the number
of 12312-avoiding partitions is equal to that in 5.3. Thus the numberof 2-distant noncrossing partitions
of [n] is equal to the number of12312-avoiding partitions of[n]. Yan [16] found a bijection from12312-
avoiding partitions of[n] to UH-free Schröder paths of length2n − 2. Composing several bijections
including Yan’s bijection, Kim [7] found a bijection between 2-distant noncrossing partitions and12312-
avoiding partitions.

6 Orthogonal polynomials
Given a sequence{µn}n≥0, one may try to define a sequence of polynomials{Pn(x)}n≥0 that are or-
thogonal with respect to{µn}; that is, if we define a measure withµn =

∫

xn dµ, then

∫

Pn(x)Pm(x) dµ = 0

whenevern 6= m. These polynomials must satisfy a three-term recurrence relation of the form

Pn+1(x) = (x − bn)Pn(x) − λnPn−1(x), (1)

with P0(x) = 1 andP1(x) = x − b0. Viennot showed [14, 15] that for any sequence{µn}—which are
called themoments—one can interpret the momentµn as the generating function for weighted Motzkin
paths of lengthn in which up steps have weight1, horizontal steps of heightk have weightbk, and down
steps of heightk have weightλk; then the polynomials in (1) will be orthogonal with respectto {µn}n≥0.

Many classical combinatorial sequences have been interpreted as the moment sequences for a set of
orthogonal polynomials, and the corresponding orthogonality relation proved with a sign-reversing invo-
lution. In particular, it is known that:

• If µ2n+1 = 0 andµ2n = Cn, the Catalan number, thenbn = 0 andλn = 1; the corresponding
polynomials are Chebyshev polynomials of the second kind [2], which may be defined by

Un+1(x) = xUn(x) − Un−1(x),

with U0(x) = 1 andU1(x) = x. These moments areNCM0(n).

• If µ2n+1 = 0 andµ2n = (2n − 1)!!, thenbn = 0 andλn = n; the corresponding polynomials are
Hermite polynomials [14]. These moments areNCM∞(n).

• If µn = Mn, then-th Motzkin number, thenbn = 1, λn = 1; the corresponding polynomials are
shifted Chebyshev polynomials of the second kind:Un(x−1). See [3, section 4.1]. These moments
areNCP0(n).
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• If µn = Bn, the number of partitions of[n], thenbn = n + 1 andλn = n; the corresponding
polynomials are Charlier polynomials (witha = 1) [14]. These moments areNCP∞(n).

With these observations, it is natural to try to use, say,NCMk(n) as a sequence of moments. Letting
k go from0 to infinity would then allow us to interpolate between Chebyshev polynomials and Hermite
polynomials; usingNCPk(n) would give the corresponding interpolation between shifted Chebyshev
and Charlier polynomials.

If we useNCM2(n) for the moments, then we havebn = 0, λ2n+1 = 1, andλ2n = 2. This follows
from the work of Kim and Zeng [6]: useUn(x, 2) in their paper. In their paper, they derive formulas
for the moments ofUn(x, 2) which are the same as known formulas forNCM2(n), which are the little
Schröder numbers.

If we attempt to do the same withNCM3(n), we get stuck: sinceNCM3(2n + 1) = 0, we know that
bn = 0, but theλn sequence starts with

1, 2,
5

2
,

3

10
,
76

5
,−680

57
,−2311

7752
,
1246001

314296
,
114710016

151553069
, . . . . (2)

Not only are someλn’s fractions, but some are negative, which means prospects for polynomials with
nice combinatorics are dim.

Let us try the same line of attack withk-distant noncrossing partitions. UsingNCP1(n)—Catalan
numbers—for a set of moments, we get a shifted version of Chebyshev polynomials of the second kind:
b0 = 1, all otherbn = 2, and allλn = 1. These polynomials can be writtenUn(x − 2), with slightly
different initial conditions:U0(x) = 1 andU1(x) = x − 1. The easiest way to see why these recurrence
coefficients and initial conditions are orthogonal with respect to the Catalan numbers is with a bijection
between Motzkin paths of lengthn with the above weighting and Dyck paths of length2n: take each up
stepU and make itUU , take each down stepD and make itDD, and take each horizontal stepH and
make it eitherUD or DU—except for the horizontal step at height zero, which can only be made into
UD. This process turns a weighted Motzkin path of lengthn into a Dyck path of length2n and is easily
shown to be a bijection.

When usingNCP2(n) andNCP3(n) as the moments, we again get some fractional coefficients, but
they seem much nicer. We have computed the following with Maple: if µn = NCP2(n) then

{bn}n≥0 =

{

1, 3 − 1, 3 − 1

2
, 3 − 1

10
, 3 − 1

65
, 3 − 1

442
, 3 − 1

3026
, . . .

}

and

{λn}n≥1 =

{

1, 1 + 1, 1 +
1

4
, 1 +

1

25
, 1 +

1

169
, 1 +

1

1156
, 1 +

1

7921
, . . .

}

;

if µn = NCP3(n) then

{bn}n≥0 = {1, 2, 3, 3, 3, . . .} and {λn}n≥1 = {1, 2, 2, 2, 2, . . .} .

The first case is very interesting. The sequences of denominators ofbn’s andλn’s appear in A064170 and
A081068 respectively. Based on the above evidence, we make the following conjectures.

Conjecture 6.1. If µn = NCP2(n) thenb0 = 1, b1 = 2, λ1 = 1, and forn ≥ 2

bn = 3 − 1

F2n−1F2n−3
and λn = 1 +

1

(F2n−3)2
,
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whereFn is then-th Fibonacci number, i.e.,Fn+1 = Fn + Fn−1 andF1 = F2 = 1.

Conjecture 6.2. If µn = NCP3(n) thenb0 = 1, b1 = 2, b2 = 3, λ1 = 1, λ2 = 2, and, forn ≥ 3, bn = 3
andλn = 2.

7 k-distant r-crossing
Chen et al. [1] considered a different kind of crossing number. Our definition ofk-distant crossing can be
applied to their definition.

Let k ≥ 0 andr ≥ 2 be integers. Ak-distantr-crossingis a set ofr edges(i1, j1), (i2, j2), . . . , (ir, jr)
such thati1 < i2 < · · · < ir ≤ j1 < j2 < · · · < jr andj1 − ir ≥ k. Similarly, ak-distantr-nesting
is a set ofr edges(i1, j1), (i2, j2), . . . , (ir, jr) such thati1 < i2 < · · · < ir ≤ jr < jr−1 < · · · < j1
andjr − ir ≥ k. In [1], they defined anr-crossing and an enhancedr-crossing, which are a1-distant
r-crossing and a0-distantr-crossing respectively.

Let DCRk(π) (resp. DNEk(π)) be the maximalr such thatπ has ak-distantr-crossing (resp.k-
distantr-nesting). Letfn,S,T (k; i, j) denote the number of partitionsπ of [n] such thatDCRk(π) = i,
DNEk(π) = j, O(π) = S andC(π) = T . Chen et al. [1] proved thatfn,S,T (k; i, j) = fn,S,T (k; j, i) for
k = 0, 1. Krattenthaler [8] extended this result using growth diagrams.

Using Krattenthaler’s growth diagram method, we can get thefollowing theorem.

Theorem 7.1. Letn ≥ 1 andk ≥ 0 be integers. Then

fn,S,T (k; i, j) = fn,S,T (k; j, i).
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[15] Gérard Viennot. A combinatorial theory for general orthogonal polynomials with extensions and
applications. InOrthogonal polynomials and applications (Bar-le-Duc, 1984), volume 1171 of
Lecture Notes in Math., pages 139–157, Berlin, 1985. Springer.
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Permutations realized by shifts

Sergi Elizalde
Department of Mathematics, Dartmouth College, Hanover, NH 03755-3551

Abstract. A permutation π is realized by the shift on N symbols if there is an infinite word on an N -letter alphabet
whose successive left shifts by one position are lexicographically in the same relative order as π. The set of real-
ized permutations is closed under consecutive pattern containment. Permutations that cannot be realized are called
forbidden patterns. It was shown in [J.M. Amigó, S. Elizalde and M. Kennel, J. Combin. Theory Ser. A 115 (2008),
485–504] that the shortest forbidden patterns of the shift on N symbols have length N + 2. In this paper we give a
characterization of the set of permutations that are realized by the shift on N symbols, and we enumerate them with
respect to their length.

Résumé. Une permutation π est réalisée par le shift avec N symboles s’il y a un mot infini sur un alphabet de N
lettres dont les déplacements successifs d’une position à gauche sont lexicographiquement dans le même ordre relatif
que π. Les permutations qui ne sont pas réalisées s’apellent des motifs interdits. On sait [J.M. Amigó, S. Elizalde
and M. Kennel, J. Combin. Theory Ser. A 115 (2008), 485–504] que les motifs interdits les plus courts du shift avec
N symboles ont longueur N + 2. Dans cet article on donne une caractérisation des permutations réalisées par le shift
avec N symboles, et on les dénombre selon leur longueur.

Keywords: shift, consecutive pattern, forbidden pattern

1 Introduction and definitions
This paper is motivated by an innovative application of pattern-avoiding permutations to dynamical sys-
tems (see (1; 2; 4)), which is based on the following idea. Given a piecewise monotone map on a one-
dimensional interval, consider the finite sequences (orbits) that are obtained by iterating the map, starting
from any point in the interval. It turns out that the relative order of the entries in these sequences cannot
be arbitrary. This means that, for any given such map, there will be some order patterns that will never
appear in any orbit. The set of such patterns, which we call forbidden patterns, is closed under consecutive
pattern containment. These facts can be used to distinguish random from deterministic time series.

A natural question that arises is how to determine, for a given map, what its forbidden patterns are.
While this problem is wide open in general, in the present paper we study it for a particular kind of
maps, called (one-sided) shift systems. Shift systems are interesting for two reasons. One one hand,
they exhibit all important features of low-dimensional chaos. On the other hand, they are natural maps
from a combinatorial perspective, and the study of their forbidden patterns can be done in an elegant
combinatorial way.

Forbidden patterns in shift systems were first considered in (1; 2). The authors prove that the smallest
forbidden pattern of the shift on N symbols has length N + 2. They also conjecture that, for any N ,
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there are exactly six forbidden patterns of minimal length. In the present paper we give a complete
characterization of forbidden patterns of shift systems, and enumerate them with respect to their length.

We will start with some background on consecutive pattern containment, forbidden patterns in maps,
and shift systems. In Section 2 we give a formula for the parameter that determines how many symbols
are needed in order for a permutation to be realized by a shift. This characterizes allowed and forbidden
patterns of shift maps. In Section 3 we give another equivalent characterization involving a transformation
on permutations, and we prove that the shift on N symbols has six forbidden patterns of minimal length
N + 2, as conjectured in (1). In Section 4 we give a formula for the number of patterns of a given length
that are realized by the binary shift, and then we generalize it to the shift on N symbols, for arbitrary N .
Many of the proofs are omitted in this extended abstract, but they can be found in the full version (5).

1.1 Permutations and consecutive patterns
We denote by Sn the set of permutations of {1, 2, . . . , n}. If π ∈ Sn, we will write its one-line notation
as π = [π(1), π(2), . . . , π(n)] (or π = π(1)π(2) . . . π(n) if it creates no confusion). The use of square
brackets is to distinguish it from the cycle notation, where π is written as a product of cycles of the form
(i, π(i), π2(i), . . . , πk−1(i)), with πk(i) = i. For example, π = [2, 5, 1, 7, 3, 6, 4] = (1, 2, 5, 3)(4, 7)(6).

Given a permutation π = π(1)π(2) . . . π(n), let D(π) denote the descent set of π, that is, D(π) =
{i : 1 ≤ i ≤ n − 1, π(i) > π(i + 1)}. Let des(π) = |D(π)| be the number of descents. The Eulerian
polynomials are defined by An(x) =

∑
π∈Sn

xdes(π)+1. Its coefficients are called the Eulerian numbers.
The descent set and the number of descents can be defined for any sequence of integers a = a1a2 . . . an
by letting D(a) = {i : 1 ≤ i ≤ n− 1, ai > ai+1}.

Let X be a totally ordered set, and let x1, . . . , xn ∈ X with x1 < x2 < · · · < xn. Any permutation
of these values can be expressed as [xπ(1), xπ(2), . . . , xπ(n)], where π ∈ Sn. We define its reduction to
be ρ([xπ(1), xπ(2), . . . , xπ(n)]) = [π(1), π(2), . . . , π(n)] = π. Note that the reduction is just a relabeling
of the entries with the numbers from 1 to n, keeping the order relationships among them. For example
ρ([4, 7, 1, 6.2,

√
2]) = [3, 5, 1, 4, 2]. If the values y1, . . . , yn are not all different, then ρ([y1, . . . , yn]) is

not defined.
Given two permutations σ ∈ Sm, π ∈ Sn, with m ≥ n, we say that σ contains π as a consecutive

pattern is there is some i such that ρ([σ(i), σ(i + 1), . . . , σ(i + n − 1)]) = π. Otherwise, we say that σ
avoids π as a consecutive pattern. The set of permutations in Sn that avoid π as a consecutive pattern is
denoted by Avn(π). We let Av(π) =

⋃
n≥1 Avn(π). Consecutive pattern containment was first studied

in (6), where the sets Avn(π) are enumerated for certain permutations π.

1.2 Allowed and forbidden patterns in maps
Let f be a map f : X → X . Given x ∈ X and n ≥ 1, we define

Pat(x, f, n) = ρ([x, f(x), f2(x), . . . , fn−1(x)]),

provided that there is no pair 1 ≤ i < j ≤ n such that f i−1(x) = f j−1(x). If there is such a pair, then
Pat(x, f, n) is not defined. When it is defined, we have Pat(x, f, n) ∈ Sn. If π ∈ Sn and there is some
x ∈ X such that Pat(x, f, n) = π, we say that π is realized by f (at x), or that π is an allowed pattern of
f . The set of all permutations realized by f is denoted by Allow(f) =

⋃
n≥1 Allown(f), where

Allown(f) = {Pat(x, f, n) : x ∈ X} ⊆ Sn.
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The remaining permutations are called forbidden patterns, and denoted by Forb(f) =
⋃
n≥1 Forbn(f),

where Forbn(f) = Sn \Allown(f).
We are introducing some variations to the notation and terminology used in (1; 2; 4). The main change

is that our permutation π = Pat(x, f, n) is essentially the inverse of the permutation of {0, 1, . . . , n− 1}
that the authors of (1) refer to as the order pattern defined by x. Our convention, aside from simplifying the
notation, will be more convenient from a combinatorial point of view. The advantage is that now the set
Allow(f) is closed under consecutive pattern containment, in the standard sense used in the combinatorics
literature, and we no longer need to talk about outgrowth forbidden patterns like in (1). Indeed, if σ ∈
Allow(f) and σ contains τ as a consecutive pattern, then τ ∈ Allow(f). An equivalent statement is that
if π ∈ Forb(f), then Allow(f) ⊆ Av(π). The minimal elements of Forb(f), i.e., those permutations in
Forb(f) that avoid all other patterns in Forb(f), will be called basic forbidden patterns of f . The set of
these patterns will be denoted BF(f). Note that basic patterns are the inverses of root patterns as defined
in (1).

Let us consider now the case in which X is a closed interval in R, with the usual total order on real
numbers. An important incentive to study the set of forbidden patterns of a map comes from the following
result, which is a consequence of (4).

Proposition 1.1 If I ⊂ R is a closed interval and f : I → I is piecewise monotone, then Forb(f) 6= ∅.
Recall that piecewise monotone means that there is a finite partition of I into intervals such that f is
continuous and strictly monotone on each of those intervals. It fact, it is shown in (4) that for such a
map, the number of allowed patterns of f grows at most exponentially, i.e., there is a constant C such that
|Allown(f)| < Cn for n large enough. The value of C is related to the topological entropy of f (see (4)
for details). Since the growth of the total number of permutations of length n is super-exponential, the
above proposition follows.

Proposition 1.1, together with the above observation that Allow(f) is closed under consecutive pattern
containment, provides an interesting connection between dynamical systems on one-dimensional interval
maps and pattern avoiding permutations. An important application is that forbidden patterns can be used
to distinguish random from deterministic time series. Indeed, in a sequence (x1, x2, x3, . . . ) where each
xi has been chosen independently at random from some continuous probability distribution, any pattern
π ∈ Sn appears as π = ρ([xi, xi+1, . . . , xi+n−1]) for some i with nonvanishing probability, and this
probability approaches one as the length of the sequence increases. On the other hand, if the sequence has
been generated by defining xk+1 = f(xk) for k ≥ 1, where f : I → I is a piecewise monotone map, then
Proposition 1.1 guarantees that some patterns (in fact, most of them) will never appear in the sequence.
The practical aspect of these applications has been considered in (3).

A structural property of the set of allowed patterns of a map is that it is closed under consecutive pattern
containment. A new and interesting direction of research is to study more properties of the sets Allow(f).
Some natural problems that arise are the following.

1. Understand how Allow(f) and BF(f) depend on the map f .
2. Describe and/or enumerate (exactly or asymptotically) Allow(f) and BF(f) for a particular f .
3. Among the sets of patterns Σ such that Avn(Σ) grows at most exponentially in n (this is a necessary

condition), characterize those for which there exists a map f such that BF(f) = Σ.
4. Given a map f , determine the length of its smallest forbidden pattern.

Most of this paper is devoted to solving problem 2 for a specific family of maps, that we describe next.
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1.3 One-sided shifts
We will concentrate on the set of allowed patterns of certain maps called one-sided shift maps, or simply
shifts for short. For a detailed definition of the associated dynamical system, called the one-sided shift
space, we refer the reader to (1).

The totally ordered set X considered above will now be the setWN = {0, 1, . . . , N − 1}N of infinite
words on N symbols, equipped with the lexicographic order. Define the (one-sided) shift transformation

ΣN : WN −→ WN

w1w2w3 . . . 7→ w2w3w4 . . . .

We will use Σ instead of ΣN when it creates no confusion.
Given w ∈ WN , n ≥ 1, and π ∈ Sn, we have from the above definition that Pat(w,Σ, n) = π if, for

all indices 1 ≤ i, j ≤ n, Σi−1(w) < Σj−1(w) if and only if π(i) < π(j). For example,

Pat(2102212210 . . . ,Σ, 7) = [4, 2, 1, 7, 5, 3, 6], (1)

because the relative order of the successive shifts is
2102212210 . . . 4
102212210 . . . 2
02212210 . . . 1
2212210 . . . 7
212210 . . . 5
12210 . . . 3
2210 . . . 6,

regardless of the entries in place of the dots. The case N = 1 is trivial, since the only allowed pattern of
Σ1 is the permutation of length 1. In the rest of the paper, we will assume that N ≥ 2.

If x ∈ {0, 1, . . . , N − 1}, we will use the notation x∞ = xxx . . . . If w ∈ WN , then wn denotes
the n-th letter of w, and we write w = w1w2w3 . . . . We will also write w[k,`] = wkwk+1 . . . w`, and
w[k,∞) = wkwk+1 . . . . Note that w[k,∞) = Σk−1(w).

It is shown in (1) that ΣN has the same set of forbidden patterns as the so-called sawtooth map defined
by x 7→ Nx mod 1 for x ∈ [0, 1]. This map is piecewise linear, and therefore has forbidden patterns by
Proposition 1.1. Forbidden patterns of shift systems were first studied in (1), where the main result is the
following.

Proposition 1.2 ((1)) Let N ≥ 2. We have that

(a) Forbn(ΣN ) = ∅ for every n ≤ N + 1,
(b) Forbn(ΣN ) 6= ∅ for every n ≥ N + 2.

Example 1. It can be checked that the smallest forbidden patterns of Σ4 are 615243, 324156, 342516,
162534, 453621, 435261.

Recall that a word w ∈ {0, 1, . . . , N − 1}k is primitive if it cannot be written as a power of any proper
subword, i.e., it is not of the form w = um for any m > 1, where the exponent indicates concatenation
of u with itself m times. Let ψN (k) denote the number of primitive words of length k over an N -letter
alphabet. It is well known that ψN (k) =

∑
d|k µ(d)Nk/d, where µ denotes the Möbius function.
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2 The number of symbols needed to realize a pattern
Given a permutation π ∈ Sn, let N(π) be the smallest number N such that π ∈ Allow(ΣN ). The value
of N(π) indicates what is the minimum number of symbols needed in the alphabet in order for π to be
realized by a shift. For example, if π = [4, 2, 1, 7, 5, 3, 6], then N(π) ≤ 3 because of equation (1), and it
is not hard to see that N(π) = 3. The main result in this section is a formula for N(π).

Theorem 2.1 Let n ≥ 2. For any π ∈ Sn, N(π) is given by

N(π) = 1 + |A(π)|+ ∆(π), (2)

where

A(π) = {a : 1 ≤ a ≤ n−1 such that if i = π−1(a), j = π−1(a+1), then i, j < n and π(i+1) > π(j+1)},

and ∆(π) = 0 except in the following three cases, in which ∆(π) = 1:
(I) π(n) /∈ {1, n}, and if i = π−1(π(n)− 1), j = π−1(π(n) + 1), then π(i+ 1) > π(j + 1);

(II) π(n) = 1 and π(n− 1) = 2; or
(III) π(n) = n and π(n− 1) = n− 1.

Note that A(π) is the set of entries a in the one-line notation of π such that the entry following a + 1
is smaller than the entry following a. For example, if π = [4, 3, 6, 1, 5, 2], then A(π) = {3, 4, 5}, so
Theorem 2.1 says that N(π) = 1 + 3 + 0 = 4. The following lemma, whose proof is omitted here, will
be useful in the proof.

Lemma 2.2 Suppose that Pat(w,Σ, n) = π.
1. If 1 ≤ i, j < n, π(i) < π(j), and π(i+ 1) > π(j + 1), then wi < wj .
2. If 1 ≤ i < k ≤ n are such that |π(i)− π(k)| = 1, then the word w[i,k−1] is primitive.

We will prove Theorem 2.1 in two parts. First we show that N(π) ≥ 1 + |A(π)| + ∆(π) by proving
that if w ∈ WN is such that Pat(w,Σ, n) = π, then necessarily N ≥ 1 + |A(π)| + ∆(π). This fact is a
consequence of the following lemma.

Lemma 2.3 Suppose that Pat(w,Σ, n) = π, and let b = π(n). The entries of w satisfy

wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(n), (3)

with strict inequalities wπ−1(a) < wπ−1(a+1) for each a ∈ A(π). Additionally, if ∆(π) = 1, then in each
of the three cases from Theorem 2.1 we have, respectively, that

(I) one of the inequalities wπ−1(b−1) ≤ wn ≤ wπ−1(b+1) is strict;
(II) · · · ≤ wn+2 ≤ wn+1 ≤ wn ≤ wn−1 and one of these inequalities is strict;

(III) wn−1 ≤ wn ≤ wn+1 ≤ wn+2 ≤ · · · and one of these inequalities is strict.

In all cases, the entries of w must satisfy |A(π)|+ ∆(π) strict inequalities.

Proof: The condition Pat(w,Σ, n) = π is equivalent to

w[π−1(1),∞) < w[π−1(2),∞) < · · · < w[π−1(n),∞), (4)
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which clearly implies equation (3). If we remove the term wn from it, we get
(a) wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(b−1) ≤ wπ−1(b+1) ≤ · · · ≤ wπ−1(n) if b /∈ {1, n},
(b) wπ−1(2) ≤ wπ−1(3) ≤ · · · ≤ wπ−1(n) if b = 1,
(c) wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(n−1) if b = n.

(5)

For every a ∈ A(π), the inequality wπ−1(a) < wπ−1(a+1) in (5) has to be strict, by Lemma 2.2 with
i = π−1(a) and j = π−1(a + 1). Let us now see that in the three cases when ∆(π) = 1, an additional
strict inequality must be satisfied.

Consider first case (I). Let i = π−1(b − 1) and j = π−1(b + 1). Since π(i + 1) > π(j + 1),
Lemma 2.2 implies that wi < wj , so the inequality wπ−1(b−1) < wπ−1(b+1) (equivalently, wi < wj)
in (5a) has to be strict. In case (II), the leftmost inequality in (4) is w[n,∞) < w[n−1,∞). For this
to hold, we need · · · ≤ wn+2 ≤ wn+1 ≤ wn ≤ wn−1 and at least one of these inequalities must
be strict. Similarly, in case (III), the rightmost inequality in (4) is w[n−1,∞) < w[n,∞). This forces
wn−1 ≤ wn ≤ wn+1 ≤ wn+2 ≤ · · · with at least one strict inequality. 2

We will refer to the |A(π)| + ∆(π) strict inequalities in Lemma 2.3 as the required strict inequalities.
Combined with the weak inequalities from the lemma, they force the number of symbols used in w to be
at least 1 + |A(π)|+ ∆(π). Examples 2 and 3 illustrate how this lemma is used.

Now we show that N(π) ≤ 1 + |A(π)| + ∆(π). We will show how for any given π ∈ Sn one can
construct a word w ∈ WN with Pat(w,Σ, n) = π, where N = 1 + |A(π)|+ ∆(π). We need w to satisfy
condition (4). Again, let b = π(n).

The first important observation is that, if we can only useN different symbols, then the |A(π)|+∆(π) =
N − 1 required strict inequalities from Lemma 2.3 determine the values of the entries w1w2 . . . wn−1.
This fact is restated as Corollary 2.9. Consequently, we are forced to assign values to these entries as
follows:

(a) If b /∈ {1, n}, assign values to the variables in equation (5a) from left to right, starting with
wπ−1(1) = 0 and increasing the value by 1 at each required strict inequality.

(b) If b = 1, assign values to the variables in equation (5b) from left to right, starting with wπ−1(2) = 0
if π(n− 1) 6= 2, or with wπ−1(2) = 1 if π(n− 1) = 2 (this is needed in order for condition (II) in
Lemma 2.3 to hold), and increasing the value by 1 at each required strict inequality.

(c) If b = n, assign values to the variables in equation (5c) from left to right, starting with wπ−1(1) = 0
and increasing the value by 1 at each required strict inequality. (Note that when ∆(π) = 1, the last
assigned value is wπ−1(n−1) = wn−1 = |A(π)| = N − 2.)

It remains to assign the values to wm for m ≥ n. Before we do this, let us prove some facts about the
entries w1 . . . wn−1. In the following two lemmas, whose proof can be found in (5), π is any permutation
in Sn with N(π) = N and w1 . . . wn−1 are the values in {0, 1, . . . , N − 1} assigned above in order to
satisfy the required strict inequalities.

Lemma 2.4 Let i < n. If π(i) > π(i+ 1), then wi ≥ 1. If π(i) < π(i+ 1), then wi ≤ N − 2.

Lemma 2.5 If 1 ≤ i, j < n are such that π(i) < π(j) and π(i+ 1) > π(j + 1), then wi < wj .

Once the values w1 . . . wn−1 have been determined, there are several ways to assign values to wm for
m ≥ n. Two possibilities are the following.
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A. Assume that b 6= n. Let k = π−1(b + 1). Let u = w1w2 . . . wk−1 and p = wkwk+1 . . . wn−1.
Let m be any integer satisfying m ≥ 1 + n−2

n−k (for definiteness, we can pick m = n − 1). Let
wA(π) = upm0∞.

B. Assume that b 6= 1. Let k = π−1(b − 1). Let u = w1w2 . . . wk−1 and p = wkwk+1 . . . wn−1.
Again, let m be such that m ≥ 1 + n−2

n−k (for definiteness, we can pick m = n− 1). Let wB(π) =
upm(N−1)∞.

Clearly, wA(π) and wB(π) use N different symbols. It remains to prove that if w is any of these two
words, Pat(w,Σ, n) = π, which is equivalent to showing that w satisfies condition (4). Let us now prove
that this is the case for w = wA(π), when b 6= n.

In the following two lemmas (see the proof in (5)) and in Proposition 2.8, π is any permutation in Sn
with π(n) 6= n, and w = wA(π). Also, k, u, p and m are as defined in case A above.

Lemma 2.6 The word p = wkwk+1 . . . wn−1 is primitive and has some nonzero entry.

Lemma 2.7 We have that w[n,∞) < w[k,∞). Moreover, there is no 1 ≤ s ≤ n such that w[n,∞) <
w[s,∞) < w[k,∞).

Proposition 2.8 If 1 ≤ i, j ≤ n are such that π(i) < π(j), then w[i,∞) < w[j,∞).

The above proposition proves that Pat(wA(π),Σ, n) = π. If b 6= 1, proving that Pat(wB(π),Σ, n) =
π is analogous. We can complete the proof of the upper bound on N(π) as follows. Let π ∈ Sn be given,
and letN = 1+|A(π)|+∆(π). If π(n−1) > π(n), letw = wA(π). If π(n−1) < π(n), letw = wB(π).
Since Pat(w,Σ, n) = π and w ∈ WN , the theorem is proved.

Example 2. Let π = [4, 3, 6, 1, 5, 2]. By Theorem 2.1, N(π) = 4. If Pat(w,Σ, n) = π, then Lemma 2.3
implies that w4 ≤ w6 ≤ w2 < w1 < w5 < w3, and there are no more required strict inequalities. We
assign w4 = w2 = 0, w1 = 1, w5 = 2, w3 = 3. Since π(5) > π(6) and b = π(6) = 2, we can take
w = wA(π) (with m = 2), so k = π−1(3) = 2, u = w1 = 1, and p = w2w3w4w5 = 0302. We get
w = up20∞ = 1030203020∞.

The following consequence of the proof of Theorem 2.1 will be used in Section 4.

Corollary 2.9 Let π ∈ Sn, N = N(π), and let w ∈ WN be such that Pat(w,Σ, n) = π. Then the
entries w1w2 . . . wn−1 are uniquely determined by π.

Note that, however, with the conditions of Corollary 2.9, wn is not always determined. In the case that
π(n) /∈ {1, n} and ∆(π) = 1, we have two choices for wn. In general, there is a lot of flexibility in the
choice of wm for m ≥ n. The choices w = wA(π) and w = wB(π) in the proof of Theorem 2.1 were
made to simplify the proof of Proposition 2.8 for all cases at once.

3 An equivalent characterization
We start this section by giving an expression for N(π) that is sometimes more convenient to work with
than the one in Theorem 2.1. We denote by Cn the set of permutations in Sn whose cycle decomposition
consists of a unique cycle of length n. Let Tn be the set of permutations π ∈ Cn with one distinguished
entry π(i), for some 1 ≤ i ≤ n. We call the elements of Tn marked cycles. We will use the symbol
? to denote the distinguished entry, both in one-line and in cycle notation. Note that it is not necessary
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to keep track of its value, since it is determined once we know all the remaining entries. For example,
T3 = {[?, 3, 1], [2, ?, 1], [2, 3, ?], [?, 1, 2], [3, ?, 2], [3, 1, ?]}. Clearly, |Tn| = (n− 1)! · n = n!, since there
are n ways to choose the distinguished entry.

Define a map θ : Sn → Tn sending π 7→ π̂ as follows. For each 1 ≤ i ≤ n with i 6= π(n), let π̂(i)
be the entry immediately to the right of i in the one-line notation of π. For i = π(n), let π̂(i) = ? be the
distinguished entry.

We can also give the following equivalent definition of π̂. If π = [π(1), π(2), . . . , π(n)], then π̂ is the
permutation with cycle decomposition (π(1), π(2), . . . , π(n)) with the entry π(1) distinguished. We write
π̂ = (?, π(2), . . . , π(n)). For example, if π = [8, 9, 2, 3, 6, 4, 1, 5, 7], then π̂ = (?, 9, 2, 3, 6, 4, 1, 5, 7), or
in one-line notation, π̂ = [5, 3, 6, 1, 7, 4, ?, 9, 2].

The map θ is a bijection between Sn and Tn, since it is clearly invertible. Indeed, to recover π from
π̂ ∈ Tn, write π̂ in cycle notation, replace the ? with the entry in {1, . . . , n} that is missing, and turn the
parentheses into brackets, thus recovering the one-line notation of π.

For π̂ ∈ Tn, let des(π̂) denote the number of descents of the sequence that we get by deleting the ?
from the one-line notation of π̂. That is, if π̂ = [a1, . . . , aj , ?, aj+1, . . . , an−1], then des(π̂) = |{i : 1 ≤
i ≤ n− 2, ai > ai+1}|. We can now state a simpler formula for N(π).

Proposition 3.1 Let π ∈ Sn, π̂ = θ(π). Then N(π) is given by

N(π) = 1 + des(π̂) + ε(π̂),

where

ε(π̂) =

{
1 if π̂ = [?, 1, . . . ] or π̂ = [. . . , n, ?],
0 otherwise.

For example, if π = [8, 9, 2, 3, 6, 4, 1, 5, 7], then π̂ = [5, 3, 6, 1, 7, 4, ?, 9, 2] has 4 descents, so N(π) =
1 + 4 + 0 = 5. If π = [8, 9, 3, 1, 4, 6, 2, 7, 5], then π̂ = [4, 7, 1, 6, ?, 2, 5, 9, 3] has 3 descents, so N(π) =
1 + 3 + 0 = 4. If π = [3, 4, 2, 1], then π̂ = [?, 1, 4, 2] has 1 descent, so N(π) = 1 + 1 + 1 = 3.

If π ∈ Sn, we have by definition that N(π) = min{N : π /∈ Forbn(ΣN )} = min{N : π ∈
Allown(ΣN )}. As a consequence of Proposition 3.1 we recover Proposition 1.2, which in terms of the
statistic N(π) can be reformulated as follows.

Corollary 3.2 Let n ≥ 3. We have that

(a) for every π ∈ Sn, N(π) ≤ n− 1;
(b) there is some π ∈ Sn such that N(π) = n− 1.

We define Sn,N = {π ∈ Sn : N(π) = N}. We are interested in the numbers an,N = |Sn,N |. To
avoid the trivial cases, we will assume that n,N ≥ 2. From the definitions, Allown(ΣM ) =

⋃M
N=2 Sn,N ,

Forbn(ΣM ) =
⋃n−1
N=M+1 Sn,N . Since the sets Sn,N are disjoint, we have that

|Allown(ΣM )| =
M∑
N=2

an,N , |Forbn(ΣM )| =
n−1∑

N=M+1

an,N .

The first few values of an,N are given in Table 1. By symmetry considerations (5) it follows easily that
all the an,N are even.
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n\N 2 3 4 5 6 7
2 2
3 6
4 18 6
5 48 66 6
6 126 402 186 6
7 306 2028 2232 468 6
8 738 8790 19426 10212 1098 6

Tab. 1: The numbers an,N = |{π ∈ Sn : N(π) = N}| for n ≤ 8.

The next result shows that, independently of n, there are exactly six permutations of length n that
require the maximum number of symbols (i.e., n − 1) in order to be realized. This settles a conjecture
from (1). Given a permutation π ∈ Sn, we will use πrc to denote the permutation such that πrc(i) =
n+ 1− π(n+ 1− i) for 1 ≤ i ≤ n. If σ is a marked cycle, then σrc is defined similarly, where if σ(i) is
the marked entry of π, then σrc(n + 1 − i) is the marked entry of σrc. It will be convenient to visualize
π ∈ Sn as an n× n array with dots in positions (i, π(i)), for 1 ≤ i ≤ n. The first coordinate refers to the
row number, which increases from left to right, and the second coordinate is the column number, which
increases from bottom to top. Then, the array of πrc is obtained from the array of π by a 180-degree
rotation. Of course, the array of π−1 is obtained from the one of π by reflecting it along the diagonal
y = x. Notice also that the cycle structure of π is preserved in π−1 and in πrc. A marked cycle can be
visualized in the same way, replacing the dot corresponding to the distinguished element with a ?.

Proposition 3.3 For every n ≥ 3, an,n−1 = 6.

Proof: First we show that an,n−1 ≥ 6 by giving six permutations in Sn,n−1. Let m = dn/2e, and let

σ = [n, n− 1, . . . ,m+ 1, ?,m,m− 1, . . . , 2], τ = [?, 1, n, n− 1 . . . ,m+ 2,m,m− 1, . . . , 2] ∈ Tn

(see Figure 1). Using Proposition 3.1, it is easy to check that if π̂ ∈ {σ, σrc, σ−1, (σ−1)rc, τ, τ rc}, then
N(π) = n− 1, and that the six permutations in the set are different.

Fig. 1: The arrays of σ and τ for n = 8, with dotted lines indicating the cycle structure.

Let us now show that there are no other permutations with N(π) = n− 1. We know by Proposition 3.1
that N(π) = n− 1 can only happen if des(π̂) = n− 2, or if des(π̂) = n− 3 and ε(π̂) = 1.
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Case 1: des(π̂) = n− 2. In this case, all the entries in π̂ other that the ? must be in decreasing order. If
the distinguished entry is neither π̂(1) nor π̂(n), then the ? must be replacing either 1 or n; otherwise we
would have that π̂(1) = n and π̂(n) = 1, so π̂ would not be an n-cycle. It follows that in the array of π̂,
the entry corresponding to the ? is either in the top or bottom row, or in the leftmost or rightmost column.

If the ? is replacing 1 (i.e, it is is the bottom row of the array), we claim that the only possible n-cycle
in which the other entries are in decreasing order is π̂ = σ. Indeed, if we consider the cycle structure
of π̂ = (1, π̂(1), π̂2(1), . . . , π̂n−1(1)), we see that π̂(1) = n and π̂2(1) = π̂(n) = 2. Now, π̂i(1) 6= 1
for 3 ≤ i ≤ n − 1, so the decreasing condition on the remaining entries forces π̂3(1) = π̂(2) = n − 1,
π̂4(1) = π̂(n − 1) = 3, and so on. A similar argument, considering that rotating the array 180 degrees
preserves the cycle structure, shows that if the ? is replacing n (i.e, it is in the top row of the array), then
necessarily π̂ = σrc.

If the distinguished entry is π̂(1) (i.e, it is in the leftmost column of the array), then a symmetric
argument, reflecting the array along y = x), shows that π̂ = σ−1. Similarly, if the distinguished entry is
π̂(n) (i.e, it is is the rightmost column of the array), then necessarily π̂ = (σ−1)rc.

Case 2: des(π̂) = n− 3 and ε(π̂) = 1. The second condition forces π̂ = [?, 1, . . . ] or π̂ = [. . . , n, ?].
Let us restrict to the first case (the second one can be argued in a similar way if we rotate the array 180
degrees). We must have π̂(3) > π̂(4) > · · · > π̂(n). We claim that the only such π̂ that is also an
n-cycle is π̂ = τ . Indeed, looking at the cycle structure π̂ = (π̂−(n−1)(1), . . . , π̂−1(1), 1), we see that
π̂−1(1) = 2. Now, π̂−i(1) 6= 1 for 2 ≤ i ≤ n − 1, so the decreasing condition on the remaining entries
forces π̂−2(1) = π̂−1(2) = n, π̂−3(1) = π̂−1(n) = 3, π̂−4(1) = π̂−1(3) = n− 1, and so on. 2

4 The number of allowed patterns of a shift
In the rest of the paper, we will assume for simplicity thatwA(π) andwB(π) are defined takingm = n−1,
so they are of the form upn−1x∞, with x = 0 or x = N − 1 respectively. The following variation of
Lemma 2.7 will be useful later.

Lemma 4.1 Let w = upn−10∞ ∈ WN , where |u| = k − 1 and |p| = n − k for some 1 ≤ k ≤ n − 1,
and p is primitive. If π = Pat(w,Σ, n) is defined, then π(n) = π(k)− 1.

For n ≥ 2, the set of patterns of length n that are realized by the shift on two symbols is Allown(Σ2) =
Sn,2. The next result gives the number of these permutations. Recall that an,2 = |Sn,2| and that ψ2(t) is
the number of primitive binary words of length t.

Theorem 4.2 For n ≥ 2,

an,2 =
n−1∑
t=1

ψ2(t)2n−t−1.

Proof: Fix n ≥ 2. We will construct a set W ⊂ W2 with the following four properties:

(i) for all w ∈W , Pat(w,Σ2, n) is defined,
(ii) for all w,w′ ∈W with w 6= w′, we have that Pat(w,Σ2, n) 6= Pat(w′,Σ2, n),

(iii) for all π ∈ Allown(Σ2), there is a word w ∈W such that Pat(w,Σ2, n) = π,
(iv) |W | =

∑n−1
t=1 ψ2(t)2n−t−1.
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Properties (i)-(iii) imply that the map from W to Sn,2 sending w to Pat(w,Σ2, n) is a bijection. Thus,
an,2 = |W | and the result will follow from property (iv).

Let

W =
n−1⋃
t=1

{upn−1x∞ : u ∈ {0, 1}n−t−1, p ∈ {0, 1}t is a primitive word, and x = p̄t},

where we use the notation 0̄ = 1, 1̄ = 0. Given binary words u, p of lengths n− t− 1 and t respectively,
where p is primitive, and x = p̄t, we will denote v(u, p) = upn−1x∞.

To see that W satisfies (i), we have to show that for any w ∈ W and any 1 ≤ i < j ≤ n, we have
w[i,∞) 6= w[j,∞). This is clear because if x = 0 (resp. x = 1) both w[i,∞) and w[j,∞) end with 10∞ (resp.
01∞), with the last 1 (resp. 0) being in different positions in w[i,∞) and w[j,∞).

Now we prove thatW satisfies (ii). Let u, u′ be binary words of lengths n−t−1, n−t′−1, respectively,
and let p, p′ be primitive binary words of lengths t, t′, respectively. Let w = v(u, p) and w′ = v(u′, p′),
and let π = Pat(w,Σ2, n), π′ = Pat(w′,Σ2, n). We assume that w 6= w′, and want to show that π 6= π′.
From w 6= w′ it follows that u 6= u′ or p 6= p′.

Corollary 2.9 for N = 2 implies that if w1w2 . . . wn−1 6= w′1w
′
2 . . . w

′
n−1, then Pat(w,Σ2, n) 6=

Pat(w′,Σ2, n). In particular, if t = t′, then up 6= u′p′, so π 6= π′.
We are left with the case that t 6= t′and up = u′p′ = w1w2 . . . wn−1. Let us first assume thatwn−1 = 1

(and so pt = p′t′ = 1). By Lemma 4.1 with k = n− t, we have that π(n) = π(n− t)− 1, and similarly
π′(n) = π′(n−t′)−1. If we had that π = π′, then π(n) = π′(n) and so π(n−t) = π′(n−t′) = π(n−t′).
But t 6= t′, so this is a contradiction. In the case wn−1 = 0, an analogous argument to the proof of
Lemma 4.1 implies that w[n−t,∞) = pn−11∞ < pn−21∞ = w[n,∞) and there is no s such that w[s,∞) is
strictly in between the two. Thus, π(n) = π(n − t) + 1, and similarly π′(n) = π′(n − t′) + 1, so again
π 6= π′.

To see that W satisfies (iii) we use the construction from the proof of the upper bound in Theorem 2.1.
Let π ∈ Allown(Σ2). If π(n − 1) > π(n), let w = wA(π) = upn−10∞. By Lemma 2.4, wn−1 = 1, so
w ∈ W . Similarly, if π(n − 1) < π(n), let w = wB(π) = upn−11∞. Then wn−1 = 0, so w ∈ W . In
both cases, Pat(w,Σ2, n) = π, so this construction is the inverse of the map w 7→ Pat(w,Σ2, n).

To prove (iv), observe that the union in the definition of W is a disjoint union. This is because the value
of t determines the position of the last entry in w that is not equal to x. For fixed t, there are 2n−t−1

choices for u and ψ2(t) choices for t, so the formula follows. 2

Example 3. For n = 4, we have

W = {00 0 0 0 1∞, 00 1 1 1 0∞, 01 0 0 0 1∞, 01 1 1 1 0∞, 10 0 0 0 1∞, 10 1 1 1 0∞, 11 0 0 0 1∞, 11 1 1 1 0∞,
0 01 01 01 0∞, 0 10 10 10 1∞, 1 01 01 01 0∞, 1 10 10 10 1∞,

001 001 001 0∞, 010 010 010 1∞, 011 011 011 0∞, 100 100 100 1∞, 101 101 101 0∞, 110 110 110 1∞},

where each word is written as w = u p p p x∞. The permutations corresponding to these words are

Allow4(Σ2) = {1234, 1243, 3412, 1432, 4123, 2143, 4312, 4321,
1342, 1324, 4231, 4213,

2341, 2413, 2431, 3124, 3142, 3214}.
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Theorem 4.2 can be generalized to find a formula for the numbers an,N , which count permutations that
can be realized by the shift on N symbols but not by the shift on N − 1 symbols. The proof of the next
result is more involved and is omitted here due to lack of space, but it can be found in (5).

Theorem 4.3 For any n,N ≥ 2,

an,N =
N−2∑
i=0

(−1)i
(
n

i

)(
(N − i− 2)(N − i)n−2 +

n−1∑
t=1

ψN−i(t)(N − i)n−t−1

)
. (6)

We finish with two curious conjectures that came up while studying forbidden patterns of shift systems.
They are derived from experimental evidence, and it would be interesting to find combinatorial proofs.

For the first one, let T 0
n be the set of n-cycles where one entry has been replaced with 0. The set T 0

n is
essentially the same as Tn, with the only difference that the ? symbol in each element is replaced with a 0,
so that it produces a descent if there is an entry to its left. We have checked this conjecture by computer
for n up to 9.

Conjecture 4.4 For any n and any subset D ⊆ {1, 2, . . . , n− 1},

|{σ ∈ T 0
n : D(σ) = D}| = |{π ∈ Sn : D(π) = D}|.

In particular, the statistic des has the same distribution in T 0
n as in Sn, i.e,∑

σ∈T 0
n

xdes(σ)+1 = An(x).

Our last conjecture concerns a divisibility property of the numbers an,N which is not apparent from
Theorem 4.3.

Conjecture 4.5 For every n,N ≥ 3, an,N is divisible by 6.
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Abstract. The median problem seeks a permutation whose total distance to a given set of permutations (the base set) is
minimal. This is an important problem in comparative genomics and has been studied for several distance measures
such as reversals. The transposition distance is less relevant biologically, but it has been shown that it behaves
similarly to the most important biological distances, and can thus give important information on their properties.
We have derived an algorithm which solves the transposition median problem, giving all transposition medians (the
median cloud). We show that our algorithm can be modified to accept median clouds as elements in the base set and
briefly discuss the new concept of median iterates (medians of medians) and limit medians, that is the limit of this
iterate.

Résumé. Le problème de la médiane est de trouver une permutation dont la distance totale à un ensemble donné de
permutations (l´ensemble de base) est minimale. C’est un problème important en génomique comparative et il a été
étudié pour certaines mesures de distance. La distance de transposition n’est pas directement liée à la biologie, mais
il a été démontré que son comportement est similaire à celui des distances biologiques essentielles, et elle peut donc
donner des indications sur leurs propriétés. Nous construisons un algorithme qui résoud le problème de la médiane
pour la transposition, et donne toutes les transpositions médianes (le nuage des médianes). Nous démontrons que
notre algorithme peut être modifié pour admettre des nuages de médianes comme éléments de l´ensemble de base et
introduisons le concept de médianes itérées (médianes de médianes) et de médianes limites, c-à-d de limites de ces
itérations.

Keywords: median, transposition, reversal, DCJ, median cloud

1 Introduction
The median problem in comparative genomics calls for a permutation such that the total distance to a
given set S of permutations is minimised. Using the permutations in S as models for some species’
genomes, by regarding the genome as a permutation of the genes therein, the median permutation is an
approximation of the gene order of these species’ closest ancestor. Using median computations, biologists
can infer phylogenetic trees, which show how different species are related (8; 2; 7; 1).

The gene order typically changes in a species by reversals, where a segment is taken out and inserted
backwards at the same place (changing for instance 1234567 to 1543267), block transpositions, where a
segment is taken out and inserted, possibly backwards, at another place (changing 1234567 to 1456237,
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for instance), or Double Cut and Join (DCJ), which generalise reversals to genomes with several chromo-
somes, noting that a reversal can be seen as cutting the genome in two places and then putting it together
again). Usually one also attaches a sign (+/-) to each gene, changing the sign of every gene in a reversed
segment to indicate that the reading directions of these genes have been flipped. Distances are measured
in the number of operations (reversals, block transposition, DCJ or combinations) needed to transform
one permutation into another. There are also simpler distances, such as the number of elements in one
permutation which are followed by different elements in the two permutations under comparison. Such
positions are called breakpoints.

Depending on which distance measure we use, the median problem may be easy or hard. However,
for all these distances, including the simple breakpoint distance, the median problem is NP-hard, see
(4; 9; 11; 10) and references in the latter. Thus, variations on this problem which could shed some light
on how to simplify it are most welcome.

In this paper, we consider the median problem under the usual transposition distance (exchanging po-
sitions of any two elements). While this operation has no relevance in genomic development, the distance
function behaves very similarly to the reversal and the DCJ distances for signed genomes (6), which both
take the number of genes, subtract the number of cycles and then add some more terms which for most
permutations are zero (3). Studying the transposition median would therefore be regarded as a somewhat
simpler version of the reversal median and the DCJ median.

We give a branch and bound algorithm which computes the transposition median. This algorithm
resembles algorithms for the reversal median (4) and the DCJ median (12; 11) and has a comparable
running time. We conjecture that the transposition median problem is NP-hard as well and expect that this
can be proved by using the same techniques as Caprara, but it does not seem trivial to change his proof
for undirected graphs into a similar proof for directed graphs.

Interestingly, this algorithm gives all transposition medians. Previous studies of the transposition me-
dian have explained why transposition medians, and medians in general, are not unique when the base
set is fairly separated (5). We now consider the entire set of medians, here called the median cloud, and
try to extract more information from it than we would get from any single median. We also revise the
algorithm to accept median clouds in the base set, instead of only permutations.

First, we consider what happens when we compute the median of a median cloud. There are reasons to
believe that the second median would be closer to the true ancestor, and this is also the case, even though
the difference is not large. Iterating ad infinitum, we obtain the limit median, in case of convergence. We
give some results on the appearance of the limit median.

Second, we give an example on how median clouds can be used to enhance computations of inner nodes
in a given phylogeny. We show that methods based on median cloud in general outperform methods based
on a single genome.

There are good reasons to believe that median solvers for other distances (breakpoints, reversals, DCJ)
can be extended to compute median clouds and accepting them in their base sets. We are thus confident
that our results will improve on biologically relevant median computations.

2 Background and definitions
Let S = {π1, π2, . . . , πk}, πi ∈ Sn, be a set of permutations called the base set. We will use both one
line notation (for example π = 3412) and cycle notation (π = (13)(24)). Unless otherwise stated, k is
the number of elements in S and n is the length of the permutations. Given any distance function d(·, ·)
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between two permutations, the distance between a permutation π ∈ Sn and S is defined to be

d(π, S) =
∑
i

d(π, πi)

and a median is any µ ∈ Sn which minimises d(µ, S). The set of medians is denoted M(S) and we let
d(S) = d(µ, S) for µ ∈ M(S). The choice of distance measure d(·, ·) gives rise to several interesting
median problems; in this article we focus on the transposition median problem (TMP).

It is well known that the following bounds for d(S) hold under any metric distance.

Lemma 2.1 For any distance measure d(·, ·), the median distance d(S) for S = {π1, . . . , πk} is bounded
by ∑

i<j

d(πi, πj)

k − 1
≤ d(S) ≤ min

i

∑
j

d(πi, πj).

Proof: For the lower bound, we note that by the triangle inequality, d(πi, πj) ≤ d(µ, πi) + d(µ, πj), and
hence

∑
i<j d(πi, πj) ≤ (k − 1)

∑
i d(µ, πi). The upper bound is the minimum of d(πi, S). 2

We note that the upper bound gives a (2− 2/k)-approximation of d(S), and hence the median problem
is trivial for k ≤ 2, as expected. In addition, since the transposition distance changes parity for every
transposition applied, we can always assign edge lengths in the tree with three (or less) genomes as leaves
and a single inner node, which attains the lower limit without breaking the triangle inequality. However,
we can not always find a median which attains the lower bound. For k ≥ 4, the lower limit is only rarely
realisable in the tree without breaking the triangle inequality.

Example 2.1 Consider the three permutations in (a) with given transposition distances. The tree which
attains the lower limit can be found in (b). In this case, the unique median which attains the lower limit is
µ = 423156. On the other hand, the base set S in (c) has dtrp(S) strictly larger than the lower limit; in
fact, M(S) = S, giving dtrp(S) = 4, while the lower limit is 3. In (d), with the distances given, the lower
limit of 12 is clearly not attainable; indeed, the top and bottom edges demand dtrp(S) ≥ 14.
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In the following, the term graph refers to edge coloured directed graphs G = (V (G), E(G)), unless

otherwise stated. An edge from v1 to v2 of colour j is denoted (v1
j−→ v2). By degin(G, v, j) = |{u :

(u
j−→ v)}| and degout(G, v, j) = |{u : (v

j−→ u)}| we denote the in/out-degree of colour j at vertex v.
The number of edges from u to v in G is denoted |(u −→ v)|G, suppressing G if no confusion can arise.
An alternating path with colours c1 and c2 in a graph G is a sequence of vertices v1, v2, . . . , v2m such
that G contains edges (v2i−1

c1−→ v2i) coloured c1 for 1 ≤ i ≤ m and edges (v2i
c2−→ v2i+1) coloured c2
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3
(2 4 1)

1 2

3 4

Fig. 1: A cycle graph G(S, µ2) with S = {3142, 3412, 4321} and µ2 = ·4 · 1, where a dot at position i indicates
that i /∈ A2, and its reduced graph red(G).

for 1 ≤ i ≤ m− 1, and j = i+ 2a⇒ vi 6= vj for a > 0. A maximal alternating path is an alternating
path which cannot be elongated, and an alternating cycle is an alternating path with v2m−1 = v1.

Let µb be a partial permutation with b values, that is µb is an injective map from Ab ⊆ [n] to [n] with
|Ab| = b. Our algorithm will give a sequence {µ1, µ2, . . . , µn} such that A1 ⊂ A2 ⊂ · · · ⊂ An and
µc(j) = µb(j) for c ≤ b and j ∈ Ac. We thus tacitly assume that if µb(u) = v, then µj(u) = v for all
j ≥ b. Any µn fulfilling this criterion for a given µb is called a completion of µb.

The cycle graph of S, G = G(S, µb), is a graph on n vertices labelled 1, . . . , n, with (v1
j−→ v2) if

πj(v1) = v2. It corresponds to the breakpoint graph which is often considered when studying reversal
distance problems, but has directed edges instead of undirected. The cycle graph also contains b edges
of colour k + 1, from here on called black, which indicate the inverse of the partial permutation µb: we
have (v1

k+1−→ v2) if µb(v2) = v1. We may conclude that for all v ∈ V (G) we have degin(G, v, j) =
degout(G, v, j) = 1 for 1 ≤ j ≤ k, and also degin(G, v, k + 1) ≤ 1 and degout(G, v, k + 1) ≤ 1.

Given a cycle graph G = G(S, µb) with b black edges, the reduced cycle graph G′ = red(G) is a
graph defined as follows. For each maximal path (v1

k+1−→ v2
k+1−→ · · · k+1−→ vm) in G, we get the vertex

(v1v2 . . . vm) in G′. For each maximal alternating path (v1
j−→ v2

k+1−→ · · · j−→ v2m) in G, we add

the edge (v1 . . .)
j−→ (. . . v2m) in G′. We note that since the alternating path is maximal, there is no

black edge going to v1; hence v1 is the first vertex in the black path giving the vertex (v1 . . .) ∈ V (G′),
and similarly v2m is the last vertex in its black path. We thus observe that the reduced cycle graph
G′ = red(G) is a cycle graph on n− b vertices.

Example 2.2 Consider the cycle graph G to the left in Figure 1, with k = 3 and two black edges. With
black edges (2 4−→ 4 4−→ 1), we get the vertex (2 4 1) in red(G) to the right in the figure. With the long
dashes as colour 1, we get the maximal alternating paths (3 1−→ 4 4−→ 1 1−→ 3) and (2 1−→ 1) in G,
giving edges (3 1−→ 3) and ((2 4 1) 1−→ (2 4 1)) in red(G).

3 Efficient bounds on dtrp(µ, S) and optimal assignments
The transposition distance between any two permutations σ, τ ∈ Sn is easy to compute using this classical
theorem.
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Theorem 3.1 The transposition distance between σ ∈ Sn and τ ∈ Sn is given by

dtrp(σ, τ) = n− c(σ−1τ),

where c(π) is the number of cycles in π.

The standard proof uses the fact that any transposition (a b) will either merge the two cycles in σ−1τ
containing a and b, respectively, or split the cycle containing both a and b. In addition, σ−1τ has n cycles
if and only if σ = τ .

The distance between πi and πj in S can of course be computed directly from G(S, µ0). Each cycle in

π−1
i πj corresponds to an alternating cycle with colours i and j, provided that all edges (v1

i−→ v2) are

flipped into (v2
i−→ v1). This alternating cycle may also be written (v1

i←− v2
j−→ v3

i←− · · · j−→ v1).
We thus have c(π−1

i πj) = c(G, i, j), where c(G, i, j) is the number of alternating cycles with colours i
and j in G, provided that the edges coloured i are flipped.

Similarly, the distance between the black coloured median µ = µn and any base permutation πi is
given by the number of alternating cycles with colours k + 1 and i, not flipping any edges since the black
edges give µ−1. We use c(G, i) to denote this quantity. But we can also say something about this distance
given only µb. To this end, we let p(G, i) be the number of maximal alternating paths and cycles with
colours k + 1 and i in G.

Lemma 3.2 Given a cycle graph G = G(S, µb), the transposition distance between any completion µ of
µb and πi ∈ S satisfies

dtrp(µ, πi) ≥ n− p(G, i).

Proof: The lemma is clearly true for b = 0, since p(G(S, µ0), i) = n, and for b = n, since p(G(S, µn), i) =
c(G(S, µn), i). But it is also clear that p(G(S, µb−1), i) − p(G(S, µb), i) ∈ {0, 1}, since adding a black
edge will either turn a path into a cycle or unite two paths. 2

Combining the previous lemma with the upper and lower bounds of Lemma 2.1, we get strong bounds
on dtrp(µ, S), given µb.

Lemma 3.3 Let S = {π1, π2, . . . , πk}, and let G = G(S, µb) and G′ = red(G). For any completion µ
of µb, we have∑

i<j((n− b)− c(G′, i, j))
k − 1

≤ dtrp(µ, S)−
∑
i

(n− p(G, i)) ≤ min
i

∑
j

((n− b)− c(G′, i, j)).

Proof: It follows from Lemma 3.2 that dtrp(µ, S) −
∑

(n − p(G, i)) ≥ 0. This quantity is obtained by
adding black edges to G(S, µb), or equivalently to G′ = red(G(S, µb)). Since G′ is a cycle graph, we
can invoke Lemma 2.1, and this lemma follows. 2

Example 3.1 Returning to Figure 1, the transposition median distance of G(S, µ0) is bounded by (3 +
1 + 2)/2 ≤ dtrp(µ, S) ≤ (1 + 2), that is 3 ≤ dtrp(µ, S) ≤ 3, and thus one permutation in the base set
(the one marked with dots) actually gives a median. For G(S, µ2), we have (1+1+0)/2 ≤ dtrp(µ, S)−
(1 + 1 + 1) ≤ 1 + 0. Thus, any completion of the given µ2 gives dtrp(µ, S) ≥ 4. We have made at least
one bad choice among the black edges.
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We can now make a couple of observations of the influence an added black edge has on the lower limit
of dtrp(µ, S).

Lemma 3.4 Assume we set µb+1(v2) = v1, that is we add the black edge (v1
k+1−→ v2) to G(S, µb),

obtaining G(S, µb+1). Then,∑
i

(p(G(S, µb), i)− p(G(S, µb+1), i)) = k − |((v2 . . .) −→ (. . . v1))|red(G(S,µb)).

Proof: If there is an edge ((v2 . . .)
i−→ (. . . v1)) in red(G(S, µb)), adding the edge will close an alternat-

ing path in G(S, µb) into a cycle in G(S, µb+1), thus not changing p. Otherwise, two alternating paths in
G(S, µb) will be united, reducing p by one. 2

Lemma 3.5 If the edges ((v2 . . .)
c1−→ (. . . v1)) and ((v2 . . .)

c2−→ (. . . v1)) both belong toE(red(G(S, µb))),
then letting µb+1(v2) = v1 gives c(red(G(S, µb)), c1, c2)− c(red(G(S, µb+1)), c1, c2) = 1.

Proof: The alternating cycle ((v2 . . .)
c1−→ (. . . v1)

c2←− (v2 . . .)) in red(G(S, µb)) will have disappeared
in red(G(S, µb+1)) and no other alternating cycles with colours c1 and c2 are affected. 2

Lemma 3.6 If ((v2 . . .)
c1−→ (. . . v1)) ∈ E(red(G(S, µb))), but ((v2 . . .)

c2−→ (. . . v1)) /∈ E(red(G(S, µb))),
then letting µb+1(v2) = v1 does not change the number of cycles, that is c(red(G(S, µb)), c1, c2) −
c(red(G(S, µb+1)), c1, c2) = 0.

Proof: With u1 = (. . . v1) and u2 = (v2 . . .), the alternating cycle (u0
c2−→ u1

c1←− u2
c2−→ u3

c1←−
. . .

c1←− u0) will be reduced to (u0
c2−→ u3

c1←− . . .
c1←− u0). All other alternating cycles are untouched.

2

Lemma 3.7 Let u1 = (. . . v1) and u2 = (v2 . . .). Assume that (u0
c1−→ u1) and (u2

c2−→ u3),
where u0 6= u2, u1 6= u3, belong to E(red(G(S, µb))), which gives that neither (u2

c1−→ u1) nor
(u2

c2−→ u1) belong toE(red(G(S, µb))). Then, letting µb+1(v2) = v1 implies c(red(G(S, µb)), c1, c2)−
c(red(G(S, µb+1)), c1, c2) = −1 if (u0

c1−→ u1
c2←− u4

c1−→ · · · c1−→ u3
c2←− u2

c1−→ u5
c2←− · · · c2←− u0)

is an alternating cycle of red(G(S, µb)) and 1 otherwise.

Proof: If the alternating cycle (u0
c1−→ u1

c2←− u4
c1−→ · · · c1−→ u3

c2←− u2
c1−→ u5

c2←− · · · c2←− u0)
exists, it will be split in two, namely (u0

c1−→ u5
c2←− · · · c2←− u0) and (u4

c2−→ u3
c1←− · · · c1←− u4).

Otherwise, we have the two alternating cycles (u0
c1−→ u1

c2←− u4
c1−→ · · · c2←− u0) and (u5

c1←− u2
c2−→

u3
c1←− · · · c2−→ u3), which unite into (u0

c1−→ u5
c2←− · · · c1−→ u3

c2←− u4
c1−→ · · · c2←− u0). Remaining

alternating cycles are untouched. 2

We are now way on our way to find M(S). Using the above lemmata, we can control the lower limit
of dtrp(S) as we add edges to µb.



Median clouds and a fast transposition median solver 381

Theorem 3.8 Let G = G(S, µb) and G′ = red(G). For u1 = (. . . v1) and u2 = (v2 . . .), assume that
j = |(u2 −→ u1)|G′ and that there are m alternating cycles in colours 1 ≤ c1 < c2 ≤ k with an odd
number of edges between u1 and u2. Then, letting µb+1(v2) = v1 will increase the lower limit of dtrp(S),∑

c1<c2
((n− b)− c(G′, c1, c2))

k − 1
+
∑
c1

(n− p(G, c1))

by

δ(v1, v2) =
2

k − 1

((
k − j

2

)
−m

)
.

In particular, for k = 3, the integral lower limit stays unchanged for j ≥ 2, increases by at most 1 for
j = 1 and at most 3 for j = 0.

Proof: It is clear from Lemma 3.4 that
∑

(n−p(G, c1)) increases with k− j. Next, consider colour pairs
1 ≤ c1 < c2 ≤ k. If (u2

c1−→ u1) and (u2
c2−→ u1) are both present in E(G′), Lemma 3.5 gives that

((n− b)− c(G′, c1, c2)) does not change. If only one of these edges is present, ((n− b)− c(G′, c1, c2))
decreases by 1 (Lemma 3.6). Finally, Lemma 3.7 says that if none of the edges are present, ((n − b) −
c(G′, c1, c2)) decreases by 2 if the cycle passes both u1 and u2 with an odd number of edges in between,
and stays unchanged otherwise.

Summing up, we get that the bound increases with

δ(v1, v2) = (k − j)− (k − j)j + 2m
k − 1

=
(k − j)2 − (k − j)− 2m

k − 1
=

2
k − 1

((
k − j

2

)
−m

)
.

2

It is not obvious that adding an edge which does not increase the lower bound is optimal. In fact, it is
not even true. However, there are some black edges which are guaranteed to be optimal.

Theorem 3.9 Assume that µb can be completed to all medians inM(S). If |((v2 . . .) −→ (. . . v1))|red(G(S,µb)) >
k/2, then µ(v2) = v1 for all µ ∈ M(S). If |((v2 . . .) −→ (. . . v1))|red(G(S,µb)) = k/2, then µ(v2) = v1
for some µ ∈M(S).

Proof: Assume that a median µ has µ−1(v1) = v3 6= v2. If ((v2 . . .)
c1−→ (. . . v1)) ∈ E(red(G(S, µ))),

then the alternating cycle (v2
c1−→ . . .

c1−→ v1
k+1−→ v3

c1←− . . .
k+1−→ v2) will split if v1 is redirected to

v2. Hence, c(G(S, µ ◦ (v2 v3))) − c(G(S, µ), c1) = 1, and summing over all colours we get dtrp(µ ◦
(v2 v3), S) < dtrp(µ, S), contradicting the fact that µ is a median. Similarly, if |((v2 . . .) −→ (. . . v1))| =
k/2, we obtain a median µ ◦ (v2 v3) which satisfies (µ ◦ (v2 v3))(v2) = µ(v3) = v1. 2

4 A median solver
Based on the theorems in the previous section, we have devised a transposition median solver which
gives all medians, that is M(S), for any S. We start with µ0 = 0 and then make a depth first search
through the space of µb. At any node µb in the search tree, if |((v2 . . .) −→ (. . . v1))|red(G(S,µb)) > k/2
then µb+1(v2) = v1 is optimal. Otherwise, we search all subtrees of µb, stopping as soon as the lower
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bound on that subtree rises above the lowest value on dtrp(µ, S) found so far. A formal description of the
algorithm Median can be found in Algorithm 1 (last page).

Algorithm 1 can of course be improved upon. For instance, to achieve a more effective pruning,
we compute the increase of dtrp(µ, S) for each assignment µb+1(v2) = v1, where (. . . v1), (v2 . . .) ∈
red(G(S, µ)). Keeping v2 fixed, it is clear that dtrp(µ, S) ≥ dtrp(µb, S) + minv1 δ(v1, v2), since we are
free to assign µb+1(v2) at any stage. Similarly, keeping v1 fixed, we have dtrp(µ, S) ≥ dtrp(µb, S) +
minv2 δ(v1, v2). This leads to more effective pruning. Our implementation in Matlab is available upon
request. The speed of this implementation is comparable to the DCJ median solver by Xu (11).

5 Median clouds
Given the set of medians M(S), there are some parts which are common to all medians and some parts
which vary more or less between the medians. If a median is chosen at random from this set, the choice of
the parts which vary between medians will be impossible to distinguish from the parts which are common
between all medians, and they will probably effect later computations using this median. To minimise
this effect, we would like to keep as much information as possible about M(S) instead of just choosing a
single median.

Since our median solver gives the complete median cloud M(S), we would like to keep this cloud
and use it in further calculation. In those calculations, this median cloud should play the role of a single
permutation in a base set. How can we revise the median solver to accept such base sets, that is to compute
the median of a base set of sets, S = (S1, S2, . . . , Sk)?

One method which seems tempting is to take the permutation matrices Aj of all permutations in each
set Si and compute their arithmetical mean,

∑
Aj/|Si|. However, since the algorithm requires not only

the extent of which a set Si maps v1 to v2, but also the alternating cycle structure, we lose too much
information in this process. Instead, we need to consider each pair π1 ∈ Si and π2 ∈ Sj separately.

To be more precise, we give each permutation π ∈ Si weight w(π) such that
∑
π∈Si

w(π) = 1.
Usually, w(π) = |Si|−1 will do. Then, it is easy to see that if we define

dw(µ, S) =
∑
i

∑
π∈Si

d(µ, π)w(π),

a lower transposition median distance limit of any completion of µb is given by∑
1≤i<j≤k

∑
π∈Si,σ∈Sj

((n− b)− c(G′, c1, c2))w(π)w(σ)

k − 1
+
∑
i

∑
π∈Si

(n− p(G, c1))w(π).

We can thus use Algorithm 1 almost unchanged. We note, however, that the running time is proportional
to maxi |Si|2 in the worst case and median sets M(S) grow fast when we scatter the base set. However,
pruning may be more effective when median distances are given rational numbers instead of integers.

6 Limit medians
Medians and median clouds are often used to estimate the ancestor of three or more contemporary species.
Medians are approximations of the ancestor and should “surround” the ancestor. This leads us to compute
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the median of a median cloud, which could improve on the estimate of the ancestor, although not on the
distance d(µ, S).

Definition 6.1 Given a base set S, the kth median iterate of S isMk(S), whereMk(S) = M(Mk−1(S)).
If the limit

M∞(S) = lim
k→∞

Mk(S)

exists, we say that M∞(S) is a limit median.

It is obvious that M∞(S) = M(S) if M(S) is a singleton. But what can be said if |M(S)| > 1?

Proposition 6.1 If S = {id, (1 2 . . . m)}, then M(S) contains all permutations π ∈ Sn such that
dtrp(π, id) + dtrp(π, (1 2 . . . m)) = m− 1.

Proof: The assertion is given directly by the triangle inequality, since the set contains all permutation on
a shortest path from id to (1 2 . . . m). 2

We conjecture based on extensive calculations that for S = {id, (1 2 . . . m)}, M2(S) = S. If this
holds, Mk(S) is periodic with period 2.

Proposition 6.2 With S = {id, (1 2 . . . n)}, we have

|{π ∈M(S) : dtrp(π, id) = k}| = N(n, k + 1) =

(
n
k

)(
n−1
k

)
k + 1

=

(
n
k

)(
n
k+1

)
n

,

where N(n, k) are the Narayana numbers. Hence, |M(S)| = Cn, the nth Catalan number.

Proof: The Narayana numbers N(n, k + 1) count the number of Dyck paths of length n with n − k
peaks. Extend each peak into a mountain, that is continue the steps (1, 1) and (1,−1) which constitute
the peak until they cut the x-axis. Draw left parenthesis at positions where the left mountain sides cut the
line y = 1/2 and right parenthesis where the right mountain sides cut the same line. Then, inserting the
numbers j ∈ [n] at positions 2j − 1 gives the permutations in M(S) with n − k cycles, given that we
recursively interpret the expression (a . . . b (c . . . d) f . . . g) as (a . . . b f . . . g)(c . . . d). 2

The following proposition follows directly from independence of disjoint cycles.

Proposition 6.3 If S = {id, π} and the cycles in π are given by π = c1c2 . . . cm, each τ ∈M(S) can be
written as a product of permutations τ1τ2 . . . τm such that τj ∈M({id, cj)}.

For all base sets S we have looked at, the sequence Mk(S) has either had a limit or been eventually
periodic with period 2. In fact, we have yet to discover a base set S such that M4(S) 6= M2(S).

7 Computing ancestral permutations
Median clouds can be used to facilitate median computations in a given phylogeny in two different ways.
First, previously computed inner nodes are used to compute the remaining inner nodes, and these compu-
tations may be improved on by using median clouds instead of just a single median. Second, if the inner
node we seek to approximate with a median has three edges leading to several leaves in each direction,
we can take the leaves of each direction and merge them into a cloud, instead of choosing one of these
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leaves at random. To test these approaches, we have made simulations and compared different methods
for approximating the inner nodes of a known tree from the leaves.

Consider the phylogenetic tree in Figure 2. Given edge lengths, we simulate leaf permutations using
transpositions chosen randomly and independently with uniform distribution. We then use five different
median methods to estimate the inner nodes as closely as possible. Thus, we get indications on the quality
of the methods. In particular, we wish to examine if median clouds can be used to enhance our abilities to
find the inner nodes.

σ2

σ3σ1

π1

π2

π4

π5π3

XXXXX
�����@

@@

�
��

�
��

@
@@

`1

`2 `3

`4

`5 `6

`7

Fig. 2: The phylogenetic tree of π1, . . . , π5.

The five methods used are the following: First, we compute the median of three leaves. This can be
done in three ways for σ1 and σ3, and four ways for σ2. Second, we use medians computed with the
first method; for instance, we approximate σ1 with τ ∈M(π1, π2, µ), where µ ∈M(π1, π3, π4)). Third,
we compute medians using all leaves on each side of the median. For instance, we approximate σ1 with
τ ∈ M(π1, π2, {π3, π4, π5}). The fourth method is similar to the second, except that we use the median
clouds from the third method instead of a single median from the first. Fifth, for comparison we use the
inner nodes, that is σ1 is approximated by M(π1, π2, σ2). This gives a lower limit on the error we can
achieve using information only on the leaves.

Tab. 1: Comparing five methods for estimating permutations at inner nodes in the phylogenetic tree in Figure 2. Edge
lengths are as below and n = 40. In the table, mean distances to the correct inner node are given, summing both over
500 simulations and over all ways to compute the inner node using the respective methods. We note that the results
improve significantly as we refine the methods. We should add that the first two methods can be improved upon in
the case where edge lengths are as different as in the second row by always choosing the closest leaf on each side, but
the fourth method is still somewhat better.

Edge lengths First Second Third Fourth Fifth
(7, 7, 7, 14, 7, 7, 7) 4.2 2.7 2.1 1.9 0.8
(15, 3, 4, 15, 4, 4, 12) 4.0 2.3 1.6 1.4 0.5

The five methods are compared in Table 1. We find that the third and fourth methods constitute a
significant improvement over the first two, both with similar edge length and a mixture of long and short
edges. In the second case, choosing closely related permutations improves on the mean results, but the
third and fourth methods are still better even in this extreme case.
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8 Open problems
Our results leave several open problems. Which sets are medians clouds for some base set? Which sets
are limit clouds for some base set? Are there base sets whose median sequence Mk(S) is not periodic,
or has a longer period than 2? What kind of regularities and symmetries can we expect to find in a limit
cloud? All these questions are also interesting under other distances, for example reversals.

We are also anxious to see if median clouds can be incorporated into median computations under
other distances, such as breakpoints, reversals and DCJ. In addition, a proof that the transposition median
problem is, as conjectured, NP-complete (or even better, a polynomial time solver) would of course be
welcomed.
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Algorithm 1: Median: A simplified branch-and-bound algorithm for finding M(S) under the trans-
position distance. It is called with µ = (0, 0, . . . , 0) and B = ∞. The ApplyOptimal algorithm
iteratively applies all majority rule assignments according to Theorem 3.9.
Data: S, µ, B
Result: M(S), B
µ← ApplyOptimal(S, µ);
if µ ∈ Sn then

if d(µ, S) < B then
M(S)← {µ};
B ← d(µ, S);

else if d(µ, S) = B then
M(S)←M(S) ∪ {µ};

end
else

e← min{j : j /∈ µ};
foreach i such that µ(i) = 0 do

µ(i)← e;
if d(µ, S) ≤ B then

(M(S), B)←Median(S, µ, B);
end

end
end
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Department of Mathematical Sciences,
Chalmers University of Technology and University of Gothenburg,
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We enumerate derangements with descents in prescribed positions. A generating function was given

by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result, and derive

several explicit formulas. To this end, we consider fixed point λ-coloured permutations, which are easily

enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler’s

difference tables. We also prove that except in a trivial special case, if a permutation π is chosen uniformly

among all permutations on n elements, the events that π has descents in a set S of positions, and that

π is a derangement, are positively correlated.

Keywords: Permutation statistic, fixed point, descent

1 Introduction
In a permutation π ∈ Sn, a descent is a position i such that πi > πi+1, and an ascent is a
position where πi < πi+1. A fixed point is a position i where πi = i. If πi > i, then i is called an
excedance, while if πi < i, i is a deficiency. Richard Stanley (11) conjectured that permutations
in S2n with descents at and only at odd positions (commonly known as alternating permutations)
and n fixed points are equinumerous with permutations in Sn without fixed points, commonly
known as derangements.

The conjecture was given a bijective proof by Chapman and Williams in 2007 (1). The solution
is quite straightforward: Assume π ∈ S2n is alternating and F ⊆ [2n] is the set of fixed points,
|F | = n. Then removing the fixed points gives a permutation τ in S[2n]\F without fixed points,
and π can be easily reconstructed from τ .

For instance, removing the fixed points in π = 326451 gives τ = 361 or τ = 231 if we reduce
it to S3. To recover π, we note that the fixed points in the first two descending blocks must be
at the respective second positions, 2 and 4, since both τ1 and τ2 are excedances, that is above
the fixed point diagonal τi = i. On the other hand, since τ3 < 3, the fixed point in the third
descending block comes in its first position, 5. With this information, we immediately recover π.

Alternating permutations are permutations which fall in and only in blocks of length two.
A natural generalisation comes by considering permutations which fall in blocks of lengths
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a1, a2, . . . , ak and have k fixed points (this is obviously the maximum number of fixed points,
since each descending block can have at most one). These permutations are in bijection with de-
rangements which descend in blocks of length a1−1, a2−1, . . . , ak−1, and possibly also between
them, a fact which was proved by Guo-Niu Han and Guoce Xin (9).

In this article we compute the number of derangements which have descents in prescribed
blocks and possibly also between them. A generating function was given by Han and Xin using
a representation theory argument. We start by computing the generating function using simple
combinatorial arguments (Section 3), and then proceed to extract a closed formula in Section 4.

Interestingly, this formula, which is a combination of factorials, can also be written as the
same combination of an infinite family of other numbers, including the derangement numbers.
We give a combinatorial interpretation of these families as the number of fixed point λ-coloured
permutations.

For a uniformly chosen permutation, the events that it is a derangement and that its descent
set is included in a given set are not independent. We prove that except for the permutations
of odd length with no ascents, these events are positively correlated. In fact, we prove that the
number of permutations which are derangements when sorted decreasingly in each block is larger
when there are few and large blocks, compared to many small blocks. The precise statement is
found in Section 7.

Finally, in Section 8, we generalise some results concerning Euler’s difference triangles from
(10) to fixed point λ-coloured permutations, using a new combinatorial interpretation. This
interpretation is in line with the rest of this article, counting permutations having an initial
descending segment and λ-coloured fixed points to the right of the initial segment. In addition,
we also derive a relation between difference triangles with different values of λ.

There are many papers devoted to counting permutations with prescribed descent sets and fixed
points, see for instance (6; 8) and references therein. More recent related papers include (4), where
Corteel et al. considered the distribution of descents and major index over permutations without
descents on the last i positions, and (2), where Chow considers the problem of enumerating the
involutions with prescribed descent set.

This paper is an extended abstract, with some proofs missing. These can be found in the full
paper (7).

2 Definitions and examples
Let [i, j] = {i, i + 1, . . . , j} and [n] = [1, n]. We think of [n] as being decomposed into blocks
of lengths a1, . . . , ak, and we will consider permutations that decrease within these blocks. The
permutations are allowed to decrease or increase in the breaks between the blocks.

Consider a sequence a = (a1, a2, . . . , ak) of nonnegative integers, with
∑
i ai = n, and let

cj =
∑j
i=1 ai. We denote by Aj the j:th block of a, that is the set Aj = [cj−1 + 1, cj ] ⊆ [n].

Throughout the paper, k will denote the number of blocks in a given composition. We let
Sa ⊆ Sn be the set of permutations that have descents at every place within the blocks, and
may or may not have descents in the positions cj . In particular we have Sn = S(1,1,...,1).

Example 2.1 If n = 6 and a = (4,2), then we consider permutations that are decreasing in [1,4]
and in [5,6]. Such a permutation is uniquely determined by the partition of the numbers 1–6 into
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these blocks, so the total number of such permutations is(
6

4, 2

)
= 15.

Of these 15 permutations, those that are derangements are

6543|21
6542|31
6541|32
6521|43
5421|63
5321|64
4321|65

We define D(a) to be the subset of Sa consisting of derangements, and our objective is to
enumerate this set. For simplicity, we also define Dn = D(1, . . . ,1).

For every composition a of n, there is a natural map Φa : Sn → Sa, given by simply sorting the
entries in each block in decreasing order. For example, if σ = 25134, we have Φ(3,2)(σ) = 52143.
Clearly each fiber of this map has a1! . . . ak! elements.

The following maps on permutations will be used frequently in the paper.

Definition 2.1 For σ ∈ Sn, let φj,k(σ) = τ1 . . . τj−1kτj . . . τn, where

τi =
{
σi if σi < k
σi + 1 if σi ≥ k

Similarly, let ψj(σ) = τ1 . . . τj−1τj+1 . . . τn where

τi =
{
σi if σi < σj;
σi − 1 if σi > σj.

Thus, φj,k inserts the element k at position j, increasing elements larger than k by one and
shifting elements to the right of position j one step further to the right. The map ψj removes the
element at position j, decreasing larger elements by one and shifting those to its right one step
left.

We will often use the map φj = φj,j which inserts a fixed point at position j. The generalisations
to a set F of fixed points to be inserted or removed are denoted φF (σ) and ψF (σ), inserting
elements in increasing order and removing them in decreasing order.

The maps φ and ψ are perhaps most obvious in terms of permutation matrices. For a permu-
tation σ ∈ Sn, we get φj,k(σ) by adding a new row below the k:th one, a new column before
the j:th one, and an entry at their intersection. Similarly, ψj(σ) is obtained by deleting the j:th
column and the σj :th row.
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Example 2.2 We illustrate by showing some permutation matrices. For π = 21 and F = {1,3},
we get

r r
π

r r rd
φ3,2(π)

rd
r rd r

φF (π)
rd r rd
ψ4 ◦ φF (π)

where inserted points are labeled with an extra circle.

3 A generating function
Guo-Niu Han and Guoce Xin gave a generating function for D(a) ((9), Theorem 9). In fact they
proved this generating function for another set of permutations, equinumerous to D(a) by ((9),
Theorem 1). What they proved was the following:

Theorem 3.1 The number |D(a)| is the coefficient of xa1
1 · · ·x

ak

k in the expansion of

1
(1 + x1) · · · (1 + xk)(1− x1 − · · · − xk)

.

The proof uses scalar products of symmetric functions. We give a more direct proof, with
a combinatorial flavour. The proof uses the following definition, and the bijective result of
Lemma 3.2.

Definition 3.1 We denote by Dj(a) the set of permutations in Sa that have no fixed points in
blocks A1, . . . , Aj. Thus, D(a) = Dk(a).

Moreover, let D∗j (a) be the set of permutations in Sa that have no fixed points in the first j−1
blocks, but have a fixed point in Aj.

Lemma 3.2 There is a bijection between Dj(a1, . . . ,ak) and
D∗j (a1, . . . ,aj−1,aj + 1,aj+1, . . . ,ak).

Proof: Let σ = σ1 . . . σn be a permutation in Dj(a1, . . . ,ak), and consider the block Aj =
{p, p+ 1, . . . ,q}. Then there is an index r such that σp . . . σr−1 are excedances, and σr . . . σq are
deficiencies.

Now φr(σ) is a permutation of [n+ 1]. It is easy to see that

φr(σ) ∈ S(a1,...,aj−1,aj+1,aj+1,...,ak).

All the fixed points of σ are shifted one step to the right, and one new is added in the j:th block,
so

φ(σ) ∈ D∗j (a1, . . . ,aj−1,aj + 1,aj+1, . . . ,ak).

We see that ψr(φr(σ)) = σ, so the map σ 7→ φr(σ) is injective.
Similarily, for a permutation τ ∈ D∗j (a1, . . . ,aj−1,aj + 1,aj+1, . . . ,ak), let r be the fixed point

in Aj . Then ψr(τ) ∈ Dj(a1, . . . ,ak) and φr(ψr(σ)) = σ. Thus, σ 7→ φr(σ) is a bijection. 2
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We now obtain a generating function for |D(a)|, with a purely combinatorial proof. In fact,
we even strengthen the result to give generating functions for |Dj(a)|, j = 0, . . . , k. Theorem 3.1
then follows by letting j = k.

Theorem 3.3 The number |Dj(a)| is the coefficient of xa1
1 · · ·x

ak

k in the expansion of

1
(1 + x1) · · · (1 + xj)(1− x1 − · · · − xk)

. (1)

Proof: Let Fj(x) be the generating function for |Dj(a)|, so that |Dj(a1, . . . ,ak)| is the coefficient
for xa1

1 · · ·x
ak

k in Fj(x). We want to show that Fj(x) is given by (1).
By definition, |D0(a)| = |Sa|. But a permutation in Sa is uniquely determined by the set

of a1 numbers in the first block, the set of a2 numbers in the second, etc. So |D0| is the
multinomial coefficient

(
n

a1,a2,...,ak

)
. This is also the coefficient of xa1

1 · · ·x
ak

k in the expansion
of 1 + (

∑
xi) + (

∑
xi)2 + · · · , since any such term must come from the (

∑
xi)

n-term. Thus,

F0(x) = 1 +
(∑

xi

)
+
(∑

xi

)2

+ · · · = 1
(1− x1 − · · · − xk)

. (2)

Note that for any j, Dj−1(a) = Dj(a) ∪D∗j (a), and the two latter sets are disjoint. Indeed,
a permutation in Dj−1 either does or does not have a fixed point in the j:th block. Hence by
Lemma 3.2, we have the identity

|Dj−1(a)| = |Dj(a)|+ |Dj(a1, . . . ,aj−1,aj − 1,aj+1, . . . ,ak)|. (3)

This holds also if aj = 0, if the last term is interpreted as 0 in that case.
In terms of generating functions, this gives the recursion Fj−1(x) = (1 + xj)Fj(x). Hence

F0(x) = Fj(x)
∏
i≤j(1 + xi). Thus,

Fj(x) =
F0(x)

(1 + x1) · · · (1 + xj)
=

1 + (
∑
xi) + (

∑
xi)2 + · · ·

(1 + x1) · · · (1 + xj)
, (4)

and |Dj(a)| is the coefficient for xa1
1 · · ·x

ak

k in the expansion of Fj . 2

Proof of Theorem 3.1: The set of derangements in Sa is just D(a) = Dk(a). Letting j = k
in Theorem 3.3 gives the generating function for |D(a)|. 2

4 An explicit enumeration
It is not hard to explicitly calculate the numbers |D(a)| from here. We will use xa as shorthand
for
∏
i x

ai
i .

Every term xa in the expansion of F (x) is obtained by choosing xbi
i from the factor

1
1 + xi

=
∑
j≥0

(−xi)j ,
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for some 0 ≤ bi ≤ ai. This gives us a coefficient of (−1)
P
bi . For each choice of b1, . . . , bk we

should multiply by xa−b from the factor

1
(1− x1 − · · · − xk)

= 1 +
(∑

xi

)
+
(∑

xi

)2

+ · · · .

But every occurence of xa−b in this expression comes from the term (
∑
xi)n−

P
bj . Thus the

coefficient of xa−b is the multinomial coefficient(
n−

∑
bj

a1 − b1, . . . ,ak − bk

)
=

(n−
∑
bj)!

(a1 − b1)! · · · (ak − bk)!
.

Now since |D(a)| is the coefficient of xa in Fk(x), we conclude that

|D(a)| =
∑

0≤b≤a

(−1)
P
bj

(n−
∑
bj)!

(a1 − b1)! · · · (ak − bk)!

=
1∏
i ai!

∑
0≤b≤a

(−1)
P
bj

(
n−

∑
bj

)
!
∏
i

(
ai
bi

)
bi!.

(5)

While the last expression in Equation (5) seems a bit more involved than necessary, it turns
out to generalise in a nice way.

5 Fixed point coloured permutations
A fixed point coloured permutation in λ colours, or a fixed point λ-coloured permutation, is a
permutation where we require each fixed point to take one of λ colours. More formally it is a pair
(π,C) with π ∈ Sn and C : Fπ → [λ], where Fπ is the set of fixed points of π. When there can
be no confusion, we denote the coloured permutation (π,C) by π. Thus, fixed point 1-coloured
permutatations are simply ordinary permutations and fixed point 0-coloured permutations are
derangements. The set of fixed point λ-coloured permutations on n elements is denoted Sλ

n.
For the number of λ-fixed point coloured permutations on n elements, we use the notation
|Sλ

n| = fλ(n), the λ-factorial of n. Of course, we have f0(n) = Dn and f1(n) = n!. Clearly,

fλ(n) =
∑
π∈Sn

λfix(π),

where fix(π) is the number of fixed points in π, and we use this formula as the definition of fλ(n)
for λ 6∈ N.

Lemma 5.1 For ν, λ ∈ C and n ∈ N, we have

fν(n) =
∑
j

(
n

j

)
fλ(n− j) · (ν − λ)j .
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Proof: It suffices to show this for ν, λ, n ∈ N, since the identity is polynomial in ν and λ, so if
it holds on N× N it must hold on all of C× C.

We divide the proof into three parts. First, assume ν = λ. Then all terms in the sum vanish
except for j = 0, when we get fν(n) = fλ(n).

Secondly, assuming ν > λ, we let j denote the number of fixed points in π ∈ Sν
n which are

coloured with colours from [λ + 1, ν]. These fixed points can be chosen in
(
n
j

)
ways, there are

fλ(n−j) ways to permute and colour the remaning elements, and the colours of the high coloured
fixed points can be chosen in (ν − λ)j ways. Thus, the equality holds.

Finally, assuming ν < λ, we prescribe j fixed points in π ∈ Sλ
n which only get to choose their

colours from [ν+ 1, λ]. These fixed points can be chosen in
(
n
j

)
ways, the remaining elements can

be permuted in fλ(n− j) ways and the chosen fixed points can be coloured in (λ− ν)j ways, so
by the principle of inclusion-exclusion, the equality holds. 2

With λ = 1 and replacing ν by λ, we find that

fλ(n) = n!
(

1 +
(λ− 1)

1!
+

(λ− 1)2

2!
+ · · ·+ (λ− 1)n

n!

)
= n! expn(λ− 1). (6)

Here we use expn to denote the truncated series expansion of the exponential function. In fact,
limn→∞ n!e(λ−1)−fλ(n) = 0 for all λ ∈ [−1,1], although we cannot in general approximate fλ(n)
by the nearest integer of n!eλ−1 as for derangements.

The formula (6) also shows that

fλ(n) = nfλ(n− 1) + (λ− 1)n, fλ(0) = 1 (7)

which generalises the well known recursions |Dn| = n|Dn−1|+ (−1)n and n! = n(n− 1)!.

6 Enumerating D(aaa) using fixed point coloured permutations
Another consequence of Equation (6) is that the λ-factorial satisfies the following rule for differ-
entiation, which is similar to the rule for differentiating powers of λ:

d

dλ
fλ (n) = n · fλ (n− 1) . (8)

Regarding n as the cardinality of a set X, the differentiation rule (8) translates to

d

dλ
fλ (|X|) =

∑
x∈X

fλ (|X r {x}|) . (9)

Products of λ-factorials can of course be differentiated by the product formula. This implies
that if X1, . . . Xk are disjoint sets, then

d

dλ

∏
i

fλ (|Xi|) =
∑

x∈∪Xj

∏
i

fλ (|Xi r {x}|) .
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Now consider the expression

∑
B⊆[n]

(−1)|B|fλ (|[n] rB|)
k∏
i

fλ (|Ai ∩B|) . (10)

This is obtained from the right-hand side of Equation (5) by deleting the factor 1/
∏
i ai! and re-

placing the other factorials by λ-factorials. For λ = 1, the expression (10) is therefore
∣∣Φ−1

a (D(a))
∣∣,

the number of permutations that, when sorted in decreasing order within the blocks, have no fixed
points. We want to show that (10) is independent of λ. The derivative of (10) is, by the rule (9)
of differentiation,

∑
B⊆[n]

(−1)|B|
n∑
x=1

fλ (|[n] rB r {x}|)
k∏
i=1

fλ (|(Ai ∩B) r {x}|) . (11)

Here each product of λ-factorials occurs once with x ∈ B and once with x /∈ B. Because of
the sign (−1)|B|, these terms cancel. Therefore (11) is identically zero, which means that (10) is
independent of λ. Hence we have proven the following theorem:

Theorem 6.1 For any λ ∈ C, the identity

∣∣Φ−1
a (D(a))

∣∣ =
∑

0≤b≤a

(−1)
P
bj · fλ

(
n−

∑
bj

)∏
i

(
ai
bi

)
· fλ (bi) (12)

holds.

A particularly interesting special case is when we put λ = 0. In this case, f0(n) = Dn, so

|D(a)| = 1∏
i ai!

∑
0≤b≤a

(−1)
P
bjDn−

P
bj

∏
i

(
ai
bi

)
Dbi

. (13)

This equation has some advantages over Equation (5). It has a clear main term, the one with
b = 0. Moreover, since D1 = 0, the number of terms does not increase if blocks of length 1 are
added.

It should be pointed out that Theorem 6.1 can be proven directly for all λ in a recursive
manner, using neither the differentiation rule 8, nor the generating function in Theorem 3.3.
This alternative proof is rather lengthy, and can be found in (7).

We also note that Theorem 6.1 can be used to enumerate permutations in Sa with µ allowed
fixed point colours, and even µi fixed point colours in block Ai.

Corollary 6.2 For any λ ∈ C and natural numbers µi, 1 ≤ i ≤ k, the number of permutations
(π,C) where π ∈ Sa and (j ∈ Ai, π(j) = j)⇒ C(j) = [µi] is given by∑

0≤c≤1

∑
0≤b≤a−c

(−1)
P
bjfλ

(∑
aj −

∑
cj −

∑
bj

)∏
i

(
ai − ci
bi

)
fλ(bi) · µci

i .
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Proof: The numbers ci are one if Ai contains a fixed point and zero otherwise. We may remove
these fixed points and consider a fixed point free permutation, enumerated above. We then
reinsert the fixed points and colour them in every allowed combination. 2

7 A correlation result
Taking a permutation at uniformly random in Sn, the chances are about 1/e that it is a derange-
ment, since there are n!expn(−1) derangements in Sn. Moreover, there are n!/a! permutations
in Sa.

If belonging to Sa and being fixed point free were two independent events, we would have
n!expn(−1) permutations in Φ−1(D(a)). This is not the case, although the main term in Equation
(13) is this very number. The special case b = (1,1, . . . ,1) of Theorem 7.1 says, that belonging to
Sa and being a derangement are almost always positively correlated events. The sole exception
is when a is a single block of odd length, in which case every permutation gets a fixed point when
sorted.

For two compositions a and b of n, we say that a ≥ b if, when sorted decreasingly,
∑
i≤j ai ≥∑

i≤j bi for all j. Then we get the following monotonicity theorem.

Theorem 7.1 If a ≥ b and a is not a single block of odd size, then

|Φ−1
a (D(a))| ≥ |Φ−1

b (D(b))|.

The theorem follows from a series of lemmata, all included in (7). The main point is proving
that shifting any position from a smaller block to a larger one almost never decreases the number
|Φ−1

a (D(a))|. Equivalently, for fixed a3, . . . ak, and a = a1 + a2 fixed, the function |Φ−1
a (D(a))|

is unimodal in a1 (with the trivial exception).
A weaker, but perhaps more natural version of the correlation result is the following.

Corollary 7.2 Let n ≥ 2 and let π ∈ Sn be chosen uniformly at random. Then the number of
descents in π is positively correlated with the event that π is a derangement.

Proof: For any i let χi be the indicator variable of the event that i is a descent of π. Let Der(π)
be the event that π is a derangement. With a = (1, . . . ,1,2,1, . . . ,1) and b = (1, . . . ,1) in Theorem
7.1, we see that each χi is positively correlated with Der(π).

The number of descents in π is just
∑
i χi, and thus also has positive correlation with Der(π).

2

8 Euler’s difference tables fixed point coloured
Leonard Euler introduced the integer table (ekn)0≤k≤n by defining enn = n! and ek−1

n = ekn − ek−1
n−1

for 1 ≤ k ≤ n. Apparently, he never gave a combinatorial interpretation, but a simple one was
given by Dumont and Randrianarivony in (5). Indeed, ekn gives the number of permutations
π ∈ Sn such that there are no fixed points on the last n − k positions. Thus, e0

n = Dn. A
q-analogue of the same result was given in (3).
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It is clear from the recurrence that k! divides ekn. Thus, we can define the integers dkn =
ekn/k!. These have recently been studied by Fanja Rakotondrajao (10), and the combinatorial
interpretation of dkn given there was that they count the number of permutations π ∈ Sn such
that there are no fixed points on the last n − k positions and such that the first k elements are
all in different cycles.

We will now generalise these integer tables to any number λ of fixed point colours, and give a
combinatorial interpretation that is more in line with the context of this article. The relations in
(10) generalise nicely to the case with general λ.

Let ekn(λ) be defined by enn(λ) = n! and ek−1
n (λ) = ekn(λ) + (λ − 1)ek−1

n−1(λ). Then, a natural
combinatorial interpretation for non-negative integer λ is that ekn(λ) count the number of permu-
tations π ∈ Sn such that fixed points on the last n− k positions may be coloured in any one of
λ colours.

Similarly, we can define dkn(λ) = ekn(λ)/k! and interpret these numbers as counting the number
of permutations π ∈ S(k,1,1,...,1) ⊆ Sn such that fixed points on the last n − k positions may
be coloured in any one of λ colours. The set of these permutations is denoted Dk

n(λ). Thus,
our intepretation for λ = 0 states that apart from forbidding fixed points at the end, we also
demand that the first k elements are in descending order. Equivalently, we could have considered
permutations ending with k−1 ascents and having λ fixed point colours in the first n−k positions,
to be closer to the setting in (4).

There are a couple of relations that can proven bijectively with this interpretation, generalising
the results with λ = 0 from (10). The following propositions are all given bijective proofs in (7).

Proposition 8.1 For integers 1 ≤ k ≤ n and λ ∈ C we have

dk−1
n (λ) = kdkn(λ) + (λ− 1)dk−1

n−1(λ).

Proposition 8.2 For integers 0 ≤ k ≤ n− 1 and λ ∈ C we have

dkn(λ) = ndkn−1(λ) + (λ− 1)dk−1
n−2(λ).

Proposition 8.3 For integers 0 ≤ k ≤ n− 1 and λ ∈ C we have

dkn(λ) = (n+ (λ− 1)) dkn−1(λ)− (λ− 1) (n− k − 1) dkn−2(λ).

These formulae allow us to once again deduce the recursion for the λ-factorials. Using Propo-
sition 8.3 extended to k = −1 and d−1

−1(λ) = 1, we get by induction d−1
n = (λ− 1)d−1

n−1 and hence
d−1
n = (λ − 1)n+1. Thus, by Proposition 8.2 we have fλ(n) = d0

n = nd0
n−1 + (λ − 1)n. We can

also use Proposition 8.3 to obtain, using (7) and fλ (n) = d0
n, that

fλ (n) = (n+ λ− 1)fλ (n− 1)− (λ− 1)(n− 1)fλ (n− 2)
= (n− 1) (fλ (n− 1) + fλ (n− 2)) + λ (fλ (n− 1)− (n− 1)fλ (n− 2))

= (n− 1) (fλ (n− 1) + fλ (n− 2)) + λ(λ− 1)n−1,

which specialises to the well-known

Dn = (n− 1)(Dn−1 +Dn−2)
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and n! = (n− 1)((n− 1)! + (n− 2)!).
We close this section by noting that Lemma 5.1 can be generalised to dkn(λ) as follows. The

proof is completely analogous.

Proposition 8.4 For ν, λ ∈ C and 0 ≤ k ≤ n ∈ N, we have

dkn(ν) =
∑
j

(
n− k
j

)
dkn−j(λ)(ν − λ)j .

9 Open problems
While many of our results have been shown bijectively, there are a few that still seek their
combinatorial explanation. The most obvious are these.

Problem 9.1 Give a combinatorial proof, using the principle of inclusion-exclusion, of Theorem
6.1.

Problem 9.2 Give a bijection f : Sn → Sn such that π ∈ D(a1, a2, . . . ak) ⇒ f(π) ∈ D(a1 +
1, a2 − 1, a3, . . . , ak) whenever a1 ≥ a2 and a 6= (2m, 1).

We would also like the rearrangement of blocks in D(a) to get a simple description.

Problem 9.3 For any (a1, . . . , ak) and any σ ∈ Sk, give a simple bijection f : D(a1, . . . , ak)→
D(aσ1 , . . . , aσk

).

Instead of specifying descents, we could specify spots where the permutation must not descend.
This would add some new features to the problem, as ascending blocks can contain several fixed
points, whereas descending blocks can only contain one.

Problem 9.4 Given a composition a, find the number of derangements that ascend within the
blocks.
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We present type preserving bijections between noncrossing and nonnesting partitions for all classical reflection
groups, answering a question of Athanasiadis and Reiner. The bijections for the abstract Coxeter types B, C and
D are new in the literature. To find them we define, for every type, sets of statistics that are in bijection with non-
crossing and nonnesting partitions, and this correspondence is established by means of elementary methods in all
cases. The statistics can be then seen to be counted by the generalized Catalan numbers Cat(W ) when W is a classi-
cal reflection group. In particular, the statistics of type A appear as a new explicit example of objects that are counted
by the classical Catalan numbers.
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1 Introduction and background
The Coxeter-Catalan combinatorics is an active field of study in the theory of Coxeter groups, having at its
core the numerological concurrences according to which several independently motivated sets of objects
to do with a Coxeter groupW have the cardinality

∏n
i=1(h+di)/di, where h is the Coxeter number ofW

and d1, . . . , dn its degrees. Two of these sets of objects are

• the noncrossing partitions NC(W ), which in their classical (type A) avatar are a long-studied
combinatorial object harking back at least to Kreweras [6], and in their generalisation to arbitrary
Coxeter groups are due to Bessis and Brady and Watt [4, 5]; and

• the nonnesting partitions NN(W ), introduced by Postnikov [9] for all the finite crystallographic
reflection groups simultaneously.

†1Supported by the SFSU-Los Andes iniciative.
‡2Supported by the SFSU-Los Andes iniciative.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAKind.html


400 Alex Fink and Benjamin Iriarte Giraldo

Athanasiadis [2], and Athanasiadis and Reiner [3] proved in a case-by-case fashion that |NN(W )| =
|NC(W )| for all finite Weyl groups W , and asked for a bijective proof. Their work also proved equidis-
tribution by type, cited as Theorem 1.17 below. Our contribution has been to provide a family of bijective
proofs, one for each type of classical reflection group, that also address equidistribution by type. The bi-
jections in types B, C, and D have not appeared before in the literature. The ultimate goal in connecting
NN(W ) and NC(W ) from this perspective, a proof both uniform and bijective, remains open.

In the remainder of this section we lay out briefly the definitions of the objects involved: in §1.1,
the uniform definitions of nonnesting and noncrossing partitions; in §1.2, a mode of extracting actual
partitions from these definitions which our bijections rely upon; in §1.3, the resulting notions for classical
reflection groups. In section 2 we present a family of type-preserving bijections between noncrossing and
nonnesting partitions for all the classical reflection groups, one type at a time.

Two other papers presenting combinatorial bijections between noncrossing and nonnesting partitions
independent of ours, one by Stump [12] and by Mamede [8], appeared essentially simultaneously to it.
Both of these limit themselves to types A and B, whereas we also treat type D; our approach is also
distinct in its type preservation and in providing additional statistics characterising the new bijections.

1.1 Uniform noncrossing and nonnesting partitions

For noncrossing partitions we follow Armstrong [1, §2.4–6]. The treatment of nonnesting partitions is due
to Postnikov [9].

Let W be a finite Coxeter group and consider the dual Coxeter system (W,T ).
The set NC(W ) of (uniform) noncrossing partitions of W is defined as an interval of the absolute

order.

Definition 1.1 The absolute order Abs(W ) of W is the partial order on W such that for w, x ∈ W ,
w ≤ x if and only if

lT (x) = lT (w) + lT (w−1x),

where lT (w) is the minimum length of any expression for w as a product of elements of T . A word for w
in T of length lT (w) will be called a reduced T -word for w.

Definition 1.2 A standard Coxeter element of (W,S) is any element of the form c = sσ(1)sσ(2) . . . sσ(n),
where σ is a permutation of the set [n] and S = {s1, s2, . . . , sn}, the set of simple generators of W . A
Coxeter element is any conjugate of a standard Coxeter element in W .

Definition 1.3 Relative to any Coxeter element c, the poset of (uniform) noncrossing partitions is the
interval NC(W, c) = [1, c] in the absolute order.

This definition does not depend on the choice of Coxeter element c, see Armstrong [1]. We use the
notation NC(W ) for the poset of noncrossing partitions of W with respect to any c.

Now assumeW is crystallographic. The setNN(W ) of nonnesting partitions is defined in terms of the
usual root poset of W .

Definition 1.4 A (uniform) nonnesting partition for W is an antichain in the root poset of W . We denote
the set of nonnesting partitions of W by NN(W ).
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To each root αwe have an orthogonal hyperplane α⊥ with respect to 〈·, ·〉, and these define a hyperplane
arrangement and a poset of intersections.

Definition 1.5 The partition lattice Π(W ) of W is the intersection poset of reflecting hyperplanes

{
⋂
α∈S

α⊥ : S ⊆ Φ+}.

1.2 Classical partitions

Our drawings of partitions are taken from Athanasiadis and Reiner [3]. We have reversed the orderings of
the ground sets from Athanasiadis’s presentation.

Let W be a classical reflection group.

Definition 1.6 A classical partition for W is a partition Part(L) of the set

{±ei : i = 1, . . . , n} ∪ {0},

induced by the partition into fibers of the orthogonal projection to L, for some L ∈ Π(W ) in the standard
choice of coordinates.

We will streamline the notation of classical partitions by writing ±i for ±ei. Thus, a classical partition
forW is a partition of±[n] = {1, . . . , n,−1, . . . ,−n, 0} for some n, symmetric under negation. A classi-
cal partition always contains exactly one part fixed by negation, which contains the element 0, namely the
fiber over 0 ∈ L. Since the position of 0 is predictable given the other elements, in many circumstances
we will omit it altogether. If the block containing 0 contains other elements as well, we shall call it a zero
block. A detailed discussion of what these partitions are for each specific type is found in [2] and [3].

Finally, we introduce the type of a partition.

Definition 1.7 Let π = Part(L) be a classical partition for a classical reflection group W . The type
type(π) of π is the conjugacy class of L under the action of W on Π(W ).

1.3 Classical noncrossing and nonnesting partitions

Definitions of the classes of noncrossing and nonnesting classical partitions are most intuitively presented
in terms of a diagrammatic representation, motivating the names “noncrossing” and “nonnesting”. After
Armstrong [1, §5.1] we call these bump diagrams.

Let P be a partition of a totally ordered ground set (S,<).

Definition 1.8 Let G(P ) be the graph with vertex set S and edge set

{(s, s′) : s <P s′ and 6 ∃s′′ ∈ S s.t. s <P s′′ <P s′}

where s <P s′ iff s < s′ and s and s′ are in the same block of P .
A bump diagram of P is a drawing of G(P ) in the plane in which the elements of S are arrayed along

a horizontal line in their given order, all edges lie above this line, and no two edges intersect more than
once.
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Definition 1.9 P is noncrossing if its bump diagram contains no two crossing edges, equivalently ifG(P )
contains no two edges of form (a, c), (b, d) with a < b < c < d.

Definition 1.10 P is nonnesting if its bump diagram contains no two nested edges, equivalently if G(P )
contains no two edges of form (a, d), (b, c) with a < b < c < d.

We will abuse the terminology slightly and refer to the bump diagram of P as noncrossing, resp.
nonnesting, if P is. We will denote the set of classical noncrossing and nonnesting partitions for W
by NCcl(W ), resp. NN cl(W ). To define these sets it remains only to specify the ordered ground set.

Definition 1.11 A classical nonnesting partition for a classical reflection group W is a classical partition
for W nonnesting with respect to the ground set

1 < · · · < n+ 1 if W = An;
−n < · · · < −1 < 0 < 1 < · · · < n if W = Bn;
−n < · · · < −1 < 1 < · · · < n if W = Cn;
−n < · · · < −1, 1 < · · · < n if W = Dn.

Classical nonnesting partitions for Bn differ from those for Cn, reflecting the different root posets. We
have specified that 0 is part of the ordered ground set for Bn. Despite that, 0 cannot occur in a classical
partition. It is easily seen that its presence is necessary when drawing bump diagrams: the dot 0 “ties
down” a problematic edge of the zero block in the middle, preventing it from nesting with the others.

Definition 1.12 A classical noncrossing partition for a classical reflection group W not of type D is a
classical partition for W noncrossing with respect to the ground set

1 < · · · < n+ 1 if W = An;
−1 < · · · < −n < 1 < · · · < n if W = Bn;
−1 < · · · < −n < 1 < · · · < n if W = Cn.

Observe that the order < in these ground sets differs from those for nonnesting partitions.
We will draw these circularly. Arrange dots labelled −2, . . . ,−n, 2, . . . , n in a circle and place 1

and −1 in the middle. We let 1 and −1 be drawn coincidently, after [3], although it would be better to use
two circles as in [7], with a smaller one in the center on which only 1 and −1 lie. There is a standard way
to represent partitions ofDn in this setting. The edges we will supply in our diagrams are those delimiting
the convex hulls of the blocks.

Definition 1.13 A classical noncrossing partition π forDn is a classical partition forDn such that no two
blocks have intersecting convex hulls in the circular diagram representing π, except possibly two blocks
±B meeting only at the middle point.

See the figures in Section 2 for examples of bump diagrams of every type.
We state the relations between these classical noncrossing and nonnesting partitions and the uniform

ones. For w ∈ W , let the fixed space Fix(w) of w be the subspace of V (W ) consisting of vectors fixed
by w.
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Proposition 1.14 The map fNC : w 7→ Part(Fix(w)) is a bijection between NC(W, c) and NCcl(W ),
where c is the usual choice of standard Coxeter element. Furthermore, it is an isomorphism of posets,
where NC(W, c) is ordered by the absolute order and NCcl(W ) by the refinement order.

Proposition 1.15 The map fNN : S 7→ Part(
⋂
α∈S α

⊥) is a bijection betweenNN(W ) andNN cl(W ).

The distribution of classical noncrossing and nonnesting partitions with respect to type is well-behaved.
In the noncrossing case, the images of the conjugacy classes of the group W itself are the same as these
conjugacy classes of the action of W on Π(W ).

One can check that

Proposition 1.16 Two subspaces L,L′ ∈ Π(W ) are conjugate if and only if both of the following hold:

• the multisets of block sizes {|C| : C ∈ Part(L)} and {|C| : C ∈ Part(L′)} are equal;

• if either Part(L) or Part(L′) has a zero block, then both do, and these zero blocks have equal size.

We close this section with the statement of the uniform equidistribution result of Athanasiadis and Reiner.

Theorem 1.17 LetW be a Weyl group. Let fNC and fNN be the functions of Propositions 1.14 and 1.15.
For any type λ we have

|(type ◦ fNC)−1(λ)| = |(type ◦ fNN )−1(λ)|.

2 Type-preserving classical bijections
Throughout, partitions will be drawn and considered drawn with the greatest elements of their ground
sets to the left.

Given any partition, define the order <l on those of its blocks containing positive elements so that
B <l B

′ if and only if the least positive element of B is less than the least positive element of B′.

2.1 Type A

The bijection in typeA, which forms the foundation of the ones for the other types, is due to Athanasiadis [2,
§3]. We include it here to make this foundation explicit and to have bijections for all the classical groups
in one place.

Let π be a classical partition forAn. LetM1<l · · ·<lMm be the blocks of π, and ai the least element of
Mi, so that a1 < · · · < am. Let µi be the cardinality ofMi. Define the two statistics a(π) = (a1, . . . , am)
and µ(π) = (µ1, . . . , µm).

We will say that a list of partition statistics S establishes a bijection for a classical reflection groupW if,
given either a classical noncrossing partition πNC or a classical nonnesting partition πNN for W , the other
one exists uniquely such that s(πNC) = s(πNN) for all s ∈ S. We will say it establishes a type-preserving
bijection if furthermore πNC and πNN always have the same type.

Theorem 2.1 The statistics (a, µ) establish a type-preserving bijection for An.
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14 13 12 11 10 9 8 7 6 5 4 3 2 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Fig. 1: The type A classical nonnesting (top) and noncrossing (bottom) partitions corresponding to a =
(1, 2, 4, 5, 11), µ = (1, 3, 5, 3, 2).

Figure 1 illustrates this bijection.
The type-preserving assertion is obtained by µ preservation. As for the bijection itself, we describe a

process for converting back and forth between classical noncrossing and nonnesting partitions with the
same tuples a, µ. Routine verifications are left out of it.

Proof: View M1, . . . ,Mm as chains, i.e. connected components, in the bump diagram for π, each cor-
responding to a block. By virtue of µ we know the length of each chain, so we can view the chains as
abstract unlabeled graphs in the plane and our task as that of interposing the vertices of these chains in
such a way that the result is nonnesting or noncrossing, as desired.

Suppose we start with πNN. To build the noncrossing diagram of πNC, we will inductively place the
chains M1, . . . ,Mm, in that order. Suppose that, for some j ≤ n, we have placed Mi for all i < j.
To place Mj , we insert its rightmost vertex so as to become the aj th vertex counting from right to left,
relative to the chains Mj−1, . . . ,M1 already placed. We then insert the remaining vertices of Mj in the
unique possible way so that no pair of crossing edges are formed. (In this instance, this means that all the
vertices of Mj should be placed consecutively, in immediate succession.)

Now, suppose we start with πNC and want πNN. We again build the bump diagram chain by chain, at
each step placing the rightmost vertex in exactly the same way and placing the remaining vertices in the
unique way so that no pair of nesting edges are formed. (This can be achieved if every edge is drawn the
same size, with its vertices at constant Euclidean distance 1.)

Note that, in both directions, all the choices we made were unique, so the resulting partitions are unique.
2

A careful study of this proof provides a useful characterisation of the pairs of tuples a, µ that are the
statistics of a classical nonnesting or noncrossing partition of type A.

Corollary 2.2 Suppose we are given a pair of tuples of positive integers a = (a1, ..., am1), µ = (µ1, ..., µm2)
and let n > 0. Define a0 = 0 and µ0 = 1. Then, a and µ represent a classical noncrossing or nonnesting
partition for An if and only if

1. m1 = m2 = m;

2. n+ 1 =
∑m
k=1 µk ; and
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3. ai−1 < ai ≤
∑i−1
k=0 µk for i = 1, 2, ...,m.

2.2 Type C

In the classical reflection groups other than An, the negative elements of the ground set must be treated,
and so it will be useful to have some terminology to deal with these.

Definition 2.3 A positive block of a classical partition π is a block of π that contains some positive
integer; similarly a negative block contains a negative integer. A switching block of π is a block of π that
contains both positive and nonpositive elements, and a nonswitching block is one that contains positive
elements but not negative ones, or the reverse.

A single edge of the bump diagram is positive or negative or switching or nonswitching if it would have
those properties as a block of size 2.

Note that in later sections, where there will be elements of the ground set that are neither positive nor
negative, there may be blocks that consist only of these and so are neither switching nor nonswitching.

Let π be a classical partition for Cn. Given π, let M1<l · · ·<lMm be the nonswitching positive blocks
of π, and ai the least element of Mi. Let µi be the cardinality of Mi. These two tuples are reminiscent
of type A. Let P1 <l · · · <l Pk be the switching blocks of π, let pi be the least positive element of Pi,
and let νi be the number of positive elements of Pi. Define the three statistics a(π) = (a1, . . . , am),
µ(π) = (µ1, . . . , µm), ν(π) = (ν1, . . . , νk). We have

n =
m∑
i=1

µi +
k∑
j=1

νj . (1)

Theorem 2.4 The statistics (a, µ, ν) establish a type-preserving bijection for Cn.

Figure 2 illustrates the bijection.

−8−7−6−5−4−3−2−112345678

−1−2−3−4−5−6−7−812345678

Fig. 2: The type C nonnesting (top) and noncrossing (bottom) partitions corresponding to a = (3, 4), µ = (2, 1),
ν = (2, 3).

Proof: We state a procedure for converting back and forth between classical noncrossing and nonnesting
partitions that preserve the values a, µ, and ν. Suppose we start with a partition π, be it noncrossing πNN

or nonnesting πNC, and we want to find the partition π′, which respectively would precisely be πNC or
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πNN. To do this, we construct the positive side of π′ inductively from these tuples, which will determine
π′ completely.

In the bump diagram of π, consider the labeled connected component representing Pi, which we call
the chain Pi. Let the partial chain P ′i be the abstract unlabeled connected graph obtained from the chain
Pi by removing its negative nonswitching edges and negative vertices, leaving the unique switching edge
incomplete, i.e. partially drawed so that it becomes a clear half-edge in our new abstract graph, and losing
the labeling. Notice how the tuple ν allows us to draw these partial chains. Whatever procedure we
followed for type A will generalise to this case, treating the positive parts of the switching edges first.

We want to obtain the bump diagram for π′, so we begin by using ν to partially draw the chains
representing its switching blocks: we draw only the positive edges (switching and nonswitching) of every
chain, leaving the unique switching edge incomplete. This is done by reading ν from back to front and
inserting each partial switching chain P ′i in turn with its rightmost dot placed to the right of all existing
chains. In the noncrossing case, we end up with every vertex of P ′i being strictly to the right of every
vertex of P ′j for i < j. In the nonnesting case, the vertices of the switching edges will be exactly the k
first positions from right to left among all the vertices of P ′1, . . . , P

′
k. It remains to place the nonswitching

chains M1,M2, . . . ,Mm, and this we do as in the type A bijection, except that at each step, we place the
rightmost vertex of Mj so as to become the aj th vertex, counting from right to left, relative to the chains
Mj−1, . . . ,M1 and the partial chains P ′1, P

′
2, . . . , P

′
k already placed.

Now we have the positive side of π′. We copy these blocks down again with all parts negated, and end
up with a set of incomplete switching blocks P1∗, . . . , Pk∗ on the positive side and another equinumerous
set −P1∗, . . . ,−Pk∗ on the negative side that we need to pair up and connect with edges in the bump
diagram.

There is a unique way to connect these incomplete blocks to get the partition π′, be it πNC or πNN. In
every case Pi∗ gets connected with −Pk+1−i∗, and in particular symmetry under negation is attained. If
there is a zero block it arises from P(k+1)/2∗.

Finally, π and π′ have the same type. Since the Pi∗ are paired up the same way in each, including any
zero block, µ and ν determine the multiset of block sizes of π and π′ and the size of any zero block, in
identical fashion in either case. Then this is Proposition 1.16. 2

Again, a careful look at the preceding proof gives the characterization of the tuples that describe clas-
sical noncrossing and nonnesting partitions for type C.

Corollary 2.5 Suppose we are given some tuples of positive integers a = (a1, ..., am1), µ = (µ1, ..., µm2),
ν = (ν1, ..., νk) and let n > 0. Define a0 = 0 and µ0 = 1. Then, a, µ and ν represent a classical non-
crossing or nonnesting partition for Cn if and only if

1. m1 = m2 = m;

2. n =
∑m
i=1 µi +

∑k
j=1 νj;

3. ai−1 < ai ≤
∑i−1
k=0 µk +

∑k
j=1 νj for i = 1, 2, ...,m.

2.3 Type B

We will readily be able to modify our type C bijection to handle type B. Indeed, if it were not for our
concern about type, we would already possess a bijection for type B, differing from the type C bijection
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only in pairing up the incomplete switching blocks in a way respecting the presence of the element 0. Our
task is thus to adjust that bijection to recover the type-preservation.

If π is a classical partition for Bn, we define the tuples a(π), µ(π) and ν(π) as in type C.
Notice that classical noncrossing partitions forBn and for Cn are identical, and that the strictly positive

part of any classical nonnesting partition for Bn is also the strictly positive part of some nonnesting Cn-
partition, though not necessarily one of the same type. Thus Corollary 2.5 characterises the classical
noncrossing or nonnesting partitions for Bn just as well as for Cn.

Suppose π is a classical nonnesting partition for Bn. In two circumstances its tuples a(π), µ(π), ν(π)
also describe a unique nonnesting partition for Cn of the same type: to be explicit, this is when π does not
contain a zero block, and when the unique switching chain in π is the one representing the zero block. If
P1 <l · · ·<l Pk are the switching blocks of π, then π contains a zero block and more than one switching
chain if and only if k is odd and k > 1. We notice that Pk must be the zero block. On the other hand, if πC

is a classical nonnesting partition for Cn, the zero block must be P(k+1)/2. Reflecting this, our bijection
will be forced to reorder ν to achieve type preservation.

Generalizing our prior language, we will say that two lists SNC = {sNC
1 , . . . , sNC

a } and SNN =
{sNN

1 , . . . , sNN
a } of partition statistics, in that order, and a list Σ = {σ1, . . . , σa} of bijections estab-

lish a (type-preserving) bijection for a classical reflection group W if, given either a classical noncrossing
partition πNC or a classical nonnesting partition πNN for W , the other one exists uniquely such that
σi(sNC

i (πNC)) = sNN
i (πNN) for all 1 ≤ i ≤ a (and furthermore πNC and πNN have the same type).

Suppose we have a tuple ν = (ν1, . . . , νk) with k odd. Define the reordering

σB(ν) = (ν1, . . . , ν(k−1)/2, ν(k+3)/2, . . . , νk, ν(k+1)/2).

If k is not odd then let σB(ν) = ν. Clearly σB is bijective. For explicitness, we write for k odd

σ−1
B (ν) = (ν1, . . . , ν(k−1)/2, νk, ν(k+1)/2, . . . , νk−1)

and for k even σ−1
B (ν) = ν.

Theorem 2.6 The lists of statistics (a, µ, ν) and (a, µ, ν) establish a type-preserving bijection for Bn via
the bijections (id, id, σB).

Proof (Sketch): We use the same procedures as in type C to convert back and forth between classi-
cal nonnesting and noncrossing partitions, except that we rearrange ν as appropriate. Notice ν can be
reordered in any way, so we order it to have type preservation. 2

Figure 3 illustrates the resulting bijection.

2.4 Type D

The handling of type D partitions is a further modification of our treatment of the foregoing types, espe-
cially type B.

In classical partitions forDn, the elements±1 will play much the same role as the element 0 of classical
nonnesting partitions for Bn. So when applying the order <l and the terminology of Definition 2.3 in
type D we will regard ±1 as being neither positive nor negative.
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−8−7−6−5−4−3−2−1012345678

−1−2−3−4−5−6−7−812345678

Fig. 3: The type B nonnesting (top) and noncrossing (bottom) partitions corresponding to a = (3, 5), µ = (3, 1),
and respectively ν = (1, 2, 1) and ν = (1, 1, 2). Note that σB((1, 1, 2)) = (1, 2, 1). These correspond under the
bijection of Theorem 2.6.

Given π ∈ NN cl(Dn), define the statistics a(π), µ(π) and ν(π) as in type B. Let R1 <l · · ·<l Rl be
the blocks of π which contain both a positive element and either 1 and −1. It is clear that l ≤ 2. Define
the statistic c(π) = (c1, . . . , cl) by ci = Ri ∩ {1,−1}. To streamline the notation we shall usualy write
ci as one of the symbols +, −, ±. Observe that π contains a zero block if and only if c(π) = (±).

To get a handle on type D classical noncrossing partitions, we will transform them into type B ones.
Let NCcl

r (Bn−1) be a relabelled set of classical noncrossing partitions for Bn−1, in which the parts
1, . . . , (n− 1) and −1, . . . ,−n− 1 are changed respectively to 2, . . . , n and −2, . . . ,−n. Define a map
CM : NCcl(Dn) → NCcl

r (Bn−1), which we will call central merging, such that for π ∈ NN cl(Dn),
CM(π) is the classical noncrossing Bn−1-partition obtained by first merging the blocks containing ±1
(which we have drawn at the center of the circular diagram) into a single part, and then discarding these
elements ±1. Define the statistics a, µ and ν for π to be equal to those for CM(π), where the entries of
a should acknowledge the relabelling and thus be chosen from {2, . . . , n}.

These statistics do not uniquely characterise π, so we define additional statistics c(π) and ξ(π). The
definition of c(π) is analogous to the nonnesting case: letR1<l · · ·<lRl be the blocks of π which intersect
{1,−1}, and define c(π) = (c1, . . . , cl) where ci = Ri ∩{1,−1}. Also define ζ(π) = (ζ1, . . . , ζl) where
ζl = #(Rl ∩ {2, . . . , n}) is the number of positive parts of Rl.

Observe that CM(π) lacks a zero block if and only if c(π) = (), the case that 1 and −1 both belong
to singleton blocks of π. In this case CM(π) is just π with the blocks {1} and {−1} removed, so
that π is uniquely recoverable given CM(π). Otherwise, CM(π) has a zero block. If c(π) = (±)
this zero block came from a zero block of π, and π is restored by resupplying ±1 to this zero block.
Otherwise two blocks of π are merged in the zero block of CM(π). Suppose the zero block of CM(π)
is {c1, . . . , cj ,−c1, . . . ,−cj}, with 0 < c1 < · · · < cj , so that j =

∑l
i=1 ζl. By the noncrossing

and symmetry properties of π, one of the blocks of π which was merged into this block has the form
{−mi+1, . . . ,−mj ,m1, . . . ,mi, s} where 1 ≤ i ≤ j and s ∈ {1,−1}. Then, by definition, c(π) =
(s,−s) and ξ(π) = (i, j − i), except that if j − i = 0 the latter component of each of these must be
dropped.

Let a tagged noncrossing partition for Bn−1 be an element π ∈ NCcl
r (Bn−1) together with tuples c(π)

of nonempty subsets of {1,−1} and ζ(π) of positive integers such that:



Bijections between noncrossing and nonnesting partitions for classical reflection groups 409

1. the entries of c(π) are pairwise disjoint;

2. c(π) and ζ(π) have equal length;

3. the sum of all entries of ζ(π) is the number of positive elements in the zero block of π.

We have the following important lemmas whose proof we omit in this abstract.

Lemma 2.7 Central merging gives a bijection between classical noncrossing partitions for Dn and
tagged noncrossing partitions for Bn−1.

Lemma 2.8 A classical nonnesting partition π forDn is uniquely determined by the values of a(π), µ(π),
ν(π), and c(π).

All that remains to obtain a bijection is to describe the modifications to ν that are needed for correct
handling of the zero block and its components (rather as in type B). For a classical nonnesting partition
π for Dn, find the tuples a(π), µ(π), ν(π) = (ν1, . . . , νk), and c(π). Let ξ(π) be the tuple of the last l
entries of ν(π), where l is the length of c(π). Define

ν̂(π) =

 (ν1, . . . , νk/2−1, νk−1 + νk, νk/2 . . . , νk−2) if l = 2
(ν1, . . . , ν(k−1)/2, νk, ν(k+1)/2 . . . , νk−1) if l = 1
ν(π) if l = 0

Define a bijection σD by σD(ν(π)) = (ν̂(π), ξ(π)). This gives us all the data for a tagged noncross-
ing partition CM(π′) for Bn−1, which corresponds via central merging with a noncrossing partition π′

forDn. Going backwards, from a noncrossing partition π′ we recover a nonnesting partition π by applying
central merging, finding the list of statistics (a(π), µ(π), ν(π), c(π)) via the equality

ν(π) = σ−1
D (ν(π′), ξ(π′))

(the other statistics remain equal) and using these statistics to make a nonnesting partition as usual. Type
preservation may be seen to be implied within these modifications of the statistics.

All in all, we have just proved the following theorem.

Theorem 2.9 The lists of statistics (a, µ, (ν, ξ), c) and (a, µ, ν, c) establish a type-preserving bijection
for Dn via the bijections (id, id, (σD)−1, id).

Figures 4 and 5 illustrate this bijection.

−10−9−8−7−6−5−4−3−22345678910

1

−1

Fig. 4: The D10 nonnesting partition corresponding to a = (3), µ = (2), ν = (1, 1, 2, 3), c = (+,−) (so
ν̂ = (1, 5, 1)).

We omit the characterization of the tuples representing noncrossing and nonnesting partitions of type
D.
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Fig. 5: (left) The D10 noncrossing partition corresponding to a = (3), µ = (2), ν = (1, 5, 1), ξ = (2, 3),
c = (+,−). (right) The relabelled type B noncrossing partition obtained via central merging.
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Introduction
In the past 30 years, there has been an explosion of interest in combinatorial Hopf algebras related to
the classical ring of symmetric functions. This is due in part to their applications in combinatorics and
representation theory, but also in part to a viewpoint expressed in the elegant commuting diagram

NSym

��
��

�

�

// SSym

��
��

Sym �

�

// QSym

.

Namely, much information about an object may be gained by studying how it interacts with its surround-
ings. From this picture, we focus on the right edge,SSym ։ QSym. We factor this map through
finer and finer structures (some well-known and some new) until this edge is replaced by a veritable zoo
of Hopf structures. A surprising feature of our results is that each of these factorizations may be given
geometric meaning—they correspond to successive polytopequotients from permutahedra to hypercubes.

The (known) cast of characters
Let us reacquaint ourselves with some of the characters who have already appeared on stage.

SSym – the Hopf algebra introduced by Malvenuto and Reutenauer [13] to explain the isomorphism
QSym ≃ (NSym)∗. A graded, noncommutative, noncocommutative, self-dual Hopf algebra, with basis
indexed by permutations, it offers a natural setting to practice noncommutative character theory [4].

YSym – the (dual of the) Hopf algebra of trees introduced by Loday and Ronco [11]. A graded, non-
commutative, noncocommutative Hopf algebra with basis indexed by planar binary trees, it is important
for its connections to the Connes-Kreimer renormalizationprocedure.

QSym – The Hopf algebra of quasisymmetric functions introduced by Gessel [9] in his study ofP -
partitions. A graded, commutative, noncocommutative Hopfalgebra with basis indexed by compositions,
it holds a special place in the world of combinatorial Hopf algebras [1].

The new players
In this extended abstract, we study in detail a family of planar binary trees that we callbi-leveled trees,
which possess two types of internal nodes (circled or not, subject to certain rules). These objects are the
vertices of Stasheff’s multiplihedra [18], originating from his study ofA∞ categories. The multiplihedra
were given the structure of CW-complexes by Iwase and Mimura[10] and realized as polytopes later [8].
They persist as important objects of study, among other reasons, because they catalog all possible ways to
multiply objects in the domain and range of a functionf , when both have nonassociative multiplication
rules. More recently, they have appeared as moduli spaces of“stable quilted discs” [14].

In Section 2, we define a vector spaceMSym with basis indexed by these bi-leveled trees. We give
MSym a module structure forSSym by virtue of the factorization

SSym
β
−։MSym

φ
−։ YSym

(evident on the level of planar binary trees) and a splittingMSym →֒ SSym. We also show that
MSym is a Hopf module forYSym and we give an explicit realization of the fundamental theorem of
Hopf modules. That is, we find the coinvariants for this action. Our proof, sketched in Section 3, rests on
a result about poset maps of independent interest.

We conclude in Section 4 with a massive commuting diagram—containing several new families of
planar binary trees—that further factors the map fromSSym toQSym. The remarkable feature of this
diagram is that it comes from polytopes (some of them even new) and successive polytope quotients.
Careful study of the interplay between the algebra and geometry will be carried out in future work.
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1 Basic combinatorial data
1.1 Ordered and planar binary trees
We recall a mapτ from permutationsS· =

⋃

n Sn to planar binary treesY· =
⋃

n Yn that has proven
useful in many contexts [19, 12]. Its behavior is best described in the reverse direction as follows. Fix a
treet ∈ Yn. Then internal nodes oft are equipped with a partial order, viewing the root node as maximal.
An ordered treeis a planar binary tree, together with a linear extension of the poset of its nodes. These are
in bijection with permutations, as the nodes are naturally indexed left-to-right by the numbers1, . . . , n.
The mapτ takes an ordered tree (permutation) to the unique tree whosepartial order it extends.

Example 1 The permutations1423, 2413, and3412 share a common image underτ :

τ−1

( )

=

{

4

2
31 ,

4

1
32 ,

4

1
23

}

There are two right inverses toτ that will be useful later. Letmin(t) (respectively,max(t)) denote
the unique231-avoiding (132-avoiding) permutation mapping tot underτ . Loday and Ronco show that
τ−1(t) is the interval[min(t), max(t)] in the weak Bruhat order on the symmetric group [12, Thm. 2.5],
and thatmin andmax are both order-preserving with respect to the Tamari order onYn.

1.2 Bi-leveled trees and the multiplihedra
We next describe a family ofbi-leveled treesintermediate between the ordered and unordered ones. These
trees arrange themselves as vertices of themultiplihedraM· =

⋃

nMn, a family of polytopes introduced
by Stasheff in 1970 [18] (though only proven to be polytopes much later [8]). Stasheff introduced this
family to represent the fundamental structure of a weak mapf between weak structures, such as weak
n-categories orAn spaces. The vertices ofMn correspond to associations ofn objects, pre- and post-
application off , e.g.,(f(a)f(b))f(c) andf(a)f(bc). This leads to a natural description ofMn in terms
of “painted binary trees” [5], but we use here the description of Saneblidze and Umble [16].

A bi-leveled treeis a pair(t, C) with t ∈ Yn andC ⊆ [n] designating some nodes oft as lower than the
others (indexing the nodes from left-to-right by1, . . . , n). Viewing t as a poset with root node maximal,
C is an increasing order ideal int where the leftmost node is a minimal element. Graphically,C indexes
a collection of nodes oft circled according to the rules: (i) the leftmost node is circled and has no circled
children; (ii) if a node is circled, then its parent node is circled.

Define a mapβ from Sn toMn as follows. Given a permutationσ = σ1σ2 · · ·σn, first representσ as
an ordered tree. Next, forget the ordering on the nodes, savefor circling all nodesσi with σi ≥ σ1.

Example 2 Consider again the permutations1423, 2413, and3412 of Example 1. Viewed as ordered
trees, their images underβ are distinct:

(

4

2
31 ,

4

1
32 ,

4

1
23

)

β
7−→

(

, ,

)

.

Denote byφ the map from bi-leveled trees to trees that forgets which nodes are circled. The mapφ
helps define a partial order on bi-leveled trees that extendsthe Tamari lattice on planar binary trees: say
that the bi-leveled trees precedes the bi-leveled treet in the partial order ifφ(s) ≤ φ(t) and the circled
nodes satisfyCt ⊆ Cs. We call this the weak order on bi-leveled trees. See Figure 1below for an example.

The equalityφ ◦ β = τ is evident. Remarkably, this factorization

S·
β
−։M·

φ
−։ Y·
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FIG. 1: The weak order onM4, the bi-leveled trees on4 nodes.

extends to the level of face maps between polytopes (see Figure 2). Our point of departure was the
observation that it is also a factorization as poset maps.

β

−։
φ

−։

FIG. 2: β andφ extend to face (and poset) maps from the permutahedra to the associahedra.
The distinguished vertices1234, β(1234), andφ(β(1234)) are indicated.

1.3 Dimension enumeration

Fix a field k of characteristic zero and letSSym =
⊕

n≥0 SSymn denote the graded vector space
whosenth graded piece has the “fundamental” basis{Fσ | σ an ordered tree inSn}. DefineMSym and
YSym similarly, replacingSn byMn andYn, respectively. We follow convention and say thatSSym0

andYSym0 are 1-dimensional. By contrast, we agree thatMSym0 = {0}. (See [7] for categorical
rationale; briefly, Stasheff’sM1 is already0-dimensional, soM0 has no clear significance.)

In Section 2, we give these three vector spaces a variety of algebraic structures. Here we record some
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information about the dimensions of the graded pieces for later reference.

Hilbq(SSym) =
∑

n≥0

n! qn = 1 + q + 2q2 + 6q3 + 24q4 + 120q5 · · · (1)

Hilbq(MSym) =
∑

n≥1

Anqn = q + 2q2 + 6q3 + 21q4 + 80q5 + · · · (2)

Hilbq(YSym) =
∑

n≥0

Cnqn = 1 + q + 2q2 + 5q3 + 14q4 + 42q5 + · · · (3)

Of course,Cn is thenth Catalan number. The enumeration of bi-leveled trees is lessfamiliar: thenth

term satisfiesAn = Cn−1 +
∑n−1

k=1 Ai An−i [17, A121988]. A little generating function arithmetic can
show that the quotient of (2) by (3) expands as a power series with nonnegative coefficients,

Hilbq(MSym)

Hilbq(YSym)
= q + q2 + 3q3 + 11q4 + 44q5 + · · · . (4)

We will recover this with a little algebra in Section 2.3. Thepositivity of the quotient of (1) by (3) is
established by [3, Theorem 7.2].

2 The Hopf moduleMSym

Let τ , β, andφ be the maps between the vector spacesSSym,MSym, andYSym induced byτ , β,
andφ on the fundamental bases. That is, for permutationsσ and bi-leveled treest, we take

τ (Fσ) = Fτ(σ) β(Fσ) = Fβ(σ) φ(Ft) = Fφ(t)

Below, we recall the product and coproduct structures on theHopf algebrasSSym andYSym. In [13]
and [11], these were defined in terms of the fundamental bases. Departing from these definitions, rich
structural information was deduced aboutSSym, YSym, and the Hopf algebra mapτ between them in
[2, 3]. This information was revealed via a change of basis—from fundamental to “monomial”—using
Möbius inversion. We take the same tack below withMSym and meet with similar success.

2.1 The Hopf algebras SSym and YSym

Following [3], we define the product and coproduct structures on SSym andYSym in terms ofp-
splittingsandgraftingsof trees. Ap-splitting of a treet with n nodes is a forest (sequence) ofp + 1
trees withn nodes in total. This sequence is obtained by choosingp leaves oft and splitting them (and all
parent branchings) right down to the root. By way of example,consider the3-splitting below (where the
third leaf is chosen twice and the fifth leaf is chosen once).

t = −→
(

, , ,
)

= (t0, t1, t2, t3) .

Denote ap-splitting of t by t
g

→ (t0, . . . , tp). Thegrafting of a forest(t0, t1, . . . , tp) onto a tree withp
nodes is also best described in pictures; for the forest above ands = τ(213), the tree

=
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is the grafting of(t0, t1, . . . , tp) ontos, denoted(t0, t1, t2, t3)/s. Splittings and graftings of ordered trees
are similarly defined. One remembers the labels originally assigned to the nodes oft in ap-splitting, and
if t hasq nodes, then one increments the labels ofs by q in a grafting(t0, t1, t2, t3)/s. See [3] for details.

Definition 3 Fix two ordered or ordinary treess andt with p andq internal nodes, respectively. We define
the product and coproduct by

Ft · Fs =
∑

t
g

→(t0,t1,...,tp)

F(t0,t1,...,tp)/s and ∆(Ft) =
∑

t
g

→(t0,t1)

Ft0 ⊗ Ft1 . (5)

(In the coproduct for ordered trees, the labels int0 andt1 are reduced to be permutations of|t0| and|t1|.)

2.2 Module and comodule structures
We next modify the structure maps in (5) to giveMSym the structure of (left)SSym-module and (right)
YSym–Hopf module. Given a bi-leveled treeb, let b

g

→ (b0, . . . , bp) represent anyp-splitting of the
underlying tree, together with a circling of all nodes in each bi that were originally circled inb.

Definition 4 (actionof SSym onMSym) Forw ∈ S· ands ∈Mp, write b = β(w) and set

Fw · Fs =
∑

b
g

→(b0,b1,...,bp)

F(b0,b1,...,bp)/s (6)

where the circling rules in(b0, b1, . . . , bp)/s are as follows: every node originating ins is circled whenever
|b0| > 0, otherwise, every node originating inb = β(w) is uncircled.

This action may be combined with any section ofβ to define a product onMSym. For example,

F · F = F + F + F + F + F + F .

Theorem 5 The actionSSym ⊗MSym → MSym and the productMSym ⊗MSym → MSym
are associative. Moreover, puttingMSym0 := k, they makeβ into an algebra map that factorsτ .

Unfortunately, no natural coalgebra structure exists onMSym that makesβ into a Hopf algebra map.

Definition 6 (actionandcoactionof YSym onMSym) Givenb ∈ M·, let b
g+
−→ (b0, . . . , bp) denote

ap-splitting satisfying|b0| > 0. Fors ∈ Yp, set

Fb · Fs =
∑

b
g+
−→(b0,b1,...,bp)

F(b0,b1,...,bp)/s and ρ(Fb) =
∑

b
g+
−→(b0,b1)

Fb0 ⊗ Fφ(b1) , (7)

where in(b0, b1, . . . , bp)/s every node originating ins is circled, and inφ(b1) all circles are forgotten.

Example 7 In the fundamental bases ofMSym andYSym, the action looks like

F · F = F + F + F ,

while the coaction looks like

ρ(F ) = F ⊗ 1 + F ⊗ F + F ⊗ F + F ⊗ F ,

ρ(F ) = F ⊗ 1 + F ⊗ F + F ⊗ F + F ⊗ F + F ⊗ F .
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The significance of our definition ofρ will be seen in Corollary 11. Our next result requires only slight
modifications to the original proof thatYSym is a Hopf algebra (due to the restrictedp-splittings).

Theorem 8 The maps· : MSym ⊗ YSym → MSym and ρ : MSym → MSym ⊗ YSym are
associative and coassociative, respectively. They giveMSym the structure ofYSym–Hopf module.
That is,ρ(Fb · Fs) = ρ(Fb) · ∆(Fs).

2.3 Main results
We next introduce “monomial bases” forSSym,MSym, andYSym. Givent ∈Mn, define

Mt =
∑

t≤t′

µ(t, t′)Ft′ ,

whereµ( · , · ) is the Möbius function on the posetMn. Define the monomial bases ofSSym andYSym
similarly (see (13) and (17) in [3]). The coactionρ in this basis is particularly nice, but we need a bit more
notation to describe it. Givent ∈ Mp ands ∈ Yq , let t\s denote the bi-leveled tree onp + q internal
nodes formed by grafting the root ofs onto the rightmost leaf oft.

Theorem 9 Given a bi-leveled treet, the coactionρ onMt is given byρ(Mt) =
∑

t=t′\s

Mt′ ⊗Ms.

Example 10 Revisiting the trees in the previous example, the coaction in the monomial bases looks like

ρ(M ) = M ⊗ 1 + M ⊗M ,

ρ(M ) = M ⊗ 1 + M ⊗M + M ⊗M .

Recall that thecoinvariantsof a Hopf moduleM over a Hopf algebraH are defined byM co =
{m ∈M | ρ(m) = m⊗ 1}. The fundamental theorem of Hopf modules provides thatM ≃ M co ⊗H .
The monomial basis ofMSym demonstrates this isomorphism explicitly.

Corollary 11 A basis for the coinvariants in the Hopf moduleMSym is given by
{

Mt

}

t∈T
, whereT

comprises the bi-leveled trees with no uncircled nodes on their right branches.

This result explains the phenomenon observed in (4). It alsoparallels Corollary 5.3 of [3] to an aston-
ishing degree. There, the right-grafting idea above is defined for pairs of planar binary trees and used to
describe the coproduct structure ofYSym in its monomial basis.

3 Towards a proof of the main result
We follow the proof of [3, Theorem 5.1], which uses properties of the monomial basis ofSSym developed
in [2] to do the heavy lifting. In [3], the sectionY·

max

−→ S· of τ is shown to satisfyτ (M
max(t)) = Mt and

τ (Mσ) = 0 if σ is not132-avoiding. This was proven using the following result aboutGalois connections.

Theorem 12 ([15, Thm. 1]) SupposeP and Q are two posets related by aGalois connection, i.e., a
pair of order-preserving mapsϕ : P → Q and γ : Q → P such that for anyv ∈ P and t ∈ Q,
ϕ(v) ≤ t ⇐⇒ v ≤ γ(t). Then the M̈obius functionsµP andµQ are related by

∀v ∈ P andt ∈ Q,
∑

w∈ϕ−1(t),
v≤w

µP (v, w) =
∑

s∈γ−1(v),
s≤t

µQ(s, t).
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There is a twist in our present situation. Specifically, no Galois connection exists betweenSn andMn.
On the other hand, we find that no order-preserving mapι :M· →֒ S· satisfiesβ(Mι(t)) = Mt. Rather,

β

(

∑

σ∈β−1(t)

Mσ

)

= Mt. (8)

This fact is the key ingredient in our proof of Theorem 11. Itsverification required modification of the
notion of Galois connection—a relationship between posetsthat we call aninterval retract(Section 3.2).

3.1 Sections of the map β : S· →M·
Bi-leveled treest are in bijection with pairs{s, s}, wheres is a planar binary tree, withp nodes say, and
s = (s1, . . . , sp) is a forest (sequence) of planar binary trees. In the bijection, s comprises the circled
nodes oft andsi is the binary tree (of uncircled nodes) sitting above theith leaf ofs. For example,

t = ←→ {s, s} =

{

,
(

, , ,
)

}

.

A natural choice for a sectionι : Mn → Sn would be to, say, buildmin(s) andmin(si) for eachi
and splice these permutations together in some way to build aword on the letters{1, 2, . . . n}. Letmm(t)
denote the choice givings1 smaller letters thans2, s2 smaller letters thans3, . . . ,sp−1 smaller letters than
sp, andsp smaller letters thans:

mm

( )

= mm

(

4

3
1 1 1 2

3
2

)

=

35 1
6

8

7

2

4

= 56187243.

This choice does not induce a poset map. The similarly definedMM also fails (chosing maximal permu-
tations representings ands), butMm has the properties we need:

Mm

( )

=
8

2
3

5
6

4

7

1

= 56487231.

We define this map carefully. Givent ∈ Yn and any subsetS ⊆ N of cardinalityn, write minS(t) for
the image ofmin(t) under the unique order-preserving map from[n] to S; definemaxS(t) similarly.

Definition 13 [The sectionMm] Let t↔ {s, s} be a bi-leveled tree onn nodes withp circled nodes. Write
u = u1 · · ·up = min[a,b](s) for [a, b] = {n − p + 1, . . . , n} and writevi = max[ai,bi](si) (1 ≤ i ≤ p),
where the intervals[ai, bi] are defined recursively as follows:

ap = 1 and bp = ap + |sp| − 1,

ai = 1 + max
⋃

j>i

Sj and bi = ai + |si| − 1.

Finally, defineMm(t) by the concatenationMm(t) = u1v
1u2v

2 · · ·upv
p.

Remark 14 Alternatively,Mm(t) is the uniquew ∈ β−1(t) avoiding the pinned patterns0231, 3021, and
2031, where the underlined letter is the first letter inw. The first two patterns fix the embeddings ofsi

(0 ≤ i ≤ p), the last one makes the letters insi larger than those insi+1 (1 ≤ i < p).
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The important properties ofMm(t) are as follows.

Proposition 15 The sectionι :Mn → Sn given byι(t) = Mm(t) is an embedding of posets. The map
β : Sn →Mn satisfiesβ(ι(t)) = t for all t ∈Mn andβ−1(t) ⊆ Sn is the interval[mm(t), MM(t)].

3.2 Interval retracts
Let ϕ : P → Q andγ : Q→ P be two order-preserving maps between posetsP andQ. If

∀t ∈ Q ϕ(γ(t)) = t and ϕ−1(t) is an interval,

then we say thatϕ andγ demonstrateP as aninterval retractof Q.

Theorem 16 If P andQ are two posets related by an interval retract(ϕ, γ), then the M̈obius functions
µP andµQ are related by

∀s < t ∈ Q
∑

v∈ϕ−1(s)

w∈ϕ−1(t)

µP (v, w) = µQ(s, t).

The proof of Theorem 16 exploits Hall’s formula for Möbius functions. An immediate consequence is
a version of (8) for anyP andQ related by an interval retract. Verifying that(β, Mm) is an interval retract
betweenSn andMn (Proposition 15) amounts to basic combinatorics of the weakorder onSn.

4 More families of binary trees and their polytopes
We have so far ignored the algebraQSym of quasisymmetric functions advertised in the introduction. A
basis for itsnth graded piece is naturally indexed by compositions ofn, but may also be indexed by trees
as follows. To a composition(a1, a2, . . .), say(3, 2, 1, 4), we associate a sequence ofleft-combs

( , , , ),

i.e., trees withai leaves and all internal leaves rooted to the rightmost branch and left-pointing. These
may be hung on another tree, a right-comb with right-pointing leaves, to establish a bijection between
compositions ofn and “combs of combs” withn internal nodes:

(23)↔ (32)↔ (1214)↔ .

2 3 3 2 1 2 1 4

To see howQSym and the hypercubes fit into the picture, we briefly revisit themapβ of Section 1.2.
We identified bi-leveled trees with pairs{s, s}, wheres is the tree of circled nodes ands = (s0, . . . , sp)

is a forest of trees (the uncircled nodes). Under this identification,β may be viewed as a pair of maps
(τ, τ)—with the first factorτ making a (planar binary) trees out of the nodes greater than or equal toσ1,
and the second factorτ making trees out of the smaller nodes:

2
1

(τ,1)
←−−−

4

1
23 (1,τ)
−−−→ 2

1

.

See also Figure 3. Two more fundamental maps areγr andγl, taking trees to (right- or left-) combs, e.g.,

γr
−→ and

γl
−→ .
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Figure 3 displays several combinations of the mapsτ, γr, andγl. The algebraQSym corresponds to the
terminal object there—the set denoted

{

··· combs···
comb

}

.
The new binary tree–like structures appearing in the factorization ofSSym ։ QSym (i.e., those trees

not appearing on the central, vertical axis of Figure 3) willbe studied in upcoming papers. It is no surprise
thatSSym ։ QSym factors through so many intermediate structures. What is remarkable, and what
our binary tree point-of-view reveals, is that each family of trees in Figure 3 can be arranged into a family
of polytopes. See Figure 4. The (Hopf) algebraic and geometric implications of this phenomenon will
also be addressed in future work.
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FIG. 3: A commuting diagram of tree-like objects. The spacesSSym, MSym, YSym

andQSym appear, top to bottom, along the center. The unlabeled dashed line represents the
usual map fromYSym to QSym (see [11], Section 4.4). It is incompatible with the given
map(γr, γl) : MSym → QSym. !!!!!!!!
We explore the Hopf module structures of objects mapping toYSym andQSym in future
work. At least some of these will be full-fledged Hopf algebras (e.g., note that there is a bijec-
tion of sets between

˘

··· trees···
comb

¯

and
˘

trees
¯

, the latter indexing the Hopf algebraYSym).
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FIG. 4: A commuting diagram of polytopes based on tree-like objects with 4 nodes, cor-
responding position-wise to Figure 3 (image ofφ is suppressed). Notation is taken from [6]:
P(4) is the permutohedron,J (4) is the multiplihedron,K(5) is the associahedron, andCK(4)
is the composihedron.JGd is the domain quotient of the permutohedron andJGr is its range
quotient.!!!!!!!!
The cellular projections shown include neither the Tonks projection nor the Loday Ronco pro-
jection from the associahedron to the hypercube. However, the map from the multiplihedron
to the cube passing through the associahedron appears in [5].
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2 Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka
560-8531, Japan
3 Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616-8633, U.S.A.

Abstract. For nonexceptional types, we prove a conjecture of Hatayama et al. about the prefectness of Kirillov–
Reshetikhin crystals.

Résumé. Pour les types non-exceptionnels, on démontre une conjecture de Hatayama et al. concernant la perfection
des cristaux de Kirillov–Reshetikhin.
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1 Introduction
Kirillov–Reshetikhin (KR) crystalsBr,s are crystals corresponding to finite-dimensionalU ′q(g)-modules [3,
4], where g is an affine Kac–Moody algebra. Recently, a lot of progress has been made regarding long
outstanding problems concerning these crystals which appear in mathematical physics and the path real-
ization of affine highest weight crystals [13]. In [20, 21] the existence of KR crystals was shown. In [5] a
major step in understanding these crystals was provided by giving explicit combinatorial realizations for
all nonexceptional types. This abstract is based on [5, 6]. We prove a conjecture of Hatayama, Kuniba,
Okado, Takagu, and Tsuboi [8, Conjecture 2.1] about the perfectness of these KR crystals.

Conjecture 1.1 [8, Conjecture 2.1] The Kirillov-Reshetikhin crystal Br,s is perfect if and only if s
cr

is an
integer with cr as in Table 1. If Br,s is perfect, its level is s

cr
.

In [14], this conjecture was proven for all Br,s for type A(1)
n , for B1,s for nonexceptional types (except

for type C(1)
n ), for Bn−1,s, Bn,s of type D(1)

n , and Bn,s for types C(1)
n and D(2)

n+1. When the highest
weight is given by the highest root, level-1 perfect crystals were constructed in [1]. For 1 ≤ r ≤ n − 2
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(c1, . . . , cn)

A
(1)
n , D

(1)
n , A

(2)
2n−1, A

(2)
2n , D

(2)
n+1 (1, . . . , 1)

B
(1)
n (1, . . . , 1, 2)

C
(1)
n (2, . . . , 2, 1)

Tab. 1: List of cr

for type D(1)
n , 1 ≤ r ≤ n − 1 for type B(1)

n , and 1 ≤ r ≤ n for type A(2)
2n−1, the conjecture was proved

in [22]. The case G(1)
2 and r = 1 was treated in [24] and the case D(3)

4 and r = 1 was treated in [16].
Naito and Sagaki [18] showed that the conjecture holds for twisted algebras, if it is true for the untwisted
simply-laced cases.

In this paper we prove Conjecture 1.1 in general for nonexceptional types.

Theorem 1.2 If g is of nonexceptional type, Conjecture 1.1 is true.

The paper is organized as follows. In Section 2 we give basic notation and the definition of perfectness
in Definition 2.1. In Section 3 we review the realizations of the KR crystals of nonexceptional types as
recently provided in [5]. Section 4 is reserved for the proof of Theorem 1.2 and an explicit description
of the minimal elements Br,crs

min of the perfect crystals. A long version of this article containing further
details and examples is available at [6].

2 Definitions and perfectness
We follow the notation of [12, 5]. Let B be a U ′q(g)-crystal [15]. Denote by αi and Λi for i ∈ I the simple
roots and fundamental weights and by c the canoncial central element associated to g, where I is the index
set of the Dynkin diagram of g (see Table 2). Let P = ⊕i∈IZΛi be the weight lattice of g and P+ the set
of dominant weights. For a positive integer `, the set of level-` weights is

P+
` = {Λ ∈ P+ | lev(Λ) = `}.

where lev(Λ) := Λ(c). The set of level-0 weights is denoted by P0. We identify dominant weights
with partitions; each Λi yields a column of height i (except for spin nodes). For more details, please
consult [11].

We denote by fi, ei : B → B ∪ {∅} for i ∈ I the Kashiwara operators and by wt : B → P the weight
function on the crystal. For b ∈ B we define εi(b) = max{k | eki (b) 6= ∅}, ϕi(b) = max{k | fki (b) 6= ∅},
and

ε(b) =
∑
i∈I

εi(b)Λi and ϕ(b) =
∑
i∈I

ϕi(b)Λi.

Next we define perfect crystals, see for example [11].

Definition 2.1 For a positive integer ` > 0, a crystal B is called perfect crystal of level `, if the following
conditions are satisfied:



Perfectness of Kirillov–Reshetikhin crystals for nonexceptional types 425

A(1)
n

◦0

YYYYYYYYYYYY
eeeeeeeeeeee
◦
1

◦
2

◦
n

B(1)
n

◦0 TTTTTT
◦
2 n−1

◦ // ◦
n◦

1

jjjjjj

C(1)
n

◦ //
0

◦
1 n−1

◦ oo •
n

D(1)
n

◦0
TTTTTT •

n−1jjjjjj
◦
2 n−2

◦
◦

1

jjjjjj •n
TTTTTT

A
(2)
2n

◦ oo
0

◦
1 n−1

◦ oo ◦
n

A
(2)
2n−1

◦0 TTTTTT
◦
2 n−1

◦ oo ◦
n◦

1

jjjjjj

D
(2)
n+1

◦ oo
0

◦
1 n−1

◦ // •
n

Tab. 2: Dynkin diagrams

1. B is isomorphic to the crystal graph of a finite-dimensional U
′

q(g)-module.

2. B ⊗ B is connected.

3. There exists a λ ∈ P0, such that wt (B) ⊂ λ+
∑
i∈I\{0} Z≤0αi and there is a unique element in B

of classical weight λ.

4. ∀ b ∈ B, lev(ε(b)) ≥ `.

5. ∀ Λ ∈ P+
` , there exist unique elements bΛ, bΛ ∈ B, such that

ε(bΛ) = Λ = ϕ(bΛ).

We denote by Bmin the set of minimal elements in B, namely

Bmin = {b ∈ B | lev(ε(b)) = `}.

Note that condition (5) of Definition 2.1 ensures that ε, ϕ : Bmin → P+
` are bijections. They induce an

automorphism τ = ε ◦ ϕ−1 on P+
` .

In [22, 5] ±-diagrams were introduced, which describe the branching Xn → Xn−1 where Xn =
Bn, Cn, Dn. A±-diagram P of shape Λ/λ is a sequence of partitions λ ⊂ µ ⊂ Λ such that Λ/µ and µ/λ
are horizontal strips (i.e. every column contains at most one box). We depict this ±-diagram by the skew
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tableau of shape Λ/λ in which the cells of µ/λ are filled with the symbol + and those of Λ/µ are filled
with the symbol −. There are further type specific rules which can be found in [5, Section 3.2]. There
exists a bijection Φ between ±-diagrams and the Xn−1-highest weight vectors inside the Xn crystal of
highest weight Λ.

3 Realization of KR-crystals
Throughout the paper we use the realization ofBr,s as given in [5, 21, 22]. In this section we briefly recall
the main constructions.

3.1 KR crystals of type A
(1)
n

Let Λ = `0Λ0 + `1Λ1 + · · ·+ `nΛn be a dominant weight. Then the level is given by

lev(Λ) = `0 + · · ·+ `n.

A combinatorial description of Br,s of type A(1)
n was provided by Shimozono [23]. As a {1, 2, . . . , n}-

crystal
Br,s ∼= B(sΛr).

The Dynkin diagram of A(1)
n has a cyclic automorphism σ(i) = i+ 1 (mod n+ 1) which extends to the

crystal in form of the promotion operator. The action of the affine crystal operators f0 and e0 is given by

f0 = σ−1 ◦ f1 ◦ σ and e0 = σ−1 ◦ e1 ◦ σ.

3.2 KR crystals of type D
(1)
n , B

(1)
n , A

(2)
2n−1

Let Λ = `0Λ0 + `1Λ1 + · · ·+ `nΛn be a dominant weight. Then the level is given by

lev(Λ) = `0 + `1 + 2`2 + 2`3 + · · ·+ 2`n−2 + `n−1 + `n for type D(1)
n

lev(Λ) = `0 + `1 + 2`2 + 2`3 + · · ·+ 2`n−2 + 2`n−1 + `n for type B(1)
n (3.1)

lev(Λ) = `0 + `1 + 2`2 + 2`3 + · · ·+ 2`n−2 + 2`n−1 + 2`n for type A(2)
2n−1.

We have the following realization of Br,s. Let Xn = Dn, Bn, Cn be the classical subalgebra for D(1)
n ,

B
(1)
n , A(2)

2n−1, respectively.

Definition 3.1 Let 1 ≤ r ≤ n − 2 for type D(1)
n , 1 ≤ r ≤ n − 1 for type B(1)

n , and 1 ≤ r ≤ n for type
A

(2)
2n−1. Then Br,s is defined as follows. As an Xn-crystal

Br,s ∼=
⊕

Λ

B(Λ), (3.2)

where the sum runs over all dominant weights Λ that can be obtained from sΛr by the removal of vertical
dominoes. The affine crystal operators e0 and f0 are defined as

f0 = σ−1 ◦ f1 ◦ σ and e0 = σ−1 ◦ e1 ◦ σ, (3.3)

where σ is the crystal automorphism defined in [22, Definition 4.2].
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Definition 3.2 Let Bn,s
A

(2)
2n−1

be the A(2)
2n−1-KR crystal. Then Bn,s of type B(1)

n is defined through the

unique injective map S : Bn,s → Bn,s
A

(2)
2n−1

such that

S(eib) = emi
i S(b), S(fib) = fmi

i S(b) for i ∈ I,

where (mi)0≤i≤n = (2, 2, . . . , 2, 1).

In addition, the±-diagrams ofA(2)
2n−1 that occur in the image are precisely those which can be obtained

by doubling a ±-diagram of Bn,s (see [5, Lemma 3.5]). S induces an embedding of dominant weights of
B

(1)
n into dominant weights of A(2)

2n−1, namely S(Λi) = miΛi. It is easy to see that for any Λ ∈ P+ we
have lev(S(Λ)) = 2 lev(Λ) using (3.1).

For the definition of Bn,s and Bn−1,s of type D(1)
n , see for example [5, Section 6.2].

3.3 KR crystal of type C
(1)
n

The level of a dominant C(1)
n weight Λ = `0Λ0 + · · ·+ `nΛn is given by

lev(Λ) = `0 + · · ·+ `n.

We use the realization of Br,s as the fixed point set of the automorphism σ [22, Definition 4.2] (see
Definition 3.1) inside Br,s

A
(2)
2n+1

of [5, Theorem 5.7].

Definition 3.3 For 1 ≤ r < n, the KR crystal Br,s of type C(1)
n is defined to be the fixed point set under

σ inside Br,s
A

(2)
2n+1

with the operators

ei =

{
e0e1 for i = 0,
ei+1 for 1 ≤ i ≤ n,

where the Kashiwara operators on the right act in Br,s
A

(2)
2n+1

. Under the crystal embedding S : Br,s →

Br,s
A

(2)
2n+1

we have

Λi 7→

{
Λ0 + Λ1 for i = 0,
Λi+1 for 1 ≤ i ≤ n.

Under the embedding S, the level of Λ ∈ P+ doubles, that is lev(S(Λ)) = 2 lev(Λ).
For Bn,s of type C(1)

n we refer to [5, Section 6.1].

3.4 KR crystals of type A
(2)
2n , D

(2)
n+1

Let Λ = `0Λ0 + `1Λ1 + · · ·+ `nΛn be a dominant weight. The level is given by

lev(Λ) = `0 + 2`1 + 2`2 + · · ·+ 2`n−2 + 2`n−1 + 2`n for type A(2)
2n

lev(Λ) = `0 + 2`1 + 2`2 + · · ·+ 2`n−2 + 2`n−1 + `n for type D(2)
n+1.
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Define positive integers mi for i ∈ I as follows:

(m0,m1, . . . ,mn−1,mn) =

{
(1, 2, . . . , 2, 2) for A(2)

2n ,

(1, 2, . . . , 2, 1) for D(2)
n+1.

(3.4)

Then Br,s can be realized as follows.

Definition 3.4 For 1 ≤ r ≤ n for g = A
(2)
2n , 1 ≤ r < n for g = D

(2)
n+1 and s ≥ 1, there exists a unique

injective map S : Br,sg −→ Br,2s
C

(1)
n

such that

S(eib) = emi
i S(b), S(fib) = fmi

i S(b) for i ∈ I .

The ±-diagrams of C(1)
n that occur in the image of S are precisely those which can be obtained by

doubling a ±-diagram of Br,s (see [5, Lemma 3.5]). S induces an embedding of dominant weights for
A

(2)
2n , D

(2)
n+1 into dominant weights of type C(1)

n , with S(Λi) = miΛi. This map preserves the level of a
weight, that is lev(S(Λ)) = lev(Λ).

For the case r = n of type D(2)
n+1 we refer to [5, Definition 6.2].

4 Proof of Theorem 1.2
For type A(1)

n , perfectness of Br,s was proven in [14]. For all other types, in the case that s
cr

is an integer,
we need to show that the 5 defining conditions in Definition 2.1 are satisfied:

1. This was recently shown in [21].

2. This follows from [7, Corollary 6.1] under [7, Assumption 1]. Assumption 1 is satisfied except for
type A(2)

2n : The regularity of Br,s is ensured by (1), the existence of an automorphism σ was proven
in [5, Section 7], and the unique element u ∈ Br,s such that ε(u) = sΛ0 and ϕ(u) = sΛν (where
ν = 1 for r odd for types B(1)

n , D(1)
n , A(2)

2n−1, ν = r for A(1)
n , and ν = 0 otherwise) is given by

the classically highest weight element in the component B(0) for ν = 0, B(sΛ1) for ν = 1, and
B(sΛr) for ν = r. Note that Λ0 = τ(Λν), where τ = ε ◦ ϕ−1. For type A(2)

2n , perfectness follows
from [18].

3. The statement is true for λ = s(Λr−Λr(c)Λ0), which follows from the decomposition formulas [2,
9, 10, 19].

Conditions (4) and (5) will be shown in the following subsections using case by case considerations:
Section 4.1 for type A(1)

n , Sections 4.2, 4.3, and 4.4 for types B(1)
n , D(1)

n , A(2)
2n−1, Sections 4.5 and 4.6 for

type C(1)
n , Section 4.7 for type A(2)

2n , and Sections 4.8 and 4.9 for type D(2)
n+1.

When s
cr

is not an integer, we show in the subsequent sections that the minimum of the level of ε(b)
is the smallest integer exceeding s

cr
, and provide examples that contradict condition (5) of Definition 2.1

for each crystal, thereby proving that Br,s is not perfect. In the case that s
cr

is an integer, we provide an
explicit construction of the minimal elements of Br,s.
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4.1 Type A
(1)
n

It was already proven in [14] that Br,s is perfect. We give below its associated automorphism τ and
minimal elements. τ on P is defined by

τ(
n∑
i=0

kiΛi) =
n∑
i=0

kiΛi−rmodn+1.

Recall that Br,s is identified with the set of semistandard tableaux of r × s rectangular shape over the
alphabet {1, 2, . . . , n+ 1}. For b ∈ Br,s let xij = xij(b) denote the number of letters j in the i-th row of
b for 1 ≤ i ≤ r, 1 ≤ j ≤ n+ 1. Set r′ = n+ 1− r, then

xij = 0 unless i ≤ j ≤ i+ r′.

Let Λ =
∑n
i=0 `iΛi be in P+

s , that is, `0, `1, . . . , `n ∈ Z≥0,
∑n
i=0 `i = s. Then xij(b) of the minimal

element b such that ε(b) = Λ is given by

xii = `0 +
r−1∑
α=i

`α+r′ ,

xij = `j−i (i < j < i+ r′),

xi,i+r′ =
i−1∑
α=0

`α+r′

(4.1)

for 1 ≤ i ≤ r.

4.2 Types B
(1)
n , D

(1)
n , A

(2)
2n−1

Conditions (4) and (5) of Definition 2.1 for 1 ≤ r ≤ n−2 for typeD(1)
n , 1 ≤ r ≤ n−1 for typeB(1)

n , and
1 ≤ r ≤ n for typeA(2)

2n−1 were shown in [22, Section 6]. To a given fundamental weight Λk a±-diagram
diagram(Λk) was associated. This map can be extended to any dominant weight Λ = `0Λ0 + · · ·+ `nΛn
by concatenating the columns of the ±-diagrams of each piece. To every fundamental weight Λk a string
of operators f(Λk) can be associated as in [22, Section 6].

The minimal element b in Br,s that satisfies ε(b) = Λ can now be constructed as follows

b = f(Λn)`n · · · f(Λ2)`2 Φ(diagram(Λ)).

For Λ =
∑n
i=0 `iΛi ∈ P+

s , we have

τ(Λ) =


Λ if r is even,
`0Λ1 + `1Λ0 +

∑n
i=2 `iΛi if r is odd,

types B(1)
n , A

(2)
2n−1,

`0Λ1 + `1Λ0 +
∑n−2
i=2 `iΛi + `n−1Λn + `nΛn−1 if r is odd, type D(1)

n .
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4.3 Type D
(1)
n for r = n− 1, n

The cases when r = n, n − 1 for type D(1)
n were treated in [14]. We refer to [14] or [6, Section 4.3] for

an explicit description of the minimal elements.
The automorphism τ is given by

τ
( n∑
i=0

`iΛi
)

= `0Λn−1 + `1Λn +
n−2∑
i=2

`iΛn−i +

{
`n−1Λ0 + `nΛ1 n even,
`n−1Λ1 + `nΛ0 n odd.

4.4 Type B
(1)
n for r = n

In this section we consider the perfectness of Bn,s of type B(1)
n .

Proposition 4.1 We have

min{lev(ε(b)) | b ∈ Bn,2s+1} ≥ s+ 1,

min{lev(ε(b)) | b ∈ Bn,2s} ≥ s.

Proof: Suppose, there exists an element b ∈ Bn,2s+1 with lev(ε(b)) = p < s + 1. Since Bn,2s+1 is
embedded into Bn,2s+1

A
(2)
2n−1

by Definition 3.2, this would yield an element b̃ ∈ Bn,2s+1

A
(2)
2n−1

with lev(b̃) < 2s+ 1.

But this is not possible, since Bn,2s+1

A
(2)
2n−1

is a perfect crystal of level 2s+ 1.

Suppose there exists an element b ∈ Bn,2s with lev(ε(b)) = p < s. By the same argument one obtains
a contradiction to the level of Bn,2s

A
(2)
2n−1

. 2

Hence to show thatBn,2s+1 is not perfect, it is enough to provide two elements b1, b2 ∈ Bn,2s+1

A
(2)
2n−1

which

are in the realization of Br,s under S and satisfy ε(b1) = ε(b2) = Λ, where lev(Λ) = 2s+ 2. We use the
notation f~a = fm1

a1
· · · fmk

ak
for ~a = (am1

1 , . . . , amk

k ).

Proposition 4.2 Define the following elements b1, b2 ∈ Bn,2s+1

A
(2)
2n−1

: For n odd, let P1 be the ±-diagram

corresponding to one column of height n containing one +, and 2s columns of height 1 each containing
a − sign, and P2 the analogous ±-diagram but with a − in the column of height n. Set ~a = (n, (n −
1)2, n, (n− 2)2, (n− 1)2, n, . . . , 22, . . . , (n− 1)2, n) and

b1 = f~a(Φ(P1)) and b2 = f~a(Φ(P2)).

For n even, replace the columns of height 1 with columns of height 2 and fill them with ±-pairs. Then
b1, b2 ∈ S(Bn,2s+1) and ε(b1) = ε(b2) = 2sΛ1 + Λn, which is of level 2s+ 2.

Proof: It is clear from the construction that the ±-diagrams corresponding to b1 and b2 can be obtained
by doubling a B(1)

n ±-diagram (see [5, Lemma 3.5]). Hence Φ(P1),Φ(P2) ∈ S(Bn,2s+1). The sequence
~a can be obtained by doubling a type B(1)

n sequence using (m1,m2, . . . ,mn) = (2, . . . , 2, 1), so by
Definition 3.2 b1 and b2 are in the image of the embedding S that realizes Bn,2s+1. The claim that
ε(b1) = ε(b2) = 2sΛ1 + Λn can be checked explicitly. 2
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Corollary 4.3 The KR crystal Bn,2s+1 of type B(1)
n is not perfect.

Proof: This follows directly from Proposition 4.2 using the embedding S of Definition 3.2. 2

Proposition 4.4 There exists a bijection, induced by ε, from Bn,2smin to P+
s . Hence Bn,2s is perfect of level

s.

Proof: Let S be the embedding from Definition 3.2. Then we have an induced embedding of dominant
weights Λ of B(1)

n into dominant weights of A(2)
2n−1 via the map S, that sends Λi 7→ miΛi.

In [22, Section 6] (see Section 4.2) the minimal elements for A(2)
2n−1 were constructed by giving a ±-

diagram and a sequence from the {2, . . . , n}-highest weight to the minimal element. Since (m0, . . . ,mn) =
(2, . . . , 2, 1) and columns of height n for typeA(2)

2n−1 are doubled, it is clear from the construction that the
±-diagrams corresponding to weights S(Λ) are in the image of S of±-diagrams for B(1)

n (see [5, Lemma
3.5]). Also, since under S all weights Λi for 1 ≤ i < n are doubled, it follows that the sequences are
“doubled” using the mi. Hence a minimal element of Bn,2s of level s is in one-to-one correspondence
with those minimal elements in Bn,2s

A
(2)
2n−1

that can be obtained from doubling a ±-diagram of Bn,2s. This

implies that ε defines a bijection between Bn,2smin and P+
s . 2

The automorphism τ of the perfect KR crystal Bn,2s is given by

τ
( n∑
i=0

`iΛi
)

=

{∑n
i=0 `iΛi if n is even,

`0Λ1 + `1Λ0 +
∑n
i=2 `iΛi if n is odd.

4.5 Type C
(1)
n

In this section we consider Br,s of type C(1)
n for r < n.

Proposition 4.5 Let r < n. Then

min{lev(ε(b)) | b ∈ Br,2s+1} ≥ s+ 1,

min{lev(ε(b)) | b ∈ Br,2s} ≥ s.

Proof: By Definition 3.3, the crystal Br,s is realized inside Br,s
A

(2)
2n+1

. The proof is similar to the proof of

Proposition 4.1 for type B(1)
n . 2

Hence to show that Br,2s+1 is not perfect, it is suffices to give two elements b1, b2 ∈ Br,2s+1

A
(2)
2n+1

that are

fixed points under σ with ε(b1) = ε(b2) = Λ, where lev(Λ) = 2s+ 2.

Proposition 4.6 Let b1, b2 ∈ Br,2s+1

A
(2)
2n+1

, where b1 consists of s columns of the form read from bottom to top

(1, 2, . . . , r), s columns of the form (r, r − 1, . . . , 1), and a column (r + 1, . . . , 2). In b2 the last column
is replaced by (r+ 2, . . . , 2r+ 2) if 2r+ 2 ≤ n and (r+ 2, . . . , n, n, . . . , k) of height n otherwise. Then

ε(b1) = ε(b2) =

{
sΛr + Λr+1 if r > 1,
s(Λ0 + Λ1) + Λ2 if r = 1,

which is of level 2s+ 2.
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Proof: The claim is easy to check explicitly. 2

Corollary 4.7 The KR crystal Bn,2s+1 of type C(1)
n is not perfect.

Proof: The {2, . . . , n}-highest weight elements in the same component as b1 and b2 of Proposition 4.6
correspond to ±-diagrams that are invariant under σ. Hence, by Definition 3.3, b1 and b2 are fixed points
under σ. Combining this result with Proposition 4.5 proves that Br,2s+1 is not perfect. 2

Proposition 4.8 There exists a bijection, induced by ε, from Br,2smin to P+
s . Hence Br,2s is perfect of level

s.

Proof: By Definition 3.3, Br,s of type C(1)
n is realized inside Br,s

A
(2)
2n+1

as the fixed points under σ. Under

the embedding S, it is clear that a dominant weight Λ = `0Λ0 + `1Λ1 + · · ·+ `n+1Λn+1 of type A(2)
2n+1

is in the image if and only if `0 = `1. Hence it is clear from the construction of the minimal elements
for A(2)

2n+1 as described in Section 4.2 that the minimal elements corresponding to Λ with `0 = `1 are
invariant under σ. By [22, Theorem 6.1] there is a bijection between all dominant weights Λ of type
A

(2)
2n+1 with `0 = `1 and lev(Λ) = 2s and minimal elements in Br,2s

A
(2)
2n+1

that are invariant under σ. Hence

using S, there is a bijection between dominant weights in P+
s of type C(1)

n and Br,2smin . 2

The automorphism τ of the perfect KR crystal Br,2s is given by the identity.

4.6 Type C
(1)
n for r = n

This case is treated in [14]. For the minimal elements, we follow the construction in Section 4.2. To every
fundamental weight Λk we associate a column tableau T (Λk) of height n whose entries are k + 1, k +
2, . . . , n, n, . . . , n− k + 1 (1, 2, . . . , n for k = 0) reading from bottom to top. Let f(Λk) be defined such
that T (Λk) = f(Λk)b1, where bk is the highest weight tableau in B(kΛn). Then the minimal element b
in Bn,s such that ε(b) = Λ =

∑n
i=0 `iΛi ∈ P+

s is constructed as

b = f(Λn)`n · · · f(Λ1)`1bs.

The automorphism τ is given by

τ(
n∑
i=0

`iΛi) =
n∑
i=0

`iΛn−i.

4.7 Type A
(2)
2n

For type A(2)
2n one may use the result of Naito and Sagaki [18, Theorem 2.4.1] which states that under

their [18, Assumption 2.3.1] (which requires that Br,s for A(1)
2n is perfect) all Br,s for A(2)

2n are perfect.
Here we provide a description of the minimal elements via the emebdding S into Br,2s

C
(1)
n

.

Proposition 4.9 The minimal elements ofBr,s of level s are precisely those that corresponding to doubled
±-diagrams in Br,2s

C
(1)
n

.
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Proof: In Proposition 4.8 a description of the minimal elements ofBr,2s
C

(1)
n

is given. We have the realization
of Br,s via the map S from Definition 3.4. In the same way as in the proof of Proposition 4.4 one can
show, that the minimal elements ofBr,2s

C
(1)
n

that correspond to doubled dominant weights are precisely those

in the realization of Br,s, hence ε defines a bijection between Br,smin and P+
s . 2

The automorphism τ is given by the identity.

4.8 Type D
(2)
n+1 for r < n

Proposition 4.10 Let r < n. There exists a bijection Br,smin to P+
s , defined by ε. Hence Br,s is perfect.

Proof: This proof is analogous to the proof of Proposition 4.9. 2

The automorphism τ is given by the identity.

4.9 Type D
(2)
n+1 for r = n

This case is already treated in [14], which we summarize below. As a Bn-crystal it is isomorphic to
B(sΛn). There is a description of its elements in terms of semistandard tableaux of n × s rectangular
shape with letters from the alphabet A = {1 < 2 < · · · < n < n < · · · < 1}. Moreover, each
column does not contain both k and k. Let ci be the ith column, then the action of ei, fi (i = 1, . . . , n) is
calculated through that of cs ⊗ · · · ⊗ c1 of B(Λn)⊗s. With this realization the minimal element bΛ such
that ε(bΛ) = Λ =

∑n
i=0 `iΛi ∈ P+

s is given as follows. Let xij (1 ≤ i ≤ n, j ∈ A) be the number of
j in the ith row. Note that xij = 0 unless i ≤ j ≤ n− i+ 1. The table (xij) of bΛ is then given by
xii = `0 + · · ·+ `n−i (1 ≤ i ≤ n), xij = `j−i (i+ 1 ≤ j ≤ n), xij = `j + · · ·+ `n (n− i+ 1 ≤ j ≤ n).
The automorphism τ is given by

τ(
n∑
i=0

`iΛi) =
n∑
i=0

`iΛn−i.
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1 Introduction
In (5), Haglund, Haiman, and Loehr obtained a new combinatorial formula for the type A nonsymmetric Macdonald poly-
nomial Eα(x1, . . . , xn; q, t) first introduced by Macdonald (8), where α is a (weak) composition into n nonnegative parts.
This formula involves inversion triples, a combinatorial construct introduced in the study of symmetric Macdonald poly-
nomials (3), (4). By letting q = t = 0, we obtain a new combinatorial formula for the Eα(X; 0; 0), which are known
(13) to be certain B-module characters studied by Demazure, now commonly referred to as Demazure characters. Mar-
shall (9) has shown that many of the nice analytic properties of type A symmetric Macdonald polynomials, such as their
occurrence in a generalization of Selberg’s Integral, are shared by type A nonsymmetric Macdonald polynomials as well.
In his work he used a modified version obtained from the Eα by replacing q, t by 1/q, 1/t, reversing the order of the xi-
variables, and reversing the order of the parts of α. The combinatorics of the case q = t = 0 of these polynomials, i.e.
Eαn,...,α1(xn, . . . , x1;∞,∞), was investigated in (10), (11), including a direct combinatorial proof that they are in fact the
same as polynomials introduced by Lascoux and Schützenberger (7) in connection with the study of Schubert polynomials,
which they called standard bases, and which equal the characters of quotients of Demazure modules. The Demazure charac-
ters are sometimes called key polynomials (12) and in prior work as well as in this article the standard bases of Lascoux and
Schützenberger are referred to as Demazure atoms. It is known that the Demazure character is a positive sum of Demazure
atoms, and that the Schubert polynomial is a positive sum of Demazure characters.

Schur functions are special cases of both Demazure characters and Schubert polynomials, and the decomposition of a
Schur function as a positive sum of Demazure atoms was proved directly in (10) using an extension of the RSK algorithm.
It is well-known (2) that the Schur function sλ(x1, . . . , xn) is a sum of Gessel’s fundamental quasisymmetric functions,
one for each standard Young tableau of shape λ. It is natural to investigate how this decomposition correlates with the
expansion of sλ into Demazure atoms. In the predecessor to this article (6), the authors introduced a new basis for the
ring of quasisymmetric functions called “quasisymmetric Schur functions” denoted Sβ(x1, . . . , xn), where β is a (strong)
composition. They defined Sβ as a sum of certain Demazure atoms, and it follows immediately from the results in (10) and
the decomposition of Schur functions into atoms that sλ =

∑
β Sβ , where the sum is over all multiset permutations β of

the parts of λ. Note that if the Ferrers shape of λ is a rectangle, then the sum has only one term and sλ = Sλ. The authors
showed that if you multiply a quasisymmetrc Schur function by an elementary symmetric function ek(= s1k ) or a complete
homogeneous symmetric function hk(= sk) then this result can be expressed in a simple combinatorial way as a positive
sum of quasisymmetric Schur functions. From this rule the classical Pieri rule for multiplying a Schur function by an ek or
hk can be easily derived.

In this article we generalize the result by showing that the product of a Schur function with a quasisymmetric Schur
function (respectively Demazure character, Demazure atom) expands positively into quasisymmetric Schur functions (re-
spectively Demazure characters, atoms), and we give a simple combinatorial rule for the coefficients in this expansion.
The description of the rule contains many elements in common with the classical Littlewood-Richardson (LR) rule for the
multiplication of two Schur functions, and the authors’ proof is essentially a refinement of the proof of the LR-rule in Ful-
ton’s book on Young Tableaux (1) involving the combinatorial constructs (such as inversion triples) occurring in the new
combinatorial formulas for quasisymmetric Schur functions, Demazure characters, and Demazure atoms. One can obtain
the classical LR-rule from the rule for Demazure atoms by careful bookkeeping combined with the decomposition of Schur
functions into atoms.

1.1 Sequences and words
A strong (resp. weak) composition is a finite sequence of positive (resp. nonnegative) integers. A partition is a multiset of
nonnegative integers, which we usually present as a weakly decreasing sequence. By γ̃ we denote the underlying partition
of γ, and by γ+ the strong composition underlying γ i.e. γ with its zero parts removed. When necessary, any of these may
be considered to be an infinite sequence of integers in which all but a finite number of entries is zero. By γ∗ we denote the
sequence that contains the parts of γ in reverse order.

For any finite sequence α = (α1, . . . , αr) we denote `(α) := r and |α| :=
∑
i αi. Given two (possibly weak) compo-

sitions α = (α1, . . . , αr) and β = (β1, . . . , βr) of the same length, we say that α is contained in β, denoted α ⊆ β, if
αi ≤ βi for all 1 ≤ i ≤ r.

A finite sequence w of positive integers is called a lattice word if for every positive integer i, every prefix of w contains
at least as many i’s as (i + 1)’s. A finite sequence w of positive integers is called a reverse lattice word (or Yamanouchi
word) if for every positive integer i, every suffix of w contains at least as many i’s as (i + 1)’s. The weight of a word w is
the sequence λ = (λ1, . . . , λr) such that for every 1 ≤ i ≤ r, w contains exactly λi elements of value i. Note that if w is a
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lattice or reverse lattice word, then its weight will be a partition. Define the function φn : Z → Z by φn(k) = n + 1 − k.
Let w = (w1, . . . , wt) be a sequence of integers with largest element r. Define Φ(w) = (φr(w1), . . . , φr(wt)). Then we
will say that a word w is a contre-lattice word if Φ(w) is a lattice word and the weight of Φ(w) is a partition of length r, i.e.
the weight of w is λ∗ for some partition λ. Similarly, we will say that w is a reverse contre-lattice (or contre-Yamanouchi)
word if w∗ is a contre-lattice word.

1.2 Diagrams and tableaux
Given any partition λ = (λ1, . . . , λr), we have a partition diagram, denoted dg(λ), consisting of the usual left-justified
arrangement of rows of cells (sometimes called squares or boxes), one row for each part of λ, the part λi giving the number
of cells in row i. We use the English convention for our diagrams, so that the longest row (of length λ1) at the top of the
diagram. We index the cells of a diagram by (row, column) pairs of positive integers.

A semistandard Young tableau (SSYT) is a partition diagram filled in such a way that the entries within each row increase
weakly left-to-right and the entries within each column increase strictly top-to-bottom. A standard Young tableau (SYT)
is a SSYT in which the set of entries is exactly [n] = {1, . . . , n}, where the diagram has n cells altogether. We use the
word tableau without modifiers to refer to an SSYT unless otherwise indicated. Given partitions µ ⊆ λ, the diagram of
skew shape λ/µ consists of those cells of dg(λ) that are not in dg(µ). Skew tableaux, both standard and semistandard, are
defined analogously in the obvious way.

1 1 3 6
2 4 4 7
4 6
7

6
4 7

4 6
7

diagram tableau skew tableau on
(4, 4, 2, 1)/(3, 2)

Fig. 1: Diagram and tableau examples

The content of a tableau T is the weak composition γ for which γi is the number of entries of T with value i, for all positive
i. For example, in Figure 1, the first tableau has content (2, 1, 1, 3, 0, 2, 2). Given a set of variables X = {x1, x2, x3, . . .}
indexed by positive integers, the (monomial) weight of T , denoted xT , is the monomial for which the exponent of xi is γi,
the number of entries of T with value i. For the aforementioned example, the monomial weight is x2

1x2x3x
3
4x

2
6x

2
7.

The row reading order is a total ordering of the cells of a (possibly skew) diagram where (i, j) <row (i′, j′) if either
i > i′ or (i = i′ and j < j′). That is, the row reading order reads the cells from left-to-right in each row, starting with
the bottommost row and proceeding upwards to the top row. The row reading word of a tableau T , denoted wrow(T ) is
the sequence of integers formed by the entries of T taken in row reading order. A Littlewood-Richardson skew tableau is a
skew tableau whose row reading word is a reverse lattice word.

We will also make use of a slightly different reading order on diagrams, which we will refer to as the column reading
order. In the column reading order, we have (i, j) <col (i′, j′) if either j > j′ or (j = j′ and i < i′). That is, the column
reading order reads the cells from top-to-bottom within each column, starting with the rightmost column and working
leftwards. The column reading word of a tableau T , denoted wcol(T ), is the sequence of integers formed by the entries of
T taken in column reading order.

1.3 The Littlewood-Richardson rule
The graded algebra of symmetric functions

Λ = Λ0 ⊕ Λ1 ⊕ · · · ⊆ Z[[x1, x2, x3, . . .]]

has each graded piece given by
Λn = span {sλ|λ is a partition of n}
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where Λ0 = {1}. The Schur function sλ can in turn be defined as

sλ =
∑

T∈SSY T
shape(T )=λ

xT .

The product of two Schur functions expands as a sum of Schur functions whose coefficients are nonnegative. The
coefficients are called Littlewood-Richardson coefficients and also arise in representation theory and algebraic geometry.
The rule for the computing the coefficients is called the Littlewood-Richardson rule, and can be described as follows.

Theorem 1 (Littlewood-Richardson rule) Let λ, µ, ν be partitions. In the expansion

sλ · sµ =
∑
ν

cνλµsν ,

the Littlewood-Richardson coefficient cνλµ is the number of Littlewood-Richardson skew tableaux of shape ν/λ with content
µ.

1.4 Skyline and composition diagrams
Earlier papers (5; 10; 11) introduce column diagrams, or skyline diagrams, similar to partition diagrams, whose shapes are
indexed by weak compositions. The parts of the composition specify the number of cells in the respective columns of the
diagram. These diagrams are usually augmented by a basement, an extra row on the bottom (row 0) whose entries contain
positive integers. For example, for the augmented diagram indexed by the weak composition (2, 0, 3, 1, 2) with increasing
basement (left-to-right) is shown in the leftmost diagram of Figure 2.

1 2 3 4 5

1
2
3
4
5

5
4
3
2
1

skyline diagram, skyline diagram, skyline diagram, composition
w/increasing w/increasing w/decreasing diagram
basement basement basement
(old style) (new style)

Fig. 2: Skyline and composition diagram examples

However, for consistency with other diagrams, including tableaux, in this paper we will draw our skyline diagrams in
sideways fashion, the columns then becoming rows. As with partition diagrams, we number the rows in the English style
with row 1 at the top. We will also introduce the related notion of composition diagrams, which are indexed by strong
compositions, and for which we typically do not indicate a basement. In Figure 2, the skyline diagrams are indexed by the
weak composition (2, 0, 3, 1, 2), while the composition diagram is indexed by the composition (2, 3, 1, 2).

Just as we fill partition diagrams according to certain restrictions to obtain tableaux, we define fillings for composition
diagrams subject to certain rules. To state the rules, we first define the notion of a triple of cells, of which there are two
types.

c a
...

b

, b
...

c a

Type A Type B
γi ≥ γj γi < γj
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A type A triple of a diagram of shape γ is a set of three cells a, b, c of the form (i, k), (j, k), (i, k− 1) for some pair of rows
i < j of the diagram and some column k > 0, where row i is at least as long as row j, i.e. γi ≥ γj . A type B triple is a set
of three cells a, b, c of the form (j, k + 1), (i, k), (j, k) for some pair of rows i < j of the diagram and some column k ≥ 0,
where row i is strictly shorter than row j, i.e. γi < γj . Note that basement cells can be elements of triples. We say that a
triple of either type is an inversion triple if the relative order of the entries is either b < a ≤ c or a ≤ c < b.

We say that a skyline diagram filling is semistandard if

(i) each row is weakly decreasing left-to-right (including the basement), and

(ii) all triples (including triples with cells in the basement) are inversion triples.

We refer to such a filled skyline diagram as a semistandard augmented filling (SSAF), or simply as a skyline.

We say that a composition diagram filling is semistandard if

(i) the first column is strictly increasing, top-to-bottom,

(ii) each row is weakly decreasing left-to-right, and

(iii) all triples are inversion triples.

We refer to such a filled composition diagram as a semistandard composition tableau (SSCT), or simply as a composition
tableau.

1.5 Combinatorial formulas for formal power series

We have already mentioned the well-known combinatorial formula for Schur functions, which restricts to Schur polynomials
over the variables X = {x1, . . . , xn}:

sλ(X) =
∑

T∈SSY T (n),
shape(T )=λ

xT , (1.1)

where SSY T (n) is the set of all semistandard tableaux with entries in [n]. The formula for the Schur function over the
infinite variable set X = {x1, x2, x3, . . .} is the same except that the tableau entries are taken over Z>0 instead of [n].
Earlier works (10; 11) have similarly provided combinatorial formulas for Demazure atoms and Demazure characters,
respectively, in terms of skylines:

Aγ(X) =
∑

Y∈SSAFI(n),
shape(Y )=γ

xY , (1.2)

κγ(X) =
∑

Y∈SSAFD(n),
shape(Y )=γ∗

xY , (1.3)

where SSAFI(n) is the set of all semistandard augmented fillings with increasing basement with entries in [n], and
SSAFD(n) is the set of all semistandard augmented fillings with decreasing basement with entries in [n]. The analo-
gous formula for quasisymmetric Schur functions over the variable set X = {x1, x2, x3, . . .} is given by

Sα =
∑

T∈SSCT,
shape(T )=α

xT , (1.4)

where SSCT is the set of all semistandard composition tableaux. We are now ready to provide Littlewood-Richardson
rules for these latter three formal power series.
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2 Littlewood-Richardson rule for Demazure atoms
Given a weak composition γ with `(γ) = n, we say that an extended basement of shape γ is a skyline in which the basement
entries (in the 0-th column) are distinct integers, each of which is strictly greater than n, and the entries in each row of the
diagram are equal to the column 0 entry for the respective row. The standard decreasing (respectively increasing) extended
basement of shape γ is the extended basement of shape γ skyline in which the basement entries (in the 0-th column) are
decreasing (respectively increasing) , beginning with 2n in the first row and ending with n+ 1 in the last row (respectively
n+ 1 to 2n).

Given weak compositions γ ⊂ δ, where we assume `(γ) = `(δ), the skew skyline diagram (or simply skew diagram) of
shape δ/γ is the set of those cells of the skyline diagram of shape δ that are not in the skyline diagram of shape γ. For this
section, we consider the skew diagram to be “resting on” a standard decreasing extended basement of shape γ. Finally, a
Littlewood-Richardson skew skyline (LRS) of shape δ/γ will be a filling σ : S → [n] of the empty cells of a skew diagram S
resting on a standard decreasing extended basement of shape γ, where n = `(δ), that satisfies the rules for skyline diagram
fillings and for which the column reading word (excluding extended basement entries) is a contre-lattice word. Figure 3
shows an example of a standard decreasing extended basement of shape γ = (2, 0, 3, 1, 2), a skew diagram of shape δ/γ
where δ = (3, 1, 4, 2, 5), and an LRS of the same skew shape with column reading word 3231321, which is contre-lattice
of weight (3, 2, 2)∗. We can now state our Littlewood-Richardson rule for the product of Schur polynomials and Demazure
atoms.

10 10 10
9
8 8 8 8
7 7
6 6 6

10 10 10
9
8 8 8 8
7 7
6 6 6

10 10 10 1
9 1
8 8 8 8 2
7 7 2
6 6 6 3 3 3

decreasing skew skew LRS,
extended skyline diagram wcol(S) =
basement diagram w/decreasing 3231321

basement

Fig. 3: Skyline extended basement and LRS

Theorem 2 Let λ be a partition and γ, δ be weak compositions. In the expansion

Aγ · sλ =
∑
δ

aδγλAδ, (2.1)

the coefficient aδγλ is the number of LRS of shape δ/γ with content λ∗.

3 Littlewood-Richardson rule for quasisymmetric Schur functions
The method of proof for Theorem 2 leads easily to a corresponding Littlewood-Richardson rule for the product of a Schur
function and a quasisymmetric Schur function. To state it we define the analogue of an LRS for composition diagrams.

Given a strong composition β and a weak composition γ such that `(γ) = `(β) and γ ⊂ β, we say that the skew
composition diagram of shape β/γ is the set of cells of the composition diagram of β that are not in the diagram of γ. We
naturally associate to this skew composition diagram a skew skyline diagram with decreasing extended basement, where
all of the of the entries in the basement are larger than the number of empty cells in the skew shape β/γ. Now to every
LRS filling of this skew skyline diagram we associate the corresponding Littlewood-Richardson skew composition tableau
(LRC), which is simply the filling of the cells of the skew composition diagram with the corresponding (nonbasement)
entries from the LRS. An example is given in Figure 4. We can now state our Littlewood-Richardson rule for the product of
Schur functions and quasisymmetric Schur functions.
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* *

* * *
*
* *

12 12 12
11
10 10 10 10
9 9
8 8 8

12 12 12 1
11 1
10 10 10 10 2
9 9 2
8 8 8 3 3 3

* * 1
1
* * * 2
* 2
* * 3 3 3

skew composition associated skew an LRS, associated
diagram, shape = skyline diagram wcol(S) = LRC

(3, 1, 4, 2, 5)/(2, 0, 3, 1, 2) w/decreasing 3231321
basement

Fig. 4: Composition skew diagram and LRC

Theorem 3 Let λ be a partition and α, β be strong compositions. In the expansion

Sα · sλ =
∑
β

CβαλSβ , (3.1)

the coefficient Cβαλ is the number of LRC of shape β/γ with content λ∗ and γ+ = α.

4 Littlewood-Richardson rule for Demazure characters
Given a standard increasing extended basement of shape α, with `(α) = n, any weak composition β such that `(β) = n and
α ⊂ β, we define a Littlewood-Richardson key skyline (LRK) of shape β/α to be a filling σ : S → [n] of the empty cells of
a skew diagram S that satisfies the skyline diagram filling rules and for which the column reading word (excluding extended
basement entries) is a contre-lattice word. Figure 5 provides an example of a standard increasing extended basement of shape
α = (2, 0, 1, 2, 3), a skew diagram of shape β/α where β = (5, 1, 3, 2, 4), and an LRK of the same shape with column
reading word 3323121, which is contre-lattice of weight (3, 2, 2)∗. We are now ready to state our Littlewood-Richardson
rule for the product of Schur polynomials and Demazure characters.

6 6 6
7
8 8
9 9 9
10 10 10 10

6 6 6
7
8 8
9 9 9
10 10 10 10

6 6 6 3 3 3
7 1
8 8 2 1
9 9 9
10 10 10 10 2

increasing skew skew LRK,
extended skyline diagram wcol(S) =
basement diagram w/increasing 3323121

basement

Fig. 5: Skyline extended basement and LRK

Theorem 4 Let λ be a partition and γ, δ be weak compositions. In the expansion

κγ · sλ =
∑
δ

bδγλκδ, (4.1)

the coefficient bδγλ is the number of LRK of shape δ∗/γ∗ with content λ∗.
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1 Introduction
We discuss some recent progress on the Monotone Column Permanent (MCP) conjecture of Haglund,
Ono and Wagner (HOW99; Hag00).

The Monotone Column Permanent (MCP) conjecture Let A be an n × n matrix with real entries
weakly increasing down columns, i.e., ai,j ≤ ai+1,j for i = 1, . . . , n − 1, j = 1, . . . , n. Then, the
polynomial p(z) = per(B), the permanent of matrix B with bi,j = ai,j + z has only real zeros.

The conjecture was proven for some special cases in (HOW99), but the general case was left open for
n > 3 and the proof for the n = 3 case was rather lengthy (May). In this paper we give a new proof
for the n = 3 case and prove the n = 4 case. We also prove a special case for n = 5 and conjecture a
multivariate version of the stability of Eulerian polynomials.

1.1 Real rootedness and stability
To prove real rootedness of a polynomial f , i.e., that all roots of f are all real, we will use a method
of showing that a multivariate generalization of f is stable. Similar ideas have been applied before in
different contexts, e.g., the multivariate Heilmann–Lieb and Lee–Young theorems (HL72; Sok05), and
recently remarkable results were proved concerning reality of roots, using stable polynomials in (BB08).

We start our discussion with some necessary definitions first.

Stability We call a polynomial f ∈ R[z1, . . . , zn] stable if

(∀i : =(zi) > 0)⇒ f(z1, . . . , zn) 6= 0.

For a univariate polynomial f(z) ∈ R[z] stability is equivalent to the fact that f(z) has only real roots.
Observe that if f(z1, . . . , zn) is a stable multivariate polynomial then g(z) = f(z, . . . , z) is also stable.
By this observation it is clear that the following conjecture would imply the MCP conjecture:

Multivariate MCP conjecture Let A be an n × n matrix with real entries weakly increasing down
columns, i.e., ai,j ≤ ai+1,j for i = 1, . . . , n − 1, j = 1, . . . , n. Then, the multivariate multi-affine
polynomial f(z1, . . . , zn) = per(B) with bi,j = ai,j + zj is stable.

In fact, the authors conjecture a stronger version of the above conjecture.

Multivariate k-permanent MCP conjecture LetA be an n×mmatrix with real entries weakly increas-
ing down columns, i.e., ai,j ≤ ai+1,j for i = 1, . . . , n − 1, j = 1, . . . ,m. Let B be the n ×m matrix
with entries bi,j = ai,j + zj . Let I, J be index sets of size k ≤ min(n,m) and denote by [B]I,J the
k × k submatrix of B containing the rows I = {i1, . . . , ik} and columns J = {j1, . . . , jk}. Then, the
multivariate multi-affine polynomial f(z1, . . . , zm) =

∑
I,J per([B]I,J) is stable. The sum goes over all

possible I and J , k-subsets of {1, . . . , n} and {1, . . . ,m}, respectively.

1.2 Brändén’s criterion
In our discussion we will deal with a restricted class of multivariate polynomials:

Multi-affine polynomial A multivariate polynomial is multi-affine if it has degree at most one in each
variable.

Recently, in (Brä07) the following useful characterization of multi-affine stable polynomials was shown.
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Theorem 1.1 (Brändén) A multivariate multi-affine polynomial with real coefficients f ∈ R[z1, . . . , zn]
is stable, if and only if for all ξ ∈ Rn and 1 ≤ i < j ≤ n

∆i,jf :=
∂f

∂zi
(ξ) · ∂f

∂zj
(ξ)− ∂2f

∂zi∂zj
(ξ) · f(ξ) ≥ 0 (1)

This equivalent condition is often referred to as the strong Rayleigh property.

The k-permanent conjecture is trivial for k = 1. Consider the n = k = 2 case. Let A =
(
a c
b d

)
denote a monotone column matrix. Then for

f(z1, z2) = per
(
z1 + a z2 + c
z1 + b z2 + d

)
= (z1 + a)(z2 + d) + (z1 + b)(z2 + c)

using Brändén’s criterion we need to show that

∆1,2f = (2z1 + a+ b)(2z2 + c+ d)− 2 ((z1 + a)(z2 + d) + (z1 + b)(z2 + c)) =

= (a+ c)(b+ d)− 2(ad+ bc) = (a− b)(c− d) ≥ 0,

which is a consequence of the monotone column property of A.
Note that it is possible to apply this method straightforwardly to the n = k = 3 case and perhaps

larger matrices, however the computations become soon intractable. In the following section we present
observations that allow us to restrict ourselves to 0− 1 matrices.

2 Reducing the conjecture to 0-1 matrices
Lemma 2.1 If there is a counterexample to the k-permanent MCP conjecture, then there is a counterex-
ample A such that there are only two different entries in each column of A.

Proof: If there are no counterexamples to the conjecture the lemma is true. Otherwise, let k denote the
smallest number for which the k-permanent MCP conjecture is false. Clearly, k > 1. Let A be a minimal
size counterexample for this k with n rows and m columns, and assume that A has a column with at least
three different values in it. W.l.o.g., we can assume that this is the first column, i.e., α = ak−1,1 < ak,1 =
β = a`,1 < a`+1,1 = γ for some 1 < k ≤ l < n. We will show that by changing all occurrences of β to α
or γ we obtain a matrix which is also a counterexample. Clearly, the first column of the matrix will have
one less different values (and all other columns remain unchanged). Hence, by repeating this procedure
in each column we will arrive at a counterexample matrix that has only two different entries per column.

Using the notation of the conjecture, denote the matrix with entries bi,j = ai,j + zj by B and the
multivariate multi-affine polynomial obtained by summing over all k-permanental minors of B by f .
Since A is a counterexample there are complex numbers ξi, i = 1 . . . ,m with positive imaginary part
such that f(ξ1, . . . , ξm) = 0. On the other hand, by expanding the permanent along the first column we
get that

f(z1, ξ2, . . . , ξm) = z1p(ξ2, . . . , ξm) + βq(ξ2, . . . , ξm) + r(ξ2, . . . , ξm)

where the polynomials p(z2, . . . , zm), q(z2, . . . , zm) and r(z2, . . . , zm) do not depend on z1 nor on β.
Note that p is the polynomial obtained by summing over all k−1-permanental polynomial of a monotone
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matrix (obtained from A by deleting the first column). And since =(ξi) > 0 for i = 2 . . .m, by the
minimality of A and k we get that p(ξ2, . . . , ξm) 6= 0.

We need to show that if we change all occurrences of β to α (or all occurrences of β to γ) in the column
then the modified matrix is also a counterexample, i.e., z1p+αq+ r = 0 (or z1p+ γq+ r = 0) for some
z1 with positive imaginary part. Let w1 = −αq+rp and w2 = −γq+rp . Since z1 is a linear function of β in

z1p+ βq+ r = 0, and =(ξ1) > 0 where ξ1 = −βq+rp , it must be the case that =(w1) > 0 or =(w2) > 0.
2

Lemma 2.2 If there is a counterexample to the k-permanent MCP conjecture, then there is a counterex-
ample A with entries 0 and 1 only.

Proof: By the previous lemma we can assume that each column j in A has at most two different entries.
Consider the case when there are two different values in each column, namely cj < dj . Since multiply-
ing a complex number z by a positive real number and adding a real number to z does not change the
sign of its imaginary part, =(z), it is easy to see that f(z1, . . . , zm) = per(aij + zj) is stable if and
only if g(z1, . . . , zm) = f ((d1 − c1)z1 − c1, . . . , (dn − cn)zm − cm) is stable. To conclude, note that
g(z1, . . . , zm) = per(ãij + zj) where ãij ∈ {0, 1} for all i, j. For the case when ci = di for some i the
proof is similar. 2

3 Results for the MCP conjecture
Note that in Lemma 2.1 the same proof goes through if we only consider matrices A of size n ×m with
m ≤ n, and restrict ourselves to the k = m case. Then the p 6= 0 assumption for the coefficient of z1 still
holds, because p is in fact the sum of the (m− 1)-permanents of a matrix of size n× (m− 1).

3.1 A new proof for the 3× 3 case
By Lemmas 2.1 and 2.2, in the 3× 3 case we only need to verify the monotone column 0-1 matrices. Due
to symmetry considerations we can restrict ourselves to

(
6
3

)
= 20 matrices, the number of Ferrers boards

fitting in a 3× 3 square. Furthermore, 16 out of these matrices have an all 0 or all 1 column, which means
that we can factor zj or zj +1, respectively, from the permanent and reduce the question to a 3×2 matrix.
Let us check the conjecture for these matrices first.

In the 3 × 2 case if we have an all 0 (or all 1) column the problem is trivial since we can factor the
polynomial, hence it is stable. There are 3 matrices which do not have an all 0 or all 1 column: 0 0

0 0
1 1

 ,

 0 0
0 1
1 1

 , and

 0 0
1 1
1 1

 .

Denote by f(c1,...,cm) the polynomial obtained by taking the permanent of matrix B with bij = aij + zj ,
where the corresponding matrix A is an n×m Ferrers matrix with cj ones in column j for all j.

The permanents

f(1,1) = z1(2z2 + 1) + z1(2z2 + 1) + (z1 + 1)2z2 = 6z1z2 + 2z1 + 2z2,
f(1,2) = z1(2z2 + 2) + z1(2z2 + 1) + (z1 + 1)(2z2 + 1) = 6z1z2 + 4z1 + 2z2 + 1,
f(2,2) = z1(2z2 + 2) + (z1 + 1)(2z2 + 1) + (z1 + 1)(2z2 + 1) = 6z1z2 + 4z1 + 4z2 + 2



On the Monotone Column Permanent conjecture 449

all satisfy (1), i.e., they all have the strong Rayleigh property:

∆1,2f(1,1) = (6z2 + 2)(6z1 + 2)− 6(6z1z2 + 2z1 + 2z2) = 4 ≥ 0,
∆1,2f(1,2) = (6z2 + 4)(6z1 + 2)− 6(6z1z2 + 4z1 + 2z2 + 1) = 2 ≥ 0,
∆1,2f(2,2) = (6z2 + 4)(6z1 + 4)− 6(6z1z2 + 4z1 + 4z2 + 2) = 4 ≥ 0.

Now we only need to check the following 3× 3 matrices: 0 0 0
0 0 0
1 1 1

 ,

 0 0 0
0 0 1
1 1 1

 ,

 0 0 0
0 1 1
1 1 1

 ,

 0 0 0
1 1 1
1 1 1

 .

Following the notation from above, the permanents

f(1,1,1) = 6z1z2z3 + 2z1z2 + 2z1z3 + 2z2z3,
f(1,1,2) = 6z1z2z3 + 4z1z2 + 2z1z3 + 2z2z3 + z1 + z2,

f(1,2,2) = 6z1z2z3 + 4z1z2 + 4z1z3 + 2z2z3 + 2z1 + z2 + z3,

f(2,2,2) = 6z1z2z3 + 4z1z2 + 4z1z3 + 4z2z3 + 2z1 + 2z2 + 2z3

all have the strong Rayleigh property

∆1,2f(1,1,1) = 4z2
3 ≥ 0,

∆1,2f(1,1,2) = (2z3 + 1)2 ≥ 0,

∆1,3f(1,1,2) = 2z2
3 ≥ 0,

∆1,2f(1,2,2) = 2(z3 + 1)2 ≥ 0,

∆2,3f(1,2,2) = (2z1 + 1)2 ≥ 0,

∆1,2f(2,2,2) = 4(z3 + 1)2 ≥ 0.

Note we did not check ∆i,jf ≥ 0 for all possible i, j pairs, the remaining cases follow by symmetry.
As a consequence we obtain that the MCP conjecture holds for 3× 3 matrices.

3.2 A proof for the 4× 4 case
The above computation reveals one weakness of this method, namely that we have to check the strong
Rayleigh property for all pairs, i.e., we need to verify ∆i,jf ≥ 0 for all i < j. In (WW09) a new criterion
was introduced to reduce the computation required.

Theorem 3.1 (Wagner and Wei) Let f(z1, . . . , zn) be a multi-affine polynomial with positive coeffi-
cients. Then f has the strong Rayleigh property if and only if

∂f

∂z`
and f|z`=0 = f(z1, . . . , z`−1, 0, z`+1, . . . , zn)

have the strong Rayleigh property for all `, and (1) holds for some pair i < j.
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This theorem is helpful because it is sufficient to check now ∆i,jf ≥ 0 for only one index pair. We
were checking the stability of ∂f/∂z` already. Since, ifA is an n×nmatrix then ∂f/∂z` is the permanent
corresponding to the n× (n− 1) matrix obtained by removing column ` from A (we were checking this,
in case column ` had only zeros or only ones). Checking the stability of f|z`=0 is an extra overhead but
overall saves more time than if we had to check ∆i,jf ≥ 0 for all index pairs.

Let us verify the conjecture for 4× 4 matrices. Again, to verify the conjecture for matrices with an all
0 or all 1 columns we reduce the problem to 4 × 3 and 4 × 2 matrices consequently. The permanents of
4× 1 matrices are trivially stable. Here are the 6 matrices of size 4× 2 with no all 0 or all 1 columns:

0 0
0 0
0 0
1 1

 ,


0 0
0 0
0 1
1 1

 ,


0 0
0 1
0 1
1 1

 ,


0 0
0 0
1 1
1 1

 ,


0 0
0 1
1 1
1 1

 ,


0 0
1 1
1 1
1 1

 .

We need to verify the strong Rayleigh property for the corresponding polynomials:

f(1,1) = 12z1z2 + 3z1 + 3z2
f(1,2) = 12z1z2 + 6z1 + 3z2 + 1
f(1,3) = 12z1z2 + 9z1 + 3z2 + 2
f(2,2) = 12z1z2 + 6z1 + 6z2 + 2
f(2,3) = 12z1z2 + 9z1 + 6z2 + 4
f(3,3) = 12z1z2 + 9z1 + 9z2 + 6

They are all stable since,

∆1,2f(1,1) = (12z1 + 3)(12z2 + 3)− 12(12z1z2 + 3z1 + 3z2) = 9 ≥ 0
∆1,2f(1,2) = (12z1 + 3)(12z2 + 6)− 12(12z1z2 + 6z1 + 3z2 + 1) = 6 ≥ 0
∆1,2f(1,3) = (12z1 + 3)(12z2 + 9)− 12(12z1z2 + 9z1 + 3z2 + 2) = 3 ≥ 0
∆1,2f(2,2) = (12z1 + 6)(12z2 + 6)− 12(12z1z2 + 6z1 + 6z2 + 2) = 12 ≥ 0
∆1,2f(2,3) = (12z1 + 6)(12z2 + 9)− 12(12z1z2 + 9z1 + 6z2 + 4) = 6 ≥ 0
∆1,2f(3,3) = (12z1 + 9)(12z2 + 9)− 12(12z1z2 + 9z1 + 9z2 + 6) = 9 ≥ 0.

Now, we need to verify the stability of the 4× 3 matrices (with no all 0 or all 1 columns):
0 0 0
0 0 0
0 0 0
1 1 1

 ,


0 0 0
0 0 0
0 0 1
1 1 1

 ,


0 0 0
0 0 1
0 0 1
1 1 1

 ,


0 0 0
0 0 0
0 1 1
1 1 1

 ,


0 0 0
0 0 1
0 1 1
1 1 1

 ,


0 0 0
0 1 1
0 1 1
1 1 1

 ,


0 0 0
0 0 0
1 1 1
1 1 1

 ,


0 0 0
0 0 1
1 1 1
1 1 1

 ,


0 0 0
0 1 1
1 1 1
1 1 1

 ,


0 0 0
1 1 1
1 1 1
1 1 1

 .
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The polynomials and their Rayleigh differences are:

f(1,1,1) = 24z1z2z3 + 6z1z2 + 6z1z3 + 6z2z3
f(1,1,2) = 24z1z2z3 + 12z1z2 + 6z1z3 + 6z2z3 + 2z1 + 2z2
f(1,1,3) = 24z1z2z3 + 18z1z2 + 6z1z3 + 6z2z3 + 4z1 + 4z2
f(1,2,2) = 24z1z2z3 + 12z1z3 + 12z1z2 + 6z2z3 + 4z1 + 2z2 + 2z3
f(1,2,3) = 24z1z2z3 + 18z1z2 + 12z1z3 + 6z2z3 + 8z1 + 4z2 + 2z3 + 1
f(1,3,3) = 24z1z2z3 + 18z1z2 + 18z1z3 + 6z2z3 + 12z1 + 4z2 + 4z3 + 2
f(2,2,2) = 24z1z2z3 + 12z1z2 + 12z1z3 + 12z2z3 + 4z1 + 4z2 + 4z3
f(2,2,3) = 24z1z2z3 + 18z1z2 + 12z1z3 + 12z2z3 + 8z1 + 8z2 + 4z3 + 2
f(2,3,3) = 24z1z2z3 + 18z1z2 + 18z1z3 + 12z2z3 + 12z1 + 8z2 + 8z3 + 4
f(3,3,3) = 24z1z2z3 + 18z1z2 + 18z1z3 + 18z2z3 + 12z1 + 12z2 + 12z3 + 6

∆1,2f(1,1,1) = 36z2
3

∆1,2f(1,1,2) = 4(3z3 + 1)2

∆1,3f(1,1,2) = 24z2
2

∆1,2f(1,1,3) = 4(3z3 + 2)2

∆1,3f(1,1,3) = 12z2
2

∆1,2f(1,2,2) = 8(3z2
3 + 3z3 + 1)

∆2,3f(1,2,2) = 4(12z2
1 + 6z1 + 1)

∆1,2f(1,2,3) = 2(12z2
3 + 18z3 + 7)

∆1,3f(1,2,3) = 4(3z2
2 + 3z2 + 1)

∆2,3f(1,2,3) = 2(12z2
1 + 6z1 + 1)

∆1,2f(1,3,3) = 12(z3 + 1)2

∆2,3f(1,3,3) = 4(3z1 + 1)2

∆1,2f(2,2,2) = 16(3z2
3 + 3z3 + 1)

∆1,2f(2,2,3) = 4(12z2
3 + 18z3 + 7)

∆1,3f(2,2,3) = 8(3z2
2 + 3z2 + 1)

∆1,2f(2,3,3) = 24(z3 + 1)2

∆2,3f(2,3,3) = 4(3z1 + 2)2

∆1,2f(3,3,3) = 36(z3 + 1)2

Finally, we have to show the stability of 4× 4 matrices. Instead of computing the Rayleigh differences
potentially

(
4
2

)
= 6 times for each matrix, we employ Theorem 3.1 and compute only one Rayleigh

difference per matrix. We already have that the partial derivatives are stable, since these are exactly the
polynomials which are the permanents of 4 × 3 matrices. Now we need to show the stability of f|z`=0.
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These polynomials have one of the three following forms. They can be a permanent of a 3 × 3 matrix
obtained by removing the last row of the 4 × 3 matrix, or the sum of two permanents (one obtained by
removing the third row and another obtained by removing the last row of the original matrix), or three
permanents of 3×3 matrices (obtained by the respective submatrices of the given 4×3 matrix by removing
the second, third and last row).

The 3 × 3 case we have already solved in Section 3.1, the sum of two permanents can be reduced to a
single 3× 3 permanent case, by expanding the permanent along the last row:

per


z1 + a1 z2 + a2 z3 + a3 0
z1 + b1 z2 + b2 z3 + b3 0
z1 + c1 z2 + c2 z3 + c3 1
z1 + d1 z2 + d2 z3 + d3 1

 = per

 z1 + a1 z2 + a2 z3 + a3

z1 + b1 z2 + b2 z3 + b3
z1 + c1 z2 + c2 z3 + c3

+

per

 z1 + a1 z2 + a2 z3 + a3

z1 + b1 z2 + b2 z3 + b3
z1 + d1 z2 + d2 z3 + d3


= 2per

 z1 + a1 z2 + a2 z3 + a3

z1 + b1 z2 + b2 z3 + b3
z1 + c1+d1

2 z2 + c2+d2
2 z3 + c3+d3

2


Note that in this case the other rows are identical, and since the entries in the last rows are the largest ones
their average also preserves the monotone column property.

For the sum of three permanents we can also argue similarly. Note that if there are two columns with
the same number of ones, then two of the summands are identical and we can sum the permanents by
expanding along the row in which they differ. Here factoring out 3 and placing the average in the row will
preserve the monotone column property. The only case when all columns have different number of ones
is when

A =


0 0 0
0 0 1
0 1 1
1 1 1

 .

The corresponding polynomial f = 18z1z2z3 + 12z1z2 + 8z1z3 + 4z2z3 + 4z1 + 2z2 + z3 is stable,
because the

∆1,2f = 2(7z2
3 + 10z3 + 4)

∆1,3f = 4(3z2
2 + 3z2 + 1)

∆2,3f = 2(12z2
1 + 6z1 + 1)

differences are always positive.
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We check the strong Rayleigh property for all the 15 matrices of size 4×4 with no all 0 or all 1 columns:

∆1,2f(1,1,1,1) = 36z2
3z

2
4

∆1,2f(1,1,1,2) = 24z2
3z

2
4

∆1,2f(1,1,1,3) = 8z3z4 + 48z2
3z

2
4 + 4z2

3 + 4z2
4 + 24z2

3z4 + 24z3z2
4

∆1,2f(1,1,2,2) = 8z3z4 + 48z2
3z

2
4 + 4z2

3 + 16z2
4 + 24z2

3z4 + 48z3z2
4

∆1,2f(1,1,2,3) = 16z3z4 + 48z2
3z

2
4 + 16z2

3 + 16z2
4 + 48z2

3z4 + 48z3z2
4

∆1,2f(1,1,3,3) = 12z2
3z

2
4

∆1,2f(1,2,2,2) = 4z3z4 + 24z2
3z

2
4 + 2z2

3 + 2z2
4 + 12z2

3z4 + 12z3z2
4

∆1,2f(1,2,2,3) = 4z3z4 + 24z2
3z

2
4 + 2z2

3 + 8z2
4 + 12z2

3z4 + 24z3z2
4

∆1,2f(1,2,3,3) = 8z3z4 + 24z2
3z

2
4 + 8z2

3 + 8z2
4 + 24z2

3z4 + 24z3z2
4

∆1,2f(1,3,3,3) = 4(3z3z4 + z4 + z3)2

∆1,2f(2,2,2,2) = (6z3z4 + 4z4 + 2z3 + 1)2

∆1,2f(2,2,2,3) = 4(3z3z4 + 2z4 + 2z3 + 1)2

∆1,2f(2,2,3,3) = 4(3z4 + 1)2(z3 + 1)2

∆1,2f(2,3,3,3) = 4(3z4 + 2)2(z3 + 1)2

∆1,2f(3,3,3,3) = 36(z4 + 1)2(z3 + 1)2

The 6 differences which are not complete squares are also non-negative, since they have the following
non-positive discriminants (when they are considered as a polynomial in z3):

−192z4
4 , −192(2z4 + 1)2z2

4 , −768(z4 + 1)2z2
4 , −48z4

4 , −48(2z4 + 1)2z2
4 , −192(z4 + 1)2z2

4 ,

and positive leading coefficients:

4(12z2
4+6z4+1), 4(12z2

4+6z4+1), 16(3z2
4+3z4+1), 2(12z2

4+6z4+1), 2(12z2
4+6z4+1), 8(3z2

4+3z4+1).

3.3 Proof for a 5× 5 matrix and the Eulerian polynomials
There is an interesting connection between the Eulerian polynomial and the multivariate MCP conjecture.
Let A be the n × n matrix with all zeros above and on the diagonal and all ones below. Denote the
permanent of B where bij = aij + zj by f(z1, . . . , zn). The univariate polynomial obtained by setting
zi = z for all i is the Eulerian polynomial modified by a rational change of variables:

f(z, . . . , z) = (z + 1)nAn

(
z

1 + z

)
=

n∑
k=1

A(n, k)zk(1 + z)n−k, (2)

where An(z) is the generating polynomial of the Eulerian numbers, A(n, k), e.g., the number of per-
mutations of n letters with k weak excedances. (A number i is a weak excedance in permutation π =
π1π2 · · ·πn if πi ≥ i.) To show (2) we can identify permutations of n letters with placements of n rooks
on an n × n board, with a rook on (i, j) interpreted as πi = j in the permutation π = π1π2 · · ·πn. The
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zk(1 + z)n−k terms in the expansion of the permanent f(z, . . . , z) correspond to rook placements with k
rooks on or above the diagonal (each rook contributes a a factor of z to the term). Hence the coefficient
of zk(1 + z)n−k is exactly A(n, k).

Therefore, this multivariate generalization of the Eulerian polynomials is a natural candidate to be
proven stable, which would imply the well-known fact that Eulerian polynomials have only real zeros.

We already proved that for n ≤ 4 these polynomials are stable. Now we show that for n = 5 this
special case of the multivariate MCP conjecture also holds.

Let

A =


0 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1

 .

Let f = f(0,1,2,3,4). We check the strong Rayleigh property for all 1 ≤ i < j ≤ 5. Since we can factor
out z1 from f note that ∆1,2f = ∆1,3f = ∆1,4f = ∆1,5f = 0.

∆2,3f = 2z2
1(216z2

4z
2
5 + 336z2

4z5 + 240z4z2
5 + 354z4z5 + 132z2

4 + 132z4 + 72z2
5 + 102z5 + 37)

∆2,4f = 4z2
1(75z3z5 + 120z2

3z5 + 48z3z2
5 + 72z2

3z
2
5 + 12z2

5 + 18z5 + 7 + 51z2
3 + 30z3)

∆2,5f = 4z2
1(27z3z4 + 48z2

3z4 + 24z3z2
4 + 36z2

3z
2
4 + 6z2

4 + 6z4 + 2 + 18z2
3 + 9z3)

∆3,4f = 2z2
1(150z2z5 + 96z2

5z2 + 288z2
2z

2
5 + 480z2

2z5 + 12z2
5 + 18z5 + 7 + 60z2 + 204z2

2)
∆3,5f = 4z2

1(27z2z4 + 72z2
2z

2
4 + 24z2

4z2 + 3z2
4 + 3z4 + 1 + 96z2

2z4 + 9z2 + 36z2
2)

∆4,5f = 2z2
1(216z2

2z
2
3 + 66z2z3 + 96z2

3z2 + 1 + 192z2
2z3 + 12z2 + 12z2

3 + 6z3 + 48z2
2)

We verified by a computer that these are always non-negative by the following procedure. For example,
consider g(z2, z3) = ∆4,5f/2z2

1 . The coefficient of z2
3 in g(z2, z3) is 12(18z2 + 8z2 + 1) > 0 and the

discriminant of g(z2, z3) viewed as a polynomial in z3 is −48(384z4
2 + 288z3

2 + 93z2
2 + 14z2 + 1) < 0,

since this quartic polynomial has negative leading coefficient and has no real roots.
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[BB08] Julius Borcea and Petter Brändén. Applications of stable polynomials to mixed determinants:

Johnson’s conjectures, unimodality, and symmetrized Fischer products. Duke Mathematical
Journal, 143(2):205–223, 2008.
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Abstract. Let Γ be a quiver on n vertices v1, v2, . . . , vn with gij edges between vi and vj , and let α ∈ Nn. Hua
gave a formula for AΓ(α, q), the number of isomorphism classes of absolutely indecomposable representations of
Γ over the finite field Fq with dimension vector α. We use Hua’s formula to show that the derivatives of AΓ(α, q)
with respect to q, when evaluated at q = 1, are polynomials in the variables gij , and we can compute the highest
degree terms in these polynomials. The formulas for these coefficients depend on the enumeration of certain families
of connected graphs. This note simply gives an overview of these results; a complete account of this research is
available on the arXiv and has been suboldsymbolitted for publication.

Résumé. Soit Γ un carquois sur n sommets v1, v2, . . . , vn avec gij arêtes entre vi et vj , et soit α ∈ Nn. Hua a donné
une formule pour AΓ(α, q), le nombre de classes d’isomorphisme absolument indécomposables de représentations
de Γ sur le corps fini Fq avec vecteur de dimension α. Nous utilisons la formule de Hua pour montrer que les dérivées
de AΓ(α, q) par rapport à q, alors évaluée à q = 1, sont des polynômes dans les variables gij , et on peut calculer
les termes de plus haut degré de ces polynômes. Les formules pour ces coefficients dépendent de l’énumération de
certaines familles de graphes connectés. Cette note donne simplement un aperçu de ces résultats, un compte rendu
complet de cette recherche est disponible sur arXiv et a été soumis pour publication.

Keywords: quiver representation, finite field, graph enumeration, absolutely indecomposable representation

1 Introduction
Let Γ be a quiver on n vertices v1, v2, . . . , vn with gij edges between vertices vi and vj for 1 ≤ i ≤
j ≤ n. All of the following results are independent of the orientation of these edges. Let 0 6= α =
(α1, α2, . . . , αn) ∈ Nn (throughout the paper, vectors will be represented by boldface symbols, and N
denotes the set of non-negative integers). We are interested in AΓ(α, q), the number of isomorphism
classes of absolutely indecomposable representations of Γ over the finite field Fq with dimension vector
α. Kac [6] proved that AΓ(α, q) is a polynomial in q with integer coefficients and that it is independent
of the orientation of Γ. He conjectured that the coefficients of AΓ(α, q) are non-negative and that if Γ has
no loops, then the constant term of AΓ(α, q) is equal to the multiplicity of α in the Kac-Moody algebra
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defined by Γ. Both conjectures are true for quivers of finite and tame type and remain open for quivers
of wild type (see Crawley-Boevey and Van den Bergh [1]). A proof of the multiplicity statement in Kac’s
conjectures for general quivers was recently announced by Hausel [3].

Our goal is to understandAΓ(α, 1), and more generally
(
ds

dqs AΓ(α, q)
)∣∣∣
q=1

, as a function of the vari-

ables gij . The paper [4] offers complete descriptions and proofs of our results; this note is an extended
abstract of that paper, content with stating the main theorems. Our primary impetus for studyingAΓ(α, 1)
comes from the work of Hausel and Rodriguez-Villegas [2]. They show that when Γ is the quiver Sg con-
sisting of one vertex v with g self-loops, ASg

(α, 1) (where α = α ∈ N) is (conjecturally) the dimension
of the middle cohomology group of a character variety parameterizing certain representations of the fun-
damental group of a closed genus-g Riemann surface to GLn(C).

One can imagine that specializing to q = 1 will relate AΓ(α, q) to counting representations of Γ in
the category of finite sets; this hope follows a well-known philosophy about the significance of letting
q → 1 in formulas that depend on a finite field Fq , although it seems hard to make this philosophy

precise. In this paper we show in Theorems 4.3 and 5.1 that
(
ds

dqs AΓ(α, q)
)∣∣∣
q=1

is a polynomial in the

variables gij , and we give a formula for its leading coefficients. This formula relies on the number of
connected graphs in a family determined by Γ and on Stirling numbers of the second kind, which arise
from derivatives of q-binomial coefficients. The description of the graphs in question is given prior to
Theorem 3.1. Unfortunately, our proofs of Theorems 4.3 and 5.1 do not give any conceptual indication as
to why our results should involve the enumeration of connected graphs.

To illustrate the type of result found in this paper, consider Γ = Sg . Using a formula of Hua [5,
Theorem 4.6] for AΓ(α, q), which we will present in Section 2 and which is the starting point for our
results, we can compute the polynomial ASg (α, q) for small α and g. These computations are displayed
in the following table:

ASg
(α, q) g = 1 g = 2 g = 3 g = 4

α = 1 q q2 q3 q4

α = 2 q q5 + q3 q9 + q7 + q5 q13 + q11 + · · ·
α = 3 q q10 + q8 + · · · q19 + q17 + · · · q28 + q26 + · · ·
α = 4 q q17 + q15 + · · · q33 + q31 + · · · q49 + q47 + · · ·

Evaluating each polynomial at q = 1 gives the following values for ASg (α, 1):

ASg
(α, 1) g = 1 g = 2 g = 3 g = 4 g = 5 g = 6

α = 1 1 1 1 1 1 1
α = 2 1 2 3 4 5 6
α = 3 1 6 15 28 45 66
α = 4 1 22 95 252 525 946
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Fitting each row of the above table to a polynomial gives empirical evidence that the next table is correct:

ASg (α, 1)

α = 1 1
α = 2

(
g
1

)
α = 3 4

(
g
2

)
+
(
g
1

)
α = 4 32

(
g
3

)
+ 20

(
g
2

)
+
(
g
1

)
This suggests that ASg

(α, 1) is a polynomial in g of degree α− 1 with leading coefficient 2α−1αα−2/α!.
We prove this and a generalization to all quivers in Theorem 4.3 below. Theorem 5.1 offers a similar result
for any derivative (with respect to q) of AΓ(α, q) evaluated at q = 1.

The fact that the leading coefficient of ASg
(α, 1) equals 2α−1αα−2/α! was mentioned (without proof)

in [2, Remark 4.4.6]. As mentioned above, in the context of that paper, Sg corresponds to a closed
Riemann surface of genus g and it seems more appropriate to use its Euler characteristic 2g − 2 instead
of g as a variable. Then ASg (α, 1) is a polynomial in 2g − 2 of degree α − 1 with leading coefficient
αα−2/α!, and the disappearance of the factor 2α−1 suggests that 2g − 2 may be the “right” variable to
use, though we do not know of a similar approach for the general case. Finally, we note that αα−2 appears
in the formula for the leading coefficient of ASg

(α, 1) because αα−2 is the number of trees on α labeled
vertices by Cayley’s Theorem. As indicated above, for other quivers, the leading coefficient formula
involves the enumeration of other families of graphs.

Acknowledgements. We would like to thank Keith Conrad for his proof of Theorem 4.1.

2 Hua’s Formula
We begin with a presentation of Hua’s formula for AΓ(α, q). Let T = (T1, T2, . . . , Tn) be a vector of
indeterminates. Let P denote the set of all integer partitions, including the unique partition of 0. If λ and
µ are partitions with transposes λ′ and µ′ respectively, let

〈λ, µ〉 :=
∑
1≤i

λ′iµ
′
i.

Also, let
bλ(q) :=

∏
1≤i

∏
1≤j≤ni

(1− qj),

where λ has ni parts of size i for each i. As a notational convenience, we will write monomials as a vector
with a vector exponent, as in Tα = Tα1

1 · · ·Tαn
n . If λ is a vector (say a partition or a weak composition),

let |λ| denote the sum of the parts of λ.
Finally, define the function PΓ(T , q) by

PΓ(T , q) :=
∑

λ1,...,λn∈P

∏
1≤i≤j≤n q

gij〈λi,λj〉∏
1≤i≤n q

〈λi,λi〉bλi(q−1)
T
|λ1|
1 · · ·T |λ

n|
n (1)
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and the function HΓ(α, q) implicitly by

logPΓ(T , q) =
∑

06=α∈Nn

HΓ(α, q)
α

Tα, (2)

whereα = gcd(α1, . . . , αn) (sinceα 6= 0, this is well-defined if we consider every integer to be a divisor
of 0). Hua expresses AΓ(α, q) in terms of HΓ(α, q).

Theorem 2.1 (Hua [5, Theorem 4.6]).

AΓ(α, q) =
q − 1
α

∑
d|α

µ(d)HΓ(α/d, qd). (3)

Although we want to understand AΓ(α, 1), we cannot use Equations (1), (2), and (3) directly, since the
summands in PΓ(T , q) have poles at q = 1. We proceed instead by introducing extra variables, computing
certain limits as q approaches 1, and then specializing the results. The remainder of this section analyzes
AΓ(α,u, q), a generalization of AΓ(α, q), while Sections 4 and 5 apply the results to AΓ(α, q).

In what follows, vectors u ∈ Nn(n+1)/2 will have components uij for 1 ≤ i ≤ j ≤ n, and for ` ∈ Nn

we let u` :=
∏

1≤i≤j≤n u
`i`j
ij . Let u ∈ Nn(n+1)/2. Define functions PΓ(T ,u, q), HΓ(α,u, q), and

AΓ(α,u, q) by the formulas

PΓ(T ,u, q) :=
∑

λ1,...,λn∈P

∏
1≤i≤j≤n u

〈λi,λj〉
ij∏

1≤i≤n q
〈λi,λi〉bλi(q−1)

T
|λ1|
1 · · ·T |λ

n|
n , (4)

logPΓ(T ,u, q) :=
∑

0 6=α∈Nn

HΓ(α,u, q)
α

Tα, and (5)

AΓ(α,u, q) :=
q − 1
α

∑
d|α

µ(d)HΓ(α/d,ud, qd). (6)

Observe that PΓ(T ,u, q), HΓ(α,u, q), and AΓ(α,u, q) specialize to PΓ(T , q), HΓ(α, q), and AΓ(α, q)
respectively when uij = qgij for 1 ≤ i ≤ j ≤ n. However, AΓ(α,u, q) typically is not a polynomial
in q even though AΓ(α, q) is. For ` ∈ Nn let `! := `1! · · · `n! and for u ∈ Nn(n+1)/2 let u! :=
u11! · · ·uij ! · · ·unn!. Our first result computes a limit involving AΓ(α,u, q).

Proposition 2.2.

lim
q→1

(q − 1)|α|−1AΓ(α,u, q) = [the coefficient of Tα in ] log
∑
`∈Nn

u`
T `

`!
. (7)

3 AΓ(ααα,uuu, q) and Connected Graphs
The limit in Proposition 2.2, namely Equation (7), can be rewritten using a multivariate version of the
Exponential Formula applied to the enumeration of graphs. To describe this enumerative result, we must
introduce some more notation. If ` ∈ Nn, let G` be the set of graphs on the vertices v1, v2, . . . , v|`|. Let
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V1 := {v1, . . . , v`1}, V2 := {v`1+1, . . . , v`2}, . . . , Vn := {v|`|−`n+1, . . . , v|`|}. If k ∈ Nn(n+1)/2, then
let G`k be the set of graphs in G` that have kij edges between Vi and Vj for 1 ≤ i ≤ j ≤ n and let G`k be
the number of connected graphs in G`k. Now let x = (x11, . . . , xij , . . . , xnn) be a vector of n(n + 1)/2
indeterminates, where 1 ≤ i ≤ j ≤ n, and define the weight of G ∈ G`k to be xk :=

∏
1≤i≤j≤n x

kij

ij .

Theorem 3.1.

log

∑
`∈Nn

 ∏
1≤i<j≤n

(1 + xij)`i`j

 ∏
1≤i≤n

(1 + xii)(
`i
2 )

 X`

`!

 (8)

=
∑

06=α∈Nn

∑
k∈Nn(n+1)/2

Gαkx
k X

α

α!
,

where Gαk is the number of connected graphs in Gαk .

Perhaps Theorem 3.1 is known, but we do not know of any reference. Presumbly there is no explicit
formula for Gαk in general. However, when |k| = |α| − 1 (that is, when the connected graphs in Gαk are
trees), certain sums of the numbers Gαk can be computed by the methods in Knuth [7].

To understand Equation (7) better, we obtain a corollary of Theorem 3.1 by rewriting Equation (8) with
the substitutions 1 + xij = uij (1 ≤ i < j ≤ n), 1 + xii = u2

ii (1 ≤ i ≤ n), and Xi = uiiTi (1 ≤ i ≤ n).
This allows us to rewrite the result of Proposition 2.2. For each k ∈ Nn(n+1)/2, let

Sk =
{
p ∈ Nn(n+1)/2 :

kii ≥ pii for 1 ≤ i ≤ n
kij = pij for 1 ≤ i < j ≤ n

}
. (9)

Proposition 3.2. For each k ∈ Nn(n+1)/2,[
the coefficient of (u− 1)k in

]
lim
q→1

(q − 1)|α|−1AΓ(α,u, q) (10)

=
1
α!

∑
p∈Sk

cαkp G
α
p ,

where

cαkp :=
∏

1≤i≤n

 ∞∑
j=0

(
pii
j

)(
αi

kii − pii − j

)
2pii−j


and

(u− 1)k :=
∏

1≤i≤j≤n

(uij − 1)kij .

In particular, if |k| = |α| − 1, then[
the coefficient of (u− 1)k in

]
lim
q→1

(q − 1)|α|−1AΓ(α,u, q) (11)

=
1
α!

2t(k) Gαk ,

where
t(k) :=

∑
1≤i≤n

kii.
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Observe that the left- and right-hand sides of Equation (10) are nonzero for finitely many k and that
the sum over j is actually finite by the definition of binomial coefficients. Also, the sum over j can be
expressed in terms of a hypergeometric series as

∞∑
j=0

(
pii
j

)(
αi

kii − pii − j

)
2pii−j

= 2pii

(
αi

kii − pii

)
2F1(−pii,−kii + pii; ai − kii + pii + 1; 1/2),

if desired.

4 A Mahler-type Expansion for AΓ(ααα,uuu, q)

We can use Proposition 3.2 to understand AΓ(α, q) if we rewrite AΓ(α,u, q) using the Mahler-type
expansion given in the following theorem.

Theorem 4.1. If f ∈ Q(q)[x1, . . . , xr] and f(qb1 , . . . , qbr ) ∈ Z[q] for all non-negative integers b1, . . . , br,
then there are polynomials {c`(q) ∈ Z[q] : ` ∈ Nr} such that

f =
∑
`∈Nr

c`(q)
∏

1≤i≤r

〈
xi
`i

〉
q

, (12)

where 〈
x

`

〉
q

:=
∏

1≤i′≤`

(x/qi
′−1 − 1)

(qi′ − 1)
(13)

and c`(q) = 0 for all but finitely many `.

The proof of this theorem was communicated to us by Keith Conrad. Note that
〈
x
`

〉
q

=
[
b
`

]
q

when
x = qb and that

lim
q→1

(q − 1)`
〈
x

`

〉
q

=
(x− 1)`

`!
. (14)

Here
[
b
`

]
q

is a q-binomial coefficient. By Theorem 4.1 and the fact that AΓ(α, q) ∈ Z[q], we can write

AΓ(α,u, q) =
∑

k∈Nn(n+1)/2

aΓ(α,k, q)
〈
u

k

〉
q

, (15)

for some aΓ(α,k, q) ∈ Z[q], where 〈
u

k

〉
q

:=
∏

1≤i≤j≤n

〈
uij
kij

〉
q

.
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Hence

AΓ(α, q) =
∑

k∈Nn(n+1)/2

aΓ(α,k, q)
[
g

k

]
q

, (16)

where [
g

k

]
q

:=
∏

1≤i≤j≤n

[
gij
kij

]
q

.

It turns out that Proposition 3.2 leads to a formula for the derivatives of aΓ(α,k, q) evaluated at q = 1,
given in Proposition 4.2, which in turn produces a formula for the derivatives of AΓ(α, q) evaluated at
q = 1 (see Theorems 4.3 and 5.1).

Proposition 4.2. For k ∈ Nn(n+1)/2 such that |k| > |α| we have

aΓ(α,k, q)
(q − 1)|k|−|α|+1

∣∣∣∣
q=1

=
k!
α!

∑
p∈Sk

cαkp G
α
p . (17)

Note that if |k| ≤ |α|, Proposition 4.2 says nothing about aΓ(α,k, q) at q = 1. This is why The-
orems 4.3 and 5.1 below only give information about leading coefficients. The first consequence of
Proposition 4.2 appears when we evaluate AΓ(α, 1). By Equation (16),

AΓ(α, 1) =
∑

k∈Nn(n+1)/2

aΓ(α,k, 1)
(
g

k

)
, (18)

where (
g

k

)
:=

∏
1≤i≤j≤n

(
gij
kij

)
.

Theorem 4.3. The quantityAΓ(α, 1) is a polynomial in the variables gij whose homogeneous component
of highest degree A∗Γ(α, 1) has total degree |α| − 1 and has the form

A∗Γ(α, 1) =
1
α!

∑
|k|=|α|−1

CαΓ,k g
k, (19)

where
CαΓ,k := 2t(k)Gαk and t(k) :=

∑
1≤i≤n

kii.

As a special case of this theorem, we can consider the quiver Sg from Section 1, which has a single
vertex (so n = 1) and g loops, and α = α. In this case, AΓ(α, 1) is a polynomial in g of degree α − 1
and leading coefficient 2α−1Gαα−1/α! But Gαα−1 is just the number of (spanning) trees on α labeled
vertices, which is αα−2 by Cayley’s Theorem. So the leading coefficient is 2α−1αα−2/α! as claimed in
the introduction.
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5 The derivatives ds

dqs AΓ(ααα, q) at q = 1

We can proceed further by differentiating Equation (16) to obtain information about the highest order
terms of the s-th derivative of AΓ(α, q) evaluated at q = 1. If k, ` ∈ Nn(n+1)/2, we write k ≤ ` if
kij ≤ `ij for all 1 ≤ i ≤ j ≤ n. To simplify the notation we let

AΓ,s(α, q) :=
ds

dqs
AΓ(α, q).

Theorem 5.1. The quantity AΓ,s(α, 1) is a polynomial in the variables gij whose homogeneous compo-
nent of highest degree A∗Γ,s(α, 1) has total degree s+ |α| − 1 and is given by

A∗Γ,s(α, 1) =
1
α!

∑
|`|=s+|α|−1

CαΓ,s,` g
`, (20)

where
CαΓ,s,` :=

s!
`!

∑
k∈Nn(n+1)/2

k≤`

S(k, `)k!
∑
p∈Sk

cαkpG
α
p ,

S(`,k) :=
∏

1≤i≤j≤n

S(`ij , kij),

and S(`, k) is the Stirling number of the second kind.

Incidentally, one ingredient in the proof of Theorem 5.1 is an auxiliary theorem which shows that for
each t ≥ 0, the quantity

(
dt

dqt

[
b
k

]
q

)∣∣∣
q=1

is a polynomial in b of degree k + t with leading coefficient
t!

(k+t)! · S(k + t, k).
As a special case of this theorem, we can consider the quiver Sg from Section 1. In this case,AΓ,s(α, 1)

is a polynomial in g of degree s+ α− 1 and leading coefficient

s!
α!(s+ α− 1)!

s+α−1∑
k=α−1

S(s+ α− 1, k) k!
k∑

p=α−1

Gαp

∞∑
j=0

(
p

j

)(
α

k − p− j

)
2p−j .
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Abstract. Algebraic complexes whose “faces” are indexed by partitions and plane partitions are introduced, and
their homology is proven to be concentrated in even dimensions with homology basis indexed by fixed points of an
involution, thereby explaining topologically two quite important instances of Stembridge’s q = −1 phenomenon. A
more general framework of invariant and coinvariant complexes with coefficients taken mod 2 is developed, and as a
part of this story an analogous topological result for necklaces is conjectured.

Résumé Complexes algébriques dont les “faces” sont indexées par des partitions et des partitions planes sont in-
troduits. Il est démontré que leur homologie est concentrée en dimensions paires, avec base de homologie indexée
par des points fixes d’une involution. Ce résultat explique d’une manière topologique deux instances du phénomène
q = −1 du a Stembridge. De plus, un cadre plus général des complexes invariants et coinvariants dont les coefficients
sont pris modulo 2 est développé. Comme part de cette histoire, nous conjecturons un résultat analogue pour des
colliers.

Keywords: plane partitions, discrete Morse theory, q = −1 phenomenon, homology basis, down operator
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1 Introduction
There is a rich history surrounding the enumeration of partitions in a rectangle or higher dimensional box,
as well as the enumeration of classes of partitions possessing various symmetries (see e.g. (1), (10)).
One reason for so much interest comes from connections to physics, while another is the important role
they play in representation theory, specifically in the theory of canonical bases (see e.g. (11) and (12)).
Richard Stanley used the Littlewood-Richardson rule in (10) to prove a recursive formula for the number
of complementary plane partitions of bounded value. John Stembridge proved that semistandard domino
tableaux are counted by this same formula, by showing that their enumeration formula satisfies the same
recurrence. This proved that the set of fixed points in a fundamental involution of Lusztig on a type A
canonical basis also has this same cardinality, by virtue of a bijection due to Berenstein and Zelevinsky
between the elements of a canonical basis and semistandard Young tableaux (actually Gelfand-Tsetlin
patterns) such that this bijection sends Lusztig’s involution to evacuation. Stembridge examined this
connection between self-complementary partitions and canonical bases more closely, unveiling in the
process a phenomenon he dubbed the “q = −1 phenomenon”.

In (12), Stembridge defines the q = −1 phenomenon as the following situation. One has a set of
combinatorial objects B (such as tableaux), together with a generating function X(q) that enumerates the
objects in B according to some weight depending on q. The q = −1 phenomenon occurs when there is
a “natural” involution on B such that X(−1) is the number of fixed points of the involution. Stembridge
established various instances of this phenomenon by interpreting X(−1) as the trace of a matrix which is
conjugate to a permutation matrix for the involution.

It is natural to ask if the q = −1 phenomenon can be explained by an Euler characteristic computation.
To this end, we define a complex whose ranks of chain groups are the coefficients in the polynomial X(q)
so that its Euler characteristic is X(−1). On the other hand, the Euler characteristic is the alternating sum
of ranks of homology groups, so whenever homology is concentrated in even dimensions with homology
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‡Supported by NSF grant DMS-0604233.
§Supported by NSF grant DMS-0503660.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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basis indexed by the fixed points of the involution, this would imply the phenomenon. Moreover, the
homology generating function then offers a natural q-analogue of the integer which is the Euler character-
istic. We carry out this plan in two quite central cases: the partitions in a rectangle and the plane partitions
of bounded value in a rectangle, i.e., the partitions in a three dimensional box.

In §2 we associate to any action of a finite group G regarded as a subgroup of Sn four algebraic
complexes over a field with 2 elements, and prove in Proposition 2.3 that their Euler characteristic is the
number of fixed points of the complementation involution in the action of G on the subsets of [n]. The
aforementioned case of partitions in a rectangle arises as the special case where G is a wreath product of
symmetric groups. We prove acyclicity of these complexes for anyG in which n is odd and also somewhat
more generally. In §3 we give an algebraic Morse matching lemma, which is then applied in §4 and §5 to
partitions in a rectangle and in a three dimensional box, respectively, establishing homology concentration
in even dimensions and explicit homology bases. The results in §4 and §5 may be regarded as sign-
reversing involutions with some extra topological structure. In §6, we conclude with an example showing
that not all G give rise to complexes with homology concentrated in even dimensions, namely Example
6.1, and finally we propose in Conjecture 6.5 that homology concentration in even ranks nonetheless does
hold for necklaces, i.e. the case where G is a cyclic group.

The authors are grateful to Vic Reiner for his numerous helpful suggestions.

2 The algebraic complexes
In this section we define the algebraic complexes, which are quotient complexes of the Boolean algebra
over a field of two elements. The boundary map is closely related to the down operator introduced in (9).
Let G be a subgroup of Sn, so G acts on [n] := {1, 2, . . . , n}. Then G also permutes the elements of the
Boolean algebra 2[n] of all subsets of [n], and permutes the subsets

(
[n]
i

)
of a given cardinality i. Consider

the following generating function that counts such G-orbits according to their cardinality, letting S be an
element in the orbit S, we have

X(G, q) :=
∑

G−orbits S̄ in 2[n]/G

q|S|

=
n∑
i=0

∣∣∣∣([n]
i

)
/G

∣∣∣∣ qi
It has been well-studied historically via algebraic means, perhaps starting with Redfield and Polya.

Theorem 2.1 ((9; 5)) The polynomial X(G, q) has symmetric, unimodal coefficients.

The idea is to show that the coefficients inX(G, q) are the ranks of the weight spaces in a representation
of sl2(C) by showing that the three operators D,U,DU − UD satisfy the appropriate relations.

See (6, Corollary 6.2) for the next result, which is due to de Bruijn.

Theorem 2.2 (de Bruijn)X(G,−1) is the number ofG-orbits S̄ of subsets of [n] which are self-complementary
in the sense that S̄ = [n]\S.

This was proven by finding two conjugate matrices, one having X(G,−1) as its trace and the other
of which is a permutation matrix acting on the G-orbits of subsets of [n] by complementation. As an
example, if G = 〈(12), (34)〉, then S = {{1, 3}, {2, 4}} is a self-complementary orbit. Theorem 2.2 may
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be applied to our first main example, namely the case of partitions in a rectangle, but does not seem to
apply to our second example of plane partitions of bounded value in a rectangle.

One algebraic approach introduces, for any field F, the graded vector space C(F) :=
⊕n

i=0 Ci(F) in
which Ci(F) has an F-basis {eS : S ∈

(
[n]
i

)
}. It is useful to identify C ∼= V ⊗n, where V ∼= F2 has F-

basis {e0, e1}. Under this identification, the F-basis element eS in C(F) corresponds to the decomposable
tensor ei1 ⊗ · · · ⊗ ein in which ij = 1 for ij ∈ S and ij = 0 otherwise.

Define the up and down maps U,D : C(F)→ C(F) by

U(eS) =
∑

i∈[n]\S

eS∪{i}

D(eS) =
∑
j∈S

eS\{j}.

Note that U,D both commute with the G-action. As a consequence, they give well-defined maps on the
graded vector spaces of G-invariants C(F)G and G-coinvariants(i) C(F)G. Note that both C(F)G, C(F)G
will have F-bases indexed by G-orbits S̄ of subsets of [n]: for C(F)G, a typical basis element eS̄ is a sum
of eS as S varies over the elements of the orbit, while for C(F)G, a typical basis element is the image eS
of eS in the quotient for any S ∈ S.

We let F = F2 henceforth, in order to obtain a complex.

Proposition 2.3 The map D induced on C(F2)G or on C(F2)G make them algebraic chain complexes of
F2-vector spaces, i.e., D2 = 0 in each case. Likewise the map U makes them into cochain complexes, i.e.,
U2 = 0.

Each of these four complexes has Euler characteristic, i.e. alternating sum of the ranks of its chain
groups, equalling X(−1), or in other words the number of self-complementary G-orbits. In particular,
each Euler characteristic is nonnegative.

Proof: Working over F2, these maps D,U on C(F2) coincide with the boundary and coboundary maps
∂i and ∂i in the usual simplicial chain complex for a simplex having vertex set [n]. Hence D2 = U2 = 0,
and the same holds after taking G-invariants or G-coinvariants.

For the second assertion, note that

dimF2 C(F2)Gi = dimF2 C(F2)iG =
∣∣∣∣([n]

i

)
/G

∣∣∣∣ .
and now apply Theorem 2.2. 2

Given a G-orbit S̄, let eS̄ :=
∑
S′∈S̄ eS′ denote the basis element of CG(F) corresponding to S̄; let eS

denote the basis element of C(F)G corresponding to S̄

Proposition 2.4 The map sending eS̄ 7→ eS induces isomorphisms of cochain complexes

(C(F2)G, U) ∼= HomF2((C(F2)G, D),F2)
(C(F2)G, D) ∼= HomF2((C(F2)G, U),F2).

(i) Recall that the coinvariant space UG for an F-vector space U with a linear G-action is the quotient space U/F{u− g(u) : u ∈
U, g ∈ G}.
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The map sending eS̄ 7→ e[n]\S induces isomorphisms of chain complexes

(C(F2)G, D) ∼= (C(F2)G, U)op

(C(F2)G, D) ∼= (C(F2)G, U)op,

where here Cop for a cochain complex C denotes the opposite chain complex that one obtains by reindexing
in the opposite order and reversing all the arrows.

Proof: Let S̄, T̄ be G-orbits of subsets with |T | = |S| + 1. Then the boundary map coefficient DS̄,T̄ in
C(F2)G is the number of elements T ′ in the orbit T̄ which contain the fixed set S in S̄. Meanwhile the
boundary coefficient DS̄,T̄ in C(F2)G is the number of elements S′ in the orbit S̄ which are contained
in the fixed set T in T̄ . There are similar formulae for the coefficients US̄,T̄ in the two complexes. The
isomorphisms are not hard to verify, using the fact that set-complementation is an inclusion-reversing
bijection. 2

In light of the previous proposition, one may consider any one of the four complexes, as its homology
determines the homology of the others (either by turning it around in homological degree, or by taking
dual F2-vector spaces, or both).

Proposition 2.5 The complex (CG, D) is acyclic when n is odd. More generally, it is acyclic whenever
G has at least one orbit in its action on [n] of odd cardinality. Whenever (CG, D) is not acyclic, it must
have H0 = F2 and H1 = 0.

Proof: Let S ⊆ [n] be G-stable (although not necessarily pointwise fixed by G). Then one forms S-
masked versions of the up and down maps in C as follows:

U (S)(eT ) :=
∑
i∈S\T

eT∪{i}

D(S)(eT ) :=
∑

j∈S∩T
eT−{j}.

The G-stability of S implies that these S-masked up and down maps commute with the G-action: the
crucial point in all these calculations is that g(S) = S, so that, for example,

S\g(T ) = g(S\T )
S ∩ g(T ) = g(S ∩ T ),

Hence one gets induced S-masked up and down maps U (S), D(S) on the G-invariant and G-coinvariant
complexes also.

An easy calculation, generalizing the commutator calculation DU − UD = (n − 2i)I on Ci is the
following:

(D · U (S) − U (S) ·D)(eT ) = (|S\T | − |S ∩ T |) · eT
= (|S| − 2|S ∩ T |) · eT .
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When working with F2 coefficients, as in C(F2), C(F2)G, C(F2)G, this gives

D · U (S) + U (S) ·D = |S| · I.

Thus when |S| is odd, the S-masked up map U (S) gives an algebraic chain-contraction, showing that
the complex with D as boundary map is acyclic. We now analyze the consequences of this for the first
few boundary maps in (C(F2)G, D).

The boundary map D out of C0(F2)G = F2 is always the zero map, regardless of G. If all G-orbits
have even cardinality, the boundary map D out of C1(F2)G will also be the zero map, so the assertion
about H0 follows.

It remains to show that when allG-orbits have even cardinality, the mapD out of C2(F2)G is surjective.
But for this we can work within each G-orbit X on [n]. That is, it suffices to show that there is some
G-orbit Y = {i, j} of pairs with i, j ∈ X for which D(eY ) has coefficient 1 on eX , not zero. However,
fixingX , one can see that the sum of all of such boundary map coefficients incident toX and coming from
G-orbits of pairs contained in X will be |X| − 1, an odd number. Thus one of them must be non-zero in
F2, as desired. 2

Remark 2.6 Examples like G = 〈(123)(456)〉 in S6, where G has orbits on [n] of odd size but n is even
and G is not a product G1 × G2 show that the Künneth formula doesn’t suffice to prove the previous
proposition (or at least it’s not obvious how to deduce it from Künneth).

In light of Proposition 2.3 and the calculations of H0, H1 in Proposition 2.5, one might be tempted to
make the conjecture (true up through n = 5) that the homology is always concentrated in even dimension.
However, Section 6 gives a counterexample to this. Section 4 does confirm this behavior for wreath
products of symmetric groups, and we conjecture it for cyclic groups in Section 6 as well.

3 An algebraic Morse matching lemma
In this section we give a general result, Lemma 3.2, on matchings in partially ordered sets, called Morse
matchings. If the complex of §2 is supported by a partially ordered set, and the Morse matching is good
enough, in a sense that will be made precise, it may be used to give a homology basis and prove homology
concentration in even dimensions for the complex. In this case the basis is indexed by fixed points of the
Morse matching, which must be equinumerous with X(G,−1).

Definition 3.1 Say that a graded poset P =
⊔n
i=0 Pi supports an algebraic complex (C, d) of F-vector

spaces if Ci has an F-basis {ep} indexed by p ∈ Pi, and the differential di has (di)p,q = 0 unless q <P p.
As usual, say that a partial matching M of the Hasse diagram of a poset P is an acyclic matching, or

Morse matching, if the digraph D, obtained by starting with the Hasse diagram directed downward and
then reversing all the directions of the edges in M , is acyclic.

Given an acyclic matching M on P , let the subsets

PM, P unM, PM
i , P

unM
i

respectively denote theM -matched andM -unmatched elements in P , and the same sets restricted to rank
i. The elements of P unM are called critical elements. Let q = M(p) denote that q is matched by M to p.
Let <D be the partial order on P that results from taking the transitive closure of D.
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Lemma 3.2 Let P be a graded poset supporting an algebraic complex (C, d) and assume P has a Morse
matching M such that for all q = M(p) with q < p, one has dp,q ∈ F×. Let Qi be the set of poset
elements of rank i which are matched with elements of rank i− 1. Then

(i) dimHi(C, d) ≤ |P unM
i |.

(ii) if |Qi| = rank(di) for every i, then dimHi = |P unM
i |. (For example, this condition is met

whenever all unmatched poset elements live in ranks of the same parity.)

(iii) if dq,p = dp,r = 0 for all p ∈ P unM and all q, r ∈ P , then the homology H(C, d) has F-basis
{ep : p ∈ P unM}.

Proof: To prove (i), we want to show that the boundary maps di have sufficiently large ranks, which we’ll
do by showing that they have some large, nonsingular square submatrices. We make the following claim:
consider the subset Qi of PM

i consisting of those elements matched below them into PM
i−1. Then ordering

Qi as q1, . . . , qr by any linear extension of the partial order <D, the square submatrix of di having
columns indexed q1, , . . . , qr and rows indexed M(q1), . . . ,M(qr) will be invertible upper-triangular.

To prove the claim, note that the hypothesis dp,q ∈ F× for q < p implies that the diagonal entries of
this square matrix are all in F×, since q = M(p) implies q < p or p < q. Hence one only needs to verify
upper-triangularity. So assume that the boundary map di has (di)qj ,M(qk) 6= 0 for some k 6= j. Since
the complex C was supported on P , this implies that qj >P M(qk) and hence D has an edge directed
qj → M(qk). There is also the matching edge in D, directed upward as M(qk) → qk, and thus by
transitivity, qj <D qk. Hence j < k, yielding the claim.

The claim implies that rank(di) ≥ |Qi| for all i. As usual letting Zi = ker di and Bi = imdi+1, note
that

dimHi = dimZi − dimBi

= |Pi| − (rank(di) + rank(di+1))
≤ |Pi| − (|Qi|+ |Qi+1|)
= |Pi| − |PM

i |
= |P unM

i |

as desired.
Now the hypothesis in (ii) makes the weak inequality into an equality in the above string of equalities

and weak inequalities, implying the desired equality in (ii). To prove (iii), note that the hypothesis dp,r = 0
for all r < p ensures that {ep|p ∈ P unM

i } spans a subspace of Hi(C, d) for each i, while dq,p = 0 for
all q > p implies linear independence of the set. Since |P unM

i | ≥ dimHi(C, d), this set also must span
Hi(C, d), hence is a homology basis. 2

Lemma 3.2 is closely related to results of Jöllenbeck-Welker, of Sköldberg, and of Kozlov (see (3), (8),
and (4)) developing algebraic versions of discrete Morse theory.

4 Application to partitions in a rectangle
Consider the subgroup G = S` o Sk inside Sk`, acting on the cells of a rectangle with k rows and
` columns, by permuting arbitrarily within each row, but also allowing wholesale swaps of one row for
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another. In this section, we will show how all three parts of Lemma 3.2 apply to the complex (C(F2)G, D)
for G = S` o Sk, yielding homology concentration in even dimensions. The G-orbits are indexed by
partitions λ = (λ1, . . . , λk) with

` ≥ λ1 ≥ · · · ≥ λk ≥ 0.

The number λi indicates the number of boxes in row i not belonging to the set S serving as orbit repre-
sentative. Thus, the complex C(F2)G is supported on the Gaussian poset P (k, `) of all such λ ordered by
reverse inclusion of their Ferrers diagrams. One may check directly that the entries in the boundary maps
d take the following form: if µ is obtained from λ by reducing the part λi to λi − 1, then

dλ,µ = (`− λi + 1)(multλ(λi−1) + 1) (1)

where multλ(s) is the multiplicity of the part s in λ and µ covers λ in the poset supporting the complex.
In fact, d is derived from the down operator D which acts on faces of a simplex, by using the fact that
D commutes with the group action. D deletes a box from the orbit representative S in all possible ways,
each of which has the impact of lengthening some part of λ by one.

Here is the matching M we will use. Given a partition λ, find the smallest part λi which is either

• non-zero and of the same parity as `, in which case you should subtract 1 from it in order to obtain
M(λ), or

• possibly zero and of opposite parity to `, but with odd multiplicity, in which case you should add 1
to it in order to obtain M(λ).

It is not hard to check that this is indeed a well-defined matching.

Remark 4.1 The unmatched partitions also correspond to the lattice paths in a k×l rectangle delineating
the shape λ, specifically those lattice paths from (l, k) to (0, 0) comprised of steps (−2, 0) and (0,−2)
until either (i, 0) or (i, 1) is reached, after which there is a step (0,−1) in the latter case.

To see that these are equinumerous with self-complementary partitions in a k × l rectangle, notice that
there is a bijection sending an unmatched path to a path fixed under 180 degree rotation by replacing each
step of length 2 with a step in the same direction of length 1 to obtain the first half of the path with 180
degree rotational symmetry.

Theorem 4.2 The above matching on the Gaussian poset P (k, `) is acyclic, with the partitions λ in P unM

being those described in Remark 4.1. Moreover, the homology is concentrated in even dimensions.

Proof: It is easy to verify hypotheses (i), (ii), and (iii) of Lemma 3.2 and the description of P unM directly
from these descriptions and (1). Let us check acyclicity ofM . Suppose one had a directed cycleC. If λi is
the smallest even value ever incremented inC, then there must be some downward step inC decrementing
the value λi + 1. However, since no smaller values ever change, this downward step is across a matching
edge, a contradiction. 2

Question 4.3 Is there some connection between the Poincaré series for the homology here and T. Eisenkölbl’s
recent (−1)-enumerations of self-complementary plane partitions which appears in (2)? In particular,
what happens in her situation when the k × `×m box in which the plane partitions live has m = 1?
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5 Application to plane partitions of bounded value in a rectangle
In this section, we construct a mod 2 complex (C(c, r, t), d) whose i-dimensional cells are indexed by
plane partitions of volume i in a c × r × t box. We prove homology concentration in Theorem 5.6 and
also give a homology basis. Since we are not aware of a way to regard partitions in a c × r × t box as
orbits of a group action permuting cells, we devised a different, though related construction.

It will be more convenient to use another indexing set of equal cardinality, namely the semistandard
Young tableaux (SSYT) of shape λ = (c)r in which all entries have value between 0 and r + t − 1.
The bijection comes from taking a Young tableaux filling with entries that weakly increase in rows and
columns to a column strict one by adding i− 1 to each entry in row i.

We now define the complex (C(c, r, t), d), with coefficients taken mod 2, by letting the chain group
generators be the SSYT of c×r rectangular shape with entries between 0 and t+r−1. Let us call an odd
value 2i + 1 in row R decrementable if it does not have the value 2i immediately above it in row R − 1.
Define the boundary map d as follows. For T an SSYT, dT is a sum over SSYT obtained by subtracting
one from the leftmost copy in some row R some odd value 2k + 1 having the following property: there
are an odd number of decrementable copies of 2k + 1 in row R. In other words,

dT =
∑

T ′∈d(T )

T ′

for d(T ) the set of SSYT obtained by deleting one from a decrementable odd entry λi,j of T located at
position (i, j). One may verify:

Proposition 5.1 (C(c, r, t), d) is a chain complex, i.e., d2 = 0.

Next we give an acyclic matching M on the set of such SSYT. M will have the property that for each
pair S, T of matched tableaux with |S| < |T |, S appears with nonzero coefficient in dT .

Matching M: Let T be a SSYT satisfying our requirements on its entries. Consider the earliest row R
in T having at least one of the following items:

1. an odd value i such that there are an odd number of decrementable copies of i in row R

2. an even value i in row R not having the value i + 1 immediately below it such that the number of
decrementable copies of i+ 1 in row R is even (possibly zero)

Match T toM(T ) by choosing the smallest value i in the chosen rowRmeeting one of these conditions;
now subtract one from the leftmost such copy of i in row R if i is odd, or add one to the rightmost such
copy of i in row R if i is even.

Proposition 5.2 M is a matching and is acyclic, hence a Morse matching.

The proof is quite similar to the one discussed in the last section. One may also check that M meets
the requirements of Lemma 3.2. Now we describe P unM.

Lemma 5.3 In any element of P unM, every even value 2i with 2i < t + r − 1 has the odd value 2i + 1
just below it. For each odd value 2i+ 1 with 2i+ 1 < t+ r − 1, the number of decrementable copies of
2i+ 1 in a given row is even.
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Proof: Start with the top row, and proceed downward from row R to row R + 1 by induction as follows.
In row 1, notice that each odd value 2i + 1 must occur with even multiplicity, since otherwise we could
match by decrementing by one the leftmost copy of 2i+ 1. Thus, each even value 2i in row 1 will have an
even number of copies (possibly 0) of 2i+ 1 just to its right; therefore we could match by increasing the
rightmost copy of 2i to 2i+ 1 unless there were a 2i+ 1 just below it. Since our fillings are semistandard,
this implies we must have 2i + 1 just below all the other copies of 2i in that row, putting each 2i in row
one in a vertical domino and each 2i+ 1 in a horizontal domino.

The same argument works at row R + 1 once the claim has been proven through row R: we may have
some odd values in row R + 1 which already belong to dominoes shared with row R, but all remaining
spots to be filled in row R + 1 will have odd values just above them. This ensures that each odd value
2i + 1 in row R + 1 must occur with even multiplicity (not counting those in dominoes shared with row
R) to avoid matching by decrementing 2i+1. And again any even value 2i in rowR+1 will have an even
number of decrementable copies of 2i + 1 to its right, allowing matching by incrementing the rightmost
2i unless either it has a copy of 2i+ 1 just below it or it is the absolute largest allowable value. 2

Corollary 5.4 The first row has even sum. If row lengths are odd, then row sums alternate in parity.
Otherwise, all row sums have even parity. Therefore the critical cells are concentrated in dimensions all
of the same parity.

Proposition 5.5 The elements of P unM are all in ranks of the same parity. They are also in bijection with
the semistandard domino tableaux of c × r rectangular shape comprised of odd values between 0 and
t+ r − 1.

The idea is to show that our description of P unM amounts to saying the shapes are tiled by two types
of dominos: (1) horizontal dominos in which both entries of the domino have odd value 2i + 1, and (2)
vertical dominos in which the top entry is 2i and the bottom entry is 2i + 1, along with perhaps some
monominoes in the bottom row of maximal allowed value.

Theorem 5.6 The complex (C(c, r, t), d). has homology concentration in ranks all of the same parity.
Moreover, a basis is given by Lemma 5.3.

Now we will use the following result from (12):

Theorem 5.7 (Stembridge, Theorem 3.1) The following quantities are equal.

• (a) The number of self-evacuating tableaux in Sλ

• (b) (−1)k(λ)sλ((−1)0, (−1)1, (−1)2, . . . , (−1)(n−1)) for k(λ) = λ2 + λ4 + · · ·
Moreover, if n is even, or more generally if we allow monominos of maximal value in a domino tableau,
then these quantities also equal

• (c) The number of semistandard domino tableaux with entries ≤ n/2 and shape λ

Since the map sending a plane partition in a rectangle to a SSYT by adding i− 1 to each entry of row i
has the effect of sending the self-complementary partitions exactly to the self-evacuating tableaux of the
same rectangular shape, we may use Stembridge’s result to deduce that our homology basis has the same
cardinality as the self-complementary plane partitions with entries of value at most t.

Our matching, together with a straightforward verification that quantity (b) has positive sign, also gives
a combinatorial proof that (b) equals (c) by a sign-reversing involution on the SSYT counted by (b) which
has as its fixed points a set that is in trivial bijection with the objects counted by (c).
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6 A counterexample and a conjecture
Example 6.1 Embed G = PSL2(F5) in S6 via its action on the 6 points of the projective line over F5.
To be explicit, one can start with these generators for SL2(F5)

a =
[

0 1
1 0

]
, b =

[
2 0
0 3

]
, c =

[
1 1
0 1

]
and then if one numbers the points of the projective line over F5 as 1, 2, 3, 4, 5, 6 according their slopes
0, 1, 2, 3, 4,∞, the images of a, b, c in PSL2(F5) permute [6] as follows:

a = (16)(34)
b = (25)(34)
c = (12345).

One can check that this subgroup G = 〈a, b, c〉 of S6 acts transitively on
(

[6]
i

)
for i = 0, 1, 2, 4, 5, 6, and

has these two orbits on
(

[6]
3

)
:

{123, 234, 345, 145, 125, 136, 246, 356, 146, 256},
{124, 235, 134, 245, 135, 126, 236, 346, 456, 156}.

An easy computation then shows that C(F2)G has H0 = H3 = F2 and no other nonvanishing homology
groups.

Proposition 6.2 G ≤ Sn has a self-complementary orbit if and only if a Sylow 2-subgroup ofG contains
a derangement.

Proof: Note first that a Sylow 2-subgroup of G contains a derangement if and only if some element of
g contains no cycle of odd length in its cycle decomposition. Indeed, a derangement of 2-power order is
such an element, while if g has no cycle of odd length and order 2kd with d odd then gd is a derangement
of order 2k. Now if g has no cycle of odd length then it is easy to construct S ⊆ [n] with Sg = [n] \ S.
On the other hand, say Sg = [n] \ S and (i1 . . . ik) is a cycle in g. We may assume that i1 ∈ S. Then
ij ∈ S if and only if j is odd, and since ikg = i1, we must have ik 6∈ S, so k is even. 2

Corollary 6.3 If G is a transitive subgroup of Sn with n even, and G contains no derangement in a
Sylow 2-subgroup, then the homology of C(F2)G is not concentrated in even dimensions.

Proof: By Theorem 2.2 and Proposition 6.2, the Euler characteristic of C(F2)G is zero. On the other
hand, by Proposition 2.5, we have H0(C(F2)G) 6= 0. 2

Although the homology of our mod 2 complexes is not always concentrated in even dimensions, we are
still interested in interesting families of groupsG for which this concentration does occur. In this situation,
the Poincaré polynomial for the homology of, say C(F2)G, can be interpreted as giving a grading on the
set of self-complementary G-orbits.

We conclude with evidence that this holds for G a cyclic group Cn generated by an n-cycle in Sn. In
this case the orbits are necklaces, as in (7). Here are homology calculations from Mathematica on Cn
for n even; the case of n odd already follows from Proposition 2.5.
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n homologyranks

2 1, 0, 0
4 1, 0, 1, 0, 0
6 1, 0, 0, 0, 1, 0, 0
8 1, 0, 1, 0, 1, 0, 1, 0, 0
10 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0
12 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0
14 1, 0, 0, 0, 3, 0, 2, 0, 3, 0, 0, 0, 1, 0, 0
16 1, 0, 1, 0, 3, 0, 5, 0, 5, 0, 3, 0, 1, 0, 1, 0, 0
18 1, 0, 0, 0, 4, 0, 6, 0, 8, 0, 6, 0, 4, 0, 0, 0, 1, 0, 0

The following calculation of X(Cn, q), X(Cn,−1) may be done using Polya-Redfield theory or Burn-
side’s lemma.

Proposition 6.4 For n > 2,

X(Cn, q) =
1
n

∑
d:d|n

ϕ(d)(1 + qd)
n
d

X(Cn,−1) =
1
n

∑
d:d|n
deven

ϕ(d)2
n
d

Note that the above homology data suggests that

• Hi(CC2n) = 0 for i odd, and for i = 2n− 1, 2n, and

• H2j(CC2n) = H2n−2−2j(CC2n).

But one can be much more precise. Note that using the formula in Proposition 6.4 for X(Cn,−1), one
can easily check that it satisfies the recursion

X(C2n,−1) =
X(Cn,−1) +X(Cn, 1)

2

This recursion may be modified to a recursion predicting the homology Poincaré series. For notational
convenience, define

An(q) :=
n∑
i=1

dimHi(C(F2)Cn)qi and Xn(q) := X(Cn, q).

Conjecture 6.5 For any positive integer n, one has Hi(CC2n) = 0 if i is odd, so that A2n(q) is a polyno-
mial in q2, and one has the recursion

A2n(q1/2) =
qAn(q) +Xn(q)

1 + q
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Conjecture 6.5 has some strong evidence. It is correct at q = 1. It holds through n = 18, as shown
earlier. We have proven it for n odd, although we do not include a proof here. In addition, it is correct
with regard to its prediction about H2(CC2n).

References
[1] M. Ciucu, The equivalence between enumerating cyclically symmetric, self-complementary and

totally symmetric self-complementary plane partitions, J. Comb. Theory, Ser. A 86 (1999), no. 2,
382–389.

[2] T. Eisenkoelbl, (−1)-enumeration of self-complementary plane partitions, Electronic J. Combina-
torics, 12 (1), (2005), # R7, 22 pages.
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Abstract. Surveying the results of three recent papers and some currently ongoing research, we show how a gener-
alization of Brylawski’s tensor product formula to colored graphs may be used to compute the Jones polynomial of
some fairly complicated knots and, in the future, even virtual knots.

Résumé. En faisant une revue de trois articles récents et de la recherche en cours, nous montrons comment une
généralisation aux graphes colorés de la formule de Brylawski sur le produit tensoriel peut être utilisée à calculer le
polynôme de Jones de quelques nœuds et, dans la future, même de quelques nœuds virtuels, bien compliqués.

Keywords: knots, Jones polynomial, Tutte polynomial, signed graphs, tensor product of matroids

Introduction
Tutte polynomials are known to be useful in the computation of the Jones polynomials of alternating
knots. One of the most famous applications may be found in the work of Jaeger, Vertigan, and Welsh (11),
where they use Brylawski’s (3) tensor product formula to show that computing the Jones polynomial of
even an alternating knot is NP -complete. The technique used also indicates the existence of large knots
whose composite structure (their face graph being the tensor product of “manageable” graphs) allows the
computation of their Jones polynomials using Brylawski’s formula.

This presentation will take through the main results of three recent papers by the presenting authors
which show how Brylawski’s formula may be generalized to colored graphs, using a notion of a Tutte
polynomial whose existence follows from the work of Bollobás and Riordan (1). The proof of the re-
sulting formula indicates a new, Tutte-style proof of Brylawski’s original result, and has many potential
applications outside knot theory. As an example we indicate the application to the random-cluster model
introduced by Fortuin and Kasteleyn (10).

The result should be generalizable to calculating the Jones polynomial of virtual knots (16) arising as
a tensor product, however, for the moment, we only believe to have a suitable notion of a relative Tutte
polynomial that allows to compute the Jones polynomial. Our research indicates that the theory of Tutte
polynomials of morphisms of matroids, developed by Las Vergnas (17) is worth revisiting from the point
of view of colored generalizations.
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1 The Tutte polynomial of a colored graph
In this section we review our implementation of the colored Tutte polynomial, introduced by Bollobás
and Riordan (1).

Definition 1.1 Let G be a connected graph with n edges whose edges are labeled 1, 2, . . . , n, and let T
be a spanning tree ofG. An edge e of T is internally active if for any edge f 6= e in G such that (T \e)∪f
is a spanning tree ofG, the label of e is less than the label of f . Otherwise e is internally inactive. An edge
f of G \ T is externally active if f has the smallest label among the edges in the unique cycle contained
in T ∪ f . Otherwise, f is externally inactive.

Bollobás and Riordan (1) use Tutte’s notion of activities but generalize Tutte’s variable assignments as
follows. Let G be a colored and connected graph and T a spanning tree of G. For each edge e in G with
color λ, we assign one of the variables Xλ, Yλ, xλ and yλ to it according to the activities of e as shown
below (with respect to the tree T ):

internally active Xλ externally active Yλ
internally inactive xλ externally inactive yλ

Tab. 1: The variable assignment of an edge with respect to a spanning tree T .

Definition 1.2 Let G be a connected colored graph (whose edges are labeled as in Definition 1.1). For
a spanning tree T of G, let C(T ) be the product of the variable contributions from each edge of G
according to the variable assignment above. The Tutte polynomial T (G) is defined as the sum of C(T )
over all spanning trees T of G.

Tutte’s original variable assignment may be recovered by setting all Xλ = x, Yλ = y, xλ = 1 and
yλ = 1 for λ ∈ Λ. It is Tutte’s main result (18) is that the total contribution of all spanning trees is
labeling independent in the non-colored case. In the colored case, labeling independence is preserved
only if the polynomial ring Z[Λ] := Z[Xλ, Yλ, xλ, yλ : λ ∈ Λ] is factored with an appropriate ideal I .
The following theorem by Bollobás and Riordan (1) gives the exact description of all such ideals.

Theorem 1.3 (Bollobás-Riordan) Assume I is an ideal of Z[Λ]. Then the homomorphic image of T (G)
in Z[Λ]/I is independent of the labeling of the edges ofG if and only if for all λ, µ, ν ∈ Λ the polynomials

det
(
Xλ yλ
Xµ yµ

)
− det

(
xλ Yλ
xµ Yµ

)
, Yν

(
det
(
xλ Yλ
xµ Yµ

)
− det

(
xλ yλ
xµ yµ

))
,

and Xν

(
det
(
xλ Yλ
xµ Yµ

)
− det

(
xλ yλ
xµ yµ

))
belong to I .

Let I0 be the ideal generated by the polynomials listed in Theorem 1.3. The image of T (G) in Z[Λ]/I0
is the most general colored Tutte polynomial whose definition is independent of the labeling. Many im-
portant polynomials may be obtained from this polynomial by substitution, and most such substitutions,
including all those we want to consider, map Z[Λ]/I0 into an integral domain in such a way that the
images of the variables xλ, Xλ, yλ and Yλ are nonzero. All such maps factor through the the canon-
ical map Z[Λ]/I0 → Z[Λ]/I1, where I1 ⊃ I0 is the ideal generated by all polynomials of the forms
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det
(
Xλ yλ
Xµ yµ

)
−det

(
xλ yλ
xµ yµ

)
and det

(
xλ yλ
xµ yµ

)
−det

(
xλ Yλ
xµ Yµ

)
. This role of I1 is im-

plicitly noted in (1, Corollary 3). Thus we will consider the colored Tutte polynomial to be an element of
Z[Λ]/I1. Let us highlight the following algebraic observation, making (1, Corollary 3) truly useful.

Lemma 1.4 (Diao-Hetyei-Hinson) The ideal I1 is a prime ideal. More generally, given any integral
domain R, the ideal I1 in R[Λ] is prime.

The proof of this lemma uses (2, Theorem (2.10)) stating that given any integral domain R and a matrix
X of variables, the ideal generated by the maximal minors of X in the polynomial ring R[X] is prime.

As noted in (1, Remark 3), our definitions and statements may be generalized to matroids by modifying
the definitions of activities using “matroid basis” instead of “spanning tree” and interpreting a “cycle” as a
“minimal dependent set”. By replacing the phrase “spanning tree” with “spanning forest”, one can easily
generalize our Tutte polynomial to disconnected graphs. Given a disconnected graph G with connected
componentsG1, . . . , Gk, the Tutte polynomial T (G) obtained via this generalization is simply the product
of the Tutte polynomials of its components: T (G) =

∏k
i=1 T (Gi). On the other hand, Bollobás and

Riordan (1) introduced a different generalized form of a Tutte polynomial by multiplying a variable αk(G)

(that only depends on the number k(G) of connected components in G) with T (G). This allows one to
keep track of the number of connected components. For details we refer the reader to (1, Corollary 4).
Here we only highlight the following consequence.

Corollary 1.5 Let ZΛ,α be the polynomial ring ZΛ[αi : i = 1, 2 . . .], then the polynomial αk(G)T (G),
considered as an element of ZΛ,α/I1 is labeling independent.

To avoid confusion, we will refer to T (G) as the ordinary Tutte polynomial of the colored graph, and to
αk(G)T (G) as the enriched Tutte polynomial of G. The ordinary Tutte polynomial may be obtained from
the enriched Tutte polynomial by sending all variables αi to 1. Using the same I1 to denote the ideal
generated by the same elements in different rings will not cause confusion.

2 The signed Tutte polynomial and the Jones polynomial
The special case when the color set has two colors, referred to as signs, the resulting signed Tutte poly-
nomial may be used to compute the Kauffman bracket and the Jones polynomial of a knot. Here we only
outline this well-known construction, the details may be found in (1), (14), and (15). Kauffman’s uses
different letters to denote his variables, inactive edges correspond to variables A+, A−, B+, B−, active
edges correspond to x+, x−, y+, and y−. A full concordance between Kauffman’s (14), (15) and the
Bollobás-Riordan notation (1) is given in Table 2.

Kauffman ε εi xε yε Aε Bε
Bollobás-Riordan λ λi Xλ Yλ xλ yλ

Tab. 2: Concordance between the Kauffman and the Bollobás-Riordan notations

Consider a regular projection D of a knot K. We shade the regions of D either “white” or “dark”
in a checkerboard fashion, so that no two regions of the same color are adjacent. We usually consider
the infinite region surrounding the knot projection to be white. Next we construct a dual graph of D by
converting the dark regions in D into vertices in a graph G and converting the crossings in D between
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two dark regions into edges incident to the corresponding vertices in G. We look at each crossing in the
knot projection. If, after the upper strand passes over the lower, the dark region is to the left of the upper
strand, then we denote this as a positive crossing, otherwise we denote it as a negative crossing. Then our
signed graph is obtained by marking each edge of G with the same sign as the crossing of K to which it
corresponds. See Figure 1 below and Figure 2 in Section 4.

_+

Fig. 1: The assignment of signs at a crossing (vertex) for the graph G.

The following theorem is due to Kauffman (14; 15).

Theorem 2.1 Let G be the (signed) dual graph of a regular knot projection D of K as described above,
then T (G) equals the Kauffman bracket polynomial 〈K〉 under the following variable substitutions:

x+ 7→ −A−3, x− 7→ −A3, y+ 7→ −A3, y− 7→ −A−3

A+ 7→ A, A− 7→ A−1, B+ 7→ A−1, B− 7→ A.

Furthermore, the Jones polynomial VK(t) of K can be obtained from

VK(t) = (−A−3)w(K)〈K〉 (1)

by setting A = t−
1
4 , where w(K) is the writhe of the projection D.

A regular projection D of a knot is alternating if all edges of the corresponding graph G have the
same sign (w.l.o.g positive). A regular knot projection is alternating if and only if each “overcorssing”
is followed by an “undercrossing” and vice versa, motivating the choice of the name. As a consequence
of Theorem 2.1, the Jones polynomial of an alternating knot may be computed from the (original) Tutte
polynomial of a (non-colored) graph.

3 Brylawski’s tensor product formula and its signed generaliza-
tion

The tensor product of colored graphs we introduce in this section is a colored generalization of the tensor
product operation introduced by Brylawski (3) for (non-colored) matroids. The matroid generalization of
the definition below is obvious.

Definition 3.1 Let M and N be two graphs colored with the set Λ, λ ∈ Λ a fixed color, and e a distin-
guished edge of N that is neither a loop nor a bridge. The λ-tensor product of M and N , denoted by
M ⊗λ N is the colored graph obtained by replacing each edge in M of color λ with a copy of N \ e,
where the distinguished edge e is to be identified with the replaced edge of M .

We may recover Brylawski’s original definition for M ⊗N by setting |Λ| = 1. Brylawski’s formula (3)
was rephrased in the famous paper of Jaeger, Vertigan and Welsh (11) as follows.
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Theorem 3.2 (Brylawski) The Tutte polynomial of M ⊗N is given by

T (M ⊗N ;x, y) = TC(N ;x, y)|S|−rank(S)TL(N ;x, y)rank(S)T (M ;X,Y ) where

X =
(x− 1)TC(N ;x, y) + TL(N ;x, y)

TL(N ;x, y)
, Y =

TC(N ;x, y) + (y − 1)TL(N ;x, y)
TC(N ;x, y)

,

and the polynomials TC and TL are defined by the equations

(x− 1)TC(N ;x, y) + TL(N ;x, y) = T (N \ e;x, y),
TC(N ;x, y) + (y − 1)TL(N ;x, y) = T (N/e;x, y). (2)

Here, and from now on, N \ e resp. N/e stands for the graph or matroid obtained after the deletion resp.
contraction of e.

Brylawski’s result was used by Jaeger, Vertigan and Welsh (11) to show that the computation of the
Tutte polynomial and of the Jones polynomial of an alternating knot is NP -complete. Finding a gener-
alization of the tensor product formula stated in Theorem 3.2 allows to compute the Jones polynomials
of large non-alternating knots that have a regular projection whose associated graph arises as a tensor
product of signed graphs of “manageable size”.

For this purpose we first define a colored generalization of the polynomials TC and TL that appear in
Theorem 3.2.

Definition 3.3 Let N be a colored connected graph with a distinguished edge e that is neither a loop
nor a bridge. Then TL(N, e) is the polynomial defined by the same rule that defines the ordinary colored
Tutte polynomial T (N \ e) except that internally active edges on a cycle closed by e will be considered as
internally inactive instead. Similarly, TC(N, e) is the polynomial defined by the same rule that defines the
ordinary colored Tutte polynomial T (N/e) except that externally active edges that would close a cycle
containing e will be considered as externally inactive instead.

To interpret the second part of the definition, note that the spanning trees of N/e are identifiable with
those spanning trees of N which contain e. We say that an external edge closes a cycle containing e with
a spanning tree T of N/e, if the same holds for the corresponding spanning tree T ∪ {e} of N .

Definition 3.3 appears to depend on the labeling of the edges, but it is not, because of the following
result (7):

Theorem 3.4 (Diao-Hetyei-Hinson) LetN be a colored graph with a distinguished edge e that is neither
a loop nor a bridge and let λ ∈ Λ be any color. Then the following two equalities hold:

xλ(T (N/e)− TC(N, e)) = (Yλ − yλ)TL(N, e), (3)
yλ(T (N \ e)− TL(N, e)) = (Xλ − xλ)TC(N, e). (4)

As a consequence of Theorem 3.4 the pair of polynomials zC = TC(N, e) and zL = TL(N, e) provides a
solution of the linear system of equations

(Yλ − yλ)zL + xλzC = xλT (N/e)
yλzL + (Xλ − xλ)zC = yλT (N \ e) (5)
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for the unknowns zL and zC . The givens belong to Z[Λ]/I1, an integral domain by Lemma 1.4. Cramer’s
rule is applicable in the quotient field of Z[Λ]/I1, and we have

det
(
Yλ − yλ xλ
yλ Xλ − xλ

)
= XλYλ −Xλyλ − yλXλ

which is a nonzero element of Z[Λ]/I1, independent of the choice of λ, since each element of I1 is a Z-
linear combination of monomials involving at least two colors from Λ. Thus the solution of (5) is unique
and definition of TC(N, e) and TL(N, e) is in deed independent of the labeling. The proof of Theorem 3.4
greatly depends on the following algebraic formula (7):

Lemma 3.5 The following identities hold in the ring Z[Λ]/I1 for all k ≥ 1 and all
λ, λ1, . . . , λk ∈ Λ (all empty products are treated as 1):

xλ

(
k∏
i=1

Yλi −
k∏
i=1

yλi

)
= (Yλ − yλ)

k∑
i=1

xλi

i−1∏
j=1

Yλj

k∏
t=i+1

yλt (6)

yλ

(
k∏
i=1

Xλi −
k∏
i=1

xλi

)
= (Xλ − xλ)

k∑
i=1

yλi

i−1∏
j=1

Xλj

k∏
t=i+1

xλt . (7)

Note that the second equation in Lemma 3.5 follows from the first by exchanging each xλ with yλ and
each Xλ with Yλ. The equations in Theorem 3.4 may be rephrased as follows.

det
(
TL(N, e) TC(N, e)
xλ yλ

)
= det

(
TL(N, e) T (N/e)
xλ Yλ

)
(8)

and

det
(
TL(N, e) TC(N, e)
xλ yλ

)
= det

(
T (N \ e) TC(N, e)
Xλ yλ

)
(9)

Using this determinantal form it is easy to show the following (7):

Lemma 3.6 (Diao-Hetyei-Hinson) The endomorphism of Z[Λ], given by Xλ 7→ T (N \ e), xλ 7→
TL(N, e), Yλ 7→ T (N/e), yλ 7→ TC(N, e) and by Xµ 7→ Xµ, xµ 7→ xµ, Yµ 7→ Yµ, yµ 7→ yµ for
all µ 6= λ, sends I1 into itself.

This lemma allows us to state our main result on the tensor product of colored graphs (and matroids) as
follows (7):

Theorem 3.7 Let M be a colored graph and N a colored graph with a distinguished edge e that is
neither a loop nor a bridge. Then the ordinary Tutte polynomial T (M ⊗λ N) can be computed from
T (M) by keeping all variables of color µ 6= λ unchanged, and using the substitutions Xλ 7→ T (N \ e),
xλ 7→ TL(N, e), Yλ 7→ T (N/e), yλ 7→ TC(N, e).

Remark 3.8 For non-colored graphs and matroids our reasoning may be substantially simplified. Thus,
in (9), we obtained a new , “Tutte-style” proof of Brylawski’s original result (3).
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4 Applications and non-connected generalizations of the colored
tensor product formula

The first important specialization of Theorem 3.7 is the case of signed graphs. Using Kauffman’s notation,
in this special case Theorem 3.7 may be restated as follows (6):

Theorem 4.1 LetM be a signed graph andN a signed graph with a distinguished edge e. Then T (M⊗+

N) can be computed from T (M) by keeping the negative variables unchanged and using the substitutions

x+ 7→ T (N\e) A+ 7→ TL(N, e) y+ 7→ T (N/e) B+ 7→ TC(N, e).

Similarly, T (M ⊗− N) can be computed from T (M) by keeping the positive variables unchanged and
using the substitutions

x− 7→ T (N\e) A− 7→ TL(N, e) y− 7→ T (N/e) B− 7→ TC(N, e).

Theorem 4.1 allowed us to compute the Jones polynomial of the non-alternating knot shown in Figure 2
in (6). “Historically,” the computation of this Jones polynomial was the challenge that motivated all our
results presented here.
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Fig. 2: A 19 crossing knot diagram and its corresponding signed graph.

The generalization of Theorem 3.7 to enriched Tutte polynomials of disconnected graphs is discussed
in (7). The number k(M ⊗λ N) of connected components of M ⊗λ N satisfies the equation

k(M ⊗λ N) = k(M) + |Eλ(M)| · (k(N \ e)− 1). (10)

Here Eλ(M) is the set of edges of color λ in M . The enriched Tutte polynomial of M ⊗λN is thus equal
to

αk(M)+|Eλ(M)|·(k(N\e)−1) · T (M ⊗λ N),

where T (M ⊗λ N) is the ordinary colored Tutte polynomial, to which Theorem 3.7 is applicable. In
particular, substituting k(N \ e) = 1 into (10) yields k(M ⊗λ N) = k(M) thus we have the following
consequence.
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Corollary 4.2 Let M be a colored graph and N a colored graph with a distinguished edge e that is
neither a loop nor a bridge. Assume that N \ e is connected. Then the enriched Tutte polynomial of
M ⊗λ N can be computed from the enriched Tutte polynomial of M by keeping all variables of color
µ 6= λ and the variables αn (n ≥ 1) unchanged, and using the substitutions

Xλ 7→ T (N \ e) xλ 7→ TL(N, e) Yλ 7→ T (N/e) yλ 7→ TC(N, e).

Corollary 4.2 may be applied to the random-cluster model introduced by Fortuin and Kasteleyn (10)
in 1972 as a generalization of various models such as the percolation model, the two-state Ising model
and the Potts model. This model can be thought of as a graph G(V,E) that is associated with a function
p : E −→ [0, 1]. We may think of pe as the probability that the edge e ∈ E “survives” an accident,
and qe = 1 − pe as the probability that the edge e “breaks” in an accident. Fortuin and Kasteleyn (10)
introduced the following polynomial of the variable κ as a cluster-generating function Z(G; p, κ):

Z(G; p, κ) =
∑
C⊆E

pCqE\Cκk(C). (11)

Here pC is a shorthand for the product
∏
e∈C pe, q

E\C is a shorthand for the product
∏
e∈E\C qe, and

k(C) is the number of connected components in the subgraph consisting of the edges ofC and the vertices
incident to these edges. Bollobás and Riordan (1) have shown that the polynomial Z(G; p, κ) can be
computed from the enriched Tutte polynomial of a colored graph. We may think of the colors as different
“materials” and assume that edges of the same color have the same probability to “break” in an accident.
After computing the Tutte polynomial of the colored graph, we have to make the following substitutions
(as directed in (1)):

xλ 7→ pλ yλ 7→ qλ Xλ 7→ pλ + κqλ Yλ 7→ 1. (12)

Corollary 4.2 becomes applicable when our network is a “network of networks” M ⊗λ N , i.e. when the
edges of color λ of a network M are networks themselves, associated to the same colored graph N with
a distinguished edge e indicating how N \ e should be inserted as a substitute of e ∈M .

Definition 4.3 Let N be a colored graph with a distinguished edge e that is neither a loop nor a bridge,
such that each color λ has an associated probability pλ. We define the pointed random-cluster-generating
functions ZC(N, e; p, κ) and ZL(N, e; p, κ) as the homomorphic images of TC(N, e) and TL(N, e) re-
spectively under the homomorphism induced by the substitutions given in (12).

As a consequence of Corollary 4.2 and the substitution rule (12) we have the following result.

Theorem 4.4 Let M and N be colored graphs and p a function associating to each color a probability.
AssumeN has a distinguished edge e that is neither a loop nor a bridge, and thatN \e is connected. Let λ
be a fixed color. Then the cluster-generating function Z(M⊗λN ; p, κ) may be obtained from the enriched
colored Tutte polynomial αk(M)T (M) by sending αn into κn and making the following substitutions:

Xλ 7→ Z(N \ e; p, κ) xλ 7→ ZL(N, e; p, κ) Yλ 7→ Z(N/e; p, κ) yλ 7→ ZC(N, e; p, κ).

For all other colors µ we apply the substitutions given in (12).

It was shown in (7) that the pointed random cluster generating functionsZC(N, e; p, κ) andZL(N, e; p, κ)
may be equivalently given by

ZC(N, e; p, κ) =
Z(N \ e; p, κ)− Z(N/e; p, κ)

κ− 1
and (13)
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ZL(N, e; p, κ) =
κZ(N/e; p, κ)− Z(N \ e; p, κ)

κ− 1
. (14)

5 Relative Tutte polynomials and virtual knots
Kauffman (16) has generalized the Jones polynomial to virtual knot diagrams which may be thought of as
knot diagrams drawn on nontrivial surfaces. These drawings my be represented in the plane by allowing
a few “virtual” crossings: crossings that do not exist on the surface only in the plane, due to two distinct
points of the surface being represented by the same point in the plane. We may then apply the process
of associating a signed graph as outlined in Section 2 with the additional rule that “virtual crossings”
correspond to zero colored edges. An example is shown in Figure 3. If we wanted to extend Theorem 3.7

0

_ _

Fig. 3: The virtual trefoil knot (which is not checkerboard colorable) and its face graph.

to virtual knots, we would first need some computational rule expressing the Jones polynomial of a virtual
knot (as defined by Kauffman (16)) in terms of the Tutte polynomial of the 3-colored graph associated
to the virtual knot diagram. Unfortunately, the“zero” edges do not abide to the same deletion-contraction
rules as the other edges. There have been some efforts to overcome this difficulty. These efforts so far
seem to concentrate on changing the underlying graph to a “ribbon graph” so that the “zero edges” would
go away (5; 12; 13). This approach only applies to those virtual link diagrams that are “checkerboard
colorable”. Figure 3 shows the virtual trefoil, which is not checkerboard colorable.

To overcome the difficulty, a theory of relative Tutte polynomials was developed in (8).

Definition 5.1 LetG be a connected graph andH a subset of its edge setE(G). A subset C of the edge set
E(G)\H is called a contracting set ofGwith respect toH if C contains no cycles andD := E(G)\(C∪H)
contains no cocycles (and D is called a deleting set).

Lemma 5.2 (Diao-Hetyei) In the above definition, if H = ∅, then C ⊆ E(G) is a contracting set if and
only if the subgraph C is a spanning tree of E(G).

For the sake of matroid-theoretic generalizations, the following observation is useful.

Lemma 5.3 (Diao-Hetyei) C is a contracting set with respect to H if and only if there is a basis B ⊂
C ∪H that contains C.

Lemma 5.4 (Diao-Hetyei) Let G be a connected graph andH a subset of E(G). Let C be a contracting
set of G with respect toH, D be the corresponding deleting set and e ∈ C be any edge in C. Then for any
f ∈ D, C′ = {f} ∪ (C \ {e}) is also a contracting set with respect to H if the triplet (C, e, f) has either
of the following properties:

(i) C ∪ {f} contains a cycle containing {e}.
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(ii) D ∪ {e} contains a cocycle containing {f}.

Moreover, if the triplet (C, e, f) satisfies (i) or (ii) then the triplet (C′, f, e) has the same properties.

Definition 5.5 Let G be a connected graph and H be a subset of E(G). Let us assume that a labeling of
G is given in such a way that all edges inH are labeled with number 0 and all other edges are labeled with
distinct positive integers. Such a labeling is called a proper labeling or a relative labeling (with respect to
H). In other words, a proper labeling of the edges of G with respect to H is a mapping φ : E(G) −→ Z
such that φ(e) = 0 for any e ∈ H and φ is an injective map from E(G) \ H to Z+. We say that e1 is
larger than e2 if φ(e1) > φ(e2). Let C be a contracting set of G with respect toH, then

a) an edge e ∈ C is called internally active if D ∪ {e} contains a cocycle D0 in which e is the smallest
edge, otherwise it is internally inactive.

b) an edge f ∈ D is called externally active if C ∪ {f} contains a cycle C0 in which f is the smallest
edge, otherwise it is externally inactive.

Definition 5.6 Let ψ be a mapping defined on the isomorphism classes of finite connected graphs with
values in a ring R. We say that ψ is a block invariant if for all positive integer n there is a function
fn : Rn → R that is symmetric under permuting its input variables such that for any connected graph G
having n blocks G1, . . . , Gn we have

ψ(G) = fn(ψ(G1), . . . , ψ(Gn)).

In other words, we require the ability to compute ψ(G) from the value of ψ on the blocks of G, and this
computation should not depend on the order in which the blocks are listed.

Lemma 5.7 (Diao-Hetyei) Let G be a connected graph and H be a subset of E(G). Assume that C is a
contracting set with respect to H and that the triplet (C, e, f) has at least one of the properties listed in
Lemma 5.4. Let C′ := (C ∪ {f}) \ {e}. Then the multiset of blocks of HC is the same as the multiset of
blocks ofHC′ .
Similarly, for matroids we have:

Lemma 5.8 (Diao-Hetyei) Let M be a matroid and H a subset of its elements. Assume that C is a
contracting set with respect to H and that the triplet (C, e, f) has at least one of the properties listed in
Lemma 5.4. Let C′ := (C ∪ {f}) \ {e}. Then the cycle matroid of the graph HC is the same as the cycle
matroid of the graphHC′ .
Let G be a connected graph andH ⊆ E(G). Assume we are given a mapping c from E(G) \H to a color
set Λ. Assume further that ψ is a block invariant associating an element of a fixed integral domain R to
each connected graph. For any contracting set C of G with respect to H, let HC be the graph obtained by
deleting all edges inD and contracting all edges in C (so that the only edges left inHC are the zero edges).
Finally, we will assign a proper labeling to the edges of G. We now define the relative Tutte polynomial
of G with respect toH and ψ as

TψH(G) =
∑
C

( ∏
e∈G\H

w(G, c, φ, C, e)
)
ψ(HC) ∈ R[Λ], (15)

where the summation is taken over all contracting sets C and w(G, c, φ, C, e) is the weight of the edge e
with respect to the contracting set C, which is defined as (assume that e has color λ):
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w(G, c, φ, C, e) =


Xλ if e is internally active;
Yλ if e is externally active;
xλ if e is internally inactive;
yλ if e is externally inactive.

(16)

To simplify the notation somewhat, we will be using TH(G) for TψH(G), with the understanding that
some ψ has been chosen, unless there is a need to stress what ψ really is. Following (1), we then write

W (G, c, φ, C) =
∏

e∈G\H

w(G, c, φ, C, e)

so that
TH(G,φ) =

∑
C
W (G, c, φ, C)ψ(HC). (17)

We may now extend Theorem 1.3 of Bollobás and Riordan (1) to TH as follows.

Theorem 5.9 (Diao-Hetyei) Assume I is an ideal of R[Λ]. Then the homomorphic image of TH(G,φ)
in R[Λ]/I is independent of φ (for any G and ψ) if and only if for all λ, µ ∈ Λ the polynomials

det
(
Xλ yλ
Xµ yµ

)
− det

(
xλ Yλ
xµ Yµ

)
and det

(
xλ Yλ
xµ Yµ

)
− det

(
xλ yλ
xµ yµ

)
belong to I .

Using Theorem 5.9 it is possible to define a relative Tutte polynomial that may be used to compute the
Jones polynomial of a virtual knot. For details see (8, Section 5).

6 Concluding remarks
The immediate goal prompted by Theorem 5.9 is to extend the tensor product formula for colored graphs
to relative Tutte polynomials and we are currently working on such an extension. It is worth observing
that for graphs, our relative Tutte polynomial generalizes the set-pointed Tutte polynomial of matroids
introduced and discussed in (17). Looking into results on that invariant with the purpose of further signed
generalizations seems a worthwhile project. The ideal I1 introduced in Section 1 is a determinantal ideal,
and Gröbner basis theory is known to be useful in the theory of such ideals. Thus it is conceivable that
Gröbner basis theory may be used to develop new or improve on existing algorithms to compute the Jones
polynomial.
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1 Introduction
polymake is a software system designed for analyzing convex polytopes, finite simplicial complexes,
graphs, and other objects. While the system exists for more than a decade [14] it was continuously
developed and expanded. The most recent version fundamentally changes the way to interact with the
system. It now offers an interface which looks similar to many computer algebra systems. However, on
the technical level polymake differs from most mathematical software systems: rule based computations
and an extendible dual Perl/C++ interface are the most important characteristics.
polymake can now also handle hierarchies of objects where each level may come with additional

sets of rules. polymake handles casts between subclasses based on property requests. We will explain
this feature by means of a new subclass LatticePolytope that is derived from the existing class
Polytope<Rational>. However, some of the new functions can also be applied to any rational
polytope. A lattice polytope is a polytope whose vertices are contained in a lattice Λ ⊂ Rn [6, 2].
polymake always assumes Λ = Zn. This subclass reflects a new use of polymake in toric geometry,
where lattice polytopes encode properties of toric varieties and toric ideals [21, 12]. String theorists have
been interested in special lattice polytopes, as they led to the construction of mirror pairs of Calabi-Yau
varieties [4]. Gröbner bases of toric ideals have been applied to optimization problems [27].

We will explain all relevant concepts for our exposition on the way. Lattice polytopes have also become
an important subject in other areas of mathematics. Enumerating non-negative solutions of Diophantine
equations can be interpreted as counting lattice points in a polyhedron [25]. Contingency tables in statis-
tics can be modeled by lattice polytopes [11]. Sampling then corresponds to finding integral points in the
polytope.

The paper is organized as follows. First we will review the recent changes and the new polymake
interface. Then we will report on our new implementation of a subclass for lattice polytopes. In particular,
this comprises interfaces to 4ti2 [1], Latte macchiato [10, 16], and normaliz2 [8]. We will
show how the user can benefit from the common interface to these systems via polymake and how
one can extend their functionality by combining with polymake’s features. Rather than discussing
implementation details we will explain the functions available with one easy running example. This note
then concludes with a final section analyzing a specific 6-dimensional polyhedral cone which was found
to be a counter-example to a conjecture of Sebő [23] by Bruns et al. [7].

2 polymake – the Next Generation
The general ideas which lead to the design and the implementation of the polymake system more than
ten years ago are still valid. The key goals are the following.
. The system should be scalable with the user’s ability to write programs. This means that basic usage

should not require any programming skills, while it should be powerful enough not to restrain the
programming expert.

. The system should not try to “re-invent the wheel”. There is a multitude of valuable pieces of software
for individual tasks; so they should be suitably interfaced rather than their functionality be duplicated.

. The system should be really easy to extend. It should be possible to model new mathematical objects
and to integrate them into the existing framework.

These “golden rules” are most natural, and most users of mathematical software systems would probably
agree that all of these are very desirable. For instance, the SAGE system is following a similar strategy
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albeit on a somewhat larger scale [26]. In polymake we are focusing on convex polytopes and related
objects from the realm of geometric combinatorics. The “golden rules” already have a number of impli-
cations, some obvious and some less obvious. The most important design decisions which can be derived
are: The system requires both a compiled and an interpreted programming language (we settled for C++
and Perl), and the system must be an Open Source project (we settled for the GNU Public License). By far
the most difficult to accomplish is the third rule. And, in fact, a large part of polymake’s code evolution
over the last decade can be seen as an attempt to re-interpret this rule again and again with an increasing
level of abstraction.

A word of warning to the experienced polymake user. On a technical level the new version of
polymake is very different from previous versions. From the point of view of the working mathe-
matician this results in a number of benefits. In particular, the overall usability is improved, while we
gained additional flexibility and speed. The unavoidable drawback is that the interface had to be changed
in a substantial way.

Using polymake now means to start a program named “polymake” from the command line, and
then to work in a shell-type environment typical for most computer algebra systems. The language for
interacting with the system is Perl, but we added a few features in order to easy the usability. We give a
very brief overview of how to get started with the new system.

Welcome to polymake version 2.9.6, rev. 9033
Copyright (c) 1997-2009
Ewgenij Gawrilow (TU Berlin), Michael Joswig (TU Darmstadt)
http://www.math.tu-berlin.de/polymake, mailto:polymake@math.tu-berlin.de

This is free software licensed under GPL; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Type ’help;’ for basic instructions.

Application polytope uses following third-party software (for details: help ’credits’;)
4ti2, azove, cddlib, lrslib, nauty, normaliz2, porta, qhull, splitstree, topcom, vinci
polytope >

By now there are several different applications known to polymake. Each application comprises a
main object type, properties which describe an object of this type, and a set of rules. By default the first
application to start is the one dealing with convex polytopes, and this is made visible by showing the com-
mand line prompt “polytope >”. The last line before the prompt lists the programs whose interfaces
are loaded. Since everything (the application, the objects, the properties, the rules, the interfaces, and
the defaults) can be modified or extended by the user, what shows up exactly very much depends on the
local installation. The main purpose of this note is to explain how a new sub-type for lattice polytopes is
organized within the object hierarchy for general polytopes.

The following simple example can explain the polymake concept in a nutshell. The first command
produces a 3-dimensional cube with ±1-coordinates (and assigns it to the variable $P), while the second
one (separated by “;”) prints its f -vector, that is, the number of faces per dimension. Clearly we have
eight vertices, 12 edges, and six facets.

polytope > $P=cube(3); print $P->F_VECTOR;
8 12 6
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The function cube returns a polytope object of type Polytope<Rational>, and F_VECTOR is a
property of this class, which models polytopes with rational coordinates. Notice that there are polytopes
whose combinatorial type does not admit any rational representation [28, §6.5]. polymake reduces
computing the f -vector of this cube to finding a suitable sequence of rules and to execute them one after
another. These rules can be shown as follows. To this end we restart from scratch.

polytope > $P=cube(3); print join(", ", $P->list_properties);
AMBIENT_DIM, DIM, FACETS, VERTICES_IN_FACETS, BOUNDED
polytope > print $P->type->full_name;
Polytope<Rational>

Our cube $P is “born” as an object with the five initial properties AMBIENT_DIM, DIM, FACETS,
VERTICES_IN_FACETS, BOUNDED, all of which are redundant except for FACETS, which gives a
description of the cube as the intersection of six affine halfspaces.

polytope > print $P->FACETS;
1 1 0 0
1 0 0 1
1 0 1 0
1 0 -1 0
1 -1 0 0
1 0 0 -1

Each line is a vector (α0, α1, . . . , αd) representing the linear inequality α0 + α1x1 + · · ·+ αdxd ≥ 0.
The property AMBIENT_DIM, for instance, is the dimension of the space where our polytope lives in, that
is the number d, which can easily be derived from each facet by counting the number of columns. Now,
asking for the f -vector means that it has to be computed from the data given somehow. We can look at
the schedule of rules necessary to accomplish this task.

polytope > $schedule=$P->get_schedule("F_VECTOR");
polytope > print join("\n", $schedule->list);
HASSE_DIAGRAM : VERTICES_IN_FACETS
F_VECTOR, F2_VECTOR : HASSE_DIAGRAM

Each line is one rule. Each rule has its targets to the left of the “:” and its sources to the right. The first
line says: “I can produce the Hasse diagram (of the face lattice) if I know which vertex is incident with
which facet”. This is clear since it follows from the facet that the face lattice is co-atomic, that is, each
face is the intersection of facets [28, §2.2 ]. The second line says: “I know how to compute the f -vector
(and something else that we do not care to discuss now) from the Hasse diagram. Each rule comes with
a piece of (Perl) code which actually implements what the rule heads shown promise. The schedule is an
object of its own right, and it can be applied to the cube, which means that the corresponding Perl code is
executed in the order of the schedule.

polytope > $schedule->apply($P);
polytope > print join(", ", $P->list_properties);
AMBIENT_DIM, DIM, FACETS, VERTICES_IN_FACETS, BOUNDED, HASSE_DIAGRAM, F_VECTOR,
F2_VECTOR

We see that the list of properties known about our cube changed. Three new properties have been added,
and these correspond to the total of three targets of the two rules above. If we now ask for the f -vector this
information is already stored with the cube object, and it is read from memory rather than re-computed.
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As far as technology is concerned, the function cube which was called to produce the cube is written
in C++. On top of the standard Perl-interface to C we built a shared memory mechanism to access an
object from the C++ and the Perl side. This is also fully extendible, which means that the user is welcome
to add new functions to produce other polytopes, new properties of polytopes, or new rules to compute
existing properties in a different way. The integration of new functions, properties, and rules is seamless,
that is, they cannot be distinguished from the built-in ones.

There are many more things to be said about this concept both from the logical and the technical
point of view, but for the details we refer the reader to [14] and to further documentation at http:
//www.opt.tu-darmstadt.de/polymake.

3 Lattice Polytopes as a Subclass
The new version of polymake can now handle derived classes of objects specified by some precondi-
tions that inherit all properties and rules from their base class but may provide additional rules that are
specific for their class. A user may, but doesn’t have to, specify, that the object he defines falls in this
class. polymake decides upon what properties a user asks for, whether the object should be cast into this
subclass. Of course, before performing the cast, polymake checks whether the object meets the require-
ments for the subclass. The first occurrence of this new mechanism is in the class LatticePolytope
derived from Polytope<Rational>. In polymake, a lattice polytope is a bounded rational polytope
whose vertices are in the integer lattice Zn. The new rules in this object class concern properties of such
polytopes in connection with toric algebra and algebraic geometry.

The main focus of our implementation concerning lattice polytopes is toric geometry, so we explain
this connection here. Let P be a lattice polytope. The normal fan NP defines a projective toric variety
XP [12, 27]. The defining ideal IP of Xp is a homogeneous toric ideal. Many properties of the variety
are reflected in the corresponding polytope. We will see some entries in this “dictionary” which translates
back and forth below.

There are several software packages available which proved to be useful in applications in this area.
normaliz2 by Bruns and Ichim [8] computes Hilbert bases and h∗-polynomials. Latte macchiato
by Köppe [16] builds on previous work by De Loera et al. [10], and its key application is to count lattice
points and to compute Ehrhart polynomials. 4ti2 by Hemmecke et. al. [1] solves integral equations over
Z and it computes convex hulls as well as Hilbert bases. polymake now provides a unified access to
these programs. Additionally, we implemented various rules to compute further important properties of
lattice polytopes which can be derived. We will browse through the main features by using the 3-cube
from above as our running example. As already mentioned, our cube is the convex hull of all ±1-vectors,
so the vertices do lie in the Z3-lattice. We can let polymake check this for us.

polytope > print $P->LATTICE;
1

Here the output “1” represents the boolean value “true”. For instance, we can ask for the number of
lattice points contained in the cube, that is, for the number |[−1, 1]3 ∩ Z3|. In our case, we should obtain
“27” as the answer, there is exactly one lattice point contained in the relative interior of each non-empty
face.

polytope > print $P->N_LATTICE_POINTS;
polymake: used package latte
LattE macchiato is an improved version of LattE, a free software dedicated

http://www.opt.tu-darmstadt.de/polymake
http://www.opt.tu-darmstadt.de/polymake
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to the problems of counting and detecting lattice points inside convex polytopes,
and the solution of integer programs.
Copyright by Matthias Koeppe, Jesus A. De Loera and others.
http://www.math.ucdavis.edu/˜mkoeppe/latte/

27

As shown Latte macchiato was called for the computation. It uses an enhanced version of Barvi-
nok’s algorithm[17, 3]. By default polymake gives credit to a program when it calls it for the first
time. The corresponding output is omitted in some of the computations below; but we will explain which
package was called in each case.

polytope > print $P->N_INTERIOR_LATTICE_POINTS;
1

Sometimes it is important to know how many of the lattice points in a polytope are contained in the
interior. While the Barvinok algorithm avoids to enumerate the points, the user can force the complete
enumeration. This will be computed by 4ti2.

print $P->INTERIOR_LATTICE_POINTS;
1 0 0 0

Up to this point, none of the rules used was specific to lattice polytopes. To the contrary, all this makes
perfect sense for any rational polytope.

Let us now switch to some properties that are only defined for lattice polytopes. A lattice polytope
is reflexive, if the origin is in the interior of the polytope and all facets have integral distance one from
the origin. Equivalently, a lattice polytope is reflexive, if also its polar is a lattice polytope. In algebraic
geometry, these polytopes correspond to Gorenstein toric Fano varieties. These polytopes were introduced
by Batyrev [4] to construct mirror pairs of Calabi-Yau varieties in the context of string theory. A necessary
condition for a polytope to be reflexive is, that the origin is the unique interior lattice point, so the cube is
a candidate.

polytope > print $P->REFLEXIVE;
1

Of course, this is not a surprise, as the polar dual of the cube (with ±1-coordinates) is the regular
octahedron, the convex hull of the standard basis vectors and their negatives. Reflexivity is a property that
is only defined for lattice polytopes, and so at this point, polymake has internally cast the cube to the
subclass LatticePolytope.

polytope > print $P->type->full_name;
LatticePolytope

Notice the difference to the first call of the same command at the very beginning. Many further prop-
erties of Fano varieties can be checked via the corresponding polytope. Reflexive polyhedra have been
classified in dimensions up to 4, see [18]. In dimension 3, there are 124 of these, of which 18 correspond
to smooth Fano varieties. The toric variety XP is smooth (or non-singular) if every cone in the normal
fanNP is unimodular. A cone is unimodular, if its minimal integral generators can be extended to a basis
of Zn.

polytope > print $P->SMOOTH;
1
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Fig. 1: The 3-dimensional cube with its lattice points. The interior lattice points are drawn in a different color.

We will now explore a different aspect of lattice polytopes. Stanley showed [24] that for any d-
dimensional polytope P there is a polynomial h∗ ∈ Z[t] of degree at most dwith non-negative coefficients
such that ∑

k≥0

|kP ∩ Zd|tk =
h∗(t)

(1− t)d+1
.

The polynomial h∗(t) =
∑d

k=0 h
∗
kt

k is the h∗-polynomial of P . It is closely related to the Ehrhart
polynomial. Some of the coefficients have a combinatorial meaning. For instance, h∗d counts the number
of interior lattice points, while the sum of all coefficients is the normalized volume of the polytope. The
normalized volume of a d-dimensional polytope is d! times the d-dimensional Euclidean volume. We can
compute the coefficients for the cube (starting with the constant coefficient).

polytope > print $P->H_STAR_VECTOR;
1 23 23 1
polytope > print $P->LATTICE_VOLUME;
48

polymake calls normaliz2 to compute this. The degree δ of P is defined as the degree of the
h∗-polynomial.

polytope > print $P->LATTICE_DEGREE;
3

The value d + 1 − δ is the smallest factor by which we have to dilate P so that it has an inte-
rior lattice point. This is the co-degree of the polytope. polymake computes it with the command
LATTICE CODEGREE. In our case, this gives 1, as the cube contains the origin. Recent results suggest
that the degree is a more relevant invariant of a lattice polytope than the dimension. For instance, it is
known that for given degree d and normalized volume V or linear coefficient h∗1 there is a constant c such
that any lattice polytope of dimension d ≥ c is a lattice pyramid (a pyramid where the apex is a lattice
point with height 1 over the base) [5, 20]. The h∗-polynomials of a lattice polytope P and the lattice
pyramid with base P coincide.

Finally, we can use polymake to draw our cube, together with its lattice points. By default the
command

polytope > $P->VISUAL->LATTICE_COLORED;

triggers the visualization with JavaView [22]. See Figure 1.
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4 Analyzing an Example
Let us look at the cone C ⊂ R6 positively spanned by the rows of the 10× 6-matrix

M =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 2 1 1 2
1 2 0 2 1 1
1 1 2 0 2 1
1 1 1 2 0 2
1 2 1 1 2 0


. (1)

The cone C is pointed, that is, it does not contain any line. Equivalently, C is projectively equivalent to
a polytope C̄. The rows of M are precisely the rays (or generators) of C, that is, they correspond to the
vertices of C̄. The key fact about C is the following.

Theorem 1 (Bruns et al. [7]) The vector (9, 13, 13, 13, 13, 13) lies in C, but it cannot be written as a
non-negative integral linear combination of six generators of C.

This says that C does not satisfy the integral Carathéodory property, and thus it is a counter-example
to a conjecture of Sebő [23]. We will sketch how this can be verified using polymake. Moreover, we
will reveal the combinatorial structure. There is an integral transformation which maps C to a cone with
0/1-coordinates [7], and there is also a realization of C̄ as a lattice polytope. Both other representations
could be used in the sequel with the same results. The following command creates a new matrix object
representing the matrix M above. Here the user types in the coefficient directly; alternatively, they could
also be read from a file.

polytope > $M=new Matrix<Rational>(<<".");
polytope (2)> 0 1 0 0 0 0
polytope (3)> 0 0 1 0 0 0
polytope (4)> 0 0 0 1 0 0
polytope (5)> 0 0 0 0 1 0
polytope (6)> 0 0 0 0 0 1
polytope (7)> 1 0 2 1 1 2
polytope (8)> 1 2 0 2 1 1
polytope (9)> 1 1 2 0 2 1
polytope (10)> 1 1 1 2 0 2
polytope (11)> 1 2 1 1 2 0
polytope (12)> .

polymake can work with pointed polyhedral cones right away, so it is legal to write

polytope > $C=new Polytope<Rational>(POINTS=>$M);

C in terms of the (rows of the) matrix M . The first step is to verify that the generators actually form
the Hilbert basis of C. Each integral cone admits a unique minimal family of vectors such that any
integral point inside can be written as a non-negative linear combination of these. Moreover, this family
is finite, and this is the Hilbert basis of the cone. polymake cannot compute Hilbert bases directly, but
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instead it relies of normaliz2 [8], which uses an algorithm of Bruns and Koch [9]. The alternative
implementation in 4ti2 [1] uses a lift and project approach described in [15].

polytope > print $C->HILBERT_BASIS;
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
1 0 2 1 1 2
0 1 0 0 0 0
1 1 1 2 0 2
1 1 2 0 2 1
1 2 0 2 1 1
1 2 1 1 2 0

The output coincides with our first input, and this says that the generators of C do form a Hilbert basis.
One can show that it suffices to check if the vector x = (9, 13, 13, 13, 13, 13) can be written as a non-
negative integral linear combination of six linearly independent generators. The following polymake
code enumerates all possibilities.

$x=new Vector<Rational>([9,13,13,13,13,13]);
foreach (all_subsets_of_k(6,0..9)) {

$B=$M->minor($_,All);
if (det($B)) {

print lin_solve(transpose($B),$x), "\n";
}

}

For each non-vanishing maximal minor B we solve the linear system of equations yB = x, and we
print the unique solution to the screen. The resulting 185 lines of output can be checked by hand: All
coefficients are integral, and each solution has at least one negative coefficient. Clearly, adding one or two
more lines of code would also leave this final check to polymake.

In the remainder of this section we want to exploit polymake’s features to further investigate the cone
C or rather the projectively equivalent polytope C̄ from the combinatorial point of view. The first thing is
to look at the facets (which had been computed by cddlib [13] before). There are 27 of them. Instead
of printing them all we only look at two, and instead of printing the coordinates we list the numbers of the
generators incident.

polytope > print $C->VERTICES_IN_FACETS->[8];
{0 1 2 3 4}
polytope > print $C->VERTICES_IN_FACETS->[22];
{5 6 7 8 9}

This shows that C̄ has two disjoint facets of five vertices each. Since dim C̄ = 5 each facet is a 4-
polytope, and this shows that both facets must be simplices. The numbers of the facets depend on the
sequence of the output of cddlib, but the numbers of the vertices correspond to the matrixM as defined
above. polymake uses the first coordinate to homogenize. By looking at (1) we see that the first five
points have a leading zero coordinate, and hence the facet numbered 8 is the face at infinity of C. There
is another popular 5-polytope which happens to be the joint convex hull of two disjoint 4-dimensional
simplices, and this is the 5-dimensional cross polytope.
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polytope > $cross5 = cross(5);
polytope > print isomorphic($C->GRAPH->ADJACENCY,$cross5->GRAPH->ADJACENCY);
1

The vertex-edge graph of C̄ turns out to be isomorphic (as an abstract graph) to the graph of the cross
polytope. This has been verified by polymake’s interface to nauty [19]. In fact, one can show that both
polytopes even share the same 2-skeleton. If we compare the f -vectors we see that the cross polytope has
five more facets and five more ridges (faces of codimension 2) than C̄.

polytope > print $cross5->F_VECTOR - $C->F_VECTOR;
0 0 0 5 5

This leads to a natural conjecture: What if, combinatorially, C̄ can be constructed from the cross
polytope by picking five pairs of adjacent facets and “straightening” them? Equivalently, the dual graph
of C̄ would result from the dual graph of the cross polytope by contracting a partial matching of five
edges. This can be verified as follows. First let us look at two more facets or rather the set of generators
incident with them.

polytope > print $C->VERTICES_IN_FACETS->[12];
{0 2 5 7 8}
polytope > print $C->VERTICES_IN_FACETS->[13];
{1 2 5 7 8}

The facets 12 and 13 with the vertices {0, 2, 5, 7, 8} and {1, 2, 5, 7, 8}, respectively, are adjacent in the
dual graph (via the common ridge with vertex set {2, 5, 7, 8}). This edge and four others can be contracted
in a copy of the dual graph of $cross5. Taking a copy first is necessary since polymake’s objects are
immutable.

polytope > $g=new props::Graph($cross5->DUAL_GRAPH->ADJACENCY);
polytope > $g->contract_edge(12,13);
polytope > $g->contract_edge(24,26);
polytope > $g->contract_edge(17,21);
polytope > $g->contract_edge(3,11);
polytope > $g->contract_edge(6,22);
polytope > $g->squeeze;

It is only the last command which turns $g into a valid graph again. The reason for this is that
polymake’s graphs necessarily have their nodes consecutively numbered. Contracting an edge means to
destroy one node (actually the second one). Squeezing renumbers the remaining vertices properly.

polytope > print isomorphic($C->DUAL_GRAPH->ADJACENCY,$g);
1

This final computation by nauty explains the combinatorial structure of the cone C in Theorem 1, or
the projectively equivalent polytope C̄, completely.
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Abstract. The absolute order on the hyperoctahedral group Bn is investigated. It is shown that every closed interval
in this order is shellable, those closed intervals which are lattices are characterized and their zeta polynomials are
computed. Moreover, using the notion of strong constructibility, it is proved that the order ideal generated by the
Coxeter elements of Bn is homotopy Cohen-Macaulay and the Euler characteristic of the order complex of the proper
part of this ideal is computed. Finally, an example of a non Cohen-Macaulay closed interval in the absolute order on
the group D4 is given and the closed intervals of Dn which are lattices are characterized.

Résumé. Nous étudions l’ordre absolu sur le groupe hyperoctahédral Bn. Nous montrons que chaque intervalle
fermé de cet ordre est shellable, caractérisons les treillis parmi ces intervalles et calculons les polynômes zêta de ces
derniers. De plus, en utilisant la notion de constructibilité forte, nous prouvons que l’idéal engendré par les éléments
de Coxeter de Bn est Cohen-Macaulay pour l’homotopie, et nous calculons la caractéristique d’Euler du complexe
associé à cet idéal. Pour finir, nous exhibons un exemple d’intervalle fermé non Cohen-Macaulay dans l’ordre absolu
du groupe D4, et caractérisons les intervalles fermés de Dn qui sont des treillis.

Keywords: Coxeter group, hyperoctaherdal group, absolute order, Cohen-Macaulay poset, shellability

1 Introduction and results
Coxeter groups are fundamental combinatorial structures which appear in several areas of mathematics.
Partial orders on Coxeter groups often provide an important tool for understanding the questions of in-
terest. Examples of such partial orders are the Bruhat order and the weak order. We refer the reader to
[7, 10, 15] for background on Coxeter groups and their orderings.

In this work we study the absolute order. Let W be a finite Coxeter group with respect to the set T of
all reflections in W . The absolute order on W is denoted by Abs(W ) and defined as the partial order on
W whose Hasse diagram is obtained from the Cayley graph of W with respect to T by directing its edges
away from the identity (see Section 2.1 for a precise definition). The poset Abs(W ) is locally self-dual
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and graded. It has a minimum element, the identity e ∈ W , but will typically not have a maximum,
since every Coxeter element of W is a maximal element of Abs(W ). Its rank function is called the
absolute length and is denoted by `T . The absolute length and order arise naturally in combinatorics [2],
group theory [5, 11], statistics [13] and invariant theory [15]. For instance, `T (w) can also be defined
as the codimension of the fixed space of w, when W acts faithfully as a group generated by orthogonal
reflections on a vector space V by its standard geometric representation. In this case, the rank generating
polynomial of Abs(W ) satisfies ∑

w∈W
t`T (w) =

∏̀
i=1

(1 + eit),

where e1, e2, . . . , e` are the exponents [15, Section 3.20] of W and ` is its rank. We refer to [2, Section
2.4] and [4, Section 1] for further discussion of the importance of the absolute order and related historical
remarks.

In this paper we will be interested in the combinatorics and topology of Abs(W ). These have been
studied extensively for the interval [e, c] := NC(W, c) of Abs(W ), known as the poset of noncrossing
partitions associated toW , where c ∈W denotes a Coxeter element. For instance, it was shown in [3] that
NC(W, c) is shellable for every finite Coxeter group W . In particular, NC(W, c) is homotopy Cohen-
Macaulay and the order complex of NC(W, c) \ {e, c} has the homotopy type of a wedge of spheres.
The problem to determine the topology of the poset Abs(W ) \ {e} and to decide whether Abs(W ) is
Cohen-Macaulay or shellable, was naturally posed by Athanasiadis (unpublished) and Reiner [1, Problem
3.1], see also [19, Problem 3.3.7]. Computer calculations carried out by Reiner showed that the absolute
order is not Cohen-Macaulay for the group D4. In the case of the symmetric group, it is still not known
whether Abs(Sn) is shellable. However, the following result was obtained in [4].

[4, Theorem 1.1] The poset Abs(Sn) is homotopy Cohen-Macaulay for all n ≥ 1. In particular, the
order complex of Abs(Sn) \ {e} is homotopy equivalent to a wedge of (n − 2)-dimensional spheres and
Cohen-Macaulay over Z.

Here we focus on the hyperoctahedral group Bn. Contrary to the case of the symmetric group, not
every maximal element of the absolute order on Bn is a Coxeter element. The maximal intervals in
Abs(Bn) include the posets NCB(n) of noncrossing partitions of type B [17] and NCB(p, q) of annular
noncrossing partitions, introduced and studied recently by Nica and Oancea [16]. Our main results are as
follows. In Section 3 we prove that every interval of Bn is shellable and present an example of a maximal
element x of Abs(D4) for which the interval [e, x] is not Cohen-Macaulay over any field (Example 3.3).
In Section 4 we comment on the proof a Bn-analogue of [4, Theorem 1.1], stating that the order ideal
Jn of Abs(Bn) generated by the set of Coxeter elements of Bn is homotopy Cohen-Macaulay for all
n ≥ 2 (see Theorem 4.1). In particular, the order complex of Jn \ {e} is homotopy equivalent to a
wedge of (n− 1)-dimensional spheres and Cohen-Macaulay over Z. The number of such spheres is also
computed (see Theorem 4.8). We conjecture that the poset Abs(Bn) is Cohen-Macaulay for every n ≥ 2
(i). Finally, in Section 5 we characterize the maximal intervals of Abs(Bn) and Abs(Dn) which are lattices
and compute some of their enumerative invariants. We refer the reader to [18, Chapter 3] and [9, 19] for
background on partially ordered sets and the topology of simplicial complexes, respectively.

(i) This conjecture has now been proved by the author
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2 Preliminaries
2.1 The absolute length and absolute order
LetW be a finite Coxeter group with set of all reflections T . Given w ∈W , let `T (w) denote the smallest
integer k such that w can be written as a product of k reflections in T . The absolute order, or reflection
length order, is the partial order on W denoted by � and defined by letting

u � v if and only if `T (u) + `T (u−1v) = `T (v)

for u, v ∈ W . Equivalently, � is the partial order on W with covering relations w → wt, where w ∈ W
and t ∈ T are such that `T (w) < `T (wt). In that case we write w t→ wt. The poset Abs(W ) is graded
with rank function `T .

2.2 The posets Abs(Bn) and Abs(Dn)

We view the hyperoctahedral group Bn as the group of permutations u of the set {±1,±2, . . . ,±n}
such that u(−i) = −u(i) for every 1 ≤ i ≤ n. Following [11], the permutation which has cycle form
(a1 a2 · · · ak)(−a1 − a2 · · · − ak) is denoted by ((a1, a2, . . . , ak)) and is called a paired k-cycle, while
the cycle (a1 a2 · · · ak − a1 − a2 · · · − ak) is denoted by [a1, a2, . . . , ak] and is called a balanced k-
cycle. Every element u ∈ Bn can be written (uniquely) as a product of disjoint paired or balanced cycles,
called cycles of u. With this notation, the set T of reflections of Bn is equal to the union

{[i] : 1 ≤ i ≤ n} ∪ {((i, j)), ((i,−j)) : 1 ≤ i < j ≤ n}. (1)

The length `T (u) of u ∈ Bn is equal to n− γ(u), where γ(u) denotes the number of paired cycles in the
cycle decomposition of u. An element u ∈ Bn is maximal in Abs(Bn) if and only if it can be written as
a product of disjoint balanced cycles whose lengths sum to n. The Coxeter elements of Bn are precisely
the balanced n-cycles. To simplify the notation, we will denote by ` the absolute length `T . The covering
relations w t→ wt of Abs(Bn), when w and t are non-disjoint cycles, can be described as follows: for
1 ≤ i < j ≤ m ≤ n we have:

(a) ((a1, . . . , ai−1, ai+1, . . . , am))
((ai−1,ai))−→ ((a1, . . . , am))

(b) ((a1, . . . , am))
[ai]−→ [a1, . . . , ai−1, ai,−ai+1, . . . ,−am]

(c) ((a1, . . . , am))
((ai,−aj))−→ [a1, . . . , ai,−aj+1, . . . ,−am][ai+1, . . . , aj ]

(d) [a1, . . . , ai−1, ai+1, . . . , am]
((ai−1,ai))−→ [a1, . . . , am]

(e) [a1, . . . , aj ]((aj+1, . . . , am))
((aj ,am))−→ [a1, . . . , am]

where a1, . . . , am are elements of the set {±1, . . . ,±n} with pairwise distinct absolute values.

The Coxeter group Dn is the subgroup of index two of the group Bn generated by the set of reflections

{((i, j)), ((i,−j)) : 1 ≤ i < j ≤ n}. (2)
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(these are all reflections in Dn). The absolute length on Dn is the restriction of absolute length of Bn on
the set Dn. The number of balanced cycles of any element u ∈ Dn is even and every Coxeter element of
Dn has the form [a1, a2, . . . , an−1][an], where |ai| ∈ {1, 2, . . . , n} and |ai| 6= |aj | for all i 6= j.

3 Shellability
In this section we prove the following theorem.

Theorem 3.1 Every interval of Abs(Bn) is shellable.

Proof: (sketch) We show that every closed interval of Abs(Bn) admits an EL-labeling. The result then
follows, since EL-shellability implies shellability (we refer to [8] for the definition of EL-labeling and
EL-shellability).

Let C(Bn) be the set of covering relations of Abs(Bn) and (a, b) ∈ C(Bn). Then a−1b is a reflection
of Bn, thus either a−1b = [i] for some i ∈ {1, 2, . . . , n}, or there exist i, j ∈ {1, 2, . . . , n}, with i < j,
such that a−1b = ((i, j)) or a−1b = ((i,−j)). We define a map λ : C(Bn)→ {1, 2, . . . , n} as follows:

λ(a, b) =
{
i if a−1b = [i],
j if a−1b = ((i, j)) or ((i,−j)).

A similar labeling was used by Biane [6] in order to study the maximal chains of the poset NCB(n) of
noncrossing Bn-partitions. Figure 1 illustrates the Hasse diagram of the interval [e, x], for n = 4 and
x = [3,−4]((1, 2)), together with the corresponding labels.

[3,-4]((1,2))

[3] [4]

[3]((1,2))

((3,-4))

4 4 4 4

((3,4))

((3,4))((1,2))

((1,2))

[3,-4] [4]((1,2)) ((3,-4))((1,2))

434 2 4

2
4 2

4

4

3 4

4

2

4
2 4

2

e

Fig. 1: The interval [e, x] for x = [3,−4]((1, 2))

The restricion of the map λ to the interval [x, y] is an EL-labeling for all x, y ∈ Bn with x � y.
To prove that, it suffices to show that for every u ∈ Bn the map λ|[e,u] is an EL-labeling. Indeed, let
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x, y ∈ Bn with x � y and define the map φ : [x, y] → [e, x−1y] by φ(t) = x−1t. Clearly, φ is a poset
isomorphism. Moreover, if (a, b) ∈ C([x, y]), then φ(a)−1φ(b) = (x−1a)−1x−1b = a−1xx−1b = a−1b,
which implies that λ(a, b) = λ(φ(a), φ(b)).

Let u = b1b2 · · · bk p1p2 · · · pl be written as a product of disjoint cycles, where bi = [b1i , . . . , b
ki
i ] for

i ≤ k and pj = ((p1
j , . . . , p

lj
j )) with p1

j = min{|pmj | : 1 ≤ m ≤ lj} for j ≤ l. We consider the sequence of
positive integers obtained by placing the numbers |bhi | and |pmj |, for i, j, h ≥ 1 and m > 1, in increasing
order. There are r = `(u) such integers. To simplify the notation, we denote by c(u) = (c1, c2, . . . , cr)
this sequence and say that cµ (µ = 1, 2, . . . , r) belongs to a balanced (respectively paired) cycle if it is
equal to some |bhi | (respectively |pmj |). Clearly we have c1 < c2 < · · · < cr and λ(a, b) ∈ {c1, c2, . . . , cr}
for every pair a, b ∈ [e, u], with a → b. To the sequence (c1, c2, . . . , cr) corresponds a unique maximal
chain

Cu : u0 = e
c1→ u1

c2→ u2
c3→ · · · cr→ ur = u,

which can be constructed inductively as follows (here, the integer κ in a κ→ b denotes the label λ(a, b)).
If c1 belongs to a balanced cycle, then u1 = [c1]. Otherwise, if c1 belongs to some pi, say p1, then
we set u1 to be either ((p1

1, c1)) or ((p1
1,−c1)), so that u1 � p1 holds. In both cases λ(e, u1) = c1

and λ(e, u1) < λ(e, x) for any other atom x ∈ [e, u]. Suppose now that we have uniquely defined the
elements u1, u2, . . . , uj , so that for every i = 1, 2, . . . , j we have ui−1 → ui with λ(ui−1, ui) = ci and
λ(ui−1, ui) < λ(ui−1, x) for every x ∈ [e, u] such that x 6= ui and ui−1 → x. We consider the number
cj+1 and distinguish two cases.

Case 1: cj+1 belongs to a cycle whose elements have not been used. In this case, if cj+1 belongs to a
balanced cycle, then we set uj+1 = uj [cj+1], while if cj+1 belongs to ps for some s ∈ {1, 2, . . . , l}, then
we set uj+1 to be either uj ((p1

s, cj+1)) or uj ((p1
s,−cj+1)), so that u−1

j uj+1 � ps holds.
Case 2: cj+1 belongs to a cycle some element of which has been used. Then there exist an i < j+1 such
that ci belongs to the same cycle as cj+1. If ci, cj+1 belong to some bs, then there is a balanced cycle of
uj , say a, that contains ci. In this case we set uj+1 to be the permutation that we obtain from uj if we add
the number cj+1 in the cycle a in the same order and with the same sign that it appears in bs. We proceed
similarly if ci, cj+1 belong the same paired cycle.

Using the relations written in Section 2.2, one can show that Cu is lexicographically first and the unique
strictly increasing chain in [e, u]. Thus Theorem 3.1 is proved. 2

Example 3.2 (i) Let n = 7 and u = [1,−7][3]((2, −6, −5))((4)) ∈ B7. Then c(u) = (1, 3, 5, 6, 7) and
Cu : e 1→ [1] 3→ [1][3] 5→ [1][3]((2,−5)) 6→ [1][3]((2,−6,−5)) 7→ u.

(ii) Let n = 4 and v = [3,−4]((1, 2)). Then c(v) = (2, 3, 4) and Cv : e 2→ ((1, 2)) 3→ ((1, 2))[3] 4→ v.

Example 3.3 Figure 2 illustrates the Hasse diagram of the interval I = [e, x] of Abs(D4), where x =
[1][2][3][4]. Note that the Hasse diagram of the open interval (e, x) is disconnected and, therefore, I is
not Cohen-Macaulay. It follows that Abs(Dn) is neither Cohen-Macaulay nor shellable for n ≥ 4 [19,
Corollary 3.1.9]. This is in accordance with Reiner’s computations showing that Abs(D4) is not Cohen-
Macaulay and answers in the negative a question raised by Athanasiadis (personal communication), asking
whether all intervals of the absolute order on a Coxeter group are shellable.
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[1][2]
((3,4))

[1][2]
((3,-4))

[3][4]
((1,2))

[3][4]
((1,-2))

[1][2] ((1,2))
((3,4))

((1,-2))
((3,4))

((1,2))
((3,-4))

((1,-2))
((3,-4))

[3][4]

((1,2)) ((1,-2)) ((3,4)) ((3,-4))

[1][3]
((2,4))

[1][3]
((2,-4))

[2][4]
((1,3))

[2][4]
((1,-3))

[1][3] ((1,3))
((2,4))

((1,-3))
((2,4))

((1,3))
((2,-4))

((1,-3))
((2,-4))

[2][4]

((1,3)) ((1,-3)) ((2,4)) ((2,-4))

[1][4]
((2,3))

[1][4]
((2,-3))

[2][3]
((1,4))

[2][3]
((1,-4))

[1][4] ((1,4))
((2,3))

((1,-4))
((2,3))

((1,4))
((2,-3))

((1,-4))
((2,-3))

[2][3]

((1,4)) ((1,-4)) ((2,3)) ((2,-3))

[1][2][3][4]

e

Fig. 2: The interval [e, [1][2][3][4]] in D4

4 The ideal of Coxeter elements
Recall that the Coxeter elements of Bn are precisely the balanced n-cycles.

Theorem 4.1 The order ideal Jn of Abs(Bn) generated by the set of Coxeter elements ofBn is homotopy
Cohen-Macaulay for all n ≥ 2. In particular, the order complex of Jn \ {e} is homotopy equivalent to a
wedge of (n− 1)-dimensional spheres and Cohen-Macaulay over Z.

Since the set of maximal elements of Abs(Sn) coincides with the set of Coxeter elements of Sn, The-
orem 4 can be considered as a Bn-analogue of [4, Theorem 1.1]. It is not known whether the order ideal
generated by the Coxeter elements is Cohen-Macaulay for every Coxeter group W . To prove Theorem
4.1 we will use the notion of strong constructibility, introduced in [4]. We first review some definitions
and results given in [4].

Definition 4.2 A d-dimensional simplicial complex ∆ is constructible if it is a simplex or it can be written
as ∆ = ∆1∪∆2 , where ∆1,∆2 are d-dimensional constructible simplicial complexes such that ∆1∩∆2

is constructible of dimension at least d− 1.

We do not know whether this notion of constructibility coincides with the classical notion, which differs
in that the dimension of the intersection ∆1 ∩∆2 has to equal to d− 1. However, it is proved in [4] that
every constructible simplicial complex, in the sense of Definition 4.2, is homotopy Cohen-Macaulay.
Figure 3 illustrates two 2-dimensional strongly constructible complexes, ∆1 and ∆2, the intersection of
which is the 2-dimensional simplex F3. Thus, the union ∆1 ∪∆2 is strongly constructible as well.
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1 1

3
2

3

2 2
3

211

Fig. 3: A 2-dimensional strongly constructible simplicial complex

Definition 4.3 A finite poset P of rank d with a minimum element is strongly constructible if it is bounded
and pure shellable or it can be written as a union P = I1 ∪ I2 of two strongly constructible proper ideals
I1, I2 of rank d, such that I1 ∩ I2 is strongly constructible of rank at least d− 1.

Proposition 4.4 The order complex of any strongly constructible poset is constructible.

Remark 4.5 Every strongly constructible poset is homotopy Cohen-Macaulay.

Proposition 4.6 The poset Abs(Sn) is strongly constructible for every n ≥ 1.

The main idea to prove Proposition 4.6 is to partition the set of maximal elements (n-cycles) of Abs(Sn)
by placing x and y in the same part of the partition if x(1) = y(1). This is the partition of Sn into the left
cosets of the subgroup which consists of the permutations of the set {2, 3, . . . , n}. Then we show that the
order ideal generated by each part is strongly constructible and that so is the intersection of two or more
of these ideals. We extend this construction to the case of Jn ⊂ Bn by defining the following equivalence
relation on the set of cycles of Bn.

Definition 4.7 Given cycles u, v of Bn, we write u ∼ v if

• u, v are either both paired or both balanced cycles and

• u(i) = ±v(i) for every i = 1, 2, . . . , n.

We denote by ū the equivalence class of u ∈ Bn. If u1, u2, . . . , uk are disjoint cycles of Bn, we set
ū1ū2 · · · ūk = {v1v2 · · · vk : vi ∈ ūi, i = 1, 2, . . . , k} ⊂ Bn. For example,

((1, 2)) [3, 4] = {((1, 2))[3, 4], ((1,−2))[3, 4], ((1, 2))[3,−4], ((1,−2))[3,−4]}.

Let α = (α1, α2, . . . , αk) be a sequence of distinct positive integers, with αi ≤ n for every i =
1, 2, . . . , n. To the sequence α we associate the permutations [α] = [α1, α2, . . . , αk] and ((α)) =
((α1, α2, . . . , αk)) of Bn and the cycle (α) = (α1 α2 · · · αk) of Sn. Let A be a subset of Sn consist-
ing of permutations that have length equal to n− k (i.e. permutations of Sn that have exactly k cycles in
their decomposition). To the order ideal 〈A〉 of Abs(Sn), which has rank n − k, we associate the order
ideal 〈A〉 of Abs(Bn), which has rank n− k + 1 and is defined as:

〈A〉 := 〈x ∈ [α1] ((α2)) ((α3)) · · · ((αk)) : (α1)(α2)(α3) · · · (αk) ∈ A〉.

Let A1, A2 be subsets of Sn as above. Then 〈A1〉 ∪ 〈A2〉 = 〈A1 ∪A2〉 and 〈A1〉 ∩ 〈A2〉 =
〈〈A1〉 ∩ 〈A2〉〉. This connection allows us to compute intersections of ideals generated by certain equiv-
alence classes, using the intersections of ideals generated by the corresponding cycles in Sn and to adapt
the proof of [4, Proposition 4.2].

The next result is a Bn-analogue of [4, Theorem 1.2].
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Theorem 4.8 Let Jn denote the order ideal of Abs(Bn) generated by the Coxeter elements of Bn and
J̄n = Jn \ {0̂}. The reduced Euler characteristic of the order complex ∆(J̄n) satisfies

∑
n≥2

(−1)nχ̃(∆(J̄n))
tn

n!
= 1−

√
C(2t) exp {−2tC(2t)}

1 +
∑
n≥1

2n−1

(
2n− 1
n

)
tn

n

 ,

where C(t) = 1
2t (1−

√
1− 4t) is the ordinary generating function for the Catalan numbers.

5 Combinatorics of intervals
5.1 Intervals with the lattice property
In this section we characterize the maximal intervals in Abs(Bn) and Abs(Dn) which are lattices. It is
known that the interval [e, c] of Abs(W ) is a lattice for every finite Coxeter group W and Coxeter element
c of W (see [5, Fact 2.3.1], [11, Section 4], [12]). Moreover, it was shown in [16, Theorem 1.6] that [e, x]
is a lattice for every maximal element x of Abs(Bn) that is a product of exactly two Coxeter elements,
one of which is a reflection.

Theorem 5.1 Let x be a maximal element of Abs(Bn). The interval [e, x] of Abs(Bn) is a lattice if and
only if x has the form

x = [a1, a2, . . . , ak][ak+1][ak+2] · · · [an]

where k ∈ {0, 1, . . . , n} and the ai ∈ {±1,±2, . . . ,±n} have pairwise disjoint absolute values.

We now consider the absolute order on the group Dn and prove the following theorem.

Theorem 5.2 Let x be a maximal element of Abs(Dn). The interval [e, x] of Abs(Dn) is a lattice if and
only if x is a Coxeter element or n = 4 and x = [1][2][3][4].

Proof: As previously mentioned, the interval [e, x] of Abs(Dn), where x ia a Coxeter element of Dn, is
known to be a lattice. Let x be a maximal non-Coxeter element of Abs(Dn) such that the interval [e, x]
of Abs(Dn) is a lattice. One can show that in this case at most one cycle of x is not a reflection. Thus we
may write x = [a1, a2, . . . , am][b2] · · · [bk], where k > 2 and m+ k− 1 = n. Suppose that m ≥ 2. Then
u = [a1, a2][b2] and v = [a1, a2][b3] are elements of [e, x]. However, the intersection [e, u] ∩ [e, v] ⊂
Abs(Dn) has two maximal elements, namely the paired reflections ((a1, a2)) and ((a1,−a2)). This implies
that the elements u and v do not have a meet in [e, x] and, therefore, the interval [e, x] is not a lattice. Thus
we must have m = 1, so k = n and x = [1][2] · · · [n]. Suppose that n ≥ 5. We consider the elements
u = [1][2][3][4] and v = [1][2][3][5] of [e, x] and note that the intersection [e, u]∩ [e, v] has three maximal
elements, namely [1][2], [1][3] and [2][3]. This implies that the interval [e, x] is not a lattice, contradicting
our assumption. Thus n = 4 and x = [1][2][3][4]. Figure 2 shows that the interval [e, [1][2][3][4]] is indeed
a lattice and Theorem 5.2 is proved. 2

Remark 5.3 For the remainder of this paper we denote by L(k, r) the order ideal of Abs(Bn) generated
by the element [1, 2, . . . , k][k + 1] · · · [k + r], where k, r are nonnegative integers such that k + r ≤ n.
Moreover, we set Ln := L(0, n) = [e, [1][2] · · · [n]].
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5.2 The lattice Ln

We compute some of the basic enumerative invariants of the lattice Ln, as follows.

Proposition 5.4 For the lattice Ln the following hold:

(i) The number of elements of Ln is equal to

bn/2c∑
k=0

(
n

2k

)
2n−k(2k − 1)!!.

(ii) The number of elements of Ln of rank r is equal to

min{r,n−r}∑
k=0

n!
k!(r − k)!(n− r − k)!

.

(iii) The zeta polynomial of Ln is given by the formula

Zn(m) =
bn/2c∑
k=0

(
n

2k

)
mn−k(m− 1)k(2k − 1)!!.

(iv) The number of maximal chains of Ln is equal to

n!
bn/2c∑
k=0

(
n

2k

)
(2k − 1)!!.

(v) For the Möbius function of Ln we have

µn(0̂, 1̂) = (−1)n
bn/2c∑
k=0

(
n

2k

)
2k(2k − 1)!!,

where 0̂ and 1̂ denotes the minimum and the maximum element of Ln, respectively.

Remark 5.5 By the proof of Theorem 3.1, the lattice Ln is EL-shellable. We describe two more EL-
labelings for Ln.

• Let Λ = {[i] : i = 1, 2, . . . , n} ∪ {((i, j)) : 1 ≤ i < j ≤ n}. We linearly order the elements
of Λ in the following way. We first order the balanced reflections so that [i] <Λ [j] if and only if
i < j. Then we order the paired reflections lexicographically. Finally, we set [n] <Λ ((1, 2)). The map
λ1 : C(Bn)→ Λ defined as

λ1(a, b) =
{

[i] if a−1b = [i],
((i, j)) if a−1b = ((i, j)) or ((i,−j))

is an EL-labeling for Ln.
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• Let T be the set of reflections of Bn. We define a total order <T on T which extends the order <Λ,
by ordering the reflections ((i,−j)), for 1 ≤ i < j ≤ n, lexicographically and letting ((n − 1, n)) <T
((1,−2)). Let ti be the i-th reflection in the order above. We define a map λ2 : C(Bn)→ {1, 2, . . . , n2}
as

λ2(a, b) = min
1≤i≤n2

{i : ti ∨ a = b},

where ti ∨ a denotes the join of ti and a in the lattice Ln. The map λ2 is an EL-labeling for Ln.

See Figure 4 for an example of these two EL-labelings when n = 2.

[1] [2]

[1] [2] ((1, 2)) ((1,-2))

e

2 1 3 3

1 2 3 3

[1] [2]

[1] [2] ((1, 2)) ((1,-2))

e

2 1 1 1

1 2 3 4

Fig. 4: EL-labelings for L2

5.3 Enumerative combinatorics of L(k, r)

In this section we compute the cardinality, zeta polynomial and Möbius function of L(k, r), where k, r are
nonnegative integers with k+ r = n. The case k = n− 1 was treated by Goulden, Nica and Oancea [14].
We will use their results, as well as the formulas for the cardinality and zeta polynomial for NCB(n) and
Proposition 5.4, to find the corresponding formulas for L(k, r).

Proposition 5.6 Let αr = |Lr|, βr(m) = Z(Lr,m) and µr = µr(Lr), where αr = βr(m) = µr = 1
for r ∈ {0, 1}. For fixed nonnegative integers k, r such that k + r = n, the cardinality, zeta polynomial
and Möbius function of the lattice

L(k, r) = [e, [1, 2, . . . , k][k + 1] · · · [k + r]]

are given by:

• #L(k, r) =
(

2k
k

)(
2 r k
k + 1

αr−1 + ar

)
,

• Z(L(k, r),m) =
(
mk

k

)(
2 r k
k + 1

(m− 1)βr−1(m) + βr(m)
)

,

• µ(L(k, r)) = (−1)n
(

2k − 1
k

)(
4 r k
k + 1

|µr−1|+ |µr|
)

.
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Proof: (sketch) We denote by A the subset of L(k, r) which consists of elements x with the following
property: every cycle of x that contains at least one of±1,±2, . . . ,±k is less than or equal to the element
[1, 2, . . . , k] in Abs(Bn). Let x = x1x2 · · ·xν ∈ A, written as a product of disjoint cycles. Without loss
of generality, we may assume that there is a t ∈ {0, 1, . . . , ν} such that x1x2 · · ·xt � [1, 2, . . . , k] and
xt+1xt+2 · · ·xν � [k + 1][k + 2] · · · [k + r]. Clearly, there exist a poset isomorphism

f : A→ NCB(k) × [e, [k + 1] · · · [k + r]]
x 7→ (x1 · · ·xt , xt+1 · · ·xν),

so that
A ∼= NCB(k)× Lr. (3)

LetC := L(k, r)\A and x = x1x2 · · ·xν ∈ C, written as a product of disjoint cycles. Then there exists
a paired cycle of x, say x1, and a reflection ((i, j)) with |j| ∈ {1, 2, . . . , k}, j ∈ {k+1, k+2, . . . , k+ r},
such that ((i, j)) � x1. Note that the cycle x1 and the reflection ((i, j)) are unique with this property.
For every j ∈ {k + 1, k + 2, . . . , k + r} denote by Cj the set of permutations x ∈ L(k, r) which
have a cycle, say x1, such that ((i, j)) � x1 for some i ∈ {±1,±2, . . . ,±k}. Thus, for every x ∈ C
there exists an ordering x1, x2, . . . , xν of the cycles of x and a unique index t ∈ {1, 2, . . . , ν} such that
x1x2 · · ·xt � [1, 2, . . . , k][j] and xt+1xt+2 · · ·xν � [k + 1][k + 2] · · · [j − 1][j + 1] · · · [k + r]. Let

Ej = {x ∈ C : x � [1, 2, . . . , k][j]}.

Clearly, there exist a poset isomorphism

gj : Cj → Ej × [e, [k + 1] · · · [j − 1][j + 1] · · · [k + r]]
x 7→ (x1 · · ·xt , xt+1 · · ·xν),

so that
Cj ∼= El × L(0, r − 1). (4)

The results follow by using the poset isomorphisms (3) and (4) and [14, Section 5]. 2
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Abstract. Let P be a partially ordered set and consider the free monoid P ∗ of all words over P . If w,w′ ∈ P ∗

then w′ is a factor of w if there are words u, v with w = uw′v. Define generalized factor order on P ∗ by letting
u ≤ w if there is a factor w′ of w having the same length as u such that u ≤ w′, where the comparison of u and w′

is done componentwise using the partial order in P . One obtains ordinary factor order by insisting that u = w′ or,
equivalently, by taking P to be an antichain.

Given u ∈ P ∗, we prove that the language F(u) = {w : w ≥ u} is accepted by a finite state automaton. If P is
finite then it follows that the generating function F (u) =

P
w≥u w is rational. This is an analogue of a theorem of

Björner and Sagan for generalized subword order.

We also consider P = P, the positive integers with the usual total order, so that P∗ is the set of compositions. In this
case one obtains a weight generating function F (u; t, x) by substituting txn each time n ∈ P appears in F (u). We
show that this generating function is also rational by using the transfer-matrix method. Words u, v are said to be Wilf
equivalent if F (u; t, x) = F (v; t, x) and we can prove various Wilf equivalences combinatorially.

Björner found a recursive formula for the Möbius function of ordinary factor order on P ∗. It follows that one always
has µ(u,w) = 0,±1. Using the Pumping Lemma we show that the generating function M(u) =

P
w≥u |µ(u,w)|w

can be irrational.

Résumé. Soit P un ensemble partiellement ordoné. Nous considérons le monoı̈de libre P ∗ de tous les mots utilisant
P comme alphabet. Si w,w′ ∈ P ∗, on dit que w′ est un facteur de w s’il y a des mots u, v avec w = uw′v. Nous
definissons l’ordre facteur généralisé sur P ∗ par: u ≤ w s’il y a un facteur w′ de w ayant la même longueur que u tel
que u ≤ w′, où la comparison de u avec w′ est faite lettre par lettre utilisant l’ordre en P . On obtient l’ordre facteur
usuel si on insiste que u = w′ ou, ce qui est la même chose, en prenant P comme antichaı̂ne.

Pour n’importe quel u ∈ P ∗, nous démontrons que le langage F(u) = {w : w ≥ u} est accepté par un automaton
avec un nombre fini d’états. Si P est fini, ca implique que la fonction génératrice F (u) =

P
w≥u w est rationnelle.

Björner et Sagan ont démontré le théorème analogue pour l’ordre où, en la définition au-dessus, w′ est un sous-mot
de w.

Nous considérons aussi le cas P = P, les entiers positifs avec l’ordre usuel, donc P ∗ est l’ensemble des compositions.
En ce cas on obtient une fonction génératrice pondéré F (u; t, x) en remplaçant txn chaque fois on trouve n ∈ P
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en F (u). Nous démontrons que cette fonction génératrice est aussi rationnelle en utilisant la Méthode Matrice de
Tranfert. On dit que let mots u, v sont Wilf-équivalents si F (u; t, x) = F (v; t, x). Nous pouvons démontré quelques
équivalances dans une manière combinatorie.

Björner a trouvé une formule recursive pour la fonction Möbius de l’ordre facteur usuel sur P ∗. Cette formule
implique qu’on a toujours µ(u,w) = 0,±1. En utilisant le Lemme de Pompage, nous démontrons que la fonction
génératrice M(u) =

P
w≥u |µ(u,w)|w peut être irrationnelle.

Keywords: composition, factor order, finite state automaton, partially ordered set, rational generating function, Wilf
equivalence

1 Introduction and definitions
Let P be a set and consider the corresponding free monoid or Kleene closure of all words over P :

P ∗ = {w = w1w2 . . . w` : ` ≥ 0 and wi ∈ P for all i}.

Let ε be the empty word and for any w ∈ P ∗ we denote its cardinality or length by |w|. Given w,w′ ∈
P ∗, we say that w′ is a factor of w if there are words u, v with w = uw′v, where adjacency denotes
concatenation. For example, w′ = 322 is a factor of w = 12213221 starting with the fifth element of w.
Factor order on P ∗ is the partial order obtained by letting u ≤fo w if and only if there is a factor w′ of w
with u = w′.

Now suppose that we have a poset (P,≤). We define generalized factor order onP ∗ by letting u ≤gfo w
if there is a factor w′ of w such that

(a) |u| = |w′|, and

(b) ui ≤ w′i for 1 ≤ i ≤ |u|.

We call w′ an embedding of u into w, and if the first element of w′ is the jth element of w, we call j an
embedding index of u into w. We also say that in this embedding ui is in position j + i− 1. To illustrate,
suppose P = P, the positive integers with the usual order relation. If u = 322 and w = 12213431 then
u ≤gfo w because of the embedding factor w′ = 343 which has embedding index 5, and the two 2’s of u
are in positions 6 and 7. Note that we obtain ordinary factor order by taking P to be an antichain. Also,
we will henceforth drop the subscript gfo since context will make it clear what order relation is meant.
Generalized factor order is the focus of this extended abstract.

Returning to the case where P is an arbitrary set, let Z〈〈P 〉〉 be the algebra of formal power series with
integer coefficients and having the elements of P as noncommuting variables. In other words,

Z〈〈P 〉〉 =

{
f =

∑
w∈P∗

cww : cw ∈ Z for all w

}
.

If f ∈ Z〈〈P 〉〉 has no constant term, i.e., cε = 0, then define

f∗ = ε+ f + f2 + f3 + · · · = (ε− f)−1.
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(We need the restriction on f to make sure that the sums are well defined as formal power series.) We say
that f is rational if it can be constructed from the elements of P using only a finite number of applications
of the algebra operations and the star operation.

A language is any L ⊆ P ∗. It has an associated generating function

fL =
∑
w∈L

w.

The language L is regular if fL is rational.
Consider generalized factor order on P ∗ and fix a word u ∈ P ∗. There is a corresponding language

and generating function

F(u) = {w : w ≥ u} and F (u) =
∑
w≥u

w.

Our first result is as follows.

Theorem 1.1 If P is a finite poset and u ∈ P ∗ then F (u) is rational.

Theorem 1.1 is an analogue of a result of Björner and Sagan [?] for generalized subword order on P ∗.
Generalized subword order is defined exactly like generalized factor order except that w′ is only required
to be a subword of w, i.e., the elements of w′ need not be consecutive in w. For related results, also see
Goyt [?].

Given any set, P , a nondeterministic finite automaton or NFA over P is a digraph (directed graph) ∆
with vertices V and arcs ~E having the following properties.

1. The elements of V are called states and |V | is finite.

2. There is a designated initial state α and a set Ω of final states.

3. Each arc of ~E is labeled with an element of P .

Given a (directed) path in ∆ starting at α, we construct a word in P ∗ by concatenating the elements on
the arcs on the path in the order in which they are encountered. The language accepted by ∆ is the set of
all such words which are associated with paths ending in a final state. It is a well-known theorem that, for
|P | finite, a language L ⊆ P ∗ is regular if and only if there is a NFA accepting L. (See, for example, the
text of Hopcroft and Ullman [?, Chapter 2].)

We will demonstrate Theorem 1.1 by constructing a NFA accepting the language for F (u). This will
be done in the next section. In fact, the NFA still exists even if P is infinite, suggesting that more can be
said about the generating function in this case.

We are particularly interested in the case of P = P with the usual order relation. So P∗ is just the set
of compositions (ordered integer partitions). Given w = w1w2 . . . w` ∈ P∗, we define its norm to be

Σ(w) = w1 + w2 + · · ·+ w`.

Let t, x be commuting variables. Replacing each n ∈ w by txn, we get an associated monomial called
the weight of w

wt(w) = t|w|xΣ(w).
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For example, if w = 213221 then

wt(w) = tx2 · tx · tx3 · tx2 · tx2 · tx = t6x11.

We also have the associated weight generating function

F (u; t, x) =
∑
w≥u

wt(w).

Our NFA will demonstrate, via the transfer-matrix method, that this is also a rational function of t and x.
The details will be given in Section 3.

Call u,w ∈ P∗ Wilf equivalent if F (u; t, x) = F (v; t, x). This definition is modelled on the one used in
the theory of pattern avoidance. See the survey article of Wilf [?] for more information about this subject.
Section 4 is devoted to stating various Wilf equivalences all of which can be proved combinatorially.

Björner [?] gave a recursive formula for the Möbius function of (ordinary) factor order. It follows from
his theorem that µ(u,w) = 0,±1 for all u,w ∈ P ∗. Using the Pumping Lemma [?, Lemma 3.1] we show
that there are finite sets P and u ∈ P ∗ such that the language

M(u) = {w : µ(u,w) 6= 0}

is not regular. This is done in Section 5. The final section is devoted to comments and open questions.

2 Construction of automata
We will now introduce another language which is related to F(u) and which will be useful in proving
Theorem 1.1. We say that u is a suffix (respectively, prefix) of w if w = vu (respectively, w = uv) for
some word v. Let S(u) be all the w ∈ F(u) such that, in the definition of generalized factor order, the
only possible choice for w′ is a suffix of w. Let S(u) be the corresponding generating function.

The next result follows easily from the definitions and so we omit the proof. In it, we will use the
notation Q to stand both for a subset of P and for the generating function Q =

∑
a∈Q a. Context will

make it clear which is meant.

Lemma 2.1 Let P be any poset and let u ∈ P ∗. Then we have the following relationships

F(u) = S(u)P ∗ and F (u) = S(u)(ε− P )−1

between the languages and between the generating functions. 2

We will now prove that the two languages we have defined are accepted by NFAs. An example follows
the proof so the reader may want to read it in parallel.

Theorem 2.2 Let P be any poset and let u ∈ P ∗. Then there are NFAs accepting F(u) and S(u).

Proof: We first construct an NFA, ∆, for S(u). Let ` = |u|. The states of ∆ will be all subsets T of
{1, . . . , `}. The initial state is ∅. Letw = w1 . . . wm be the word corresponding to a path from ∅ to T . The
NFA will be constructed so that if the path is continued, the only possible embedding indices are those in
the set {m− t+ 1 : t ∈ T}. In other words, for each t ∈ T we have

u1u2 . . . ut ≤ wm−t+1wm−t+2 . . . wm, (1)
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Fig. 1: A NFA accepting S(132)

for each t ∈ {1, . . . , `} − T this inequality does not hold, and u 6≤ w′ for any factor w′ of w starting
at an index smaller then m − ` + 1. From this description it is clear that the final states should be those
containing `.

The definition of the arcs of ∆ is forced by the interpretation of the states. There will be no arcs out of
a final state. If T is a nonfinal state and a ∈ P then there will be an arc from T to

T ′ = {t+ 1 : t ∈ T ∪ {0} and ut+1 ≤ a}.

It is easy to see that (1) continues to hold for all t′ ∈ T ′ once we append a to w. This finishes the
construction of the NFA for S(u). To obtain an automaton for F(u), just add loops to the final states of
∆, one for each a ∈ P . 2

As an example, consider P = P and u = 132. We will do several things to simplify writing down the
automaton. First of all, certain states may not be reachable by a path starting at the initial state. So we
will not display such states. For example, we can not reach the state {2, 3} since u1 = 1 ≤ wi for any i
and so 1 will be in any state reachable from φ. Also, given states T and U there may be many arcs from T
to U , each having a different label. So we will replace them by one arc bearing the set of labels of all such
arcs. Finally, set braces will be dropped for readability. The resulting digraph is displayed in Figure 1.

Consider what happens as we build a wordw starting from the initial state ∅. Since u1 = 1, any element
of P could be the first element of an embedding of u into w. That is why every element of the interval
[1,∞) = P produces an arrow from the initial state to the state {1}. Now if w2 ≤ 2, then an embedding
of u could no longer start at w1 and so these elements give loops at the state {1}. But if w2 ≥ 3 then an
embedding could start at either w1 or at w2 and so the corresponding arcs all go to the state {1, 2}. The
rest of the automaton is explained similarly.

As an immediate consequence of the previous theorem we get the following result which includes
Theorem 1.1.
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Theorem 2.3 Let P be a finite poset and let u ∈ P ∗. Then the generating functions F (u) and S(u) are
rational. 2

3 The positive integers
If P = P then Theorem 2.3 no longer applies to the generating functions F (u) and S(u). However,
we can still show rationality of the weight generating function F (u; t, x) as defined in the introduction.
Similarly, we will see that the series S(u; t, x) =

∑
w∈S(u) wt(w) is rational.

Note first that Lemma 2.1 still holds for P and can be made more explicit in this case. Extend the
function wt to all of Z〈〈P〉〉 by letting it act linearly. Then

wt(ε− P)−1 =
1

1−
∑
n≥1 tx

n
=

1
1− tx/(1− x)

=
1− x

1− x− tx
.

We now plug this into the lemma just cited.

Corollary 3.1 We have F (u; t, x) = (1− x)S(u; t, x)/(1− x− tx). 2

It follows that if one of these three series is rational then the other one is as well.
We will now use the NFA, ∆, constructed in Theorem 2.2 to show that S(u; t, x) is rational. This is

essentially an application of the transfer-matrix method. See the text of Stanley [?, Section 4.7] for more
information about this technique. The transfer matrix M for ∆ has rows and columns indexed by the
states with

MT,U =
∑
n

wt(n)

where the sum is over all n which appear as labels on the arcs from T to U . For example, consider the
case where w = 132 as done at the end of the previous section. If we list the states in the order

∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}

then the transfer matrix is

M =



0
tx

1− x
0 0 0

0 t(x+ x2)
tx3

1− x
0 0

0 tx 0 tx2 tx3

1− x
0 0 0 0 0

0 0 0 0 0


Now Mk has entries Mk

T,U =
∑
w wt(w) where the sum is over all words w corresponding to a

directed walk of length k from T to U . So to get the weight generating function for walks of all lengths
one considers

∑
k≥0M

k. Note that this sum converges in the algebra of matrices over the formal power
series algebra Z[[t, x]] because none of the entries of M has a constant term. It follows that

L :=
∑
k≥0

Mk = (I −M)−1 =
adj(I −M)
det(I −M)

(2)
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where adj denotes the adjoint.
Now

S(u; t, x) =
∑
T

L∅,T

where the sum is over all final states of ∆. So it suffices to show that each entry of L is rational. From
equation (2), this reduces to showing that each entry of M is rational. So consider two given states T,U .
If T is final then we are done since the T th row of M is all zeros. If T is not final, then consider

T ′ = {t+ 1 : t ∈ T ∪ {0}}. (3)

If U = T ′ then there will be an N ∈ P such that all the arcs out of T with labels n ≥ N go to T ′. So
MT,T ′ will contain

∑
n≥N tx

n = txN/(1−x) plus a finite number of other terms of the form txm. Thus
this entry is rational. If U 6= T ′, then there will only be a finite number of arcs from T to U and so MT,U

will actually be a polynomial. This shows that every entry of M is rational and we have proved, with the
aid of the remark following Corollary 3.1, the following result.

Theorem 3.2 If u ∈ P∗ then F (u; t, x) and S(u; t, x) are rational. 2

4 Wilf equivalence
Recall that u, v ∈ P∗ are Wilf equivalent, written u ∼ v, if F (u; t, x) = F (v; t, x). By Corollary 3.1,
this is equivalent to S(u; t, x) = S(v; t, x). It follows that to prove Wilf equivalence, it suffices to find a
weight-preserving bijection f : L(u)→ L(v) where L = F , or S. Since∼ is an equivalence relation, we
can talk about the Wilf equivalence class of u which is {w : w ∼ u}. It is worth noting that the automata
for the words in a Wilf equivalence class need not bear a resemblance to each other. Part of the motivation
for this section is to try to explain as many Wilf equivalences as possible between permutations.

First of all, we consider three operations on words in P∗. The reversal of u = u1 . . . u` is ur =
u` . . . u1. It will also be of interest to consider 1u, the word gotten by prepending one to u. Finally, we
will look at u+ which is gotten by increasing each element of u by one. It is not hard to give combinatorial
proofs for the three facts in the next theorem, but due to space limitations we will only do so for the second.

Theorem 4.1 We have the following Wilf equivalences.

(a) u ∼ ur,

(b) if u ∼ v then 1u ∼ 1v,

(c) if u ∼ v then u+ ∼ v+.

Proof: (b) We can assume we are given a weight-preserving bijection f : S(u) → S(v). Since 1 is the
minimal element of P,

S(1u) = {w ∈ P∗ : w2w3 . . . w|w| ∈ S(u)}.

So f induces a weight-preserving bijection g : S(1u)→ S(1v) defined by

g(w1w2 . . . wn) = w1f(w2 . . . wn)



524 Sergey Kitaev, Jeffrey Liese, Jeffrey Remmel, and Bruce Sagan

and we are done. 2

Applying the previous result, we can obtain all the Wilf equivalences in the symmetric groups S2 and
S3. In S2 we have 12 ∼ 21 by (a). So 23 ∼ 32 by (c) and 123 ∼ 132 by (b). Continuing in this way, we
obtain

123 ∼ 321 ∼ 132 ∼ 231 and 213 ∼ 312.

These two groups are indeed in different equivalence classes as one can use equation (2) to compute that

S(123; t, x) =
t3x6

(1− x)2(1− x− tx+ tx3 − t2x4)

while

S(213; t, x) =
t3x6(1 + tx3)

(1− x)(1− x+ t2x4)(1− x− tx+ tx3 − t2x4)
.

We will need a new result to explain some of the equivalences in S4 such as 2134 ∼ 2143. This is done
by the next result which, in conjunction with Theorem 4.1, can be used to derive all of the equivalences
in S4. We omit the proof due to space limitations.

Theorem 4.2 Let x, y, z ∈ {1, . . . ,m}∗ and suppose n > m. Then

xmynz ∼ xnymz.

5 The Möbius function
We will now show that the language for the Möbius function of ordinary factor order is not regular. This
is somewhat surprising because Björner and Reutenauer [?] showed that this language is regular if one
considers ordinary subword order, and then Björner and Sagan [?] extended this result to generalized
subword order. We will begin by reviewing some basic facts about Möbius functions. The reader wishing
more details can consult [?, Chapter 3].

For any poset P , the incidence algebra of P over the integers is

I(P ) = {α : P × P → Z : α(a, b) = 0 if a 6≤ b}.

This set is an algebra whose multiplication is given by convolution (α ∗ β)(a, b) =
∑
c∈P α(a, c)β(c, b).

It is easy to see that the identity for this operation is the Kronecker delta

δ(a, b) =
{

1 if a = b,
0 else.

So it is possible for incidence algebra elements to have multiplicative inverses.
One of the simplest elements of I(P ) is the zeta function

ζ(a, b) =
{

1 if a ≥ b,
0 else.

Note that F (u) can be rewritten as F (u) =
∑
w∈P∗ ζ(u,w)w. It turns out that ζ has a convolutional

inverse µ in I(P ). This function is important in enumerative and algebraic combinatorics. Björner [?]
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has given a formula for µ in ordinary factor order which we will need. To describe this result, we must
make some definitions. The dominant outer factor of w, denoted o(w), is the longest word other than w
which is both a prefix and a suffix of w. Note that we may have o(w) = ε. The dominant inner factor
of w = w1 . . . w`, written i(w), is w2 . . . w`−1. Finally, a word is flat if all its elements are equal. For
example, w = abbaabb has o(w) = abb and i(w) = bbaab.

Theorem 5.1 (Björner) In (ordinary) factor order, if u ≤ w then

µ(u,w) =


µ(u, o(w)) if |w| − |u| > 2 and u ≤ o(w) 6≤ i(w),
1 if |w| − |u| = 2, w is not flat, and u = o(w) or i(w),
(−1)|w|−|u| if |w| − |u| < 2,
0 otherwise. 2

Continuing the example
µ(b, abbaabb) = µ(b, abb) = 1.

Note that this description is inductive. It also implies that µ(u,w) is ±1 or 0 for all u,w in factor order.
We will show that the languageM(u) = {w : µ(u,w) 6= 0} need not be regular. To do this, we will

need the Pumping Lemma which we now state. A proof can be found in [?, pp. 55–56].

Lemma 5.2 (Pumping Lemma) Let L be a regular language. Then there is a constant n ≥ 1 such that
any z ∈ L can be written as z = uvw satisfying

1. |uv| ≤ n and |v| ≥ 1,

2. uviw ∈ L for all i ≥ 0. 2

Roughly speaking, any word in a regular language has a prefix of bounded length such that pumping up
the end of the prefix keeps one in the language.

Theorem 5.3 Consider (ordinary) factor order where P = {a, b}. ThenM(a) is not regular.

Proof: Suppose, to the contrary, thatM(a) is regular and let n be the constant guaranteed by the pump-
ing lemma. We will derive a contradiction by letting z = abnabna where, as usual, bn represents the letter
b repeated n times.

First we show that z ∈ M(a). Indeed, o(z) = abna and i(z) = bnabn which implies that a ≤ o(z) 6≤
i(z). So we are in the first case of Björner’s formula and µ(a, z) = µ(a, abna). Repeating this analysis
with abna in place of z gives µ(a, z) = µ(a, a) = 1. Hence z ∈M(a) as promised.

Now pick any prefix uv of z as in the Pumping Lemma. There are two cases. The first is if u 6= ε.
So v = bj for some j with 1 ≤ j < n. Picking i = 2, we conclude that z′ = uv2w = abn+jabna is
inM(a). But o(z′) = a and i(z′) = bn+jabn. Thus |z′| − |a| > 2 and a ≤ o(z′) ≤ i(z′), so z′ does
not fall into any of the first three cases of Björner’s formula. This implies that µ(a, z′) = 0 and hence
z′ 6∈ M(a), which is a contradiction in this case.

The second possibility is that u = ε and v = abj for some 0 ≤ j < n. Similar considerations to
those in the previous paragraph show that if we take z′ = uv2w then µ(a, z′) = 0 again. So we have a
contradiction as before and the theorem is proved. 2
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6 Comments, conjectures, and open questions
6.1 Mixing factors and subwords
It is possible to create languages using combinations of factors and subwords. This is an idea that was
first studied by Babson and Steingrı́msson [?] in the context of pattern avoidance in permutations. Many
of the results we have proved can be generalized in this way. We will indicate how this can be done for
Theorem 2.2.

A pattern p over P is a word in P ∗ where certain pairs of adjacent elements have been overlined
(barred). For example, in the pattern p = 11332461 the pairs 13, 33, and 61 have been overlined. If
w ∈ P ∗ we will write w for the pattern where every pair of adjacent elements in w is overlined. So every
pattern has a unique factorization of the form p = y1 y2 . . . yk. In the preceding example, the factors are
y1 = 1, y2 = 133, y3 = 2, y4 = 4, and y5 = 61.

If p = y1 y2 . . . yk is a pattern and w ∈ P ∗ then p embeds into w, written p→ w, if there is a subword
w′ = z1z2 . . . zk of w where, for all i,

1. zi is a factor of w with |zi| = |yi|, and

2. yi ≤ zi in generalized factor order.

For example 324 → 14235 and there is only one embedding, namely 425. For any pattern p, define the
language

F(p) = {w ∈ P ∗ : p→ w}

and similarly for S(p). The next result generalizes Theorem 2.2 to an arbitrary pattern. It is proved by
pasting together automata like those constructed in that theorem.

Theorem 6.1 Let P be any poset and let p be a pattern over P . Then there are NFAs accepting F(p) and
S(p). 2

6.2 Rationality for infinite posets
It would be nice to have a criterion that would imply rationality even for some infinite posets P . To this
end, let x = {x1, . . . , xm} be a set of commuting variables and consider the formal power series algebra
Z[[x]]. Suppose we are given a function

wt : P → Z[[x]]

which then defines a weighting of words w = w1 . . . w` ∈ P ∗ by

wt(w) =
m∏
i=1

wt(wi).

To make sure our summations will be defined in Z[[x]], we assume that there are only finitely many w of
any given weight and call such a weight function regular.

For u ∈ P ∗, let
F (u; x) =

∑
w≥u

wt(w)
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and similarly for S(u; x). Suppose we want to make sure that S(u; x) is rational. As done in Section 3,
we can consider a transfer matrix with entries

MT,U =
∑
a

wt(a)

where the sum is over all a ∈ P occurring on arcs from T to U . Equation (2) remains the same, so it
suffices to make sure that MT,U is always rational.

If there is an arc labeled a from T to U then we must have U ⊆ T ′ where T ′ is given in equation (3).
Recalling the definition of ∆ from the proof of Theorem 2.2, we see that the a’s appearing in the previous
sum are exactly those satisfying

1. a ≥ ut+1 for t+ 1 ∈ U , and

2. a 6≥ ut+1 for t+ 1 ∈ T ′ − U .

To state these criteria succinctly, for any subword y of u we write a � y (respectively, a 6� y) if a ≥ b
(respectively, a 6≥ b) for all b ∈ y. Finally, note that, from the proof of Theorem 2.2, similar transfer ma-
trices can be constructed for F (u; x) and A(u; x). We have proved the following result which generalizes
Theorem 3.2.

Theorem 6.2 Let P be a poset with a regular weight functionwt : P ∗ → Z[[x]], and let u ∈ P ∗. Suppose
that for any two subwords y and z of u we have∑

a�y
a 6�z

wt(a)

is a rational function. Then so are F (u; x) and S(u; x). 2

6.3 Irrationality for infinite posets
When P is countably infinite it is possible for the generating functions we have considered to be irrational.
As an example, fix a distinguished element a ∈ P . For each A ⊆ P with a ∈ A, we define an order
≤A by insisting that the elements of P − {a} form an antichain, and that a ≤A b if and only if b ∈ A.
Consider the corresponding suffix language SA(a). Clearly SA(a) = (P − A)∗A and so no two of these
languages are equal. It follows that the mapping A → SA(a) is injective. So one of the SA(a) must
be irrational since there are uncountably many possible A but only countably many rational functions in
Z〈〈P 〉〉.

6.4 Wilf equivalence and strong equivalence
There are a number of open problems and questions raised by our work on Wilf equivalence.

(1) If u ∼ v, then must v be a rearrangement of u? This is the case for all the Wilf equivalences we
have proved.

(2) What about Wilf equivalence in [m]∗ where [m] = {1, 2, . . . ,m}? Given a positive integer m,
one can define Wilf equivalence of words u, v ∈ [m]∗ in the same way that we did for P∗. We write
u ∼m v for this relation. Is it true that u ∼m v if and only if u ∼ v?
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(3) If u+ ∼ v+ then is u ∼ v? In other words, does the converse of Theorem 4.1 (c) hold? It is not
hard to see that the converse of (b) is true.

(4) Find a theorem which, together with the results already proved, explains all the Wilf equiva-
lences in S5. We have a conjecture that would be helpful in this regard.

Conjecture 6.3 For any a, b, c ∈ [2,∞) we have

a1b2c ∼ a2b1c.

(5) Is it always the case that the number of elements of Sn Wilf equivalent to a given permutation
is a power of 2? Our computations show that this is always true for n ≤ 5.

6.5 The languageM(u)

We have shown thatM(u) is not always regular and so the corresponding generating function M(u) is
not always rational. But this leaves open whetherM(u) might fall into a more general class of languages
such as context free grammars (CFGs). There is a Pumping Lemma for CFGs, see [?, Section 6.1]. So it
is tempting to try and modify the proof of Theorem 5.3 to show thatM(u) is not even a CFG. However,
all our attempts in that direction have failed. IsM(u) a CFG or not?
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A composition σ = a1a2 . . . am of n is an ordered collection of positive integers whose sum is n. An element ai in
σ is a strong (weak) record if ai > aj (ai ≥ aj) for all j = 1, 2, . . . , i− 1. Furthermore, the position of this record
is i. We derive generating functions for the total number of strong (weak) records in all compositions of n, as well as
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the natural numbers. In particular when A = N, we find the asymptotic mean values for the number, and for the sum
of positions, of records in compositions of n.

Keywords: Composition, Record, Left-to-right maxima, Generating function, Mellin transforms, Asymptotic esti-
mates

Introduction
Let π = a1a2 · · · an be any permutation of length n, an element ai in π is a record if ai > aj for all
j = 1, 2, . . . , i− 1. Furthermore, the position of this record is i. The number of records was first studied
by Rényi [13], compare also [7]. A survey of results on this topic can be found in [2]. In the literature
records are also referred to as a left–to–right maxima or outstanding elements. In particular the study of
records has applications to observations of extreme weather problems, test of randomness, determination
of minimal failure, and stresses of electronic components. The recent paper by Kortchemski [8] defines
a new statistic srec, where srec(π) is the sum over the positions of all records in π. For instance, the
permutation π = 451632 has 3 records 4, 5, 6 and srec(π) = 1 + 2 + 4 = 7.

A word over an alphabet A, a set of positive integers, is defined as any ordered sequence of possibly
repeated elements of A. Recently, Prodinger [12] studied the statistic srec for words over the alphabet
N = {1, 2, 3, . . .}, equipped with geometric probabilities p, pq, pq2, . . ., with p + q = 1. In the case of
words there two versions: A strong record in a word a = a1 · · · an is an element ai such that ai > aj
for all j = 1, 2, . . . , i − 1 (that is, must be strictly larger than elements to the left) and weak record is
an element ai ≥ aj for all j = 1, 2, . . . , i − 1 (must be only larger or equal to elements to the left).
Furthermore, the position i is called the position of the strong record (weak record). We denote the sum of
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the positions of all strong (respectively, weak) records in a word a by ssrec (respectively, wsrec). In [12],
Prodinger found the expected value of the sum of the positions of strong records, in random geometrically
distributed words of length n. Previously, Prodinger [10] also studied the number of strong and weak
records, in samples of geometrically distributed random variables. He also studied further properties of
such records in papers such as [11] and references therein.

A composition σ = σ1σ2 . . . σm of n is an ordered collection of positive integers whose sum is n. Thus
a composition σ of n with parts in A is a restricted word over the alphabet A. We denote the set of all
compositions of n with m parts in A by CA(n,m). It is well known that the number of compositions of
n ≥ 1 with m parts in N is given by

(
n−1
m−1

)
and that the total number of compositions of n is 2n−1.

In this paper we find generating functions for these parameters, number of strong records, number
of weak records, sum of positions of strong records, and sum positions of weak records in a random
composition of n with parts in A = [d] := {1, 2, . . . , d} or A = N. We also study the mean values of
these parameters as n → ∞ in the case A = N by means of rational function asymptotics and Mellin
transforms. Details of some of the lengthier proofs will be left to the full version of the paper. We
remark that in [5], an asymptotic correspondence is established between compositions of n and samples
of geometric variable of parameter p = 1/2 and length n/2. By exploiting this correspondence, and
using the already established results of Prodinger for samples of geometric random variables, alternative
derivations of our asymptotic results can be obtained.

1 Number strong records and weak records
Let NSRA(z, y, q) and NWRA(z, y, q) be the generating function for the number of compositions of n
with m parts in A according to the number of strong and weak records, respectively, that is,

NSRA(z, y, q) =
∑
n,m≥0

∑
σ∈CA(n,m)

znymqnsr(σ),

NWRA(z, y, q) =
∑
n,m≥0

∑
σ∈CA(n,m)

znymqnwr(σ),

where nsr(σ) and nwr(σ) is the number of strong and weak records in composition σ, respectively. In
this section we find an explicit formulas for those generating functions.

Theorem 1.1 The generating function NSR[d](z, y, q) is given by

NSR[d](z, y, q) =
d∏
j=1

(
1 +

zjyq

1− y
∑j
i=1 z

i

)
.

Proof: We denote the number of occurrences of the part d in the composition σ ∈ C[d](n,m) by `(σ).
Now let us write equation for the generating function NSR[d](z, y, q). The contribution of the case
`(σ) = 0 is given by NSR[d−1](z, y, q). Assume `(σ) > 0, then σ can be decomposed as σ′dσ′′, where
σ′ is a composition with parts in [d− 1] and σ′′ is a composition with parts in [d]. Thus, the contribution
of the case `(σ) > 0 equals zdyqNSR[d−1](z, y, q)NSR[d](z, y, 1). Therefore,

NSR[d](z, y, q) = NSR[d−1](z, y, q) + zdyqNSR[d−1](z, y, q)NSR[d](z, y, 1).
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For q = 1 and by induction we have that

NSR[d](z, y, 1) =
1

1− y
∑d
j=1 z

j
.

Hence,

NSR[d](z, y, q) =
d∏
j=1

(
1 +

zjyq

1− y
∑j
i=1 z

i

)
,

as claimed. 2 Theorem 1.1 with q = 1 gives that the generating function for the number of compositions

of n with m parts in [d] is given by NSR[d](z, y, 1) = 1
1−y

Pd
i=1 z

j , see for example [4].
Also from Theorem 1.1 we get that

∂

∂q
NSR[d](z, y, 1) =

d∏
j=1

(
1 +

zjy

1− y
∑j
i=1 z

i

) d∑
j=1

zjy

1− y
∑j−1
i=1 z

i


=

1

1− y
∑d
i=1 z

i

 d∑
j=1

zjy

1− y
∑j−1
i=1 z

i

 .

Hence, the generating function for the number strong records in all compositions of n with parts in N is
given by

f(z) :=
1

1−
∑
i≥1 z

i

∑
j≥1

zj

1−
∑j−1
i=1 z

i
=

1− z
1− 2z

∑
j≥1

zj

1−
∑j−1
i=1 z

i
.

Theorem 1.2 The average number Esn of strong left-to-right maxima in the context of compositions of n
has the asymptotic expansion

Esn =
1
2

[
log2 n−

1
2

+
γ

L
− δ (log2 n)

]
+ o(1).

Here and in the rest of the paper, L = log 2; γ is Euler’s constant and δ(x) is a periodic function of
period 1 and mean 0 and small amplitude, which is given by the Fourier series

δ(x) =
1
L

∑
k 6=0

Γ (−χk) e2kπix.

The complex numbers χk are given by χk = 2kπi/L.

Proof: Firstly by summing the finite geometric series and using partial fraction decomposition,

f(z) =
z − z2

1− 2z
+ (1− z)2

∑
k≥2

[
1

1− 2z
− 1

1− 2z + zk

]
.
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Hence the average number Esn of strong left-to-right maxima in compositions of n satisfies

Esn =
1

2n−1
[zn]f(z) =

1
2

+
1

2n−1
[zn](1− z)2

n∑
k=2

[
1

1− 2z
− 1

1− 2z + zk

]
.

Let ρk be the smallest positive root of the denominator polynomial 1 − 2z + zk that lies between 1/2
and 1. An application of the principle of the argument or Rouche’s Theorem shows such a root to exist
with all other roots of modulus greater than 3/4. By dominant pole analysis,

qn,k := [zn]
(1− z)2

1− 2z + zk
= ckρ

−n
k +O

((
4
3

)n)
with ck =

(1− ρk)2

ρk(2− kρk−1
k )

,

for large n but fixed k. The denominator polynomial 1 − 2z + zk behaves like a perturbation of 1 − 2z
near z = 1/2. By ”bootstrapping” we find that

ρk =
1
2

+ 2−k−1 +O(k2−2k)

and hence ck = 1
4 + O(k2−k). The use of this approximation can be justified for a wide range of values

of k and n (see for example [3] or [6]).
Let us now restrict our attention to those k for which n−3 ≤ 2−k ≤ logn

n . For such k we can show that

qn,k = 2n−2

(
exp

(
− n

2k
)

+O

(
log3 n

n

))
. (1)

Turning next to smaller values of k ≥ 2, that is, k such that 2−k > logn
n , we find that now the coefficients

qn,k are relatively small, since for such k, qn,k = O( 2n

n ) as n → ∞. Finally we must consider larger
values of k ≤ n that is, k for which n−3 > 2−k, or equivalently, k ≥ 3 log2 n. In this range we find that

qn,k = 2n−2

(
exp

(
− n

2k
)

+O

(
1
n2

))
. (2)

Then combining the estimates for qn,k over the range 2 ≤ k ≤ n above,

Esn −
1
2

=
1
2

n∑
k=2

(
1− qn,k

2n−2

)
∼ 1

2

∑
k≥0

(
1− exp

(
− n

2k
))
− 1,

as the additional tail sum
∑
k>n

(
1− exp

(
− n

2k

))
is exponentially small. It remains to estimate

h(n) :=
∑
k≥0

(
1− exp

(
− n

2k
))

,

as n→∞. For this we use Mellin transforms and find (see [1, Appendix B.7, equation (48)])

h(n) = log2 n+
1
2

+
γ

L
− δ (log2 n) +O(1/n). (3)
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The asymptotic estimate for Esn follows. 2

Remarks Asymptotically we find that the expected number of strict left-to-right maxima is half the ex-
pected size of the largest part in a random composition of n (see [9]). Also, as mentioned in the intro-
duction, the asymptotic correspondence established in [5] would allow one to use the results of Prodinger
[10] in the case p = 1/2, to give an alternative proof of Theorem 1.2.

A similar approach to that of Theorem 1.3 leads to

Theorem 1.3 The generating function NWR[d](z, y, q) is given by

NWR[d](z, y, q) =
d∏
j=1

1

1− zjyq

1−y
Pj−1

i=1 z
i

.

The generating function for the total number of weak records in compositions over N is then

g(z) :=
∂NWR[N](z, 1, q)

∂q

∣∣∣∣
q=1

=
1− z
1− 2z

∑
k≥1

zk

1−
∑k
i=1 z

i

=
(1− z)2

z

∑
k≥2

[
1

1− 2z
− 1

1− 2z + zk

]
.

Theorem 1.4 The average number Ewn of weak left-to-right maxima in the context of compositions of n
has the asymptotic expansion

Ewn = log2 n−
3
2

+
γ

L
− δ (log2 n) + o(1).

Proof: The average number Ewn of weak left-to-right maxima in compositions of n satisfies

Ewn =
1

2n−1
[zn]g(z) =

1
2n−1

[zn+1](1− z)2
n∑
k=2

[
1

1− 2z
− 1

1− 2z + zk

]
.

Then using the qn,k notation in the proof of Theorem 1.2

Ewn =
n+1∑
k=2

(
1− qn+1,k

2n−1

)
= 2Esn+1 − 1.

The asymptotic estimate then follows from that of Theorem 1.2. 2

2 The statistics ssrec and wsrec on the set of compositions
Let NSRA(z, y, q) and NWRA(z, y, q) be the generating function for the number of compositions of n
with m parts in A according to the statistic ssrec and wsrec, respectively, that is,

PSRA(z, y, q) =
∑
n,m≥0

∑
σ∈CA(n,m)

znymqssrec(σ),

PWRA(z, y, q) =
∑
n,m≥0

∑
σ∈CA(n,m)

znymqwsrec(σ).
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Theorem 2.1 The generating function PSR[d](z, y, q) is given by

1 +
d∑
k=1

qk

 ∑
d≥j1>j2>···>jk≥1

k∏
i=1

zjiyqi−1

1− yqi−1
∑ji
`=1 z

`

 .

Proof: We denote the number of occurrences of the part d in the composition σ ∈ C[d](n,m) by `(σ).
Decomposing according to `(σ) = 0 and `(σ) > 0 leads to

PSR[d](z, y, q) = PSR[d−1](z, y, q) + zdyqPSR[d−1](z, qy, q)PSR[d](z, y, 1). (4)

For q = 1, PSR[d](z, y, 1) = 1
1−y

Pd
j=1 z

j . Hence,

PSR[d](z, y, q) = PSR[d−1](z, y, q) +
zdyq

1− y
∑d
i=1 z

i
PSR[d−1](z, qy, q)

= PSR[d−2](z, y, q) +
d∑

j=d−1

zjyq

1− y
∑j
i=1 z

i
PSR[j−1](z, qy, q)

...

= 1 +
d∑
j=1

zjyq

1− y
∑j
i=1 z

i
PSR[j−1](z, qy, q).

Iterating the above recurrence relation d times we get the desired result. 2 From this we derive

Corollary 2.2 The generating function vd(z) = ∂
∂qPSR[d](z, 1, q) |q=1 is given by

z

1−
∑d
j=1 z

j

d−1∑
j=0

zj(
1−

∑j
i=1 z

i
)2 .

The above corollary gives that the generating function for the number of compositions of n according
to the total of the statistic ssrec is given by

v(z) :=
z(1− z)
1− 2z

∑
j≥0

zj(
1−

∑j
i=1 z

i
)2 .

The rather lengthy proof of the asymptotic behaviour of the coefficients of v(z) will be left for the
journal version of the paper. We obtain

Theorem 2.3 The average sum of the positions of the strong records esn in compositions of n has the
asymptotic expansion

esn =
n

4 log 2
(
1 + δ2 (log2 n)

)
+ o(n),
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where δ2(x) is a periodic function of period 1, mean zero and small amplitude, which is given by the
Fourier series

δ2(x) =
∑
k 6=0

χkΓ (−1− χk) e2kπix.

With reference again to [5], Theorem 2.3 is seen to correspond to the p = 1/2 case of the results of
Prodinger [12].

The corresponding results for PWR[d](z, y, q) are as follows.

Theorem 2.4 The generating function PWR[d](z, y, q) satisfies the following recurrence relation

PWR[d](z, y, q) = PWR[d−1](z, y, q) +
zdyq

1− y
∑d−1
i=1 z

i
PWR[d](z, qy, q).

Corollary 2.5 The generating function wd(z) = ∂
∂qPWR[d](z, 1, q) |q=1 is given by

wd(z) =
1

1−
∑d
j=1 z

j

∑
j≥1

zj(
1−

∑j
i=1 z

i
)2 .

The above corollary gives that the generating function for the number of compositions of n according
to the total of the statistic swrec is given by

w(z) :=
1− z
1− 2z

∑
j≥1

zj(
1−

∑j
i=1 z

i
)2 .

Theorem 2.6 The average sum of the positions of the weak records ewn in compositions of n has the
asymptotic expansion

ewn =
n

2 log 2
(
1 + δ2 (log2 n)

)
+ o(n),

where δ2(x) is the same periodic function that occured in Theorem 2.3.

Proof: The generating functions v(z) and w(z) are related as follows,

v(z) =
z(1− z)
1− 2z

+ zw(z).

From this we see that
[zn+1]v(z) = 2n−1 + [zn]w(z).

So that ewn = 2esn+1 − 1. The result then follows from Theorem 2.3. 2

Now, our aim is to present a combinatorial explanation for the fact that the number (sum) of the po-
sitions of weak records in all compositions of n plus 2n−1 equals the number (sum) of the positions of
strong records in all compositions of n+1, for n ≥ 1. In order to do that we need the following notations.
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Let swn,r (respectively, ssn,r) be the sum of r-th power of the positions of weak (respectively, strong)
records in all the compositions of n, namely,

swn,r =
∑
σ∈Cn

∑
σi is a weak record of σ

ir,

ssn,r =
∑
σ∈Cn

∑
σi is a strong record of σ

ir,

sw′n,r =
∑

σ∈Cn(A)

∑
σi is a weak record of σ,i>1

ir,

ss′n,r =
∑

σ∈Cn(A)

∑
σi is a strong record of σ,i>1

ir,

where Cn = ∪nm=1Cn,m is the set of all compositions of n. From the definitions, each first letter is a
weak (strong) record. Therefore,

swn,r = |Cn|+ sw′n,r and ssn,r = |Cn|+ ss′n,r, (5)

where |Cn| = 2n−1 is the number of compositions of n.

Theorem 2.7 For all n ≥ 1,
ssn+1,r = swn,r + 2n−1.

Proof: It is not hard to see that σ1 · · ·σm is a composition of n and σi, i > 1, is a weak record if and only
if σ1 · · ·σi−1(σi + 1)σi+1 · · ·σm is a composition of n and σi + 1, i > 1, is a strong record. Therefore,
the multiset of all positions i, i > 1, of the weak records in all compositions of n is the same multiset as
all positions i, i > 1, of the strong records in all compositions on n+ 1. In other words, ss′n+1,r = sw′n,r
for all n and r.

Hence, by (5) we have

ssn+1,r = 2n + ss′n+1,r = 2n + sw′n,r = 2n−1 + 2n−1 + sw′n,r = 2n−1 + swn,r,

as requested. 2
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In this paper we analyze O’Hara’s partition bijection. We present three type of results. First, we see that O’Hara’s
bijection can be viewed geometrically as a certain scissor congruence type result. Second, we present a number of
new complexity bounds, proving that O’Hara’s bijection is efficient in most cases and mildly exponential in general.
Finally, we see that for identities with finite support, the map of the O’Hara’s bijection can be computed in polynomial
time, i.e.much more efficiently than by O’Hara’s construction.

Keywords: partitions, O’Hara’s algorithm, complexity

1 Introduction
Some combinatorial results have an easy proof via generating functions and a more elusive, but also more
interesting and important, bijective proof. It would be difficult to think of a better example of this than the
generalization of Euler’s classical distinct/odd theorem due to George Andrews (Theorem 2.1). The proof
via generating functions is a trivial one-line calculation. On the other hand, the simplest bijective proof of
this result, O’Hara’s algorithm, is distinctly non-trivial and has numerous fascinating properties.

Note that a quest to find bijective proofs of partition identities goes back all to way to the pioneer work
of Sylvester and his school. Despite remarkable successes in the last century (see [P06]) and some recent
work of both positive and negative nature (see e.g. [P04b, P]), the problem remains ambiguous and largely
unresolved. Much of this stems from the lack of clarity as to what exactly constitutes a bijective proof.
Depending on whether one accentuates simplicity, ability to generalize, the time complexity, geometric
structure, or asymptotic stability, different answers tend to emerge.

In one direction, the subject of partition bijections was revolutionized by Garsia and Milne with their
involution principle [GM81a, GM81b]. This is a combinatorial construction which allows to use a few
basic bijections and involutions to build more involved combinatorial maps. As a consequence, one can
start with a reasonable analytic proof of a partition identity and trace every step to obtain a (possibly
extremely complicated) bijective construction. Garsia and Milne used this route to obtain a long sought
bijection proving the Rogers-Ramanujan identities, resolving an old problem in this sense [GM81b]. Un-
fortunately, this bijection is too complex to be analyzed and has yet to lead to new Rogers-Ramanujan
type partition identities.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
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After Garsia-Milne paper, there has been a flurry of activity to obtain synthetic bijections for large
classes of partition identities. Most of these bijections did not seem to lead anywhere with one notable
exception. Remmel and Gordon found (rather involved) bijective proofs of the above-mentioned partition
identity due to Andrews [R82, G83]. O’Hara’s streamlined proof is in fact a direct generalization of
Glaisher’s classical bijection proving Euler’s theorem. Moreover, in her thesis [O84], O’Hara showed that
her bijection is computationally efficient in certain special cases. Until now, the reason why O’Hara’s
bijection has a number of nice properties distinguishing it from the other “involution principle bijections”
remained mysterious.

In this extended abstract, we present results of both positive and negative type. First, we analyze the
complexity of O’Hara’s bijection, which we view as a discrete algorithm. Theorem 3.2 gives an exact
formula for the number of steps of the algorithm in certain cases. From here it follows that O’Hara’s
bijection is computationally efficient in many special cases. On the other hand, perhaps surprisingly, the
number of steps can be (mildly) exponential in the worst case (Theorem 3.7 part (3)). This is the first
negative result of this kind, proving the analogue of a conjecture that remains open for the Garsia-Milne’s
“Rogers-Ramanujan bijection” (see Subsection 4.1).

Second, we show that O’Hara’s bijection has a rich underlying geometry. In a manner similar to that
in [P04a, PV05], we view this bijection as a map between integer points in polytopes which preserves
certain linear functionals. We present an advanced generalization of Andrews’s result and of O’Hara’s
bijection in this geometric setting. In a special case, the working of the map corresponds to the Euclid
algorithm and, more generally, to terms in the continuing fractions. Thus one can also think of our
generalization as a version of multidimensional continuing fractions.

Finally, by combining the geometric and complexity ideas we see that in the finite dimensional case the
map defined by O’Hara’s bijection is a solution of an integer linear programming problem. This implies
that the map defined by the bijection can be computed in polynomial time, i.e.much more efficiently than
by O’Hara’s bijection.

The extended abstract is structured as follows. We start with definitions and notations in Section 2. In
Section 3, we describe the main results on both geometry and complexity. We conclude with final remarks
in Section 4.

Due to space constraints, we present almost no proofs. An interested reader is invited to find the proofs
and some other results in the paper [KP], on which this abstract is based.

2 Definitions and background
2.1 Andrews’s theorem
A partition λ is an integer sequence (λ1, λ2, . . . , λ`) such that λ1 ≥ λ2 ≥ . . . ≥ λ` > 0, where the
integers λi are called the parts of the partition. The sum n =

∑`
i=1 λi is called the size of λ, denoted

|λ|; in this case we say that λ is a partition of n, and write λ ` n. We can also write λ = 1m12m2 · · · ,
where mi = mi(λ) is the number of parts of λ equal to i. The support of λ = 1m12m2 · · · is the set
{i : mi > 0}. The set of all positive integers will be denoted by P.
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Denote the set of all partitions by P and the set of all partitions of n by Pn. The number of partitions
of n is given by Euler’s formula

∑
λ∈P

t|λ| =
∞∑
n=0

|Pn|tn =
∞∏
i=1

1
1− ti

.

For a sequence a = (a1, a2, . . .) with ai ∈ P ∪ {∞}, define A to be the set of partitions λ with
mi(λ) < ai for all i; write An = A ∩ Pn. Denote by supp(a) = {i : ai < ∞} the support of the
sequence a.

Let a = (a1, a2, . . .) and b = (b1, b2, . . .). We say that a and b are ϕ-equivalent, a ∼ϕ b, if ϕ is a
bijection supp(a)→ supp(b) such that iai = ϕ(i)bϕ(i) for all i. If a ∼ϕ b for some ϕ, we say that a and
b are equivalent, and write a ∼ b.

Theorem 2.1 (Andrews) If a ∼ b, then |An| = |Bn| for all n.

Proof: We use the notation t∞ = 0. Clearly,

∞∑
n=0

|An|tn =
∞∏
i=1

1− tiai

1− ti
=
∞∏
j=1

1− tjbj

1− tj
=
∞∑
n=0

|Bn|tn,

which means that |An| = |Bn|. 2

Consider the classical Euler’s theorem on partitions into distinct and odd parts. For a = (2, 2, . . .) and
b = (∞, 1,∞, 1, . . .),An is the set of all partitions of n into distinct parts, and Bn is the set of partitions of
n into odd parts. The bijection i 7→ 2i between supp(a) = P and supp(b) = 2P satisfies iai = ϕ(i)bϕ(i),
so a ∼ϕ b and |An| = |Bn|. We refer to this example as the distinct/odd case.

2.2 O’Hara’s algorithm
The analytic proof of Andrews’s theorem shown above does not give an explicit bijection An → Bn.
Such a bijection is, by Theorem 2.3, given by the following algorithm.

Algorithm 2.2 (O’Hara’s algorithm on partitions)

Fix: sequences a ∼ϕ b

Input: λ ∈ A

Set: µ← λ

While: µ contains more than bj copies of j for some j

Do: remove bj copies of j from µ, add ai copies of i to µ, where ϕ(i) = j

Output: ψ(λ)← µ
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Theorem 2.3 (O’Hara) Algorithm 2.2 stops after a finite number of steps. The resulting partition ψ(λ) ∈
B is independent of the order of the parts removed and defines a size-preserving bijection A → B.

Denote by Lϕ(λ) the number of steps O’Hara’s algorithm takes to compute ψ(λ), and by Lϕ(n) the
maximum value of Lϕ(λ) over all λ ` n.

Example 2.4 In the distinct/odd case, O’Hara’s algorithm gives the inverse of Glaisher’s bijection, which
maps λ = 1m13m3 · · · ∈ B to the partition µ ∈ A which contains i2j if and only if mi has a 1 in the j-th
position when written in binary. 2

Example 2.5 Let a = (1, 1, 4, 5, 3, 1, 1, . . .), b = (1, 1, 5, 3, 4, 1, 1, . . .) and ϕ(3) = 4, ϕ(4) = 5, ϕ(5) =
3, ϕ(i) = i for i 6= 3, 4, 5; observe that a ∼ϕ b. Then O’Hara’s algorithm on λ = 334452 runs as
follows:

334452 → 374152 → 324155 → 324651 → 364351

→ 3104051 → 354054 → 304057 → 304553 → 344253

We have Lϕ(λ) = Lϕ(35) = 9. 2

Example 2.6 Take a = (2, 2, 1, 2, 2, 1, . . .) and b = (3, 1, 3, 1, . . .). Here A is the set of partitions into
distinct parts ≡ ±1 mod 3, and B is the set of partitions into odd parts, none appearing more than twice.
Define ϕ : P→ P as follows:

ϕ(i) =

 i if i is divisible by 6
i/3 if i is divisible by 3, but not by 2
2i if i is not divisible by 3

. (1)

Clearly, a ∼ϕ b. O’Hara’s algorithm on 112181101141201 runs as follows:

112181101141201 → 112181103141 → 11217281103 → 1121527281102

→ 1121547281101 → 1121567281 → 1121425672 → 1123415672

→ 11255672 → 13245672 → 15235672 → 17225672

→ 19215672 → 1115672 → 1115372151 → 11172152

→ 183172152 → 153272152 → 123372152 → 127291152

The bijection ψ is similar in spirit to Glaisher’s bijection: given λ = 1m12m24m45m5 · · · ∈ A and j ∈ P,
the number of copies of part 2j − 1 in ψ(λ) is equal to the k-th digit in the ternary expansion of l, where
k is the highest power of 3 dividing 2j − 1, 2j − 1 = 3kr, and l =

∑
i 2imr2i . 2

2.3 Equivalent sequences and graphs
Choose equivalent sequences a, b. Define a directed graph Gϕ on supp(a) ∪ supp(b) by drawing an
edge from i to j if ϕ(j) = i; an arrow from i to j therefore means that O’Hara’s algorithm simulta-
neously removes copies of i and adds copies of j. Each vertex v has indeg v ≤ 1, outdeg v ≤ 1 and
indeg v + outdeg v ≥ 1. The graph splits into connected components of the following five types:

i. cycles of length m ≥ 1;

ii. paths of length m ≥ 2;
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iii. infinite paths with an ending point, but without a starting point;

iv. infinite paths with a starting point, but without an ending point;

v. infinite paths without a starting point or an ending point.

Example 2.7 Figure 1 shows portions of graphs Gϕ for certain ϕ:

1. a = (1, 1, 4, 5, 3, 1, 1, . . .), b = (1, 1, 5, 3, 4, 1, 1, . . .), ϕ(3) = 4, ϕ(4) = 5, ϕ(5) = 3, ϕ(i) = i for
i 6= 3, 4, 5; components of Gϕ are of type (i);

2. a = (∞, 1, 2, 3,∞,∞,∞, . . .), b = (2, 3, 4,∞,∞,∞,∞, . . .), ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 3;
Gϕ is of type (ii);

3. the distinct/odd case: a = (2, 2, . . .), b = (∞, 1,∞, 1, . . .), ϕ(i) = 2i; components of Gϕ are of
type (iii);

4. the odd/distinct case: a = (∞, 1,∞, 1, . . .), b = (2, 2, . . .), ϕ(i) = i/2; components of Gϕ are of
type (iv);

5. a = (2, 2, 1, 2, 2, 1, . . .) and b = (3, 1, 3, 1, . . .), ϕ given by (1); components of Gϕ are of types (i)
and (v). 2

2
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Fig. 1: Examples of graphs Gϕ.
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2.4 Scissor-congruence and Π-congruence

We say that convex polytopes A,B in Rm are congruent, write A ' B, if B can be obtained from A by
rotation and translation. For convex polytopes P,Q ⊂ Rm, we say that they are scissor-congruent if P
can be cut into finitely many polytopes which can be rearranged and assembled into Q, i.e. if P and Q are
the disjoint union of congruent polytopes: P = ∪ni=1Pi, Q = ∪ni=1Qi, Pi ' Qi.

Let π be a linear functional on Rm. If Qi can be obtained from Pi by a translation by a vector in
the hyperplane H = {x ∈ Rm : π(x) = 0}, we say that P and Q are π-congruent. If P and Q are
π-congruent for some linear functional π, we say that they are Π-congruent.

If P can be cut into countably many polytopes which can be translated by a vector in the hyperplane
H = {x ∈ Rm : π(x) = 0} and assembled into Q, we say that P and Q are approximately π-congruent.
We say that they are approximately Π-congruent if they are approximately π-congruent for some linear
functional π. If P and Q are approximately π-congruent, there exist, for every ε > 0, π-congruent
polytopes Pε ⊆ P and Qε ⊆ Q, such that vol(P \ Pε) < ε and vol(Q \Qε) < ε.

Finally, let R(a1, . . . , am) = [0, a1) × · · · × [0, am) be a box in Rm, and let R(a1, . . . , am) =
R(a1, . . . , am) ∩ Zm be the set of its integer points.

Example 2.8 Let d = 2 and π(x, y) = x+y. Euclid’s algorithm on (a, b) yields a π-congruence between
R(a, b) and R(b, a): if b = r1a + s1 with 0 ≤ s1 < a, divide [0, a) × [0, r1a) into r1 squares with side
a, and translate the square [0, a) × [ia, (i + 1)a) by the vector (ia,−ia) to [ia, (i + 1)a) × [0, a). Then
write a = r2s1 + s2 with 0 ≤ s2 < s1, divide [0, a)× [r1a, b) into r2 squares with side s1, and translate
the square [is1, (i + 1)s1) × [r1a, b) by the vector (r1a − is1, is1 − r1a) to [r1a, b) × [is1, (i + 1)s1).
Continue until the remainder si is equal to 0. The first drawing of Figure 2 gives an example.

The second drawing shows that boxes R(12, 8) and R(32, 3) are π-congruent for π(x, y) = x + 4y.
Finally, in Figure 3 we give a π-congruence between R(4, 5, 3) and R(5, 3, 4) for π(x, y, z) = 3x+4y+
5z. 2
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Fig. 2: Two Π-congruences.
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ψ−→

Fig. 3: π-congruence between R(4, 5, 3) and R(5, 3, 4).

3 Main results
3.1 Continuous O’Hara’s algorithm and Π-congruences
Take the case whenGϕ is a cycle i1 → im → im−1 → . . .→ i1. In this case, ϕ(i1) = i2, ϕ(i2) = i3, etc.
Throughout this section, identify a partition it11 · · · itmm with the vector t = (t1, . . . , tm). By Theorem 2.3,
O’Hara’s algorithm defines a bijection ψ : R(a1, . . . , am) → R(b1, . . . , bm), where ijaj = ij+1bj+1 for
all j, where the indices are taken cyclically. The following algorithm (see also Theorem 3.2) generalizes ψ
to the continuous setting. It gives a bijection ψ : R(a1, . . . , am)→ R(b1, . . . , bm), which is defined also
for non-integer aj , bj . When aj , bj are integers, it is an extension of ψ : R(a1, . . . , am)→ R(b1, . . . , bm).
As an immediate corollary, we prove that two boxes with rational coordinates and with equal volume are
Π-congruent. We can use Theorem 3.2 to give an alternative proof of Theorem 2.3.

Algorithm 3.1 (continuous O’Hara’s algorithm)

Fix: i = (i1, . . . , im) ∈ Rm+

a = (a1, . . . , am) ∈ Rm+ , b = (b1, . . . , bm) ∈ Rm+ with ijaj = ij+1bj+1

Input: t ∈ R(a1, . . . , am)

Set: s← t

While: s contains a coordinate sj ≥ bj

Do: sj ← sj − bj , sj−1 ← sj−1 + aj−1

Output: ψ(t)← s

It is clear that the algorithm starts with an element of P = R(a1, . . . , am) and, if the while loop
terminates, outputs an element ofQ = R(b1, . . . , bm). It is not obvious, however, that the loop terminates
in every case, or that the output ψ(t) and the number of steps Lϕ(t) depend only on t, not on the choices
made in the while loop.
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Theorem 3.2 Algorithm 3.1 has the following properties.

1. The algorithm stops after a finite number of steps, and the resulting vector ψ(t) and the number of
steps Lϕ(t) are independent of the choices made during the execution of the algorithm.

2. The algorithm defines a bijection ψ : P → Q which satisfies ψ(t) − t ∈ H, where H is the
hyperplane defined by i1x1 + . . .+ imxm = 0.

3. We have
Lϕ(t + t′) ≥ Lϕ(t) + Lϕ(t′) for every t, t′, t + t′ ∈ P.

In particular, Lϕ(t′) ≤ Lϕ(t) if t′ ≤ t.

4. Let t, t′ ∈ P , s = ψ(t), with tj ≤ t′j < tj + εj , where εj = bj − sj . Then

ψ(t′)− t′ = ψ(t)− t and Lϕ(t′) = Lϕ(t).

5. For all a,b ∈ Zm+ , we have

max
t∈P

Lϕ(t) = lcm(c1, . . . , cm) ·
(

1
c1

+ . . .+
1
cm

)
−m,

where cj = a1 · · · aj−1bj · · · bm−1.

We call boxes P = R(a1, . . . , am), Q = R(b1, . . . , bm) relatively rational if there exists λ, λ 6= 0,
such that λaj ∈ Z, λbj ∈ Z. Clearly, two boxes P and Q with rational side-lengths are relatively rational.

Corollary 3.3 Boxes P = R(a1, . . . , am), Q = R(b1, . . . , bm) with equal volume are approximately Π-
congruent. Moreover, when P andQ are relatively rational and have equal volume, they are Π-congruent.

Proof: For j = 1, . . . ,m, take ij = a1 · · · aj−1bj+1 · · · bm. Clearly ijaj = ij+1bj+1 for j = 1, . . . ,m−
1, and a1 · · · am = b1 · · · bm implies imam = i1b1. Therefore, the numbers ij , aj , bj satisfy the conditions
of Algorithm 3.1. By Theorem 3.2 part (2), the algorithm defines a bijectionψ : P → Q. Parts (4) and (2)
of Theorem 3.2 imply that we can cut P into (countably many) smaller boxes, each of which is translated
by a vector in the plane i1x1 + . . .+ imxm = 0.

If P and Q are relatively rational, we can assume without loss of generality that all aj , bj are integers.
For any integer vector t, we have ψ(t′)− t′ = ψ(t)− t and Lϕ(t′) = Lϕ(t) whenever tj ≤ t′j < tj + 1,
so P and Q are divided into a finite number (at most a1 · · · am) of boxes. 2

Example 3.4 Even in the 3-dimensional case the Π-congruence defined by the algorithm can be quite
complex, as the next figure suggests. Here the same shading is used for parallel translations by the same
vector. 2
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Fig. 4: The decomposition of the box R(31, 47, 23) given by O’Hara’s algorithm (only the top, right, and back sides
are shown) .

3.2 Complexity of O’Hara’s algorithm
The complexity of O’Hara’s algorithm has been an open problem, with the exception of the elementary
distinct/odd case (see [O84]).

It turns out that the complexity depends heavily on the type of the graph Gϕ defined in Subsection 2.3.
Part (5) of Theorem 3.2 gives the maximum number of steps that O’Hara’s algorithm takes when Gϕ is a
cycle. The following lemma gives an estimate for Lϕ(n) when Gϕ is a path.

Lemma 3.5 Let Gϕ be a finite or infinite path on I ⊆ P. Then Lϕ(n) ≤ n(log n+ 1). Moreover, if

D =
∑
i∈I

1
iai

=
∑
j∈I

1
jbj

<∞,

then Lϕ(n) ≤ Dn. Here, by log n we mean the natural logarithm of n.

Theorem 3.6 Let a, b be ϕ-equivalent sequences.

1. If Gϕ has only a finite number of cycles of length > 2, then Lϕ(n) = O(n log n), and the constants
implied by the O-notation are universal.

2. If Gϕ has only a finite number of cycles of length > m for some m > 2, then Lϕ(n) = O(nm−1),
and the constants implied by the O-notation depend only on m.
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The following theorem gives the corresponding lower bound on the worst case complexity. It shows
that the estimates of Theorem 3.6 are close to being sharp.

Theorem 3.7 There exist ϕ-equivalent sequences a and b, such that:

1. Gϕ is a path and Lϕ(n) = Ω(n log log n);

2. Gϕ contains only cycles of length ≤ m and Lϕ(n) = Ω(nm−1−ε) for every ε > 0;

3. Lϕ(n) = exp Ω( 3
√
n).

In other words, depending on the type of the graph, we have nearly matching upper and lower bounds
on Lϕ(n). For example, for an m-cycle, Theorem 3.6 shows that Lϕ(n) is O(nm−1), while Theorem 3.7
shows that it is Ω(nm−1−ε) for every ε > 0. Similarly, part (3) shows that O’Hara’s algorithm can be
very slow in general since the total number of partitions of n is asymptotically exp Θ(

√
n).

3.3 O’Hara’s algorithm as an integer linear programming problem
Let us now give a new description of O’Hara’s algorithm.

Proposition 3.8 Let i,a,b ∈ be as above such that ijaj = ij+1bj+1 for j = 1, . . . ,m. Fix a vector
t ∈ R(a1, . . . , am). Then s = ψ(t) satisfies the following:

s = t +Ak,

where

A =


−b1 a1 0 · · · 0

0 −b2 a2 · · · 0
0 0 −b3 · · · 0
...

...
...

. . .
...

am 0 0 · · · −bm


and k = (k1, . . . , km) is the unique vector minimizing

k1 + . . .+ km

with constraints
k ∈ Zm, k ≥ 0, Ak ≥ −t, Ak ≤ b− 1− t.

Proposition 3.8 can be used to obtain a significant speed-up of (the usual) O’Hara’s algorithm, in the
case when Gϕ contains only cycles of bounded length. Namely, we obtain the following result.

Theorem 3.9 Let a ∼ϕ b. If the lengths of cycles of Gϕ are bounded, there exists a deterministic algo-
rithm which computes ψ(λ) in O(n log n) steps for λ ∈ An.

Proof: Without loss of generality, the support of λ ∈ An is contained in one of the connected components
of Gϕ. If this connected component is a path, O’Hara’s algorithm takes O(n log n) steps by Lemma 3.5.
If it is a cycle of length m, we can use the algorithm described in, say, [S86, Corollary 18.7b] to compute
ψ(λ) in O(logc n) steps for some c. Obviously the O(n log n) term dominates. 2
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Remark 3.10 Let us note that the inner workings of the algorithm in Theorem 3.9 have a geometric rather
than combinatorial nature, and are very different from those of O’Hara’s algorithm. However, both kinds
of algorithms produce the same partition bijection.

4 Final remarks

4.1
The polynomial time algorithm in the proof of Theorem 3.9 is given implicitly, by using the general
results in integer linear programming. It is saying that the function ψ : An → Bn can be computed much
faster, by circumventing the elegant construction of O’Hara’s algorithm. It would be interesting to give
an explicit construction of such an algorithm.

In a different direction, it might prove useful to restate other involution principle bijections in the
language of linear programming, such as the Rogers-Ramanujan bijection in [GM81b] or in [BP06]. If this
works, this might lead to a new type of a bijection between these two classes of partitions. Alternatively,
this might resolve the conjecture by the second author on the mildly exponential complexity of Garsia-
Milne’s Rogers-Ramanujan bijection, see [P06, Conjecture 8.5].

4.2
Note the gap between the number exp Θ(

√
n) of partitions of n and the lower boundLϕ(n) = exp Ω( 3

√
n)

in Theorem 3.7. It would be interesting to decide which of the two worst complexity bounds on the number
of steps of O’Hara’s algorithm is closer to the truth.

Note that we applied our linear programming approach only in the bounded cycle case. We do not
know if there is a way to apply the same technique to the general case. However, we believe that there
are number theoretic obstacles preventing that and in fact, computing O’Hara’s bijection as a function on
partitions may be hard in the formal complexity sense.

4.3
Recently, variations on the O’Hara’s bijection and applications of rewrite systems were found in [SSM04]
and [K04, K07]. It would be interesting to see connections between our analysis and this work.

4.4
Recall also that the 2-dimensional case can be viewed as the Euclid algorithm which in turn corresponds
to the usual continued fractions (see Example 2.8). Thus the geometry of ψ can be viewed as a delicate
multidimensional extension of continued fractions. Given the wide variety of (different) multidimensional
continued fractions available in the literature, it would be interesting to see if there is a connection to at
least one of these notions.

Acknowledgments. We are grateful to George Andrews and Dennis Stanton for their interest in the
paper and to Kathy O’Hara for sending us a copy of her thesis [O84]. The second named author was
supported by the NSF. He would also like to thank Vladimir Arnold, Elena Korkina and Mark Sapir for
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A breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a
combinatorial formula for these polynomials in terms of fillings of Young diagrams. Recently, Ram and Yip gave a formula
for the Macdonald polynomials of arbitrary type in terms of the corresponding affine Weyl group. In this paper, we show that
a Haglund-Haiman-Loehr type formula follows naturally from the more general Ram-Yip formula, via compression. Then we
extend this approach to the Hall-Littlewood polynomials of type C, which are specializations of the corresponding Macdonald
polynomials at q = 0. We note that no analog of the Haglund-Haiman-Loehr formula exists beyond type A, so our work is a
first step towards finding such a formula.

Keywords: Macdonald polynomials, Hall-Littlewood polynomials, Haglund-Haiman-Loehr formula, alcove walks, Ram-Yip
formula, Schwer’s formula.
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1 Introduction

Macdonald [14, 15] defined a remarkable family of symmetric orthogonal polynomials depending on parameters
q, t, which bear his name. These polynomials generalize several other symmetric polynomials related to represen-
tation theory. For instance, at q = 0, the Macdonald polynomials specialize to the Hall-Littlewood polynomials
(or spherical functions on p-adic groups), and they further specialize to the Weyl characters (upon setting t = 0 as
well). There has been considerable interest recently in the combinatorics of Macdonald polynomials. This stems
in part from a combinatorial formula for the ones corresponding to type A, which is due to Haglund, Haiman, and
Loehr [4], and which is in terms of fillings of Young diagrams. This formula uses two statistics on the mentioned
fillings, called “inv” and “maj”. The Haglund-Haiman-Loehr formula already found important applications, such
as new proofs of the Schur positivity for Macdonald polynomials [1, 3]. Let us also note that there is a version
of the Haglund-Haiman-Loehr formula for the non-symmetric Macdonald polynomials [5], as well as a different
formula for these polynomials due to Lascoux [7].

Schwer [18] gave a formula for the Hall-Littlewood polynomials of arbitrary type. Throughout this paper, we
use the version of Schwer’s formula that was derived by Ram [16]. Schwer’s formula is in terms of so-called
alcove walks, which originate in the work of Gaussent-Littelmann [2] and of the author with Postnikov [10, 11] on
discrete counterparts to the Littelmann path model [12, 13]. Schwer’s formula was recently generalized by Ram
and Yip to a similar formula for the Macdonald polynomials [17]. The generalization consists in the fact that the
latter formula is in terms of alcove walks with both “positive” and “negative” foldings, whereas in the former only
“positive” foldings appear.

In this paper, we relate the Ram-Yip formula to the Haglund-Haiman-Loehr formula. More precisely, we show
that we can group the terms in the type A version of the Ram-Yip formula into equivalence classes, such that
the sum in each class is a term in a new formula, which is similar to the Haglund-Haiman-Loehr one but contains
considerably fewer terms, see [9]. An equivalence class consists of all the terms corresponding to alcove walks that
produce the same filling of a Young diagram λ (indexing the Macdonald polynomial) via a simple construction. In
fact, in this paper we require that the partition λ is a regular weight; the general case will be considered elsewhere.

Our approach has the advantage of deriving the Haglund-Haiman-Loehr statistics “inv” and “maj” on fillings of
Young diagrams in a natural way, from more general concepts. It also has the advantage of being applicable to
other root systems, where no analog of the Haglund-Haiman-Loehr formula exists. As a first step in this direction,
we derive here a formula in terms of fillings of Young diagrams for the Hall-Littlewood polynomials of type C
indexed by a regular weight; we proceed by compressing the type C version of Schwer’s formula. A completely
similar formula exists in type B, while type D is slightly more complex.

The structure of this extended abstract is as follows. In Section 2 we present our formula of Haglund-Haiman-
Loehr type for the Macdonald polynomials of type A. In Section 3 we present our new formula for the Hall-
Littlewood polynomials of type C in terms of fillings of Young diagrams. In Section 4 we give background
information on root systems, alcove walks, the Ram-Yip formula, and Schwer’s formula. In Section 5 we specialize
the Ram-Yip formula to type A and explain how it compresses to our formula for the corresponding Macdonald

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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polynomials. In Section 6 we specialize Schwer’s formula to type C and explain how it compresses to our formula
for the corresponding Hall-Littlewood polynomials. The full length versions of sections 5 and 6 are [9] and [8],
respectively.

2 A new formula of Haglund-Haiman-Loehr type

In this section we present a new formula for the Macdonald polynomials of type A that is similar to the Haglund-
Haiman-Loehr one [4]. This formula will be derived by compressing the Ram-Yip formula [17]. It also turns out
that the new formula has considerably fewer terms even than the Haglund-Haiman-Loehr formula.

Let us consider a partition with n − 1 distinct parts λ = (λ1 > λ2 > . . . > λn−1 > 0) for a fixed n (this
corresponds to a dominant regular weight for the root system of type An−1). Using standard notation, one defines
n(λ) :=

∑
i(i− 1)λi. We identify λ with its Young (or Ferrers) diagram, as usual, and denote by (i, j) the cell in

row i and column j, where 1 ≤ j ≤ λi. We draw this diagram in “Japanese style”, that is, we embed it in the third
quadrant, as shown below:

λ = (4, 2) = .

For any cell u = (i, j) of λ with j 6= 1, denote the cell v = (i, j − 1) directly to the right of u by r(u).

Two cells u, v ∈ λ are said to attack each other if either

(i) they are in the same column: u = (i, j), v = (k, j); or

(ii) they are in consecutive columns, with the cell in the left column strictly above the one in the right column:
u = (i, j), v = (k, j − 1), where i < k.

Remark 2.1 The main difference in our approach compared to the Haglund-Haiman-Loehr one is in the definition
of attacking cells; note that in [4] these cells are defined similarly, except that u = (i, j) and v = (k, j − 1) with
i > k attack each other.

A filling is a function σ : λ → [n] := {1, . . . , n} for some n, that is, an assignment of values in [n] to the
cells of λ. As usual, we define the content of a filling σ as content(σ) := (c1, . . . , cn), where ci is the number of
entries i in the filling, i.e., ci := |σ−1(i)|. The monomial xcontent(σ) in the variables x1, . . . , xn is then given by
xcontent(σ) := xc11 . . . , xcn

n .

Definition 2.2 A filling σ : λ → [n] is called non-attacking if σ(u) 6= σ(v) whenever u and v attack each other.
Let T (λ, n) denote the set of non-attacking fillings.

Definition 2.3 Given a filling σ of λ, let

Des(σ) := {(i, j) ∈ λ : (i, j + 1) ∈ λ , σ(i, j) > σ(i, j + 1)} ,

Diff(σ) := {(i, j) ∈ λ : (i, j + 1) ∈ λ , σ(i, j) 6= σ(i, j + 1)} .

We define a reading order on the cells of λ as the total order given by considering the columns from right to left
(largest to smallest), and by reading each column from top to bottom. Note that this is a different reading order
than the usual (French or Japanese) ones.

Definition 2.4 An inversion of σ is a pair (u, v) of attacking cells, where u precedes v in the considered reading
order and σ(u) > σ(v). Let Inv(σ) denote the set of inversions of σ.

Here are two examples of inversions, where a < b:

b

a
,

a

b
.
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The arm of a cell u ∈ λ is the number of cells strictly to the left of u in the same row; similarly, the leg of u is
the number of cells strictly below u in the same column.

Definition 2.5 The maj and inv statistics on fillings σ are defined by

maj(σ) :=
∑

u∈Des(σ)

arm(u) , inv(σ) := |Inv(σ)| −
∑

u∈Des(σ)

leg(u) .

We are now ready to state a new combinatorial formula for the Macdonald P -polynomials in the variables
X = (x1, . . . , xn).

Theorem 2.6 Given a partition λ with n− 1 distinct parts, we have

Pλ(X; q, t) =
∑

σ∈T (λ,n)

tn(λ)−inv(σ)qmaj(σ)

 ∏
u∈Diff(σ)

1− t
1− qarm(u)tleg(u)+1

xcontent(σ) . (1)

3 Hall-Littlewood polynomials of type Cn

In this section we present a new formula for the Hall-Littlewood polynomials of type C in terms of fillings of
Young diagrams. This formula will be derived by compressing Schwer’s formula [18] (cf. also [16]).

Let λ = (λ1 > . . . > λn > 0) be a partition with n distinct parts for a fixed n ≥ 2 (this corresponds to a
dominant regular weight for the root system of type Cn). Consider the shape λ̂ obtained from λ by replacing each
column of height k with k or 2k − 1 (adjacent) copies of it, depending on the given column being the first one
or not. We are representing a filling σ of λ̂ as a concatenation of columns Cij and C ′ik, where i = 1, . . . , λ1,
while for a given i we have j = 1, . . . , λ′i if i > 1, j = 1 if i = 1, and k = 2, . . . , λ′i; the columns Cij and C ′ik
have height λ′i. The diagram λ̂ is represented in “Japanese style”, like in the previous section, i.e., the heights of
columns increase from left to right; more precisely, we let

σ = Cλ1 . . . C1 , where Ci :=

{
C ′i2 . . . C

′
i,λ′i

Ci1 . . . Ci,λ′i if i > 1
C ′i2 . . . C

′
i,λ′i

Ci1 if i = 1 .

Note that the leftmost column is Cλ1,1, and the rightmost column is C11. For an example, we refer to Section 6.

Essentially, the above description says that the column to the right of Cij is Ci,j+1, whereas the column to the
right of C ′ik is C ′i,k+1. Here we are assuming that the mentioned columns exist, up to the following conventions:

Ci,λ′i+1 =
{
C ′i−1,2 if i > 1 and λ′i−1 > 1
Ci−1,1 if i > 1 and λ′i−1 = 1 , C ′i,λ′i+1 = Ci1 . (2)

We consider the alphabet [n] := {1 < . . . < n < n < n− 1 < . . . < 1}, where the barred entries are viewed
as negatives, so that −ı = i. Next, we consider the set T (λ̂, n) of fillings of λ̂ with entries in [n] which satisfy the
following conditions:

1. the rows are weakly decreasing from left to right;

2. no column contains two entries a, b with a = ±b;

3. any two adjacent columns are related as indicated below (essentially, they differ by a “signed cycle”).

In order to explain the mentioned relation between adjacent columns, we consider right actions of type C reflec-
tions on columns (see Section 6). For instance, C(a, b) is the column obtained from C by transposing the entries in
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positions a, b and by changing their signs. Let us first explain the passage from some column Cij to Ci,j+1. There
exist positions 1 ≤ r1 < . . . < rp < j (possibly p = 0) such that Ci,j+1 differs from D = Cij(r1, ) . . . (rp, )
only in position j, while Ci,j+1(j) 6∈ {±D(r) : r ∈ [λ′i]\{j}} and Ci,j+1(j) ≤ D(j). To include the case j = λ′i
in this description, just replace Ci,j+1 everywhere by Ci,j+1[1, λ′i] and use the conventions (2). Let us now explain
the passage from some column C ′ik to C ′i,k+1. There exist positions 1 ≤ r1 < . . . < rp < k (possibly p = 0) such
that C ′i,k+1 = C ′ik(r1, k) . . . (rp, k). This description includes the case k = λ′i, based on the conventions (2).

Let us now define the content of a filling. For this purpose, we first associate with a filling σ a compressed
version of it, namely the filling σ of the partition 2λ. This is defined as follows:

σ = Cλ1
. . . C1

, where Ci := C ′i2Ci1 , (3)

where the conventions (2) are used again. Now define content(σ) = (m1, . . . ,mn), wheremi is half the difference
between the number of occurences of the entries i and ı in σ.

We now define two statistics on fillings that will be used in our compressed formula for Hall-Littlewood poly-
nomials. Intervals refer to the discrete set [n]. Let

σab :=

{
1 if a, b ≥ n
0 otherwise .

Given a sequence of integers w, we write w[i, j] for the subsequence w(i)w(i + 1) . . . w(j). We use the notation
Nab(w) for the number of entries w(i) in the interval (a, b).

Given two columns D,C of the same height d such that D ≥ C in the componentwise order, we will define two
statistics N(D,C) and des(D,C) in some special cases, as specified below.

Case 0. If D = C, then N(D,C) := 0 and des(D,C) := 0.

Case 1. Assume that C = D(r, ) with r < j. Let a := D(r) and b := D(j). In this case, we set

N(D,C) := Nba(D[r + 1, j − 1]) + |(b, a) \ {±D(i) : i = 1, . . . , j}|+ σab , des(D,C) := 1 .

Case 2. Assume that C = D(r1, ) . . . (rp, ) where 1 ≤ r1 < . . . < rp < j. Let Di := D(r1, ) . . . (ri, ) for
i = 0, . . . , p, so that D0 = D and Dp = C. We define

N(D,C) :=
p∑
i=1

N(Di−1, Di) , des(D,C) := p .

Case 3. Assume that C differs from D′ := D(r1, ) . . . (rp, ) with 1 ≤ r1 < . . . < rp < j (possibly p = 0)
only in position j, while C(j) 6∈ {±D′(r) : r ∈ [d] \ {j}} and C(j) ≤ D′(j). We define

N(D,C) := N(D,D′) +NC(j),D′(j)(D[j + 1, d]) , des(D,C) := p+ 1 .

If the height of C is larger than the height d of D (necessarily by 1), and N(D,C[1, d]) can be computed as
above, we let N(D,C) := N(D,C[1, d]) and des(D,C) := des(D,C[1, d]). Given a filling σ in T (λ̂, n) with
columns Cm, . . . , C1, we set

N(σ) :=
m−1∑
i=1

N(Ci+1, Ci) + inv(C1) ;

here inv(C1) denotes the number of (ordinary) inversions in C1, that is, the number of pairs i < j of positions in
C1 with C1(i) > C1(j). Furthermore, in the mentioned case, we also set

des(σ) :=
m−1∑
i=1

des(Ci+1, Ci) .

We can now state our new formula for the Hall-Littlewood polynomials of type C. We refer to Remarks 6.6 for
more comments on this formula.
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Theorem 3.1 Given a partition λ with n distinct parts, the Hall-Littlewood polynomial Pλ(X; t) is given by

Pλ(X; t) =
∑

σ∈T (bλ,n)

tN(σ) (1− t)des(σ) xcontent(σ) . (4)

4 Alcove walks and Macdonald polynomials

4.1 Root systems

We recall some background information on finite root systems and affine Weyl groups. Let g be a complex semisim-
ple Lie algebra, and h a Cartan subalgebra, whose rank is r. Let Φ ⊂ h∗ be the corresponding irreducible root
system, h∗R ⊂ h∗ the real span of the roots, and Φ+ ⊂ Φ the set of positive roots. Let ρ := 1

2 (
∑
α∈Φ+ α). Let

α1, . . . , αr ∈ Φ+ be the corresponding simple roots. We denote by 〈 · , · 〉 the non-degenerate scalar product on
h∗R induced by the Killing form. Given a root α, we consider the corresponding coroot α∨ := 2α/〈α, α〉 and
reflection sα.

Let W be the corresponding Weyl group, whose Coxeter generators are denoted, as usual, by si := sαi
. The

length function on W is denoted by `( · ). The Bruhat order on W is given by its covers wlwsβ , where β ∈ Φ+,
and `(wsβ) = `(w) + 1.

The weight lattice Λ is given by Λ := {λ ∈ h∗R : 〈λ, α∨〉 ∈ Z} for any α ∈ Φ. The weight lattice Λ is
generated by the fundamental weights ω1, . . . , ωr, which form the dual basis to the basis of simple coroots, i.e.,
〈ωi, α∨j 〉 = δij . The set Λ+ of dominant weights is given by Λ+ := {λ ∈ Λ : 〈λ, α∨〉 ≥ 0} for any α ∈ Φ+. Let
Z[Λ] be the group algebra of the weight lattice Λ, which has a Z-basis of formal exponents {xλ : λ ∈ Λ} with
multiplication xλ · xµ := xλ+µ.

Given α ∈ Φ and k ∈ Z, we denote by sα,k the reflection in the affine hyperplane

Hα,k := {λ ∈ h∗R : 〈λ, α∨〉 = k}. (5)

These reflections generate the affine Weyl group Waff for the dual root system Φ∨ := {α∨ : α ∈ Φ}. The
hyperplanes Hα,k divide the real vector space h∗R into open regions, called alcoves. The fundamental alcove A◦ is
given by

A◦ := {λ ∈ h∗R : 0 < 〈λ, α∨〉 < 1 for all α ∈ Φ+}.

4.2 Alcove walks

We say that two alcovesA andB are adjacent if they are distinct and have a common wall. Given a pair of adjacent

alcoves A 6= B (i.e., having a common wall), we write A
β−→ B if the common wall is of the form Hβ,k and the

root β ∈ Φ points in the direction from A to B.

Definition 4.1 [10] An alcove path is a sequence of alcoves such that any two consecutive ones are adjacent. We
say that an alcove path (A0, A1, . . . , Am) is reduced if m is the minimal length of all alcove paths from A0 to Am.

We need the following generalization of alcove paths.

Definition 4.2 An alcove walk is a sequence Ω = (A0, F1, A1, F2, . . . , Fm, Am, F∞) such that A0, . . . , Am are
alcoves; Fi is a codimension one common face of the alcoves Ai−1 and Ai, for i = 1, . . . ,m; and F∞ is a vertex
of the last alcove Am. The weight F∞ is called the weight of the alcove walk, and is denoted by µ(Ω).

The folding operator φi is the operator which acts on an alcove walk by leaving its initial segment from A0 to
Ai−1 intact and by reflecting the remaining tail in the affine hyperplane containing the face Fi. In other words, we
define

φi(Ω) := (A0, F1, A1, . . . , Ai−1, F
′
i = Fi, A

′
i, F
′
i+1, A

′
i+1, . . . , A

′
m, F

′
∞) ,
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where A′j := ρi(Aj) for j ∈ {i, . . . ,m}, F ′j := ρi(Fj) for j ∈ {i, . . . ,m} ∪ {∞}, and ρi is the affine reflection
in the hyperplane containing Fi. Note that any two folding operators commute. An index j such that Aj−1 = Aj
is called a folding position of Ω. Let fp(Ω) := {j1 < . . . < js} be the set of folding positions of Ω. If this set is
empty, Ω is called unfolded. Given this data, we define the operator “unfold”, producing an unfolded alcove walk,
by

unfold(Ω) = φj1 . . . φjs(Ω) .

Definition 4.3 A folding position j of the alcove walk Ω = (A0, F1, A1, F2, . . . , Fm, Am, F∞) is called a positive
folding if the alcoveAj−1 = Aj lies on the positive side of the affine hyperplane containing the face Fj . Otherwise,
the folding position is called a negative folding.

Let τλ ∈ Waff denote the translation by λ. Recall the bijection A 7→ vA between alcoves and affine Weyl
group elements given by vA(A◦) = A. We now fix a dominant weight λ and a reduced alcove path Π :=
(A0, A1, . . . , Am) from A◦ = A0 to the alcove Am corresponding to the minimal element in the coset τλW under
the mentioned bijection. Assume that we have

A0
β1−→ A1

β2−→ . . .
βm−→ Am , (6)

where Γ := (β1, . . . , βm) is a sequence of positive roots. This sequence, which determines the alcove path, is
called a λ-chain (of roots).

We also let ri := sβi
, and let r̂i be the affine reflection in the common wall of Ai−1 and Ai, for i = 1, . . . ,m;

in other words, r̂i := sβi,li , where li := |{j ≤ i : βj = βi}| is the cardinality of the corresponding set. Given
J = {j1 < . . . < js} ⊆ [m] := {1, . . . ,m}, we define the Weyl group element φ(J) and the weight µ(J) by

φ(J) := rj1 . . . rjs , µ(J) := r̂j1 . . . r̂js(λ) . (7)

4.3 The Ram-Yip formula for Macdonald polynomials

Given w ∈W and the alcove path Π considered above, we define the alcove path

w(Π) := (w(A0), w(A1), . . . , w(Am)) .

Consider the set of alcove paths P(Γ) := {w(Π) : w ∈ W}. We identify any w(Π) with the obvious unfolded
alcove walk of weight µ(w(Π)) := w(λ). Let us now consider the set of alcove walks

F(Γ) := { alcove walks Ω : unfold(Ω) ∈ P(Γ)} .

We can encode an alcove walk Ω in F(Γ) by the pair (w, J) in W × 2[m], where

fp(Ω) = J and unfold(Ω) = w(Π) .

Clearly, we can recover Ω from (w, J) with J = {j1 < . . . < js} by Ω = φj1 . . . φjs(w(Π)). We call a pair (w, J)
a folding pair, and, for simplicity, we denote the set W × 2[m] of such pairs by F(Γ) as well. Given a folding pair
(w, J), the corresponding positive and negative foldings (viewed as a partition of J) are denoted by J+ and J−.

Proposition 4.4 (1) Consider a folding pair (w, J) with J = {j1 < . . . < js}. We have ji ∈ J+ if and only if
wrj1 . . . rji−1 > wrj1 . . . rji−1rji . (2) If Ω 7→ (w, J), then µ(Ω) = w(µ(J)).

We call the sequence w, wrj1 , . . . , wrj1 . . . rjs = wφ(J) the Bruhat chain associated to (w, J).

We now restate the Ram-Yip formula [17] for the Macdonald polynomials Pλ(X; q, t) in terms of folding pairs.
From now on we assume that the weight λ is regular (and dominant), i.e., 〈λ, α∨〉 > 0 for all positive roots α.

Theorem 4.5 [17] Given a dominant regular weight λ, we have (based on the notation in Section 4.2)

Pλ(X; q, t) = (8)

=
∑

(w,J)∈F(Γ)

t
1
2 (`(w)−`(wφ(J))−|J|) (1− t)|J|

 ∏
j∈J+

1

1− qlj t〈ρ,β∨j 〉

 ∏
j∈J−

qlj t〈ρ,β
∨
j 〉

1− qlj t〈ρ,β∨j 〉

xw(µ(J)) .
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4.4 Schwer’s formula for Hall-Littlewood polynomials

Let us now consider a reduced alcove path from A◦ to A◦ + λ. The associated chain of roots Γ, defined as in (6),
will be called an extended λ-chain. All the previous definitions can be adapted to this setup. Let F+(Γ) consist of
the folding pairs (w, J) with J− = ∅, which will be called positive folding pairs.

Theorem 4.6 [16, 18] Given a dominant regular weight λ, the Hall-Littlewood polynomial Pλ(X; t) is given by

Pλ(X; t) =
∑

(w,J)∈F+(Γ)

t
1
2 (`(w)+`(wφ(J))−|J|) (1− t)|J| xw(µ(J)) . (9)

5 Compressing the Ram-Yip formula in type An−1

We now restrict ourselves to the root system of type An−1, fow which the Weyl group W is the symmetric group
Sn. Permutations w ∈ Sn are written in one-line notation w = w(1) . . . w(n). We can identify the space h∗R
with the quotient space V := Rn/R(1, . . . , 1), where R(1, . . . , 1) denotes the subspace in Rn spanned by the
vector (1, . . . , 1). The action of the symmetric group Sn on V is obtained from the (left) Sn-action on Rn by
permutation of coordinates. Let ε1, . . . , εn ∈ V be the images of the coordinate vectors in Rn. The root system
Φ can be represented as Φ = {αij := εi − εj : i 6= j, 1 ≤ i, j ≤ n}. The simple roots are αi = αi,i+1,
for i = 1, . . . , n − 1. The fundamental weights are ωi = ε1 + . . . + εi, for i = 1, . . . , n − 1. The weight
lattice is Λ = Zn/Z(1, . . . , 1). A dominant weight λ = λ1ε1 + . . . + λn−1εn−1 is identified with the partition
(λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn = 0) of length at most n − 1. We fix such a partition λ for the remainder of this
section.

For simplicity, we use the same notation (i, j) with i < j for the root αij and the reflection sαij
, which is the

transposition of i and j. Consider the following chain of roots, denoted by Γ(k):

( (k, n), (k, n− 1), . . . , (k, k + 1) ,
(k − 1, n), (k − 1, n− 1), . . . , (k − 1, k + 1) ,

. . .
(1, n), (1, n− 1), . . . , (1, k + 1) ) .

(10)

Denote by Γ′(k) the chain of roots obtained by removing the root (i, k + 1) at the end of each row. Now define a
chain Γ as a concatenation Γ := Γλ1 . . .Γ2, where

Γj :=

{
Γ′(λ′j) if j = min {i : λ′i = λ′j}
Γ(λ′j) otherwise .

It is not hard to verify that Γ is a λ-chain in the sense discussed in Section 4.2. The λ-chain Γ is fixed for the
remainder of this section. Thus, we can replace the notation F(Γ) with F(λ).

Example 5.1 Consider n = 4 and λ = (4, 3, 1, 0), for which we have the following λ-chain (the underlined pairs
are only relevant in Example 5.2 below):

Γ = Γ4Γ3Γ2 = ((1, 4), (1, 3) | (2, 4), (2, 3), (1, 4), (1, 3) | (2, 4), (1, 4)) . (11)

Given the λ-chain Γ above, in Section 4.2 we considered subsets J = {j1 < . . . < js} of [m], where m is the
length of the λ-chain. Instead of J , it is now convenient to use the subsequence of Γ indexed by the positions in
J . This is viewed as a concatenation with distinguished factors T = Tλ1 . . . T2 induced by the factorization of Γ
as Γλ1 . . .Γ2. The partition J = J+ t J− induces partitions T = T+ t T− and Tj = T+

j t T
−
j . All the notions

defined in terms of J are now redefined in terms of T . As such, from now on we will write φ(T ), µ(T ), and |T |,
the latter being the size of T . If (w, J) is a folding pair, we will use the same name for the corresponding pair
(w, T ). We will use the notation F(Γ) and F(λ) accordingly. We denote by wTλ1 . . . Tj the permutation obtained
from w via right multiplication by the transpositions in Tλ1 , . . . , Tj , considered from left to right. This agrees with
the above convention of using pairs to denote both roots and the corresponding reflections. As such, φ(J) in (7)
can now be written simply T .
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Example 5.2 We continue Example 5.1, by picking the folding pair (w, J) with w = 2341 ∈ S4 and J =
{1, 4, 6, 7} (see the underlined positions in (11)). Thus, we have

T = T4T3T2 = ((1, 4) | (2, 3), (1, 3) | (2, 4)) .

Note that J+ = {1, 7} and J− = {4, 6}. Indeed, we have the following Bruhat chain associated to (w, T ), where
the transposed entries are shown in bold (we represent permutations as broken columns):

w =

2

3
4
1

>

1

3
4
2

|

1
3

4
2

<

1
4

3
2

<

3
4

1
2

|

3
4

1
2

>

3
2

1
4

|

3
2
1

4

.

Given a folding pair (w, T ), we consider the permutations

πj = πj(w, T ) := wTλ1Tλ1−1 . . . Tj+1 ,

for j = 1, . . . , λ1. In particular, πλ1 = w.

Definition 5.3 The filling map is the map f from folding pairs (w, T ) to fillings σ = f(w, T ) of the shape λ,
defined by σ(i, j) := πj(i).

Example 5.4 Given (w, T ) as in Example 5.2, we have

f(w, T ) =
2 1 3 3

3 4 2
1
.

From now on, we assume that the partition λ corresponds to a regular weight, i.e., (λ1 > . . . > λn−1 > 0). We
will now describe the way in which the formula (1) of Haglund-Haiman-Loehr type can be obtained by compressing
the Ram-Yip formula (8). Thus, Theorem 2.6 becomes a corollary of Theorem 5.5 below. We start by rewriting
the Ram-Yip formula (8) in the type A setup, as follows:

Pλ(X; q, t) =
∑

(w,T )∈F(Γ)

t
1
2 (`(w)−`(wT )−|T |) (1− t)|T |

 ∏
j,(i,k)∈T+

j

1
1− qarm(−j+1,−i)tk−i

×

×

 ∏
j,(i,k)∈T−j

qarm(−j+1,−i)tk−i

1− qarm(−j+1,−i)tk−i

xw(µ(T )) .

Theorem 5.5 We have f(F(λ)) = T (λ, n). Given any σ ∈ T (λ, n) and any (w, T ) ∈ f−1(σ), we have
content(f(w, T )) = w(µ(T )). Furthermore, the following compression formula holds for any σ ∈ T (λ, n):

∑
(w,T )∈f−1(σ)

t
1
2 (`(w)−`(wT )−|T |) (1− t)|T |

 ∏
j,(i,k)∈T+

j

1
1− qarm(i,j−1)tk−i

×

×

 ∏
j,(i,k)∈T−j

qarm(i,j−1)tk−i

1− qarm(i,j−1)tk−i

 = tn(λ)−inv(σ)qmaj(σ)

 ∏
u∈Diff(σ)

1− t
1− qarm(u)tleg(u)+1

 .



560 Cristian Lenart

6 Compressing Schwer’s formula in type Cn

We now restrict ourselves to the root system of typeCn. We can identify the space h∗R with V := Rn, the coordinate
vectors being ε1, . . . , εn. The root system Φ can be represented as Φ = {±εi ± εj : 1 ≤ i < j ≤ n} ∪ {±2εi :
1 ≤ i ≤ n}. The simple roots are αi = εi − εi+1, for i = 1, . . . , n− 1 and αn = 2εn. The fundamental weights
are ωi = ε1 + . . .+ εi, for i = 1, . . . , n. The weight lattice is Λ = Zn. A dominant weight λ = λ1ε1 + . . .+λnεn
is identified with the partition (λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0) of length at most n. We fix such a partition λ for the
remainder of this section.

The corresponding Weyl group W is the group of signed permutations Bn. Such permutations are bijections w
from [n] := {1 < . . . < n < n < n− 1 < . . . < 1} to [n] satisfying w(ı) = w(i). We use the window notation
w = w(1) . . . w(n). The group Bn acts on V as usual, by permuting the coordinate vectors and by changing their
signs.

For simplicity, we use the same notation (i, j) with 1 ≤ i < j ≤ n for the positive root εi − εj and the corre-
sponding reflection, which, in the window notation, is the transposition of entries in positions i and j. Similarly, we
denote by (i, ), again for i < j, the positive root εi + εj and the corresponding reflection; in the window notation,
the latter is the transposition of entries in positions i and j followed by the sign change of those entries. Finally,
we denote by (i, ı) the positive root 2εi and the corresponding reflection, which is the sign change in position i.

Let
Γ(k) := Γ′2 . . .Γ

′
kΓ1(k) . . .Γk(k) ,

where
Γ′j := ((1, ), (2, ), . . . , (j − 1, )) ,

Γj(k) := ( (1, ), (2, ), . . . , (j − 1, ),
(j, k + 1), (j, k + 2), . . . , (j, n),
(j, ),
(j, n), (j, n− 1), . . . , (j, k + 1) ) .

It is not hard to see that Γ(k) is an extended ωk-chain, in the sense discussed in Section 4.4. Hence, we can
construct an extended λ-chain as a concatenation Γ := Γλ1 . . .Γ1, where

Γi = Γ(λ′i) = Γ′i2 . . .Γ
′
i,λ′i

Γi1 . . .Γi,λ′i , and Γij = Γj(λ′i) , Γ′ij = Γ′j . (12)

This extended λ-chain is fixed for the remainder of this section. Thus, we can replace the notation F+(Γ) with
F+(λ).

Example 6.1 Consider n = 3 and λ = (3, 2, 1), for which we have the extended λ-chain below. The factorization
of Γ into subchains is indicated by vertical bars, while the double vertical bars separate the subchains corresponding
to different columns. The underlined pairs are only relevant in Example 6.2 below.

Γ = Γ31 || Γ′22Γ21Γ22 || Γ′12Γ′13Γ11Γ12Γ13 = (13)

= ((1, 2), (1, 3), (1, 1), (1, 3), (1, 2) || (1, 2) | (1, 3), (1, 1), (1, 3) | (1, 2), (2, 3), (2, 2), (2, 3) ||

(1, 2) | (1, 3), (2, 3) | (1, 1) | (1, 2), (2, 2) | (1, 3), (2, 3), (3, 3)) .

Given the extended λ-chain Γ above, in Section 4.2 we considered subsets J = {j1 < . . . < js} of [m], where
m is the length of Γ. Instead of J , it is now convenient to use the subsequence of Γ indexed by the positions in
J . This is viewed as a concatenation with distinguished factors Tij and T ′ik induced by the factorization (12) of
Γ. All the notions defined in terms of J are now redefined in terms of T . As such, from now on we will write
φ(T ), µ(T ), and |T |, the latter being the size of T . If (w, J) is positive folding pair, we will use the same name for
the corresponding pair (w, T ). We denote by wTλ1,1 . . . Tij and wTλ1,1 . . . T

′
ik the permutations obtained from w

via right multiplication by the reflections in Tλ1,1, . . . , Tij and Tλ1,1, . . . , T
′
ik, considered from left to right. This

agrees with the above convention of using pairs to denote both roots and the corresponding reflections. As such,
φ(J) in (7) can now be written simply T .
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Example 6.2 We continue Example 6.1, by picking the positive folding pair (w, J) with w = 1 2 3 ∈ B3 and
J = {2, 6, 12, 13} (see the underlined positions in (13)). Thus, we have

T = T31 || T ′22T21T22 || T ′12T
′
13T11T12T13 = ((1, 3) || (1, 2) | | (2, 2), (2, 3) || | | | | ) .

We have the following decreasing Bruhat chain associated to (w, T ), where the modified entries are shown in bold
(we represent signed permutations as broken columns, as in Example 5.2, and we display the splitting of the chain
into subchains induced by the above splitting of T ):

w =
1

2
3

>

3

2
1

||
3
2

1

>

2
3

1

|
2
3

1

|
2
3

1

>

2
3

1

>

2
1

3

||
2
1
3 |

2
1
3 |

2
1
3 |

2
1
3 |

2
1
3 .

Given a positive folding pair (w, T ), with T split into factors Tij and T ′ik as above, we consider the signed
permutations

πij = πij(w, T ) := wTλ1,1 . . . Ti,j−1 , π′ik = π′ik(w, T ) := wTλ1,1 . . . T
′
i,k−1 ;

when undefined, Ti,j−1 and T ′i,k−1 are given by conventions similar to (2), based on the corresponding factorization
(12) of the extended λ-chain Γ. In particular, πλ1,1 = w.

Let us now recall the notation in Section 3.

Definition 6.3 The filling map is the map f̂ from positive folding pairs (w, T ) to fillings σ = f̂(w, T ) of the shape
λ̂, defined by Cij = πij [1, λ′i] and C ′ik = π′ik[1, λ′i].

Example 6.4 Given (w, T ) as in Example 6.2, we have

f̂(w, T ) =
1 3 2 2 2 2 2

2 3 3 1 1 1
3 3 3

.

From now on, we assume that the partition λ corresponds to a regular weight, i.e., (λ1 > . . . > λn > 0). We
will now describe the way in which the formula (4) can be obtained by compressing Schwer’s formula (9). Thus,
Theorem 3.1 becomes a corollary of the theorem below.

Theorem 6.5 We have f̂(F+(λ)) = T (λ̂, n). Given any σ ∈ T (λ̂, n) and (w, T ) ∈ f̂−1(σ), we have w(µ(T )) =
content(f̂(w, T )). Furthermore, the following compression formula holds for any σ ∈ T (λ̂, n):∑

(w,T )∈ bf−1(σ)

t
1
2 (`(w)+`(wφ(T ))−|T |) (1− t)|T | = tN(σ) (1− t)des(σ) . (14)

Remarks 6.6 (1) The Kashiwara-Nakashima tableaux [6] of shape λ index the basis elements of the irreducible
representation of sp2n of highest weight λ. These tableaux correspond precisely to the surviving fillings in our
formula (4) when we set t = 0. More precisely, the map σ 7→ σ (see (3)) is a bijection between the fillings σ in
T (λ̂, n) with N(σ) = 0 and the “doubled” versions of the type C Kashiwara-Nakashima tableaux of shape λ.

(2) In some special cases, the statistic N(σ) is essentially the Haglund-Haiman-Loehr “inv” statistic (extended
naturally to our signed fillings), as explained below. Let σ in T (λ̂, n) be a filling satisfying the following properties:
(1) C ′i,j+1 = C ′i,j for all i and j = 1, . . . , λ′i; (2) Ci,j+1 only differs from Cij in position j. Let σ̃ be the filling of
λ given by σ̃ := Cλ1,1Cλ1−1,1 . . . C11. Then N(σ) = n(λ)− inv(σ̃), where n(λ) :=

∑
i(i− 1)λi and inv(σ) is

the Haglund-Haiman-Loehr “inv” statistic, cf. Remark 2.1 and Definition 2.5.
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On the 2-adic order of Stirling numbers of the
second kind and their differences

Tamás Lengyel1

1Occidental College, 1600 Campus Road, Los Angeles, CA90041, USA

Let n and k be positive integers, d(k) and ν2(k) denote the number of ones in the binary representation of k and
the highest power of two dividing k, respectively. De Wannemacker recently proved for the Stirling numbers of the
second kind that ν2(S(2n, k)) = d(k)−1, 1 ≤ k ≤ 2n. Here we prove that ν2(S(c2n, k)) = d(k)−1, 1 ≤ k ≤ 2n,
for any positive integer c. We improve and extend this statement in some special cases. For the difference, we obtain
lower bounds on ν2

`
S(c2n+1 + u, k)− S(c2n + u, k)

´
for any nonnegative integer u, make a conjecture on the

exact order and, for u = 0, prove part of it when k ≤ 6, or k ≥ 5 and d(k) ≤ 2.

The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell
polynomials, and some divisibility properties.

Keywords: Stirling number of the second kind, congruences for power series and polynomials, divisibility

1 Introduction
The study of p-adic properties of Stirling numbers of the second kind is full with challenging problems.
Lengyel (1994) proved that

ν2(S(2n, k)) = d(k)− 1 (1)

for all sufficiently large n, and in fact, n ≥ k − 2 suffices and conjectured that ν2(S(2n, k)) = d(k)− 1
for all values of k : 1 ≤ k ≤ 2n. The conjecture was eventually proved by De Wannemacker.

Theorem 1 (De Wannemacker (2005)) Let n, k ∈ N and 1 ≤ k ≤ 2n. Then we have

ν2(S(2n, k)) = d(k)− 1. (2)

Related results for k ≤ 5 can be found in Amdeberhan et al. (2008). We generalize De Wannemacker’s
proof in Section 2. We obtain related results in Section 3. For example, we prove that the 2-adic
order of S(a2n, b2n) becomes constant as n → ∞ for any positive integers a ≥ b. As a new di-
rection of investigation, we study the differences of Stirling numbers in Section 4. Lower bounds on
ν2
(
S(c2n+1 + u, k)− S(c2n + u, k)

)
for any nonnegative integer u and a conjecture on the exact order

are presented. For u = 0, we prove the conjecture provided that k ≤ 6, or k ≥ 5 and d(k) ≤ 2.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The proofs rely on the use of identity (7) by De Wannemacker (2005), the inclusion-exclusion principle
based calculation (20) of the Stirling numbers, their generating function (10) and a family of congruential
identities for Bell polynomials (23) by Junod (2002). Section 5 utilizes (23) to improve previous results.
Section 6 shows that some of the results can be extended to primes other than two.

We note that ?, and ? also use formal power series or umbral calculus based techniques to prove divis-
ibility properties.

Exact 2-adic orders are determined in Theorems 2-5, 7, and 12-13. As a summary, we note that the
2-adic order ν2(S(a2n + u, b2n + v)) is discussed with the particular triplet (u, v, b) of parameters. In
general, exact values are obtained (except in Remark 2 in which we determine lower bounds on the
2-adic orders). For instance, (0, 2m − 1, 0) (or (1, 2m, 0)), 2 ≤ m < log2(a2n + 1), in Theorem 4
(or in Remark 3); (0, 2m, 0), 2 ≤ m ≤ n, in Theorem 4; (u, u, b), 0 ≤ u < 2n, in Theorem 5; and
(2m, 0, 1), 0 ≤ m ≤ n− 1, in Theorem 6; potentially with some other extra assumptions.

In this paper, we include the proofs of the theorems or their sketches if they use generating function or
power series based arguments but omit some other proofs.

We note that generating functions (Section 3) and related formal power series (Section 5) based tech-
niques outlined in this paper might lead to improved congruential identities, p-adic results, or their alter-
native proofs involving other combinatorial quantities, their lacunary series, and their differences, often
proved by other methods.

2 A generalization
Theorem 2 Let n, k, c ∈ N and 1 ≤ k ≤ 2n, then

ν2(S(c2n, k)) = d(k)− 1. (3)

Remark 1 In other words, for any fixed k ≥ 1, we have that ν2(S(c2n, k)) = d(k)− 1 if n ≥ dlog2 ke.
Without loss of generality, we may assume that c is an odd integer (otherwise, we can factor c into a power
of two and an odd integer). Note that we obtain

ν2(S(4c, 5)) ≥ 2 > 1 = d(5)− 1 (4)

for c ≥ 1 odd by (Amdeberhan et al., 2008, formula (3.1))

S(n, 5) =
1
24

(5n−1 − 4n + 2 · 3n − 2n+1 + 1), n ≥ 1. (5)

For the generalization of (4) see Remark 2. In a similar fashion,

S(n, 4) =
1
6
(4n−1 − 3n + 3 · 2n−1 − 1), n ≥ 1, (6)
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proves that S(c, 4) is even if c is odd (Amdeberhan et al., 2008, identity (2.14)) while d(4)−1 = 0. Also,
S(c2n, c2n − 1) =

(
c2n

2

)
and therefore,

ν2(S(c2n, c2n − 1)) = n− 1 < n ≤ d(c2n − 1)− 1 = n+ d(c)− 2,

for n ≥ 1, c > 1 odd. More involved cases of a different type are covered by Theorems 6 and 7. Thus,
we cannot expect to extend Theorems 1 and 2 beyond the range 1 ≤ k ≤ 2n, i.e., dlog2 ke ≤ n. On the
other hand, we mention some extensions in Remark 2.

Proof of Theorem 2: The proof is by induction on d(c). The initial case is with d(c) = 1, i.e., when c2n

is a power of two, and it is taken care of by Theorem 1.

For d(c) ≥ 2, we use the identity from (De Wannemacker, 2005, Theorem 2)

S(n+m, k) =
k∑
i=0

k∑
j=i

(
j

i

)
(k − i)!
(k − j)!

S(n, k − i)S(m, j) (7)

which plays a crucial role in the proof of Theorem 1 in De Wannemacker (2005). Assume that (3) holds
for all c ≥ 1 with d(c) ≤ d− 1 for some d ≥ 2. We prove that it holds for all c with d(c) = d. In fact, let
c′2n be the highest power of two contained in c2n. Then we can write c2n as the sum c′2n + (c− c′)2n,
and by (7) we get that

S(c′2n + (c− c′)2n, k) =
k∑
i=0

k∑
j=i

(
j

i

)
(k − i)!
(k − j)!

S(c′2n, k − i)S((c− c′)2n, j)

since d(c′) = 1, d(c− c′) = d(c)− 1 ≤ d− 1, and k − i, j ≤ 2n. By the induction hypothesis

ν2(S(c′2n, k − i)S((c− c′)2n, j)) = d(k − i) + d(j)− 2,

and the proof proceeds exactly the same way as in (De Wannemacker, 2005, Section 3). 2

Remark 2 We can generalize inequality (4) and find that in general, if a is an integer such that 1 ≤
a ≤ 2n − 2 then ν2(S(c2n, 2n + a)) ≥ d(a) + 1 > d(a) = d(2n + a) − 1 for c ≥ 3 odd. (On the
other hand, ν2(S(c2n, 2n + a)) = d(a) for a = 2n − 1, n ≥ 1 and c ≥ 2 as we will see in (9) of
Theorem 4.) We leave the proof to the reader but note that it is similar to that of Theorems 1 and 2. In
fact, after expanding S(c2n, 2n+a) = S((c−1)2n+2n, 2n+a) by identity (7) and focusing on the terms(
j
i

) (2n+a−i)!
(2n+a−j)!S((c− 1)2n, 2n+a− i)S(2n, j), 0 ≤ i ≤ j ≤ 2n, the 2-adic order of the terms can now be

easily calculated by Theorem 2. It is ν2(
(
j
i

)
)+ν2((2n+a−i)!)−ν2((2n+a−j)!)+ν2(S((c−1)2n, 2n+

a−i))+ν2(S(2n, j)) ≥ 2n+a−i−d(2n+a−i)−(2n+a−j)+d(2n+a−j)+d(2n+a−i)−1+d(j)−1 ≥
j−i+d(2n+a)−2 = d(a)−1+j−i. (Here we used the fact that d(2n+a−j)+d(j) ≥ d(2n+a).) Now
we can combine the terms with 2-adic orders d(a)−1 and d(a) to yield the result. By a similar technique,
we can also prove that ν2(S(c2n + b, 2n + a)) ≥ d(a)− 2 for integers c ≥ 3 odd and 1 ≤ b < a < 2n.
Note that the case with a = b is treated by Theorem 5.



566 Tamás Lengyel

Note that if c is even then ν2(S(c2n, 2n+a)) = d(a) for 1 ≤ a ≤ 2n−1 by Theorem 2. We can further
explore the subtle differences between the cases with c odd and even. Numerical experience suggests the
following somewhat surprising conjecture.

Conjecture 1 We have ν2(S((2r + 1)2n, 2n + a)) = d(a) + r for integers r ≥ 1, 1 ≤ a ≤ 2n−1, and
sufficiently large n.

We also state the following simplified and limited version of the conjecture. It assumes that the 2-adic
order ν2(a) of a and thus, n are large. We present its proof after that of Theorem 5.

Theorem 3 We have ν2(S(c2n, 2n+a)) = d(a)+ν2(c−1) for c ≥ 3 odd, 1 ≤ a < 2n, if ν2(a)−d(a) >
ν2(c− 1) + 1.

3 Other properties
Numerical experimentations reveal other interesting properties of the Stirling numbers of the second kind
S(c2n, k). For example, we can slightly improve Theorem 2 for two special values of k.

Theorem 4 Let n, c ∈ N and m be an integer, 2 ≤ m ≤ n, then

S(c2n, 2m) ≡ 1 mod 4 (8)

and for 2 ≤ m with c2n > 2m − 1,

S(c2n, 2m − 1) ≡ 3 · 2m−1 mod 2m+1. (9)

Proof of Theorem 4: For c = 1 (or any power of two), the proof of (8) is based on that of Theorem 1.
For other values of c, the proof is similar to that of Theorem 2.

The proof of congruence (9), however, is rather different. We leave some details to the reader. The
cases with m = 2 and 3 are easy. For m ≥ 4, we use the generating function (cf. Comtet (1974))

fk(x) =
∞∑
n=0

S(n+ k, k)xn =
1

(1− x)(1− 2x) · · · (1− kx)
(10)

with k = 2m − 1. The proof is based on the formal power series expansion of fk(x) mod 2m+1. We
note that the coefficient of xc2

n−2m+1 is S(c2n, 2m − 1). We make two groups of the factors in the
denominator. It can be proven that for m ≥ 3

2m−1∏
i=1

(1− (2i− 1)x) ≡ (1 + 3x2)2
m−2

mod 2m+1, (11)

and for m ≥ 4
2m−1−1∏
i=1

(1− 2ix) ≡ 1 + 2m−1x+ 2m−1x2 + 2mx4 mod 2m+1,

and thus,
1∏2m−1−1

i=1 (1− 2ix)
≡ 1 + 3 · 2m−1x+ 3 · 2m−1x2 + 2mx4 mod 2m+1. (12)
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For example, to prove (11), we set gm+1(x) =
∏2m

i=1(1− (2i− 1)x). Clearly, g3(x) ≡ 1 + 6x2 + 9x4 ≡
(1 + 3x2)2 mod 16, g4(x) ≡ 1 + 12x2 + 22x4 + 12x6 + 17x8 ≡ (1 + 3x2)4 mod 32, and note that
in general, for m ≥ 2, gm+1(x) =

∏2m

i=1(1 − (2i − 1)x) = gm(x)
∏2m

i=2m−1+1(1 − (2i − 1)x) =

gm(x)
∏2m−1

i=1 (1 − (2i − 1 + 2m)x) ≡ gm(x)(gm(x) − hm(x)) ≡ ((1 + 3x2)2
m−2

+ c12m+1)((1 +
3x2)2

m−2
+ c12m+1 − hm(x)) ≡ (1 + 3x2)2

m−1
mod 2m+2 with some integer c1 and hm(x) =

2mxgm(x)
(

1
1−x + 1

1−3x + · · ·+ 1
1−(2m−1)x

)
, by induction on m.

Here, we also relied on the fact that, for the power sum Sj = 1j + 3j + · · · + (2m − 1)j we have
ν2(Sj) ≥ m− 1 ≥ 2 for m ≥ 3, which can be easily proven by induction on m (cf. Lengyel (2007)).

Recall that we need the coefficient of xc2
n−2m+1 in f2m−1(x) mod 2m+1. When combined, congru-

ences (11) and (12) give A ≡ 3 · 2m−1(−3)i
(
2m−2+i−1

i

)
mod 2m+1 with i = (c2n − 2m)/2, making i a

multiple of 2m−1. Noting that (−3)i ≡ 1 mod 2m+1 and
(
2m−2+i−1

i

)
≡ 1 mod 4, this implies that A ≡

3 · 2m−1 mod 2m+1, i.e., the congruence (9). 2

Remark 3 We note that the congruence (9) does not require that the exponent n be at least as large as m
but that c2n > 2m − 1, and the proof makes no use of Theorem 2. This congruence allows us to prove
that

ν2(S(c2n + 1, 2m)) = m− 1. (13)

In fact, by the usual recurrence S(c2n + 1, 2m) = 2mS(c2n, 2m) + S(c2n, 2m − 1) and ν2(S(c2n, 2m −
1)) = m− 1, thus (13) follows.

The above proof of congruence (9) can be modified to yield the following

Theorem 5 Let a, b, and n ∈ N, b ≤ a, and n be sufficiently large (in terms of a and b). Then the
2-adic order of S(a2n, b2n) becomes constant as n→∞. In fact, with g(a, b) = ν2

(((2a−b)2n−2−1
(a−b)2n−1

))
=

d((a− b)2n−1) + d(b2n−2 − 1)− d((2a− b)2n−2 − 1) = d(a− b) + d(b− 1)− d(2a− b− 1), for any
n > max{2, g(a, b) + 1} we get that

ν2 (S(a2n, b2n)) = g(a, b), (14)

and in general,
ν2 (S(a2n + u, b2n + u)) = g(a+ 1, b+ 1),

independently of u, for any integer u : 1 ≤ u < 2n as long as ν2(u) > max{2, g(a+ 1, b+ 1) + 1}. The
periodicity of g(a, b) yields that ν2 (S((a+ 2t)2n, b2n)) = ν2 (S(a2n, b2n)) if t ≥ dlog2(2a − b)e is a
nonnegative integer.

Proof of Theorem 5: We need the coefficient of x(a−b)2n in fb2n(x) ≡ (1 + 3x2)−b2
n−2

mod 2n−1 with
n ≥ 3, since here it is sufficient to combine congruences (11) and (12) mod 2n−1 rather than mod 2n+1

for n ≥ 4. Also note that
∏3
i=1(1 − 2ix) ≡ 1 mod 4 for n = 3. It follows that the 2-adic order of the

coefficient is equal to that of
((2a−b)2n−2−1

(a−b)2n−1

)
, similarly to the proof of (9).

The proof for a general u > 0 follows by writing u as t2q with q = ν2(u) < n and some odd t, 1 ≤
t < 2n−q . Therefore, for example, a2n + u = (a2n−q + t)2q , and thus, in identity (14), the parameters q,
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a2n−q + t, and b2n−q + t can play the role of n, a, and b, respectively. In fact, with these values, we get
that g(a2n−q + t, b2n−q + t) = d((a− b)2n−q) + d(b2n−q + t− 1)− d((2a− b)2n−q + t− 1) which
simplifies to d((a−b)2n−q)+d(b2n−q)−d((2a−b)2n−q) = d(a−b)+d(b)−d(2a−b) = g(a+1, b+1).
2

Theorem 5 seems to be a powerful tool for tackling the cases with n sufficiently large as is demon-
strated in the following proof. Note that the second part of Theorems 6 and 7 can also be handled via this
theorem similarly to the

Proof of Theorem 3: We write a = t2n−q with an odd t : 1 ≤ t ≤ 2q−1 and 1 ≤ q ≤ n. We also
write c = o2r + 1 with an odd o and r = ν2(c − 1) ≥ 1. We set A = (o2r + 1)2q and B = 2q + t,
and apply Theorem 5 by replacing its parameters a, b and n with A, B and n− q, respectively. Note that
c2n = A2n−q and 2n = B2n−q .

In fact, for a sufficiently large n−q we have ν2
(
S(A2n−q, B2n−q)

)
= d(A−B)+d(B−1)−d(2A−

B− 1) = d(o2r+q − t) + d(2q + t− 1)− d(o2r+q+1 + 2q+1− 2q − t− 1) = (d(o)− 1 + r+ q− d(t) +
1) + (1 + d(t)− 1)− (d(o) + q− d(t) + 1− 1) = r+ d(t) = ν2(c− 1) + d(a). We note that Theorem 5
assumes that n− q = ν2(a) > max{2, g(A,B) + 1} = d(a) + ν2(c− 1) + 1. 2

In the next theorem, we obtain a lower bound on ν2(S(c2n + u, 2n)) for any positive integer u. This
also extends relation (13) for m = n, in some sense. It is worth noting that ν2(S(c2n, 2n)) = 0 has a very
different nature.

Theorem 6 Let n, u, c ∈ N, then ν2(S(c2n + u, 2n)) ≥ n− 1− blog2 uc. If u = 2m is a power of two,
with some integer m, 0 ≤ m ≤ n− 1, then ν2(S(c2n + 2m, 2n)) = n− 1−m.

We note that with the specialization u = 2n−a, a ≥ 1 integer, we get that ν2(S(c′2n−a, 2n)) = a − 1
for any integer c′ ≥ 2a, which includes the fact that S(c′2n−1, 2n) is odd for c′ ≥ 2.

The previous theorem can be extended to other values to obtain

Theorem 7 Let n, k, u, c ∈ N, 1 ≤ k ≤ 2n, and u ≤ 2ν2(k), then ν2(S(c2n+u, k)) ≥ ν2(k)−blog2 uc+
d(k) − 2. Furthermore, if u = 2m is a power of two, with some integer m, 0 ≤ m ≤ ν2(k) − 1, then
ν2(S(c2n + 2m, k)) = ν2(k)−m+ d(k)− 2.

We might as well focus on the tth least significant binary digit of k and obtain the following theorem
(which includes the first part of the previous theorem in the special case t = 1 which yields that ν2(k) =
mr−t+1).

Theorem 8 Let n, k, u, c, t ∈ N, 1 ≤ k ≤ 2n, 1 ≤ t ≤ r = d(k), and u ≤ 2mr−t+1 given the binary
expansion k = 2m1 + 2m2 + · · · + 2mr with m1 > m2 > · · · > mr ≥ 0. Then ν2(S(c2n + u, k)) ≥
d(k)− t+mr−t+1 − blog2 uc − 1.

Remark 4 In fact, for a given u, within the scope of this theorem, we can freely pick t as long as u ≤
2mr−t+1 (thus, it will not apply if u > k). Now we find that the largest lower bound on the 2-adic order is
achieved at t = d(k), i.e., ν2(S(c2n + u, k)) ≥ m1 − 1− blog2 uc for u ≤ 2m1 .
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4 Differences of Stirling numbers
Another interesting property is related to the difference S(c2n+1, k)−S(c2n, k). It appears that its 2-adic
order increases by one as n increases by one, provided that n is large enough. As a consequence, this
would imply that ν2(S(c2n, k)) becomes fix for some large n without explicitly indicating how small this
n can be. Of course, Theorem 2 and Remark 1 take care of answering this question. We note that there are
some conjectures on the structure of the sets {ν2(S(c2n + u, k))}c≥c0 , with c0 being minimum in order
to guarantee c02n+u ≥ k, as a function of u for any fixed n and k in Amdeberhan et al. (2008). We state

Conjecture 2 Let n, k, a, b ∈ N, 3 ≤ k ≤ 2n, and c ≥ 1 be an odd integer, then

ν2(S(c2n+1, k)− S(c2n, k)) = n+ 1− f(k) (15)

and
ν2(S(a2n, k)− S(b2n, k)) = n+ 1 + ν2(a− b)− f(k) (16)

for some function f(k) which is independent of n (for any sufficiently large n).

Remark 5 The cases with k = 1 and 2 are rather different but trivial. In fact, S(n1, 1)−S(n2, 1) = 0 for
n1, n2 ∈ N and S(n1, 2) − S(n2, 2) = 2n2−1(2n1−n2 − 1) if n2 < n1, thus ν2(S(n1, 2) − S(n2, 2)) =
n2 − 1. The case with k = 4 follows by identity (6).

Remark 6 To illustrate the above conjecture, we prove a little more for k = 3. Observe that

S(n, 3) =
1
2
(3n−1 − 2n + 1), n ≥ 1.

Let us assume that a ≥ b. For n ≥ 3, the Lemma 1 below implies that

ν2 (S(a2n, 3)− S(b2n, 3)) = −1 + ν2

(
3(a−b)2n − 1

)
= n+ 1 + ν2(a− b),

and moreover, for n ≥ 3 and any nonnegative integer u

ν2 (S(a2n + u, 3)− S(b2n + u, 3)) = n+ 1 + ν2(a− b).

It appears that there are only very few exceptions to (15) and (16) requiring the proviso on the large size
of n (and perhaps, there is none if we require that 1 ≤ k ≤ 2n−1). Relations similar to (15) seem to
apply to ν2(S(c2n+1 + u, k)− S(c2n + u, k)) for many nonnegative even integers u (cf. Remark 7 as an
illustration to this in a special case).

We are not able to prove Conjecture 2, except for small values of k, e.g., f(3) = 0 (cf. Remark 6),
f(4) = 0, f(5) = 2, and f(6) = 2 (by evaluating the expressions (20) and (22) using the method in the
proofs of Theorems 9 and 10). However, we have the supporting evidence given by Theorem 9 which also
suggests that f(k) ≤ ν2(k!) − 1 if the conjectured identity (15) holds, and Theorem 11 guarantees the
much stronger f(k) ≤ dlog2 ke − 1. For small values of k, numerical experimentation suggests that

f(k) = 1 + dlog2 ke − d(k)− δ(k), (17)

with δ(4) = 2 and otherwise it is zero except if k is a power of two or one less, in which cases δ(k) = 1.
This would imply that f(k) ≥ 0. It appears that f(2m) = m− 1 for m ≥ 3. Note that dlog2 ke − d(k) is
the number of zeros in the binary expansion of k, unless k is a power of two.
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Theorem 9 Let n, k ∈ N, 3 ≤ k ≤ 2n, u be a nonnegative integer, and c ≥ 1 be an odd integer, then

ν2(S(c2n+1 + u, k)− S(c2n + u, k)) ≥ n+ 2− ν2(k!).

In the proof we use the following

Lemma 1 Let n,m ∈ N, and c ≥ 1 be an odd integer, then

ν2

(
(2m+ 1)c2

n

− 1
)

= n+ 2 + ν2

((
m+ 1

2

))
. (18)

Proof of Lemma 1: We factor the expression on the left side of (18):

(2m+ 1)c2
n − 1 =

(
(2m+ 1)c2

n−1 − 1
)(

(2m+ 1)c2
n−1

+ 1
)

=
(
(2m+ 1)2c − 1

)∏n−1
i=1

(
(2m+ 1)c2

i

+ 1
)
.

(19)

By the binomial expansion, each factor of the product can be rewritten as

(2m+ 1)c2
i

+ 1 = 1 + 2m
(
c2i

1

)
+ (2m)2

(
c2i

2

)
+ · · ·+ 1 ≡ 2 mod 4.

This implies that each factor contributes one to the 2-adic order. On the other hand, for the first factor of
the last expression in (19), we get that ν2

(
(2m+ 1)2c − 1

)
= ν2((2m+1)c−1)+ν2 ((2m+ 1)c + 1) =

ν2(m)+1+ν2 ((2m+ 1)c + 1) = ν2(m)+1+ν2(m+1)+1 by binomial expansion and (2m+1)c+1 =
((2m+ 1) + 1)((2m+ 1)c−1 − (2m+ 1)c−2 + · · ·+ 1). Putting together the factors of (19), the 2-adic
order becomes n+ 1 + ν2(m) + ν2(m+ 1). The proof is now complete. 2

By the well-known identity (cf. Comtet (1974)) for S(n, k)

k!S(n, k) =
k∑
i=0

(−1)k−i
(
k

i

)
in

it follows that

k!
(
S(c2n+1, k)− S(c2n, k)

)
=

k∑
i=0

(−1)i
(
k

i

)
(k − i)c2

n
(
(k − i)c2

n

− 1
)
. (20)

We note that Theorem 9 is the special case of

Theorem 10 Let n, k, a, b ∈ N, 3 ≤ k ≤ 2n, and u be a nonnegative integer, then

ν2(S(a2n + u, k)− S(b2n + u, k)) ≥ n+ ν2(a− b) + 2− ν2(k!). (21)

Its proof is similar to that of the previous theorem. Assuming that a ≥ b we can replace (20) by

k! (S(a2n + u, k)− S(b2n + u, k)) =
k∑
i=0

(−1)i
(
k

i

)
(k − i)b2

n+u
(
(k − i)(a−b)2

n

− 1
)
, (22)

and the statement follows by Lemma 1.
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5 Towards the proof of the Conjecture 2
We cannot prove Conjecture 2 but we do make some progress in that direction, and at the same
time, we improve previously stated results, in general, and for the case when k is a power of two,
in particular. We note that for a fixed value of k, the smallest value of n with 1 ≤ k ≤ 2n is
dlog2 ke, so by Theorem 2, the inequalities ν2(S(c2n+1, k) − S(c2n, k)) ≥ n − dlog2 ke + d(k) and
ν2(S(a2n, k) − S(b2n, k)) ≥ n − dlog2 ke + d(k) hold for this n. Moreover, by Theorem 4 and Re-
mark 6, we have that ν2(S(c2n+1, k) − S(c2n, k)) ≥ n − dlog2 ke + d(k) + δ(k) = n + 1 − f(k) for
this n. This agrees with (17) although in terms of a lower bound rather than the equality in (15).

One possibility for proving Conjecture 2 might be to use differences based on identity (7) or on the
congruence by Junod (2002)

Bm+npν (x) ≡
n∑
j=0

(
n

j

)
(xp + xp

2
+ · · ·+ xp

ν

)n−jBm+j(x) (mod
np

2
Zp[x]) (23)

with p = 2 and proper specializations of the parameters m,n and ν (m,n ≥ 0 and ν ≥ 1 integers), where
the Bell polynomials are defined (cf. Junod (2002)) by

Bn(x) =
n∑
k=0

S(n, k)xk, n ≥ 0.

We now prove one of our main results, the following weaker version of Conjecture 2, which still improves
Theorems 9 and 10 for k ≥ 3, and it puts us within d(k) + δ(k)− 2 < log2 k of the conjecture (although
with some restriction in case of equation (16)).

Note that Theorems 12 and 13 completely prove the conjecture for k ≥ 5 if d(k) ≤ 2 and u = 0. (In
this case equation holds in (24).) The cases with k ≤ 6 are taken care of by the comments made on f(k)
after Remark 6.

Theorem 11 Let n, k ∈ N, 3 ≤ k ≤ 2n, u be a nonnegative integer, and c ≥ 1 be an odd integer, then

ν2(S(c2n+1 + u, k)− S(c2n + u, k)) ≥ n− dlog2 ke+ 2. (24)

Moreover, let a, b ∈ N and a/2 ≤ b < a, then

ν2(S(a2n + u, k)− S(b2n + u, k)) ≥ n+ ν2(a− b)− dlog2 ke+ 2. (25)

Proof of Theorem 11: To prove (24), we use (23) with p = 2,m = u, ν = 1, and n replaced by c2n, and
consider the coefficients of xk:

S(c2n+1 + u, k)
≡
∑c2n

j=0

(
c2n

j

)
S(j + u, k − 2(c2n − j))

≡ S(c2n + u, k) +
∑c2n−1
j=c2n−d k2 e+1

(
c2n

j

)
S(j + u, k − 2(c2n − j)) mod 2n,

(26)
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since we observe that k−2(c2n−j) > 0 implies that j > c2n−dk2 e. Clearly, in the given range of values
j = c2n − dk2 e + v, 1 ≤ v < dk2 e ≤ 2n−1, we have ν2

((
c2n

j

))
= ν2

((
c2n

d k2 e−v
))

= n − ν2(dk2 e − v) ≥
n−(dlog2 ke−2). We note that if u = 0, k ≥ 5, and d(k) ≤ 2 then equality holds in (24) by Theorems 12
and 13.

This proof also applies to (25) with p = 2,m = (2b− a)2n + u, ν = 1, and n replaced by (a− b)2n.
Again, we consider the coefficients of xk and get that

S(a2n + u, k) ≡ S(b2n + u, k) +
∑(a−b)2n−1

j=(a−b)2n−d k2 e+1

(
(a−b)2n

j

)
×

×S(j + (2b− a)2n + u, k − 2((a− b)2n − j)) mod 2n+ν2(a−b),

and the proof follows as above with j = (a− b)2n−dk2 e+v, 1 ≤ v < dk2 e ≤ 2n−1 and ν2
((

(a−b)2n
j

))
=

ν2
(((a−b)2n
d k2 e−v

))
= n+ν2(a−b)−ν2(dk2 e−v) ≥ n+ν2(a−b)−(dlog2 ke−2). Note that k ≤ 2n+ν2(a−b)

suffices. 2

Now we illustrate a more involved application of (23) to prove equation (15) of Conjecture 2 if k ≥ 8
is a power of two. (Other powers of two are settled in Remark 5.) We note that this provides a refinement
of a direct consequence of equation (8) of Theorem 4.

Theorem 12 Let m ≥ 3 be an integer, then

ν2(S(2m+1, 2m)− S(2m, 2m)) = 2, (27)

and in general, for an integer n ≥ m ≥ 3 and odd integer c ≥ 1, we get

ν2(S(c2n+1, 2m)− S(c2n, 2m)) = n−m+ 2. (28)

We mention that Conjecture 2 and equation (17) suggest that ν2(S(c2n+1, 2m − 1)− S(c2n, 2m − 1)) =
n+ 1 for n ≥ m ≥ 2 and odd c ≥ 1. Note the striking contrast to (28) in terms of m.

Proof of Theorem 12: To prove identity (27), we use (23) with p = 2,m = 0, ν = 1, and n replaced by
2m, and consider the coefficients of x2m in

B2m+1(x) ≡
2m∑
j=0

(
2m

j

)
x2(2m−j)Bj(x) mod 2m,

i.e., S(2m+1, 2m) ≡ S(2m, 2m) +
∑2m−1
j=2m−1+1

(
2m

j

)
S(j, 2m − 2(2m − j)) mod 2m. The 2-adic order

of a general term of the summation with index j, provided that ν2(j) = s < m − 1, is m − s +
ν2(S(c′2s, c′2s+1−2m)) ≥ m−s, with some odd c′ ≥ 1. The smallest such order ism−(m−2) = 2 < m
with the unique j = 3 · 2m−2 (by Theorem 6 with c = 1, n = m − 1, and u = 2m−2). Identity (27)
follows.

In general, with n ≥ m and c = 1, we use the above parameters in (23) except that now we replace
n by 2n rather than by 2m. Similarly to the above proof, it can be shown that (2n−m+2 − 1)2m−2 =
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2n − 2m−2 is the unique index j that results in a term T with 2-adic valuation as small as n −m + 2 <
n. In fact, ν2

((
2n

(2n−m+2−1)2m−2

))
= n−m+ 2, and T is an odd multiple of 2n−m+2S((2n−m+2 −

1)2m−2, 2m−1). This yields (28) by Theorem 6.
The proof with n ≥ m and a general odd c ≥ 1 is similar to the previous case but now n is replaced by

c2n. Here c2n − 2m−2 is the unique index j between c2n − 2m−1 + 1 and c2n − 1 whose term achieves
the smallest valuation n−m+ 2.

We note that the structure of the 2-adic valuation of the terms shows a remarkably simple pattern. 2

Remark 7 The above proof can be extended to apply to ν2(S(c2n+1 +u, 2m)−S(c2n+u, 2m)) if u ≥ 0
is an integer multiple of 2m−2, i.e.,

ν2(S(c2n+1 + d2m−2, 2m)− S(c2n + d2m−2, 2m)) = n−m+ 2,

for integers n ≥ m ≥ 3, d ≥ 0, and odd integer c ≥ 1.

The previous theorem can be modified to yield

Theorem 13 For integers n > m1 ≥ 2, m1 > m2 ≥ 0, and odd integer c ≥ 1, we get

ν2(S(c2n+1, 2m1 + 2m2)− S(c2n, 2m1 + 2m2)) = n−m1 + 1. (29)

Proof of Theorem 13: The proof is similar to that of the previous theorem. Here c2n − 2m1−1 is the
unique index j between c2n−2m1−1−2m2−1 +1 and c2n−1 whose term achieves the smallest valuation
n−m1 + 1. 2

6 Other primes
In this paper, we have aimed at divisibility properties by p = 2. However, it is worth mentioning that some
of the congruences of the previous section can be generalized. For example, for illustrative purposes, we
prove the modification of Theorem 11.

Theorem 14 Let p ≥ 3 be a prime, c, n, k ∈ N with 1 ≤ k ≤ pn and (c, p) = 1, and u be a nonnegative
integer, then

νp(S(cpn+1 + u, k)− S(cpn + u, k)) ≥ n− dlogp ke+ 2. (30)

Moreover, let a, b ∈ N and a/p ≤ b < a, then

νp(S(apn + u, k)− S(bpn + u, k)) ≥ n+ νp(a− b)− dlogp ke+ 2. (31)

Proof of Theorem 14: We use identity (23) with m = u, ν = 1, the actual prime p, and n replaced by
cpn. We consider the coefficients of xk:

S(cpn+1 + u, k)
≡
∑cpn

j=0

(
cpn

j

)
S (j + u, k − p (cpn − j))

≡ S(cpn + u, k)
+
∑cpn−1

j=cpn−d kp e+1

(
cpn

j

)
S (j + u, k − p (cpn − j)) mod pn+1,
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as we observe that k − p(cpn − j) > 0 implies that j > cpn − dkp e. Clearly, in the given range of values

j = cpn − dkp e + v, 1 ≤ v < dkp e ≤ pn−1, we have νp
((
cpn

j

))
= νp

(( cpn

d kp e−v

))
= n − νp(dkp e − v) ≥

n− (dlogp ke − 2).
The proof of inequality (31) is similar to that of (30) and (25). 2

We note the relation to some results in Gessel and Lengyel (2001). In fact, Theorem 2 of Gessel and
Lengyel (2001) claims that if u = 0, c is a multiple of p− 1, and k is an odd multiple of p then the lower
bound in Theorem 14 can be improved.
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Chip-Firing And A Devil’s Staircase

Lionel Levine

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

The devil’s staircase – a continuous function on the unit interval [0,1] which is not constant, yet is locally constant
on an open dense set – is the sort of exotic creature a combinatorialist might never expect to encounter in “real life.”
We show how a devil’s staircase arises from the combinatorial problem of parallel chip-firing on the complete graph.
This staircase helps explain a previously observed “mode locking” phenomenon, as well as the surprising tendency
of parallel chip-firing to find periodic states of small period.

Keywords: Circle map, fixed-energy sandpile, mode locking, non-ergodicity, parallel chip-firing, rotation number,
short period attractors

1 Introduction
In this extended abstract, we summarize recent work relating the Poincaré rotation number of a circle map
S1 → S1 to the behavior of parallel chip-firing on the complete graph. We use this connection to shed
light on two intriguing features of parallel chip-firing, mode locking and short period attractors. Ever
since Bagnoli, Cecconi, Flammini, and Vespignani [1] found evidence of mode locking and short period
attractors in numerical experiments in 2003, these two phenomena have called out for a mathematical
explanation. The proofs omitted here can be found in [12].

In chip-firing on a finite graph, each vertex v starts with a pile of σ(v) ≥ 0 chips. A vertex is unstable
if it has at least as many chips as its degree, and can fire by sending one chip to each neighbor. In parallel
chip-firing, at each time step, all unstable vertices fire simultaneously. If it is possible in finitely many
firings to reach a stable configuration in which no vertex can fire, then this final configuration does not
depend on the order of firings [5]. In this case, the parallel restriction does not affect the final outcome.
However, our focus will be on chip configurations that do not stabilize.

Previous work on parallel chip-firing [3, 4, 10, 14] has focused on the periodicity of the dynamics:
given a graph G, for which natural numbers q does there exist a parallel chip-firing state on G which first
recurs after q time steps? We will have more to say about this question below. In the statistical physics
literature, parallel chip-firing often goes by the name “fixed energy sandpile” [1, 6, 7, 15]. The term
“sandpile” refers to the Bak-Tang-Wiesenfeld model of self-organized criticality [2], while “fixed energy”
refers to the lack of a sink or boundary vertex where chips disappear.

We add loops to the complete graph Kn, so that a vertex with n or more chips is unstable, and fires
by sending one chip to each vertex of Kn, including one chip to itself. The parallel update rule fires all

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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unstable vertices simultaneously, yielding a new chip configuration Uσ given by

Uσ(v) =

{
σ(v) + r(σ), σ(v) ≤ n− 1
σ(v)− n+ r(σ), σ(v) ≥ n.

(1)

Here
r(σ) = #{v|σ(v) ≥ n}

is the number of unstable vertices. Write U0σ = σ, and U tσ = U(U t−1σ) for t ≥ 1.
Note that the total number of chips in the system is conserved. In particular, only finitely many different

states are reachable from the initial configuration σ, so the sequence (U tσ)t≥0 is eventually periodic: there
exist integers m ≥ 1 and t0 ≥ 0 such that

U t+mσ = U tσ ∀t ≥ t0. (2)

The activity of σ is the limit
a(σ) = lim

t→∞

αt
nt
. (3)

where

αt =
t−1∑
s=0

r(Usσ)

is the total number of firings performed in the first t updates. By (2), the limit in (3) exists and equals
1
mn (αt0+m − αt0). Since 0 ≤ αt ≤ nt, we have 0 ≤ a(σ) ≤ 1.

Following [1], we ask: how does the activity change when chips are added to the system? If σn is a
chip configuration on Kn, write σn + k for the configuration obtained from σn by adding k chips at each
vertex. The function

s̃n(k) = a(σn + k)

is called the activity phase diagram of σn. Surprisingly, for many choices of σn, the function s̃n looks like
a staircase, with long intervals of constancy punctuated by sudden jumps (Figure 1). This phenomenon is
known as mode locking: if the system is in a preferred mode, corresponding to a wide stair in the staircase,
then even a relatively large perturbation in the form of adding extra chips will not change the activity. For
a general discussion of mode locking in dynamical systems, including examples from astronomy and
physics, see [11].

To quantify the idea of mode locking in our setting, suppose we are given an infinite family of chip
configurations σ2, σ3, . . . with σn defined on Kn. Suppose σn is stable, i.e.,

0 ≤ σn(v) ≤ n− 1 (4)

for all v ∈ [n]. Moreover, suppose that there is a continuous function F : [0, 1]→ [0, 1], such that for all
0 ≤ x ≤ 1

1
n

#{v ∈ [n] |σn(v) < nx} → F (x) (5)

as n → ∞. Then according to Theorem 3.1, the activity phase diagrams s̃n, suitably rescaled, converge
pointwise to a continuous, nondecreasing function s : [0, 1]→ [0, 1].



Chip-Firing And A Devil’s Staircase 577

Fig. 1: The activity phase diagrams a(σn + k), for n = 10 (top left), 100 (top right), 1000 (bottom left), and 10000,
where σn is given by (6). On the horizontal axis, k runs from 0 to n. On the vertical axis, a(σn+k) runs from 0 to 1.
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Moreover, under a mild additional hypothesis, Proposition 3.2 says that this limiting function s is
a devil’s staircase: it is locally constant on an open dense subset of [0, 1]. For each rational number
p/q ∈ [0, 1] there is a stair of height p/q, that is, an interval of positive length on which s is constant and
equal to p/q.

Related to mode locking, a second feature observed in simulations of parallel chip-firing is non-
ergodicity: in trials performed with random initial configurations on the n×n torus, the activity observed
in individual trials differs markedly from the average activity observed over many trials [15]. The exper-
iments of [1] suggested a reason: the chip-firing states in locked modes, corresponding to stairs of the
devil’s staircase, tend to be periodic with very small period. We study these short period attractors in
Theorem 4.6. Under the same hypotheses that yield a devil’s staircase in Propositon 3.2, for each q ∈ N,
a constant fraction cqn of the states {σn + k}nk=0 have eventual period q.

To illustrate these results, consider the chip configuration σn on Kn defined by

σn(v) =
⌊n

4

⌋
+
⌊
v − 1

2

⌋
, v = 1, . . . , n. (6)

Here bxc denotes the greatest integer ≤ x. This family of chip configurations satisfies (??) with

F (x) =


0, x ≤ 1

4

2x− 1
2 ,

1
4 ≤ x ≤

3
4

1, x ≥ 3
4 .

(7)

The activity phase diagrams of σn for n = 10, 100, 1000, 10000 are graphed in Figure 1. For example,
when n = 10 we have

(a(σ10 + k))10k=0 = (0, 0, 0, 0, 1/3, 1/2, 1/2, 2/3, 1, 1, 1)

and when n = 100, we have

(a(σ100 + k))100k=0 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/6, 1/5, 1/5, 1/4,
1/4, 1/4, 2/7, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 2/5, 2/5, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,
1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 3/5, 3/5, 2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 5/7, 3/4, 3/4, 3/4, 4/5, 4/5, 5/6, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

As n grows, the denominators of these rational numbers grow remarkably slowly: the largest denomina-
tor is 11 for n = 1000, and 13 for n = 10000. Moreover, for any fixed n the very smallest denominators
occur with greatest frequency. For example, when n = 10000, there are 1667 values of k for which
a(σn + k) = 1

2 , and 714 values of k for which a(σn + k) = 1
3 ; but for each p = 1, . . . , 12 there is just

one value of k for which a(σn + k) = p
13 . In Lemma 4.5, we relate these denominators to the periodicity:

if a(σ) = p/q in lowest terms, then σ has eventual period q.
The remainder of the paper is organized as follows. In section 2 we show how to construct, given a

chip configuration σ on Kn, a circle map f : S1 → S1 whose rotation number equals the activity of σ.
This construction resembles the one-dimensional particle/barrier model of [9]. In section 3 we use the
circle map to prove our main results on mode locking, Theorem 3.1 and Proposition 3.2. Short period
attractors are studied in section 4, where we show that all states on Kn have eventual period at most n
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(Proposition 4.4). Finally, in Theorem 4.11, we find a small “window” in which all states have eventual
period two.

Many questions remain concerning parallel chip-firing on graphs other thanKn. If the underlying graph
is a tree [4] or a cycle [7], then instead of a devil’s staircase of infinitely many preferred modes, there are
just three: activity 0, 1

2 and 1. On the other hand, the numerical experiments of [1] for parallel chip-firing
on the n×n torus suggest a devil’s staircase in the large n limit. Our arguments rely quite strongly on the
structure of the complete graph, whereas the mode locking phenomenon seems to be widespread. It would
be very interesting to relate parallel chip-firing on other graphs to iteration of a circle map (or perhaps a
map on a higher-dimensional manifold) in order to explain the ubiquity of mode locking.

2 Construction of the Circle Map
We first identify a certain class of chip configurations on Kn, the confined states, with the property that
for any configuration σ of activity a(σ) < 1, we have U tσ confined for all sufficiently large t.

Definition. A chip configuration σ on Kn is preconfined if it satisfies

(i) σ(v) ≤ 2n− 1 for all vertices v of Kn.

If, in addition, σ satisfies

(ii) maxv σ(v)−minv σ(v) ≤ n− 1

then σ is confined.

Lemma 2.1. If σ is preconfined, then Uσ is confined.

Lemma 2.2. If a(σ) < 1, then U tσ is confined for all sufficiently large t.

Note that from (1)
Uσ(v) ≡ σ(v) + r(σ) (mod n).

Iterating yields the congruence

U tσ(v) ≡ σ(v) + αt (mod n) (8)

where

αt =
t−1∑
s=0

r(Usσ)

is the total number of firings before time t.
Our next lemma characterizes the vertices that fire at time t+ 1.

Lemma 2.3. If U tσ is preconfined, then U t+1σ(v) ≥ n if and only if

σ(v) ≡ −j (mod n)

for some αt < j ≤ αt+1.
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Let
φ(j) = #{v ∈ [n] |σ(v) ≡ −j (mod n)}. (9)

By Lemma 2.3, if U tσ is preconfined, then the number of unstable vertices in U t+1σ is

rt+1 = φ(αt + 1) + . . .+ φ(αt+1),

hence

αt+2 = αt+1 +
αt+1∑

j=αt+1

φ(j). (10)

This gives a recurrence for αt relating three consecutive terms αt, αt+1 and αt+2. Our next lemma
simplifies this to a recurrence relating just two consecutive terms.

Lemma 2.4. If σ is preconfined, then for all t ≥ 0

αt+1 = g(αt),

where g : N→ N is given by

g(k) = α1 +
k∑
j=1

φ(j) (11)

and φ is given by (9).

The function g appearing in Lemma 2.4 satisfies

g(k + n) = g(k) +
k+n∑
j=k+1

φ(j)

= g(k) +
k+n∑
j=k+1

#{v |σ(v) ≡ −j (mod n)}

= g(k) + n. (12)

for all k ∈ N. This suggests that a more natural domain of definition is the unit circle. First extend g to
all of Z by defining

g(−k) = g(nk − k)− nk, k ∈ N.
This is the unique extension with the property that g − Id is periodic mod n. Now for x ∈ R, let

f(x) =
(1− {nx})g(bnxc) + {nx}g(dnxe)

n
(13)

where byc, dye and {y} denote respectively the greatest integer ≤ y, the least integer ≥ y, and the
fractional part of y.

By (12) we have for all x ∈ R

f(x+ 1) =
(1− {nx})g(bnxc+ n) + {nx}g(dnxe+ n)

n
= f(x) + 1.
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Hence f : R→ R descends to a circle map f̄ : S1 → S1 (viewing S1 as R/Z). Since f is nondecreasing,
it has a well-defined Poincaré rotation number [8, 13]

ρ(f) = lim
t→∞

f t(x)
t

(14)

which does not depend on x. Here f t denotes the t-fold iterate f t(x) = f(f t−1(x)), with f0 = Id. The
rotation number measures the rate at which the sequence of points x, f̄(x), f̄(f̄(x)), . . . winds around the
circle.

Theorem 2.5. If σ is preconfined, then a(σ) = ρ(f).

Note that the map g is defined in terms of α1 and φ, both of which are easily read off from σ. So given
a preconfined configuration σ, equations (11) and (13) give an explicit recipe for writing down a circle
map f whose rotation number is the activity of σ.

One naturally wonders how to generalize this construction to chip-firing configurations on graphs other
than Kn. A key step may involve identifying invariants of the dynamics. On Kn, these invariants take a
very simple form: by (8), for any two vertices v, w ∈ [n], the difference

U tσ(v)− U tσ(w) mod n

does not depend on t. Analogous invariants for parallel chip-firing on the n×n torus are classified in [6].

3 Devil’s Staircase
Let σ2, σ3, . . . be a sequence of chip configurations, with σn defined on Kn, satisfying the conditions (4)
and (5). Extend F to all of R by setting

F (x+m) = F (x) +m, m ∈ Z. (15)

Note that (4) and (5) force F (0) = 0 and F (1) = 1, so this extension is continuous.
The rescaled activity phase diagram of σn is the function sn : [0, 1]→ [0, 1] defined by

sn(y) = a(σn + bnyc).

As n → ∞, the sn have a pointwise limit identified in our next result. Here and in what follows, ρ(·)
denotes the rotation number (14).

Theorem 3.1. If (4) and (5) hold, then for each y ∈ [0, 1] we have

sn(y)→ s(y) := ρ(Ry ◦ Φ)

as n→∞, where Φ(x) = −F (−x), and Ry(x) = x+ y.

Write Φy = Ry ◦ Φ , and let Φ̄y : S1 → S1 be the corresponding circle map. We will call a function
s : [0, 1] → [0, 1] a devil’s staircase if it is continuous, nondecreasing, nonconstant, and locally constant
on an open dense set. Next we show that if(

Φ̄y
)q 6= Id for all y ∈ S1 and all q ∈ N, (16)

then the limiting function s(y) in Theorem 3.1 is a devil’s staircase. Examples of these staircases for
different choices of F are shown in Figure 2.
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(a) (b) (c)

Fig. 2: The devil’s staircase s(y), when (a) F (x) is given by (7); (b) F (x) =
√
x for x ∈ [0, 1]; and (c) F (x) =

x+ 1
2π

sin 2πx. On the horizontal axis y runs from 0 to 1, and on the vertical axis s(y) runs from 0 to 1.

Proposition 3.2. The function s(y) = ρ(Φy) continuous and nondecreasing in y. If z ∈ [0, 1] is irra-
tional, then s−1(z) is a point. Moreover, if (16) holds, then for every rational number p/q ∈ [0, 1] the
fiber s−1(p/q) is an interval of positive length.

Our next result shows that in the interiors of the stairs, we in fact have sn(y) = s(y) for sufficiently
large n.

Proposition 3.3. Suppose that (4), (5) and (16) hold. If s−1(p/q) = [a, b], then for any ε > 0

[a+ ε, b− ε] ⊂ s−1
n (p/q)

for all sufficiently large n.

The results in this section follow from Theorem 2.5 along with a few well-known properties of the
rotation number ρ(f). To give a flavor of the proofs, we list here the properties we use. For more
background on the rotation number, see [8, 13].

Call a map f : R→ R a monotone degree one lift if f is continuous, nondecreasing and satisfies

f(x+ 1) = f(x) + 1 (17)

for all x ∈ R. Let f, fn, g be monotone degree one lifts, and denote by f̄ , f̄n, ḡ the corresponding circle
maps S1 → S1. Write f ≤ g if f(x) ≤ g(x) for all x ∈ R, and f < g if f(x) < g(x) for all x ∈ R.

• Monotonicity. If f ≤ g, then ρ(f) ≤ ρ(g).

• Continuity. If sup |fn − f | → 0, then ρ(fn)→ ρ(f).

• Conjugation Invariance. If g is strictly increasing, then ρ(g ◦ f ◦ g−1) = ρ(f).

• Instability of an irrational rotation number. If ρ(f) /∈ Q, and f1 < f < f2, then

ρ(f1) < ρ(f) < ρ(f2).
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• Stability of a rational rotation number. If ρ(f) = p/q ∈ Q, and f̄q 6= Id : S1 → S1, then for
sufficiently small ε > 0, either

ρ(g) = p/q whenever f ≤ g ≤ f + ε,

or
ρ(g) = p/q whenever f − ε ≤ g ≤ f.

4 Short Period Attractors
For a chip configuration σ on Kn and a vertex v ∈ [n], let

ut(σ, v) = #{0 ≤ s < t |Usσ(v) ≥ n}

be the number of times v fires during the first t updates. During these updates, the vertex v emits a total
of nut(σ, v) chips and receives a total of αt =

∑
w ut(σ,w) chips, so that

U tσ(v)− σ(v) = αt − nut(σ, v). (18)

An easy consequence is the following.

Lemma 4.1. A chip configuration σ on Kn satisfies U tσ = σ if and only if

ut(σ, v) = ut(σ,w) (19)

for all vertices v and w.

According to our next lemma, if σ is confined, then ut(σ, v) and ut(σ,w) differ by at most one.

Lemma 4.2. If σ is confined, and σ(v) ≤ σ(w), then for all t ≥ 0

ut(σ, v) ≤ ut(σ,w) ≤ ut(σ, v) + 1.

Lemma 4.3. If σ is confined, then U tσ = σ if and only if n|αt.
Let σ be a confined state on Kn. By the pigeonhole principle, there exist times 0 ≤ s < t ≤ n with

αs ≡ αt (mod n).

By Lemma 4.3 it follows that Usσ = U tσ, so σ has eventual period at most n.
Our next result improves this bound a bit. Write m(σ) for the eventual period of σ, and

ν(σ) = #{σ(v)|v ∈ [n]}

for the number of distinct heights in σ.

Proposition 4.4. For any chip configuration σ on Kn,

m(σ) ≤ ν(σ).
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Bitar [3] conjectured that any parallel chip-firing configuration on a connected graph of n vertices has
eventual period at most n. A counterexample was found by Kiwi et al. [10]. It would be interesting to
investigate for what classes of graphs Bitar’s conjecture does hold; for example, no counterexample seems
to be known on a regular graph.

Next we relate the period to the activity.

Lemma 4.5. If a(σ) = p/q and (p, q) = 1, then m(σ) = q.

The proof uses the fact that the rotation number of a circle map determines the periods of its periodic
points: if f : R→ R is a monotone degree one lift (17) with ρ(f) = p/q in lowest terms, then all periodic
points of f̄ : S1 → S1 have period q; see Proposition 4.3.8 and Exercise 4.3.5 of [8].

Given 1 ≤ p < q ≤ n with (p, q) = 1 and p/q ≤ 1/2, one can check that the chip configuration σ on
Kn given by

σ(v) =


v + p− 1, v ≤ q − 1− p
v + n+ p− q − 1, q − p ≤ v ≤ q − 1
n+ p− 1, v ≥ q.

has activity a(σ) = p/q. For a similar construction on more general graphs in the case p = 1, see [14,
Prop. 6.8]. In particular, m(σ) = q by Lemma 4.5. So for every integer q = 1, . . . , n there exists a chip
configuration on Kn of period q.

Despite the existence of states of period as large as n, states of smaller period are in some sense more
prevalent. One way to capture this is the following.

Theorem 4.6. If σ2, σ3, . . . is a sequence of chip configurations satisfying (4), (5) and (16), then for each
q ∈ N there is a constant c = cq > 0 such that for all sufficiently large n, at least cn of the states
{σn + k}nk=0 have eventual period q.

The proof follows easily from Proposition 3.3, which shows that a constant fraction cn of the states
σn + k have activity 1/q. By Lemma 4.5 these states have eventual period q. The devil’s staircase
s(y) determines the best possible constant cq , namely, the total length of all stairs whose height has
denominator q. If s−1(p/q) = [ap, bp], then any constant

cq <
∑

p:(p,q)=1

(bp − ap)

satisfies the conclusion of the theorem.
The rest of this section outlines the proof of Theorem 4.11, which finds a period 2 window: any chip

configuration onKn with total number of chips strictly between n2−n and n2 has eventual period 2. The
following lemma is a special case of [14, Prop. 6.2].

Lemma 4.7. If σ and τ are chip configurations on Kn with σ(v) + τ(v) = 2n − 1 for all v, then
a(σ) + a(τ) = 1.

Given a chip configuration σ on Kn, for j = 1, . . . , n we define conjugate configurations

cjσ(v) =

{
σ(v) + j − n, v ≤ j
σ(v) + j, v > j.
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Lemma 4.8. Let σ be a chip configuration on Kn, and fix j ∈ [n]. For all t ≥ 0, we have for v ≤ j

ut(σ, v)− 1 ≤ ut(cjσ, v) ≤ ut(σ, v),

while for v > j
ut(σ, v) ≤ ut(cjσ, v) ≤ ut(σ, v) + 1.

Corollary 4.9. For any chip configuration σ on Kn and any j ∈ [n],

a(cjσ) = a(σ).

It turns out that the circle maps corresponding to σ and cjσ are conjugate to one another by a rotation.
This gives an alternative proof of the corollary, in the case when both σ and cjσ are preconfined.

Lemma 4.10. Let σ be a chip configuration on Kn. If u2(σ, v) ≥ 1 for all v, then u2t(σ, v) ≥ t for all v
and all t ≥ 1.

.
Write

|σ| =
n∑
v=1

σ(v)

for the total number of chips in the system.

Theorem 4.11. Every chip configuration σ on Kn with n2 − n < |σ| < n2 has eventual period 2.

The outline of the proof runs as follows. Writing

`(σ) = min{σ(1), . . . , σ(n)}

and
r(σ) = #{v ∈ [n] : σ(v) ≥ n},

a straightforward calculation shows that if σ(1) ≥ σ(2) ≥ . . . ≥ σ(n) and n2 − n < |σ| < n2, then

n∑
j=1

(`(cjσ) + r(cjσ)) > n2 − n.

Since each term in the sum on the left is a nonnegative integer, we must have

`(cjσ) + r(cjσ) ≥ n.

for some j ∈ [n]. Thus every vertex v fires at least once during the first two updates of cjσ. By Corol-
lary 4.9 and Lemma 4.10, this implies

a(σ) = a(cjσ) ≥ 1
2
.

The chip configuration τ(v) := 2n− 1− σ(v) also satisfies n2 − n < |τ | < n2, so a(τ) ≥ 1
2 as well. By

Lemma 4.7 we have a(σ) + a(τ) = 1, so a(σ) = a(τ) = 1
2 . Finally, from Lemma 4.5 we conclude that

m(σ) = 2.
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Abstract. We investigate the homogeneous symmetric Macdonald polynomials Pλ(X; q, t) for the specialization

t = qk. We show an identity relying the polynomials Pλ(X; q, qk) and Pλ
“

1−q
1−qkX; q, qk

”
. As a consequence, we

describe an operator whose eigenvalues characterize the polynomials Pλ(X; q, qk).

Résumé. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques Pλ(X; q, t) pour la spécia-

lisation t = qk. En particulier nous montrons une égalité reliant les polynômes Pλ(X; q, qk) et Pλ
“

1−q
1−qkX; q, qk

”
.

Nous en déduisons la description d’un opérateur dont les valeurs propres caractérisent les polynômes Pλ(X; q, qk).

Keywords: Symmetric functions, Macdonald polynomials, q-discriminant

1 Introduction
The Macdonald polynomials are (q, t)-deformations of the Schur functions which play an important rôle
in the representation theory of the double affine Hecke algebra [11, 13] since they are the eigenfunctions
of the Cherednik elements. More precisely, the non-symmetric Macdonald polynomials are the eigen-
functions of the Cherednik elements, but the symmetric Macdonald polynomials are the eigenfunctions
of the symmetric functions in the Cherednik elements. The polynomials considered here are the ho-
mogeneous symmetric Macdonald polynomials Pλ(X; q, t) and are the eigenfunctions of the Sekiguchi-
Debiard-Macdonald operator M1. For (q, t) generic, the dimension of each eigenspace equals 1 and each
Macdonald polynomial is characterized (up to a multiplicative constant) by the associated eigenvalue of
M1. That is no longer true when t is specialized to a rational power of q (note that the case of the spe-
cialization tnqm = 1 - n and m being integer - has been investigated by Feigin et al. [4] in their study of
ideals of symmetric functions defined by vanishing conditions). Hence, it is more convenient to charac-
terize the Macdonald (homogeneous symmetric) polynomials by orthogonality (w.r.t. a (q, t)-deformation
of the usual scalar product on symmetric functions) and by some conditions on their dominant monomials
(see e.g. [12]). In this paper, we consider the specialization t = qk where k is a (strictly) positive integer.
One of our motivations is to generalize an identity of [1], which shows that even powers of the discrim-
inant are rectangular Jack polynomials. Here, we show that this property follows from deeper relations
between the Macdonald polynomials Pλ(X; q, qk) and Pλ

(
1−q
1−qkX; q, qk

)
(in the λ-ring notation). This

result is interesting in the context of the fractional quantum Hall effect [8], since it implies properties
of the expansion of the powers of the discriminant in the Schur basis [3, 6, 14]. It implies also that the

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Macdonald polynomials (at t = qk) are characterized by the eigenvalues of an operator M (described in
terms of isobaric divided differences) whose eigenspaces are of dimension 1.

The paper is organized as follows. After recalling notations and background (Section 2) related to Mac-
donald polynomials, we give, in Section 3, some properties of the operator which substitutes a complete
function to each power of a letter. These properties allow us to show our main result in Section 4 which is
an identity involving the polynomial Pλ(X; q, qk) and Pλ

(
1−q
1−qkX; q, qk

)
. As a consequence, we describe

(Section 5) an operator M whose eigenvalues characterize the Macdonald polynomials Pλ(X; q, qk). Fi-
nally, in Section 6, we give an expression of M in terms of the Cherednik elements.

2 Notations and background
We recall here the basic definitions and classical properties of the symmetric functions and the Macdonald
polynomials.

2.1 Symmetric functions
Consider an alphabet X (potentially infinite). Following [10] we define the symmetric functions on X by
the generating functions of the complete homogeneous functions Sp(X),

σz(X) :=
∑
i

Si(X)zi =
∏
x∈X

1
1− xz

.

The algebra Sym of symmetric functions has a λ-ring structure [10] and many properties of that structure
can be understood by manipulating σz . For example, the sum of two alphabets X + Y is defined by the
product

σz(X + Y) := σz(X)σz(Y) =
∑
i

Si(X + Y)zi.

In particular, if X = Y one has σz(2X) = σz(X)2. This definition is extended to any complex number α
by σz(αX) = σz(X)α. For example, the generating series of the elementary functions is

λz(X) :=
∑

Λi(X)zi =
∏
x∈X

(1 + xz)

= σ−z(−X) =
∑
i(−1)iSi(−X)zi.

The complete functions of the product of two alphabets XY are given by the Cauchy kernel

K(X,Y) := σ1(XY) =
∑
i

Si(XY) =
∏
x∈X

∏
y∈Y

1
1− xy

=
∑
λ

Sλ(X)Sλ(Y),

where Sλ denotes, as in [10], a Schur function. More generally, one has

K(X,Y) =
∑
λ

Aλ(X)Bλ(Y)

for any pair of bases (Aλ)λ and (Bλ)λ in duality for the usual scalar product 〈 , 〉, i.e. K(X,Y) is the
reproducing kernel associated to 〈 , 〉.
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2.2 Macdonald polynomials
The usual scalar product on symmetric functions admits a (q, t)-deformation (see e.g. [12]) defined for a
pair of power sum functions Ψλ and Ψµ (in the notation of [10]) by

〈Ψλ,Ψµ〉q,t = δλ,µzλ

l(λ)∏
i=1

1− qλi
1− tλi

, (1)

where δλ,µ = 1 if λ = µ and 0 otherwise. The family of (symmetric homogeneous) Macdonald polyno-
mials (Pλ(X; q, t))λ is the unique basis of the symmetric functions orthogonal w.r.t. 〈 , 〉q,t verifying

Pλ(X; q, t) = mλ(X) +
∑
µ≤λ

uλµmµ(X), (2)

where mλ denotes, as usual, a monomial function [10, 12]. The reproducing kernel associated to this
scalar product is

Kq,t(X,Y) :=
∑
λ

〈Ψλ,Ψλ〉−1
q,tΨλ(X)Ψλ(Y) = σ1

(
1− t
1− q

XY
)

see e.g. [12, VI.2]. In particular, one has

Kq,t(X,Y) =
∑
λ

Pλ(X; q, t)Qλ(Y; q, t), (3)

where Qλ(X; q, t) is the dual basis of Pλ(Y; q, t) with respect to 〈 , 〉q,t,

Qλ(X; q, t) = 〈Pλ, Pλ〉−1
q,tPλ(X; q, t). (4)

The coefficient bλ(q, t) = 〈Pλ, Pλ〉−1
q,t is known to be

bλ(q, t) =
∏

(i,j)∈λ

1− qλj−i+1tλ
′
i−j

1− qλj−itλ′i−j+1
(5)

see [12, VI.6]. Writing

Kq,t

((
1− q
1− t

)
X,Y

)
= K(X,Y), (6)

one finds that
(
Pλ

((
1−q
1−t

)
X; q, t

))
λ

is the dual basis of (Qλ(X; q, t))λ with respect to the usual scalar

product 〈 , 〉.
Note that there exists an other Kernel type formula which reads

λ1(XY) =
∑
λ

Pλ′(X; t, q)Pλ(Y; q, t) =
∑
λ

Qλ′(X; t, q)Qλ(Y; q, t). (7)

where λ′ denotes the conjugate partition of λ. This formula can be found in [12, VI.5 p329].
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From equalities (6) and (3) , one has

σ1(XY) = Kq,t

(
1− q
1− t

X,Y
)

=
∑
λ

Qλ

(
1− q
1− t

X; q, t
)
Pλ(Y; q, t). (8)

Applying (7) to
σ1(XY) = λ−1(−XY),

one obtains
σ1(XY) =

∑
λ

(−1)|λ|Qλ′(−X; t, q)Qλ(Y; q, t). (9)

Identifying the coefficient of Pλ(Y; t, q) in (8) and (9), one finds the following property.

Lemma 2.1
Qλ(−X; t, q) = (−1)|λ|Pλ′

(
1− q
1− t

X; q, t
)
. (10)

Unlike the usual (q = t = 1) scalar product, there is no expression as a constant term for the product
〈 , 〉q,t when X = {x1, . . . , xn} is finite. But the Macdonald polynomials are orthogonal with respect to
an other scalar product defined by

〈f, g〉′q,t;n =
1
n!

C.T.{f(X)g(X∨)∆q,t(X)} (11)

where C.T. denotes the constant term w.r.t. the alphabet X,

∆q,t(X) =
∏
i 6=j

(xix−1
j ; q)∞

(txix−1
j ; q)∞

, (a; b)∞ =
∏
i≥0

(1 − abi) and X∨ = {x−1
1 , . . . , x−1

n }. The expression of

〈Pλ, Qλ〉′q,t;n is given by ([12, VI.9])

〈Pλ, Qλ〉′q,t;n =
1
n!

C.T.{∆q,t(X)}
∏

(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
. (12)

2.3 Skew symmetric functions
Let us define as in [12, VI.7], the skew Macdonald functions Qλ/µ by

〈Qλ/µ, Pν〉q,t := 〈Qλ, PµPν〉q,t. (13)

Straightforwardly, one has

Qλ/µ(X; q, t) =
∑
ν

〈Qλ, PνPµ〉q,tQν(X; q, t). (14)

And classically, the following property holds (see e.g. [12, VI.7] for a short proof of this identity),

Proposition 2.2 Let X and Y be two alphabets, one has

Qλ(X + Y; q, t) =
∑
µ

Qµ(X; q, t)Qλ/µ(Y; q, t),
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or equivalently
Pλ(X + Y; q, t) =

∑
µ

Pµ(X; q, t)Pλ/µ(Y; q, t).

Equalities (3) and (7) are generalized by identities (15) and (16) as shown in [12, example 6 p.352],∑
ρ

Pρ/λ(X; q, t)Qρ/µ(Y; q, t) = Kqt(X,Y)
∑
ρ

Pµ/ρ(X; q, t)Qλ/ρ(Y; q, t), (15)

∑
ρ

Qρ′/λ′(X; t, q)Qρ/µ(Y; q, t) = λ1(XY)
∑
ρ

Qµ′/ρ′(X, t, q)Qλ/ρ(Y; q, t). (16)

3 The substitution xp → Sp(Y) and the Macdonald polynomials
Let X = {x1, . . . , xn} be a finite alphabet and Y be an other (potentially infinite) alphabet. For simplicity
we will denote by

∫
Y the substitution ∫

Y
: xp → Sp(Y), (17)

for each x ∈ X and each p ∈ Z. Let us define the symmetric function

Hn,kλ/µ(Y; q, t) :=
1
n!

∫
Y
Pλ(X; q, t)Qµ(X∨; q, t)∆(X, q, t) (18)

where X∨ = {x−1
1 , . . . , x−1

n }.
Set Ytq := 1−t

1−qY and consider the substitution∫
Ytq

xp = Sp
(
Ytq
)

= Qp(Y; q, t). (19)

The following result shows that Hn,kλ/µ is a skew Macdonald polynomial on a suitable alphabet.

Theorem 3.1 Let X = {x1, . . . , xn} be an alphabet, λ = (λ1, . . . , λn) be a partition and µ ⊂ λ. The
polynomial Hn,kλ/µ(Ytq; q, t) is the Macdonald polynomial

Hn,kλ/µ(Ytq; q, t) =
1
n!

∏
(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
C.T.{∆(X, q, t)}Pλ/µ(Y, q, t) (20)

Set Y = {−y1, . . . ,−ym, . . .} if Y = {y1, . . . , ym, . . .} and note that the operation Y → Y makes sense
even for virtual alphabet since it sends any homogeneous symmetric polynomial P (Y) of degree p to
(−1)pP (Y). One observes the following phenomenon which is obtained from Theorem 3.1 by applying
the operations of the λ-ring structure.

Corollary 3.2 Let X = {x1, . . . , xn} be an alphabet, λ = (λ1, . . . , λn) be a partition and µ ⊂ λ. One
has

Hn,kλ/µ(−Y; q, t) =
1
n!

∏
(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
C.T.{∆(X, q, t)}Qλ′/µ′(Y, t, q). (21)



592 Jean-Gabriel Luque

Note that in the case of partitions, one has

Corollary 3.3

Hn,kλ (−Y, q, t) =
1
n!

∏
(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
C.T.{∆(X, q, t)}Qλ′(Y, t, q) (22)

Example 3.4 Consider the following equality

H2,3
41/3(−Y; q, t) = (∗)C.T.{∆(X, q, t)}Q2111/111(Y; t, q).

where X = {x1, x2}. The coefficient (∗) is computed as follows. One writes the partition [41] in a
rectangle of height 2 and length 4.

×
× × × ×

Each × of coordinates (i, j) is read as the fraction [i, j] := 1−qi−1t3−j

1−qit2−j . Hence

(∗) = [1, 2][1, 1][2, 1][3, 1][4, 1] =
(1− t)(1− t2)(1− qt2)(1− q2t2)(1− q3t2)
(1− q)(1− qt)(1− q2t)(1− q3t)(1− q4t)

4 A formula involving the polynomials Pλ

(
1−q
1−qkX; q, qk

)
and Pλ

(
X; q, qk

)
Now, we suppose that t = qk with k ∈ N. In that case, the constant term C.T.{∆(X, q, t)} admits a
closed form and Corollary 3.3 gives

Corollary 4.1
Hn,kλ (−Y, q, qk) = βn,kλ (q)Qλ′(Y; qk, q). (23)

where

βn,kλ (q) =
n−1∏
i=0

[
λn−i − 1 + k(i+ 1)

k − 1

]
q

and
[
n
p

]
q

= (1−qn)...(1−qn−p+1)
(1−q)...(1−qr) denotes the q-binomial.

Example 4.2 Set k = 2, n = 3 and consider the polynomial

H3,2
[320](−Y; q, q2) =

1
n!

∫
−Y

P[32](x1 + x2 + x3; q, q2)
∏
i 6=j

(1− xix−1
j )(1− qxix−1

j ).

One has

H3,2
[320](−Y; q, q2) =

(
1− q5

) (
1− q8

)
(1− q)2

Q[221](Y; q2, q).
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Let
ΩS :=

1
n!

∫
X

∏
i 6=j

(1− xix−1
j ) (24)

and for each v ∈ Zn,
S̃v(X) = det

(
x
vj+n−j
i

)∏
i<j

(xi − xj)−1.

Lemma 4.3 If v is any vector in Zn, one has

ΩSS̃v(X) = Sv(X) := det(Svi−i+j(X)) (25)

In particular, ΩS leaves invariant any symmetric polynomial. The operator

Am := ΩSΛn(X)−m (26)

acts on symmetric polynomials by substracting m from each part of the partitions appearing in their
expansion in the Schur basis.

Example 4.4 If X = {x1, x2, x3} and λ = [320], one has

P32(X; q, t) = S32(X) +
(−q + t)S311(X)

qt− 1
+

(q + 1)
(
qt2 − 1

)
(−q + t)S221(X)

(qt− 1)2 (qt+ 1)
.

Hence,

A1P32(X; q, t) = (−q+t)S2(X)
qt−1 +

(q+1)(qt2−1)(−q+t)S11(X)

(qt−1)2(qt+1)

=
(−q+t)(t+1)(q2t−1)P11(X;q,t)

(qt−1)2(qt+1)
+ (−q+t)P2(X;q,t)

qt−1 .

Theorem 4.5 If λ denotes a partition of length at most n, one has

A(k−1)(n−1)Pλ(X; q, qk)
k−1∏
l=1

∏
i 6=j

(xi − qlxj) = βn,kλ (q)Pλ

(
1− q
1− qk

X; q, qk
)

(27)

Example 4.6 Set k = 2, n = 3 and λ = [2]. One has

P[2](x1 + x2 + x3; q, q2)
∏
i 6=j

(xi − qxj) = −q3S[6,2] + q2
q3 − 1
q − 1

S[6,1,1]

+
q2(q5 − 1)
q3 − 1

S[5,3] −
q(q2 + 1)(q5 − 1)

q3 − 1
S[5,2,1] −

q(q7 − 1)
q3 − 1

S[4,3,1] +
q7 − 1
q − 1

S[4,2,2].

And,

A2P[2](x1 + x2 + x3; q, q2)
∏
i 6=j

(xi − qxj) =
q7 − 1
q − 1

S[2].

Since,

P[2]

(
x1 + x2 + x3

1 + q
; q, q2

)
=

q − 1
q3 − 1

S[2]
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one obtains

A2P[2](x1 + x2 + x3; q, q2)
∏
i 6=j

(xi − qxj) =
[

1
1

]
q

[
3
1

]
q

[
7
1

]
q

P[2]

(
x1 + x2 + x3

1 + q
; q, q2

)
.

As a consequence, one has

Corollary 4.7 If λ = µ+ [((k − 1)(n− 1))n],

Pµ(X; q, qk)
k−1∏
l=1

∏
i6=j

(xi − qlxj) = βn,kλ (q)Pλ

(
1− q
1− qk

X; q, qk
)
.

Example 4.8 Set k = 3, n = 2 and λ = [5, 2]. One has

P[5,2](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =

q3S[9,2] +
(1− q7)(1 + q4)

1− q5
S[7,4] −

(1− q2)(1 + q)(1 + q2)(1 + q4)
1− q5

S[8,3].

This implies

A2P[5,2](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =
(x1x2)−2P[5,2](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =
P[3](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1).

One verifies that

P[3](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =[
4
2

]
q

[
10
2

]
q

P[5,2](
x1 + x2

1 + q + q2
; q, q3).

Remark 4.9 If µ is the empty partition, Corollary 4.7 gives

k−1∏
l=1

∏
i 6=j

(xi − qlxj) = βn,kλ (q)P[((k−1)(n−1))n]

(
1− q
1− qk

X; q, qk
)
. (28)

This equality generalizes an identity given in [1]:

∏
i<j

(xi − xj)2(k−1) =
(−1)

((k−1)n(n−1)
2

n!

(
kn

k, . . . , k

)
P

(k)

n(n−1)(k−1)(−X),

where P (k)
λ (X) = lim

q→1
P

(α)
λ (X; q, qk) denotes a Jack polynomial (see e.g. [12]).

The expansion of the powers of the discriminant and their q-deformations in different basis of symmetric
functions is a difficult problem having many applications, for example, in the study of Hua-type integrals
(see e.g. [5, 7]) or in the context of the fractional quantum Hall effect (e.g. [3, 6, 8, 14]).
Note that in [2], we gave an expression of an other q-deformation of the powers of the discriminant as
staircase Macdonald polynomials. This deformation is also relevant in the study of the expansion of∏
i<j(xi − xj)2k in the Schur basis (for example, we generalized in [2] a result of [6]).
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5 Macdonald polynomials at t = qk as eigenfunctions
Let Y = {y1, . . . , ykn} be an alphabet of cardinality kn with y1 = x1, . . . , yn = xn. One considers the
symmetrizer πω defined by

πωf(y1, . . . , ykn) =
Y
i<j

(xi − xj)
−1

X
σ∈Skn

sign(σ)f(yσ(1), . . . , yσ(kn))y
kn−1
σ(1)

. . . yσ(kn−1).

Note that πω is the isobaric divided difference associated to the maximal permutation ω in Skn.
This operator applied to a symmetric function of the alphabet X increases the alphabet from X to Y in

its expansion in the Schur basis, since

πωSλ(X) = Sλ(Y). (29)

Indeed, the image of the monomial yi11 . . . yiknkn is the Schur function SI(Y). Since

πωSλ(X) = πωx
λ1
1 . . . xλnn = πωy

λ1
1 . . . yλnn y0

n+1 . . . y
0
kn,

one recovers equality (29).
One defines the operator πtq which consists in applying πω and specializing the result to the alphabet

Xtq := {x1, . . . , xn, qx1, . . . , qxn, . . . , q
k−1x1, . . . , q

k−1xn}.

From equality (29), one has

πtqω Sλ(X) = Sλ
(
(1 + q + . . .+ qk−1)X

)
, (30)

for l(λ) ≤ n. Furthermore, the expansion of Sλ
(
(1 + q + . . .+ qk−1)X

)
in the Schur basis is triangular,

so the operator πtq defines an automorphism of the space Sym≤n generated by the Schur functions
indexed by partitions whose length are less or equal to n, i.e. for each function f ∈ Sym≤n, one has

πtqf(X) = f(Xtq). (31)

In particular,

Lemma 5.1 Let λ be a partition such that l(λ) ≤ n then

πtqω Pλ

(
1− q
1− qk

X; q, t = qk
)

= Pλ(X, q, qk). (32)

Consider the operator M : f →Mf defined by

M := (x1 . . . xn)(k−1)(1−n)πtqω

k−1∏
l=1

∏
i6=j

(xi − qlxj).

The following theorem shows that the Macdonald polynomials are the eigenfunctions of the operator M.

Theorem 5.2 The Macdonald polynomials Pλ(X; q, qk) are eigenfunctions of M. The eigenvalue asso-
ciated to Pµ(X; q, qk) is βn,kµ+((k−1)(n−1))n(q). Furthermore, if k > 1, the dimension of each eigenspace
is 1.
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Example 5.3 If n = 5, the eigenvalues associated to the partitions of 4 are

β
4,k
[4 k,4 k−4,4 k−4,4 k−4,4 k−4] =

h 5k−5
k−1

i
q

h 6k−5
k−1

i
q

h 7k−5
k−1

i
q

h 8k−5
k−1

i
q

h 9k−1
k−1

i
q

(λ = [4, 0, 0, 0, 0]),

β
4,k
[4 k−1,4 k−3,4 k−4,4 k−4,4 k−4] =

h 5k−5
k−1

i
q

h 6k−5
k−1

i
q

h 7k−5
k−1

i
q

h 8k−4
k−1

i
q

h 9k−2
k−1

i
q

(λ = [3, 1, 0, 0, 0]),

β
4,k
[4 k−2,4 k−2,4 k−4,4 k−4,4 k−4] =

h 5k−5
k−1

i
q

h 6k−5
k−1

i
q

h 7k−5
k−1

i
q

h 8k−3
k−1

i
q

h 9k−3
k−1

i
q

(λ = [2, 2, 0, 0, 0]),

β
4,k
[4 k−2,4 k−3,4 k−3,4 k−4,4 k−4] =

h 5k−5
k−1

i
q

h 6k−5
k−1

i
q

h 7k−4
k−1

i
q

h 8k−4
k−1

i
q

h 9k−3
k−1

i
q

(λ = [2, 1, 1, 0, 0]),

β
4,k
[4 k−3,4 k−3,4 k−3,4 k−3,4 k−4] =

h 5k−5
k−1

i
q

h 6k−4
k−1

i
q

h 7k−4
k−1

i
q

h 8k−4
k−1

i
q

h 9k−4
k−1

i
q

(λ = [1, 1, 1, 1, 0]).

6 Expression of M in terms of the Cherednik elements
In this paragraph, we restate Proposition 5.2 in terms of Cherednik operators. Cherednik’s operators
{ξi; i ∈ {1, . . . , n}} =: Ξ are commutative elements of the double affine Hecke algebra. The Macdonald
polynomials Pλ(X; q, t) are eigenfunctions of symmetric polynomials f(Ξ) and the eigenvalues are ob-
tained substituting each occurrence of ξi in f(Ξ) by qλitn−i (see [11] for more details).
Suppose that k > 1 and consider the operator M̃ : f → M̃f defined by

M̃ :=
k−1∏
i=1

(1− qi)nM. (33)

From Proposition 5.2, one has

M̃Pλ(X; q, qk) =
n−1∏
i=0

k−1∏
j=1

(1− qλn−i+k(i+1)−j)Pλ(X; q, qk). (34)

The following proposition shows that M̃ admits a closed expression in terms of the Cherednick elements.

Proposition 6.1 One supposes that k > 1. For any symmetric function f , one has

M̃f(X) =
k−1∏
l=1

n∏
i=1

(1− ql+kξi)f(X). (35)
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A bijection between noncrossing and
nonnesting partitions of types A and B

Ricardo Mamede1†

Department of Mathematics, University of Coimbra,
3001-454 Coimbra, Portugal

Abstract. The total number of noncrossing partitions of type Ψ is the nth Catalan number 1
n+1

`
2n
n

´
when Ψ = An−1,

and the binomial coefficient
`
2n
n

´
when Ψ = Bn, and these numbers coincide with the correspondent number of

nonnesting partitions. For type A, there are several bijective proofs of this equality; in particular, the intuitive map,
which locally converts each crossing to a nesting, is one of them. In this paper we present a bijection between
nonnesting and noncrossing partitions of types A and B that generalizes the type A bijection that locally converts
each crossing to a nesting.

Résumé. Le nombre total des partitions non-croisées du type Ψ est le n-ème nombre de Catalan 1
n+1

`
2n
n

´
si Ψ =

An−1, et le coefficient binomial
`
2n
n

´
si Ψ = Bn, et ces nombres son coı̈ncidents avec le nombre correspondant

des partitions non-emboı̂tées. Pour le type A, il y a plusieurs preuves bijectives de cette égalité; en particulier, la
intuitive fonction, qui convertit localement chaque croisée en une emboı̂tée, c’est un d’entre eux. Dans ce papier nous
présentons une bijection entre partitions non-croisées et non-emboı̂tées des types A et B qui généralise la bijection
du type A qui localement convertit chaque croisée en une emboı̂tée.

Keywords: Root systems, noncrossing partitions, nonnesting partitions, bijection

1 Introduction
The poset of noncrossing partitions can be defined in a uniform way for any finite Coxeter group W .
More precisely, for u,w ∈W , let u ≤ w if there is a shortest factorization of w as a product of reflections
in W having as prefix such a shortest factorization for u. This partial order turns W into a graded poset
Abs(W ) having the identity 1 as its unique minimal element, where the rank of w is the length of the
shortest factorization of w into reflections. Let c be a Coxeter element of W . Since all Coxeter elements
in W are conjugate to each other, the interval [1, c] in Abs(W ) is independent, up to isomorphism, of
the choice of c. We denote this interval by NC(W) or by NC(Ψ), where Ψ is the Cartan-Killing type of
W , and call it the poset of noncrossing partitions of W . It is a self-dual, graded lattice which reduces
to the classical lattice of noncrossing partitions of the set [n] = {1, 2, . . . , n} defined by Kreweras in [9]
whenW is the symmetric group Sn (the Coxeter group of typeAn−1), and to its typeB analogue defined
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1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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by Reiner in [10] when W is the hyperoctahedral group. The elements in NC(W) are counted by the
generalized Catalan numbers,

Cat(W ) =
k∏
i=1

di + h

di
,

where k is the number of simple reflections in W , h is the Coxeter number and d1, . . . , dk are the degrees
of the fundamental invariants of W (see [1, 6, 7, 10] for details on the theory of Coxeter groups and
noncrossing partitions). When W is the symmetric group Sn, the number Cat(Sn) is just the usual nth
Catalan number 1

n+1

(
2n
n

)
, and in type Bn this number is the binomial coefficient

(
2n
n

)
.

Nonnesting partitions were defined by Postnikov (see [10, Remark 2]) in a uniform way for all irre-
ducible root systems associated with Weyl groups. If Φ is such a system, Φ+ is a choice of positive roots,
and ∆ is the simple system in Φ+, define the root order on Φ+ by α ≤ β if α, β ∈ Φ+ and β − α is
in the positive integer span of the simple roots in ∆. Equipped with this partial order, (Φ+,≤) is the
root poset of the associated Weyl group W . A nonnesting partition on Φ is just an antichain in root
poset (Φ+,≤). Denote by NN(W) or by NN(Ψ), where Ψ is the Cartan-Killing type of W , the set of all
nonnesting partitions of W . Postnikov showed that the nonnesting partitions in NN(W) are also counted
by the generalized Catalan number Cat(W ).

In the case of the root systems of typeA, different bijective proofs of the equality between the cardinals
|NN(An−1)| = |NC(An−1)| are known (see [1, 2, 3, 8, 11]). Recently, Christian Stump [11] described a
bijection between nonnesting and noncrossing partitions for type B, and simultaneously with our work,
Alex Fink and Benjamin Giraldo [5] presented a different bijection for each classical group. Our contribu-
tion in this paper is to present a uniform proof that |NN(Ψ)| = |NC(Ψ)|, for Ψ = An−1 and Ψ = Bn, that
generalizes the bijection presented by Armstrong in [1]. All three bijections are distinct, and preserves
different statistics. While our bijection preserves the triples (op, cl, tr) formed by the openers, closers and
transients (see the definitions below) of the partitions, and therefore also the number of blocks, the one
by Alex Fink and Benjamin Giraldo preserves the type of the partitions but not the triples (op, cl, tr), and
Stump’s bijection does not preserve neither the type nor the triples (op, cl, tr).

2 Noncrossing and nonnesting partitions of types A and B

A partition of the set [n] is a collection of nonempty disjoint subsets of [n], called blocks, whose union is
[n]. The type of a partition π of [n] is the integer partition formed by the cardinals of the blocks of π. Let
B be a block of π. Then, the least element of B is called an opener, the greatest element of B is said to be
a closer, and the remaining elements of B are called transients. The sets of openers, closers and transients
of π will be denoted by op(π), cl(π), and tr(π), respectively. The triples (op(π), tr(π), cl(π)) encodes
useful information about the partition π. For instance, the number of blocks is |op(π)| = |cl(π)|, and the
number of blocks having only one element is |op(π) ∩ cl(π)|. A partition can be graphically represented
by placing the integers 1, 2, . . . , n along a line and drawing arcs above the line between i and j whenever
i and j lie in the same block and no other element between them does so.

A noncrossing partition of the set [n] is a partition of [n] such that there are no a < b < c < d, with a, c
belonging to some block of the partition and b, d belonging to some other block. The set of noncrossing
partitions of [n], denoted by NC(n), is a lattice for the refinement order. A nonnesting partition of the set
[n] is a partition of [n] such that if a < b < c < d and a, d are consecutive elements of a block, then b and
c are not both contained in some other block. The set of nonnesting partitions of [n] will be denoted by
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NN(n). Graphically, the noncrossing condition means that no two of the arcs cross, while the nonnesting
condition means that no two arcs are nested one within the other. For instance, the noncrossing partition
{{2, 3}, {1, 4, 5}} and the nonnesting partition {{1, 3}, {2, 4, 5}} are represented by

1 2 3 4 5
.......
..........
...................................................

.........
...........
..............
..............................

.....................................................................................
..........
...........................................

and 1 2 3 4 5
..........
..............

..............................................................................
..............

...........................................................................
..........
...........................................

respectively. Both partitions have {1, 2} as set of openers, {3, 5} as set of closers and 4 is the only
transient. As pointed out in [1], the map that locally converts each crossing to a nesting

a b c d
−→

..........
............
................

..............................................................................................................
............
................

....................................................................................................

a b c d
..............

................
......................

........................................................................................................................................................
..........................................................

defines a bijection from NN(n) to NC(n) that preserves the number of blocks. We will refer to this
bijection as the L-map.

We will now review the usual combinatorial realizations of the Coxeter groups of types A and B, refer-
ring to [7] for any undefined terminology. The Coxeter groupW of typeAn−1 is realized combinatorially
as the symmetric group Sn. The permutations in Sn will be written in cycle notation. The simple gener-
ators of Sn are the transpositions of adjacent integers (i i + 1), for i = 1, . . . , n − 1, and the reflections
are the transpositions (i j) for 1 ≤ i < j ≤ n. To any permutation π ∈ Sn we associate the partition
of the set [n] given by its cycle structure. This defines a isomorphism between the posets NC(Sn) of
noncrossing partitions of Sn, defined in the introduction, and NC(n), with respect to the Coxeter element
c = (12 · · ·n) [4, Theorem 1].

Denoting by e1, . . . , en the standard basis of Rn, the root system of type An−1 consists of the set of
vectors

Φ = {ei − ej : i 6= j, 1 ≤ i, j ≤ n},

each root ei − ej corresponding to the transposition (i j). Take

Φ+ = {ei − ej ∈ Φ : i > j}

for the set of positive roots and, defining ri := ei+1 − ei, i = 1, . . . , n− 1, we obtain the simple system
∆ = {r1, . . . , rn−1} for Sn. Note that

ei − ej =
i−1∑
k=j

rk, if i > j .

The correspondence between the antichains in the root poset (Φ+,≤) and the set of nonnesting parti-
tions of [n] is given by the bijection which sends the positive root ei − ej to the set partition of [n] having
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an arc between vertices i and j. For instance, consider the root poset (Φ+,≤) of type A4:

r1 r2 r3 r4

r1 + r2 r2 + r3 r3 + r4

r1 + r2 + r3 r2 + r3 + r4

r1 + r2 + r3 + r4
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.........
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The antichain r1 + r2 = e3 − e1 corresponds to the transposition (13) in the symmetric group S5, and
thus to the nonnesting set partition {{1, 3}, {2}, {4}, {5}}, while the antichain {r1 + r2, r2 + r3, r4}
corresponds to the product of transpositions (13)(24)(45) = (13)(245) in S5, and thus to the nonnesting
set partition {{1, 3}, {2, 4, 5}}.

Given a positive root α = ri + ri+1 + · · · + rj ∈ Φ+, define the support of α as the set supp(α) =
{ri, ri+1, . . . , rj}. The integers i and j will be called, respectively, the first and last indices of α, and the
roots ri and rj the first and last elements of α, respectively. We have the following lemma.

Lemma 2.1 Let α1, α2 be two roots in Φ+ with first and last indices i1, j1 and i2, j2, respectively. Then,
α1, α2 form an antichain if and only if i1 < i2 and j1 < j2.

Consider now the Coxeter group W of type Bn, with its usual combinatorial realization as the hyper-
octahedral group of signed permutations of

[±n] := {±1,±2, . . . ,±n}.

These are permutations of [±n] which commute with the involution i 7→ −i. We will write the elements of
W in cycle notation, using commas between elements. The simple generators of W are the transposition
(−1, 1) and the pairs (−i− 1, −i)(i, i+ 1) for i = 1, . . . , n− 1. The reflections in W are the transpo-
sitions (−i, i), for i = 1, . . . , n, and the pairs of transpositions (i, j)(−j, −i) for i 6= j. Identifying the
sets [±n] and [2n] through the map i 7→ i for i ∈ [n] and i 7→ n− i for i ∈ {−1,−2, . . . ,−n}, allows us
to identify the hyperoctahedral group W with the subgroup U of S2n which commutes with the permuta-
tion (1, n+1)(2, n+2) · · · (n, 2n). For example, the signed permutations (1, 3) and (2,−3)(−2, 3) in the
hyperoctahedral group of type B3 correspond to the permutations (1 3) and (2 6)(5 3) in the symmetric
group S6. It follows that NC(U) is a sublattice of NC(S2n), isomorphic to NC(W ) (see [1]).

The type Bn root system consists on the set of 2n2 vectors

Φ = {±ei : 1 ≤ i ≤ n} ∪ {±ei ± ej : i 6= j, 1 ≤ i, j ≤ n},

and we take
Φ+ = {ei : 1 ≤ i ≤ n} ∪ {ei ± ej : 1 ≤ j < i ≤ n}

as a choice of positive roots. Changing the notation slightly from the one used for Sn, let r1 := e1 and
ri := ei − ei−1, for i = 2, . . . , n. The set

∆ := {r1, r2, . . . , rn}
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is a simple system for W , and easy computations show that

ei =
i∑

k=1

rk,

ei − ej =
i∑

k=j+1

rk, if i > j

ei + ej = 2
j∑

k=1

rk +
i∑

k=j+1

rk, if i > j .

Each root ei, ei − ej and ei + ej defines a reflection that acts on Rn as the permutation (i, −i),
(i, j)(−i, −j) and (i, −j)(−i, j), respectively, and we will identify the roots with the correspond-
ing permutations. For example, consider the root poset of type B3 displayed below:

r1 r2 r3

r1 + r2 r2 + r3

2r1 + r2 r1 + r2 + r3

2r1 + r2 + r3

2r1 + 2r2 + r3
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The antichain {2r1 + r2, r2 + r3} corresponds to the signed permutation (1, 3,−2)(−1,−3, 2).
Using the inclusion W ↪→ S2n specified above, we may represent noncrossing and nonnesting parti-

tions ofW graphically using the conventions made for its typeA analogs. In these representations, we use
the integers −1,−2, . . . ,−n, 1, 2, . . . , n, or −n, . . . ,−2,−1, 0, 1, 2, . . . , n, respectively for noncrossing
and nonnesting partitions, instead of the usual 1, 2, . . . , 2n, where the presence of the zero in the ground
set for nonnesting partitions is necessary to correctly represent (when present) the arc between a positive
number i an its negative (see [2]).

Given a noncrossing or a nonnesting partition π of type Bn, let the set of openers op(π) be formed by
the least element of all blocks of π having only positive integers; let the set of closers cl(π) be formed
by the greatest element of all blocks of π having only positive integers and by the absolute values of
the least and greatest elements of all blocks having positive and negative integers; and finally let the
set of transients tr(π) be formed by all elements of [n] which are not in op(π) ∪ cl(π). For instance,
if π is the nonnesting partition {{−4, 4}, {−1, 2}, {−2, 1}, {3, 5}, {−3,−5}}, represented below, then
op(π) = {3}, cl(π) = {1, 2, 4, 5} and tr(π) = ∅.

0 1 2 3 4 5-1-2-3-4-5
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.............................................................................................................................
.......................................................................................................... ..............

................
......................

............................................................................................................................................. ..............
................

......................
.........................................................................................................................................................

.............
...............

..................
........................

................................................................................................................................................................................... ............
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...................................................................................................................................................................................
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A factor 2ri appearing in a positive root α will be called a double root of α. The support of a positive
root α ∈ Φ+ is the set of simple and double roots in α. Define also the set supp(α) as the set formed by the
simple roots appearing in alpha as simple or double roots. For instance, for α = 2r1 + · · ·+ 2rj + rj+1 +
· · ·+ri and β = r`+ · · ·+rk we have supp(α) = {2r1, . . . , 2rj , rj+1, . . . , ri}, supp(α) = {r1, . . . , ri},
and supp(β) = supp(β) = {r`, . . . , rk}. The first and last indices of α are, respectively 1, i and `, k. The
integer j will be called the last double index in α. Define also the set Dα := {r2, . . . , rj} as the set of
simple roots appearing in α as double roots, other than r1. We have the following lemma.

Lemma 2.2 Let α and β be two roots in Φ+ with first and last indices i, j and i′, j′, respectively. If
neither α nor β have double roots, then {α, β} is an antichain if and only if i < i′ and j < j′. If α has
double roots, then {α, β} is an antichain if and only if j < j′ and the number of double roots in α is
greater than the number of double roots in β.

3 Main result
Let Φ denote a root system of typeA or typeB, and let Φ+ and ∆ be defined as above. In view of lemmas
2.1 and 2.2, we consider antichains {α1, . . . , αm} in Φ+ as ordered m-tuples numbered so that if i` is the
last index of α`, then i1 < · · · < im.

Definition 1 Given two positive roots α and β, with β having no double roots, and such that the inter-
section of their supports is nonempty, define their union α∪ β and their intersection α∩ β as the positive
roots with supports

supp(α ∪ β) := supp(α) ∪ (supp(β) \ supp(α)) and supp(α ∩ β) := supp(α) ∩ supp(β),

respectively. If moreover α has double roots, then define also their d-intersection α ∩d β as the positive
root with support supp(α ∩d β) := Dα ∩ supp(β).

Example 2 The union and the intersections of the type B3 positive roots α = 2r1 + 2r2 + r3 and
β = r2 + r3 + r4 are α ∪ β = 2r1 + 2r2 + r3 + r4, α ∩d β = r2, and α ∩ β = r2 + r3.

An antichain (α1, . . . , αm) is said to be connected if the intersection of the supports of any two adjacent
roots αi, αi+1 is non empty. The connected components

(α1, . . . , αi), (αi+1, . . . , αj), . . . , (αk, . . . , αm)

of an antichain α = (α1, . . . , αm) are the connected sub-antichains of α for which the supports of the
union of the roots in any two distinct components are disjoint. For instance, the antichain (r1 + r2, r2 +
r3, r4) has the connected components (r1 + r2, r2 + r3) and r4. We will use lower and upper arcs to
match two roots in a connected antichain in a geometric manner. Two roots linked by a lower [respectively
upper] arc are said to be l-linked [respectively, u-linked]. In what follows we will identify each root with
the correspondent permutation.

Definition 3 Define the map f from the set NN(Φ) into NC(Φ) recursively as follows. When α1 is a
positive root we set f(α1) := α1. If α = (α1, . . . , αm) is a connected antichain with m > 2, we have
two cases:
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(a) If there are no double roots in the antichain, define

f(α) :=

(
m⋃
k=1

αk

)
f(α2, . . . , αm),

where αk = αk−1 ∩ αk for k = 2, . . . ,m.

(b) Assume now that α1, . . . , α` have double roots, for some ` ≥ 1, and α`+1, . . . , αm have none. Let
Γd := (α1, . . . , α`) and Γ := (α`+1, . . . , αm). We start by introducing l-links as follows.

Let m′ be the largest index of elements in Γ such that the following holds: αm′ has a first index i 6= 1,
so that there is a rightmost element, say αk, of Γd which has a term 2ri. If there is such an integer
m′, l-link αk with αm′ . Then, ignore αk and αm′ and proceed with the remaining roots as before. This
procedure terminates after a finite number of steps (and not all elements of α need to be l-linked).

Next proceed by introducing u-links in α. The starting point of u-links, which we consider drawn from
right to left, will be elements in Γ that have no first index 1 and are not l-linked. We will refer to these
elements as admissible roots. So, let m′ be the smallest integer such that the following holds: αm′ is an
admissible root with first index i 6= 1 so that there is a leftmost element, say αk which has ri or 2ri in its
support and is not yet u-linked to an element on its right. If there is such an integer m′, u-link αk with
αm′ . Remove αm′ from the set of admissible roots and proceed as before. Again this process terminates
after a finite number of steps.

Finally, let T = {t1 < · · · < tp} be the collection of all last double indices of the roots in Γd not
l-linked, and all the last indices of the roots in α not u-linked to an element on its right. Then, define

f(α) := π1 · · ·π`π0 θ1 · · · θqf(θq+1, . . . , θs),

where for j = 1, . . . , `, πj = 2r1 + · · ·+ 2rj′ + rj′+1 + · · ·+ rj′′ , with j′ and j′′ respectively the leftmost
and rightmost integers in T not considered yet; π0 is either the root r1 + · · ·+rij , if the first index of α`+1

is 1, with ij the only integer in T not used yet for defining the roots πj , or the identity otherwise; each
θj , j = 1, . . . , q is the d-intersection of l-linked roots, starting from the rightmost one in Γd, and each θj ,
j = q + 1, . . . , s is the intersection of u-linked roots, starting from the leftmost one in Γ.

(c) For the general case, if (α1, . . . , αi), (αi+1, . . . , αj), . . . , (αk, . . . , αm) are the connected compo-
nents of (α1, . . . , αm), let

f(α1, . . . , αm) := f(α1, . . . , αi)f(αi+1, . . . , αj) · · · f(αk, . . . , αm).

Remark 4 (i) Notice that in the type A case, the map f is defined only by conditions (a) and (c) of the
above definition. Also, note that if all roots in α have double roots then condition (b) is vacuous and the
map f reduces to the identity map. We point out that the number of roots in f(α) is equal to the number
of roots in the antichain α.

(ii) The sequence (α2, . . . , αm) obtained in step (a) is a (not necessarily connected) antichain. It is
easy to check that after all l-links and all u-links are settled, the set T has an odd number of elements if
and only if the first index of α`+1 is 1. Thus, the root π0 given in condition (b) is well defined.

(iii) A closer look at the construction of f shows that this map preserves the triples (op(α), cl(α), tr(α))
for any antichain α.
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We will show that f establishes a bijection between the sets NN(Ψ) and NC(Ψ), for Ψ = An−1 or
Ψ = Bn. Before, however, we present some examples.

Example 5 Consider the antichain α = (r1 + r2, r2 + r3, r3 + r4 + r5, r4 + r5 + r6, r5 + r6 + r7) in
the root poset of type A7, corresponding to the permutation (136)(247)(58) in the symmetric group S8.
Applying the map f to α, we get the noncrossing partition

f(α) = (r1 + · · ·+ r7)f(r2, r3, r4 + r5, r5 + r6)
= (r1 + · · ·+ r7)r2r3f(r4 + r5, r5 + r6)
= (r1 + · · ·+ r7)r2r3(r4 + r5 + r6)r5
≡ (18)(2347)(56),

whose graphical representation is given below:
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.

Example 6 Consider now the antichain α = (α1, α2, α3, α4, α5) in the root poset B9, where

α1 = 2r1 + 2r2 + 2r3 + 2r4 + r5, α2 = 2r1 + 2r2 + r3 + r4 + r5 + r6,

α3 = r1 + r2 + r3 + r4 + r5 + r6 + r7, α4 = r3 + r4 + r5 + r6 + r7 + r8,

α5 = r4 + r5 + r6 + r7 + r8 + r9.

Following definition 3, we get the l-links and the u-links shown below:

α = (α1, α2, α3, α4, α5)
.............
.................

.............................
..............................................................................................................................

.......................................................................................................................................................................................................
..............................

.......................
.....

.

Therefore, T = {2, 6, 7, 8, 9} and the application of f to α yields:

f(α) = (2r1 + 2r2 + r3 + · · ·+ r9)(2r1 + · · ·+ 2r6 + r7 + r8)(r1 + · · ·+ r7)r4f(r3 + r4 + r5)
≡ (2,−9)(−2, 9)(6,−8)(−6, 8)(7,−7)(3, 4)(−3,−4)(2, 5)(−2,−5)
= (2, 5,−9)(−2,−5, 9)(6,−8)(−6, 8)(7,−7)(3, 4)(−3,−4).

The image f(α) is a noncrossing partition in [±9], as we may check in its representation:
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Lemma 3.1 If α ∈ NN(Bn) then f(α) ∈ NC(Bn).

Proof: Let α = (α1, . . . , αm) be an antichain in the root poset of type Bn, and let (α1, . . . , αw) be its
first connected component. Start by assuming that none of the positive roots in α have the simple root r1
nor the double root 2r1. We will use induction on m ≥ 1 to show that in this case f(α) is a noncrossing
partition on the set {i− 1, . . . , q,−(i− 1), . . . ,−q}, where i is the fist index of α1 and q is the last index
of αm, and such that each positive integer is sent to another positive integer. The result is clear when
m = 1. So, let m ≥ 2 and assume the result for antichains of length less than, or equal to m − 1. Then,
we may write

f(α) =

(
w⋃
k=1

αk

)
f(α2, . . . , αw)f(αw+1, . . . , αm),

where each αk = αk−1 ∩ αk, for k = 2, . . . , w. By the inductive step, f(α2, . . . , αw) ≡ π1 and
f(αw+1, . . . , αm) ≡ π2 are noncrossing partitions on the sets

{a− 1, . . . , b,−(a− 1), . . . ,−b} and {p− 1, . . . , q,−(p− 1), . . . ,−q},

respectively, where a and p are the first indices of α2 and αw+1, respectively, and b and q are the last
indices of αw and αm, respectively. Moreover, all positive integers are sent to positive ones by π1 and

π2. Denoting by j the last index of αw, we get
w⋃
k=1

αk = ri + · · · + rj ≡ (i − 1, j)(−(i − 1),−j) with

i− 1 < a− 1 < b < j ≤ p− 1 < q. Therefore

f(α) ≡ (i− 1, j)(−(i− 1),−j)π1π2

is a noncrossing partition on the set {i − 1, . . . , q,−(i − 1), . . . ,−q} sending each positive integer to
another positive integer.

Note that for the rest of the proof, we may assume without loss of generality that α is connected, since
none of the connected components of an antichain, except possible for the first one, have double roots, and
therefore their images are noncrossing partitions sending each positive integer to another positive integer.

Suppose now that the first element of α1 is r1. We will show that f(α) is a noncrossing partition on
the set {i − 1, . . . , q,−(i − 1), . . . ,−q}, where i is the first index of α2 and q is the last index of αm,
and such that one and only one positive integer is sent to a negative one. The result is certainly true for
m = 1, and when m > 1 we have

f(α) =

(
m⋃
k=1

αk

)
f(α2, . . . , αm),

where
m
∪
k=1

αk ≡ (q,−q), and αk = αk−1 ∩αk for k = 2, . . . ,m. By the previous case, f(α2, . . . , αm) ≡
π is a noncrossing partition on the set {i − 1, . . . , j,−(i − 1), . . . ,−j}, with i the first index of α2 and
j < q the last index of αm−1. Therefore, f(α) ≡ (q,−q)π is a noncrossing partition satisfying the
desired conditions.

Next, assume that α satisfies condition (b) of definition 3, and consider its image

f(α) = π1 · · ·π`π0 θ1 · · · θqf(θq+1, . . . , θs).
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By the construction of the set T , it follows that each Dαj
, j = 1, . . . , `, is contained in Dπi

, for some
i = 1, . . . , `, and that π1 · · ·π`π0 is a noncrossing partition, sending each nonfixed positive integer to a
negative one. Note also that the support of each θj , j = 1, . . . , q, is contained in some Dαi , i = 1, . . . , `,
and therefore, in some Dπi , i = 1, . . . , `. Moreover, the supports of any two roots θi and θj , 1 ≤ i, j ≤ q,
are either disjoint, or one of them is contained into the other one. Therefore θ1 · · · θq is a noncrossing
partition sending each nonfixed positive integer into another positive integer. By the previous cases,
f(θq+1, . . . , θs) is also a noncrossing partition sending each nonfixed positive integer into another positive
integer. Again by the construction of the set T , we find that the support of each θj , j = q + 1, . . . , s, is
either contained in some Dπi , or it does not intersect Dπ`

. For each j = 1, . . . , q and i = q + 1, . . . , s,
either we have supp(θi)∩ supp(θj) = ∅, or supp(θi) ⊇ supp(θj), this last case happening when θi arises
from the intersection of two u-linked roots αu ∈ Γd and αv ∈ Γ, and there is some αv+k ∈ Γ, k ≥ 1,
l-linked to αu, whose d-intersection gives θj . Therefore, it follows that f(α) is noncrossing. 2

With some minor adaptations, the proof of lemma 3.1, in the case where neither the simple root r1 nor
the double root 2r1 are present in α, gives the type A analog of the previous result.

Corollary 3.2 If α ∈ NN(An−1) then f(α) ∈ NC(An−1).

We will now construct the inverse function of f , thus showing that f establishes a bijection between
the sets NN(Ψ) and NC(Ψ), for Ψ = An−1 or Ψ = Bn. For that propose, recall the following property.

Lemma 3.3 Two distinct transpositions (a, b) and (i, j) in Sn commute if and only if the sets {i, j} and
{a, b} are disjoint.

If π1 · · ·πp is the cycle structure of a signed permutation π, then for each cycle πi = (ij · · · k) there is
another cycle πj = (−i−j · · ·−k). Denote by π′i the cycle in {πi, πj} having the smallest positive integer
(when πi = πj then π′i is just πi), and call positive cycle structure to the subword of π1 · · ·πp formed by
the cycles π′i. Extend this definition to permutations in Sn by identifying positive cycle structure with
cycle structure.

Theorem 3.4 The map f is a bijection between the sets NN(Ψ) and NC(Ψ), for Ψ = An−1 or Ψ = Bn,
which preserves the triples (op(π), cl(π), tr(π)).

Proof: We will construct the inverse map g : NC(Ψ) → NN(Ψ) of f . Given π ∈ NC(Ψ), let π1 · · ·πs
be its positive cycle structure. Replace each cycle πi = (i1i2 · · · ik) by (i1i2)(i2i3) · · · (ik−1ik), if i` > 0
for ` = 1, . . . , k, or by

πi = (i1ij+1)(i1i2)(i2i3) · · · (ij−1ij)(ij+1ij+2) · · · (ik−1ik),

if i` > 0 for ` = 1, . . . , j, and i` < 0 for ` = j + 1, . . . , k. Next, baring in mind lemma 3.3 and recalling
that π is noncrossing, move all transpositions (i, j), with i > 0 and j < 0 (if any), to the leftmost positions
and order them by its least positive element, and order all remaining transpositions (i, j), with i, j > 0,
by its least positive integer. Replace each transposition (ij) by its correspondent root in the root system
of type Ψ, and let

(α1, . . . , αk)(αk+1, . . . , α`) · · · (αm, . . . , αn) (1)

be the correspondent sequence of roots, divided by its connected components. Note that given two distinct
roots in (1), the sets formed by the first and last indices, if there are no double roots, or by the last and last
double indices, otherwise, are clearly disjoint.
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We start by considering that the sequence (1) has only one connected component (α1, . . . , αk). Let
Γd = (α1, . . . , αr) be the subsequence formed by the roots having double roots, and denote by Γ =
(αr+1, . . . , αk) the remaining subsequence. Define Γ′ = Γ′d = ∅. If Γd is not empty and r 6= k, apply the
following algorithm:

Let Γ be the subsequence of Γ obtained by striking out the root αr+1 if its first index is 1. While Γ 6= ∅,
repeat the following steps:

(i) Let αi be the leftmost root in Γ and check if supp(αi) ⊆ Dαj , for some αj ∈ Γd \ Γ′d.
(ii) If so, let αij be the rightmost root in Γd \ Γ′d with this property. Update Γ′ by including in it the

rightmost root α of Γ whose support is contained in supp(αi). Update Γ by striking out the root α and
update Γ′d by including in this set the root αij .

(iii) Otherwise, update Γ by striking out the root αi.
Next, let T = {t1 > · · · > tr} be the set formed by all last double indices of the roots in Γd \ Γ′d and

by the last indices of the roots in Γ′; let Fst = {fr+1 < · · · < fk} be the set formed by the first indices
of the roots in Γ, and let Lst = {`1 < · · · < `k} be the set formed by the last indices of the roots in
(Γ \ Γ′) ∪ Γd and by the last double indices of the roots in Γ′d. By this construction, we have fi < `i for
i = 1, . . . , r, and fi < `i, for i = r + 1, . . . , k. Then, define

g(π) = (α1, . . . , αk),

where for i = 1, . . . , r, αi = 2r1+· · ·+2rti+rti+1+· · ·+r`i , and for i = r+1, . . . , k, αi = rfi+· · ·+r`i .

For the general case define

g(π) = g(α1, . . . , αk)g(αk+1, . . . , α`) · · · g(αm, . . . , αn).

It is clear from this construction that g(π) is an antichain in the root poset of type Ψ. Moreover, a
closer look at the construction of the map f shows that g is the inverse of f . Thus, f (and g) establishes a
bijection between nonnesting and noncrossing partitions of types A and B. 2

In the following examples we illustrate the application of the map g.

Example 7 Consider the cycle structure of the noncrossing partition π = (18)(2347)(56) in the symmet-
ric group S8 used in example 5. Following the proof of theorem 3.4, write

π ≡ (18)(2347)(56)
= (18)(23)(34)(47)(56)
≡ (r1 + · · ·+ r7)r2r3(r4 + r5 + r6)r5

Note that π has only one connected component, and there are no double roots. Next define the sets

Fst = {1, 2, 3, 4, 5}, and Lst = {2, 3, 5, 6, 7}.

Thus, we find that the image of π by the map g is the antichain

g(π) = (r1 + r2, r2 + r3, r3 + r4 + r5, r4 + r5 + r6, r5 + r6 + r7).
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Example 8 Consider now the noncrossing partition

π = (2, 5,−9)(−2,−5, 9)(6,−8)(−6, 8)(7,−7)(3, 4)(−3,−4)

obtained in example 6. Its positive cycle structure is

(2,−9)(2, 5)(6,−8)(7,−7)(3, 4) = (2,−9)(6,−8)(7,−7)(2, 5)(3, 4),

and thus we get

π ≡ (2r1 + 2r2 + r3 + · · ·+ r9, 2r1 + · · ·+ 2r6 + r7 + r8, r1 + · · ·+ r7, r3 + r4 + r5, r4).

Next, construct the sets

T = {4, 2}, Fst = {1, 3, 4}
Lst = {5, 6, 7, 8, 9}.

Therefore, the image of π by the map g is the antichain

(2r1 + · · ·+ 2r4 + r5, 2r1 + 2r2 + r3 + · · ·+ r6, r1 + · · ·+ r7, r3 + · · ·+ r8, r4 + · · ·+ r9).

Finally, in the next result we prove that the map f generalizes the bijection that locally converts each
crossing to a nesting.

Theorem 3.5 When restricted to the type An−1 case, the map f coincides with the L-map.

Proof: Let α = (α1, . . . , αm) be an antichain in the root poset of type An−1. The result will be handled
by induction over m ≥ 1. Without loss of generality, we may assume that α is connected, since otherwise
there is an integer 1 < k < n − 1 such that each integer less (resp. greater) than k is sent by α to an
integer that still is less (resp. greater) that k. Therefore, the same happens with the image of α by either
the map f or the L-map.

The result is vacuous when m = 1, and when m = 2, the only connected nonnesting partition which
does not stay invariant under the maps f and L is α = (ri + · · ·+ ri′)(rj + · · ·+ rj′), for some integers
1 ≤ i < j < i′ < j′ ≤ n − 1. In this case, the equality between f and the L-map is obvious. So, let
m > 2 and assume the result for antichains of length ≤ m − 1. Let i and j be, respectively, the first and
last indices of α1 and αm. Then,

f(α) = (ri + · · ·+ rj)f(α2, . . . , αm),

where each αk = αk−1 ∩ αk for k ≥ 2, and the antichain (α2, . . . , αm) is clearly nonnesting, and not
necessarily connected. By the inductive step, f(α2, . . . , αm) = L(α2, . . . , αm). Moreover, note that
converting, from left to right, each local crossing between the first root and the leftmost root in α whose
arcs cross, into a nesting gives, precisely,

(ri + · · ·+ rj)L(α2, . . . , αm),

and this operation may be considered the first step of the L-map. Thus, we find that f(α) = L(α). 2
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Example 9 Consider the antichain α = (r1 + r2 + r3, r2 + r3 + r4 + r5, r3 + r4 + r5 + r6, r5 + r6 + r7)
in the root poset of type A7. Applying the map f we get

f(α) = (r1 + · · ·+ r7)f(r2 + r3, r3 + r4 + r5, r5 + r6)
= (r1 + · · ·+ r7)(r2 + r3 + r4 + r5 + r6)f(r3, r5)
= (r1 + · · ·+ r7)(r2 + r3 + r4 + r5 + r6)r3r5 ≡ (18)(27)(34)(56).

On the other hand, applying the L-map to each crossing between the first root and the leftmost root in α
whose arcs cross, we get successively

1 2 3 4 5

→
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.........
..........
............
................

............................
.........................................................................................................................................
..........
...........
............
..............

.................
.......................

................................................................................................................................................................................................
...............

..................
......................

......................................
................................................................................................................................................................

..........
............
................

............................
............................................................................................................................... ..........

...........
............
..............

................
...................

...........................
.....................................................................................................................................................................................................................................

.........
...........
..............
..............................

...........................................................................................
...............

..................
......................

......................................
................................................................................................................................................................

..........
............
................

............................
...............................................................................................................................

→

1 2 3 4 5

→

6 7 8 87654321
.............

..............
...............

.................
...................

.......................
...............................

......................................................................................................................................................................................................................................................................
.........
...........
..............
..............................

.......................................................................................
..........
............
................

............................
........................................................................................................................................

..........
............
................

............................
............................................................................................................................... ..............

...............
................

..................
.....................

.........................
...................................

..................................................................................................................................................................................................................................................................................................................
.........
...........
..............
..............................

.......................................................................................
..........
............
................

............................
.......................................................................................................................................

.........
...........
..............
..............................

..............................................................................

Thus, in the first step of the L-map, we get L(α) = (r1 + · · · + r7)L(r2 + r3, r3 + r4 + r5, r5 + r6).
Continuing the application of the L-map, now replacing, by a nesting, each crossing between the second
root and the leftmost root in α whose arcs cross, we get

→

1 2 3 4 5

→

6 7 8 87654321
..............
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,

and therefore, we have L(α) = (r1 + · · ·+ r7)(r2 + r3 + r4 + r5 + r6)r3r5 = f(α).
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The election is a classical problem in distributed algorithmic. It aims to design and to analyze a distributed algorithm
choosing a node in a graph, here, in a tree. In this paper, a class of randomized algorithms for the election is studied.
The election amounts to removing leaves one by one until the tree is reduced to a unique node which is then elected.
The algorithm assigns to each leaf a probability distribution (that may depends on the information transmitted by the
eliminated nodes) used by the leaf to generate its remaining random lifetime. In the general case, the probability of
each node to be elected is given. For two categories of algorithms, close formulas are provided.

Keywords: Distributed Algorithm, Election Algorithm, Probabilistic Analysis, Random Process

1 Introduction
1.1 The problem
Starting from a configuration where all processors are in the same state, the goal of an election algorithm
is to obtain a configuration where exactly one processor is in the state leader, the other ones being in the
state lost. The (leader) election problem is often the first problem to solve in a distributed environment.
A leader permits to centralize some information, to make some decisions, to coordinate the processors
for subsequent tasks. Hence, the election problem – first posed by Le Lann in [6] – is one of the most
studied problems in distributed algorithmic, and this under many different assumptions [9]. The graph
encoding the relations between the processors can be a ring, a tree, a complete or a general connected
graph. The system can be synchronous or asynchronous and processors may have access to a total or
partial information of the geometry of the underlying graph, or of the current state of the system, etc.

In this paper we consider the case of election in trees, when the nodes have at time t = 0 a very par-
tial information on the geometry of the tree: each node only knows its number of neighbors. A possible
method for electing in a tree, introduced by Angluin ([1] Theorem 4.4), amounts to eliminating succes-
sively the leaves till only one node remains, the leader. In this paper, we investigate this method in the
general case: assume that a node u being a leaf (was a leaf at time t = 0, or that becomes a leaf at time
t) decides to live a random remaining time Du before being eliminated; in other words, it is eliminated at
time t+Du except if it is elected before this date. Starting with a given tree T0 at time 0, denote by Tt the
tree constituted with the non-eliminated nodes at time t. The family (Tt)t≥0 is a random process taking
its values in the set of trees. Given T0, the distribution of (Tt)t≥0 – and then, also the probability that a
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given node is elected – depends on the way the nodes choose the distribution according to which they will
compute their random remaining lifetime.
– In [7] the authors consider two elementary approaches. The first one is based on the assumption that
all sequences of leaves elimination have the same probability (no distributed algorithm seems to have this
property). Their second approach assumes that at each step all leaves have the same probability of being
removed. This corresponds to the case where the D′us are all exponentially distributed with parameter 1.
The authors study thoroughly both approaches and prove many properties of resulting random processes.
– In [8], the authors show that if the nodes suitably choose their remaining random lifetime then a to-
tally fair election process is possible, the nodes being elected equally likely (in Section 3.2 this example is
revisited). In [4] and [3], the authors extend the result from [8] to a more general class of graphs: the poly-
ominoid graphs. They also prove a conjecture: the expected value of the election duration is equal to log n.

In this paper, we investigate the general case, namely, we consider the case where a leaf u generates its
remaining lifetime Du according to a distribution Du, where Du may depend on all the information that
u has at its disposal (see Remark 2 below). We warm the reader to distinguish the notation Du and Du.

Remark 1 – In order to avoid that two nodes may disappear exactly at the same time, the distributionsDu
need to avoid atoms (points with a positive mass). Even if not recalled in the statements, we assume that
the distributions Du have no atom. (In Section 3.3 a case where Du maybe 0 with a positive probability
arises and leads to problems).

– It is assumed throughout the paper, that the nodes own independent random generators. This assump-
tion is needed each time that the independence argument is used in the paper.

1.2 The general scheme
Throughout this paper T = (V,E) is a tree in the graph theoretic sense: V is its set of nodes, E the set
of edges. The graph T is acyclic and connected, and undirected. The size of T , denoted by |T |, is the
number of nodes.

In the class of algorithms we study, a node u becoming a leaf at time t (or which was a leaf at time
t = 0) disappears at time t + Du (except if it is elected before!); the quantity Du, called the remaining
lifetime of u, is computed locally by the leaf u. The description of the way u chooses the distribution Du
is crucial: this description is in fact equivalent to the description of an algorithm using the general method
of elimination of leaves. We then enter into details here.

When a leaf is eliminated, it may transmit to its unique neighbor some information (this notion will be
formalized below). During the execution of the algorithm, as a result of the successive eliminations of
the leaves, each internal node u eventually becomes a leaf, say at time tu. At this time, it may use the
information received to compute the distribution Du: then, it generates a random variable Du following
Du using a random generator. After this delay (at time tu + Du), u is eliminated: it may transmit some
information to its (unique) neighbor, and disappears from the tree. The election goes on till eventually
only one single node remains; this node is then elected.

As said above, the key point here is to understand that an algorithm (from the class we study) is
parametrized by the way a node u chooses – according to the information it has – the distribution Du.

We here formalize more precisely what we understand by information received and information trans-
mitted, this needed to be coherent with the distributed model we consider. This will straightforwardly
leads to the formal definition of our class of algorithms.
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Fig. 1: On this example, are circled at each step the next leaf to disappear. On this example, the remaining lifetime
of the leaf 11, according to an algorithm ∆ is allowed to depend on the information given by the nodes 2 and 4; the
information provided by 4 may include the information it received from the node 3. The total information received
by 11 has a forest structure (a forest having 2,4 as roots, and having as set of nodes 2, 3, 4, and possibly containing
all the lifetimes, prescribed weights, and computed values of these nodes).

a) The only information a node u has at time 0 is its degree degu and a prescribed weight wu, which
is an element of R, Rd or any set (this may be viewed as a personal parameter),

b) at its time of disappearance a leaf u transmits to its unique neighbor v all the information it has:
– the information it has received from its neighbors eliminated nodes,
– the 4-tuple Lu = (degu, Du, wu,Γu) which is the local value of u; the quantity Γu is computed
by u using the information it has received and possibly the pair (degu, wu). In the application we
have, Γu is used to compute Du, and then we assume that Γu is not a function of Du. We call Γu
the computed value of u, it may belong to any set. See the remark below.

Assume that a node u becomes a leaf at time t when k of its k + 1 neighbors v1, . . . , vk, have been
eliminated. Denote by I1, . . . , Ik the information these nodes have transmitted to u. The node u has at its
disposal the multiset {I1, . . . , Ik}. Recursively, one sees that the structure of the information received by
u is a forest with k rooted trees (a forest being here a multiset of trees) rooted at the vi’s and constituted
with eliminated nodes; this forest has the geometry of the tree T fringed at the vi’s. The node u formally
knows the local value of each of the nodes of this forest.

Remark 2 • wu and Γu are not used by each algorithm: when not used, they may be supposed to be 0.
• The notion of computed values aims to simplify the description of some algorithms, summing the needed
information. Formally the transmission of this value is not necessary since it can be computed by a node
having in hand all the other information.
• Let µ be a distribution on R with cumulative distribution function F . If U is uniform on [0, 1] then the
law of F−1(U) is µ, where F−1(u) = inf{x | F (x) ≥ u} is the right continuous inverse of F ; hence to
simulate any distribution µ, a uniform random variable on [0, 1] is sufficient. We assume that the nodes
have at their disposal some independent random generators providing uniform random values on [0, 1].

Hence clearly, the information a node has received can be encoded without loss of information by a
labelled forest f , where each node v is labelled by the 4-tuple Lv . The set of received information will
then be identified with F the set of forests labelled by 4-tuple corresponding to the Lu’s.

The other information at the disposal of a given node u that may be used to computeDu is its own local
information L?u = (deg(u), wu,Γu), where as said above Γu has been computed using (deg(u), wu) and
the received information. We denote by L? the set of local information.
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An algorithm is then just parametrized by a function ∆

∆ : F × L? −→ M
(f, l?) 7−→ ∆(f, l?)

where M is the set of probability measures having their support included in [0,+∞). The function
∆ associates with a pair (f, l?) a probability distribution ∆(f, l?). Any map ∆ encodes an algorithm
ALGO(∆): when ALGO(∆) is used, a node u becoming a leaf and having received the information f
and having as local information l?u, computes Du = ∆(f, l?) and generates Du according to Du. The
maps ∆ exemplified below depend only on a part of the information received. The algorithms ALGO(∆)
are in the class of algorithms using the method of Angluin, and satisfy the constraints to be distributed.

Example 1 We translate into the form ALGO(∆) the algorithm defined in Métivier & al. [8]. For each
node u, wu = 1. A node which is a leaf at time 0 computes Γu = 1. Let u be an internal node and
Γv1 , . . . ,Γvk

be the computed values of the eliminated neighbors of u. Then u computes:

Γu = 1 + Γv1 + · · ·+ Γvk
. (1)

Now the application ∆ depends only on the computed values: suppose that u has received (f, l?) and has
computed Γu, then Du = ∆(f, l?) is simply Expo(Γu), the exponential distribution(i) with parameter
Γu. Hence, Du = Expo(1) if u is a leaf at time 0, and if u becomes a leaf later, then Du = Expo(Γu),
where Γu equals one plus the size of the forest of eliminated nodes leading to it (see Fig. 1). It turns
out that in this case, each node is elected equally likely (for all tree T ). We provide in Section 3.2 a new
proof of this fact. Métivier et al. [8], [4] and [5] introduced election algorithms on trees, k-trees and
polyominoids having also this property.

We address the question to compute according a general ALGO(∆), the probability qu that a given
node u is eventually elected. In Section 2 we answer in the general case to this question, and express the
result in terms of properties of some variables arising in a related problem of directed elimination.

In the sequel, we introduce and study two categories of algorithms in the class of algorithms ALGO(∆).
Before discussing their properties, we have to say that in order to get close formulas for (qu)u∈V , some
stabilities in the computations are necessary, and this is not possible for general functions ∆. The two
categories we propose raise on two different kinds of stability: the (max,+) algebra in distribution, and
the stable distributions for the convolutions.

– The first one is built using the properties of the exponential distribution, and generalizes the computa-
tion of Métivier & al: the application ∆ takes its values in the set of exponential distributions union the set
of convolutions of such distributions. This category contains an algorithm ALGO(∆) such that (qu)u∈V
is proportional to the prescribed weights (wu)u∈V . For technical reasons the prescribed weights (wu)u∈V
are to be integer valued. When the (wu)u∈V are allowed to be real numbers, we propose an algorithm
which elects proportionally to these weights in case of success, but which fails with a low probability,

– the second category may be less interesting from an algorithmic point of view, since the algorithms
are more time consuming than the algorithms of the first category; it has however two main advantages: it
clarify in some sense the properties needed to make the computation for a given function ∆, and it leads
to a surprising proof of some mathematical identities involving the function arctan.

(i) a random variable r.v. E has the distribution Expo(a), for some a > 0 if P(E ≥ x) = exp(−ax), for all x ≥ 0.
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2 General case: probability of a given node to be elected
In this section, we give a general formula giving (qu)u∈V for ALGO(∆). The proposition below is a
generalization of a proposition of Métivier &. al [8] (the coupling argument we use is new).

The idea of the proof is to decompose the event {u is not elected } into disjoint events: if u is not
elected, this means that u has become a leaf (or was a leaf at t = 0) and then has been eliminated. Let t
be the time when u has become a leaf. At this time u had only one neighbor v, and since afterward u was
not elected, this means that u has disappeared before v. If at time 0, u has k neighbors v1, . . . , vk in the
tree T , all of these nodes are possibly the last surviving node v evoked above: the family of events

Ei = {u is not elected and the last neighbor of u was vi}. (2)

are the “disjoint events” mentioned above. We just have to compute P(Ei).
Our idea to compute the probability of this event is to change of point of view, and to introduce a

notion of directed elimination: if u is eliminated before v, this means that the sub-tree T [u, v] – which is
defined to be the tree rooted in u maximal for the inclusion in T which does not contain v (see Fig. 2)) –
disappears entirely before T [v, u]; in the tree T [u, v] the elimination is done from the leaves to the root u.

2.1 Directed elimination in rooted trees

u v

v
u

Fig. 2: A tree T , and the two rooted trees T [v, u] and T [u, v]

We define an algorithm ALGO?(∆) (very similar to ALGO(∆)) which aims to eliminate all the nodes
of a rooted tree, from the leaves to the root. We do not investigate the election since the last living node
will be the root, but we are interested in the duration of the directed elimination of the whole tree.

We define ALGO?(∆) recursively on a rooted tree τ . The only difference between ALGO(∆) and
ALGO?(∆) is that with ALGO?(∆) the root of τ is never considered as a leaf: using ALGO?(∆)
– the leaves of τ are eliminated as with ALGO(∆), transmit and receive the same information, and
compute their remaining lifetimes distribution with the same function ∆, but the root of τ is not considered
as a leaf, even if it has only one child,
– when the root v of τ becomes alone, it has received some information from its neighbors (or none if it
was yet alone at time 0), then it computes using ∆ the distribution D?v , and generate D?

v accordingly; in
other words, the root once alone behaves as a leaf in ALGO(∆). After the delay D?

v , v disappears.

We define the duration D?(τ) of the whole tree τ rooted in v according to ALGO?(∆) as the date of
disappearance of v. If τ is a rooted tree with root u, and such that the subtree of τ rooted at the children
of u are τ1, . . . , τk: one has

D?(τ) = D?
u + max

i
D?(τi); (3)

D?
u has a distribution given by ∆ with the same rules as in ALGO(∆).
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We come back in the election problem in a (unrooted) tree T according to ALGO(∆). Let u and v be
two neighbors in a tree T ; consider in one hand the event

Eu,v = {u is not elected and the last neighbor of u is v}

corresponding to a generic event Ei in (2). In the other hand, the two trees T [u, v] and T [v, u] are rooted
trees, respectively in u and v; consider two independent directed eliminations on these trees as explained
above, and denote by D?(T [u, v]) and D?(T [v, u]) their independent durations. It turns out that

Proposition 1 The following identity holds true:

P(Eu,v) = P
(
D?(T [u, v]) < D?(T [v, u])

)
. (4)

Proof: We propose a proof via a coupling argument. The idea is to compare the election process which
takes place in T with the directed eliminations in T [v, u] and T [u, v], that are directed. The comparison
is not immediate since these algorithms are not defined on the same probability space.

The algorithms ALGO(∆) and ALGO?(∆) allow each node u to choose a distribution Du or D?u de-
pending on the information received, from which the nodes generate their lifetimes Du or D?

u. According
to Remark 2, a variable U uniform is sufficient to generate Du or D?

u. Hence, we suppose that at time 0
each node w in the tree T has at its disposal a real number Uw obtained by a uniform random generator
on [0, 1]. This is the key-point: a node w in T maybe considered also as a node in T [v, u] or in T [u, v],
depending on which of these trees it belongs. If one now executes ALGO(∆) on T and ALGO?(∆) on
T [u, v] and T [v, u] using the variable Uw for the generation of the Dw’s and the D?

w’s, one can compare
the events {Eu,v} and {D?(T [u, v]) < D?(T [v, u])}, since they are now on the same probability space.

It turns out that for each assignment of the Uw’s, we have {Eu,v} = {D?(T [u, v]) < D?(T [v, u])}.
Indeed, since both algorithms use the Uw’s, since the algorithms have the same constructions and the same
rules concerning ∆, we see that the disappearance of leaves coincide in the two models till the disappear-
ance of u or of v: after this time, the information transmitted are different, and then the two processes
evolve in a non comparable manner. Now, in the election process ALGO(∆) in T , if u is eliminated before
v, then the tree T [u, v] has lived a directed election, and thus D?(T [u, v]) coincides with the disappear-
ance time of u (for ALGO(∆)). At this time, since v is still alive, this means that the directed elimination
in T [v, u] is not finished, thus D?(T [u, v]) < D?(T [v, u]). Conversely, if D?(T [u, v]) < D?(T [v, u]),
then u disappears before v according to ALGO(∆), since till the time min(D?(T [u, v]), D?(T [v, u])) the
two elimination processes coincide.

We then have construct a probability space (the one where are defined the Uw’s) on which the two
events {Eu,v} and {D?(T [u, v]) < D?(T [v, u])} coincide; thus, they have the same probability. 2

As a corollary we have

Corollary 1 Let u be a node of a tree T and u1,..., uk its neighbors. Using ALGO(∆)

qu = 1−
∑

1≤i≤k

P
(
D?(T [u, ui]) < D?(T [ui, u])

)
. (5)
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3 First category: around the (max, +) algebra
In this category, the distribution Du are either the exponential distribution or a convolution of such dis-
tributions. We will see that this category contains the algorithm of Métivier &. al. allowing to elect
uniformly in the tree, an algorithm electing proportionally to positive integer valued prescribed weights,
some algorithms allowing to elect proportionally to some structural features of the tree.

Before doing this, we recall some classical facts. In the sequel E [a] denote a r.v. having the Expo(a)
distribution, and Mn = max1≤i≤n E [1]

i is the maximum of n i.i.d. r.v. Expo(1) distributed. The distri-
bution of Mn is denoted from now on byMn (we have P(Mn ≤ x) = (1− exp(−x))n, for any x ≥ 0).

Lemma 1 Let E [1], ..., E [n] be n independent exponential random variables with parameters 1, . . . , n.
The random variables E [1] + ...+ E [n] has distributionMn.

Proof: Consider (Êi, 1 ≤ i ≤ n), the order statistics of n i.i.d. Expo(1) random variables E [1]
1 , . . . , E [1]

n ,
that is the sequence (E [1]

i , 1 ≤ i ≤ n), sorted in the increasing order. The variable Mn = max E [1]
i is

also the sum of the random variables Êi − Êi−1, for i = 1, . . . , n with the convention Ê0 = 0. Using the
memoryless property of the exponential distribution, one has Êi−Êi−1

d= E [n+1−i] for all i ∈ {1, . . . , n},
and the variables (Êi − Êi−1) are independent (for more details, see Proposition p.19 in Feller [2]). 2

From the lemma we easily derive:

Corollary 2 i) Consider k ≥ 1 positive integers a1, . . . , ak summing to n. If the r.v. Mai
’s are indepen-

dent, and independent of E [n+1] then Mn+1
d= E [n+1] + max1≤i≤kMai .

ii) For any k ≥ 1 and n ≥ 1, set

Yn,k
d= E [n+1] + E [n+2] + ...+ E [n+k], (6)

where the variables E [n+i] are independent. We have Mn+k
d= Mn + Yn,k.

3.1 The algorithms of the first category
The first category of algorithms we design is based on Corollary 2. It may be more easily understood
via the directed elimination ALGO?(∆), where the duration of a rooted tree τ according to ALGO?(∆)
will have distributionMn, for some n. The application ∆ will take its values in the set of distributions
{Y[n, k], n ≥ 1, k ≥ 1}, where Y[n, k] is the distribution of Yn,k (given in (6)).

The only difference between the algorithms of the first category is the computed values Γu’s : the class
of algorithm considered is then simply parametrized by the possible computed values Γ satisfying the
constraint below. It is convenient to consider bi-dimensional computed values Γu = (Cu, gu) where Cu
will be use to add some quantities coming from the received information, and gu is used to make some
local computations.

Here are in two points the description of all the algorithms of the first category:
– At time 0, the computed value Γu of any leaf u is Γu = (0, gu) where gu is a positive integer. Then set

Du = Y[0, gu] d= MCu+gu
. (7)
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– Let u be an internal node in T becoming a leaf; let f be the received information, and in particular let
Γ1 = (C1, g1), . . . ,Γk = (Ck, gk) be the computed values of its eliminated neighbors. Then the node u
compute an integer value gu according to its information (f and L?u), and let Cu =

∑k
i=1 Ci + gi. Then

set Du = Y [Cu, gu] .

Let us think in terms of directed elimination. Recall that the notion of computed values are defined
similarly in ALGO?(∆) and in ALGO(∆), but in the directed case, it is convenient to make appear the
tree notation in the computed values instead of the node notation.

If a rooted tree τ is reduced to a leaf u, set C(τ) = 0, g(τ) = gu. If τ has root u, and if the sub-trees
rooted at the children of u are τ1, . . . , τk, then set C(τ) =

∑k
i=1 C(τi)+g(τi). The lifetime of the root of

τ is then distributed as the maximum of theD?(τi)′s plus a random variable distributed as Y(C(τ), g(τ)).
To simplify a bit the formula, for any rooted tree τ , let

Θ(τ) = g(τ) + C(τ). (8)

Proposition 2 For any algorithm ALGO?(∆) of the first category the duration of a rooted tree τ satisfies

D?(τ) d= MΘ(τ).

Proof: The lifetime of a tree τ reduced to a leaf is Y(0, g(τ)) = MC(τ)+g(τ) = MΘ(τ). Assume by
induction that the proposition is true for any rooted tree having less than n nodes. Consider now τ a
rooted tree with n nodes and the τi defined as above. By recurrence D?(τi)

d= MΘ(τi), and thus, by
independence of the MΘ(τi)’s, D?(τ) = Y [

∑
i Θ(τi), g(τ)] + maxiMΘ(τi) is in distribution equal to

M(
P

i Θ(τi))+g(τ)
d= MΘ(τ) by Corollary 2. 2

As a corollary we have

Theorem 1 For any algorithm ALGO(∆) of the first category, any tree T ,

qu = 1−
∑

1≤i≤k

Θ(T [ui, u])
Θ(T [u, ui]) + Θ(T [ui, u])

(9)

Proof: This is a consequence of Propositions 1 and 2 and of the following identity: if Ma and Mb are
independent, then P(Ma < Mb) = a/(a+ b). 2

This theorem has a direct consequence quite surprising, since it deals with very general function Γ. It
is obtained by summing Equality (9) over all nodes:

Corollary 3 For any tree T , any choice of positive integer values function Γu = (Cu, gu)∑
u

[
1−

∑
i

Θ(T [ui, u])
Θ(T [ui, u]) + Θ(T [u, ui])

]
= 1.

Remark 1 ensures that almost surely the election eventually succeeds. Indeed, each leaf eventually dies
out with probability one, and then the election stops after a finite time. All the disappearance dates are
different, since the lifetimes distributions have no atom: at the end it eventually remains only one leaving
node which is elected.

Remark 3 In general the denominator in the RHS of (9) depends on the node u and, thus, apart from the
two first examples below where this denominator is constant, the formula (9) cannot be “simplified”.
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3.2 Examples
1. The uniform electing algorithm (treated in Example 1) is a particular case of this model by letting
gu = 1 and, therefore, Θ(t) = |t|, the total number of nodes in t. Since each node is either in
T [u, ui] or in T [ui, u], by (9)

qu = 1−
∑

1≤i≤k

|T [ui, u]|
|T [u, ui]|+ |T [ui, u]|

= 1− |T \ {u}|
|T |

=
1
|T |

;

this is the uniform distribution on T , as found by Métivier & al.

2. Assume that all prescribed weights are positive integers. If gu = wu for every nodes then Θ(t) =∑
u∈t wu the total weight of the rooted tree t. In this case qu = wu

w(T ) where w(T ) =
∑
u∈T w(u)

is the total weight in T . Indeed, in the RHS of (9) the denominator is equal to w(T ) whatever is the
value of i, and summing the numerators gives w(T )− wu.

3. For gu = deg(u), qu becomes proportional to deg(u) (take wu = deg(u) in the previous point 2).

4. In the case where gu = 1 for the leaves and gu = |t| more generally for all the nodes, then
Θ(t) = PLS(t) + |t| becomes the path length of (the rooted tree) t plus its size. Then Formula (9)
gives the value of qu.

3.3 Real-valued weights
In Example 3.2.2, we gave an algorithm of the first category such that qu is proportional to wu provided
that the w′us are integers. The computations relying on Corollary 2, the weights have to be integer valued,
or say have a known common divisor. A natural question arises: is there an algorithm such that qu is
proportional to general real-valued weights wu’s? We were not able to answer to this question, but using
a randomized version of the algorithms of the first category, we provide an algorithm that may fail with a
small probability, but such that conditionally on success, the qu’s are indeed proportional to the wu’s.

The difference with the algorithm described above is as follows. Instead of using its weight wu as
a parameter in a distribution Y(n, k), a node u becoming a leaf, uses its weight wu as a parameter of
a Poisson distribution: it generates Wu a r.v. following the Poisson(wu) distribution and then uses this
integer as its weight in the description of algorithms of the first category we gave. In other words, the
computed value gu instead of being simply wu will take the value k with probability exp(−wu)wku/k!.
Let us discuss some points linked to the failure of the algorithm.

Remark 4 – If the random generated Wu is zero for some u, then conditionally to Wu the remaining
lifetime is Expo(0) distributed, that is zero almost surely: u is eliminated immediately.
– If all nodes generate zero, then the algorithm fails: it terminates without choosing any node. The
probability of failure for the algorithm is e−w(T ) where w(T ) =

∑
u∈V wu is the total weight. It becomes

insignificant wheneverw(T ) grows. To guarantee the success with a high probability, it suffices to multiply
w by a great number c known by all nodes.

The following lemma, which is easily proved, simplifies the proof of the main proposition of this section.
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Lemma 2 Let X1, ..., Xn be n independent r.v. of Poisson distributions with parameters λ1, ..., λn re-
spectively. For any k > 0, the distribution of X1 conditionally on X1 + · · · + Xn = k is binomial
B(k, λ1/(λ1 + · · ·+ λn)).

Proposition 3 Let T be any tree. The probability that the algorithm chooses a node u conditioned by the
event that not all nodes generate 0 is proportional to wu : P

(
u elected

∣∣∣ ∑v∈V Wv > 0
)

= wu/w(T ).

Proof: Consider some integers (kv)v∈V , with at least one kv > 0. Given the values Wv = kv according
to Section 3.2, second example, we have:

P (u elected |Wv = kv for any v in T ) = ku/(
∑
v∈V

kv).

Therefore the probability that the algorithm chooses u conditioned by
∑
vWv > 0, is nothing but:

P(u elected
∣∣∣ ∑

v

Wv > 0) = E

(
Wu∑
vWv

∣∣∣ ∑
v

Wv > 0

)
,

where E denotes the expected value. But then, according to the previous lemma, for a fixed k > 0,

E

(
Wu∑
vWv

|
∑
v

Wv = k

)
=

wu∑
v wv

.

This implies that if the sum of generated numbers is positive, whatever the values it takes, the probability
of u to be elected is wuP

v wv
. The proposition follows. 2

4 Second category: around the stable distributions
The second category relies on Formula (3). One sees that choosing a suitableD? may let the max operator
acting on the RHS disappears: the idea is to choose D?

u under the form

Du = Xu −max
i
D(τi) +

∑
i

D(τi) (10)

for some Xu whose distribution depends of the information received by u. In this case Formula (3)
concerning the directed elimination becomes simply

D?(τ) = Xu +
∑
i

D?(τi).

And the duration of a rooted tree satisfies:

D?(τ) = Xu +
∑
i

D?(τi) =
∑

v nodes in τ

Xv. (11)

Once again, the involved variablesXv have a distribution that may depend on the history of the elimination
of the sub-tree of τ rooted in v. The algorithms of the second category are parametrized by all the possible
distribution for Xu (the variables Xu appearing in (10) and (11)).
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In the case where the Xv are i.i.d, the distribution of D?(τ) is simple: it is a sum of |τ | i.i.d. random
variables, and then it is indexed by the unique integer |τ |. Denoting by Sn a sum of n i.i.d. copies of Xv ,
according to Corollary 1 we have for a node u having u1, . . . , uk as neighbors,

qu = 1−
∑

1≤i≤k

P
(
S|T [u,ui]| < S|T [ui,u]|

)
. (12)

There is an interesting case where the computation in (12) can be made explicitly, and leads to close
formulas: the case of the stable distribution with index 1/2. The stable distributions are the families
of distribution that are stable for the convolution (see Feller [2] for more information). We say that X
has the stable distribution with index 1/2 if the density of X is f(t) = 1t≥0

e−1/(2t)
√

2πt3
. If X1, . . . , Xk are

independent copies of X then Sk = X1 + · · ·+Xk
d= k2X . Consider now Sm and S′n two independent

sums of m and n independent copies of X . One has

P(Sm < S′n) = P(m2X ≤ n2X ′) (13)

for two copiesX andX ′ ofX . Using the density ofX andX ′, one gets P(Sm < S′n) = 2
π arctan(n/m).

Hence

Lemma 3 For any tree T , for any node u having u1, . . . , uk as neighbors, under the algorithm presented
above

qu = 1−
∑

1≤i≤k

2
π

arctan
(
|T [ui, u]|
|T [u, ui]|

)
.

In particular, since
∑
qu = 1 this gives for each tree a formula related to the arctan function. We review

below some examples and derive formulas.

4.1 Applications: some identities involving the arctan function
Consider the star tree with n nodes: it is the tree where a node v has n − 1 neighbors, say v1, . . . , vn−1.
By symmetry qvi does not depend on i; since vi has for only neighbor v, by Lemma 3

qv1 = 1− (2/π) arctan(n− 1).

Using again Lemma 3, one has for the center of the star tree

qv = 1− 2(n− 1)
π

arctan
(

1
n− 1

)
.

Since qv +
∑n−1
i=1 qvi

= 1 (since a node is eventually elected with probability 1), we get for any n ≥ 2,

arctan(n− 1) + arctan(1/(n− 1)) = π/2. (14)

Consider now a sequence of trees Tn such that Tn is formed by two stars having αn + 1 and βn + 1
nodes with center u and v, linked by an edge between u and v. The election probability of any leaf is
qvi

= 1− (2/π) arctan (αn + βn+1) , when

qu = 1− 2αn
π

arctan
(

1
αn + βn+1

)
− 2
π

arctan
(
βn + 1
αn + 1

)
qv = 1− 2βn

π
arctan

(
1

αn + βn+1

)
− 2
π

arctan
(
αn + 1
βn + 1

)
.
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Using (αn + βn)qv1 + qu + qv = 1 and (14), we get

2
π

(
arctan

(
αn + 1
βn + 1

)
+ arctan

(
βn + 1
αn + 1

))
= 1.

If αn/βn → x > 0, by continuity of arctan one obtains the famous formula

arctan(x) + arctan(1/x) = π/2.

Going further, let Tn be the sequence of trees having a path of size k (k nodes u1, . . . , uk such that there
is an edge between ui and ui+1 and such that ui has αn,i other neighbors that are leaves). The probability
of election of any of the

∑
αn,i leaves is ql = 1− 2

π arctan(
∑
αni

+ k − 1), that of ui is

1− 2
π

[
αn,i arctan

(
1∑

αn,i + k − 1

)
+ arctan

(∑
j>i(αn,j + 1)∑
j≤i(αn,j + 1)

)
+ arctan

(∑
j<i(αn,j + 1)∑
j≥i(αn,j + 1)

)]
.

Finally, assuming that for any i, αn,i → αi for some positive real number αi, we get by continuity, and
using that the sum of all events must be 1, that for any positive real number α1, . . . , αk,

∑
i

[
arctan

(∑
j>i αj∑
j≤i αj

)
+ arctan

(∑
j<i αj∑
j≥i αj

)]
=
π

2
(k − 1). (15)

Each simple finite tree used as a skeleton on which are grafted some packets of leaves (with size αn,k, k
corresponding to a labeling of the nodes of the skeleton) will provide a formula similar to (15).
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1 Introduction
Two basic tools of free probability are the R-transform and the S-transform. These transforms were
introduced by Voiculescu in the 1980s, and are used to understand the addition and the multiplication
of two free random variables respectively. The R-transform has a natural and very useful multi-variable
extension describing the addition of two free k-tuples of random variables, but the problem of finding
such an extension for the S-transform is open.

The problem of the multi-variable S-transform can be re-phrased as the problem of understanding the
structure of the group (Gk,�), where Gk is a special set of joint distributions of noncommutative k-tuples
(see precise definition in Equation (3.3) below), and where � (“free multiplicative convolution”) is a
binary operation on Gk which encodes the multiplication of free k-tuples. At present, the structure of
(Gk,�) is well-understood only in the special case k = 1; in this case, the S-transform of Voiculescu
provides an isomorphism between G1 and a multiplicative group of power series in one variable. (A word
of caution here: G1 is commutative, but it is easy to see that Gk is not commutative for any k ≥ 2.)

In [4] we use Hopf algebra methods in order to study the multiplication of free k-tuples. Specifically,
we construct a combinatorial Hopf algebra Y(k) such that (Gk,�) is naturally isomorphic to the the group
X(Y(k)) of characters of Y(k). We then employ the log map from characters to infinitesimal characters of
Y(k), to introduce a transform LSµ for distributions µ ∈ Gk. LSµ is a power series in k non-commuting
indeterminates z1, . . . , zk; its coefficients can be computed from the coefficients of the R-transform of µ
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by using summations over chains in the lattices NC(n) of non-crossing partitions. The LS-transform has
the “linearizing” property that

LSµ�ν = LSµ + LSν , ∀µ, ν ∈ Gk such that µ� ν = ν � µ.

If k = 1, then Y(1) is naturally isomorphic to the Hopf algebra Sym of symmetric functions, and the
LS-transform is related to the logarithm of the S-transform of Voiculescu, by the formula

LSµ(z) = −z logSµ(z), ∀µ ∈ G1.

In this case the group (G1,�) can be identified as the group of characters of Sym, in such a way that
the S-transform, its reciprocal 1/S and its logarithm logS relate in a natural sense to the sequences of
complete, elementary and power sum symmetric functions.

In [4] we connect several areas in mathematics: free probability, combinatorics of non-crossing par-
titions, and Hopf algebras. In this extended abstract emphasis is placed on reviewing concepts in these
areas needed for understanding of our paper. This is done in Sections 2, 3, and 4. In Section 5 we define
the Hopf algebra Y(k) and describe the isomorphism Gk ' X(Y(k)). In Section 6 we explain the way
logarithm of character on Y(k) gives rise to the LS transform. Section 7 is then a review of what happens
in the special case when k = 1. We do not include any of the proofs.

2 Notation: NC(n) and power series
2.1 Non-crossing partitions
We will use the standard conventions of notation for non-crossing partitions (as in [8], or in Lecture 9
of [6]). For a positive integer n, the set of all non-crossing partitions of {1, . . . , n} will be denoted by
NC(n). For π ∈ NC(n), the number of blocks of π will be denoted by |π|. On NC(n) we consider the
partial order given by reversed refinement: for π, ρ ∈ NC(n), we write “π ≤ ρ” to mean that every block
of ρ is a union of blocks of π. The minimal and maximal element of (NC(n),≤) are denoted by 0n (the
partition of {1, . . . , n} into n blocks of 1 element each) and respectively 1n (the partition of {1, . . . , n}
into 1 block of n elements).

Every partition π ∈ NC(n) has associated to it a permutation of {1, . . . , n}, which is denoted by Pπ ,
and is defined by the following prescription: for every blockB = {b1, . . . , bm} of π, with b1 < · · · < bm,
one creates a cycle of Pπ by putting

Pπ(b1) = b2, . . . , Pπ(bm−1) = bm, Pπ(bm) = b1.

Note that in the particular case when π = 0n we have that P0n is the identity permutation of {1, . . . , n},
while for π = 1n we have that P1n is the cycle 1 7→ 2 7→ · · · 7→ n 7→ 1.

The Kreweras complementation map is a special order-reversing bijection K : NC(n) → NC(n). In
this paper we will use its description in terms of permutations associated to non-crossing partitions: for
π ∈ NC(n), the Kreweras complement of π is the partition K(π) ∈ NC(n) uniquely determined by the
fact that its associated permutation is

PK(π) = P−1
π P1n . (2.1)
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Formula (2.1) can be extended in order to cover the concept of relative Kreweras complement of π in ρ, for
π, ρ ∈ NC(n) such that π ≤ ρ. This is the partition in NC(n), denoted by Kρ(π), uniquely determined
by the fact that the permutation associated to it is

PKρ(π) = P−1
π Pρ. (2.2)

Clearly, the Kreweras complementation map K from (2.1) is the relative complementation with respect to
the maximal element 1n of NC(n).

The formulas (2.1), (2.2) do not follow exactly the original approach used by Kreweras in [3], but are
easily seen to be equivalent to it (see e.g. [6], Exercise 18.25 on p. 301).

2.2 Power series and generalized coefficients
Let k be a positive integer. We use the notation [k]∗ for the set of all words of finite length over the
alphabet {1, . . . , k}:

[k]∗ :=
∞⋃
n=0

{1, . . . , k}n. (2.3)

The length of a word w ∈ [k]∗ will be denoted by |w|. We follow the standard procedure of including into
[k]∗ a unique word φ with |φ| = 0.

We will use the notation C0〈〈z1, . . . , zk〉〉 for the set of power series with complex coefficients and with
vanishing constant term in the non-commuting indeterminates z1, . . . , zk. The general form of a series
f ∈ C0〈〈z1, . . . , zk〉〉 is thus

f(z1, . . . , zk) =
∞∑
n=1

k∑
i1,...,in=1

α(i1,...,in)zi1 · · · zin =
∑

w∈[k]∗,

|w|≥1

αwzw, (2.4)

where the coefficients αw are from C and where we write in short zw := zi1 · · · zin forw = (i1, . . . , in) ∈
{1, . . . , k}n, n ≥ 1.

For every word w ∈ [k]∗ with |w| ≥ 1 we will denote by

Cfw : C0〈〈z1, . . . , zk〉〉 → C

the linear functional which extracts the coefficient of zw in a series f ∈ C0〈〈z1, . . . , zk〉〉. Thus for f
written as in Equation (2.4) we have Cfw(f) = αw.

Suppose we are given a positive integer n, a word w = (i1, . . . , in) ∈ {1, . . . , k}n and a partition
π ∈ NC(n). We define a (generally non-linear) functional

Cfw;π : C0〈〈z1, . . . , zk〉〉 → C,

as follows. For every block B = {b1, . . . , bm} of π, with 1 ≤ b1 < · · · < bm ≤ n, let us use the notation

w |B = (i1, . . . , in)|B := (ib1 , . . . , ibm) ∈ {1, . . . , k}m. (2.5)

Then we define
Cfw;π(f) :=

∏
B block of π

Cfw|B(f), ∀ f ∈ C0〈〈z1, . . . , zk〉〉. (2.6)

(For example if w = (i1, . . . , i5) is a word of length 5 and if π = {{1, 4, 5}, {2, 3}} ∈ NC(5), then the
above formula comes to Cf(i1,i2,i3,i4,i5);π(f) = Cf(i1,i4,i5)(f) · Cf(i2,i3)(f), f ∈ C0〈〈z1, . . . , zk〉〉.)
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3 Free probability
3.1 Noncommutative probability space, random variables, and moments
Let (A, ϕ) be a noncommutative probability space, that is A is a unital algebra over C and ϕ:A → C
is a linear functional such that ϕ(1A) = 1. We refer to the elements of A as random variables. Given
a random variable a ∈ A, we refer to the number ϕ(an) by calling it the moment of order n of a. The
generating series for the moments of a,

Ma(z) =
∞∑
n=1

ϕ(an)zn, (3.1)

is called the moment series of a. This terminology extends to the situation when we deal with a k-tuple
a1, . . . , ak of elements of A. Then family

{ϕ(ai1 . . . ain) | n ≤ 1, 1 ≤ i1, . . . , in ≤ k}

is called the family of joint moments of a1, . . . , ak. These joint moments are the coefficients of a formal
power series in k noncommuting indeterminates z1, . . . , zk, which is denoted by Ma1,...,ak and is called
the joint moment series of a1, . . . , ak:

Ma1,...,ak(z1, . . . , zk) =
∞∑
n=1

k∑
i1,...,in=1

ϕ(ai1 . . . ain)zi1 . . . zin . (3.2)

3.2 Free independence
We say that unital subalgebras A1, . . . ,An of A are freely independent if ϕ(a1 . . . am) = 0 whenever we
have the following

• aj ∈ Ai(j) for j = 1, . . . ,m, where i(1) 6= i(2), i(2) 6= i(3), . . . , i(m− 1) 6= i(m), and

• ϕ(aj) = 0 for j = 1, . . . ,m.

We say that subsets S1, . . . ,Sn of A are freely independent if the unital subalgebras Ai = 〈Si〉, i =
1, . . . , n, generated by these subsets are freely independent. In particular, we say that {a1, . . . , ak} is
freely independent from {b1, . . . , bk}, if unital subalgebras generated by these k-tuples are freely inde-
pendent.

3.3 Distributions and free multiplicative convolution
If a1, . . . , ak is a k-tuple of elements of A, then the distribution of (a1, . . . , ak) is the linear functional µ
on the algebra of noncommutative polynomials C〈X1, . . . , Xk〉 defined by

µ(Xi1 · · ·Xin) = ϕ(ai1 · · · ain), ∀n ≥ 0, ∀ 1 ≤ i1, . . . , in ≤ k.

We denote by Dalg(k) the set of linear functionals on C〈X1, . . . , Xk〉 that arise in this way. Clearly,
this is just the set of all linear functionals on C〈X1, . . . , Xk〉 such that µ(1) = 1. On Dalg(k) we
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have a binary operation � which reflects the multiplication of two freely independent k-tuples in a non-
commutative probability space. That is, � is well-defined and uniquely determined by the following
requirement: if a1, . . . , ak, b1, . . . , bk are elements in a noncommutative probability space (A, ϕ) such
that (a1, . . . , ak) has distribution µ, (b1, . . . , bk) has distribution ν, and {a1, . . . , ak} is freely indepen-
dent from {b1, . . . , bk}, then it follows that the distribution of (a1b1, . . . , akbk) is equal to µ � ν. The
operation � on Dalg(k) is associative and unital, where the unit is the functional µo ∈ Dalg(k) with
µo(Xi1 · · ·Xin) = 1 for all n ≥ 1 and 1 ≤ i1, . . . , in ≤ k. A distribution µ ∈ Dalg(k) is invertible with
respect to � if and only if it satisfies µ(Xi) 6= 0, ∀ 1 ≤ i ≤ k; and moreover, the subset

Gk := {µ ∈ Dalg(k) | µ(Xi) = 1, ∀ 1 ≤ i ≤ k} (3.3)

is a subgroup in the group of invertibles with respect to �. For a basic introduction to free multiplicative
convolution, we refer to Section 3.6 of [12] or to Lecture 14 in [6].

3.4 R-transform
Let µ be a distribution inDalg(k), that is, µ: C〈X1, . . . , Xk〉 → C is a linear functional such that µ(1) = 1.
The R-transform of µ is the series Rµ ∈ C0〈〈z1, . . . , zk〉〉 uniquely determined by the requirement that
for every n ≥ 1 and every 1 ≤ i1, . . . , in ≤ k one has

µ(Xi1 · · ·Xin) =
∑

π∈NC(n)

Cf(i1,...,in);π(Rµ). (3.4)

If µ is the distribution corresponding to a k-tuple a1, . . . , ak, then we often write Ra1,...,ak = Rµ.
It is easy to see that Equation (3.4) does indeed determine a unique series in C0〈〈z1, . . . , zk〉〉. The co-

efficients of Rµ are called the free cumulants of µ, and because of this reason Equation (3.4) is sometimes
referred to as “the moment–cumulant formula” – see Lectures 11 and 16 in [6].

An important point for the present paper is that the R-transform has a very nice behaviour under the
operation �. This is recorded in the next proposition.

Proposition 3.1 Let µ, ν be distributions in Dalg(k), and let w be a word in [k]∗, with |w| ≥ 1. Then

Cfw
(
Rµ�ν

)
=

∑
π∈NC(n)

Cfw;π

(
Rµ
)
· Cfw;K(π)

(
Rν
)
. (3.5)

For the proof of Proposition 3.1 we refer to Theorem 14.4 and Proposition 17.2 of [6].

3.5 S-transform
An efficient method for computing the moments of a product of two freely independent random variables
is via the S-transform Sµ given by

Sµ(z) =
1 + z

z
M<−1>
µ (z) =

1
z
R<−1>
µ (z) (3.6)

(the superscript “< −1 >” refers to the inverse under composition). In [11] Voiculescu showed that one
has the equation

Sµ�ν = Sµ · Sν , (3.7)

(the result was phrased in terms of products of freely independent random variables a, b in a noncommu-
tative probability space (A, ϕ)).
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4 Graded connected Hopf algebras
We will work with graded bialgebras over C and we will use the standard conventions for notations
regarding them (as in the monograph [9], for instance). Our review here does not aim at generality, but
just covers the specialized Hopf algebras used in the present paper.

4.1 Notation
Let B be a graded bialgebra over C. The comultiplication and counit of B will be denoted by ∆ and
respectively ε (or by ∆B and εB when necessary to distinguish B from other graded bialgebras that are
considered at the same time).

For every n ≥ 0, the vector subspace of B which consists of homogeneous elements of degree n will
be denoted by Bn. We thus have a direct sum decomposition B = ⊕∞n=0Bn where{

B0 3 1B (the unit of B),
Bm · Bn ⊆ Bm+n, ∀m,n ≥ 0, and

{
ε| Bn = 0, ∀n ≥ 1,
∆(Bn) ⊆ ⊕ni=0Bi ⊗ Bn−i, ∀n ≥ 0.

If the space B0 of homogeneous elements of degree 0 is equal to C1B then we say that the graded bialgebra
B is connected.

4.2 Convolution Algebra
Let B be a graded connected bialgebra, let M be a unital algebra over C, and let L(B,M) denote the
vector space of all linear maps from B to M. For ξ, η ∈ L(B,M) one can define their convolution
product, denoted here simply as “ξη”, by the formula

ξη := Mult ◦ (ξ ⊗ η) ◦∆, (4.1)

where Mult :M⊗M→M is the linear map given by multiplication (Mult(x⊗y) = xy for x, y ∈M).
When endowed with its usual vector space structure and with the convolution product, L(B,M) be-

comes itself a unital algebra over C. The unit of L(B,M) is the linear map B 3 b 7→ ε(b)1M, which by
a slight abuse of notation is still denoted as ε (same notation as for the counit of B).

4.3 Calculus in a convolution algebra
For every ξ ∈ L(B,M) it makes sense to form polynomial expressions in ξ, that is, expressions of the
form

n∑
`=0

t`ξ
` ∈ L(B,M), for n ≥ 0 and t0, t1, . . . , tn ∈ C,

where the ξ` (0 ≤ ` ≤ n) are convolution powers of ξ, and we make the convention that ξ0 := ε (the
unit of L(B,M)). An important point for the present paper is that if ξ is such that ξ(1B) = 0 then it also
makes sense to define an element

η :=
∞∑
`=0

t`ξ
` ∈ L(B,M), (4.2)

for an arbitrary infinite sequence (t`)`≥0 in C. Indeed, if ξ(1B) = 0 then due to the fact that ∆ respects
the grading one immediately sees that ξ` vanishes on Bn whenever ` > n. Thus η from (4.2) can be
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defined as the unique linear map from B toM which satisfies

η | Bn =
( N∑
`=0

t`ξ
`
)
| Bn , ∀N ≥ n ≥ 0. (4.3)

4.4 The antipode
Every graded connected bialgebra B is in fact a Hopf algebra [5] – this means, by definition, that the
identity map id : B → B is an invertible element in the convolution algebra L(B,B). The inverse of id is
called the antipode of B and is denoted by S. A reason why S is sure to exist is that one can introduce it
via a series expansion as in (4.2) above, which mimics the geometric series expansion of

(
ε− (ε− id)

)−1
.

That is, one can put

S := ε+
∞∑
`=1

(ε− id)` ∈ L(B,B) (4.4)

(which makes sense because (ε − id)(1B) = 0), and can then verify that S from (4.4) has indeed the
property that S id = ε = idS. See Lemma 14 in [10].

4.5 The group of characters
A unital algebra homomorphism from B to C is called a character. The set of all characters of B will be
denoted by X(B). It is easy to verify that the convolution product of two characters is again a character.
Moreover, if η is a character then it is obvious that the functional η ◦ S ∈ L(B,C) is a character as well,
and it is easy to verify that η (η◦S) = ε = (η◦S) η. Hence X(B) is a subgroup of the group of invertibles
of L(B,C), and is thus referred to as the group of characters of B.

4.6 Exponentials and logarithms for functionals
Let B be a graded connected Hopf algebra. If ξ is a functional in L(B,C) such that ξ(1B) = 0, then it
makes sense to define its exponential by the familiar formula

exp ξ =
∞∑
`=0

1
`!
ξ`. (4.5)

It is easy to see that exp maps bijectively the set of functionals {ξ ∈ L(B,C) | ξ(1B) = 0} onto
{η ∈ L(B,C) | η(1B) = 1}; the inverse of this bijection is denoted as “log” and can be described by
using the Taylor series expansion for logarithm:

log η = −
∞∑
`=1

1
`

(ε− η)`, for η ∈ L(B,C) with η(1B) = 1. (4.6)

By adjusting the familiar argument for the exponential of a sum of two matrices, one finds that

exp(ξ1 + ξ2) = exp(ξ1) exp(ξ2), ∀ ξ1, ξ2 ∈ L(B,C) such that ξ1(1B) = ξ2(1B) = 0
and such that ξ1ξ2 = ξ2ξ1.

(4.7)



632 Mitja Mastnak and Alexandru Nica

As a consequence, in the opposite direction of the exp/log bijection one finds that

log(η1η2) = log(η1) + log(η2), ∀ η1, η2 ∈ L(B,C) such that η1(1B) = η2(1B) = 1
and such that η1η2 = η2η1.

(4.8)

This exp/log bijection is a special case of standard general results from Appendix A in [7].

5 The Hopf algebra Y (k)

Throughout this section we fix a positive integer k. We use the notation Y(k) for the commutative algebra
of polynomials

Y(k) := C
[
Yw | w ∈ [k]∗, |w| ≥ 2

]
(5.1)

In addition to that, we will also use the following conventions of notation.

Notation 5.1 1o For a word w ∈ [k]∗ such that |w| = 1 (i.e. such that w = (i) for some 1 ≤ i ≤ k) we
put Yw := 1 (the unit of Y(k)).

2o Let w be a word in [k]∗ with |w| = n ≥ 1, and let π = {A1, . . . , Aq} be a partition in NC(n). We
will denote

Yw;π := Yw1 · · ·Ywq ∈ Y(k), (5.2)

where wj = w |Aj for 1 ≤ j ≤ q (and where the restriction w |A of the word w to a non-empty subset
A ⊆ {1, . . . , n} is defined in the same way as in Equation (2.5)).

The comultiplication and counit of Y(k) are defined as follows.

Definition 5.2 1o Let ∆ : Y(k) → Y(k)⊗Y(k) be the unital algebra homomorphism uniquely determined
by the requirement that for every w ∈ [k]∗ with |w| = n ≥ 2 we have

∆(Yw) =
∑

π∈NC(n)

Yw;π ⊗ Yw;K(π), (5.3)

where we use the conventions of notation introduced above (cf. Equation (5.2)), and where K(π) is the
Kreweras complement of a partition π ∈ NC(n). For example

∆(Yi1i2i3) = Yi1i2i3 ⊗ 1 + Yi1i2 ⊗ Yi2i3 + Yi1i3 ⊗ Yi1i2 + Yi2i3 ⊗ Yi1i3 + 1⊗ Yi1i2i3 .

2o Let ε : Y(k) → C be the unital algebra homomorphism uniquely determined by the requirement that

ε(Yw) = 0, ∀w ∈ [k]∗ with |w| ≥ 2. (5.4)

On Y(k) we will also consider a grading, which is defined such that every generator Yw of Y(k) gets to
be homogeneous of degree |w| − 1. More precisely, the homogeneous subspaces Y(k)

n of Y(k) are defined
as follows.

Notation 5.3 For every n ≥ 0 we denote

Y(k)
n := span

{
Yw1 · · ·Ywq

q ≥ 1, w1, . . . , wq ∈ [k]∗ with
|w1|, . . . , |wq| ≥ 1 and |w1|+ · · ·+ |wq| = n+ q

}
. (5.5)
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Proposition 5.4 With the comultiplication, counit and grading defined above, Y(k) becomes a graded
connected Hopf algebra.

We conclude this section by describing an isomorphism from Gk to the group of characters of Y(k).

Definition 5.5 Let µ be a distribution in Gk and consider the R-transform Rµ. The character of Y(k)

associated to µ is the character χµ ∈ X(Y(k)) uniquely determined by the requirement that

χµ(Yw) = Cfw(Rµ), ∀w ∈ [k]∗ such that |w| ≥ 2. (5.6)

Theorem 5.6 The map µ 7→ χµ defined above is a group isomorphism from
(
Gk,�

)
onto the group

X(Y(k)) of characters on Y(k).

6 The LS-transform
The LS-transform LSµ is defined so that it stores the information about the functional logχµ, as follows.

Definition 6.1 Let µ be a distribution in Gk. The LS-transform of µ is the power series

LSµ(z1, . . . , zk) :=
∑

w∈[k]∗,

|w|≥2

( (
logχµ

)
(Yw)

)
zw, (6.1)

where logχµ: X(Y(k))→ C is as in Equation (4.8), and where the meaning of “zw” is same as in Equation
(2.4).

As a consequence of Equation (4.8), one obtains the following.

Theorem 6.2 Let µ and ν be distributions in Gk such that µ� ν = ν � µ. Then

LSµ�ν = LSµ + LSν . (6.2)

In particular, formula (6.2) always applies when one of µ, ν is the joint distribution of a repeated k-
tuple (a, a, . . . , a), where a is a random variable in a non-commutative probability space (A, ϕ) (This
special case is of particular relevance for the analytic framework of C∗-probability spaces, as explained
in Example 5.2 of [4].)

The LS-transform was introduced above by using the Hopf algebra Y(k), but it can also be described
directly in combinatorial terms, by using summations over chains in lattices of non-crossing partitions.
We next explain how this goes.

A chain in NC(n) is an object of the form

Γ = (π0, π1, . . . , π`) (6.3)

with π0, π1, . . . , π` ∈ NC(n) such that 0n = π0 < π1 < · · · < π` = 1n (and where 0n and 1n denote the
minimal and maximal element of NC(n), respectively). For a chain Γ as in (6.3), the number ` is called
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the length of Γ and is denoted as |Γ|. Given a formal power series f in non-commuting indeterminates
z1, . . . , zk, one has a natural way of defining some “generalized coefficients”

Cf (Γ)
w (f) :=

∏̀
j=1

Cfw;Kπj (πj−1)(f), (6.4)

where Γ = (π0, π1, . . . , π`) is a chain in NC(n). By using the generalized coefficients (6.4), the combi-
natorial description of the LS-transform is stated as follows.

Theorem 6.3 Let µ be a distribution in Gk, and let w = (i1, . . . , in) be a word in [k]∗, where n ≥ 2.
Consider (as in Equation (6.1) of Definition 6.1) the coefficient

(
logχµ

)
(Yw) of zw in the LS-transform

of µ. This coefficient can be also expressed as

(
logχµ

)
(Yw) =

∑
Γ chain

in NC(n)

(−1)1+|Γ|

|Γ|
Cf (Γ)

(i1,...,in)(Rµ), (6.5)

where Rµ is the R-transform of µ.

7 Case of one variable
In the remaining part of the paper we look at the particular case when k = 1. In this case the notations are
simplified due to the fact that words over the 1-letter alphabet {1} are determined by their lengths. We
make the convention to write simply “Yn” instead of Y(1,1,...,1) with n repetitions of 1 in the index; thus
Equation (5.1) is now written in the form

Y(1) = C
[
Yn | n ≥ 2

]
, (7.1)

while Equation (6.1) defining LSµ reduces to

LSµ(z) =
∞∑
n=2

(
(logχµ)(Yn)

)
zn. (7.2)

A special feature of the case k = 1 (not holding for k ≥ 2) is that the operation � is commutative.
Hence for k = 1 the linearization property stated in Theorem 6.2 holds for all µ, ν ∈ G1. A large part of
[4] is dedicated to proving that the one-dimensional LS-transform is related to the S-transform as follows.

Theorem 7.1 For a distribution µ ∈ G1, the power series Sµ and LSµ are related by

LSµ(z) = −z logSµ(z). (7.3)

The proof of Theorem 7.1 is obtained by following the connections that Y(1) has with symmetric func-
tions. Let

Sym = C[pn|n ∈ N] = C[en|n ∈ N] = C[hn|n ∈ N],
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be the Hopf algebra of symmetric functions, where (en)∞n=1, (hn)∞n=1, and (pn)∞n=1 are sequences of
elementary, complete homogeneous, and power sum symmetric functions, respectively. If we use the
convention that e0 = h0 = p0 = 1, then the comultiplication formulas for these sequences are as follows

∆(en) =
n∑
i=0

ei ⊗ en−i, ∆(hn) =
n∑
i=0

hi ⊗ hn−i, ∆(pn) = pn ⊗ 1 + 1⊗ pn,

for all n ≥ 1. We introduce a new sequence of symmetric functions (yn)∞n=2 as follows:

yn =
∑

π={A1,...,Aq}

in NC(n−1)

e|A1| · · · e|Aq| ∈ Sym. (7.4)

Clearly, every yn is a homogeneous symmetric function of degree n− 1. We also use the convention that
y0 = y1 = 1.

Theorem 7.2 The map Φ:Y(1) → Sym, given by Yn 7→ yn is an isomorphism of graded connected Hopf
algebras. Furthermore, if θµ = χµ ◦ Φ−1: Sym→ C, then we have

θµ(yn) = Cfn(Rµ),
θµ(hn) = (−1)nCfn(Sµ),
θµ(en) = Cfn(1/Sµ),
θµ(pn) = (−1)nnCfn(logSµ).

Remark 7.3 If we define a character ζ:Y(1) → C by ζ(Yn) = 1 for n ∈ N, then the pair (Y(1), ζ)
is a combinatorial Hopf algebra in the sense of Aguiar, Bergeron and Sottile [1]. It turns out that the
isomorphism Φ:Y(1) → Sym above is the unique homomorphism of graded Hopf algebras satisfying
ζ = ζSymΦ, which is guaranteed by Theorem 4.3 of [1].

Remark 7.4 Having placed the homomorphism Φ in the framework of combinatorial Hopf algebras leads
to an interesting alternative description of the symmetric functions {yn | n ≥ 2}, as linear combinations
of monomial quasi-symmetric functions. For every m-tuple of positive integers (r1, . . . , rm), the corre-
sponding monomial quasi-symmetric function M(r1,...,rm) is defined as

M(r1,...,rm) =
∑

1≤i1<i2<···<im

xr1i1 x
r2
i2
· · ·xrmim , (7.5)

where {xi | i ≥ 1} is a family of commuting indeterminates. Using some results of Ehrenborg [2] we can
show that

yn =
∑

Γ=(πo,π1,...,π`)

chain in NC(n)

M(|π0|−|π1|,|π1|−|π2|,...,|π`−1|−|π`|), ∀n ≥ 2. (7.6)
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Remark 7.5 A ‘direct’ proof of the fact that the map Φ of Theorem 7.2 respects comultiplication would
go as follows. Using recursion

yn =
n∑

m=2

(
em−1 ·

∑
1=i1<i2<···<im=n

yi2−i1 yi3−i2 · · · yim−im−1

)
. (7.7)

one has to establish that
∆(yn) =

∑
π∈NC(n)

yπ ⊗ yK(π), ∀n ≥ 2. (7.8)

This can be done by induction, using the formula for the comultiplication of en’s. However this induction
argument is quite lengthy and significantly more involved then the approach we take in [4]. There we
observe that for µ ∈ G1 we have θµ ◦ Φ = χµ and that θµ(hn) = (−1)nCfn(Sµ) (more precisely in
[4] we define θ by θµ(hn) = (−1)nCfn(Sµ) and use relationship between the R-transform and the S-
transform to establish θµ ◦ Φ = χµ). Since due to the multiplicativity of the S-transform we know that
θ:G1 → X(Sym), µ 7→ θµ is a group isomorphism, and since due to the Cartier-Kostant-Milnor-Moore
Theorem (see e.g. Theorem 13.0.1 on p. 274 of [9])) Y(1) is isomorphic to Sym we then show that Φ
must be a coalgebra map.
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Abstract. Given a sequence (ak) = a0, a1, a2, . . . of real numbers, define a new sequence L(ak) = (bk) where
bk = a2

k − ak−1ak+1. So (ak) is log-concave if and only if (bk) is a nonnegative sequence. Call (ak) infinitely
log-concave if Li(ak) is nonnegative for all i ≥ 1. Boros and Moll conjectured that the rows of Pascal’s triangle
are infinitely log-concave. Using a computer and a stronger version of log-concavity, we prove their conjecture for
the nth row for all n ≤ 1450. We can also use our methods to give a simple proof of a recent result of Uminsky
and Yeats about regions of infinite log-concavity. We investigate related questions about the columns of Pascal’s
triangle, q-analogues, symmetric functions, real-rooted polynomials, and Toeplitz matrices. In addition, we offer
several conjectures.

Résumé. Étant donné une suite (ak) = a0, a1, a2, . . . de nombres réels, on définit une nouvelle suite L(ak) = (bk)

où bk = a2
k − ak−1ak+1. Alors (ak) est log-concave si et seulement si (bk) est une suite non négative. On dit que

(ak) est infiniment log-concave siLi(ak) est non négative pour tout i ≥ 1. Boros et Moll ont conjecturé que les lignes
du triangle de Pascal sont infiniment log-concave. Utilisant un ordinateur et une version plus forte de log-concavité,
on vérifie leur conjecture pour la nième ligne, pour tout n ≤ 1450. On peut aussi utiliser nos méthodes pour donner
une preuve simple d’un résultat récent de Uminsky et Yeats à propos des régions de log-concavité infini. Reliées
à ces idées, on examine des questions à propos des colonnes du triangle de Pascal, des q-analogues, des fonctions
symétriques, des polynômes avec racines réelles, et des matrices de Toeplitz. De plus, on offre plusieurs conjectures.

Keywords: binomial coefficients, computer proof, Gaussian polynomial, infinite log-concavity, symmetric functions,
real roots

1 Introduction
Let

(ak) = (ak)k≥0 = a0, a1, a2, . . .

be a sequence of real numbers. It will be convenient to extend the sequence to negative indices by letting
ak = 0 for k < 0. Also, if (ak) = a0, a1, . . . , an is a finite sequence then we let ak = 0 for k > n.

Define the L-operator on sequences to be L(ak) = (bk) where bk = a2
k − ak−1ak+1. Call a sequence

i-fold log-concave if Li(ak) is a nonnegative sequence. So log-concavity in the ordinary sense is 1-fold
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log-concavity. Log-concave sequences arise in many areas of algebra, combinatorics, and geometry. See
the survey articles of Stanley (20) and Brenti (7) for more information.

Boros and Moll (4, page 157) defined (ak) to be infinitely log-concave if it is i-fold log-concave for
all i ≥ 1. They introduced this definition in conjunction with the study of a specialization of the Ja-
cobi polynomials whose coefficient sequence they conjectured to be infinitely log-concave. Kauers and
Paule (13) used a computer algebra package to prove this conjecture for ordinary log-concavity. Since the
coefficients of these polynomials can be expressed in terms of binomial coefficients, Boros and Moll also
made the statement:

“Prove that the binomial coefficients are∞-logconcave.”

We will take this to be a conjecture that the rows of Pascal’s triangle are infinitely log-concave, although
we will later discuss the columns and other lines. When given a function of more than one variable, we
will subscript the L-operator by the parameter which is varying to form the sequence. So Lk

(
n
k

)
would

refer to the operator acting on the sequence
(
n
k

)
k≥0

. Note that we drop the sequence parentheses for
sequences of binomial coefficients to improve readability. We now restate the Boros-Moll conjecture
formally.

Conjecture 1.1 The sequence
(
n
k

)
k≥0

is infinitely log-concave for all n ≥ 0.

In the next section, we use a strengthened version of log-concavity and computer calculations to ver-
ify Conjecture 1.1 for all n ≤ 1450. Uminsky and Yeats (25) set up a correspondence between certain
symmetric sequences and points in Rm. They then described an infinite region R ⊂ Rm bounded by
hypersurfaces and such that each sequence corresponding to a point of R is infinitely log-concave. In
Section 3, we indicate how our methods can be used to give a simple derivation of one of their main theo-
rems. We investigate infinite log-concavity of the columns and other lines of Pascal’s triangle in Section 4.
Section 5 is devoted to two q-analogues of the binomial coefficients. For the Gaussian polynomials, we
show that certain analogues of some infinite log-concavity conjectures are false while others appear to be
true. In contrast, our second q-analogue seems to retain all the log-concavity properties of the binomial
coefficients. In Section 6, after showing why the sequence (hk)k≥0 of complete homogeneous symmetric
is an appropriate analogue of sequences of binomial coefficients, we explore its log-concavity proper-
ties. We end with a section of related results and questions about real-rooted polynomials and Toeplitz
matrices.

While one purpose of this article is to present our results, we have written it with two more targets in
mind. The first is to convince our audience that infinite log-concavity is a fundamental concept. We hope
that its definition as a natural extension of traditional log-concavity helps to make this case. Our second
aspiration is to attract others to work on the subject; to that end, we have presented several open problems.
These conjectures each represent fundamental questions in the area, so even solutions of special cases
may be interesting.

2 Rows of Pascal’s triangle
One of the difficulties with proving the Boros-Moll conjecture is that log-concavity is not preserved by
the L-operator. For example, the sequence 4, 5, 4 is log-concave but L(4, 5, 4) = 16, 9, 16 is not. So we
will seek a condition stronger than log-concavity which is preserved by L. Given r ∈ R, we say that a
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sequence (ak) is r-factor log-concave if

a2
k ≥ rak−1ak+1 (2.1)

for all k. Clearly this implies log-concavity if r ≥ 1.
We seek an r > 1 such that (ak) being r-factor log-concave implies that (bk) = L(ak) is as well.

Assume the original sequence is nonnegative. Then expanding rbk−1bk+1 ≤ b2k in terms of the ak and
rearranging the summands, we see that this is equivalent to proving

(r − 1)a2
k−1a

2
k+1 + 2ak−1a

2
kak+1 ≤ a4

k + rak−2ak(a2
k+1 − akak+2) + ra2

k−1akak+2.

By our assumptions, the two expressions with factors of r on the right are nonnegative, so it suffices to
prove the inequality obtained when these are dropped. Applying (2.1) to the left-hand side gives

(r − 1)a2
k−1a

2
k+1 + 2ak−1a

2
kak+1 ≤

r − 1
r2

a4
k +

2
r
a4
k.

So we will be done if
r − 1
r2

+
2
r

= 1.

Finding the root r0 > 1 of the corresponding quadratic equation finishes the proof of the first assertion of
the following lemma, while the second assertion follows easily from the first.

Lemma 2.1 Let (ak) be a nonnegative sequence and let r0 = (3 +
√

5)/2. Then (ak) being r0-factor
log-concave implies that L(ak) is too. So in this case (ak) is infinitely log-concave. 2

Now to prove that any row of Pascal’s triangle is infinitely log-concave, one merely lets a computer
find Lik

(
n
k

)
for i up to some bound I . If these sequences are all nonnegative and LIk

(
n
k

)
is r0-factor log-

concave, then the previous lemma shows that this row is infinitely log-concave. Using this technique, we
have obtained the following theorem.

Theorem 2.2 The sequence
(
n
k

)
k≥0

is infinitely log-concave for all n ≤ 1450. 2

We note that the necessary value of I increases slowly with increasing n. As an example, when n =
100, our technique works with I = 5, while for n = 1000, we need I = 8.

Of course, the method developed in this section can be applied to any sequence such that Li(ak) is
r0-factor log-concave for some i. In particular, it is interesting to try it on the original sequence which
motivated Boros and Moll (4) to define infinite log-concavity. They were studying the polynomial

Pm(x) =
m∑
`=0

d`(m)x` (2.2)

where

d`(m) =
m∑
j=`

2j−2m

(
2m− 2j
m− j

)(
m+ j

m

)(
j

`

)
.

Kauers [private communication] has used our technique to verify infinite log-concavity of the sequence
(d`(m))`≥0 for m ≤ 129. For such values of m, L5

` applied to the sequence is r0-factor log-concave.
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3 A region of infinite log-concavity
Uminsky and Yeats (25) took a different approach to the Boros-Moll Conjecture as described in the Intro-
duction. Since they were motivated by the rows of Pascal’s triangle, they only considered real sequences
a0, a1, . . . , an which are symmetric (in that ak = an−k for all k) and satisfy a0 = an = 1. Each such
sequence corresponds to a point (a1, . . . , am) ∈ Rm where m = bn/2c.

Their region, R, whose points all correspond to infinitely log-concave sequences, is bounded by m
parametrically defined hypersurfaces. The parameters are x and d1, d2, . . . , dm and it will be convenient
to have the notation

sk =
k∑
i=1

di.

We will also need r1 = (1 +
√

5)/2. Note that r21 = r0. The kth hypersurface, 1 ≤ k < m, is defined as

Hk = {(xs1 , . . . , xsk−1 , r1x
sk , xsk+1+dk−dk+1 , . . . , xsm+dk−dk+1) :

x ≥ 1, 1 = d1 > · · · > dk > dk+2 > · · · > dm > 0},

while
Hm = {(xs1 , . . . , xsm−1 , cxsm−1) : x ≥ 1, 1 = d1 > · · · > dm−1 > 0},

where

c =
{
r1 if n = 2m,
2 if n = 2m+ 1.

Let us say that the correct side ofHk for 1 ≤ k ≤ m consists of those points in Rm that can be obtained
from a point onHk by increasing the kth coordinate. Then letR be the region of all points in Rm having
increasing coordinates and lying on the correct side ofHk for all k. Our ideas of the previous section can
be used to give a simple proof of one of Uminsky and Yeats’ main theorems.

Theorem 3.1 ((25)) Any sequence corresponding to a point ofR is infinitely log-concave.

The proof relies on the fact that, since r21 = r0, the conditions for containment in R are very close to
the conditions for r0-factor log-concavity.

4 Columns and other lines of Pascal’s triangle
While we have treated Boros and Moll’s statement about the infinite log-concavity of the binomial coef-
ficients to be a statement about the rows of Pascal’s triangle, their wording also suggests an examination
of the columns.

Conjecture 4.1 The sequence
(
n
k

)
n≥k is infinitely log-concave for all fixed k ≥ 0.

We will give two pieces of evidence for this conjecture. First, it is not difficult to show infinite log-
concavity for specific small values of k.

Proposition 4.2 The sequence
(
n
k

)
n≥k is infinitely log-concave for 0 ≤ k ≤ 2.

Secondly, some careful analysis shows that Lin
(
n
k

)
is nonnegative for certain values of i and all k.

Proposition 4.3 The sequence Lin
(
n
k

)
is nonnegative for all k and for 0 ≤ i ≤ 4.



Infinite log-concavity: developments and conjectures 641

Kauers and Paule (13) proved that the rows of Pascal’s triangle are i-fold log-concave for i ≤ 5.
Kauers [private communication] has used their techniques to confirm Proposition 4.3 and to also check
the case i = 5 for the columns. For the latter case, Kauers used a computer to determine

(L5
n

(
n
k

)
)(

n
k

)25 (4.1)

explicitly, which is just a rational function in n and k. He then showed that (4.1) is nonnegative by means
of cylindrical algebraic decomposition. We refer the interested reader to (13) and the references therein
for more information on such techniques.

More generally, we can look at an arbitrary line in Pascal’s triangle, i.e., consider the sequence(
n+mu

k +mv

)
m≥0

.

The unimodality and (1-fold) log-concavity of such sequences has been investigated in (3; 22; 23; 24). We
do not require that u and v be coprime, so such sequences need not contain all of the binomial coefficients
in which a geometric line would intersect Pascal’s triangle, e.g., a sequence such as

(
n
0

)
,
(
n
2

)
,
(
n
4

)
, . . .

would be included. By letting u < 0, one can get a finite truncation of a column. For example, if n = 5,
k = 3, u = −1, and v = 0 then we get the sequence(

5
3

)
,

(
4
3

)
,

(
3
3

)
which is not even 2-fold log-concave. So we will only consider u ≥ 0. Also(

n+mu

k +mv

)
=
(

n+mu

n− k +m(u− v)

)
so we can also assume v ≥ 0.

We offer the following conjecture, which includes Conjecture 1.1 as a special case.

Conjecture 4.4 Suppose that u and v are distinct nonnegative integers. Then
(
n+mu
mv

)
m≥0

is infinitely
log-concave for all n ≥ 0 if and only if u < v or v = 0.

We first give a quick proof of the “only if” direction. Supposing that u > v ≥ 1, we consider the
sequence (

0
0

)
,

(
u

v

)
,

(
2u
2v

)
, . . .

obtained when n = 0. We claim that this sequence is not even log-concave and that log-concavity fails at
the second term. Indeed, the fact that

(
u
v

)2
<
(
2u
2v

)
follows immediately from the identity(

u

0

)(
u

2v

)
+
(
u

1

)(
u

2v − 1

)
+ · · ·+

(
u

v

)(
u

v

)
+ · · ·+

(
u

2v

)(
u

0

)
=
(

2u
2v

)
,

which is a special case of Vandermonde’s Convolution.
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The proof just given shows that subsequences of the columns of Pascal’s triangle are the only infinite
sequences of the form

(
n+mu
mv

)
m≥0

that can possibly be infinitely log-concave. We also note that the
previous conjecture says nothing about what happens on the diagonal u = v. Of course, the case u = v =
1 is Conjecture 4.1. For other diagonal values, the evidence is conflicting. One can show by computer that(
n+mu
mu

)
m≥0

is not 4-fold log-concave for n = 2 and any 2 ≤ u ≤ 500. However, this is the only known

value of n for which
(
n+mu
mu

)
m≥0

is not an infinitely log-concave sequence for some u ≥ 1.
We conclude this section by offering considerable computational evidence in favor of the “if” direction

of Conjecture 4.4. Theorem 2.2 provides such evidence when u = 0 and v = 1. Since all other sequences
with u < v have a finite number of nonzero entries, we can use the r0-factor log-concavity technique for
these sequences as well. For all n ≤ 500, 2 ≤ v ≤ 20 and 0 ≤ u < v, we have checked that

(
n+mu
mv

)
m≥0

is infinitely log-concave.

5 q-analogues
This section will be devoted to discussing two q-analogues of binomial coefficients. For the Gaussian
polynomials, we will see that the corresponding generalization of Conjecture 1.1 is false, and we show
one exact reason why it fails. In contrast, the corresponding generalization of Conjecture 4.1 appears to be
true. This shows how delicate these conjectures are and may in part explain why they seem to be difficult
to prove. After introducing our second q-analogue, we conjecture that the corresponding generalizations
of Conjectures 1.1, 4.1 and 4.4 are all true. This second q-analogue arises in the study of quantum groups;
see, for example, the books of Jantzen (12) and Majid (17).

Let q be a variable and consider a polynomial f(q) ∈ R[q]. Call f(q) q-nonnegative if all the coeffi-
cients of f(q) are nonnegative. Apply the L-operator to sequences of polynomials (fk(q)) in the obvious
way. Call such a sequence q-log-concave if L(fk(q)) is a sequence of q-nonnegative polynomials, with
i-fold q-log-concavity and infinite q-log-concavity defined similarly.

We will be particularly interested in the Gaussian polynomials. The standard q-analogue of the non-
negative integer n is

[n] = [n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

Then, for 0 ≤ k ≤ n, the Gaussian polynomials or q-binomial coefficients are defined as[
n

k

]
=
[
n

k

]
q

=
[n]q!

[k]q![n− k]q!

where [n]q! = [1]q[2]q · · · [n]q . For more information, including proofs of the assertions made in the next
paragraph, see the book of Andrews (2).

Clearly substituting q = 1 gives
[
n
k

]
1

=
(
n
k

)
. Also, it is well known that the Gaussian polynomials are

indeed q-nonnegative polynomials. In fact, they have various combinatorial interpretations, one of which
we use. An (integer) partition of n is a weakly decreasing positive integer sequence λ = (λ1, λ2, . . . , λ`)
such that |λ| def=

∑
i λi = n. The λi are called parts. We say that λ fits inside an s× t box if λ1 ≤ t and

` ≤ s. Denote the set of all such partitions by P (s, t). It is well known, and easy to prove by induction
on n, that [

n

k

]
=

∑
λ∈P (n−k,k)

q|λ|. (5.1)
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Using this combinatorial interpretation, we can prove that the q-analogue of the rows of Pascal’s triangle
are not 2-fold q-log-concave. More specifically, we have the following result. From this point on, we use
the notation L(ak) for the kth element of the sequence L(ak), and similarly for Lk and Ln.

Proposition 5.1 For n ≥ 2 and k = bn/2c we have

L2
k

([
n

k

])
= −qn−2 + higher order terms.

Consequently,
([
n
k

])
k≥0

is not 2-fold q-log-concave.

Given this, it may seem surprising that the following conjecture, which is a q-analogue of Conjec-
ture 4.1, does seem to hold.

Conjecture 5.2 The sequence
([
n
k

])
n≥k is infinitely q-log-concave for all fixed k ≥ 0.

As evidence, we give a q-analogue of Proposition 4.2 and an appropriate adaption of Proposition 4.3.
The case i = 2 of Proposition 5.3(b) corresponds to the q-log-concavity of the q-Narayana numbers and
is a result of (8).

Proposition 5.3

(a) The sequence
([
n
k

])
n≥k is infinitely q-log-concave for 0 ≤ k ≤ 2.

(b) The sequence Lin
([
n
k

])
is q-nonnegative for all k and for 0 ≤ i ≤ 2.

We conclude our discussion of the Gaussian polynomials by considering the sequence([
n+mu

mv

])
m≥0

(5.2)

for nonnegative integers u and v, as we did in Section 4 for the binomial coefficients. When u > v the
sequence has an infinite number of nonzero entries. We can use (5.1) to show that the highest degree
term in

[
n+u
v

]2 − [n+2u
2v

]
has coefficient −1, so the sequence (5.2) is not even q-log-concave. When

u < v, it seems to be the case that the sequence is not 2-fold q-log-concave, as shown for the rows
in Proposition 5.1. When u = v, the evidence is conflicting, reflecting the behavior of the binomial
coefficients. Since setting q = 1 in

[
n+mu
mu

]
yields

(
n+mu
mu

)
, we know that

([
2+mu
mu

])
m≥0

is not always
4-fold q-log-concave. It also transpires that the case n = 3 is not always 5-fold q-log-concave. We have
not encountered other values of n that fail to yield a q-log-concave sequence when u = v.

While the variety of behavior of the Gaussian polynomials is interesting, it would be desirable to have
a q-analogue that better reflects the behavior of the binomial coefficients. A q-analogue that arises in the
study of quantum groups serves this purpose. Let us replace the previous q-analogue of the nonnegative
integer n with the expression

〈n〉 =
qn − q−n

q − q−1
= q1−n + q3−n + q5−n + · · ·+ qn−1.

From this, we obtain a q-analogue of the binomial coefficients by proceeding as for the Gaussian polyno-
mials: for 0 ≤ k ≤ n, we define 〈

n

k

〉
=

〈n〉!
〈k〉!〈n− k〉!
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where 〈n〉! = 〈1〉〈2〉 · · · 〈n〉.
Letting q → 1 in

〈
n
k

〉
gives

(
n
k

)
, and a straightforward calculation shows that〈

n

k

〉
=

1
qnk−k2

[
n

k

]
q2
. (5.3)

So
〈
n
k

〉
is , in general, a Laurent polynomial in q with nonnegative coefficients. Our definitions of q-

nonnegativity and q-log-concavity for polynomials in q extend to Laurent polynomials in the obvious
way.

We offer the following generalizations of Conjectures 1.1, 4.1 and 4.4.

Conjecture 5.4

(a) The row sequence
(〈
n
k

〉)
k≥0

is infinitely q-log-concave for all n ≥ 0.

(b) The column sequence
(〈
n
k

〉)
n≥k is infinitely q-log-concave for all fixed k ≥ 0.

(c) For all integers 0 ≤ u < v, the sequence
(〈
n+mu
mv

〉)
m≥0

is infinitely q-log-concave for all n ≥ 0.

Several remarks are in order. Suppose that for f(g), g(q) ∈ R[q, q−1], we say f(q) ≤ g(q) if g(q)−f(q)
is q-nonnegative. Then the r-factor log-concavity ideas of Section 2 carry over to this setting, once
we replace the term “log-concave” by “q-log-concave.” Using these ideas, we have verified Conjec-
ture 5.4(a) for all n ≤ 53. Even though (a) is a special case of (c), we state it separately since (a) is
the q-generalization of the Boros-Moll conjecture, the primary motivation for this paper. As evidence for
Conjecture 5.4(b), it is not hard to prove the appropriate analogue of Proposition 5.3. Conjecture 5.4(c)
has been verified for all n ≤ 24 with v ≤ 10. When u > v, we can use (5.3) to show that the lowest
degree term in

〈
n+u
v

〉2 − 〈n+2u
2v

〉
has coefficient −1, so the sequence is not even q-log-concave. When

u = v, the quantum groups analogue has exactly the same behavior as we observed above for the Gaussian
polynomials.

6 Symmetric functions
We now turn our attention to symmetric functions. We will demonstrate that the complete homogeneous
symmetric functions (hk)k≥0 are a natural analogue of the rows and columns of Pascal’s triangle. We
show that the sequence (hk)k≥0 is i-fold log-concave in the appropriate sense for i ≤ 3, but not 4-
fold log-concave. Like the results of Section 5, this result underlines the difficulties and subtleties of
Conjectures 1.1 and 4.1. In particular, it shows that any proof of Conjecture 1.1 or Conjecture 4.1 would
need to use techniques that do not carry over to the sequence (hk)k≥0. For a more detailed exposition
of the background material below, we refer the reader to the texts of Macdonald (16), Sagan (19) or
Stanley (21).

Let x = {x1, x2, . . .} be a countably infinite set of variables. For each n ≥ 0, the elements of the
symmetric group Sn act on formal power series f(x) ∈ R[[x]] by permutation of variables (where xi
is left fixed if i > n). The algebra of symmetric functions, Λ(x), is the set of all series left fixed by all
symmetric groups and of bounded (total) degree.

The vector space of symmetric functions homogeneous of degree k has dimension equal to the num-
ber of partitions λ = (λ1, . . . , λ`) of k. We will be interested in three bases for this vector space. The
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monomial symmetric function corresponding to λ, mλ = mλ(x), is obtained by symmetrizing the mono-
mial xλ1

1 · · ·x
λ`

` . The kth complete homogeneous symmetric function, hk, is the sum of all monomials of
degree k. For partitions, we then define

hλ = hλ1 · · ·hλ`
.

Finally, the Schur function corresponding to λ is

sλ = det(hλi−i+j)1≤i,j≤`.

Our interest will be in the sequence just mentioned (hk)k≥0. Let hk(1n) denote the integer obtained by
substituting x1 = · · · = xn = 1 and xi = 0 for i > n into hk = hk(x). Then hk(1n) =

(
n+k−1

k

)
(the

number of ways of choosing k things from n things with repetition) and so the above sequence becomes
a column of Pascal’s triangle. By the same token hk(1n−k) =

(
n−1
k

)
and so the sequence becomes a row.

For notational convenience, if a part k is repeated r times in a partition λ then we will denote this
by writing kr in the sequence for λ. Also, when we use λ as a subscript we will omit the parentheses.
We need a result of Kirillov (14) about the product of Schur functions, which was proved bijectively by
Kleber (15) and Fulmek and Kleber (11). This result can be obtained by applying the Desnanot-Jacobi
Identity—also known as Dodgson’s condensation formula—to the Jacobi-Trudi matrix for skr+1 .

Theorem 6.1 ((11; 14; 15)) For positive integers k, r we have

(skr )2 − s(k−1)rs(k+1)r = skr−1skr+1 .

To state our result, we need one more definition. If bλ is a basis for Λ(x) and f ∈ Λ(x) then we say
f is bλ-nonnegative if the coefficient of bλ in the expansion of f is nonnegative for all partitions λ. Note
that mλ-nonnegativity is the natural generalization to many variables of the q-nonnegativity definition for
R[q]. A well-known example of an mλ-nonnegative symmetric function is sµ, for any partition µ. Thus
sλ-nonnegativity implies mλ-nonnegativity.

Theorem 6.2 The sequence Li(hk) is sλ-nonnegative for 0 ≤ i ≤ 3. But the sequence L4(hk) is not
mλ-nonnegative.

The proof involves determining Li(hk) explicitly for 0 ≤ i ≤ 3, using Theorem 6.1 and various
standard facts about symmetric functions to manipulate the expressions into sums of products of Schur
functions; such sums are are always sλ-nonnegative. By focussing on a suitable term in the expression
for L4(hk), one obtains the second assertion of the theorem.

7 Real roots and Toeplitz matrices
We now consider two other settings where, in contrast to the results of the previous section, Conjecture 1.1
does seem to generalize. In fact, this may be the right level of generality to find a proof.

Let (ak) = a0, a1, . . . , an be a finite sequence of nonnegative real numbers. It was shown by Isaac
Newton that if all the roots of the polynomial p[ak] def= a0 + a1x + · · · anxn are real, then the sequence
(ak) is log-concave. For example, since the polynomial (1 + x)n has only real roots, the nth row of
Pascal’s triangle is log-concave. It is natural to ask if the real-rootedness property is preserved by the
L-operator. The literature includes a number of results about operations on polynomials which preserve
real-rootedness; for example, see (5; 6; 7; 18; 26; 27).
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Conjecture 7.1 Let (ak) be a finite sequence of nonnegative real numbers. If p[ak] has only real roots
then the same is true of p[L(ak)].

This conjecture is due independently to Richard Stanley [private communication]. It is also one of a
number of related conjectures made by Steve Fisk (10). If true, Conjecture 7.1 would immediately imply
the original Boros-Moll Conjecture. As evidence for the conjecture, we have verified it by computer for a
large number of randomly chosen real-rooted polynomials. We have also checked that p[Lik

(
n
k

)
] has only

real roots for all i ≤ 10 and n ≤ 40.
Along with the rows of Pascal’s triangle, it appears that applying L to the other finite lines we were

considering in Section 4 also yields sequences with real-rooted generating functions. So we make the
following conjecture which implies the “if” direction of Conjecture 4.4.

Conjecture 7.2 For 0 ≤ u < v, the polynomial p[Lim(
(
n+mu
mv

)
)] has only real roots for all i ≥ 0.

We have verified this assertion for all n ≤ 24 with i ≤ 10 and v ≤ 10. In fact, it follows from a theorem
of Yu (28) that the conjecture holds for i = 0 and all 0 ≤ u < v. So it will suffice to prove Conjecture 7.1
to obtain this result for all i.

We can obtain a matrix-theoretic perspective on problems of real-rootedness via the following renowned
result of Aissen, Schoenberg and Whitney (1). A matrix A is said to be totally nonnegative if every minor
of A is nonnegative. We can associate with any sequence (ak) a corresponding (infinite) Toeplitz matrix
A = (aj−i)i,j≥0. In comparing the next theorem to Newton’s result, note that for a real-rooted polynomial
p[ak] the roots being nonpositive is equivalent to the sequence (ak) being nonnegative.

Theorem 7.3 ((1)) Let (ak) be a finite sequence of real numbers. Then every root of p[ak] is a nonpositive
real number if and only if the Toeplitz matrix (aj−i)i,j≥0 is totally nonnegative. 2

To make a connection with the L-operator, note that

a2
k − ak−1ak+1 =

∣∣∣∣ ak ak+1

ak−1 ak

∣∣∣∣ ,
which is a minor of the Toeplitz matrix A = (aj−i)i,j≥0. Call such a minor adjacent since its entries are
adjacent in A. Now, for an arbitrary infinite matrix A = (ai,j)i,j≥0, let us define the infinite matrix L(A)
by

L(A) =
(∣∣∣∣ ai,j ai,j+1

ai+1,j ai+1,j+1

∣∣∣∣)
i,j≥0

.

Note that ifA is the Toeplitz matrix of (ak) thenL(A) is the Toeplitz matrix ofL(ak). Using Theorem 7.3,
Conjecture 7.1 can now be strengthened as follows.

Conjecture 7.4 For a sequence (ak) of real numbers, if A = (aj−i)i,j≥0 is totally nonnegative then
L(A) is also totally nonnegative.

Note that if (ak) is finite, then Conjecture 7.4 is equivalent to Conjecture 7.1. As regards evidence for
Conjecture 7.4, consider an arbitrary n-by-n matrix A = (ai,j)ni,j=1. For finite matrices, L(A) is defined
in the obvious way to be the (n−1)-by-(n−1) matrix consisting of the 2-by-2 adjacent minors ofA. In (9,
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Theorem 6.5), Fallat, Herman, Gekhtman, and Johnson show that for n ≤ 4, L(A) is totally nonnegative
whenever A is. However, for n = 5, an example from their paper can be modified to show that if

A =


1 t 0 0 0
t t2 + 1 2t t2 0
t2 t3 + 2t 1 + 4t2 2t3 + t 0
0 t2 2t3 + 2t t4 + 2t2 + 1 t
0 0 t2 t3 + t t2


thenA is totally nonnegative for t ≥ 0, but L(A) is not totally nonnegative for sufficiently large t (t ≥

√
2

will suffice). We conclude that the Toeplitz structure would be important to any affirmative answer to
Conjecture 7.4.
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[5] Petter Brändén. On linear transformations preserving the Pólya frequency property. Trans. Amer.
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Combin. Theory Ser. A, 109(1):63–74, 2005.

[28] Yaming Yu. Confirming two conjectures of Su and Wang. Preprint. arXiv:0901.0385.

http://arxiv.org/abs/0901.0385


FPSAC 2009, Hagenberg, Austria DMTCS proc. AK, 2009, 649–662

Triangulations of root polytopes
and reduced forms
(Extended abstract)
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Abstract. The type An root polytope P(A+
n ) is the convex hull in Rn+1 of the origin and the points ei − ej for

1 ≤ i < j ≤ n + 1. Given a tree T on vertex set [n + 1], the associated root polytope P(T ) is the intersection
of P(A+

n ) with the cone generated by the vectors ei − ej , where (i, j) ∈ E(T ), i < j. The reduced forms of
a certain monomial m[T ] in commuting variables xij under the reduction xijxjk → xikxij + xjkxik + βxik,
can be interpreted as triangulations of P(T ). If we allow variables xij and xkl to commute only when i, j, k, l are
distinct, then the reduced form of m[T ] is unique and yields a canonical triangulation of P(T ) in which each simplex
corresponds to a noncrossing alternating forest.

Résumé. Le polytope des racines P(A+
n ) de type An est l’enveloppe convexe dans Rn+1 de l’origine et des points

ei − ej pour 1 ≤ i < j ≤ n + 1. Étant donné un arbre T sur l’ensemble des sommets [n + 1], le polytope des
racines associé, P(T ), est l’intersection de P(A+

n ) avec le cône engendré par les vecteurs ei − ej , où (i, j) ∈ E(T ),
i < j. Les formes réduites d’un certain monômem[T ] en les variables commutatives xij sous la reduction xijxjk →
xikxij + xjkxik + βxik peuvent être interprétées comme des triangulations de P(T ). Si on impose la restriction
que les variables xij et xkl commutent seulement lorsque les indices i, j, k, l sont distincts, alors la forme réduite
de m[T ] est unique et produit une triangulation canonique de P(T ) dans laquelle chaque simplexe correspond à une
forêt alternée non croisée.

Keywords: root polytope, triangulation, volume, Ehrhart polynomial, reduced form, noncrossing alternating tree

1 Introduction
This work was initially inspired by an exercise in Stanley’s Catalan Addendum (S, Exercise 6.C6), which
calls on us to consider the monomial w = x12x23 · · ·xn,n+1 in commuting variables xij . Starting with
p0 = w, produce a sequence of polynomials p0, p1, . . . , pm as follows. To obtain pr+1 from pr, choose
a term of pr which is divisible by xijxjk, for some i, j, k, and replace the factor xijxjk in this term with
xik(xij + xjk). Note that pr+1 has one more term than pr. Continue this process until a polynomial pm

is obtained, in which no term is divisible by xijxjk, for any i, j, k. Such a polynomial pm is a reduced
form of w. Remarkably, while the reduced form is not unique, it turns out that the number of terms in a
reduced form is always the Catalan number Cn = 1

n+1

(
2n
n

)
.
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Certain generalizations of this problem reach far beyond its setting in the world of polynomials. On one
hand, the reductions can be interpreted in terms of root polytopes and their subdivisions, yielding a geo-
metric, and subsequently a combinatorial, interpretation of reduced forms. On the other hand, using the
combinatorial results obtained about the reduced forms, we obtain a method for calculating the volumes
and Ehrhart polynomials of certain root polytopes. This “two way traffic” between the combinatorics of
reduced forms and geometry is a satisfying outcome.

Root polytopes were defined by Postnikov in (P). The full root polytope P(A+
n ), which is the convex

hull in Rn+1 of the origin and points ei − ej for 1 ≤ i < j ≤ n + 1, already made an appearance in
the work of Gelfand, Graev and Postnikov (GGP), who gave a canonical triangulation of it in terms of
noncrossing alternating trees on [n+ 1]. We obtain canonical triangulations for all acyclic root polytopes,
of which P(A+

n ) is a special case.
We define acyclic root polytopes P(T ) for a tree T on vertex set [n+ 1] as the intersection of P(A+

n )
with a cone generated by the vectors ei − ej , where (i, j) ∈ E(T ), i < j. Let

Ḡ = ([n+ 1], {(i, j) | there exist edges (i, i1) . . . , (ik, j) in G such that i < i1 < . . . < ik < j}),

denote the transitive closure of the graph G. Recall that a graph G on vertex set [n + 1] is said to be
noncrossing if there are no vertices i < j < k < l such that (i, k) and (j, l) are edges in G. A graph G
on vertex set [n + 1] is said to be alternating if there are no vertices i < j < k and (i, j) and (j, k) are
edges in G. Alternating trees were introduced in (GGP). Gelfand, Graev and Postnikov (GGP) showed
that the number of noncrossing alternating trees on [n+ 1] is counted by the Catalan number Cn.

Theorem 1 If T is a noncrossing tree on vertex set [n+1] and T1, . . . , Tk are the noncrossing alternating
spanning trees of T̄ , then the root polytopes P(T1), . . . ,P(Tk) are n-dimensional simplices with disjoint
interiors whose union is P(T ). Furthermore,

volP(T ) = fT,n
1
n!
,

where fT,n denotes the number of noncrossing alternating spanning trees of T̄ .

We can describe the intersections of the top dimensional simplices P(T1), . . . ,P(Tk) in Theorem 1
in terms of certain noncrossing alternating spanning forests of T̄ and using this calculate the Ehrhart
polynomial of the polytope P(T ). Theorem 1 can also be generalized for any tree T , but we omit these
details in this abstract.

The proof of Theorem 1 relies on relating the triangulations of a root polytope P(T ) to reduced forms
of a monomial m[T ] in variables xij , which we now define. Let A and B be two associative algebras over
the polynomial ring Q[β], where β is a fixed constant, generated by the set of elements {xij | 1 ≤ i <
j ≤ n + 1} modulo the relation xijxjk = xikxij + xjkxik + βxik. Algebra A is commutative, i.e. it
has additional relations xijxkl = xklxij for all i, j, k, l, while B is noncommutative and has additional
relations xijxkl = xklxij for i, j, k, l distinct only.

We treat the first relation as a reduction rule:

xijxjk → xikxij + xjkxik + βxik. (1)

A reduced form of the monomial m in algebra A (algebra B) is a polynomial PA
n (polynomial PB

n )
obtained by successive applications of reduction (1) until no further reduction is possible, where we



Triangulation of root polytopes and reduced forms 651

allow commuting any two variables (commuting any two variables xij and xkl where i, j, k, l are distinct)
between reductions. Note that the reduced forms are not necessarily unique.

A possible sequence of reductions in algebra A yielding a reduced form of x12x23x34 is given by

x12x23x34 → x12x24x23 + x12x34x24 + βx12x24

→ x24x13x12 + x24x23x13 + βx24x13 + x34x14x12 + x34x24x14

+βx34x14 + βx14x12 + βx24x14 + β2x14

→ x13x14x12 + x13x24x14 + βx13x14 + x24x23x13 + βx24x13

+x34x14x12 + x34x24x14 + βx34x14 + βx14x12 + βx24x14

+β2x14 (2)

where the pair of variables on which the reductions are performed is in boldface. The reductions are
performed on each monomial separately.

Some of the reductions performed above are not allowed in the noncommutative algebra B. The fol-
lowing is an example of how to reduce x12x23x34 in the noncommutative case.

x12x23x34 → x12x24x23 + x12x34x24 + βx12x24

→ x14x12x23 + x24x14x23 + βx14x23 + x34x12x24 + βx14x12

+βx24x14 + β2x14

→ x14x13x12 + x14x23x13 + βx14x13 + x24x14x23 + βx14x23

+x34x14x12 + x34x24x14 + βx34x14 + βx14x12 + βx24x14

+β2x14 (3)

In the example above the pair of variables on which the reductions are performed is in boldface, and
the variables which we commute are underlined.

The “reason” for allowing xij and xkl to commute only when i, j, k, l are distinct might not be apparent
at first, but as we will prove in section 5 it insures that, unlike in the commutative case, there are unique
reduced forms for a natural set of monomials. Kirillov (K) observed previously that the monomial w =
x12x23 · · ·xn,n+1 has a unique reduced form in algebra B and asked for a nice combinatorial proof of
this fact. We provide such a proof, as the uniqueness of the reduced form of w is a special case of our
results.

Before we can state a simplified version of our main result on reduced forms, we need one more
piece of notation. Given a graph G on vertex set [n + 1] we associate to it the monomial mA[G] =∏

(i,j)∈E(G) xij ; if G is edge-labeled with labels 1, . . . , k, we can also associate to it the noncommutative

monomial mB [G] =
∏k

a=1 xia,ja
, where E(G) = {(ia, ja)a | a ∈ [k]}.

Theorem 2 Let T be a noncrossing tree on vertex set [n+ 1], and PA
n a reduced form of mA[T ]. Then,

PA
n (xij = 1, β = 0) = fT,n,

where fT,n denotes the number of noncrossing alternating spanning trees of T̄ .
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If we label the edges of T so that it becomes a good tree (to be defined in section 4), then the reduced
form PB

n of the monomial mB [T ] is

PB
n (xij , β = 0) =

∑
T0

xT0 ,

where the sum runs over all noncrossing alternating spanning trees T0 of T̄ with lexicographic edge-
labels (to be defined in section 5) and xT0 is defined to be the noncommutative monomial

∏n
l=1 xil,jl

if
T0 contains the edges (i1, j1)1, . . . , (in, jn)n.

We can generalize Theorem 2 for any β; see sections 2 and 5. Theorem 2 can also be generalized for
any tree T , but we omit these details in this abstract.

Our extended abstract is organized as follows. In section 2 we reformulate the reduction process in
terms of graphs and elaborate further on Theorem 2. In section 3 we discuss acyclic root polytopes and
relate them to reduced forms. In section 3 we also outline some of the steps for proving Theorems 1 and
2. The lemmas in section 4 indicate the significance of considering reduced forms in the noncommuta-
tive algebra B and prepares the ground for proving Theorem 2. In section 5 we conclude the proofs of
Theorems 1 and 2.

2 Reductions in terms of graphs
We can phrase the reduction process described in section 1 in terms of graphs. This view will be useful
throughout the abstract. Think of a monomial m ∈ A as a directed graph G on the vertex set [n+ 1] with
an edge directed from i to j for each appearance of xij in m. Let GA[m] denote this graph. If, however,
we are in the noncommutative version of the problem, and m =

∏p
l=1 xil,jl

, then we can think of m as
a directed graph G on the vertex set [n + 1] with p edge labels 1, . . . , p, such that the edge labeled l is
directed from vertex il to jl. Let GB [m] denote the edge-labeled graph just described. Let (i, j)a be the
notation for an edge (i, j) labeled a. It is straightforward to reformulate the reduction rule (1) in terms of
reductions on graphs. If m ∈ A, then it reads as follows.

The reduction rule for graphs: Given a graph G0 on vertex set [n+ 1] and (i, j), (j, k) ∈ E(G0) for
some i < j < k, let G1, G2, G3 be graphs on vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(j, k)} ∪ {(i, k)},
E(G2) = E(G0)\{(i, j)} ∪ {(i, k)},
E(G3) = E(G0)\{(i, j)}\{(j, k)} ∪ {(i, k)}. (4)

We say that G0 reduces to G1, G2, G3 under the reduction rules defined by equations (4).
The reduction rule for graphs GB [m] with m ∈ B is explained in section 4.
An A-reduction tree T A

R for a monomial m0, or equivalently, the graph GA[m0], is constructed as
follows. The root of T A

R is labeled by GA[m0]. Each node GA[m] in T A
R has three children, which

depend on the choice of the edges of GA[m] on which we perform the reduction. Namely, if the reduction
is performed on edges (i, j), (j, k) ∈ E(GA[m]), then the three children of the node G0 = GA[m] are
labeled by the graphs G1, G2, G3 as described by equation (4). For an example of an A-reduction tree,
see Figure 1 (disregard the edge-labels).

Summing the monomials to which the graphs labeling the leaves of the reduction tree T A
R correspond

multiplied by suitable powers of β, we obtain a reduced form of m0.
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Fig. 1: This is an A-reduction tree with root mA[x12x23x34], when the edge-labels are disregarded. The boldface
edges indicate where the reduction is performed. We can read off the following reduced form of x12x23x34 from the
set of leaves: x14x13x12 +x14x23x13 +βx14x13 +x24x14x23 +βx14x23 +x34x14x12 +x34x24x14 +βx34x14 +
βx14x12+βx24x14+β2x14. When the edge-labels are taken into account, this is theB-reduction tree corresponding
to equation (3). Note that in the second child of the root we commuted edge-labels 1 and 2.



654 Karola Mészáros

Let T be a noncrossing tree on vertex set [n + 1]. In terms of reduction trees, Theorem 2 states that
the number of leaves labeled by graphs with exactly n edges of an A-reduction tree with root labeled T is
independent of the particular A-reduction tree. The generalization of Theorem 2 states that the number of
leaves labeled by graphs with exactly k edges of an A-reduction tree with root labeled T , is independent
of the particular A-reduction tree for any k. In terms of reduced forms we can write this as follows. If PA

n

is the reduced form of a monomial mA[T ] for a noncrossing tree T , then

PA
n (xij = 1) =

n−1∑
m=0

fT,n−mβ
m,

where fT,k denotes the number of noncrossing alternating spanning forests of T̄ with k edges and addi-
tional technical requirements. Also, if PB

n is the reduced form of a monomial mB [T ] for a noncrossing
good tree T (defined in section 4), then

PB
n (xij) =

∑
F

xF ,

where the sum runs over all noncrossing alternating spanning forests F of T̄ with lexicographic edge-
labels (defined in section 5) and additional technical requirements.

If we consider the reduced forms of the path monomial w =
∏n

i=1 xi,i+1, then T = P = ([n +
1], {(i, i + 1) | i ∈ [n]}), and fP,k is simply the number of noncrossing alternating spanning forests on
[n+1] with k edges containing edge (1, n+1). Furthermore, PB

n (xij) =
∑

F x
F ,where the sum runs over

all noncrossing alternating spanning forests F on [n + 1] with lexicographic edge-labels and containing
edge (1, n+ 1). Let sn,k denote the number of ways to draw k diagonals of a convex (n+ 2)-gon that do
not intersect in their interiors.

Lemma 3 With the notation above, fP,k+1 = sn,k.

Cayley (C) in 1890 showed that sn,k =
1

n+ 1

(
n+ k + 1

n

)(
n− 1
k

)
. Using Lemma 3 and the expres-

sion by Cayley, we obtain PA
n (xij = 1) =

∑n−1
m=0 sn,n−m−1β

m.

3 Acyclic root polytopes
In the terminology of (P), a root polytope of type An is the convex hull of the origin and some of the
points ei − ej for 1 ≤ i < j ≤ n+ 1, where ei denotes the ith coordinate vector in Rn+1. A very special
root polytope is the full root polytope

P(A+
n ) = ConvHull(0, e−ij | 1 ≤ i < j ≤ n+ 1),

where e−ij = ei − ej . We study a class of root polytopes including P(A+
n ), which we now discuss.

Let G be a connected simple graph on vertex set [n+ 1]. Define

VG = {e−ij | (i, j) ∈ E(G), i < j}, a set of vectors associated to G;

CG = 〈VG〉 := {
∑

e−ij∈VG

cije
−
ij | cij ≥ 0}, the cone associated to G; and
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V̄G = Φ+ ∩ CG, all the positive roots of type An contained in the cone associated to G,

where Φ+ = {e−ij | 1 ≤ i < j ≤ n + 1} is the set of positive roots of type An. The idea to consider
the positive roots of a root system inside a cone appeared earlier in Reiner’s work (R1), (R2) on signed
posets.

The root polytope P(G) associated to graph G is

P(G) = ConvHull(0, e−ij | e
−
ij ∈ V̄G).

Note that P(A+
n ) = P(P ) for the path graph P = ([n], {(i, i + 1) | i ∈ [n]}). While the choice of

G such that P(A+
n ) = P(G) is not unique, it becomes unique if we require that for no edge (i, j) ∈

E(G) can the corresponding vector e−ij be written as a nonnegative linear combination of the vectors
corresponding to the edges E(G)\{e}. Graph P satisfies this requirement.

Define
Ln = {G = ([n+ 1], E(G)) | G is an acyclic graph},

and
L(A+

n ) = {P(G) | G ∈ Ln}, the set of acyclic root polytopes.

Note that the condition thatG is an acyclic graph is equivalent to VG being a set of linearly independent
vectors. To avoid too much detail, in this extended abstract we restrict out attention to the acyclic root
polytopes arising from noncrossing trees, however, our methods yield analogous results for all acyclic
root polytopes.

The full root polytope P(A+
n ) ∈ L(A+

n ), since the path graph P is acyclic. We show below how to
obtain central triangulations for all polytopes P ∈ L(A+

n ). A central triangulation of a d-dimensional
root polytope P is a collection of d-dimensional simplices with disjoint interiors whose union is P , the
vertices of which are vertices of P and the origin is a vertex of all of them. Depending on the context we
also take the intersections of these maximal simplices to be part of the triangulation.

Lemma 4 For an acyclic root polytope P(G) = CG ∩ P(A+
n ).

We now state the crucial lemma which relates root polytopes and algebras A and B defined in section
2.

Lemma 5 (Reduction Lemma) Given a graph G0 ∈ Ln with d edges let (i, j), (j, k) ∈ E(G0) for some
i < j < k and G1, G2, G3 as described by equation (4). Then G1, G2, G3 ∈ Ln,

P(G0) = P(G1) ∪ P(G2)

where all polytopes P(G0),P(G1),P(G2) are d-dimensional and

P(G3) = P(G1) ∩ P(G2) is (d− 1)-dimensional.

What the Reduction Lemma really says is that performing a reduction on graphG0 ∈ Ln is the same as
“cutting” the d-dimensional polytope P(G0) into two d-dimensional polytopes P(G1) and P(G2), whose
vertex sets are subsets of the vertex set of P(G0), whose interiors are disjoint and whose union is P(G0).

Proof Idea of Theorems 1 and 2: Let T be any tree on vertex set [n + 1] and consider any A-reduction
tree T A

R with root T . For simplicity only consider the nodes labeled by graphs with n edges, which
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corresponds to setting β = 0. Let T1, . . . , Tk be the trees with n edges labeling leaves of T A
R . Then,

by applying the Reduction Lemma multiple times, we obtain that P(T1), . . . ,P(Tk) are d-dimensional
polytopes, whose vertex sets are subsets of the vertex set of P(T ), whose interiors are disjoint and whose
union is P(T ). Clearly then

volP(T ) = volP(T1) + · · ·+ volP(Tk).

Since T1, . . . , Tk are leaves of T A
R , they must be alternating. Postnikov showed (P, Lemma 13.2) that

for an alternating tree Ti on vertex set [n + 1], the polytope P(Ti) a simplex with volP(Ti) = 1
n! . His

definitions in (P) differ from ours, but for this alternating tree case his Lemma 13.2 can be reformulated
suitably. Thus, we obtain that volP(T ) = k

n! , where k is the number of leaves of T A
R labeled by trees.

Note, this shows that the number of leaves of an A-reduction tree labeled by trees is independent of which
A-reduction tree we consider. As explained in section 2, summing the monomials to which the graphs
labeling the leaves of a reduction tree T A

R correspond multiplied by suitable powers of β, we obtain a
reduced form of the monomial corresponding to the root of T A

R . Thus, we just showed that if PA
n is this

reduced form, then PA
n (xij = 1, β = 0) = k, which is part of the statement of Theorem 2. What k

exactly is, how to obtain the canonical triangulation described in Theorem 1 and how to express explicitly
the reduced form of mB [T ] as stated in Theorem 2 is all outlined in section 5. 2

4 Reductions in the noncommutative case
In this section we state two crucial lemmas about reduction (1) in the noncommutative case necessary
for proving Theorem 2. While in the commutative case reductions on GA[m] could result in crossing
graphs, we prove that in the noncommutative case exactly those reductions from the commutative case
are allowed which result in no crossing graphs, provided that m = mB [T ] for a noncrossing tree T with
suitable edge labels specified below. Furthermore, we also show that if there are any two edges (i, j) and
(j, k) with i < j < k in a successor of GB [m], then after suitably many commutations it is possible to
apply reduction (1). Thus, once the reduction process terminates, the set of graphs obtained as leaves of
the reduction tree are alternating forests. Now, unlike in the commutative case, they are also noncrossing.
In fact, each noncrossing alternating spanning forest of T̄ satisfying certain additional technical conditions
occurs among the leaves of the reduction tree exactly once, yielding a complete combinatorial description
of the reduced form of mB [T ].

In terms of graphs the partial commutativity means that if G contains two edges (i, j)a and (k, l)a+1

with i, j, k, l distinct, then we can replace these edges by (i, j)a+1 and (k, l)a, and vice versa. Reduction
rule (1) on the other hand means that if there are two edges (i, j)a and (j, k)a+1 in G0, then we replace
G0 with three graphs G1, G2, G3 on vertex set [n+ 1] and edge sets

E(G1) = E(G0)\{(i, j)a}\{(j, k)a+1} ∪ {(i, k)a} ∪ {(i, j)a+1}
E(G2) = E(G0)\{(i, j)a}\{(j, k)a+1} ∪ {(j, k)a} ∪ {(i, k)a+1}
E(G3) = (E(G0)\{(i, j)a}\{(j, k)a+1})a ∪ {(i, k)a}, (5)

where (E(G0)\{(i, j)a}\{(j, k)a+1})a denotes the edges obtained from the edgesE(G0)\{(i, j)a}\{(j, k)a+1}
by reducing the label of each edge which has label greater than a by 1.
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A B-reduction tree T B
R is defined analogously to an A-reduction tree, except we use equation (5) to

describe the children. See Figure 1 for an example. A graph H is called a B-successor of G if it is
obtained by a series of reductions from G. For convenience, we refer to commutativity of xij and xkl for
distinct i, j, k, l as reduction (2), by which we mean the rule xijxkl ↔ xklxij , for i, j, k, l distinct, or,
in the language of graphs, exchanging edges (i, j)a and (k, l)a+1 with (i, j)a+1 and (k, l)a for i, j, k, l
distinct.

A forest H on vertex set [n + 1] and k edges labeled 1, . . . , k is good if it satisfies the following
conditions:

(i) If edges (i, j)a and (j, k)b are in H , i < j < k, then a < b.
(ii) If edges (i, j)a and (i, k)b in H are such that j < k, then a > b.
(iii) If edges (i, j)a and (k, j)b in H are such that i < k, then a > b.
(iv) H is noncrossing.
No graph H with a cycle could satisfy all of (i), (ii), (iii), (iv) simultaneously, which is why we only

define good forests. Note, however, that any forest H has an edge-labeling that makes it a good forest.

Lemma 6 If the root of a B-reduction tree is labeled by a good forest F , then all nodes of it are also
labeled by good forests.

A reduction applied to a noncrossing graph G is noncrossing if the graphs resulting from the reduction
are also noncrossing.

The following is then a trivial corollary of Lemma 6.

Corollary 7 If G is a good forest, then all reductions that can be applied to G and its B-successors are
noncrossing.

Lemma 8 Let G be a good forest. Let (i, j)a and (j, k)b with i < j < k be edges of G such that no edge
of G crosses (i, k). Then after finitely many applications of reduction (2) we can apply reduction (1) to
edges (i, j) and (j, k).

Corollary 9 If F labels a leaf of a B-reduction tree whose root is labeled by a good forest, then F is a
noncrossing alternating forest.

5 Proof Idea of Theorems 1 and 2
This section is devoted to understanding how to conclude the proofs of Theorems 1 and 2 started at the
end of section 3. We first finish the sketch of the proof of Theorem 2, and then conclude with Theorem 1.

To prove Theorem 2 we describe the reduced form of mB [T ] for a good graph T , which, unlike in
the commutative case, is unique. For simplicity we lay out the exact details for the monomial wB =∏n

i=1 xi,i+1. We index w by B to indicate that we are in the noncommutative algebra B.
Given a noncrossing alternating forest F on vertex set [n+1] with k edges, the lexicographic order on

its edges is as follows. Edge (i1, j1) is less than edge (i2, j2) in lexicographic order if j1 > j2, or j1 = j2
and i1 > i2. The forest F is said to have lexicographic edge-labels if its edges are labeled with integers
1, . . . , k such that if edge (i1, j1) is less than edge (i2, j2) in lexicographic order, then the label of (i1, j1)
is less than the label of (i2, j2) in the usual order on the integers. Clearly, given any graph G there is a
unique edge-labeling of it which is lexicographic.
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Lemma 10 If a noncrossing alternating forest F is a B-successor of a good forest T , then upon some
number of reductions (2) it is possible to obtain a noncrossing alternating forest F ′ with lexicographic
edge-labels.

Proposition 11 By choosing the series of reductions suitably, the set of leaves of a B-reduction tree with
root GB [wB ] can be all noncrossing alternating forests F on vertex set [n+ 1] containing edge (1, n+ 1)
with lexicographic edge-labels.

Idea of Proof: By Corollary 9 all leaves of a B-reduction tree are noncrossing alternating forests on
vertex set [n + 1]. It is easily seen that they all contain edge (1, n + 1). By the correspondence between
the leaves of a B-reduction tree and simplices in a triangulation of P(GB [wB ]), it follows that no forest
appears more than once among the leaves. Thus, it suffices to prove that any noncrossing alternating forest
F on vertex set [n+1] containing edge (1, n+1) appears among the leaves of a B-reduction tree and that
all these forests have lexicographic edge-labels. One can construct such a B-reduction tree inductively. 2

Theorem 12 The set of leaves of a B-reduction tree with root GB [wB ] is, up to applications of reduction
(2), the set of all noncrossing alternating forests with lexicographic edge-labels on the vertex set [n + 1]
containing edge (1, n+ 1).

Idea of Proof: By Proposition 11 there exists a B-reduction tree which satisfies the conditions above.
Since the roots of type An are unimodular, it can be shown that the number of k-dimensional simplices
in a central triangulation of a type An root polytope is fixed for any k. Thus, the number of forests on
vertex set [n + 1] and k edges among the leaves of an B-reduction tree is fixed. Also, no vertex-labeled
forest, with edge-labels disregarded, can appear twice among the leaves of a B-reduction tree. Together
with Lemma 10 these imply the statement of Theorem 12. 2

Using Theorem 12 we obtain the following characterziation of reduced forms of the noncommutative
monomial wB .

Theorem 13 If the polynomial PB
n (xij) is a reduced form of wB , then

PB
n (xij) =

∑
F

βn−|E(F )|xF ,

where the sum runs over all noncrossing alternating forests F with lexicographic edge-labels on the vertex
set [n+ 1] containing edge (1, n+ 1), and xF is defined to be the noncommutative monomial

∏k
l=1 xil,jl

if F contains the edges (i1, j1)1, . . . , (ik, jk)k.

As a corollary to Theorem 13 we obtain the other part of Theorem 2 for the commutative monomial
wA =

∏n
i=1 xi,i+1.

Theorem 14 If the polynomial PA
n (xij) is a reduced form of wA, then

PA
n (xij = 1) =

n−1∑
m=0

sn,n−m−1β
m,

where sn,k is the number of noncrossing alternating forests on vertex set [n + 1] with k + 1 edges,
containing edge (1, n+ 1).
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Idea of Proof: While wA may have many reduced forms, any reduced form arises from an A-reduction
tree, which in turn gives a triangulation of P(A+

n ). A triangulation of P(A+
n ) can be shown to have a

fixed number of simplices of a certain dimension, using that the positive roots of type An are unimodular.
Using this it can be shown that there is a fixed number of leaves with k edges in any A-reduction tree.
Using Theorem 13 we obtain that there are sn,k leaves with with k + 1 edges in any A-reduction tree. 2

Observe that the above theorems imply that the poset of all noncrossing alternating spanning forests on
the vertex set [n + 1] containing the edge (1, n + 1) equals the face poset of the triangulation of the full
type An root polytope P(A+

n ) obtained from the noncommutative process as described in Theorem 12.
By face poset we mean the poset whose elements are the top dimensional simplices in the triangulation of
P(A+

n ) and all their nonempty intersections and the order is given by inclusion.
The Schröder numbers sn count the number of ways to draw any number of diagonals of a convex

(n+2)-gon that do not intersect in their interiors. Recall that in section 2 sn,k denoted the number of ways
to draw k diagonals of a convex (n + 2)-gon that do not intersect in their interiors. Cayley (C) in 1890

showed that sn,k =
1

n+ 1

(
n+ k + 1

n

)(
n− 1
k

)
. As indicated in Lemma 3, it is not by coincidence that

we used sn,k to also denote the number of noncrossing alternating forests on vertex set [n+ 1] and k + 1
edges, containing edge (1, n+ 1).

Theorems 13 and 14 imply Theorem 2 for the special case T = P = ([n + 1], {(i, i + 1) | i ∈ [n]}).
We can generalize Theorems 12, 13 and 14 to monomials mB [T ], where T is a good tree. Theorem
2 stated in the Introduction is a weaker version of these generalizations, but is easier to state. In the
most general statements of Theorems 12, 13 and 14 we need to replace the condition “all noncrossing
alternating forests on [n + 1] containing edge (1, n + 1)” with “all noncrossing alternating forests on
[n+ 1] containing edge (1, n+ 1) and certain technical requirements,” the details of which we omit here.
The proofs of the analogous statements use the statements of Theorems 12, 13 and 14 as base cases. If
the polynomial PB

n (xij) is a reduced form of mB [T ] for a good tree T , then

PB
n (xij) =

∑
F

βn−|E(F )|xF ,

where the sum runs over all noncrossing alternating spanning forests F of T̄ with lexicographic edge-
labels on the vertex set [n + 1] containing edge (1, n + 1) and satisfying some technical requirement.
Also,

PA
n (xij = 1) =

n−1∑
m=0

fT,n−mβ
m,

where fT,n−m is the number of noncrossing alternating forests on vertex set [n + 1] with n −m edges,
containing edge (1, n+ 1) and satisfying some technical requirement.

We are now ready conclude the proof of Theorem 1. Recall that at the end of section 3 we proved that if
T1, . . . , Tk are the trees labeling leaves of T A

R with root T , then P(T1), . . . ,P(Tk) form a central triangu-
lation of P(T ). Note that the set of leaves of aB-reduction tree T B

R can also be obtained as a set of leaves
of some A-reduction tree T A

R , by simply disregarding the edge-labels of the graphs corresponding to the
nodes of T B

R . The generalization of Theorem 12 implies that that the set of leaves of a B-reduction tree
with rootmB [T ] which are trees are all noncrossing alternating spanning trees of T̄ with lexicographic or-
dering. Thus, there is an A-reduction tree with root mA[T ] whose leaves that are trees are all noncrossing
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alternating spanning trees of T̄ . Therefore, if T1, . . . , Tk are all noncrossing alternating spanning trees of
T̄ , then the root polytopes P(T1), . . . ,P(Tk) are n-dimensional simplices with disjoint interiors whose
union is P(T ), yielding the canonical triangulation described in Theorem 1. Also, from this triangulation
it follows that volP(T ) = fT,n

1
n! , where fT,n denotes the number of noncrossing alternating spanning

trees of T̄ , since as noted at the end of section 3 each P(Ti) has volume 1
n! . This concludes the proof of

Theorem 1.
Theorem 1 can be generalized so that we not only describe the n-dimensional simplices in the triangu-

lation of P(T ), but also describe their intersections in terms of noncrossing alternating spanning forests
in T̄ . Using the special property of Φ+ that the vectors in it are unimodular, we can also calculate the
Ehrhart polynomial of P(T ) for any tree T . We now define Ehrhart polynomials for integer polytopes,
and state our main result pertaining to them. For further background on the theory of Ehrhart polynomials
see (BR).

Given a polytope P ⊂ Rn+1, the tth dilate of P is

tP = {(tx1, . . . , txn+1)|(x1, . . . , xn+1) ∈ P}.

The Ehrhart polynomial of an integer polytope P ⊂ Rn+1 is then defined to be

LP(t) = #(tP ∩ Zn+1).

Theorem 15 The Ehrhart polynomial of the polytope P(T ), where T is a noncrossing tree on vertex set
[n+ 1], is

LP(T )(t) = (−1)n
n∑

i=0

(−1)ifT,i

(
t+ i

i

)
,

where fT,i is the number of noncrossing alternating forests on vertex set [n+ 1] with i edges, containing
edge (1, n+ 1) and satisfying some technical requirement.

For T = P = ([n], {(i, i + 1) | i ∈ [n]}) Theorem 15 specializes to the Ehrhart polynomial of
P(P ) = P(A+

n ) with fP,i = sn,i−1. The Ehrhart polynomial of P(A+
n ) was previously calculated by

Fong (F) by different methods.
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Abstract. We derive a new formula for the number of factorizations of a full cycle into an ordered product of two
permutations of given cycle types. For the first time, a purely combinatorial argument involving a bijective description
of bicolored maps of specified vertex degree distribution is used. All the previous results in the field rely either
partially or totally on a character theoretic approach. The combinatorial proof relies on a new bijection extending
the one in [G. Schaeffer and E. Vassilieva. J. Comb. Theory Ser. A, 115(6):903–924, 2008] that focused only on the
number of cycles. As a salient ingredient, we introduce the notion of thorn trees of given vertex degree distribution
which are recursive planar objects allowing simple description of maps of arbitrary genus.

Résumé. Nous démontrons une nouvelle formule exprimant le nombre de factorisations d’un long cycle en produit
de deux permutations ayant un type cyclique donné. Pour la première fois, nous utilisons un argument purement
combinatoire basé sur une description bijective des cartes bicolores dont la distribution des degrés des sommets est
donnée. Tous les résultats précédents dans le domaine se basent soit partiellement soit totalement sur la théorie des
caractères de groupe. La preuve combinatoire se fonde sur une nouvelle bijection généralisant celle introduite dans
[G. Schaeffer and E. Vassilieva. J. Comb. Theory Ser. A, 115(6):903–924, 2008] ne s’intéressant qu’au nombre de
cycles. L’ingrédient le plus saillant est l’introduction de la notion d’arbre épineux de structure cyclique donnée, des
objets récursifs et planaires permettant une description simple des cartes de genus arbitraire.
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1 Full cycle factorizations of given type
In what follows, we denote by λ ` n an integer partition of n and `(λ) = k the length or number of parts
of λ. Thus, λ = (λ1, . . . , λk) where λ1 ≥ · · · ≥ λk ≥ 1 and

∑
λi = n. If mi(λ) is the number of parts

of λ that are equal to i, then we also write λ as [1m1(λ), 2m2(λ), . . .] and let Aut(λ) =
∏
imi(λ)!. Then,

for λ ` n, we use the monomial symmetric function mλ(x) which is the sum of all different monomials
obtained by permuting the variables of xλ1

1 xλ2
2 · · · , and the power symmetric function pλ(x), defined

multiplicatively as pλ = pλ1pλ2 · · · where pn(x) = mn(x) =
∑
i x

n
i (see e.g. (10)).

In addition, we use π to denote a set partition of [n] = {1, 2, . . . , n} with blocks {π1, . . . , πp}. The
type of a set partition, type(π) ` n, is the integer partition of n obtained by considering the cardinalities
of the blocks of π. Let Sn be the symmetric group on n elements, and Cλ be the conjugacy class in Sn
of permutations with cycle type λ, where λ ` n. Given λ, µ, ν ` n, let cνλµ be the number of ordered
factorizations in Sn of a fixed permutation γ ∈ Cν as a product αβ of two permutations α ∈ Cλ and β ∈
Cµ. These numbers are called connection coefficients of the symmetric group. The problem of computing
these coefficients has received significant attention and its history and references can be found in (3). We
focus on the case cnλµ: when ν = (n) = n and γ is the long cycle γn = (1, 2, . . . , n). In this setting, we
define the genus g(λ, µ) of a pair of partitions λ and µ by the equation `(λ) + `(µ) = n+ 1− 2g(λ, µ).
We can take g(λ, µ) to be a nonnegative integer, since otherwise it is easy to show that cnλµ = 0.

Regarding the evaluation of cnλµ, using an inductive argument Bédard and Goupil (1) first found a for-
mula for the case g(λ, µ) = 0, which was later reproved by Goulden and Jackson (2) via a bijection with
a set of ordered rooted bicolored trees. Later, using characters of the symmetric group and a combinato-
rial development, Goupil and Schaeffer (3) derived an expression for connection coefficients of arbitrary
genus as a sum of positive terms (see Biane (4) for a succinct algebraic derivation; and Poulalhon and
Schaeffer (4), and Irving (7) for further generalizations). However, there are no fully bijective proofs for
this expression unless the permutations are associated to set partitions (see Goulden and Nica (6)). In
this paper, we follow the latter approach and introduce the notion of partitioned bicolored maps of given
type to extend the work of Schaeffer and Vassilieva in (9), and derive a novel simpler formula thanks to a
purely combinatorial argument. In the genus zero case, the argument reduces to the bijection with ordered
rooted bicolored trees in (2). Our combinatorial result can be stated as follows:

Theorem 1 The numbers cnλµ of factorizations of the long cycle γn into an ordered product of two per-
mutations of type λ and µ satisfy:

1
n

∑
λ,µ`n

cnλµpλ(x)pµ(y) =
∑
λ,µ`n

(n− `(λ))!(n− `(µ))!
(n+ 1− `(λ)− `(µ))!

mλ(x)mµ(y) (1)

We start in Section 2 by defining the main combinatorial structures used throughout the paper and refor-
mulating Theorem 1. In Section 3 we introduce a mapping among these structures and in Section 4 we
show it is a bijection.

2 Link with maps and partitioned maps of specified type
2.1 Unicellular partitioned bicolored maps
Definition 1 Given partitions λ, µ ` n, let C(λ, µ) be the set of triples (π1, π2, α) such that α ∈ Sn,
π1, π2 are set partitions of [n] with type(π1) = λ and type(π2) = µ, and each block of π1 and π2 is a
union of cycles of α and β = α−1γn respectively. Let C(λ, µ) = |C(λ, µ)|.
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In accordance with the following graphical interpretation, each factorization αβ = γn is called a uni-
cellular bicolored map. Similarly, each triple (π1, π2, α) is called a unicellular partitioned bicolored map
with n edges, blocks of type λ consisting of white vertices, and blocks of type µ consisting of black
vertices. We represent these unicellular maps graphically using ribbon graphs:

A ribbon graph is a drawing of a graph in the plane such that any vertex of degree k has a neighborhood
homeomorphic to a disk and the incident edges form a star with k branches. Edges can cross outside of
these neighborhoods, and we call these irrelevant crossings. Moreover, given an edge e of a ribbon graph
we assume it is oriented and identify the right hand side of e in the direction given by the orientation. We
describe the boundary of the graph by moving along the edges. In doing so, we ignore irrelevant crossings
and when we reach a vertex, we continue in the next branch of the star without crossing any edge in the
neighborhood of the vertex. A graph is bicolored if its vertices are colored black and white such that each
edge connects a black vertex with a white one. In this case the right hand side of the edge is the side of
the edge which is on the right when going from a white vertex to a black one.

Then a unicellular partitioned bicolored map with n edges is represented by a labeled ribbon graph with
the following six properties: (i) n edges with the labels [n] = {1, . . . , n}, (ii) the cycles of α describe the
white vertices, and (iii) the partition π1 induces a partition of the white vertices of type λ . Properties (iv),
(v), and (vi) are the analogues of (i), (ii), and (iii) for β, black vertices, π2 and µ respectively. The fact
that αβ = γn means that if we start on the right hand side of the edge with label 1 and move along the
edges as described above, we visit the right hand side of the edges 1, . . . , n in this order.

Example 1 Let n = 10, λ = [4, 6], µ = [22, 6], α = (2 5)(3 4 6 7)(1 8 9 10) ∈ C[2,42] and β = α−1γn =
(3)(6)(1 5 4 2 7)(8)(9)(10) ∈ C[15,5], π1 = {3 4 6 7, 1 2 5 8 9 10}, and π2 = {1 2 4 5 7 10, 6 8, 3 9}. We
easily check that g([2, 42], [15, 5]) = 1 and (π1, π2, α) ∈ C(λ, µ). We represent this unicellular parti-
tioned bicolored map with the following ribbon graph with one irrelevant crossing and where each block
is associated with a particular shape:

9

3

8

1

2

45

6

7

10

Fig. 1: A Partitioned Bicolored Map

2.2 Connection between C(λ, µ) and cnλµ
Consider the partial order on integer partitions given by refinement. That is λ � µ if and only if the parts
of µ are unions of parts of λ, and we say that λ is a refinement of µ or that µ is coarser than λ. If λ � µ
let Rλµ be the number of ways to coarse λ to obtain µ. For example, if λ = 1222 and µ = 123 then
Rλµ = 4 since in λ any of the two 1-blocks can merge with any of the two 2-blocks. See (11) for more
about the poset of integer partitions ordered by refinement.

Remark 1 If m = `(λ) and p = `(µ) then Rλµ is equal to the number of unordered partitions π =
{π1, . . . , πp} of the set [m] such that µj =

∑
i∈πj

λi for 1 ≤ j ≤ p. Therefore, for the monomial and
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power symmetric functions, mλ and pλ, we have: pλ =
∑
µ�λRλµmµ, where Rλµ = Aut(µ)Rλµ (10,

Prop.7.7.1).

We use this partial order on integer partitions to obtain a relation between C(λ, µ) and cnλµ.

Proposition 1
C(ν, ρ) =

∑
λ�ν,µ�ρ

RλνRµρc
n
λµ. (2)

Proof: Let (π1, π2, α) ∈ C(ν, ρ). If α ∈ Cλ and β = α−1γn ∈ Cµ then by definition of the set partitions
we have that type(π1) = ν � λ and type(π2) = ρ � µ. Thus, if

Cλµ(ν, ρ) = {(π1, π2, α) ∈ C(µ, ρ) | (α, α−1γn) ∈ Cλ × Cµ},

then C(ν, ρ) =
⋃
λ�ν,µ�ρ Cλµ(ν, ρ) where the union is disjoint. Finally, if Cλµ(ν, ρ) = |Cλµ(ν, ρ)| then

it is easy to see that Cλµ(ν, ρ) = RλνRµρc
n
λµ. 2

Using pλ =
∑
ν�λRλνmν we can rewrite Proposition 1 as:∑

λ,µ`n

cnλµpλ(x)pµ(y) =
∑
λ,µ`n

Aut(λ)Aut(µ)C(λ, µ)mλ(x)mµ(y). (3)

Remark 2 Let (π1, π2, α) ∈ C(ν, ρ) with `(ν) + `(ρ) = n+ 1. If α ∈ Cλ and β ∈ Cµ then `(λ) + `(µ) =
n + 1 − 2g(λ, µ) ≤ n + 1. But `(λ) ≥ `(ν) and `(µ) ≥ `(ρ), therefore λ = ν, µ = ρ; and π1 and
π2 are the underlying set partitions in the cycle decompositions of α and β respectively. In this case
C(ν, ρ) = cnν,ρ (g(ν, ρ) = 0).

2.3 Ordered rooted bicolored thorn trees
We define the following sets of trees:

Definition 2 ( Ordered rooted bicolored trees) For λ, µ ` n such that `(λ)+`(µ) = n+1, let BT (λ, µ)
be the set of ordered rooted bicolored trees t with `(λ) white vertices of degree distribution given by λ,
and `(µ) black vertices of degree distribution given by µ. By convention, the root is a white vertex.

If we are only interested in the number of vertices, let BT (p, q) =
⋃
`(λ)=p,`(µ)=q BT (λ, µ). As shown

e.g. in (2), the cardinality of BT (λ, µ) when `(λ) + `(µ) = n+ 1 is:

|BT (λ, µ)| = n

Aut(λ)Aut(µ)
(n− `(λ))! (n− `(µ))!, (4)

and they are in bijection with the ordered factorizations counted by cnλµ when g(λ, µ) = 0. By Remark
2, in this case we also have C(λ, µ) = cnλµ. To get a combinatorial construction for C(λ, µ) when
`(λ) + `(µ) < n+ 1 we introduce the ordered rooted bicolored thorn trees:

Definition 3 ( Ordered rooted bicolored thorn trees) We call a thorn an edge connected to only one
vertex. For λ, µ ` n such that `(λ) + `(µ) ≤ n + 1, we define B̃T (λ, µ) as the set of ordered rooted
bicolored trees with `(λ) white vertices, `(µ) black vertices, n+ 1− `(λ)− `(µ) thorns connected to the
black vertices and n + 1 − `(λ) − `(µ) thorns connected to the white vertices. The white (respectively
black) vertices’ degree distribution (accounting the thorns) is specified by λ (respectively µ). The root is
a white vertex.
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Adapting the Lagrange inversion developed in (2), it can be shown that:

|B̃T (λ, µ)| = n

Aut(λ)Aut(µ)
(n− `(λ))! (n− `(µ))!
(n+ 1− `(λ)− `(µ))! 2 . (5)

Example 2 The tree on Figure 2 belongs to B̃T (λ, µ) for n = 11, λ = [12, 2, 3, 4] and µ = [1, 2, 42]
(`(λ) + `(µ) = 9 < 11).

Remark 3 One can notice the central role of the quantity n+ 1− `(λ)− `(µ)(= 2g(λ, µ) in the case of
α ∈ Cλ and α−1γn ∈ Cµ, i.e. maps).

Fig. 2: An ordered rooted bicolored thorn Tree

2.4 New formulation of the main theorem
By equation (3), Theorem 1 is equivalent to proving the following formula:

C(λ, µ) =
n

Aut(λ)Aut(µ)
(n− `(λ))! (n− `(µ))!
(n+ 1− `(λ)− `(µ))! 2×(n+1−`(λ)−`(µ))! = |B̃T (λ, µ)|×|Sn+1−`(λ)−`(µ)|.

In this paper we show this formula bijectively:

Theorem 2 There is a direct bijection between partitioned bicolored maps C(λ, µ) and pairs (τ, σ) of a
bicolored thorn tree τ ∈ B̃T (λ, µ) and a permutation σ ∈ Sn+1−`(λ)−`(µ).

3 A mapping Ψ for bicolored partitioned maps of specified type
To prove Theorem 2, we first need to define some additional structures.

3.1 Reverse levels traversals of thorn trees and partial permutations
Definition 4 (Reverse white and black levels traversals) For τ in B̃T (λ, µ), we define the reverse white
levels traversal as the traversal going through all white vertices of τ and their descendants, either black
vertices or thorns, in the following order (we assume that level 1 is the root’s level):

(i) The descendants (either black vertices or thorns if any) of the leftmost white vertex of the top white
level are traversed from left to right.

(ii) Then the leftmost white vertex of the top white level is traversed.
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(iii) If i white vertices (1, . . . , i) (1 being the leftmost) of white level j (j > 1) have been traversed and
there is a white vertex i+ 1 at level j on the right of i, the descendants of i+ 1 are traversed, then
vertex i+ 1 is traversed. Otherwise, the descendants of vertex 1 of white level j − 1 are traversed,
followed by the white vertex itself.

(iv) The root vertex is the last to be traversed.

The reverse black levels traversal is defined similarly except that the rightmost black descendant of the
white root vertex is the last vertex to be traversed.

1 2

3

4

5 6 7

8

9 10 11

12

Level 3

Level 2

Level 1

5 6

1

8

3 7

10

11

Level 2

Level 1

42

9

Fig. 3: Reverse white levels traversal (left) and reverse black levels traversal (right)

We also define partial permutations as in (9).

Definition 5 (Partial permutations) Given two setsX and Y and a nonnegative integerm, letPP(X,Y,m)
be the set of bijections from any m-subset of X to any m-subset of Y We call these bijections partial per-
mutations. Then |PP(X,Y,m)| =

(|X|
m

)(|Y |
m

)
m!. Trivially, a partial permutation σ̃ ∈ PP(X,Y,m) is

also specified by a permutation σ ∈ Sm and the complements of the domain and range.

We proceed with the description of the bijective mapping Ψ,

Ψn,λ,µ : C(λ, µ) −→ B̃T (λ, µ)× Sn+1−`(λ)−`(µ), (π1, π2, α) 7−→ (τ, σ).

3.2 The ordered bicolored thorn tree τ
Let (π1, π2, α) ∈ C(λ, µ). We construct an ordered bicolored thorn tree τ ∈ B̃T (λ, µ) following the
procedure below (in what follows, p = `(λ) and q = `(µ)).

(i) First step is to construct the last passage unlabeled bicolor tree t and two “relabeling” permutations
θ1 and θ2 defined in the same way as in (9). We briefly describe this construction:
Let π(1)

1 , . . . , π
(p)
1 and π(1)

2 , . . . , π
(q)
2 be the blocks of the partitions π1 and π2 respectively. Denote

by m(i)
1 the maximal element of the block π(i)

1 (1 ≤ i ≤ p) and by m(j)
2 the maximal element of

π
(j)
2 (1 ≤ j ≤ q). We assign the index p to the block of π1 containing the element 1, and suppose

that the indexing of all other blocks is arbitrary. We first construct the labeled ordered tree T in
the following way: The white root is labeled p. For every j = 1, . . . , q, the black vertex j is a
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descendant of the white vertex i if the element β(m(j)
2 ) belongs to the white block π(i)

1 . Similarly,
for every i = 1, . . . , p − 1, a white vertex i is a descendant of a black vertex j if the element m(i)

1

belongs to the black block π(j)
2 . If black vertices j, k are both descendants of a white vertex i, then

j is to the left of k when β(m(j)
2 ) < β(m(k)

2 ); if white vertices i, l are both descendants of a black
vertex j, then i is to the left of l when β−1(m(i)

1 ) < β−1(m(l)
1 ). It is not hard to show that this

construction gives a tree (9) that we denote by T .

We remove the labels to obtain the unlabeled bicolored ordered tree t. Relabeling permutations θ1
and θ2 are defined by considering the reverse-labelled tree T ′ resulting from the labelling of t, based
on two independent reverse-labelling procedures for white and black vertices. The root is labelled
p, then going bottom up and right to left, we label the white vertices with labels p−1, p−2,... 1. An
equivalent procedure applies to black vertices. Next step consists in relabeling the blocks by using
the new indices from T ′. If a white vertex is labeled i in T and i′ in T ′, we set πi

′

1 = π
(i)
1 . Black

blocks are relabeled in a similar fashion. Let ωi, υj be the strings given by writing the elements
of πi1, πj2 in increasing order. Denote by ω = ω1 . . . ωp, υ = υ1 . . . υq , the concatenations of the
strings defined above. We define θ1 ∈ Sn by setting ω as the first line and [n] as the second line of
the two-line representation of this permutation. Similarly, we define the relabeling permutation θ2.

Example 3 Let n = 8, λ = [24], µ = [2, 32], α = (23)(4)(15)(6)(78), β = (2)(134)(568)(7),
π1 = {π(1)

1 , π
(2)
1 , π

(3)
1 , π

(4)
1 } and π2 = {π(1)

2 , π
(2)
2 , π

(3)
2 } with

π
(1)
1 = {2, 3}, π

(2)
1 = {4, 6}, π

(3)
1 = {7, 8}, π

(4)
1 = {1, 5},

π
(1)
2 = {1, 3, 4}, π(2)

2 = {2, 7}, π
(3)
2 = {5, 6, 8}

We associate shapes to the blocks as in Figure 4 and construct T .

We have that β(m(2)
2 ) = 7 ∈ π

(3)
1 , β(m(1)

2 ) = 1 ∈ π
(4)
1 , β(m(3)

2 ) = 5 ∈ π
(4)
1 , and β(m(1)

2 ) <
β(m(3)

2 ). Thus, the black vertex 2 is a descendant of the white vertex 3, and the descendants, from
left to right, of the white vertex 4 are the black vertices 1 and 3. Also, we have thatm(1)

1 = 3 ∈ π(1)
2 ,

m
(2)
1 = 6 ∈ π(3)

2 , m(3)
1 = 8 ∈ π(3)

2 and β−1(m(2)
1 ) < β−1(m(3)

1 ). Therefore, the white vertex 1
is a descendant of the black vertex 1, and the descendants, from left to right, of the black vertex 3
are the white vertices 2 and 3. Finally, we associate shapes to the blocks as in Figure 4. Then, by
removing the labels we get the tree t. Reverse labeling of t gives T ′ and consequently the relabeling
permutations:

θ1 =
(

2 3
1 2

∣∣∣∣ 4 6
3 4

∣∣∣∣ 7 8
5 6

∣∣∣∣ 1 5
7 8

)
θ2 =

(
2 7
1 2

∣∣∣∣ 1 3 4
3 4 5

∣∣∣∣ 5 6 8
6 7 8

)

(ii) We use the sets

{θ1(mi
1)}1≤i≤p−1 ∪ {θ1(β(mj

2))}1≤j≤q and {θ2(β−1(mi
1))}1≤i≤p−1 ∪ {θ2(mj

2)}1≤j≤q
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Fig. 4: Construction of T, t and T’

in order to double-label tree t. We assign (θ1(mi
1), θ2(β−1(mi

1))) to the white vertex indexed by
i, (i < p) in T ′ and (θ1(β(mj

2)), θ2(mj
2)) to black vertex indexed by j in T ′. The root vertex is

first labeled n = θ1(mp
1) and has no second label. We call T ′′ the resulting double-labeled tree (see

figure 5 for an example).
Let S0 = {m1

1, . . . ,m
p−1
1 }∪ {β(m1

2), . . . , β(mq
2)} and θ1(S0) (resp. θ2(β−1(S0))) be the ordered

subset of [n] obtained by arranging the elements of θ1(S0) (resp. θ2(β−1(S0))) in increasing order.
We have the following lemmas:

Lemma 1 ((9)) The set S0 has p+q−1 elements, i.e. {m1
1, . . . ,m

p−1
1 }∩{β(m1

2, . . . , β(mq
2)} = ∅.

Lemma 2 Let d = (d1, d2, . . . , dp+q−1) (resp. d′ = (d′1, d
′
2, . . . , d

′
p+q−1)) be the ordered set

of first (resp. second) labels obtained by traversing T ′′ up to, but not including, the root vertex
according to the reverse white (resp. black) levels traversal defined in section 3. We have :

d = θ1(S0), and d′ = θ2(β−1(S0)). (6)

Proof: Let θ1(m0
1) = 0. According to our construction, if a black vertex with first label θ1(β(mj

2))
in T ′′ is a descendant of a white vertex with first label θ1(mi

1), (1 ≤ i ≤ p), then β(mj
2) belongs to

πi1 and β(mj
2) ≤ mi

1. As the image by θ1 of any element of the white blocks {πl1}1≤l<i is strictly
less than the image by θ1 of any element of πi1, and θ1 is an increasing function on each block
{πi1}1≤i≤p we have:

θ1(mi−1
1 ) < θ1(β(mj

2)) < θ1(mi
1), where θ1(m0

1) = 0. (7)

Suppose now that black vertices j and k with first labels θ1(β(mj
2)) and θ1(β(mk

2)) in T ′′ are
both descendants of the same white vertex and that j is on the left of k. The construction of t
and T ′′ implies that β(mj

2) < β(mk
2). As θ1 is increasing on the white blocks then θ1(β(mj

2)) <
θ1(β(mk

2)). Finally, reverse white levels traversal of the first labels in T ′′ (up to but not including
the root) yields θ1(S0). Similarly, reverse black levels traversal of the second labels in T ′′ yields
θ2(β−1(S0)). 2
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(iii) We add n+ 1− p− q thorns to the white vertices and also n+ 1− p− q thorns to the black vertices
in T ′′ in the following fashion. Let d and d′ be defined as in Lemma 2. We know from Lemma 1
and 2 that d and d′ are strictly increasing subsequence of [n] obtained by reverse levels traversals of
T ′′. First, we add thorns to the white vertices in the following way:

– If d1 > 1 and the vertex with first label d1 is white, we connect d1 − 1 thorns to it. If the
vertex with first label d1 is black, we connect d1 − 1 thorns on the left of the ascending white
vertex.

– For 1 < l < p+ q − 1, if dl > dl−1 + 1 we follow exactly one of the four following cases:
If dl and dl−1 are both the first label of white vertices in T ′′, white vertex dl (short for vertex
corresponding to dl) has no black descendant and it is the white vertex following dl−1 in the
reverse white levels traversal of T ′′. We connect dl − dl−1 − 1 thorns to vertex dl.
If dl is the first label of a black vertex and dl−1 is the first label of a white one, then black vertex
dl is the leftmost descendant of the white vertex following dl−1. We connect dl − dl−1 − 1
thorns on the left of the ascending white vertex of dl.
If dl is the first label of a white vertex and dl−1 is the first label of a black one, then the black
vertex dl−1 is the rightmost descendant of vertex dl. We connect dl−dl−1−1 thorns to vertex
dl on the right of vertex dl−1

Finally, if dl and dl−1 are both the first label of black vertices, these two vertices have the
same white ascending vertex. We connect dl − dl−1 − 1 thorns to the ascending white vertex
between these two black vertices.

– If dp+q−1 < n, we connect n−dp+q−1−1 thorns to the root vertex on the right of its rightmost
black descendant.

We can think of this as adding a thorn to the white vertices for each integer of [n] not included in
d. A similar construction is applied to add thorns to the black vertices following the sequence of
integers d′. Finally, we remove all the labels to get the ordered bicolored thorn tree τ .
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7 8
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5 8

3 6 7

T’’ τ

8

Fig. 5: Construction of T ′′ and τ . Circled numbers correspond to the first relabeling permutation θ1 and the first
labels in T ′′. Squared numbers correspond to the second relabeling permutation θ2 and the second labels in T ′′.
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Example 4 Following the previous example, the corresponding T ′′ and τ are represented on figure
5. In order to get τ from T ′′, we use d = (2, 4, 5, 6, 7, 8) and d′ = (2, 3, 5, 6, 7, 8). The missing
integers in d are 1 and 3, so we connect one thorn to the white vertex with first label 2 (since d1 > 1)
and one to the white vertex with first label 4 (since d2 > d1 + 1). Similarly, we connect one thorn
to the black vertex with second label 2 (since d′1 > 1) and one to the right of the black vertex with
second label 5 (since d′3 > d′2 + 1).

Lemma 3 τ as defined above belongs to B̃T (λ, µ)

Proof: As there are p + q − 1 distinct elements in d and d′, exactly n − |d| = n + 1 − p − q thorns are
connected to the white vertices. Similarly n+1−p−q thorns are connected to the black vertices. Then if
we take two successive white vertices i− 1 and i according to the reverse white level traversal of T ′′ with
first labels θ1(mi−1

1 ) and θ1(mi
1), (i < p), a thorn is connected to i for each integer of [θ1(mi−1

1 ), θ1(mi
1)]

missing in d. The number of these missing integers is equal to θ1(mi
1) − 1 − θ1(mi−1

1 ) − fi where fi
is the number of black descendants of i. As i is not the root vertex, there is an edge between i and its
ascendant so that the resulting degree v for i is:

∀i ∈ [p− 1], v(i) = θ1(mi
1)− 1− θ1(mi−1

1 )− fi + fi + 1 = θ1(mi
1)− θ1(mi−1

1 ) (8)

Furthermore, n− θ1(mp−1
1 )− fp thorns are connected to the root vertex so that:

v(p) = n− θ1(mp−1
1 ) (9)

But, according to the construction of θ1,

θ1(π1
1) = [θ1(m1

1)] (10)
θ1(πi1) = [θ1(mi

1)] \ [θ1(mi−1
1 )], (2 ≤ i ≤ p− 1) (11)

θ1(πp1) = [n] \ [θ1(mp−1
1 )] (12)

Subsequently for i ∈ [1, p], v(i) = |πi1|, and λ = type(π) is the white vertex degree distribution of τ . In
a similar fashion, µ is the black vertex degree distribution of τ . 2

Lemma 4 Assign a first set of labels 1, 2, . . . , n to the vertices and the thorns connected to white vertices
in τ in increasing order according to the reverse white levels traversal as well as a second set of labels
1, 2, . . . , n to the vertices and the thorns connected to black vertices in increasing order according to the
reverse black levels traversal. The double-labeling of the vertices is the same as in T ′′.

Proof: According to the construction of τ , we add thorns to T ′′ when integers are missing in the reverse
levels traversals of T ′′ so that the thorns would take these missing integers as labels when traversing the
thorn tree. As a result, the labels of the vertices in the reverse levels traversals of τ are still d and d′ and
since they still appear in the same order, we have the desired result. 2
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3.3 The permutation σ
Let S = [n] \ S0, we define the partial permutation σ̃ on set θ1(S) by:

σ̃ = θ2 ◦ β−1 ◦ θ−1
1 |θ1(S). (13)

Then let σ be the permutation in Sn+1−p−q that is order-isomorphic to σ̃. That is, we define the or-
dered set θ1(S) with all the elements of θ1(S) sorted in increasing order and ρ1 the labeling function
which associates to each element of θ1(S) its position index in θ1(S). As a direct consequence, we have
ρ1(θ1(S)) = [n+1−p−q]. Similarly we define ρ2 to label the elements of θ2(β−1(S)). Then σ is given
by:

σ : [n+ 1− p− q] −→ [n+ 1− p− q], u 7−→ ρ2 ◦ σ̃ ◦ ρ−1
1 (u)

Example 5 Going ahead with our previous example, we find:

σ̃ =
(

1 3
1 4

)
and σ =

(
1 2
1 2

)
.

4 Proof that the mapping Ψ is a bijection
Theorem 3 Ψn,λ,µ is actually a bijection

Proof: To show that Ψn,λ,µ is a one-to-one correspondence we take any element (τ, σ) in B̃T (λ, µ) ×
Sn+1−`(λ)−`(µ) and show that there is a unique element (π1, π2, α) in C(λ, µ) such that
Ψn,λ,µ(π1, π2, α) = (τ, σ). Let p = `(λ) and q = `(µ). We proceed with a two step proof:

(i) The first step is to notice that (τ, σ) defines a unique unlabeled bicolored tree t and a unique partial
permutation σ̃ belonging to BT (p, q) × PP(n, n − 1, n + 1 − p − q). Double-labeling of τ with
1, 2, . . . , n in increasing order according to the reverse levels traversals and removing the two sets
of n + 1 − p − q thorns (together with their labels) gives a double-labeled tree T ′′ that leads to τ
according to Ψ. This double-labeled tree is the unique one that can lead to τ since within Ψ, the
constructions of τ and T ′′ have the same underlying tree structure, and according to Lemma 4, τ
determines the labels of T ′′.
Then, using Lemma 2, the two series of labels (except the root’s) in T ′′ are necessarily the missing
elements in the domain (first labels) and the range (second labels) of σ̃ sorted in increasing order
(within the reverse levels traversals). Hence, T ′′ and σ uniquely determine t and σ̃. Obviously, the
process of using the labels in T ′′ as missing elements to reconstruct σ̃ can always be performed.
Within this process we have σ̃ in PP(n, n− 1, n+ 1− p− q) since two series of p+ q − 1 labels
are used and the second label of the last black vertex traversed in the reverse black levels traversal
of τ is n (since there are no other black vertices and no thorns connected to further black vertices
either) and n is always a missing element of the image.

(ii) The bijection Θn,p,q in (9) is identical to the first steps (up to the construction of t and σ̃) of Ψn,λ,µ.
There is therefore a unique triple (π1, π2, α) in C(p, q, n) =

⋃
`(λ)=p,`(µ)=q C(λ, µ) mapped to t

and σ̃ by Θ and equivalently by the first steps of Ψ. But, according to (9), the types of π1 and
π2 can be recovered with the pair (t, σ̃) via the missing elements in the domain and range of σ̃
corresponding to the relabeling by θ1 and θ2 of the maximum elements of the blocks (that we can
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identify by assigning the missing elements in t using the reverse levels traversals). Furthermore,
using Lemma 3, the vertex degree distribution of τ is equal to the type of the partitions encoded by
the missing elements in σ̃ corresponding to the relabeling of the maximum elements of the blocks.
Finally, as the vertex degree distribution in τ is (λ, µ), so is the type of (π1, π2); obtained as part of
the preimage of (t, σ̃) under Θ. Therefore, (π1, π2, α) belongs to C(λ, µ) as desired.

2
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Abstract. We study cluster algebras with principal coefficient systems that are associated to unpunctured surfaces.
We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms
of perfect matchings of a certain graph GT,γ that is constructed from the surface by recursive glueing of elementary
pieces that we call tiles. We also give a second formula for these Laurent polynomial expansions in terms of subgraphs
of the graph GT,γ .

Résumé. Nous etudions des algebres amassees avec coefficients principaux associees aux surfaces. Nous presen-
tons une formule directe pour les developpements de Laurent des variables amassees dans ces algebres en terme de
couplages parfaits d’un certain graphe GT,γ que l’on construit a partir de la surface en recollant des pieces elemen-
taires que l’on appelle carreaux. Nous donnons aussi une seconde formule pour ces developpements en termes de
sous-graphes de GT,γ .

Keywords: cluster algebra, triangulated surface, principal coefficients, F-polynomial, height function, snake graphs

1 Introduction
Cluster algebras, introduced in (FZ1), are commutative algebras equipped with a distinguished set of
generators, the cluster variables. The cluster variables are grouped into sets of constant cardinality n,
the clusters, and the integer n is called the rank of the cluster algebra. Starting with an initial cluster x
(together with a skew symmetrizable integer n × n matrix B = (bij) and a coefficient vector y = (yi)
whose entries are elements of a torsion-free abelian group P) the set of cluster variables is obtained by
repeated application of so called mutations. To be more precise, let F be the field of rational functions
in the indeterminates x1, x2, . . . , xn over the quotient field of the integer group ring ZP. Thus x =
{x1, x2, . . . , xn} is a transcendence basis for F . For every k = 1, 2, . . . , n, the mutation µk(x) of the
cluster x = {x1, x2, . . . , xn} is a new cluster µk(x) = x \ {xk}∪ {x′k} obtained from x by replacing the
cluster variable xk by the new cluster variable

x′k =
1
xk

(
y+
k

∏
bki>0

xbki
i + y−k

∏
bki<0

x−bki
i

)
(1)
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in F , where y+
k , y

−
k are certain monomials in y1, y2, . . . , yn. Mutations also change the attached matrix

B as well as the coefficient vector y, see (FZ1).
The set of all cluster variables is the union of all clusters obtained from an initial cluster x by repeated

mutations. Note that this set may be infinite.
It is clear from the construction that every cluster variable is a rational function in the initial cluster

variables x1, x2, . . . , xn. In (FZ1) it is shown that every cluster variable u is actually a Laurent polynomial
in the xi, that is, u can be written as a reduced fraction

u =
f(x1, x2, . . . , xn)∏n

i=1 x
di
i

, (2)

where f ∈ ZP[x1, x2, . . . , xn] and di ≥ 0. The right hand side of equation (2) is called the cluster
expansion of u in x.

The cluster algebra is determined by the initial matrix B and the choice of the coefficient system. A
canonical choice of coefficients is the principal coefficient system, introduced in (FZ2), which means that
the coefficient group P is the free abelian group on n generators y1, y2, . . . , yn, and the initial coefficient
tuple y = {y1, y2, . . . , yn} consists of these n generators. In (FZ2), the authors show that knowing the
expansion formulas in the case where the cluster algebra has principal coefficients allows one to compute
the expansion formulas for arbitrary coefficient systems.

Inspired by the work of Fock and Goncharov (FG1; FG2; FG3) and Gekhtman, Shapiro and Vainshtein
(GSV1; GSV2) which discovered cluster structures in the context of Teichmüller theory, Fomin, Shapiro
and Thurston (FST; FT) initiated a systematic study of the cluster algebras arising from triangulations
of a surface with boundary and marked points. In this approach, cluster variables in the cluster algebra
correspond to arcs in the surface, and clusters correspond to triangulations. In (S2), building on earlier
results in (S1; ST), this model was used to give a direct expansion formula for cluster variables in cluster
algebras associated to unpunctured surfaces, with arbitrary coefficients, in terms of certain paths on the
triangulation.

Our first main result in this paper is a new parametrization of this formula in terms of perfect matchings
of a certain weighted graph that is constructed from the surface by recursive glueing of elementary pieces
that we call tiles. To be more precise, let xγ be a cluster variable corresponding to an arc γ in the
unpunctured surface and let d be the number of crossings between γ and the triangulation T of the surface.
Then γ runs through d+1 triangles of T and each pair of consecutive triangles forms a quadrilateral which
we call a tile. So we obtain d tiles, each of which is a weighted graph, whose weights are given by the
cluster variables xτ associated to the arcs τ of the triangulation T .

We obtain a weighted graph GT,γ by glueing the d tiles in a specific way and then deleting the diagonal
in each tile. To any perfect matching M of this graph we associate its weight w(M) which is the product
of the weights of its edges, hence a product of cluster variables. We prove the following cluster expansion
formula:

Theorem 1.1.

xγ =
∑
M

w(M) y(M)
xi1xi2 . . . xid

,

where the sum is over all perfect matchings M of GT,γ , w(M) is the weight of M , and y(M) is a
monomial in y.
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We also give a formula for the coefficients y(M) in terms of perfect matchings as follows. The F -
polynomial Fγ , introduced in (FZ2) is obtained from the Laurent polynomial xγ (with principal coeffi-
cients) by substituting 1 for each of the cluster variables x1, x2, . . . , xn. By (S2, Theorem 6.2, Corollary
6.4), the F -polynomial has constant term 1 and a unique term of maximal degree that is divisible by all
the other occurring monomials. The two corresponding matchings are the unique two matchings that have
all their edges on the boundary of the graph GT,γ . We denote by M− the one with y(M−) = 1 and the
other by M+. Now, for an arbitrary perfect matching M , the coefficient y(M) is determined by the set of
edges of the symmetric difference M− 	M = (M− ∪M) \ (M− ∩M) as follows.

Theorem 1.2. The set M− 	M is the set of boundary edges of a (possibly disconnected) subgraph GM
of GT,γ which is a union of tiles GM = ∪j∈JSj . Moreover,

y(M) =
∏
j∈J

yij .

As an immediate corollary, we see that the corresponding g-vector, introduced in (FZ2), is

gγ = deg
(

w(M−)
xi1 · · ·xid

)
.

This follows from the fact that y(M−) = 1.
Our third main result is yet another description of the formula of Theorem 1.1 in terms of the graph

GT,γ only. In order to state this result, we need some notation. If H is a graph, let c(H) be the number of
connected components of H , let E(H) be the set of edges of H , and denote by ∂H the set of boundary
edges of H . Define Hk to be the set of all subgraphs H of GT,γ such that H is a union of k tiles
H = Sj1 ∪ · · · ∪ Sjk and such that the number of edges of M− that are contained in H is equal to
k + c(H). For H ∈ Hk, let

y(H) =
∏

Sij
tile inH

yij .

Theorem 1.3. The cluster expansion of the cluster variable xγ is given by

xγ =
d∑
k=0

∑
H∈Hk

w(∂H 	M−) y(H)
xi1xi2 · · ·xid

.

Theorem 1.1 has interesting intersections with work of other people. In (CCS2), the authors obtained a
formula for the denominators of the cluster expansion in types A,D and E, see also (BMR). In (CC; CK;
CK2) an expansion formula was given in the case where the cluster algebra is acyclic and the cluster lies
in an acyclic seed. Palu generalized this formula to arbitrary clusters in an acyclic cluster algebra (Pa).
These formulas use the cluster category introduced in (BMRRT), and in (CCS) for type A, and do not
give information about the coefficients.

Recently, Fu and Keller generalized this formula further to cluster algebras with principal coefficients
that admit a categorification by a 2-Calabi-Yau category (FK), and, combining results of (A) and (ABCP;
LF), such a categorification exists in the case of cluster algebras associated to unpunctured surfaces.

In (SZ; CZ; Z; MP) cluster expansions for cluster algebras of rank 2 are given, in (Pr1; CP; FZ3)
the case A is considered. In section 4 of (Pr1), Propp describes two constructions of snake graphs, the
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latter of which are unweighted analogues for the case A of the graphs GT,γ that we present in this paper.
Propp assigns a snake graph to each arc in the triangulation of an n-gon and shows that the numbers of
matchings in these graphs satisfy the Conway-Coxeter frieze pattern induced by the Ptolemy relations on
the n-gon. In (M) a cluster expansion for cluster algebras of classical type is given for clusters that lie in
a bipartite seed, and the forthcoming work of (MSW) will concern cluster expansions for cluster algebras
with principal coefficients arising from any surface (with or without punctures), for an arbitrary seed.

Remark 1.4. The formula for y(M) given in Theorem 1.2 also can be formulated in terms of height
functions, as found in literature such as (EKLP) or (Pr2). As described in section 3 of (Pr2), one way to
define the height function on the faces of a bipartite planar graph G, covered by a perfect matching M , is
to superimpose each matching with the fixed matching M0̂ (the unique matching of minimal height). In
the case where G is a snake graph, we take M0̂ to be M−, one of the two matchings of G only involving
edges on the boundary. Color the vertices of G black and white so that no two adjacent vertices have
the same color. In this superposition, we orient edges of M from black to white, and edges of M− from
white to black. We thereby obtain a spanning set of cycles, and removing the cycles of length two exactly
corresponds to taking the symmetric differenceM	M−. We can read the resulting graph as a relief-map,
in which the altitude changes by +1 or −1 as one crosses over a contour line, according to whether the
counter-line is directed clockwise or counter-clockwise. By this procedure, we obtain a height function
hM : F (G) → Z which assigns integers to the faces of graph G. When G is a snake graph, the set of
faces F (G) is simply the set of tiles {Sj} of G. Comparing with the definition of y(M) in Theorem 1.2,
we see that

y(M) =
∏

Sj∈F (G)

y
hM (j)
j .

An alternative defintion of height functions comes from (EKLP) by translating the matching problem into
a domino tiling problem on a region colored as a checkerboard. We imagine an ant starting at an arbitrary
vertex at height 0, walking along the boundary of each domino, and changing its height by +1 or −1 as
it traverses the boundary of a black or white square, respectively. The values of the height function under
these two formulations agree up to scaling by four.

The paper is organized as follows. In section 2, we recall the construction of cluster algebras from
surfaces of (FST). Section 3 contains the construction of the graph GT,γ and the statement of the cluster
expansion formula. Proofs of our results appear in sections 4-6 of (MS). We close with an example in
section 4.

2 Cluster algebras from surfaces
In this section, we recall the construction of (FST) in the case of surfaces without punctures.

Let S be a connected oriented 2-dimensional Riemann surface with boundary and M a non-empty set
of marked points in the closure of S with at least one marked point on each boundary component. The
pair (S,M) is called a bordered surface with marked points. Marked points in the interior of S are called
punctures.

In this paper we will only consider surfaces (S,M) such that all marked points lie on the boundary of
S, and we will refer to (S,M) simply by unpunctured surface.

We say that two curves in S do not cross if they do not intersect each other except that endpoints may
coincide. An arc γ in (S,M) is a curve in S such that
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(a) the endpoints are in M ,

(b) γ does not cross itself,

(c) the relative interior of γ is disjoint from M and from the boundary of S,

(d) γ does not cut out a monogon or a digon.

Curves that connect two marked points and lie entirely on the boundary of S without passing through a
third marked point are called boundary arcs. Hence an arc is a curve between two marked points, which
does not intersect itself nor the boundary except possibly at its endpoints and which is not homotopic to a
point or a boundary arc.

Each arc is considered up to isotopy inside the class of such curves. Moreover, each arc is considered
up to orientation, so if an arc has endpoints a, b ∈M then it can be represented by a curve that runs from
a to b, as well as by a curve that runs from b to a.

For any two arcs γ, γ′ in S, let e(γ, γ′) be the minimal number of crossings of γ and γ′, that is, e(γ, γ′)
is the minimum of the numbers of crossings of arcs α and α′, where α is isotopic to γ and α′ is isotopic
to γ′. Two arcs γ, γ′ are called compatible if e(γ, γ′) = 0. A triangulation is a maximal collection of
compatible arcs together with all boundary arcs. The arcs of a triangulation cut the surface into triangles.
Since (S,M) is an unpunctured surface, the three sides of each triangle are distinct (in contrast to the case
of surfaces with punctures). Any triangulation has n + m elements, n of which are arcs in S, and the
remaining m elements are boundary arcs. Note that the number of boundary arcs is equal to the number
of marked points.

Proposition 2.1. The number n of arcs in any triangulation is given by the formula n = 6g+3b+m−6,
where g is the genus of S, b is the number of boundary components andm = |M | is the number of marked
points. The number n is called the rank of (S,M).

Proof. (FST, 2.10)

Note that b > 0 since the set M is not empty. Following (FST), we associate a cluster algebra to the
unpunctured surface (S,M) as follows. Choose any triangulation T , let τ1, τ2, . . . , τn be the n interior
arcs of T and denote the m boundary arcs of the surface by τn+1, τn+2, . . . , τn+m. For any triangle ∆ in
T define a matrix B∆ = (b∆ij)1≤i≤n,1≤j≤n by

b∆ij =


1 if τi and τj are sides of ∆ with τj following τi in

counter-clockwise order;
−1 if τi and τj are sides of ∆ with τj following τi in

clockwise order;
0 otherwise.

(Note that this sign convention agrees with that of (S2) and differs from that (FST).) Then define the matrix
BT = (bij)1≤i≤n,1≤j≤n by bij =

∑
∆ b∆ij , where the sum is taken over all triangles in T . Note that the

boundary arcs of the triangulation are ignored in the definition of BT . Let B̃T = (bij)1≤i≤2n,1≤j≤n be
the 2n× n matrix whose upper n× n part is BT and whose lower n× n part is the identity matrix. The
matrix BT is skew-symmetric and each of its entries bij is either 0, 1,−1, 2, or −2, since every arc τ can
be in at most two triangles.



680 Gregg Musiker and Ralf Schiffler

Let A(xT ,yT , BT ) be the cluster algebra with principal coefficients in the triangulation T , that is,
A(xT ,yT , BT ) is given by the seed (xT ,yT , BT ) where xT = {xτ1 , xτ2 , . . . , xτn

} is the cluster associ-
ated to the triangulation T , and the initial coefficient vector yT = (y1, y2, . . . , yn) is the vector of genera-
tors of P = Trop(y1, y2, . . . , yn). For the boundary arcs we define xτk

= 1, k = n+ 1, n+ 2, . . . , n+m.
For each k = 1, 2, . . . , n, there is a unique quadrilateral in T \{τk} in which τk is one of the diagonals.

Let τ ′k denote the other diagonal in that quadrilateral. Define the flip µkT to be the triangulation T \
{τk} ∪ {τ ′k}. The mutation µk of the seed ΣT in the cluster algebra A corresponds to the flip µk of the
triangulation T in the following sense. The matrix µk(BT ) is the matrix corresponding to the triangulation
µkT , the cluster µk(xT ) is xT \ {xτk

} ∪ {xτ ′
k
}, and the corresponding exchange relation is given by

xτk
xτ ′

k
= xρ1xρ2y

+ + xσ1xσ2y
−,

where y+, y− are some coefficients, and ρ1, σ1, ρ2, σ2 are the sides of the quadrilateral in which τk and
τ ′k are the diagonals, such that ρ1, ρ2 are opposite sides and σ1, σ2 are opposite sides too.

3 Expansion formula
In this section, we will present an expansion formula for the cluster variables in terms of perfect matchings
of a graph that is constructed recursively using so-called tiles.

3.1 Tiles
For the purpose of this paper, a tile Sk is a planar four vertex graph with five weighted edges having the
shape of two equilateral triangles that share one edge, see Figure 1(a). The weight on each edge of the tile
Sk is a single variable. The unique interior edge is called diagonal and the four exterior edges are called
sides of Sk. We shall use Sk to denote the graph obtained from Sk by removing the diagonal.

Now let T be a triangulation of the unpunctured surface (S,M). If τk ∈ T is an interior arc, then τk lies
in precisely two triangles in T , hence τk is the diagonal of a unique quadrilateral Qτk

in T . We associate
to this quadrilateral a tile Sk by assigning the weight xk to the diagonal and the weights xa, xb, xc, xd
to the sides of Sk in such a way that there is a homeomorphism Sk → Qτk

which sends the edge with
weight xi to the arc labeled τi, i = a, b, c, d, k, see Figure 1(a).

3.2 The graph GT,γ

Let T be a triangulation of an unpunctured surface (S,M) and let γ be an arc in (S,M) which is not in
T . Choose an orientation on γ and let s ∈ M be its starting point, and let t ∈ M be its endpoint. We
denote by

p0 = s, p1, p2, . . . , pd+1 = t

the points of intersection of γ and T in order. Let i1, i2, . . . , id be such that pk lies on the arc τik ∈ T .
Note that ik may be equal to ij even if k 6= j. Let S̃1, S̃2, . . . , S̃d be a sequence of tiles so that S̃k is
isomorphic to the tile Sik , for k = 1, 2, . . . , d.

For k from 0 to d, let γk denote the segment of the path γ from the point pk to the point pk+1. Each γk
lies in exactly one triangle ∆k in T , and if 1 ≤ k ≤ d− 1 then ∆k is formed by the arcs τik , τik+1 , and a
third arc that we denote by τ[γk].

We will define a graph GT,γ by recursive glueing of tiles. Start with GT,γ,1 ∼= S̃1, where we orient
the tile S̃1 so that the diagonal goes from northwest to southeast, and the starting point p0 of γ is in the



Cluster algebras of unpunctured surfaces and snake graphs 681

(a)

xb

xa

xkxd

xc

(b)

x[γk]

xk xk+1

xk xk+1

Fig. 1: (a) The tile Sk; (b) Glueing tiles Sk and Sk+1 along the edge weighted x[γk]

southwest corner of S̃1. For all k = 1, 2, . . . , d − 1 let GT,γ,k+1 be the graph obtained by adjoining the
tile S̃k+1 to the tile S̃k of the graph GT,γ,k along the edge weighted x[γk], see Figure 1(b). We always
orient the tiles so that the diagonals go from northwest to southeast. Note that the edge weighted x[γk] is
either the northern or the eastern edge of the tile S̃k. Finally, we define GT,γ to be GT,γ,d.

Let GT,γ be the graph obtained from GT,γ by removing the diagonal in each tile, that is, GT,γ is
constructed in the same way as GT,γ but using tiles Sik instead of Sik .

A perfect matching of a graph is a subset of the edges so that each vertex is covered exactly once. We
define the weight w(M) of a perfect matching M to be the product of the weights of all edges in M .

3.3 Cluster expansion formula
Let (S,M) be an unpunctured surface with triangulation T , and let A = A(xT ,yT , B) be the cluster al-
gebra with principal coefficients in the initial seed (xT ,yT , B) defined in section 2. Each cluster variable
in A corresponds to an arc in (S,M). Let xγ be an arbitrary cluster variable corresponding to an arc γ.
Choose an orientation of γ, and let τi1 , τi2 . . . , τid be the arcs of the triangulation that are crossed by γ in
this order, with multiplicities possible. Let GT,γ be the graph constructed in section 3.2.

Theorem 1.1.
xγ =

∑
M

w(M) y(M)
xi1xi2 . . . xid

,

where the sum is over all perfect matchings M of GT,γ , w(M) is the weight of M , and y(M) is the
monomial given in Theorem 1.2.

4 Example
We illustrate Theorem 1.1, Theorem 1.2 and Theorem 1.3 in an example. Let (S,M) be the annulus with
two marked points on each of the two boundary components, and let T = {τ1, . . . , τ8} be the triangulation
shown in Figure 2.

The corresponding cluster algebra has the following principal exchange matrix and quiver.
0 1 0 -1
-1 0 -1 0
0 1 0 -1
1 0 1 0





682 Gregg Musiker and Ralf Schiffler

τ3

γ2

γ0γ1

γ3

τ1

τ6τ2τ8 τ7τ4

γ5 γ4

γ6

τ5

s

t

Fig. 2: Triangulated surface with dotted arc γ

Let γ be the dotted arc in Figure 2. It has d = 6 crossings with the triangulation. The sequence of
crossed arcs τi1 , . . . , τi6 is τ1, τ2, τ3, τ4, τ1, τ2, and the corresponding segments γ0, . . . , γ6 of the arc γ
are labeled in the figure. Moreover, τ[γ1] = τ6, τ[γ2] = τ8, τ[γ3] = τ7, τ[γ4] = τ5 and τ[γ5] = τ6.

The graph GT,γ is obtained by glueing the corresponding six tiles S̃1, S̃2, S̃3, S̃4, S̃1, and S̃2. The
result is shown in Figure 3.

Theorems 1.1 and 1.2 imply that xγ(xi1xi2 · · ·xid) is equal to

x5x2x2x3x1x2x8 + x4x6x2x3x1x2x8 y1

+ x5x2x2x7x5x2x8 y4 + x4x6x2x7x5x2x8 y1y4

+ x5x2x8x4x5x2x8 y3y4 + x5x2x2x7x4x6x8 y4y1

+ x4x6x8x4x5x2x8 y1y3y4 + x4x6x2x7x4x6x8 y1y4y1

+ x5x2x8x4x4x6x8 y3y4y1 + x5x2x2x7x4x1x3 y4y1y2

+ x4x1x3x4x5x2x8 y1y2y3y4 + x4x6x8x4x4x6x8 y1y3y4y1

+ x4x6x2x7x4x1x3 y1y4y1y2 + x5x2x8x4x4x1x3 y3y4y1y2

+ x4x1x3x4x4x6x8 y1y2y3y4y1 + x4x6x8x4x4x1x3 y1y3y4y1y2

+ x4x1x3x4x4x1x3 y1y2y3y4y1y2
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GT,γ

x4

x1 x2

x5 x2

x2

t

s

x1

x6

x1 x3

x3x8 x4

x2 x3 x5 x1

x4 x1 x6

x2

x3

x8

x7 x4

GT,γ

x4

x1

x5 x2

t

s

x6

x1 x3

x3x8 x4

x2 x5

x4 x1 x6

x2

x3

x8

x7

Fig. 3: Construction of the graphs GT,γ and GT,γ

which is equal to
x1x

3
2x3 + x1x

2
2x3x4 y1

+ x3
2 y4 + x2

2x4 y1y4

+ x2
2x4 y3y4 + x2

2x4 y1y4

+ x2x
2
4 y1y3y4 + x2x

2
4 y

2
1y4

+ x2x
2
4 y3y4y1 + x1x

2
2x3x4 y1y2y4

+ x1x2x3x
2
4 y1y2y3y4 + x3

4 y
2
1y3y4

+ x1x2x3x
2
4 y

2
1y2y4 + x1x2x3x

2
4 y3y4y1y2

+ x1x3x
3
4 y

2
1y2y3y4 + x1x3x

3
4 y

2
1y2y3y4

+ x2
1x

2
3x

2
4 y

2
1y

2
2y3y4.
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The first term corresponds to the matchingM− consisting of the boundary edges weighted x5 and x2 in the
first tile, x2 in the third tile, x1 and x3 in the forth, x2 in the fifth and x8 in the sixth tile. The twelfth term
corresponds to the matching M consisting of the horizontal edges of the first three tiles and the horizontal
edges of the last two tiles. Thus M− 	M = (M− ∪M) \ (M− ∩M) is the union of a cycle around the
first tile and a cycle around the third, forth and fifth tiles, hence y(M) = yi1yi3yi4yi5 = y1y3y4y1.

To illustrate Theorem 1.3, let k = 2. Then Hk consists of the subgraphs H of GT,γ which are unions
of two tiles and such that E(H)∩M− has three elements if H is connected, respectively four elements if
H has two connected components. ThusH2 has three elements

H2 = {Si3 ∪ Si4 , Si4 ∪ Si5 , Si1 ∪ Si4}

corresponding to the three terms

x2
2x4y3y4, x

2
2x4y1y4 and x2

2x4y1y4.
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q-Hook formula of Gansner type for a
generalized Young diagram

Kento Nakada
Wakkanai Hokusei Gakuen University, Faculty of Integrated Media. nakada@wakhok.ac.jp

Abstract. The purpose of this paper is to present the q-hook formula of Gansner type for a generalized Young diagram
in the sense of D. Peterson and R. A. Proctor. This gives a far-reaching generalization of a hook length formula due to
J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore, we give a generalization of P. MacMahon’s identity
as an application of the q-hook formula.

Résumé. Le but de ce papier est présenter la q-hook formule de type Gansner pour un Young diagramme généralisé
dans le sens de D. Peterson et R. A. Proctor. Cela donne une généralisation de grande envergure d’une hook length
formule dû à J. S. Frame, G. de B. Robinson, et R. M. Thrall. Furthurmore, nous donnons une généralisation de
l’identité de P. MacMahon comme une application de la q-hook formule.

Keywords: Generalized Young diagrams, Trace generating functions, q-hook formula, Kac-Moody Lie algebra,
P. MacMahon’s identity

1 Introduction
In [3], E. R. Gansner proved a multivariable q-hook formula for a Young diagram Y :∑

σ:reverse plane partition over Y

qσ =
∏
v∈Y

1
1− qH(v)

, (1.1)

where H (v) denotes the hook of a cell v ∈ Y (see section 2 and 3 for a precise definition). The identity
(1.1) is a multi-q-refinement of the famous hook length formula [2]

#STab(Y ) =
(#Y )!∏

v∈Y #H (v)
, (1.2)

due to J. S. Frame, G. de B. Robinson, and R. M. Thrall.
The purpose of this paper is to present a generalization of (1.1) for a generalized Young diagram in the

sense of D. Peterson and R. A. Proctor. Our (multivariable) q-hook formula is:∑
σ: (D(λ)∨;≤)-partition

qσ =
∏

β∨∈D(λ)∨

1
1− qHλ(β∨)

, (1.3)

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
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where λ is a finite pre-dominant integral weight for a Kac-Moody Lie algebra and D(λ)∨ is a certain set of
real coroots (see section 6 for more details). We note that the identity 1.3 is equivalent with unpublished
result by D. Peterson and R. A. Proctor [11].

Similarly, the identity (1.3) implies a hook length formula:

L (D(λ)∨) =
∏

β∨∈D(λ)∨

(#D(λ)∨)!∏
β∨∈D(λ)∨ #Hλ (β∨)

, (1.4)

whereL (D(λ)∨) denotes the set of linear extensions (or reverse standard tableaux) of the poset (D(λ)∨;≤ ).
We note that the identity (1.4) is also equivalent with an unpublished result (see [1]) by D. Peterson,
namely that:

#Red(w) =
`(w)!∏

β∈Φ(w) ht (β)
,

a hook formula for the number of reduced decompositions of a minuscule elements w of the Kac-Moody
Weyl group, where Red(w) denotes the set of reduced decompositions of w, `(w) denotes the length of
w, Φ (w) denotes the inversion set of w:

Φ (w) =
{
β ∈ Φ+ w−1(β) < 0

}
,

and ht (β) denotes the height of β.

2 (P ;≤)-Partitions and (c; I)-Trace generating functions
Let P = (P ;≤) be a finite partially ordered set.

Definition 2.1 A map σ : P −→ N = {0, 1, 2, · · · } is said to be a (P ;≤)-partition if:

For each u, v ∈ P such that u ≤ v, we have σ(u) ≥ σ(v).

The set of (P ;≤)-partitions is denoted by A (P ;≤).

Let I be a finite color-set (just a set). Let c : P −→ I be a coloring (just a map). Let qi be an
indeterminate indexed by a color i ∈ I . For each σ ∈ A (P ;≤), we define a monomial qσ by:

qσ :=
∏
v∈P

q
σ(v)
c(v) .

We define a formal power series T (P ;≤) by:

T (P ;≤) :=
∑

σ∈A(P ;≤)

qσ.

We call T (P ;≤) the (c; I)-trace generating function of (P ;≤).

Definition 2.2 Put d := #P . A bijection L : {1, · · · , d} −→ P is said to be a linear extension (or
reverse standard tableau) of (P ;≤) if:

L(k) ≤ L(l) implies k ≤ l, k, l ∈ {1, · · · , d}.

The set of linear extensions of (P ;≤) is denoted by L (P ;≤).



q-Hook formula of Gansner type for a generalized Young diagram 689

Let q be another indeterminate. When we take the specialization qi 7−→ q (i ∈ I), we denote T (P ;≤)
by U(P ;≤).

Proposition 2.3 (R. P. Stanley [12]) We have:

U(P ;≤) =
W (P ; q)∏d
k=1(1− qk)

,

for some W (P ; q) ∈ Z[q]. Furthermore, we have W (P ; 1) = #L (P ;≤).

Remark 2.4 In section 7, we consider a certain infinite partially ordered set with a certain infinte color-
set I . In such a situation, we define a notion of (P ;≤)-partitions as follows:

We define a lattice Q by:

Q =
⊕
i∈I

Zαi,

where
{
αi i ∈ I

}
is a formal basis. A map σ : P −→ N is said to be a (P ;≤)-partition if:

1. For each u, v ∈ P such that u ≤ v, we have σ(u) ≥ σ(v).

2. There exists at most finitely many v ∈ P such that σ(v) ≥ 1.

The set of (P ;≤)-partitions is denoted by A (P ;≤). A (possibly infinite) partially ordered set (P ;≤) is
said to be a (c; I)-compatible poset if:

For each φ ∈ Q, there exists at most finitely many σ ∈ A (P ;≤) such that
∑
v∈P σ(v)αc(v) = φ.

3 Case of Young diagrams
When we draw a Young diagram, we use nodes instead of cells like FIGURE 3.1 (left) below:h h h h h h hh h h h h hh h h h h hh h h hh h h hh h

h h h h h h hh h h h h hh h h h h hh h h hh h h hh h

h0 h1 h2 h3 h4 h5 h6h-1 h0 h1 h2 h3 h4h-2 h-1 h0 h1 h2 h3h-3 h-2 h-1 h0h-4 h-3 h-2 h-1h-5 h-4

Fig. 3.1: a Young diagram and its coloring

Definition 3.1 We equip the set Y := N× N with the partial order:

(i, j) ≤ (i′, j′)⇐⇒ i ≥ i′ and j ≥ j′.

A finite order filter Y of Y is called a Young diagram.
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Definition 3.2 Put I := Z as a color-set. For each node v = (i, j) ∈ Y , we attach the color c(v) by:

c(v) := j − i ∈ I.

see FIGURE 3.1 (right). The color c(v) is known as the content of v.

In the case of above example, we can take

I = {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6},

as finite color-set.

Definition 3.3 Let Y be a Young diagram. Let v = (i, j) ∈ Y . We define the subset H (v) of Y by:

Arm(v) :=
{

(i′, j′) ∈ Y i = i′ and j < j′
}
.

Leg(v) :=
{

(i′, j′) ∈ Y i < i′ and j = j′
}
.

H (v) := {v} tArm(v) t Leg(v).

The set H (v) is called the hook of v ∈ Y (see FIGURE 3.2).h h h h h h hh h h h h hh h h h h hh h h hh h h hh h
hu

h h h h h h hh h h h h hh h h h h hh h h hh h h hh h

hv

Fig. 3.2: Hooks of u and v

Then we have the following theorem:

Theorem 3.4 (E. R. Gansner [3]) Let Y = (Y ;≤) be a Young diagram. Then we have:

T (Y ;≤) =
∏
v∈Y

1
1− qH(v)

,

where qH(v) =
∏
u∈H(v) qc(u).

Remark 3.5 A (Y ;≤)-partition is called a reverse plane partition over Y .

4 Case of shifted Young diagrams
Definition 4.1 We equip the S :=

{
(i, j) ∈ N× N i ≤ j

}
with the partial order:

(i, j) ≤ (i′, j′)⇐⇒ i ≥ i′ and j ≥ j′.

A finite order filter S of S is called a shifted Young diagram.
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4.1 Case of Shifted Young Diagrams with standard hooks
Definition 4.2 Put I := {∞} ∪ N as the color-set. For each node v = (i, j) ∈ S, we define the color
c(v) by:

c(v) =

 0 if i = j and i is even,
∞ if i = j and i is odd,
j − i if i < j.

see FIGURE 4.1.

h0 h1 h2 h3 h4 h5 h6 h7h∞ h1 h2 h3 h4 h5 h6h0 h1 h2 h3h∞ h1 h2h0
Fig. 4.1: Colors of the nodes of a shifted Young diagram

In the case of the above example, we can take I = {∞, 0, 1, 2, 3, 4, 5, 6, 7} as finite color-set.

Definition 4.3 Let S be a shifted Young diagram. Let v = (i, j) ∈ S. We define the subset HD (v) of S
by:

ArmD(v) :=
{

(i′, j′) ∈ S i = i′ and j < j′
}
.

LegD(v) :=
{

(i′, j′) ∈ S i < i′ and j = j′
}
.

TailD(v) :=
{

(i′, j′) ∈ S j + 1 = i′ and j < j′
}
.

HD (v) := {v} tArmD(v) t LegD(v) t TailD(v).

The set HD (v) is called the hook (of type D) of v ∈ S (see FIGURE 4.2).h h h h h h h hh h h h h h hh h h hh h hh
hu h h h h h h h hh h h h h h hh h h hh h hh

hv h h h h h h h hh h h h h h hh h h hh h hh

hw

Fig. 4.2: Hooks of u, v , and w.

Then we have the following theorem:

Theorem 4.4 Let S = (S;≤) be a shifted Young diagram with the coloring defined above. Then we have:

T (S;≤) =
∏
v∈S

1
1− qHD(v)

.

Identifying q∞ with q0 in Theorem 4.4, we get the following theorem obtained by Gansner:
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Theorem 4.5 (E. R. Gansner [3]) Let S = (S;≤) be a shifted Young diagram. Then we have:

T (S;≤)|q∞=q0
=
∏
v∈S

1
1− qHD(v)

∣∣∣∣
q∞=q0

.

Remark 4.6 The proof of Theorem 4.5 by Gansner is by Hillman-Grassl algorithm [4] based on hooks
of type D.

4.2 Case of Shifted Young Diagrams with non-standard hooks
Definition 4.7 Put I := N as the color-set. For each node v = (i, j) ∈ S, we define the color c(v) by:

c(v) = j − i,

see FIGURE 4.3. h0 h1 h2 h3 h4 h5 h6 h7h0 h1 h2 h3 h4 h5 h6h0 h1 h2 h3h0 h1 h2h0
Fig. 4.3: Colors of the nodes of a shifted Young diagram

In the case of the above example, we can take I = {0, 1, 2, 3, 4, 5, 6, 7} as a finite color-set.

Definition 4.8 Let S be a shifted Young diagram. Let v = (i, j) ∈ S. We define a subset HB (v) of S by:

ArmB(v) :=
{

(i′, j′) ∈ S i = i′ and j < j′
}
.

LegB(v) :=
{

(i′, j′) ∈ S i < i′ and j = j′
}
.

TailB(v) :=
{
{(i, i)} t

{
(i′, j′) ∈ S j = i′ and j < j′

}
if i < j and (j, j) ∈ S,

∅ otherwise.

HB (v) := {v} tArmB(v) t LegB(v) t TailB(v).

The set HB (v) is called a hook (of type B) of v ∈ S (see FIGURE 4.4).i i i i i i i ii i i i i i ii i i ii i ii
iu′ i i i i i i i ii i i i i i ii i i ii i ii

iv′ i i i i i i i ii i i i i i ii i i ii i ii

iw′

Fig. 4.4: Hooks of u′, v′, and w′.

Remark 4.9 The nodes u′, v′, w′ in FIGURE 4.4 corresponds to u, v, w in FIGURE 4.2 in the sense of
Remark 4.11.
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Then we have the following theorem:

Theorem 4.10 Let S = (S;≤) be a shifted Young diagram with the coloring defined above. Then we
have:

T (S;≤) =
∏
v∈S

1
1− qHB(v)

.

Remark 4.11 Let S = (S;≤) be a shifted Young diagram. Then, there exists a bijection S 3 v 7→ v′ ∈ S
such that qHB(v′) = qHD(v)

∣∣
q∞=q0

(v ∈ S). Hence, Theorem 4.10 is same as Theorem 4.5 except for
“shapes” of hooks.

5 Case of the bat
Definition 5.1 Let Bat = (Bat;≤) be the poset depicted in FIGURE 5.1(left) below. The poset Bat is
called the bat.

Definition 5.2 Put I := {1, 2, 3, 4, 5, 6, 7} as the color-set. The color of each vertex is written in the
vertex in FIGURE 5.1(right) below.

h h h h h hh h hh h hh h h h hh h h h hh hhhh

h1 h2 h3 h4 h5 h6h7 h4 h5h3 h4 h7h2 h3 h4 h5 h6h1 h2 h3 h4 h5h7 h4h3h2h1
Fig. 5.1: The Bat, and the colors of the nodes of the Bat

Definition 5.3 The hook HBat (v) of v ∈ Bat is defined as in FIGURE 5.2 below.

Then we have the following theorem:

Theorem 5.4 The bat Bat = (Bat;≤) with the colors defined above satisfies:

T (Bat;≤) =
∏
v∈Bat

1
1− qHBat(v)

.

6 q-Hook formula of Gansner type for a generalized Young dia-
gram

In this section, we fix a Kac-Moody Lie algebra g with a simple root system Π =
{
αi ∈ I

}
. For all

undefined terminology in this section, we refer the reader to [5] [7].



694 Kento Nakadascbbba cbbba cbbba cbbba cbbbacbbba cbbba cbbbacbbba cbbba cbbbacbbba cbbba cbbba cbbba cbbbacccccccccc
cscbbba cbbba cbbba cbbbacbbba cbbba cbbbacbbba cbbba cbbbaccccccbbba cbbba cbbba cbbba cbbbaccccc

ccscbbba cbbba cbbbacbbba cbbba cbbbaccccbbba cbbba cbbba cccbbba cbbba cbbba cccbbba cbbbaccc
cccscbbba cbbbacbbba cccbbba cbbba ccbbba cbbba ccbbba ccbbba cbbba ccbbba ccbbba ccbbbacc

ccccscbbbaccbbba ccbbba ccbbbacbbba ccbbba cbbba ccbbba ccbbba cbbba ccbbba cccbbbac
cccccscccbbbaccbbba cbbbaccbbba cbbba cbbba cccbbba cbbba cbbba ccbbba ccccbbbaccccccscbbba cbbbacbbba cbbba ccbbba cbbba cccbbbacbbba cbbba cccbbbaccbbbacbbbacc

cccccccscbbbacbbba ccbbbacbbba ccbbba ccbbbacbbba ccbbba ccbbbaccbbbaccbbbac
ccccccccsccbbba cbbbaccbbba cbbba ccbbbaccbbba cbbba ccbbbaccbbbacccbbbacccccccccscbbba cbbbacbbba cccbbba cbbbacbbba cccbbba cbbbacccbbbacbbbac
ccccccccccscbbbaccbbba ccbbba cbbbaccbbba ccbbba cbbbacccbbbaccbbba

cccccccccccscccbbba cbbba cbbbacccbbba cbbba cbbbaccccbbbacbbbaccccccccccccscbbba cbbba cbbba cbbbacbbba cccccbbba cbbbacbbbacbbbac
cccccccccccccscbbba cbbba cbbbaccbbba ccccbbba cbbbacbbbaccbbba

ccccccccccccccscbbba cbbbacccbbba cccbbba cbbbaccbbbacbbba
cccccccccccccccscbbbaccccbbba ccbbba ccbbbacbbbacbbba

ccccccccccccccccscccccbbbaccbbbacbbbacbbbacbbbacccccccccccccccccscbbba cbbba cbbba cbbbacbbba cbbbacbbbacbbbac
ccccccccccccccccccscbbba cbbba cbbbacbbba cbbbacbbbaccbbba

cccccccccccccccccccscbbba cbbbacbbba cbbbaccbbbacbbba
ccccccccccccccccccccscbbbacbbba ccbbbacbbbacbbba

cccccccccccccccccccccsccbbbacbbbacbbbacbbbaccccccccccccccccccccccscbbbacbbbacbbbacbbba
cccccccccccccccccccccccscbbbacbbbacbbbaccccccccccccccccccccccccscbbbacbbbacccccccccccccccccccccccccscbbbaccccccccccccccccccccccccccs

— How to read this figure —

there are 27 bats in this figure.

each bat contains three kinds of vertices; s, cbbaa , and c.
each bat contains a unique vertex marked by s.
when the reader wants to know the hook HBat (v) of v ∈ Bat,

look for a bat in which v is marked by s out of 27 bats,

then the reader can find the hook HBat (v) of v ∈ Bat

as the set of vertices marked by s or cbbaa in the bat.

Fig. 5.2: Hooks of the Bat and their explanation

Definition 6.1 An integral weight λ is said to be pre-dominant if:

〈λ, β∨〉 ≥ −1 for each β∨ ∈ Φ∨+,

where Φ∨+ denotes the set of positive real coroots. The set of pre-dominant integral weights is denoted by
P≥−1. For λ ∈ P≥−1, we define the set D(λ)∨ by:

D(λ)∨ :=
{
β∨ ∈ Φ∨+ 〈λ, β∨〉 = −1

}
.

The set D(λ)∨ is called the shape of λ. If #D(λ)∨ < ∞, then λ is called finite. We regard the set D(λ)∨

as a poset with coroot order ≤.

6.1 Colors
We regard the index set I of simple roots as a color-set.

Definition 6.2 Let λ ∈ P≥−1 be finite. Put d := #D(λ)∨. A sequence (αi1 , · · · , αid) of simple roots is
said to be a maximal λ-path if:

〈sik−1 · · · si1(λ), α∨ik〉 = −1, k = 1, · · · , d.
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The set of maximal λ-paths is denoted by MPath(λ).

Proposition 6.3 (see [8]) Let λ ∈ P≥−1 be finite. Then

1. We have MPath(λ) 6= ∅.

2. Let β∨ ∈ D(λ)∨. Let (αi1 , · · · , αid) ∈ MPath(λ). Then there exists a unique k ∈ {1, · · · , d} such
that

si1 · · · sik−1(α∨ik) = β∨.

3. In Part (2), the index ik ∈ I only depends on β∨. (Namely, ik ∈ I is independent from the choice
of maxmal λ-path.)

Definition 6.4 Let λ ∈ P≥−1 and β∨ ∈ D(λ)∨. Then we have a unique index i ∈ I corresponding to β∨

in the sense of Proposition 6.3. We denote such i ∈ I by cλ(β∨). We call cλ(β∨) the color of β∨.

6.2 Hooks
Definition 6.5 Let λ ∈ P≥−1 and β∨ ∈ D(λ)∨. We define the set Hλ (β)∨ by:

Hλ (β∨) := D(λ)∨ ∩ Φ (sβ)∨ .

where Φ (sβ)∨ denotes the inversion set of the reflection corresponding to β:

Φ (sβ)∨ =
{
γ∨ ∈ Φ∨+ sβ(γ∨) < 0

}
.

Proposition 6.6 (see [8]) Let λ ∈ P≥−1 be finite and β∨ ∈ D(λ)∨. Then we have:

1.
∑
γ∨∈Hλ(β∨) αcλ(γ∨) = β.

2. #Hλ (β∨) = ht (β).

6.3 Main Theorem and Corollaries
Theorem 6.7 (see [8]) Let λ ∈ P≥−1 be finite. Then we have:

T (D(λ)∨;≤) =
∏

β∨D(λ)∨

1
1− qHλ(β∨)

=
∏

β∨D(λ)∨

1
1− qβ

.

Taking the specialization qi 7−→ q, we get:

Corollary 6.8 Let λ ∈ P≥−1 be finite. Then we have:

U(D(λ)∨;≤) =
∏

β∨D(λ)∨

1
1− q#Hλ(β∨)

=
∏

β∨∈D(λ)∨

1
1− qht(β)

.

Remark 6.9 A statement equivalent with Corollary 6.8 is also given in [11].

Hence, by Proposition 2.3, we get:

Corollary 6.10 Let λ ∈ P≥−1 be finite. Put d := #D(λ)∨. Then we have:
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1. W (P ; q) =
∏d
k=1(1− qk)∏

β∨∈D(λ)∨(1− q#Hλ(β∨))
=

∏d
k=1(1− qk)∏

β∨∈D(λ)∨(1− qht(β))
.

2. #L (D(λ)∨;≤) =
d!∏

β∨∈D(λ)∨ #Hλ (β∨)
=

d!∏
β∨∈D(λ)∨ ht (β)

.

Remark 6.11 All shapes explaind in section 3,4, and 5 are realized as shapes of some λ ∈ P≥−1 over
some root systems of finite types. Furthermore, colors and hooks defined in section 3,4, and 5 are com-
patible with those defined in this section.

* A Young diagram is realized over a root system of type A.

* A shifted Young diagram with hooks of type D is realized over a root system of type D.

* A shifted Young diagram with hooks of type B is realized over a root system of type B.

* The bat (or an order filter of the bat) is realized over a root system of type E7.

There are 17 classes of generalized Young diagrams (15 of 17 are simply-laced). We note that many of
them are realized over root systems of indefinite types (see [10] [13]).

Remark 6.12 Corollary 6.10 (2) gives a proof of Peterson’s hook formula. Another proof of Peterson’s
hook formula is given in [9].

7 An application to infinite rank case
Although Theorem 6.7 holds for a finite pre-dominant integral weight, there exist several cases where
Theorem 6.7 holds for an infinite pre-dominant integral weight.

Let A∞ denote the Dynkin diagram depicted below:

· · · k−2 k−1 k0 k1 k2 · · ·

Here, an integer in a vertex is the index of the vertex. Let ωi denote the fundamental weight corresponding
to an index i ∈ Z. Let λ =

∑
i∈Z ciωi be an integral weight satisfying the following properties:

1. For each i ∈ Z, we have ci ∈ {1, 0,−1}.

2. Let i, j ∈ Z satisfy i < j and ci = cj = ±1. Then we have cn = ∓1 for some i < n < j.

3. There exists at least one and at most finitely many i ∈ Z such that ci 6= 0.

4. Let i ∈ Z be the minimum (or maximum) integer such that ci 6= 0. Then we have ci = −1.

5. (normalization) We have
∑
i∈Z ci · i = 0.

Then λ is an infinite pre-dominant integral weight. The poset (D(λ)∨;≤) is (cλ; Z)-compatible. Fur-
thermore, the statement of Theorem 6.7 holds for this λ:

T (D(λ)∨;≤) =
∏

β∨∈D(λ)∨

1
1− qHλ(β∨)

=
∏

β∨∈D(λ)∨

1
1− qβ

. (7.1)
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Taking the specialization qi 7−→ q (i ∈ Z) in (7.1), we get:

U(D(λ)∨;≤) =
∏

β∨∈D(λ)∨

1
1− q#Hλ(β∨)

=
∏

β∨∈D(λ)∨

1
1− qht(β)

. (7.2)

In particular, we let λ = −ω0, which obviously satisfies the above properties. Then we have:

D(−ω0)∨ =
{∑j

n=i α
∨
n i ≤ 0 ≤ j

}
.

We can identify (D(−ω0)∨;≤) with a poset (Y;≥), and (D(−ω0)∨;≤)-partitions with plane partitions.
Hence, the identity (7.1) can be rewritten as:

T (Y;≥) = T (D(−ω0)∨;≤) =
∏
i≤0≤j

1

1− q
P
i≤n≤j αi

. (7.3)

Similarly, the identity (7.2) can be rewritten as:

U(Y;≥) = U(D(−ω0)∨;≤) =
∏
i≤0≤j

1
1− qj−i+1

=
∏
n≥1

(
1

1− qn

)n
. (7.4)

The identity (7.4) is known as MacMahon’s identity (see [6]) for the generating function of plane parti-
tions.
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Fig. 7.1: The coloring of (Y;≥) and an example of plane partition

Remark 7.1 We get similar results for infinite Dynkin diagrams D∞ and B∞ below.k∞k0 k1 k2 k3 k4 · · ·
k0 < k1 k2 k3 k4 · · ·

These give the identities for the generating function of shifted plane partitions. For example, a “shifted
version” of the identity (7.4) can be written as:

U(S;≥) =
∏
n≥1

(
1

1− qn

)dn/2e
=
∏
n≥1

(
1

1− q2n−1

1
1− q2n

)n
.
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Fig. 7.2: The coloring of type D and of type B of (S;≥), and an example of shifted plane partition
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Another bijection between 2-triangulations
and pairs of non-crossing Dyck paths

Carlos M. Nicolás
Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27402

Abstract. A k-triangulation of the n-gon is a maximal set of diagonals of the n-gon containing no subset of k + 1
mutually crossing diagonals. The number of k-triangulations of the n-gon, determined by Jakob Jonsson, is equal to
a k×k Hankel determinant of Catalan numbers. This determinant is also equal to the number of k non-crossing Dyck
paths of semi-length n− 2k. This brings up the problem of finding a combinatorial bijection between these two sets.
In FPSAC 2007, Elizalde presented such a bijection for the case k = 2. We construct another bijection for this case
that is stronger and simpler that Elizalde’s. The bijection preserves two sets of parameters, degrees and generalized
returns. As a corollary, we generalize Jonsson’s formula for k = 2 by counting the number of 2-triangulations of the
n-gon with a given degree at a fixed vertex.

Résumé. Une k-triangulation du n-gon est un ensemble maximal de diagonales du n-gon ne contenant pas de sous-
ensemble de k + 1 diagonales mutuellement croisant. Le nombre de k-triangulations du n-gon, déterminé par Jakob
Jonsson, est égal à un déterminant de Hankel k × k de nombres de Catalan. Ce déterminant est aussi égal au nombre
de k chemins de Dyck de largo n− 2k que ne pas se croiser. Cela porte le problème de trouver une bijection de type
combinatoire entre ces deux ensembles. À la FPSAC 2007, Elizalde a présenté une telle bijection pour le cas k = 2.
Nous construisons une autre bijection pour ce cas qui est plus forte et plus simple que de l’Elizalde. La bijection
conserve deux ensembles de paramètres, les degré et les retours généralisée. De ce, nous généralisons la formule de
Jonsson pour k = 2 en comptant le nombre de 2-triangulations du n-gon avec un degré à un vertex fixe.

Keywords: k-triangulations, non-crossing Dyck paths, combinatorial bijection.

1 Introduction
The set of triangulations of n points in convex position on the plane has been studied for a long time
because of its interesting combinatorial properties. In recent years, more general structures known as k-
triangulations have been shown to satisfy many of the interesting properties of the classical triangulations.

A k-triangulation of the n-gon is a maximal set of diagonals of the n-gon containing no subset of k+ 1
mutually crossing diagonals. Note that the case k = 1 corresponds to the standard triangulations of the
n-gon.

This concept was introduced in 1992 by Capoyleas and Pach [3], who gave a tight bound for the
number of diagonals in a k-triangulation. Later, Nakamigawa [13] and independently Dress, Kooolen
and Moulton [5], showed that every k-triangulation attains that bound. Nakamigawa also showed that
k-triangulations satisfy a flip property similar to the one of ordinary triangulations. This result has been

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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recently strengthened and clarified with the discovery of the analogue of triangles for k-triangulations by
Pilaud and Santos [16] and independently in [14].

In 2005, Jonsson [8] proved that the number of k-triangulations of the n-gon is equal to the following
k × k Hankel determinant:

det


Cn−2 Cn−3 . . . . . . Cn−k−1

Cn−3 . . . . . . Cn−k−1 . . .

. . . . . . . . . . . . . . .

. . . Cn−k−1 . . . . . . Cn−2k+1

Cn−k−1 . . . . . . Cn−2k+1 Cn−2k

 , (1)

where Cn is the n-th Catalan number Cn = 1
n+1

(
2n
n

)
.

The set of all k non-crossing Dyck paths of semilength n − 2k is counted by the same determinant.
This follows from an almost direct application of the Lindström-Gessel-Viennot theorem ([12], [7]) for
counting non-intersecting lattice paths (see [10] for details on the history of this idea). A combinatorial
bijection between the set of k-triangulations of the n-gon and the corresponding set of k non-crossing
Dyck paths would constitute a simpler proof of the formula for the number of k-triangulations. Elizalde
[6] constructed such a bijection for the case k = 2. This problem was posed by Jonsson [8] and it has been
restated by Krattenthaler [11] and Elizalde [6]. A combinatorial bijection for the general case (and for
more general objects) has been constructed by Rubey [17]. Also Krattenthaler [11] found a combinatorial
proof using growth diagrams.

Our goal is to construct another bijection for the case k = 2. Our bijection is stronger than that in [6]
because it transforms two simple parameters for 2-triangulations, the degrees (number of neighbors) at
two consecutive vertices, into two simple parameters for pairs of non-crossing Dyck paths, the number of
(generalized) returns.

We begin by showing a way to recursively generate the set of k-triangulations and the set of k non-
crossing Dyck paths. Then we introduce a k-tuple of parameters for the set of non-crossing Dyck paths
that generalizes the usual returns of a single Dyck path. We show, by means of a family of involutions,
that the distribution of non-crossing Dyck paths with respect to these generalized returns is independent of
their order. In particular, we obtain a generalization for non-crossing Dyck paths of the fact that (single)
Dyck paths have the same distribution with respect to the height of the first peak and with respect to
the number of returns. This result is a particular case of a theorem originally found by Brak and Essam
[2]. Krattenthaler [10] found a combinatorial proof of this theorem using semistandard tableaux. A
determinantal formula for the number of non-crossing paths with a given number of returns in the lower-
most path follows by applying the Lindström-Gessel-Viennot theorem. Closed product formulas for this
determinant are shown in [15]. There are also product formulas for the determinant (1), see [10].

The involutions that we introduce for non-crossing Dyck paths to prove the equidistribution of the
generalized returns are also essential in the construction of our bijection between 2-triangulations and
pairs of non-crossing Dyck paths. The bijection sends the 2-triangulations having degrees c0 and c1 at
two fixed consecutive vertices onto the set of all pairs of non-crossing Dyck paths having (generalized)
returns c0 and c1. Finally, we obtain a formula for the number of 2-triangulations having degree c at a
fixed vertex, which refines Jonsson’s formula (1) for k = 2. We conjecture that a similar formula holds
for every k.
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2 The set of k-triangulations
Let S be a set of n points in convex position. A straight line segment joining two points in S is a diagonal
of S. Two diagonals of S cross if they intersect in a point not in S. A k-triangulation of S is a maximal
set of diagonals of S containing no subset of k + 1 mutually crossing diagonals.

Starting with any point of S and proceeding in the counterclockwise direction, we label the points of S
with the numbers 0, 1, . . . , n−1. In what follows, all operations on the labels of the vertices are performed
modulo n, even if this is not explicitly stated. Also, we assume that n ≥ 2k + 1.

We identify the diagonals of S with the set of pairs of elements in S. In this way, the set of diagonals
of S, denoted Σn is simply Σn =

{{i, j} : 0 ≤ i < j ≤ n− 1
}

.
It is clear that every diagonal in a set of k+ 1 mutually crossing diagonals must have at least k vertices

of S on each side. Therefore, every k-triangulation contains the kn trivial diagonals of the form {i, i+h}
with 1 ≤ h ≤ k. Of these diagonals, we want to keep only those of the form {i, i+ k}.

Let Σkn = Σn −
{{a, a+ i} : a ∈ {0, . . . , n− 1}, i ∈ {1, . . . , k − 1}}, and Γkn =

{{a, a+ k} :
a ∈ {0, . . . , n− 1}}.

The decomposition theorems in [16] and [14] make clear that Γkn is the natural boundary of a k-
triangulation. In what follows, we assume that k-triangulations contain only these trivial diagonals. In
other words, we redefine the k-triangulations of S as maximal subsets of Σkn containing no subset of k+1
mutually crossing diagonals. We denote the set of all k-triangulations of S by T kn .

Given a set of edges U ⊆ Σkn, the set of neighbors in U of a vertex i is defined by Ni(U) =
{j : {i, j} ∈ U} . Also, for 0 ≤ i ≤ k − 1, we define the neighbors to the left and right of a given
vertex a by Li(a, U) = {j ∈ Ni(U) : i < j ≤ a} and Ri(a, U) = {j ∈ Ni(U) : a ≤ j < i} .

Now we associate to every k-triangulation of S a partial order, by considering the sets of k mutually
crossing diagonals incident to the vertices 0, . . . , k − 1.

For Γkn ⊆ U ⊆ Σkn, define

C(U) =
{

(a0, . . . , ak−1) : {0, a0}, · · · , {k − 1, ak−1} are mutually crossing diagonals of U
}
.

Note that k ≤ a0 < · · · < ak−1 ≤ n− 1 for all (a0, . . . , ak−1) in C(U).
The set C(U) is partially ordered by the (direct) product order (a0, . . . , ak−1) ≤ (b0, . . . , bk−1) if and

only if ai ≤ bi for all i ∈ {0, . . . , k − 1}. In fact, C(U) is a lattice with this order.
Now suppose we add a point, with label n, to the set S in such a way that the set S′ = S ∪ {n} is in

convex position and the point n is located between the points n− 1 and 0 of S. The k-triangulations of S′

can be obtained from those of S by applying a procedure that splits mutually crossing diagonals (incident
to the vertices 0, . . . , k − 1) in a k-triangulations of S. Let Σkn+1 and T kn+1 be be the set of diagonals and
the set of k-triangulations of S′, respectively.

Let Γkn ⊆W ⊆ Σkn. For (a0, . . . , ak−1) ∈ C(W ) define Ψ~a(W ) ⊆ Σkn+1 by

Ψ~a(W ) =
{{i, j} ∈W : k ≤ i < j ≤ n− 1

} ∪{{n, j} : j ∈ R0(a0,W )
} ∪{{i, j} : 0 ≤ i ≤ k − 2, j ∈ Li(ai,W ) ∪ Ri+1(ai+1,W )

} ∪{{k − 1, j} : j ∈ Lk−1(ak−1,W )
} ∪ {{n, k − 1}}.

Let Tn :
⋃
T∈T kn {T} × C(T ) −→ Σkn+1 be the function defined by Tn(T,~a) = Ψ~a(T ).

The importance of the function Tn is that it generates all the k-triangulations of S′ in an injective way.
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Theorem 1 The function Tn establishes a bijection between
⋃
T∈T kn {T} × C(T ) and T kn+1.

Though with a different presentation, this fact was proved by Nakamigawa [13].

3 The set of non-crossing Dyck paths
For our purposes, it is convenient to define Dyck paths as integer functions as follows:

Given m ≥ 1, a function f : {1, . . . ,m} −→ N is called a Dyck path of length m if it satisfies the
following properties: (1) f is non-decreasing, (2) i ≤ f(i), for all i ∈ {1, . . . ,m}, and (3) f(m) = m.

For m1 ≤ m2, let Fm1,m2 =
{
f : {m1, . . . ,m2} −→ N : f is non-decreasing

}
. We write f ≤ g if

f(i) ≤ g(i) for all i ∈ {m1, . . . ,m2}.
For any two non-decreasing functions f and g, a (generalized) return of g to f is a value i in the domain

of f and g for which f(i) = g(i). The set of all returns of g to f is denoted by ret(g, f).
Define Dkm =

{
(f0, . . . , fk−1) : fi is a Dyck path of length m for all i andfi−1 ≥ fi for all i

}
.

Note that the upper-most path is listed first in the k-tuple of paths. This is necessary to make the proof
of Theorem 7 simpler.

For i ∈ {0, . . . , k − 1} and D = (f0, . . . , fk−1) define reti(D) = ret(fi, fi+1) ∪ {0}, where fk is the
identity function, fk = id.

The crossings among the returns of D ∈ Dkm are defined by
C(D) =

{
(a0, . . . , ak−1) : ai ∈ reti(D) for i ∈ {0, . . . , k − 1},

ai−1 ≤ ai for i ∈ {1, . . . , k − 1}}.
Clearly, C(D) ⊆ ret0(D) × · · · × retk−1(D), and C(D) is a lattice when regarded as a poset with the

inherited product order. Note that for a k-triangulation T , C(T ) consists of strictly increasing functions,
while C(D) consists of non-decreasing functions.

Continuing the analogy with our treatment of k-triangulations, we introduce now the set of returns to
the left and right of a given value: L̄i(a,D) =

{
j ∈ reti(D) : j ≤ a

}
, and R̄i(a,D) =

{
j ∈ reti(D) :

a ≤ j}.
For D = (D1, . . . , Dk−1) ∈ Dkm and ~a = (a0, . . . , ak−1) ∈ C(D), define Ψ̄~a(D) = (D̂1, . . . , D̂k−1)

where D̂i : {0, . . . ,m+ 1} → N is given by

D̂i(j) =

 Di(j) for j ∈ {0, . . . , ai},
Di(j) + 1 for j ∈ {ai + 1, . . . ,m},
m+ 1 if j = m+ 1.

Note that Ψ̄~a(D) ∈ Dkm+1, thanks to the condition a0 ≤ · · · ≤ ak−1.
Finally, completing the analogy with k-triangulations, the functions Ψ̄~a can be used to generate recur-

sively the sets Dkm.
Let Dm :

⋃
D∈Dkm

{
D
}× C(D) −→ Dkm+1 be defined by Dm(D,~a) = Ψ̄~a(D).

Theorem 2 For every m ≥ 1, Dm is a bijection.

Now we study a family of involutions on the set Fm1,m2 of non-decreasing integer functions on
{m1, . . . ,m2}. For f, h ∈ Fm1,m2 , with f ≤ h, the interval between f and g is given by I(f, h) ={
g ∈ Fm1,m2 : f ≤ g ≤ h}.
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Theorem 3 For all m1 ≤ m2, and for all f, h ∈ Fm1,m2 with f ≤ h, there exists an involution µf,h on
I(f, h) such that∣∣ret(g, f)

∣∣ =
∣∣ret
(
h, µf,h(g)

)∣∣ and
∣∣ret(µf,h(g), f)

∣∣ =
∣∣ret
(
h, g
)∣∣.

This theorem can be proved by applying induction on two parameters, the length of m2 −m1 + 1 of
the domain of the functions, and the minimum distance min

{
h(i) − f(i), m1 ≤ i ≤ m2

}
between the

functions, see [14].
The previous theorem implies that the number of chains f0 ≥ · · · ≥ fk of length k in Fm1,m2 having

a prescribed number of returns
∣∣ret(fi, fi−1)

∣∣ = ci, for i ∈ {1, . . . , k}, does not depend on the order of
the numbers ci. We state this fact for chains with fixed endpoints. Define, for m1 ≤ m2, k ≥ 1, and
fk ≤ f−1 ∈ Fm1,m2 ,

Hkf−1,fk
(c0, . . . , ck) =

{
(f0, . . . , fk−1) : fi ∈ I(fk, f−1) for i ∈ {0, . . . , k − 1},

fi−1 ≥ fi for i ∈ {0, . . . , k},∣∣ret(fi−1, fi)
∣∣ = ci for i ∈ {0, . . . , k}}.

Corollary 4 Let m1 ≥ m2, k ≥ 1 and f−1, fk ∈ Fm1,m2 . Then for every permutation σ on {0, . . . , k},∣∣Hkf−1,fk
(c0, . . . , ck)

∣∣ =
∣∣Hkf−1,fk

(cσ(0), . . . , cσ(k))
∣∣.

Returning to the study of Dyck paths, let id(i) = i and consm(i) = m for m ≥ 1. Note that the set of
all (single) Dyck paths of length m is equal to the interval I(id, consm) of F0,m.

It is well-known that Dyck paths have the same distribution with respect to the number of returns and
with respect to the height of the first (or last) peak. This can be shown by means of an involution, see [4].
The following generalization of this property to sets of non-crossing Dyck paths is a simple consequence
of Corollary 4. It tell us that the number of k non-crossing Dyck paths of length m for which the height
of the first (or last) peak in the the upper-most path is c is equal to the number of paths having c returns in
the lower-most path.

Theorem 5 For all m ≥ 1, k ≥ 1 and c ∈ {0, . . . ,m},∣∣∣{(f0, . . . , fk−1) ∈ Dkm : f0(1) = c
}∣∣∣

=
∣∣∣{(f0, . . . , fk−1) ∈ Dkm :

∣∣{f0(i) = m}∣∣ = c
}∣∣∣

=
∣∣∣{(f0, . . . , fk−1) ∈ Dkm :

∣∣{fk−1(i) = i}∣∣ = c
}∣∣∣.

Proof. The first equality is obvious. The second follows from Corollary 4:∣∣∣{(f0, . . . , fk−1) ∈ Dkm :
∣∣{f0(i) = m}∣∣ = c

}∣∣∣
=

∑
r0,...,rk−1

∣∣Hkid,consm
(c, r0, . . . , rk−1)

∣∣ =
∑

r0,...,rk−1

∣∣Hkid,consm
(r0, . . . , rk−1, c)

∣∣
=
∣∣∣{(f0, . . . , fk−1) ∈ Dkm :

∣∣{fk−1(i) = i}∣∣ = c
}∣∣∣.

2
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The previous theorem is a particular case of a result by Brak and Essam [2]. A combinatorial proof
using semistandard tableaux is given by Krattenthaler [10].

It is not difficult to obtain determinantal formulas for the cardinality of the sets in our previous theorem.
The ballot numbers (sometimes called generalized Catalan numbers)B(n,m) = m−n+1

m+1

(
m+n
m

)
count the

number of paths on the integer lattice having north and east steps, starting at (0, 0), ending at (n,m) and
not going under the line x = y; see [9, 18]. Hence, ballot numbers count Dyck paths having a given height
of the last peak. Combining this idea with the Lindström-Gessel-Viennot Theorem, it is easy to obtain a
formula for the number of k non-crossing Dyck paths such that the height of the last peak for the top path
is a given value c. By the previous theorem, this formula also counts the paths such that the lowest path
has c returns. We state this formula in the following theorem.

Theorem 6 The number of k non-crossing Dyck paths of length m such that the lowest path has exactly
c returns is given by

det



Cm Cm+1 . .
.

. .
.

Bkm+k−1(c)

Cm+1 . .
.

. .
.

Cm+k−1

...

. .
.

. .
.

. .
.

. .
. ...

. .
.

Cm+k−1 . .
.

. .
.

Bkm+2k−3(c)
Cm+k−1 . .

.
. .

.
Cm+2k−3 Bkm+2k−2(c)

 ,

where Bkm(h) = 2k+h−2
m

(
2m−2k−h+1

m−1

)
.

Product formulas for the determinant in the previous theorem are found in [15] and [10].

4 A strong bijection between T 2
n and D2

n

In spite of the similarities that we have found between k-triangulations and non-crossing Dyck paths,
we are able to construct a bijection between these sets only(i) for the case k = 2. As pointed out in
the introduction, a combinatorial bijection between T 2

n and D2
n has already been found by Elizalde [6].

Our bijection presents the advantage of sending two simple parameters in T 2
n , the degree (number of

neighbors) at two consecutive vertices, into two simple parameter in D2
n, the number of returns of each

path. From this property, we derive as a corollary a formula for the number of 2-triangulations with a
given degree at a fixed vertex.

Theorem 7 For all n ≥ 5, there exists a bijection ωn from the set T 2
n of all 2-triangulations of the n-gon

onto the set D2
n−4 of all pairs of non-crossing Dyck paths of length n− 4, such that for all T ∈ T 2

n

(1)
∣∣N0(T )

∣∣ =
∣∣ret0

(
ωn(T )

)∣∣ and∣∣N1(T )
∣∣ =

∣∣ret1
(
ωn(T )

)∣∣.
(2) Moreover, if βiT : Ni(T ) −→ reti

(
ωn(T )

)
, for i = 0, 1, is the order-preserving bijection guaran-

teed to exist by (1), then βT : C(T ) −→ C(ωn(T )
)

given by βT
(

(i, j)
)

=
(
β0
T (i), β1

T (j)
)
, is an

isomorphism between the crossings of T and the crossings among the returns of ωn(T ).

(i) The case k = 1 is elementary.
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Proof. By induction on n:
If n = 5, then T 2

5 and D2
1 contain one element each. Let T be the 2-triangulation in T 2

5 and let D be
the element of D2

1 . Then, N0(T ) = {2, 3},N1(T ) = {3, 4}, C(T ) = {(2, 3), (2, 4), (3, 4)}, ret0(D) =
{0, 1}, ret1(D) = {0, 1} and C(D) = {(0, 0), (0, 1), (1, 1)}, so the map {T} → {D} satisfies properties
(1) and (2).

Let n ≥ 5, and suppose ωn : T 2
n −→ D2

n−4 is a bijection such that for all T ′ ∈ T 2
n

I
∣∣N0(T ′)

∣∣ =
∣∣ret0

(
ωn(T ′)

)∣∣∣∣N1(T ′)
∣∣ =

∣∣ret1
(
ωn(T ′)

)∣∣
II βT ′ : C(T ′) −→ C

(
ωn(T ′)

)
, given by βT ′

(
(i, j)

)
= (β0

T ′(i), β
1
T ′(j)), is an isomorphism between

the sets of crossings of T ′ and ωn(T ′), where βiT ′ : Ni(T ′) −→ reti
(
ωn(T ′)

)
, for i = 0, 1, is the

order-preserving bijection between these sets.

Define ω̃n+1 : T 2
n+1 −→ D2

n−3 by

ω̃n+1(T ) = Ψ̄βT ′ (~a)

(
ωn(T ′)

)
,

where (T ′,~a) is the unique element of
⋃
T ′∈T 2

n
{T ′} × C(T ′) such that Ψ~a(T ′) = T .

By definition of ω̃n+1, the following diagram commutes:(
T ′, ~a

) (ωn, βT ′ )−−−−−−−−−→ (
ωn(T ′), βT ′(~a)

)yΨ~a

yΨ̄βT ′ (~a)

T
ω̃n+1−−−−−−−−−−→ ω̃n+1(T )

Therefore, since the maps Ψ~a, (ωn, βT ′) and Ψ̄βT ′ (~a) are bijective, it follows that ω̃n+1 is bijective.
From the definitions of Ψ~a and Ψ̄βT ′ (~a)it is follows that

N0(T ) = L0(a0, T
′) ∪ R1(a1, T

′),
N1(T ) = L1(a1, T

′) ∪ {n}.
(2)

On the other hand, taking D′ = ωn(T ′), (ā0, ā1) = βT ′
(
(a0, a1)

)
,

ret0
(
ω̃n+1(T )

)
= L̄0(ā0, D

′) ∪ R̄0(ā1 + 1, D′) ∪ {n− 3},
ret1
(
ω̃n+1(T )

)
= L̄1(ā1, D

′) ∪ {n− 3}.
(3)

Comparison of (2) and (3) shows that ω̃n+1 does not have the desired properties (1) and (2). We need
to apply the involutions µm1,m2 .

For D ∈ D2
n−3, with D = (D0, D1), let m(D) = max(ret1(D)− {n− 3}). Define Υ(D) ∈ D2

n−3 by
Υ(D) = (D0, D̂1), where, for i ∈ {0, . . . , n− 3},

D̂1(i) =


D1(i) if i ∈ {0, . . . ,m(D)},

µid+1,D′0

(
D′1
)
(i) if i ∈ {m(D) + 1, . . . , n− 4},

n− 3 if i = n− 3,
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m(D) m(D)

Υ(D)

D0

D1

D0

D1

Fig. 1: An element of D2
n−3 and its image under Υ. The portion of the lower path between its last two returns is

replaced with a path having a reversed number of intersections with the upper path and with the identity shifted up
one unit.

and D′0, D′1 are the restrictions of D0 and D1 to the interval {m(D) + 1, . . . , n− 4}.
Note that Υ

(
(D0, D1)

)
is equal to (D0, D1) except for the portion of D1 between its last two returns.

This is replaced by a path with reversed number of intersections with D0 and id + 1; see Figure 1.
Clearly, ret1

(
Υ(D)

)
= ret1(D), so m

(
Υ(D)

)
= m(D). Therefore, Υ

(
Υ(D)

)
= D, because the

functions µf,h are involutions. Hence, Υ is a bijection from D2
n−3 onto D2

n−3.
By definition of Υ, the returns of Υ(D), where D = (D0, D1), are

ret0
(
Υ(D)

)
= L̄0

(
m(D), D

) ∪ S ∪ {n− 3},
ret1
(
Υ(D)

)
= ret1(D), (4)

where S satisfies

S ⊆ {m(D) + 1, . . . , n− 4},∣∣S∣∣ =
∣∣ret(id + 1, D1) ∩ {m(D) + 1, . . . , n− 4}∣∣. (5)

Taking D = ω̃n+1(T ) = Ψ̄βT ′ (~a)(D′), it is clear that m(D) = ā1. Also, L̄0(ā0, D) = L̄0(ā1, D),
which combined with (3), (4) and (5) gives us the returns of Υ

(
ω̃n+1(t)

)
:

ret0
(
Υ(D)

)
= L̄0

(
ā0, D

′) ∪ S ∪ {n− 3},
ret1
(
Υ(D)

)
= L̄1

(
ā1, D

′) ∪ {n− 3},

where S satisfies
S ⊆ {ā1 + 1, . . . , n− 4},∣∣S∣∣ =

∣∣ret(id + 1, D1) ∩ {ā1 + 1, . . . , n− 4}∣∣
= R̄1

(
ā1 + 1, D′

)
.
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To summarize, if T , T ′, D and D′ satisfy the following diagram(
T ′, (a0, a1)

) (ωn, βT ′ )−−−−−−−−−→ (
D′, (ā0, ā1)

)yΨ~a

yΨ̄βT ′ (~a)

T
ω̃n+1−−−−−−−−−−→ D

Υ−−−−−→ Υ(D)

then the sets of neighbors of T satisfy

N0(T ) = L0(a0, T
′) ∪ R1(a1, T

′),
N1(T ) = L1(a1, T

′) ∪ {n}.
(6)

while the returns of Υ(D) are

ret0
(
Υ(D)

)
= L̄0

(
ā0, D

′) ∪ S ∪ {n− 3},
ret1
(
Υ(D)

)
= L̄1

(
ā1, D

′) ∪ {n− 3}, (7)

where S satisfies
S ⊆ {ā1 + 1, . . . , n− 4},∣∣S∣∣ = R̄1

(
ā1 + 1, D′

)
.

(8)

Therefore, the function ωn+1 = Υ ◦ ω̃n+1 is a bijection from T 2
n+1 onto D2

n−3, satisfying (1) and (2):
Note that

∣∣L0(a0, T
′)
∣∣ =

∣∣L̄0(ā0, D
′)
∣∣ because, according to inductive hypothesis I,

∣∣N0(T ′)
∣∣ =∣∣ret0(D′)

∣∣ and the map β0
T ′ , which sends a0 to ā0, is order-preserving. Similarly,

∣∣R1(a1, T
′)
∣∣ =∣∣R̄1(ā1, D

′)
∣∣ because

∣∣N1(T ′)
∣∣ =

∣∣ret1(D′)
∣∣ and β1

T ′ is order-preserving.
But

∣∣R̄1(a1 +1, D′)
∣∣ =

∣∣R̄1(ā1, D
′)
∣∣−1, because ā1 ∈ ret1(D′) since (ā0, ā1) is an element of C(D′).

Hence, by (6), (7) and (8),
∣∣N0(T )

∣∣ =
∣∣ret0

(
Υ(D)

)∣∣. For similar reasons,
∣∣L1(a1, T

′)
∣∣ =

∣∣L̄1(ā1, D
′)
∣∣

and therefore we also have
∣∣N1(T )

∣∣ =
∣∣ret1

(
Υ(D)

)∣∣. Hence, ωn+1 satisfies (1).
Finally, let β0

T and β1
T be the order-preserving bijections from N0(T ) onto ret0

(
Υ(D)

)
and from N1(T )

onto ret1
(
Υ(D)

)
, respectively. Let βT = (β0

T , β
1
T ). The fact that (i, j) < (i′, j′) if and only if βT (i, j) <

βT (i′, j′) follows immediately because β0
T and β1

T are order-preserving.
Hence, we only need to show that βT is a bijection between C(T ) and C(Υ(D)) to obtain that it is an

isomorphism between these sets.
But from (6),(7) and (8), we have the following partitions of C(T ) and C(Υ(D)) into two disjoint sets:

C(T ) =
{

(i, j) ≤ (a0, a1) : (i, j) ∈ C(T ′)} ∪ {
(i, n) : i ∈ N0(T )

}
(i) (ii)

and
C(Υ(D)

)
=
{

(i, j) ≤ (ā0, ā1) : (i, j) ∈ C(D′)} ∪ {
(i, n− 3) : i ∈ ret0

(
Υ(D)

)}
.

(iii) (iv)

The sets (i) and (iii) are the lower ideals of (a0, a1) in C(T ′) and of (ā0, ā1) in C(D′), respectively. By
inductive hypothesis II, they are isomorphic under βT ′ . It is clear from (6) and (7) that βT and βT ′ are
equal when restricted to (i), so in particular βT is a bijection between (i) and (iii). We have already seen
that

∣∣N0(T )
∣∣ =

∣∣ret0
(
Υ(D)

)∣∣, so βT is also a bijection between (ii) and (iv).
Therefore ωn+1 satisfies (2), which completes the proof. 2
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01

a0

a1

n− 1

01

a0

a1

n− 1

n

ā0

ā1

ā0

ā1 ā1

ωn

ω̃n+1

Ψ(a0,a1)

Ψ̄(ā0,ā1)

Υ

T Υ(ω̃n+1(T ))

Fig. 2: An example where it can be verified that the poset C(T ) is isomorphic to the poset C
`
Υ(ω̃n+1(T ))

´
.

Using the property
∣∣N1(T )

∣∣ =
∣∣ret1

(
ωn(T )

)∣∣ of the bijection ωn obtained in the previous theorem, and
the formula for |ret(id, D1)| from Theorem 6, we obtain a refinement, for the case k = 2, of the formula (1)
for the number of 2-triangulations. The following formula gives the number of 2-triangulations according
to the degree of a fixed vertex. Note that |ret(id, D1)| =

∣∣ret1
(
ωn(T )

)∣∣ − 1 because 0 ∈ ∣∣ret1
(
ωn(T )

)∣∣.
Also, by applying a rotation, the formula can be used to find the number of 2-triangulations with a given
degree at any fixed vertex.

Corollary 8 The number of 2-triangulations T of the n-gon with
∣∣N0(T )

∣∣ = c is given by

det
∣∣∣∣ Cn−4 B2

n−3(c− 1)
Cn−3 B2

n−2(c− 1)

∣∣∣∣ ,
where Bkm(h) = 2k+h−2

m

(
2m−2k−h+1

m−1

)
.

The previous theorem cannot be generalized for k > 2. No such strong bijection can exist if k > 2,
because an isomorphism between the crossings C(T ) and C(ωn(T )

)
implies in particular that

∣∣C(T )
∣∣ =∣∣C(ωn(T )

)∣∣. But the distribution of k-triangulations and non-crossing Dyck paths is different for these
parameters when k > 2. For example, for k = 3 and n = 10, T 3

10 contains 24 triangulations T of the
10-gon such that

∣∣C(T )
∣∣ = 9, but there are 32 triples D of non-crossing Dyck paths of length 4 such that∣∣C(D)

∣∣ = 9.
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Surprisingly, computer experiments suggest that Theorem 7 can be generalized for k > 2 if we drop
condition (2).

Conjecture 1 For all k ≥ 1 and n ≥ 2k + 1, there exists a bijection ωkn from the set T kn of all
k-triangulations of the n-gon onto the set Dkn−2k of all k non-crossing Dyck paths of length n − 2k,
such that for all T ∈ T kn ∣∣Ni(T )

∣∣ =
∣∣reti

(
ωkn(T )

)∣∣ for all i ∈ {0, . . . , k − 1}.

By Theorem 7, this conjecture is true for k = 2 (and k = 1). If it holds for all k then, by Theorem 6,
there is an analogue to Corollary 8 for the general case. We conclude with this conjectured formula for
the number of k-triangulations having a given degree at a fixed vertex.

Conjecture 2 The number of k-triangulations T ∈ T kn with
∣∣N0(T )

∣∣ = c is given by

det



Cn−2k Cn−2k+1 . .
.

. .
.

Bkn−k−1(c− 1)

Cn−2k+1 . .
.

. .
.

Cn−k−1

...

. .
.

. .
.

. .
.

. .
. ...

. .
.

Cn−k−1 . .
.

. .
.

Bkn−3(c− 1)
Cn−k−1 . .

.
. .

.
Cn−3 Bkn−2(c− 1)

 ,

where Bkm(h) = 2k+h−2
m

(
2m−2k−h+1

m−1

)
.
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Bounds of asymptotic occurrence rates of
some patterns in binary words related to
integer-valued logistic maps
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1Research Center for Information Security (RCIS), National Institute of Advanced Industrial Science and Technology
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Abstract. In this article, we investigate the asymptotic occurrence rates of specific subwords in any infinite binary
word. We prove that the asymptotic occurrence rate for the subwords is upper- and lower-bounded in the same way
for every infinite binary word, in terms of the asymptotic occurrence rate of the zeros. We also show that both of
the bounds are best-possible by constructing, for each bound, a concrete infinite binary word such that the bound is
reached. Moreover, we apply the result to analyses of recently-proposed pseudorandom number generators that are
based on integer-valued variants of logistic maps.

Résumé. Dans cet article, nous étudions les fréquences asymptotiques d’occurence de suites spécifiques dans tout mot
binaire infini. Nous prouvons que la fréquence asymptotique d’occurence pour ces suites est borné supérieurement et
inférieurement de la même façon pour chaque mot binaire infini, en termes des fréquences asymptotiques d’occurence
de zéros. Nous montrons aussi que les deux limites sont les meilleures possibles en construisant concrètement, pour
chaque limite, un mot binaire infini tel que la borne est atteinte à la limite. De plus, nous appliquons ce résultat à
des analyses de générateurs de nombres pseudo-aléatoires proposés récemment qui sont basés sur des variantes des
fonctions logistiques à valeurs entières.

Keywords: binary word, pattern occurrence rate, simple normality, logistic map, pseudorandom number generator

1 Introduction
In this article, we study the following very concrete problem: For infinite binary words, find relations
between the sum of the asymptotic occurrence rates of three patterns 00, 0100, and 01010, and the asymp-
totic occurrence rates of 0s. (A motivation of this problem is explained in the next two paragraphs.)
More precisely, for a finite or infinite binary word x = x1x2x3 · · · with xi ∈ {0, 1} for every i, let
I(x) denote the set of indices i in x such that xi = 0, and let P (x) be the set of indices i in x that
satisfy one of the following three conditions; (P1) xi−1xi = 00; (P2) xi−1xixi+1xi+2 = 0100; and (P3)
xi−1xixi+1xi+2xi+3 = 01010. For example, if x = 0110101000, that is the first 10 bits of the dyadic
expansion of the fractional part frac(

√
2) of

√
2 (i.e.

√
2−1), then we have I(x) = {1, 4, 6, 8, 9, 10}, and

i = 9, 7, 5 are examples of indices in P (x) satisfying the conditions (P1), (P2), and (P3), respectively.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Let x(n) denote the initial subword of x of length n. In the above setting, the problem is of finding, for
any infinite binary word x, relations between the quantities

rinf(x) = lim inf
n→∞

|I(x(n))|
n

and Rinf(x) = lim inf
n→∞

|P (x(n))|
n

, (1)

and those between the quantities

rsup(x) = lim sup
n→∞

|I(x(n))|
n

and Rsup(x) = lim sup
n→∞

|P (x(n))|
n

. (2)

In Section 2, we present simple upper and lower bounds of the quantities Rinf(x) and Rsup(x) in terms of
rinf(x) and rsup(x), respectively. Moreover, we prove that these bounds are both “best possible”. More
precisely, for each of the lower and the upper bounds, we construct a concrete example of an infinite
binary word that attains the equality in the bound. The first aim of this article is to describe the above
combinatorial problem and its solution.

The problem presented in the previous paragraph, especially the specific choice of the three patterns,
is motivated by analyses of pseudorandom number generators (PRNGs). To imitate random or chaotic
behaviors of nature by using deterministic algorithms performed on computers is a ubiquitous and very
fundamental task in several areas of science and information technology, such as computer simulation,
statistics and cryptography; hence construction and analyses of PRNGs are one of the most active topics
in information theory. One of the existing ideas to construct good PRNGs is to make use of the well-
known chaotic behavior of the logistic maps L(x) = µx(1− x), 0 < x < 1, for some parameters µ (e.g.
Wagner (1993); Phatak et al. (1995)). For example, the map L(x) shows chaotic behavior by choosing a
parameter µ = 4. The PRNGs concerned in this article is the recently proposed schemes (see e.g. Araki
et al. (2006)) that are based on some integer-valued variants of the map L(x) with parameter µ = 4. The
corresponding integer-valued variant Ln(x) with accuracy parameter n ∈ Z, n > 0, is given by

Ln(x) =
⌊

4x(2n − x)
2n

⌋
=
⌊
x(2n − x)

2n−2

⌋
for x ∈ Xn = {1, 2, . . . , 2n − 1} (3)

(e.g. Kuribayashi et al. (2005)), where bzc denotes the integer part of z ∈ R. The description of Ln(x)
is derived by first expanding the domain (0, 1) ⊂ R of the original logistic map L(x) proportionally
to a larger interval (0, 2n) and then cutting off the fractional parts of real numbers in the latter interval.
Now the PRNG mentioned above, that uses the map Ln(x) as the updating function of internal states, is
informally described as follows:

1. Choose an initial state s = s0 ∈ Xn.

2. Update the internal state s by applying the map Ln(x) K times (with K a parameter).

3. Output bits of the binary expression of s in some suitable positions.

4. Repeat Steps 2 and 3.

In some preceding works, appropriate choices of parameters for the scheme have been investigated (e.g.
Araki et al. (2008)).
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In particular, it has been pointed out (Miyazaki et al. (2007)) that, when we start from the initial value
s0 = 2n−1, the internal state will be pushed out the domain Xn of the map Ln(x) (i.e. Ln(2n−1) = 2n),
thus the value 2n−1 should be excluded from the candidates of the initial value. (Note that, even if we
tolerate the illegal input 2n for Ln(x), we then have Ln(2n) = 0 and Ln(0) = 0, therefore the internal
state s falls eventually into a stable value. This is also a very undesirable situation since it makes the
outputs of the PRNG not random at all.) Moreover, it was also pointed out that even an initial value
s0 ∈ Xn other than 2n−1 may lead the internal state to the excluded value 2n−1, i.e. we may have
Ln(s0) = 2n−1. Thus such an undesirable initial value should also be avoided in practical use of the
PRNG. However, existence conditions for such an undesirable initial value s0 6= 2n−1 have not been
well investigated. The problem presented in the first paragraph arises from the author’s recent research
(Nuida (2008)) on conditions for the accuracy parameter n such that the corresponding Ln(x) possesses
an undesirable initial value s0 6= 2n−1 (we call such a parameter n dangerous). More precisely, it is
shown that lower bounds of the quantities Rinf(x) and Rsup(x) for x being the fractional part frac(

√
2)2

of the dyadic expansion of
√

2 give lower bounds of the asymptotic rate of the dangerous parameters n
in the positive integers (in terms of the values rinf(x) and rsup(x) for the same x). As a consequence,
our analysis of the above PRNG is also deeply related to a long-standing conjecture on the quantities
rinf(frac(

√
2)2) and rsup(frac(

√
2)2). See Section 3 for details.

This article is organized as follows. In Section 2, we present a solution of the problem described in the
first paragraph. The solution itself is stated as Theorem 1 that is the main result of this article. The proof of
Theorem 1 is divided into the following four parts; the lower bound, its best-possibility, the upper bound,
and its best-possibility. Due to the limited pages, some lemmas in Section 2 are only accompanied with a
sketchy proof; for the details of the proof, see a forthcoming full version of this article. In Section 3, we
describe a relation between the above problem and analyses of PRNGs of the above types. Namely, we
explain how a lower bound of the asymptotic occurrence rate of the dangerous parameters in the positive
integers is derived from the result on the first problem. Finally, in Section 4, we propose open problems
on possible improvements or generalizations of our results in this article.

2 Results
This section shows a solution of the problem presented in the first paragraph of the Introduction. The
solution, that is the main theorem of this article, is the following:

Theorem 1 For any infinite binary word x = x1x2x3 · · ·, let rinf(x), rsup(x), Rinf(x) and Rsup(x) be
defined as in (1) and (2). Then we have

5rinf(x)− 2
3

≤ Rinf(x) ≤ rinf(x) and
5rsup(x)− 2

3
≤ Rsup(x) ≤ rsup(x) . (4)

Moreover, all the bounds are best possible except trivial exceptions, in the following sense: For any
2/5 ≤ r ≤ 1, there exists an infinite binary word x such that rinf(x) = rsup(x) = r and Rinf(x) =
Rsup(x) = (5r − 2)/3. Similarly, for any 0 ≤ r ≤ 1, there exists an infinite binary word x such that
rinf(x) = rsup(x) = r and Rinf(x) = Rsup(x) = r.

In what follows, we give a sketch of a proof of the theorem.
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2.1 Lower Bounds
We demonstrate a sketchy proof of the lower bounds in Theorem 1. For any positive integer n, let Wn

denote the set of binary words of length n. Let ≺ denote the lexicographic order on Wn (e.g. 1100 �
1011). Let `(x) denote the length of a word x. Let ∅ denote the empty word. For two words y and y′,
we write y ⊂ y′ if y appears in y′ as a consecutive subword, and let yj = yy · · · y (j repetition) for any
j ≥ 0. Then we define the following maps ϕ1, ϕ2, . . . , ϕ7 from Wn to itself, where w and w′ signify
some binary words:

ϕ1(x) =

{
1pw0 , if x = w01p, p ≥ 1 ;
x , otherwise,

ϕ2(x) =

{
1p+1w11w′ , if x = 1pw111w′, p ≥ 0, 111 6⊂ w 6= ∅, w1 = w`(w) = 0 ;
x , otherwise,

ϕ3(x) =

{
w0110p−1w′ , if x = w0p11w′, p ≥ 2, 0011 6⊂ w, w`(w) 6= 0 ;
x , otherwise,

ϕ4(x) =

{
w01100w′ , if x = w01010w′, 01010 6⊂ w010 ;
x , otherwise,

ϕ5(x) =

{
w10p+2w′ , if x = w0p100w′, p ≥ 1, 0100 6⊂ w0p, w`(w) 6= 0 ;
x , otherwise,

ϕ6(x) =

{
w010110pw′ , if x = w0p10110w′, p ≥ 2, 0010110 6⊂ w0p, w`(w) 6= 0;
x , otherwise,

ϕ7(x) =

{
w1010110w′ , if x = w0110110w′, 0110110 6⊂ w0110 ;
x , otherwise.

(5)

Note that these seven maps are all well-defined; namely, each ϕk transforms the leftmost consecutive
subword of the specified form, and leaves the word unchanged if such a subword does not exist. Moreover,
each ϕk leaves the quantity |I(x)| invariant and is weakly increasing with respect to ≺ (i.e. x � ϕk(x)).
Then a case-by-case argument shows the following property:

Lemma 1 For each ϕk, we have |P (ϕk(x))| ≤ |P (x)| for any x ∈Wn.

Let Wϕ
n be the set of the common fixed points of ϕ1, . . . , ϕ7 in Wn. Then, since each ϕk is weakly

increasing with respect to the total order ≺, it follows that any word in Wn can be mapped into Wϕ
n

by applying ϕ1, . . . , ϕ7 finitely many times. Let ϕ(x) denote a (not necessarily unique) word in Wϕ
n

corresponding to x ∈ Wn. Note that |I(ϕ(x))| = |I(x)| and |P (ϕ(x))| ≤ |P (x)| for any x ∈ Wn.
Moreover, we have the following property of the fixed point set Wϕ

n :

Lemma 2 Any x ∈Wϕ
n involves no consecutive subword listed in Table 1.

Proof (Sketch): The excluded subword of Type k, 1 ≤ k ≤ 7, is straightforwardly derived by the
condition that ϕk(x) = x. On the other hand, each excluded subword of Type k, k ≥ 8, is deduced
from the preceding ones; for example, if x ∈ Wϕ

n contains a consecutive subword 001011 of Type 8,
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Tab. 1: Excluded consecutive subwords for words in W ϕ
n

Here w is some (possibly empty) word, and the symbol “)” in Type 1 denotes the end of the word.
type subword type subword type subword

1 0w1) 2 0w111 3 0011
4 01010 5 0100 6 0010110
7 0110110 8 001011 9 00101

10 0010w (w 6= ∅) 11 001w (w 6= 0)

then x must contain one of the words 0010110 (Type 6), 0010111 (Type 2) and 001011) (Type 1) as a
consecutive subword. 2

Now note that any x ∈Wn admits an expression of the following form:

x = 1p00q11p1 · · · 0qk1pk0qk+1 , k ≥ 0, qi ≥ 1, pi ≥ 1 (1 ≤ i ≤ k) . (6)

Then the next lemma follows from Lemma 2:

Lemma 3 If x ∈Wϕ
n , then the expression (6) of x satisfies the following conditions:

1. If k ≥ 1, then qk+1 ≥ 1.

2. pi ≤ 2 for i ≥ 1.

3. qi = 1 for 1 ≤ i ≤ k − 1.

4. If qk ≥ 2, then pk = 1 and qk+1 = 1.

5. If k ≥ 2 and qk ≥ 2, then pk−1 = 2.

6. (pi, pi+1) = (1, 2) or (2, 1) for 1 ≤ i ≤ k − 2.

7. If qk = 1, then pk = 2 or qk+1 = 1.

Proof (Sketch): The first and the second parts follow from the absence of subwords of Types 1 and 2,
respectively. The third and the fourth parts both follow from the absence of subwords of Type 11. The
fifth part follows from the second part and the absence of subwords of Type 5. The sixth part follows from
the second part and the absence of subwords of Types 4 and 7. Finally, the seventh part follows from the
first and the second parts, and the absence of subwords of Type 5. 2

By Lemma 3, we obtain a complete list of words x ∈Wϕ
n as in Table 2. In the table, Type 1 corresponds

to the case that k = 0 in (6). Types 2 and 3 both correspond to the case that k ≥ 1 and qk ≥ 2. Types 4
and 5 both correspond to the case that k ≥ 1, qk = 1 and pk = 2. Finally, types 6 and 7 both correspond
to the case that k ≥ 1, qk = 1 and pk = 1. Table 2 also includes the values of n, |I(x)|, and |P (x)|, and
the relations between |I(x)|/n and |P (x)|/n that play a key role in the proof of Theorem 1.

From now, we prove the lower bound of Rinf(x). This is trivial if rinf(x) ≤ 2/5, therefore we assume
that rinf(x) > 2/5. For each n, put mn = |P (x(n))| and yn = ϕ(x(n)). Recall that |I(yn)| = |I(x(n))|
and |P (yn)| ≤ |P (x(n))|. Now we have the following:
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Tab. 2: Complete list of words in W ϕ
n

Type 1 x = 1p0q (p ≥ 0, q ≥ 0)
n = p+ q
|I(x)| = q
|P (x)| = q − 1

|I(x)|/n = |P (x)|/n+ 1/n
Type 2 x = 1p(01011)s0q10 (p ≥ 0, q ≥ 2, s ≥ 0)

n = 5s+ p+ q + 2
|I(x)| = 2s+ q + 1
|P (x)| = q − 1

|I(x)|/n = 3|P (x)|/(5n) + 2/5 + 4/(5n)− 2p/(5n)
Type 3 x = 1p011(01011)s0q10 (p ≥ 0, q ≥ 2, s ≥ 0)

n = 5s+ p+ q + 5
|I(x)| = 2s+ q + 2
|P (x)| = q − 1

|I(x)|/n = 3|P (x)|/(5n) + 2/5 + 3/(5n)− 2p/(5n)
Type 4 x = 1p(01011)s0q (p ≥ 0, q ≥ 1, s ≥ 1)

n = 5s+ p+ q
|I(x)| = 2s+ q
|P (x)| = q − 1

|I(x)|/n = 3|P (x)|/(5n) + 2/5 + 3/(5n)− 2p/(5n)
Type 5 x = 1p011(01011)s0q (p ≥ 0, q ≥ 1, s ≥ 0)

n = 5s+ p+ q + 3
|I(x)| = 2s+ q + 1
|P (x)| = q − 1

|I(x)|/n = 3|P (x)|/(5n) + 2/5 + 2/(5n)− 2p/(5n)
Type 6 x = 1p(01011)s010 (p ≥ 0, s ≥ 0)

n = 5s+ p+ 3
|I(x)| = 2s+ 2
|P (x)| = 0

|I(x)|/n = 2/5 + 4/(5n)− 2p/(5n)
Type 7 x = 1p011(01011)s010 (p ≥ 0, s ≥ 0)

n = 5s+ p+ 6
|I(x)| = 2s+ 3
|P (x)| = 0

|I(x)|/n = 2/5 + 3/(5n)− 2p/(5n)
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Lemma 4 If n is sufficiently large, then yn ∈Wϕ
n cannot be of Type 6 or 7 in Table 2.

Proof: If yn is of Type 6 or 7, then we have |I(x(n))|/n = |I(yn)|/n ≤ 2/5 + 4/(5n). Since rinf(x) >
2/5, there is a constant c > 0 such that 2/5 + 4/(5n) ≤ rinf(x)− c and hence |I(x(n))|/n ≤ rinf(x)− c
for any sufficiently large n. Thus if yn is of Type 6 or 7 for infinitely many n, then we have rinf(x) ≤
rinf(x)− c, a contradiction. Hence the lemma holds. 2

Now by Table 2, if yn is of Types 1–5, then we have

mn

n
≥ |P (yn)|

n
≥ 5|I(yn)|

3n
− 2

3
− 4

3n
=

5|I(x(n))|
3n

− 2
3
− 4

3n
. (7)

Thus Lemma 4 implies that

Rinf(x) ≥ lim inf
n→∞

(
5|I(x(n))|

3n
− 2

3
− 4

3n

)
=

5rinf(x)− 2
3

, (8)

as desired.
Secondly, we prove the lower bound of Rsup(x). This is trivial if rsup(x) ≤ 2/5, therefore we assume

that rsup(x) > 2/5. The task is to show that, for any ε > 0, there exist infinitely many indices n such that
mn/n > (5rsup(x)−2)/3−ε. Now take a positive ε′ such that ε′ < 3ε/10 and ε′ < rsup(x)−2/5. Then
by the definition of rsup(x), there exist infinitely many indices n such that |I(x(n))|/n > rsup(x) − ε′.
Let N denote the (infinite) set of the indices n with this property. Now we have the following:

Lemma 5 yn ∈Wϕ
n is of Type 1–5 in Table 2 for any sufficiently large n ∈ N .

Proof: If n ∈ N and yn is of Type 6 or 7, then |I(yn)|/n ≤ 2/5+4/(5n) by Table 2, while |I(y(n))|/n =
|I(x(n))|/n > rsup(x)− ε′ by the definition of N . Thus we have 4/(5n) > rsup(x)− ε′ − 2/5 for such
n. However, since rsup(x)−ε′−2/5 > 0 by the choice of ε′, the relation does not hold if n is sufficiently
large. Hence the lemma holds. 2

By Lemma 5 and Table 2, the inequality in (7) holds for any sufficiently large n ∈ N . Thus by the
definitions of N and ε′, we have

mn

n
>

5rsup(x)− 2
3

− 5ε′

3
− 4

3n
>

5r2 − 2
3

− ε

2
− 4

3n
(9)

for any sufficiently large n ∈ N . Since the right-hand side of (9) is larger than (5rsup(x)− 2)/3− ε for
any sufficiently large n, it follows that there exist infinitely many n with the desired property.

Hence the proof of the lower bounds in Theorem 1 is concluded.

2.2 Best-Possibility of Lower Bounds
In this subsection, we give an infinite binary word x for any 2/5 ≤ r ≤ 1 such that |I(x(n))|/n and
|P (x(n))|/n converge to r and (5r−2)/3, respectively, when n→∞. This proves the best-possibility of
the lower bounds in Theorem 1. Note that we can take x = 0101101011 · · · (infinite repetition of 01011)
and x = 0000 · · · (infinite repetition of 0) for the cases r = 2/5 and r = 1, respectively. Thus we assume
that 2/5 < r < 1.
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Our construction of the word x is as follows. First, put

p =
⌈

5r − 2
1− r

⌉
and α = p+ 5− 3

1− r
= p− 5r − 2

1− r
, (10)

where dze denotes the smallest integer m such that z ≤ m, therefore 1 ≤ p < ∞ and 0 ≤ α < 1. Let
α = (0.α1α2 · · · )2 be the unique dyadic expansion of α with infinitely many 0s. Now we define finite
binary sequences x〈0〉, x〈1〉, . . ., such that x〈i〉 is a proper initial subword of x〈i+1〉, by

x〈0〉 = ∅ and x〈i〉 = x〈i−1〉x〈i−1〉010110p−αi for i ≥ 1 . (11)

Put `i = `(x〈i〉), Ii = |I(x〈i〉)|, and Pi = |P (x〈i〉)| for each i. Let the word x be the limit of the sequence
x〈0〉, x〈1〉, . . .. Then an induction on i shows the following property:

Lemma 6 For any i ≥ 1, we have

`i = (2i − 1)(p+ 5)−
i∑

j=1

2i−jαj , Ii = (2i − 1)(p+ 2)−
i∑

j=1

2i−jαj ,

Pi = (2i − 1)p− 1−
i∑

j=1

2i−jαj + δp,1αi ,

(12)

where δi,j denotes the Kronecker delta.

By Lemma 6, we have
5Ii − 2`i = 3Pi + 3− 3δp,1αi for any i ≥ 1 . (13)

The following property is a key ingredient of the proof:

Lemma 7 Each finite initial subword x(n) of the above word x is decomposed as

x(n) = x〈i1〉x〈i2〉 · · ·x〈ik−1〉(x〈ik〉)λ+1y , (14)

where k ≥ 1, i1 > i2 > · · · > ik ≥ 0, λ ∈ {0, 1}, y is a (possibly empty) initial subword of
010110p−αik+1 , and ik ≥ 1 if k ≥ 2.

Proof: By the definition of x, it suffices to show that every initial subword x′ of each x〈m〉 admits such a
decomposition. We proceed the proof by induction on m. The case m ≤ 1 is obvious (take k = 1, i1 = 0
and y = x′), therefore we consider the case m ≥ 2. Now by the construction of x〈m〉, the last position
of x′ is contained in the first x〈m−1〉, in the second x〈m−1〉, or in the remaining part 010110p−αm . In the
first case, the claim follows from the induction hypothesis. In the third case, the claim follows by taking
k = 1, ik = m − 1 and λ = 1. Finally, in the second case, x′ = x〈m−1〉w for an initial subword w of
x〈m−1〉. By the induction hypothesis, w admits a decomposition of the following form:

w = x〈i
′
1〉x〈i

′
2〉 · · ·x〈i

′
k′−1〉(x〈i

′
k′ 〉)λ

′+1y′ , (15)

where m− 2 ≥ i′1 > i′2 > · · · > i′k′ . Now the claim follows by taking k = k′+ 1, i1 = m− 1, ij = i′j−1

for 2 ≤ j ≤ k, λ = λ′, and y = y′. Hence the lemma holds in any case. 2
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Now in the decomposition of x(n) in (14), for any n ≥ `1, we have i1 ≥ 1 and hence ik ≥ 1. Then a
straightforward argument shows that, for any n ≥ `1, we have

n = `(x(n)) =
k∑
j=1

`ij + λ`ik + `(y) , |I(x(n))| =
k∑
j=1

Iij + λIik + |I(y)| ,

|P (x(n))| =
k∑
j=1

Pij + λPik + |P (y)|+ k + (λ− δy,∅)(1− δp,1αik)− δp,1
k∑
j=1

αij .

(16)

By these equalities, (12), and (13), an elementary argument shows that |I(x(n))|/n converges when n→
∞ to (p+ 2− α)/(p+ 5− α) = r, and |P (x(n))|/n converges when n→∞ to (5r − 2)/3.

Hence the lower bounds in Theorem 1 are best possible.

2.3 Upper Bounds

The proof of the upper bounds in Theorem 1 are much simpler than the case of lower bounds. In fact, for
any finite binary wordw, the map i 7→ i−1 is an injection from P (w) to I(w), therefore |P (w)| ≤ |I(w)|.
Now the upper bounds are easy consequences of the inequality. Thus the nontrivial assertion on the upper
bounds is only their best-possibility.

2.4 Best-Possibility of Upper Bounds

To prove the best-possibility of the upper bounds in Theorem 1, for any 0 ≤ r ≤ 1, we construct an infinite
binary word x such that both |I(x)|/n and |P (x)|/n converge to r when n → ∞. Since x = 000 · · ·
(infinite repetition of 0) satisfies the conditions when r = 1, we assume from now that 0 ≤ r < 1.

First, we define auxiliary values δk ∈ {0, 1} for k ≥ 1 inductively by

δk = 1 if
∑k−1
i=1 δi · 2i+ 2k
k(k + 1)

≤ r , δk = 0 otherwise. (17)

Then we have ∑k
i=1 δi · 2i
k(k + 1)

≤ r for any k . (18)

Now let x〈k〉 = (1 − δk)2k be the repetition of 1 − δk ∈ {0, 1} of length 2k for each k, and define
x = x〈1〉x〈2〉x〈3〉 · · ·. Then for each k, we have

`(x〈1〉 · · ·x〈k〉) = k(k + 1) and |I(x〈1〉 · · ·x〈k〉)| =
k∑
i=1

δi · 2i . (19)

Now by (18) and (19), an elementary argument shows that both |I(x(n))|/n and |P (x(n))|/n converge to
r when n→∞. Thus the upper bounds in Theorem 1 are best possible.

Hence the proof of Theorem 1 is concluded.
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3 Relations with PRNGs Based on Integer-Valued Logistic Maps
In this section, we explain a relation of the above problem with analyses of the PRNGs based on integer-
valued logistic maps Ln(x) = bx(2n − x)/2n−2c mentioned in the Introduction. A problem concerned
in the analyses is to decide, for each parameter n ∈ Z with n ≥ 1, whether there exists an initial value
s0 ∈ {1, 2, . . . , 2n − 1} such that Ln(s0) = 2n−1 (note that Ln(2n−1) 6= 2n−1). Recall from the
Introduction that we call a parameter n dangerous if such an undesirable initial value s0 6= 2n−1 for
Ln(x) exists. Now the problem is rephrased as the problem on existence of dangerous parameters n in
the above sense.

The condition for an accuracy parameter n to be dangerous is equivalent to that there exists an integer
1 ≤ x ≤ 2n − 1 such that 2n−1 ≤ x(2n − x)/2n−2 < 2n−1 + 1 (that is equivalent to Ln(x) = 2n−1).
By solving the inequalities, the relation Ln(x) = 2n−1 is satisfied if and only if√

22n−3 − 2n−2 < |2n−1 − x| ≤
√

22n−3 . (20)

Moreover, since

√
22n−3 −

√
22n−3 − 2n−2 =

2n−2

√
22n−3 +

√
22n−3 − 2n−2

>
2n−2

2
√

22n−3
=
√

2
4

, (21)

(20) is satisfied if 2n−2
√

2−
√

2/4 ≤ |2n−1 − x| ≤ 2n−2
√

2. Thus we have the following lemma:

Lemma 8 A parameter n is dangerous if 2n−2
√

2−
√

2/4 ≤ m ≤ 2n−2
√

2 for some integer m.

From now, we rephrase the statement of Lemma 8 in terms of the dyadic expansion of
√

2. Namely, let
b = b1b2b3 · · · denote an infinite binary word that is the fractional part of the dyadic expansion of

√
2. For

example, b(10) = 0110101000 as mentioned in the Introduction. Then the fractional part of the dyadic
expansion of 2n−2

√
2 is (0.bn−1bnbn+1 · · · )2, while the dyadic expansion of

√
2/4 is (0.01b1b2b3 · · · )2.

Thus Lemma 8 implies the following:

Lemma 9 A parameter n is dangerous if

(0.bn−1bnbn+1 · · · )2 ≤ (0.01b1b2b3 · · · )2 . (22)

In particular, since b1b2b3 = 011 as above, (22) is satisfied if bn−1bn = 00, bn−1bnbn+1bn+2 = 0100,
or bn−1bnbn+1bn+2bn+3 = 01010; that is, n ∈ P (b) in the sense of Sections 1 and 2. Summarizing, we
have the following result:

Proposition 1 A parameter n is dangerous if n ∈ P (b).

Hence by Theorem 1, we obtain the following lower bound of the asymptotic occurrence rate of the
dangerous parameters in the positive integers:

Theorem 2 Let dN denote the number of the dangerous parameters n ≤ N . Then we have

lim inf
N→∞

dN
N
≥ 5rinf(b)− 2

3
and lim sup

N→∞

dN
N
≥ 5rsup(b)− 2

3
. (23)

In particular, if rsup(b) > 2/5, then there exist infinitely many dangerous parameters n.
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Regarding the quantities rinf(b) and rsup(b), it has been (even implicitly) conjectured that rinf(b) =
rsup(b) = 1/2, that is, the asymptotic occurrence rates of 0s and 1s in the dyadic expansion of

√
2 coincide

with each other. This property for a real number is called simple normality to base q = 2, while a stronger
notion is normality to base q meaning that for each ` ≥ 1, the asymptotic occurrence rate of every subword
of length ` in a given infinite q-ary word coincides with each other (see e.g. Borel (1909); Kuipers et al.
(1974); Hertling (2002)). A motivation of the above conjecture on the simple normality of

√
2 to base

2 would come from a naive intuition that the dyadic expansion of
√

2 (and also of other several famous
irrational numbers) looks very random, and also from a theorem by Borel (Borel (1909)) that almost every
(in terms of Lebesgue measure) real number is normal to every base q ≥ 2. We mention that recently
Isaac posted a preprint (Isaac (2005)) to prove that every

√
s with s an integer that is not perfect square is

simply normal to base 2 (however, the author could not understand that his proof is completely correct).
Moreover, several computer experiments also support the conjecture.

If this conjecture is true, then Theorem 2 implies that the asymptotic occurrence rate of the dangerous
parameters n is at least 1/6. On the other hand, even if the conjecture were not true, then a weaker
assumption rsup(b) > 2/5 still could imply that infinitely many dangerous parameters n exist. This
means that, to avoid to falsely choose a dangerous parameter n in a practical use of the above PRNG,
a naive countermeasure of using sufficiently large parameters does very probably not solve the problem
essentially.

4 Open Problems
In the previous sections, we have given in Proposition 1 a sufficient condition for a parameter n for the
PRNG to be dangerous in terms of the dyadic expansion of

√
2. However, it is shown that the condition is

not necessary. In fact, a direct calculation based on Lemma 9 shows that n = 65 is a dangerous parameter
that does not satisfy n ∈ P (b). Thus it is expected that we can obtain a better bound of the asymptotic
occurrence rate of dangerous parameters than Theorem 2 by investigating the condition in Lemma 9, not
only in Proposition 1 that is weaker than Lemma 9.

Here we describe a rough observation of the author for this problem. Put b0 = 1 and b−1 = 0 for
simplicity. Let C(b) be the set of all binary words of the form b−1b0b1 · · · bk−10 for any k ≥ −1 with
bk = 1. Then a parameter n satisfies (22) if the infinite word bn−1bnbn+1 · · · involves a member of C(b)
as an initial subword. Thus for any subset C′ of C(b), a lower bound for any infinite binary word x of
the number of indices n such that xn−1xnxn+1 · · · involves a member of C′ yields a lower bound of the
asymptotic rate of the dangerous parameters. For example, the argument in the previous sections deals
with the subset C′ with only three members 00, 0100, and 01010. Thus an immediate improvement of the
bound in Theorem 2 would be derived by applying a similar argument to a larger subset C′ of C(b).

Another possible generalization is a problem of finding a lower bound of the asymptotic rate of indices
n that satisfy (22), not only for the above binary word b but also for an arbitrary infinite binary word
x. A solution of this generalized problem yields another bound of the asymptotic rate of the dangerous
parameters. Since an occurrence of a bit 1 in x yields a member of the set corresponding to C(b) in the
previous paragraph, it seems possible that some nontrivial bound holds also in the generalized setting,
at least when the asymptotic rate of 1s in x is not too low. Owing to the self-referential description,
the author hopes that the problem involves certain mathematically interesting structure that is worthy to
investigate.
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Combinatorics of Positroids

Suho Oh1†

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139

Recently Postnikov gave a combinatorial description of the cells in a totally-nonnegative Grassmannian. These cells
correspond to a special class of matroids called positroids. There are many interesting combinatorial objects associ-
ated to a positroid. We introduce some recent results, including the generalization and proof of the purity conjecture
by Leclerc and Zelevinsky on weakly separated sets.

Keywords: Positroids, Total positivity, Grassmannian, Matroids, -diagrams, Decorated permutations, Weakly sepa-
rated.

1 Introduction
A positroid is a matroid that can be represented by a k×n matrix with nonnegative maximal minors. The
classical theory of total positivity concerns matrices in which all minors are non-negative, and this subject
was extended by Lusztig.

Lusztig introduced the totally non-negative variety G ≥ 0 in an arbitrary reductive group G and the
totally non-negative part (G/P )≥0 of a real flag variety (G/P ). He also conjectured that (G/P )≥0 is
made up of cells, and this was proved by Rietsch.

In this paper, we will restrict our attention to (Grkn)≥0, the totally non-negative Grassmannian. Then
there is a more refined decomposition using matroid strata. Recently, Postnikov obtained a relationship
between (Grkn)≥0 and certain planar bicolored graphs, producing a combinatorially explicit cell decom-
position of (Grkn)≥0. The cells correspond to positroids.

In this extended abstract, We will briefly sketch some results about positroids, and introduce some open
problems. No proof will be provided.

In section 3, we will go over describing matroidal operations on positroids via decorated permutations.
In section 4, we will describe positroids by forbidden minors. In section 5 and 6, we will introduce the
proof of the purity conjecture given in (OPS), and introduce related enumerative problems.

2 Preliminaries
An element in the Grassmannian Grkn can be understood as a collection of n vectors v1, · · · , vn ∈ Rk
spanning the space Rk modulo the simultaneous action of GLk on the vectors. The vectors vi are the
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columns of a k×n-matrixA that represents the element of the Grassmannian. Then an element V ∈ Grkn
represented by A gives the matroid MV whose bases are the k-subsets I ⊂ [n] such that ∆I(A) 6= 0.
Here, ∆I(A) denotes the determinant of AI , the k by k submatrix of A in the column set I .

Then Grkn has a subdivision into matroid strata SM labelled by some matroidsM:

SM := {V ∈ Grkn|MV =M}

The elements of the stratum SM are represented by matricesA such that ∆I(A) 6= 0 if and only if I ∈M.
Now we define the Schubert matroids, which correspond to the cells of the matroid strata.

Ordering <w, w ∈ Sn is defined as a <w b if w−1a < w−1b for a, b ∈ [n].

Definition 1 Let A,B ∈
(
[n]
k

)
, w ∈ Sn where

A = {i1, · · · , ik}, i1 <w i2 <w · · · <w ik

B = {j1, · · · , jk}, j1 <w j2 <w · · · <w jk
Then we set A ≤w B if and only if i1 ≤w j1, · · · , ik ≤w jk. This ordering is called the Gale ordering on(
[n]
k

)
induced by w. We denote ≤t for t ∈ [n] as <ct−1 where c = (1, · · · , n) ∈ Sn.

We can also define matroids from the above ordering. See (G),(BGW).

Definition 2 LetM ⊆
(
[n]
k

)
. ThenM is a matroid if and only ifM satisfies the following property. For

every w ∈ Sn, the collectionM contains a unique member A ∈ M maximal inM with respect to the
partial order ≤w.

Now we can define a Schubert matroid and a dual Schubert matroid using the partial order ≤w.

Definition 3 For I = (i1, · · · , ik), the Schubert Matroid SMw
I consists of bases H = (j1, · · · , jk) such

that I ≤w H . The dual Schubert matroid ˜SM
w

I consists of bases H = (j1, · · · , jk) such that I ≥w H .

Let us define the totally nonnegative Grassmannian and its cells.

Definition 4 ((P)) The totally nonnegative GrassmannianGrtnnkn ⊂ Grkn is the quotientGrtnnkn = GL+
k \Mattnnkn ,

whereMattnnkn is the set of real k×n-matricesA of rank k with nonnegative maximal minors ∆I(A) ≥ 0
and GL+

k is the group of k × k-matrices with positive determinant.

Definition 5 ((P)) Totally nonnegative Grassmann cells StnnM in Grtnnkn are defined as StnnM := SM ∩
Grtnnkn .M is called a positroid if the cell StnnM is nonempty.

Note that from above definitions, we get

StnnM = {GL+
k •A ∈ Gr

tnn
kn |∆I(A) > 0 for I ∈M,∆I(A) = 0 for I 6∈ M}.

In (P), Postnikov showed a bijection between each cell and a combinatorial object called Grassmann
necklace. He also showed that those necklaces can be represented as objects called decorated permuta-
tions. Let’s first see how they are defined.

Definition 6 ((P)) A Grassmann necklace is a sequence I = (I1, · · · , In) of subsets Ir ⊆ [n] such that,
for i ∈ [n], if i ∈ Ii then Ii+1 = (Ii \ {i}) ∪ {j}, for some j ∈ [n]; and if i ∈ Ii then Ii+1 = Ii. (Here
the indices are taken modulo n.) In particular, we have |I1| = · · · = |In|.
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Definition 7 ((P)) A decorated permutation π: = (π, col) is a permutation π ∈ Sn together with a
coloring function col from the set of fixed points {i|π(i) = i} to {1,−1}. That is, a decorated permutation
is a permutation with fixed points colored in two colors.

It is easy to see the bijection between necklaces and decorated permutations. To go from a Grassmann
necklace I to a decorated permutation π: = (π, col).

• if Ii+1 = (Ii\{i}) ∪ {j}, j 6= i, then π(i) = j

• if Ii+1 = Ii and i 6∈ Ii then π(i) = i, col(i) = 1

• if Ii+1 = Ii and i ∈ Ii then π(i) = i, col(i) = −1.

To go from a decorated permutation π: = (π, col) to a Grassmann necklace I,

Ir = {i ∈ [n]|i <r π−1(i) or (π(i) = i and col(i) = −1)}.

Let’s look at a simple example. For decorated permutation π: with π = 81425736 and col(5) = 1,
we get I1 = {1, 2, 3, 6}, I2 = {2, 3, 6, 8}, I3 = {3, 6, 8, 1}, I4 = {4, 6, 8, 1}, I5 = {6, 8, 1, 2}, I6 =
{6, 8, 1, 2}, I7 = {7, 8, 1, 2}, I8 = {8, 1, 2, 3}.

Recall that we have defined <r to be a total order on [n] such that r <r r + 1 <r · · · <r n <r 1 <r
· · · <r r − 1. This ordering is the same as <cr−1 where c = (1, · · · , n) ∈ Sn.

Lemma 8 ((P)) For a matroidM⊆
(
[n]
k

)
of rank k on the set [n], let IM = (I1, · · · , In) be the sequence

of subsets such that Ii is the minimal member ofM with respect to≤i. Then IM is a Grassmann necklace.

Theorem 9 ((P)) Let StnnM be a nonnegative Grassmann cell, and let IM = (I1, · · · , In) be the Grass-
mann necklace corresponding toM. Then

StnnM =
n⋂
i=1

Ωc
i−1

Ii
∩Grtnnkn

where c = (1, · · · , n) ∈ Sn and Ωc
i−1

Ii
is the permuted Schubert cell, which is the set of elements V ∈

Grkn such that Ii is the lexicographically minimal base of MV with respect to ordering <w on [n].

This theorem implies that bases of a positroid are included in each Schubert matroids corresponding to
the Grassmann necklace, but it does not imply that they are equal. Postnikov therefore conjectured that
each positroid is exactly the intersection of Schubert matroids.

Theorem 10 ((O1)) M is a positroid if and only if for some Grassmann necklace (I1, · · · , In),

M =
n⋂
i=1

SM ci−1

Ii
.

In other words,M is a positroid if and only if the following holds : H ∈ M if and only if H ≥t It for
any t ∈ [n].

Let’s see an example. LetM be a positroid indexed by a decorated permutation [5, 3, 2, 1, 4, 6], with
col(6) = −1. Then we get : I1 = {1, 2, 4, 6}, I2 = {2, 4, 5, 6}, I3 = {3, 4, 5, 6}, I4 = {4, 5, 6, 2}, I5 =
{5, 6, 1, 2}, I6 = {1, 2, 4, 6}.

M = {{1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.
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3 Matroid operations via decorated permutations
In this section we will see that matroidal contraction, deletion and dual for positroids can be described via
operations on decorated permutations. In this section, we will use − for the set subtraction.

Definition 11 Given a matroidM on set E. The contraction of T ⊂ E fromM is defined as

M/T = {I − T : T ⊂ I ∈M}.

The deletion of T ⊂ E fromM is defined as

M\T = {I ∈M : I ⊂ (E − T )}.

The restriction ofM to T ⊂ E is defined as

M|T =M\(E − T ).

Fix a decorated permutation π: = (π, col). Let (I1, · · · , In) be the corresponding Grassmannian neck-
lace andM the corresponding positroid. Now look at (J1 := π−1(I1), · · · , Jn := π−1(In)). They also
form a necklace. We will call this the upper Grassmann necklace of π. So we have the following theorem.

Theorem 12 ((O1)) Pick a decorated permutation. π:. Then we have the corresponding Grassmann
necklace and upper Grassmann necklace I = (I1, · · · , In),J = (J1, · · · , Jn). Then Ji = π−1(Ii) for
all i ∈ [n] where π: = (π, col). And we have the equality

n⋂
i=1

SM ci−1

Ii
=

n⋂
i=1

˜SM
ci−1

Ji
.

As a corollary, we now know how to describe taking the dual of positroids in terms of decorated
permutations.

Corollary 13 LetM be a positroid indexed by π: = (π, col). LetM′ be a matroid obtained by taking
the dual ofM. ThenM′ is a positroid andM′ is indexed by (π−1,−col).

Now let’s show how to describe contractions of positroids via decorated permutations. Let M be a
positroid indexed by π:. DenoteM′ beM/{j}, j ∈ [n]. Let µ: be the decorated permutation indexing
M′. We have an algorithm to obtain µ: directly from π:.

For i 6= j, if col(i) is defined, col′(i) is defined as the same value. For other i ∈ [n], if µ(i) = i,
col′(i) = +1. Let’s try out the algorithm for π = [6, 1, 4, 8, 2, 7, 3, 5] and j = 3.

1. µ = [6, 1, 4, 8, 2, 7, 3, 5].

2. µ(3) = 3, q = 4. Now a = 4, µ = [6, 1, 3, 8, 2, 7, 3, 5].

3. Since q = a = 4, µ(4) = 4, q = π(4) = 8. Now a = 5, µ = [6, 1, 3, 4, 2, 7, 3, 5].

4. Since q 6= a, π(5) = 2 <6 3, µ(5) = min6(2, 8) = 8, q = max6(2, 8) = 2. Now a = 6, µ =
[6, 1, 3, 4, 8, 7, 3, 5].
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Algorithm 1 When π(j) 6= j andMµ: =Mπ:/{j}, obtaining µ: = (µ, col′) from π: = (π, col).
µ⇐ π
col′ ⇐ col
µ(j)⇐ j
col′(j) = 1
a⇐ j + 1
q ⇐ π(j)
while π(a) 6= j do

if q = a or q <a+1 π(a) <a+1 j then
µ(a)⇐ q
q ⇐ π(a)
if µ(a) = a then
col′(a) = 1

end if
end if
a⇐ a+ 1

end while
µ(a)⇐ q

5. Since q 6= a, π(6) = 7 <7 3, µ(6) = min7(2, 7) = 7, q = max7(2, 7) = 2. Now a = 7, µ =
[6, 1, 3, 4, 8, 7, 3, 5].

6. Since π(7) = 3, µ(7) = 2. We are finished and the result is µ = [6, 1, 3, 4, 8, 7, 2, 5].

7. col′(3) = +1, col′(4) = +1.

The deletion ofM by {j} can also be obtained directly by an algorithm. See (O2). It will be interesting
to check how the contraction and restriction of positroids can be described in terms of -diagrams, which
we will show the definition in the next section.

Problem 14 How can contraction and restriction of positroids described in terms of -diagrams?

4 Positroids and Forbidden Minors
Another important property of positroids is that they can be characterized via forbidden minors. A matroid
is called a minor ofM if it can be obtained by sequence of restrictions and contractions fromM.

Lemma 15 LetM be a matroid of rank k over [n].M is a positroid if and only if it satisfies the following
condition:

Let T be any k−2 element subset of [n]. For each a, b, c, d ∈ [n]−T be such that a <t b <t c <t d for
some t ∈ [n], the following relation holds. T ∪{a, c}, T ∪{b, d} ∈ M if and only T ∪{a, b}, T ∪{c, d} ∈
M or T ∪ {a, d}, T ∪ {b, c} ∈ M. See Figure 1.

Notice that the above condition can also be written as the following. Let T be any k− 2 element subset
of [n]. For any 4 element subset Q ⊆ [n]− T , (M/T )|Q is a positroid.
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Let’s find all the matroids of rank 2 over [4] that are not positroids:

{12, 34, 13, 23, 14}, {12, 34, 14, 23, 24}, {12, 34, 14, 23}.

By Lemma 15 and remark following it, we can conclude as the following.

Theorem 16 ((O1)) A matroid is a positroid if and only if it has no minors among the above list.

We can look at the nonnegative Grassmannian over finite fields. The positive part of a Fq when q is
prime is defined as set of elements that can be expressed as a square of a nonzero element inside that field.
Denote this as F+

q . So we can define cells in the nonnegative Grassmannian of Fq . Using similar notation
as before,

StnnM (Fq) := {GL+
k (Fq) •A ∈ Grkn(Fq)|∆I(A) ∈ F+

q for I ∈M,∆I(A) = 0 for I 6∈ M}.

Fq-positroid is defined as matroidM such that StnnM (Fq) is nonempty. The Plücker relations behave
nicely in F3 and F7. F3,F7 positroids are special cases of positroids, and can also be expressed in terms
of forbidden minors.

Proposition 17 A positroid is a F3,F7-positroid if and only if it avoids minor {12, 34, 13, 23, 14, 24}.

5 Plabic graphs and -diagrams.
In (P), Postnikov defined plabic graphs and -diagrams. There are a number of plabic graphs that can be
used to paramatrize the corresponding positroid strata. And for each positroid strata, there exists a unique
plabic graph that corresponds to a combinatorial object called the -diagram. So there is a bijection
between positroids and -diagrams. In (OPS), we used plabic graphs to describe collection of maximal
weakly separated sets of Leclerc and Zelevinsky. And in the next section, we will use -diagrams to count
a related invariant on weakly separated sets. For more details on plabic graphs and -diagrams, see (P).

Definition 18 A planar bicolored graph, or simply a plabic graph is a planar undirected graph G drawn
inside a disk. The vertices on the boundary are called boundary vertices. All vertices in the graph are
colored either white or black.

A plabic graph is associated with a decorated permutation. The positroid corresponding to the decorated
permutation is exactly the positroid that the plabic graph gives a parametrization of the corresponding
strata.
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Definition 19 For a plabic graph G, a trip(one-way trip in notion of (P)) is a directed path T in G such
that T joins two boundary vertices and satisfies the following rules of the road. Turn right at a black
vertex, and turn left at a white vertex. Trip permutation πG ∈ Sn is defined such that πG(i) = j whenever
trip that starts at the boundary vertex labeled i ends at boundary vertex j. Decorated trip permutation
π:
G is defined similarly.

We have following 3 moves on plabic graphs.

(M1) Pick a square with vertices alternating in colors. Then we can switch the colors of all the vertices.
See Figure 2.

Fig. 2: (M1) Square move

(M2) For two adjoint vertices of the same color, we can contract them into one vertice. See Figure 3.

Fig. 3: (M2) Unicolored edge contraction

(M3) We can insert or remove a vertice inside any edge. See Figure 4.

Fig. 4: (M3) Middle vertex insertion/removal

Now we define reducedness of plabic graphs.

Definition 20 A strand i ∈ [n] for a plabic graph is given by the trip starting at π−1(i) and ending at i.
Then the plabic graph is reduced if it satisfies the following two properties:

1. Each strand does not self-intersect.

2. For any two strands that intersect, the direction they are heading should be opposite of each other.
That is, if they intersect at points a and b, the one should be heading from a to b and another from
b to a.

Really nice about the property of being a plabic graph is that it is closed under certain combinatorial
moves. The same goes for being a reduced plabic graph.

Theorem 21 ((P)) Let G and G′ be two (reduced) plabic graphs with the same number of boundary
vertices. Then the following claims are equivalent:
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• G can be obtained from G′ by moves (M1)-(M3).

• These two graphs have the same decorated trip permutation π:
G = π:

G′ .

We now define what is called a -diagram, which encodes one unique reduced plabic graph of the
corresponding positroid. They are nice combinatorial objects that can be used to easily compute various
invariants of the corresponding positroid. One example is that the dimension of the strata equals the
number of dots plus one. Another example will be introduced in the next section.

Definition 22 A Young diagram of shape λ is called a -diagram if it satisfies the following property.
Each box is either empty or filled with one dot. For any three boxes indexed (i, j), (i′, j), (i, j′), where
i′ < i and j′ < j, if boxes on position (i′, j) and (i, j′) contain a dot inside, then the box on (i, j) also
contains a dot. This property is called the -property.

Fig. 5: -property and an example of a -diagram

The boundary of the diagram forms a lattice path from the upper-right corner to lower-left corner.
Label the n steps in this path by numbers 1, · · · , n consecutively. Define I(λ) as the set of lables of k
vertical steps in the path. Put dots on each edge of the boundary path. Connect all dots on same row and
connect all dots on the same column. Then we get a -graph.

Definition 23 -graph is obtained from a -diagram in the following way. Put a dot on center of each edge
of the boxes on the southeast boundary of the diagram, and label them 1, 2, · · · starting from northeast to
southwest. Call these the boundary vertices. Now for each dot inside the -diagram, draw a horizontal
line to its right, and vertical line to its bottom until it reaches the boundary of the diagram.

Now below is the method to check which decorated permuation the -diagram corresponds to. That is,
it tells us which positroid the -diagram corresponds to.

Theorem 24 ((P)) Define a map χ that sends a -diagram to a decorated permutation π: = (π, col)
defined as following. Set π(i) = j where we reach j when we start from i and follow the rules of the road
in Figure 7. If π(i) = i, set col(i) = −1 if i is on a horizontal edge, col(i) = 1 if otherwise. Then χ
is a bijection between -diagrams having lower boundary I and decorated permutations having I1 = I ,
where I = (I1, · · · , In) is the Grassmann necklace of the decorated permutation.
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Fig. 6: Example of a -graph

Fig. 7: Rules of the road

6 Weak Separation and the conjectures of Leclerc and Zelevin-
sky

In this section, we introduce Leclerc and Zelevinsky’s conjecture on weakly separated sets, which was
recently generalized and proved in (OPS) using positroids and plabic graphs. And then, we show a nice
invariant related to this problem, counted using -diagrams.

We say that α1, α2, · · · , αn are circularly ordered if there exists α ∈ [n] such that α1 <α · · · <α αn.

Definition 25 ((LZ)) Let I, J ∈
(
[n]
k

)
. We say that I and J are weakly separated if there does not exist

i1, i2 ∈ I \ J, j1, j2 ∈ J \ I such that i1, j1, i2, j2 are circularly ordered. For C ⊂
(
[n]
k

)
, we call C a

maximal weakly separated collection if it is maximal among collections such that each of its elements are
pairwise weakly separated.

Leclerc and Zelevinsky observed the following:

Proposition 26 ((LZ)) Let S ∈
(

[n]
k−2

)
and let α, β, γ, δ ∈ [n] \ S be circularly ordered. Suppose that a

maximal weakly separated collection C contains Sαβ, Sβγ, Sγδ, Sδα and Sαγ. Then C′ := C \{Sαγ}∪
{Sβδ} is also a maximal weakly separated collection.

In the above proposition, we say that C′ and C are obtained from each other by a flip. If C′ can be
obtained from C by sequence of flips, we say that C′ and C are flip-connected.

Leclerc and Zelevinsky formulated two challenging conjectures on maximal weakly separated collec-
tions and they were recently proved in (OPS). The main tool is to relate maximal weakly separated
collection and plabic graphs. There is a nice way to label the faces of plabic graphs corresponding to
positroidM ⊆

(
[n]
k

)
with elements of

(
[n]
k

)
. Since each strand divides a disk into two parts, each face is

either on the left side or the right side of a strand. For each face we label that face with J ∈
(
[n]
k

)
such
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Fig. 8: Labeling faces of a plabic graph

that i ∈ J if and only if there is a strand containing that face on its left side. See figure 8 for an example.
So given a plabic graph G, we define FG as the set of labels that occur on each face of that graph.

Theorem 27 ((OPS)) C ⊆
(
[n]
k

)
is a maximal weakly separated collection if and only if it is FG for some

G a reduced plabic graph of positroidM =
(
[n]
k

)
.

For example, {123, 234, 345, 456, 561, 612, 236, 235, 136, 356} is a maximal weakly separated collec-
tion of

(
[6]
3

)
. And one can check from Figure 8 that this collection comes from labeling the faces of a

plabic graph of the positroid
(
[6]
3

)
.

In (P), it shown that the number of faces of reduced plabic graphs of the same positroid are the same,
and that they equal the dimension of the corresponding strata. So as a corollary of the theorem, the two
conjectures of Leclerc and Zelevinsky follows.

Corollary 28 ((OPS)) Every maximal weakly separated collection in
(
[n]
k

)
has cardinality k(n− k) + 1.

Any such two maximal weakly separated collections are flip-connected.

One can observe that
(
[n]
k

)
is a positroid corresponding to the top cell of the nonnegative part of the

grassmannian. The corresponding strata has dimension k(n− k) + 1. This number can also be read from
the corresponding -diagram, which looks like a k by n− k rectangle with dots inside all the boxes.

Definition 29 LetM be a positroid having grassmann necklace I = (I1, · · · , In). C ⊆ M is called a
weakly separated collection inside M if it contains all Ii for i ∈ [n] and each pair of its elements are
weakly separated. Maximal weakly separated collection is defined as maximal collections among weakly
separated collections ofM.

Then we have the following generalization for general positroids:

Theorem 30 ((OPS)) Fix any positroidM. C ⊆ M is a maximal weakly separated collection if and only
if it is FG for some G a plabic graph ofM.

Corollary 31 ((OPS)) Every maximal weakly separated collection ofM has cardinality dim(SM). Any
two maximal weakly separated collections ofM are flip-connected.
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Fig. 9: Labeling the dots of a -diagram cooresponding to the top cell, a lattice path matroid.

Now let’s define FM as
⋃
G,plabic graph ofM FG . This set is interesting because when Scott showed

that the coordinate ring of the Grassmannian has a cluster algebra structure in (S), one of the two main
key steps was to show that F([n]

k ) =
(
[n]
k

)
. Now what follows from the above theorem is describtion of

FM:

Corollary 32 I ∈ FM if and only if I is weakly separated with I1, · · · , In, where I = (I1, · · · , In) is the
grassmann necklace ofM.

Now we will see a nice method to compute the cardinality of FM using -diagrams.

Definition 33 Let us be given a -diagram. Choose k-columns and k-rows. Then we get k2 positions,
and if there are dots in every positions, we call that a k-by-k full-minor. We say that every -diagram has
exactly one 0-by-0 full-minor.

Theorem 34 Fix a positroidM. Letmi denote the number of i-by-i full-minors inside the corresponding
-diagram. Then |FM| =

∑∞
i=0mi.

For each dot in the -diagram, if we label the dot with sum of number of all i-by-i minors having that
dot as the upper-left corner for all i, we get something more interesting. For top cells and lattice path
matroids( When -diagram consists of a skew-young diagram with dots inside all the boxes.), we get the
Pascal’s triangle. This labeling gives us another way to compute |FM|.

Proposition 35 |FM| can also be obtained by adding 1 to the sum of all the labels of the dots given as
above.

Look at Figure 9 for an example. If we look at the left figure corresponding to the top cell
(
[6]
3

)
, we can

get |F([6]
3 )| = 1 + 5 ∗ 1 + 2 ∗ 1 + 3 ∗ 2 + 6 = 20.

It would be interesting to find a way to count the number of plabic graphs of a given cell. That is, a way
to count the number of maximal weakly separated collection of a positroid.

Problem 36 What is the number of maximal weakly separated collection of a positroidM?
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Blocks in Constrained Random Graphs with
Fixed Average Degree

Konstantinos Panagiotou
Max-Planck-Institute for Informatics, 66119 Saarbrücken, Germany

This work is devoted to the study of typical properties of random graphs from classes with structural constraints, like
for example planar graphs, with the additional restriction that the average degree is fixed. More precisely, within a
general analytic framework, we provide sharp concentration results for the number of blocks (maximal biconnected
subgraphs) in a random graph from the class in question. Among other results, we discover that essentially such
a random graph belongs with high probability to only one of two possible types: it either has blocks of at most
logarithmic size, or there is a giant block that contains linearly many vertices, and all other blocks are significantly
smaller. This extends and generalizes the results in the previous work [K. Panagiotou and A. Steger. Proceedings of
the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’09), pp. 432-440, 2009], where similar
statements were shown without the restriction on the average degree.

Keywords: Random Graphs, Boltzmann Sampling, Generating Functions

1 Introduction
In the early 60’s Erdős and Rényi (5) introduced the random graph Gn,M , which is obtained by adding M
random edges to an initially empty graph with n labeled vertices. Since then, the Gn,M has been studied
extensively, and in the meanwhile there have been thousands of papers devoted to the analysis of its
typical properties. One property that has been of particular interest is the evolution of Gn,M . Of course,
when M = 0 then Gn,M is just the empty graph, and when M =

(
n
2

)
then Gn,M is the complete graph –

but are there critical values in between where interesting changes happen? The answer is yes, and many
such critical values of M have been discovered. Let us mention here only an example (the famous “phase
transition”), and we refer the reader to the excellent monograph (3) of Bollobás for many other exciting
results. Let M = cn. If c < 1, then Gn,M has with high probability(i) connected components of size
O(log n). On the other hand, if c > 1, then the largest connected component of Gn,M containts whp
Θ(n) vertices, and the second largest component contains only O(log n) vertices. In other words, the
connectivity structure of Gn,M changes dramatically when we “pass” the critical value c = 1.

Much less is known if we turn our attention to graph classes with structural constraints, like for example
planar graphs. How different does a random planar graph with 3

2n edges look like from a random planar
graph with 5

2n edges? In (11) the authors Gerke, McDiarmid, Steger and Weissl showed that for all

(i) whp, with probability tending to 1 when n→∞

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
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m = bcnc, where 1 < c < 3, a random planar graph with m edges contains linearly many copies of any
given planar graph. Moreover, they showed that the probability of connectedness is bounded away from 0
and 1. Except of these results we currently have only very sparse information about how the evolution of
a random planar graph does look like, and how random planar graphs with fixed average degree typically
behave.

The goal of this paper is to present a unified analytic framework, which allows us to make precise state-
ments about random graphs with fixed average degree drawn from a specified graph class. Our framework
includes specifically the classes of labeled outerplanar, series-parallel, and planar graphs, and more gen-
erally every class for which we have sufficient information about the generating function enumerating this
class. The parameter that we will study here is the block structure. Denote for any graph G by b(`; G) the
number of blocks, i.e. maximal biconnected subgraphs, that contain exactly ` vertices inG, and abbreviate
b(`0 . . . `1; G) =

∑`1
`=`0

b(`; G). Moreover, denote by lb(G) the number of vertices in the largest block
of G. Let C be a graph class, and let Cn,m be a random graph from C with n vertices and m edges. We
shall show that whp Cn,m belongs to one of the following categories, which differ vastly in complexity:

• lb(Cn,m) ∼n cn, where c = c(C) > 0 is given explicitly, and the second largest block contains nα

vertices, where α = α(C) < 1 (where x ∼n y means x = (1 + o(1))y for large n), or
• lb(Cn,m) = O(log n).

Moreover, we will show sharp concentration results for the quantities b(`; Cn,m) for all 2 ≤ ` ≤ n. As
a corollary we will obtain that for all c ∈ (1, 3) random planar graphs with bcnc edges belong to the
first category, while random outerplanar and series-parallel graphs with fixed average degree belong to
the second category. Finally, we will demonstrate that there are graph classes such that there a exists a
critical density c0 where the category to which a random graph with cn edges belongs to is different for
c > c0 and c < c0. We shall discuss this and related issues in more detail later.

Before we present our results in detail we need a technical definition. For any setC of complex numbers
and any δ > 0 let N(C, δ) be the set of all complex numbers that are closer than δ to some point of C.
We shall say that a function F (x, y) is of algebraic type for y in a compact subset S of (0,+∞) if there
exist δ > 0 and 0 < θ < π/2 such that

F (x, y) = P (x, y) +
(

1− x

ρ(y)

)−α
· (g(y) + E(x, y)), (1)

where

• P (x, y) is a polynomial,
• g(y) is analytic in N(S, δ), and g(y) 6= 0,
• ρ(y) has continuous third partial derivatives in N(S, δ), and α 6∈ Z≤0,
• E(x, y) is analytic in ∆ \ {ρ(y)} and E(x, y) = o(1) as x → ρ(y) uniformly for all y ∈ N(S, δ),

where
∆ = {z : |z| ≤ ρ(y) + δ, |arg(z − ρ(y))| ≥ θ}.

Functions of the algebraic type are commonly encountered in modern analytic combinatorics, and the
above assumptions, although quite technical, are needed to unfold the full power of the available machin-
ery. We refer the reader to Flajolet’s and Sedgewick’s book (7) for an excellent treatment and numerous
applications. All functions that we shall consider in this work are of algebraic type.
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The following definition describes precisely the graph classes that will be of interest in this paper, and
is a generalization of a similar definition in (13).

Definition 1 Let C be a class of labeled connected graphs and let B ⊂ C be the class of biconnected
graphs in C. The class C is called nice if it has the following two properties.

(i) Let C ∈ C and B ∈ B. Then the graph obtained by identifying any vertex of C with any vertex
from B is in C. Moreover, all graphs in C \ B can be constructed in such a way. Finally, the graph
consisting of a single isolated vertex is in C.

(ii) Let B(x, y) be the exponential generating function enumerating the graphs in C, where x marks the
vertices, and y marks the edges. Then ∂

∂xB(x, y) is of algebraic type for y ∈ [0,+∞), where we
will write R(y) := ρ(y), αB := α, and gB(y) := g(y).

The following statement says that the egf enumerating a nice class is also of algebraic type. We will use
it without any further reference.

Proposition 1 Let C be a nice class, and let SC be a subinterval of SB such that for all y ∈ SC it holds
R(y)B′′(R(y), y) 6= 1. Then x ∂

∂xC(x, y) is of algebraic type in SC .

In the proposition above we show that x ∂
∂xC(x, y), which is the exponential generating function enu-

merating vertex-rooted graphs from C, is of algebraic type. We do this solely for technical convenience
(instead of making a similar statement for C(x, y)): in what follows, we will study asymptotic properties
of random graphs from Cn, which do not depend on the root label. Hence, as there are exactly n distinct
ways to root each graph in Cn, any random variable defined on rooted graphs from Cn will be identically
distributed with the corresponding random variable defined on graphs from Cn.

Let us define some important notation that we shall use in the remainder of the paper without any
further reference. We will denote by R, ρ the singularities of ∂

∂xB(x, y) and x ∂
∂xC(x, y), and by αB , α

the critical exponents of the corresponding singular expansions (see (1)). Finally, we will write gB , g for
the function g in the definition (1), for ∂

∂xB(x, y) respectively x ∂
∂xC(x, y).

In order to formulate our main result we need one additional technical definition. For any function f(u)
we will write ∂uf(u) = d

duf(u). Given a such a function f(u), which is analytic at u = 1 and assumed
to satisfy f(1) 6= 0, we set

m(f) =
∂uf(1)
f(1)

, and v(f) =
∂2
uf(1)
f(1)

+ m(f)−m(f)2. (2)

Theorem 1 Let C be a nice class. Suppose that for all β ∈ SC

• v(ρβ) 6= 0, where ρβ(y) := ρ(βy) and
• ρβ(1) < |ρβ(u)| for all u ∈ {z | |z| = 1, z 6∈ N(S, δ)}.

Letm = b−βρ
′(β)

ρ(β) n+ βg′(β)
g(β) c, and let Cn,m be a random graph from Cn,m. Let c(β) = R(β)B′′(R(β), β).

Then the following is true with high probability.

(I) If c(β) > 1 then let 0 < τ(β) < R(β) be given by τB′′(τ, β) = 1, and set ξ(β) = τ(β)/R(β).
Then we have for all ε > 0:

1. lb(Cn,m) ≤ (|α|+ ε) log1/ξ(β) n.
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2. b(`; Cn,m) ∼ b`n for all 2 ≤ ` ≤ (1− ε) log1/ξ(β) n, where

b` = [x`−1]B′(x, β) · τ `−1 ∼`
gB(β)
Γ(αB)

· `αB−1ξ(β)`−1, (3)

3. b
(
(1− ε) log1/ξ(β) n . . . (|α|+ ε) log1/ξ(β) n; Cn,m

)
≤ n2ε.

(II) If c(β) < 1, then lb(Cn,m) ∼ (1− c(β))n. Moreover, we have αB < −1 and

1. b(`; Cn,m) = 0 for all ` = ω(n−1/αB ) and ` < lb(Cn),

2. b(`; Cn,m) ∼ b`n for all 2 ≤ ` and ` = o(( n
logn )1/(1−αB)), where

b` = [x`−1]B′(x, β) ·R(β)`−1 ∼`
gB(β)
Γ(αB)

· `αB−1, (4)

3. b(` . . . δ`; Cn,m) ∼ b`,δn for all 2 ≤ ` and ` = o(( n
logn )−1/αB ), where δ > 1 and

b`,δ =
δ∑̀
s=`

[xs−1]B′(x) ·R(β)s−1 ∼`
gB(β)

Γ(αB + 1)
· (1− δαB )`αB . (5)

Let us discuss a few implications of the theorem above. Exploiting the results in (12) we obtain as a
corollary the following result for random planar graphs with fixed average degree.

Corollary 1 Let Pn,m be a graph drawn uniformly at random from the set of all labeled connected planar
graphs with n vertices and m edges, where m = bcnc and c ∈ (1, 3). Then Pn,m is with high probability
of type (II).

By applying the results in (2) we obtain statements about random outerplanar and series-parallel graphs.

Corollary 2 Let On,m be a graph drawn uniformly at random from the set of all labeled connected
outerplanar graphs with n vertices and m edges, where m = bcnc and c ∈ (1, 2). Then On,m is with
high probability of type (I). The same is true for random series-parallel graphs.

One natural question that arises in the context of Theorem 1 is the following: is there a nice graph class
such that there a exists a critical density c0 where the type of a random graph with cn edges is different
for c > c0 and c < c0? The following result gives an affirmative answer.

Theorem 2 Let B be the class of biconnected planar graphs, and set B̃ = B ∪ {K8}, where K8 is the
complete graph with 8 vertices. Then the class C̃ in which every graph contains blocks only from B̃ is
nice, and there is a c0 ≈ 3.9995 such that

• if c > c0, then C̃n,bcnc is with high probability of type (I),
• if c < c0, then C̃n,bcnc is with high probability of type (II).

In fact, classes with two critical densities can be constructed, such that the type is different in each two
neighboring intervals. We do not give the explicit construction here, but these graph classes seem to be
very artificial. This raises the following questions. First, are there graph classes with arbitrarily many
critical densities? And second, are there natural classes with more than one critical density? The definition
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of the term “natural” is of course a matter of taste – a possible candidate would be to require the class to
be hereditary, i.e., closed under taking subgraphs.

Remark The discussion in this paper can easily be adapted to cover an even wider class of functions.
Following (10), we say that a function is of algebraic-logarithmic type, if

F (x, y) = g(y) ·
(

1− x

ρ(y)

)α(y)

·
(

x

ρ(y)
log
(

1− z

ρ(y)

))β(y)

· (1 + E(x, y)),

where, in addition to the properties of (1), α(y) and β(y) have continuous third partial derivatives in
N(S, δ). With a little more technical work, and using the local limit theorems provided in (10), a more
general version of Theorem 1 can be proved. We leave the straightforward but tedious details to the reader.

Notation We shall fix some additional notation that we will use throughout without further reference.
Let G be any graph. We will denote by vG the number of vertices in G, and by eG the number of edges
in G. Moreover, for a graph class C we will denote by C• the class that contains vertex-rooted graphs
from C, i.e., pairs (C, v), where C ∈ C, and v is a vertex of C. Finally, we will denote by C•(x, y) the
egf for C•, i.e., C•(x, y) = x ∂

∂xC(x, y).

2 Preliminaries
In this section we collect some well-known facts and make some observations that we will exploit later.
The following theorem gives us information about the coefficients of algebraico-logarithmic functions.

Theorem 3 ((6)) Let F (x, y) be as in (1). Then, uniformly for y ∈ N(S, δ),

[xn]F (x, y) ∼ g(y)
Γ(α)

· nα−1 · ρ(y)−n,

where Γ(z) =
∫∞
0
tz−1e−tdt denotes the Gamma-function.

The next statement describes an important combinatorial property of nice graph classes, and is taken
from (13). Let us introduce some notation first. We denote by Z the graph class consisting just of one
graph that contains a single labeled vertex. For two graph classes X and Y , we write “G = X × Y” if
there is a 1-1 correspondence between the graphs in G and the class formed by the cartesian product of X
and Y , followed by a relabeling step, so as to guarantee that all labels are distinct for an object in X ×Y .
Moreover, Set(X ) is the class in which every graph can be represented by set of graphs in X . Finally, the
class X ◦ Y consists of all graphs that are obtained from graphs from X , where each vertex is replaced
by a graph from Y . This set of combinatorial operators (cartesian product, set, and substitution) appears
frequently in modern theories of combinatorial analysis (4; 7), as well as in systematic approaches to
random generation of combinatorial objects (4; 8). For a very detailed description of these operators and
numerous applications we refer to (7) and further references therein.

Lemma 1 Let C be a graph class having property (i) of Definition 1. Then

C• = Z × Set(B′ ◦ C•) and C•(x, y) = xeB
′(C•(x,y),y).
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2.1 Central & Local Limit Theorems
Let (pn,k)n≥1 be a sequence of discrete probability distributions with mean µn and standard deviation σn.
We say that the pn,k obey a central limit theorem (CLT) if there is a sequence εn → 0 such that

sup
x∈R

∣∣∣∣∣∣σn
∑

k≤µn+xσn

pn,k −
1√
2π

∫
t≤x

e−t
2/2dt

∣∣∣∣∣∣ ≤ εn. (6)

Note that a central CLT gives us very precise information about the (cumulative) distribution of the se-
quences pn,k. However, in general it fails to give us information about the individual probabilities. In this
case we are interested in a local limit theorem (LLT), which shows pointwise convergence. More precisely,
the sequence (pn,k)n≥1 is said to obey a LLT if there is a sequence εn → 0 such that

sup
x∈R

∣∣∣∣σnpn,bµn+xσnc −
1√
2π
e−x

2/2

∣∣∣∣ ≤ εn. (7)

The statement below provides us with a CLT in a general setting, that is commonly encountered in the
context of analytic combinatorics.
Theorem 4 (7, Theorem IX.8) Let (Xn)n≥1 be a sequence of discrete random variables supported by
N, with associated probability generating functions pn(u). Assume that, uniformly in a fixed complex
neighborhood Ω of 1, for sequences βn, κn → +∞, there holds

pn(u) = A(u)B(u)βn
(
1 +O(κ−1

n )
)
,

where A(u), B(u) are analytic at u = 1, and A(1) = B(1) = 1. Moreover, assume that v(B) 6= 0. Then,
Xn satisfies a CLT with εn = O(κ−1

n + β
−1/2
n ), and

µn = βnm(B) + m(A) +O(κ−1
n )

σ2
n = βnv(B) + v(A) +O(κ−1

n ).

Under a very light additional technical assumption, a similar LLT theorem can be shown. This assumption
will be fulfilled in all our applications, and is typical in the context of analytic combinatorics.
Theorem 5 (7, Theorem IX.14) Suppose that a random variable satisfies all conditions of Theorem 4.
Moreover, assume the existence of a uniform bound

|pn(u)| ≤ K−βn (8)

for some K > 1 and all u ∈ {|z| = 1 | z 6∈ Ω}. Then, Xn satisfies a LLT with µn, σn and εn as given in
Theorem 4.

2.2 Bounding Tail Probabilities
In our proofs we will often bound the probability that certain random variables assume values far away
from their expectation. The next lemma states the well-known Chernoff bounds.
Lemma 2 Let X be a binomially distributed variable. Then, for every 0 < ε < 1 we have

Pr [X 6∈ (1± ε)E [X]] ≤ 2e−ε
2E[X]/3.

The same bounds are true for Poisson distributed random variables.
Lemma 3 Lemma 2 is true when X is distributed like a Poisson variable.
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3 Sampling & Asymptotics
Let C be a nice graph class such that C•(x, y) is of algebraic type in a compact set S ⊆ (0,+∞). Recall
that for every fixed y ∈ S the quantity ρ(y) denotes the singularity of C•(x, y). Set

λC(y) = B′
(
C•(ρ(y), y), y

)
, (9)

where B(x, y) is the exponential generating function enumerating the biconnected graphs in C. Note that
a priori it is not clear whether λC(y) exists for all y ∈ S. However, as we shall argue later, the existence
is an inherent property of nice classes. Moreover, let ΓB′(x, y) be a randomized algorithm that generates
graphs from B′ according to the following distribution:

∀B′ ∈ B′ : Pr [ΓB′(x, y) = B′] =
xvB′ yeB′

B′(x, y)
, (10)

provided that B′(x, y) exists. The above distribution is called the Boltzmann distribution (or Gibbs distri-
bution), and was introduced in the context of the random generation of combinatorial objects by Douchon,
Flajolet, Louchard and Schaeffer in 2004, see (4). With this notation consider the following algorithm.

ΓC•(β) : γ ← a single node r
k ← Po(λC(β)) (?)
for j = 1, . . . , k
γ′ ← ΓB′

(
C•(ρ(β), β), β

)
, discard the labels of γ′ (??)

γ ← merge γ and γ′ at their roots
foreach vertex v 6= r of γ
γv ← ΓC•(β), discard the labels of γv

replace all nodes v 6= r of γ with γv
return γ, where the vertices are labeled uniformly at random

A similar version of this algorithm, for the special case β = 1, was studied already in (13). There the
authors determined the number of blocks in random graphs with constraints, but they did not consider any
restriction on the average degree. Here we are interested in general β, which makes the analysis more
involved. The following lemma will be one of the main tools in our analysis, and says that with some
reasonable probability the algorithm above will output a graph from C•n,m, for a very specific m = m(β).

Lemma 4 Let C be a nice graph class satisfying the assertions of Theorem 1. For any β ∈ SC there is a
c > 0 such that

Pr[ΓC•(β) ∈ C•n,bµ(β;n)c] ∼ cn
α−3/2 , where µ(β; n) = −βρ

′(β)
ρ(β)

n+
βg′(β)
g(β)

. (11)

Proof: The proof consists of three parts. First, we will show that ΓC• is well-defined for any β ∈ SC ,
i.e., we will show that λC(β) and B′(C•(ρ(β), β), β) exist. Second, we argue that for any γ ∈ C•

Pr[ΓC•(β) = γ] =
1

C•(ρ(β), β)
· ρ(β)vγ · βeγ

vγ !
. (12)
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Finally, we show that there is a constant C > 0 such that

|C•n,bµ(β;n)c| ∼ C · n
α−3/2 · ρ(β)−n · β−bµ(β;n)c · n!. (13)

Putting all three facts together proves then the statement. To see the first claim, apply Lemma 1 and note
that ψ(u) = ue−B

′(u,y) is the functional inverse of C•(x, y). Let R(y) be the singularity of B′(x, y). By
the Analytic and Singular Inversion Lemmas in (7, Lemma IV.2 and IV.3), for any y ∈ SC , the singularity
of C•(x, y) depends on whether ψ(u) is strictly monotone:

• if there is a unique 0 < τ(y) < R(y) such that ψ′(τ(y)) = 0, or equivalently, τ(y)B′′(τ(y), y) = 1,
then ρ(y) = ψ(τ(y)) and C•(ρ(y), y) = τ(y).
• Otherwise, ψ is strictly monotone in [0, R(y)), and then ρ(y) = ψ(R(y)) = R(y)e−B

′(R(y),y).
Moreover, we have in this case R(y)B′′(R(y), y) ≤ 1 and C•(ρ(y), y) = R(y).

Note that in both cases we have C•(ρ(y), y) < ∞. Moreover, in the first case we obviously have
C•(ρ(y), y) < R(y), which implies that λC(y) and B′(C•(ρ(y), y), y) are well-defined. Finally, in
the second case we have that B′′(R(y), y) < ∞, as R(y) > 0. But then, also B′(R(y), y) < ∞ is true,
which implies that also in this case λC(y) and B′(C•(ρ(y), y), y) are well-defined. This completes the
proof of the first part.

The identity (12) follows directly from the composition rules for Boltzmann samplers in (9) and (4), and
the decomposition of nice classes provided in Lemma 1. To prove (13) consider the function Cβ(x, y) =
C•(x, βy), and note that for any y such that βy ∈ SC its singularity is given by ρβ(y) = ρ(βy). Now,
consider a random variable X with probability generating function

pn(u) =
[xn]Cβ(x, u)
[xn]Cβ(x, 1)

,

and note that

[us]pn(u) = Pr[X = s] =
|C•n,s| 1n! · β

s

[xn]Cβ(x, 1)
. (14)

In the remainder we will estimate [us]pn(u) and [xn]Cβ(x, 1) directly, which will yield (13). By applying
Theorem 3 we obtain uniformly for u such that βu ∈ SC

pn(u) ∼ g(βu)
g(β)

(
ρβ(1)
ρβ(u)

)n
.

Note that the assertions of Theorem 4 are fulfilled, if we choose A(u) = g(βu)
g(β) , B(u) = ρβ(1)

ρβ(u) and
κn = ω(1), due to our assumptions. Moreover, from our assumptions follows that |ρβ(u)| = |ρ(βu)| >
ρ(β) = ρβ(1) for u ∈ {z | |z| = 1, z 6∈ N(S, δ)}, and we may infer that there is a K > 1 such that for all
such u

pn(u) < K−n.

All in all, the assertions of Theorem 5 are fulfilled, and we may conclude that

Pr [Xn = bE [Xn]c] ∼ (2πσn)−1/2,
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where

E [X] = nm(B) + m(A) + o(1) =
−βρ′(β)
ρ(β)

n+
βg′(β)
g(β)

+ o(1),

and σn = Var [Xn] = nv(B) + v(A). This calculations determine the left-hand side of (14). More-
over, by applying Theorem 3 to the expansion of Cβ(x, 1) = C•(x, β) we readily obtain that there is a
constant C ′ > 0 such that

[xn]Cβ(x, 1) ∼ g(β)
nα−1

Γ(α)
ρ(β)−n.

By plugging this and the above estimate for Pr [Xn = bE [Xn]c] into (14) we obtain (13). 2

The following lemma is essentially taken from (13), where the special case “β = 1” was considered. As
the proof is completely analogous, we refer the reader to (13). Before we state it let us introduce a little
additional notation. We follow an approach first used in (14; 1) and consider a sampler that simulates
an execution of ΓC•. Observe that ΓC• makes twice a random choice: first, when it chooses a random
value according to a Poisson distribution in the line marked with (?), and second, when it calls ΓB′ in
the line marked with (??). We now consider an algorithm that takes as input a sequence of non-negative
integers and a sequence of graphs from B′ and uses them instead of making the random choices. More
precisely, let K be an infinite sequence of numbers in N0, and let B′ be an infinite sequence of graphs
from B′. Then the algorithm ΓC•(β; K,B′), which simulates the execution of ΓC• by using the next
unused value from the provided lists, generates obviously every graph from C• with the same probability
as ΓC•, provided that the values in K and the graphs B′ are generated independently and according to
the appropriate probability distributions. In the sequel we will therefore assume that the notation ΓC•(β)
in fact denotes the sampler ΓC•(β; K,B′), where we often will omit the lists (K,B′).

Lemma 5 LetK = {k1, k2, . . . } be an infinite sequence of non-negative integers and letB′ = {B′1, B′2, . . . }
be an infinite sequence of graphs from B′. Suppose that ΓC•(β; K,B′) used the first n values in K and
the first m graphs in B′ to generate a graph γ ∈ C•. Then the following statements are true.

(1) n = |γ|.
(2) m =

∑n
j=1 kj .

(3) m =
∑
`≥2 b(`; γ).

(4) For any ` ≥ 2 we have that b(`; γ) =
∣∣{1 ≤ i ≤ m

∣∣ |B′i| = `− 1
}∣∣.

4 Blocks With ` Vertices in Cn,m
Let Cn,m be a graph with n vertices andm edges, drawn uniformly at random from Cn,m, where C is nice.
First, we apply Lemma 5 to deduce some information on the number of not too “large” blocks.

Lemma 6 Let C be a nice class satisfying the assertions of Theorem 1. Let β ∈ SC , n ∈ N, and set
m = b−βρ

′(β)
ρ(β) n+ βg′(β)

g(β) c and η = C•(ρ(β), β). Moreover, let 0 < ε = ε(n) < 1. For ` ≥ 2 define the
quantities

b` = [x`−1]B′(x, β) · η`−1 and `0 = `0(n, ε) = max
{
` | b`n ≥ 50ε−2α log n

}
.

Then we have for all 2 ≤ ` ≤ `0 and sufficiently large n

Pr [b(`; Cn,m) 6∈ (1± ε)b`n] ≤ e− ε
2

40 b`n. (15)
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Proof: The proof is similar to the proof of the analogous lemma in (13, Lemma 3.1); the sole difference
is that we have to deal here with the fixed number of edges. We give this proof in full detail.

Let ` ∈ [2, `0] and let S ⊂ Cn,m denote the set of labeled graphs in Cn,m whose number of blocks of
size ` is not in the interval (1± ε)b`n. Using Lemma 4 we obtain that there exists a constant ĉ > 0 such
that for all large enough n we have

Pr [Cn,m ∈ S] = Pr
[
ΓC• ∈ S | ΓC• ∈ C•n,m

]
≤ ĉnα+3/2Pr

[
ΓC• ∈ S and ΓC• ∈ C•n,m

]
. (16)

We write S = S1 ∪ S2, where S1 contains all graphs that satisfy
∑
`≥2 b(`; G) 6∈ (1 ± ε

3 )λC(β)n,
and S2 = S \S1. By using Lemma 5, statements (1)-(3), the event “ΓC• ∈ S1 and ΓC• ∈ C•n,m” implies
that the sum of n independent variables distributed like Po(λC(β)) is not in (1 ± ε

3 )λC(β)n. But this

probability is easily seen to be less than e−
ε2
30 λC(β)n, by applying Lemma 3.

Moreover, again by Lemma 5, this time Statement (4), the event “ΓC• ∈ S2 and ΓC• ∈ C•n,m” implies
that a sequence of N = (1± ε

3 )λC(β)n independent random graphs, which are drawn from B′ according
to the distribution (10) with parameters x = C•(ρ(β), β) = η and y = β, contains less than (1 − ε)b`n
or more than (1 + ε)b`n graphs with `− 1 non-virtual vertices. The probability that a single such random
graph has exactly `− 1 non-virtual vertices is precisely

t` := [x`−1]B′(x, β) · η`−1

B′(η, β)
. (17)

Hence, by applying the Chernoff bounds from Lemma 2 we deduce that the number of graphs with `− 1
non-virtual vertices among N independently drawn random graphs is less than (1 − ε

3 )t`N or more

than (1 + ε
3 )t`N with probability at most e−

ε2
30 t`N . The proof completes with N ∈ (1 ± ε

3 )λC(β)n, as
ΓC• ∈ S2, and the assumptions on `0 and ε. 2

Lemma 7 Let C be a nice class satisfying the assertions of Theorem 1. Let β ∈ SC , n ∈ N, and set
m = b−βρ

′(β)
ρ(β) n+ βg′(β)

g(β) c. Moreover, let 0 < ε = ε(n) < 1. For ` ≥ 1 and δ > 1 define the quantities

b`,δ =
δ∑̀
s=`

[xs−1]B′(x) ·R(β)s−1 ∼`
gB(β)

Γ(αB + 1)
· (1− δαB )`αB .

Set `0 = `0(δ) = max
{
` | b`,δn ≥ 50ε−2ααB log n

}
. If R(β)B′′(R(β), β) < 1, then we have for

all 1� ` ≤ `0 and sufficiently large n for a graph Cn,m drawn uniformly at random from Cn,m

Pr [b(` . . . δ`; Cn,m) 6∈ (1± ε)b`,δn] ≤ e− ε
2

40 b`,δn.

Proof: Note that R(β)B′′(R(β), β) < 1 implies that η = R(β) (see e.g. the discussion after (13)), and
that d. Now, by using exactly the same arguments as in Lemma 6 we can prove the first claim; the sole
modification has to be made in (17), where we use t` = b`,δ instead. To see the second claim we apply
Theorem 3 to the singular expansion of B′, and use straightforward Euler-McLaurin summation. 2
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Lemma 8 Let C be a nice class satisfying the assertions of Theorem 1. Let β ∈ SC , n ∈ N, and set
m = b−βρ

′(β)
ρ(β) n+ βg′(β)

g(β) c. IfR(β)B′′(R(β), β) < 1, then for sufficiently large n we have asymptotically
almost surely for a graph Cn,m drawn uniformly at random from Cn.m that lb(Cn,m) ∼ c(β)n, where

c(β) = 1−R(β)B′′(R(β), β).

Moreover, let ωn be a function satisfying lim
n→∞

ωn = ∞. Then, for all n−1/αBωn ≤ ` < lb(Cn,m) we

have b(`; Cn,m) = 0.

Proof: The proof proceeds in two steps: first, apply Lemmas 6 and 7 to count the number of vertices in
blocks with size at most n−1/αBωn. Then, show by tedious but straightforward counting that the most
probable case is that the remaining vertices form exactly one block. The details are similar to the details
in the proof of Lemma 3.4 in (13), and are omitted due to space limitations. 2

5 Graph Classes With Critical Densities
In this section we shall prove Corollary 1 and Theorem 2. Let us recall a few basic facts from (12). Let
B(x, y) be the egf enumerating biconnected labeled planar graphs, and let C(x, y) be the egf enumerat-
ing labeled connected planar graphs. In (12) the authors showed that B′(x, y) and C•(x, y) are of the
algebraic type for y ∈ (0,∞), where

B′(x, y) ∼ − 1
R(y)

(
B2(y) + 2B4(y)

(
1− x

R(y)

)
+

5
2
B5(y)

(
1− x

R(y)

)3/2
)
,

and

C•(x, y) ∼ R(y) +
R(y)2

2B4(y)−R(y)

(
1− x

ρ(y)

)
− 5

2
B5(y)

(
1− 2B4(y)

R(y)

)−5/2(
1− x

ρ(y)

)3/2

,

where ρ(y) = R(y)eB2(y)/R(y), and they also gave explicit expressions forR(y),B2(y),B4(y) andB5(y).
Moreover, they showed that ((12, Claim 2)) for all y ∈ (0,∞) it holds R(y)B′′(R(y), y) = 2B4(y)

R(y) < 1.
With those facts at hand Corollary 1 follows immediately.

Now we turn to the proof of Theorem 2. Recall that we set B̃ = B ∪ {K8}. Note that the singularity of
B̃(x, y) is the same as the singularity of B(x, y), i.e., R(y). Observe that

R(y)B̃′′(R(y), y) =
2B4(y)
R(y)

+
R(y)7y28

6!

Using the explicit expressions for all involved functions we readily obtain that for y ∈ (0, y0) it holds
R(y)B̃′′(R(y), y) < 1, while for y ∈ (y0,∞) we have R(y)B̃′′(R(y), y) > 1, where y0 ≈ 25.671.
Moreover, for y ∈ (0, y0) we have that

C̃•(x, y) ∼ R(y) + C̃2(y)
(

1− x

ρ1(y)

)
+ C̃3(y)

(
1− x

ρ1(y)

)3/2

,

where the C̃i(y) are given as functions of the Bi(y) and R(y), and ρ1(y) = R(y)eB2(y)/R(y)−R(y)7y28

7! .
Additionally, for y ∈ (y0,∞) we obtain by applying Theorem VI.6 in (7)
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C̃•(x, y) ∼ R(y)− C̃1(y)
(

1− x

ρ2(y)

)1/2

,

where ρ2(y) = τ(y)e−B
′(τ(y),y), 0 < τ(y) < R(y) is given by the solution of τ(y)B̃′′(τ(y), y) = 1, and

C̃1(y) is analytically given. To obtain c0 we determine limy→y−0
−yρ′1(y)
ρ1(y)y

= limy→y+
0

−yρ̃′2(y)
ρ̃2(y)

≈ 3.9995.
All numerical calculations performed in this section can be easily performed with MAPLE.
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Noncrossing partitions and the shard
intersection order ∗

Nathan Reading†

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205, USA

We define a new lattice structure (W,�) on the elements of a finite Coxeter group W. This lattice, called the shard
intersection order, is weaker than the weak order and has the noncrossing partition lattice NC(W ) as a sublattice. The
new construction of NC(W ) yields a new proof that NC(W ) is a lattice. The shard intersection order is graded and
its rank generating function is the W -Eulerian polynomial. Many order-theoretic properties of (W,�), like Möbius
number, number of maximal chains, etc., are exactly analogous to the corresponding properties of NC(W ). There is a
natural dimension-preserving bijection between simplices in the order complex of (W,�) (i.e. chains in (W,�)) and
simplices in a certain pulling triangulation of the W -permutohedron. Restricting the bijection to the order complex
of NC(W ) yields a bijection to simplices in a pulling triangulation of the W -associahedron.

The lattice (W,�) is defined indirectly via the polyhedral geometry of the reflecting hyperplanes of W. Indeed, most
of the results of the paper are proven in the more general setting of simplicial hyperplane arrangements.

Keywords: lattice congruence, noncrossing partition, shard, weak order

1 Introduction
The (classical) noncrossing partitions were introduced by Kreweras in [13]. Work of Athanasiadis, Bessis,
Biane, Brady, Reiner and Watt [1, 2, 3, 5, 27] led to the recognition that the classical noncrossing partitions
are a special case (W = Sn) of a combinatorial construction which yields a noncrossing partition lattice
NC(W ) for each finite Coxeter group W.

Besides the interesting algebraic combinatorics of the W -noncrossing partition lattice, there is a strong
motivation for this definition arising from geometric group theory. In that context, NC(W ) is a tool for
studying the Artin group associated to W. (As an example, the Artin group associated to Sn is the braid
group.) For the purposes of Artin groups, a key property of NC(W ) is the fact that it is a lattice. This was
first proved uniformly (i.e. without a type-by-type check of the classification of finite Coxeter groups) by
Brady and Watt [6]. Another proof, for crystallographic W , was later given by Ingalls and Thomas [12].

The motivation for the present work is a new construction of NC(W ) leading to a new proof that
NC(W ) is a lattice. The usual definition constructs NC(W ) as an interval in a non-lattice (the absolute
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order) on W ; we define a new lattice structure (W,�) on all of W and identify a sublattice of (W,�)
isomorphic to NC(W ). No part of this construction—other than proving that the sublattice is isomorphic
to NC(W )—relies on previously known properties of NC(W ). Thus, one can take the new construction
as a definition of NC(W ). The proof that NC(W ) can be embedded as a sublattice of (W,�) draws on
nontrivial results about sortable elements established in [21, 22, 25, 26].

Beyond the initial motivation for defining (W,�)—to construct NC(W ) and prove that it is a lattice—
the lattice (W,�) turns out to have very interesting properties. In particular, many of the properties of
(W,�) are precisely analogous to the properties of NC(W ).

The lattice (W,�) is defined in terms of the polyhedral geometry of shards, certain codimension-1
cones introduced and studied in [16, 17, 18, 22]. Shards were used to give a geometric description of
lattice congruences of the weak order. In this paper, we consider the collection Ψ of arbitrary intersections
of shards, which forms a lattice under reverse containment. Surprisingly, Ψ is in bijection with W. The
lattice (W,�) is defined to be the partial order induced on W, via this bijection, by the lattice (Ψ,⊇).
Thus we call (W,�) the shard intersection order on W .

For the remainder of this extended abstract, we will fill in some additional details about the construc-
tions and results summarized above and in Table 1. We also illustrate the case W = S4.

2 Shards and intersections of shards
In this section we define shards and discuss the lattice (Ψ(W ),⊇), where Ψ(W ) is the collection of
arbitrary intersections of shards. We then describe a bijection between Ψ(W ) andW, and use this bijection
to define a partial order (W,�) isomorphic to (Ψ(W ),⊇). The motivation for the definition of shards
arises from the study of lattice congruences of the weak order, and will be discussed in Section 4.

Finite Coxeter groups correspond to finite reflection groups: finite groups of orthogonal transformations
of Rn generated by reflections. Given a finite reflection group W, let T be the set of elements of W that
act as reflections and letA be the collection of reflecting hyperplanes of elements of T . The set Rn\(∪A)
consists of connected components which are called regions. Each region is an n-dimensional simplicial
cone. Fixing some regionD to represent the identity element, the mapw 7→ wD is a bijection betweenW
and the set of regions.

Example 2.1 As a running example, consider the Coxeter group W = S4. This is the group of reflective
symmetries of the regular tetrahedron. Exactly six elements of S4 act as reflections (the six transposi-
tions). Thus A consists of six reflecting planes in R3. To visualize this collection of planes, first take
the intersection of A with the unit sphere to obtain a collection of six great circles on the sphere. Then
stereographically project the unit sphere to the plane. The great circles map to circles in the plane. The
result of this construction appears as Figure 1.a. Each of the 24 curvilinear triangles, including the outer
triangle, represents a region. Each region is a triangular cone.

The shards are defined(i) as follows: For each hyperplane H , we describe a collection of cutting sub-
spaces of H . These cutting subspaces are of codimension-1 in H (and thus of codimension-2 in the ambi-
ent vector space). The shards contained inH are the (closed) regions of this arrangement of codimension-1
subspaces of H . We will say that the cutting subspaces cut H into shards. The complete collection of
shards inA consists of all of the shards in all of the hyperplanes ofA. The definition of shards will depend
on the choice of D, but only up to symmetry.
(i) See [24, Section 3] for a different phrasing of the definition.
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Tab. 1: Properties of (W,�) and NC(W ).

(W,�) is a lattice. NC(W ) is a lattice—a sublattice of (W,�).

(W,�) is atomic and coatomic. NC(W ) is atomic and coatomic.

(W,�) is graded, with rank numbers given by the
W -Eulerian numbers.

NC(W ) is graded, with rank numbers given by
the W -Narayana numbers.

(W,�) is not self-dual. NC(W ) is self-dual.

(W,�) is weaker than weak order. blah blah blah
blah blah blah

NC(W ) is weaker than the Cambrian lattice.
(See [20] for a definition.)

Every lower interval [1, w]� of (W,�) is isomor-
phic to (WJ ,�) for some standard parabolic sub-
group WJ depending on w.

Similarly, lower intervals of NC(W ) are isomor-
phic to noncrossing partition lattices NC(WJ).
blah blah blah blah blah blah

The Möbius number of (W,�) is equal, up to a
sign, to the number elements of W that are not
contained in any proper standard parabolic sub-
group of W.

The Möbius number of NC(W ) is equal, up to
a sign, to the number of elements of NC(W ) that
are not contained in any proper standard parabolic
subgroup of W.

Maximal chains in (W,�) are in bijection with
maximal simplices in a certain triangulation of
the W -permutohedron. Loday [14] described the
triangulation in the case W = Sn. The bijection
between maximal chains and maximal simplices
is new for every W.

A similar bijection holds for NC(W ) and a tri-
angulation of the W -associahedron. Loday [14]
described the triangulation and established the
bijection in the case W = Sn. The bijection
between chains and simplices is new for every
other W. blah blah blah blah blah blah blah

More generally, for each k, there is a bijection
between k-chains in (W,�) and k-simplices in
the same triangulation of the W -permutohedron.
This is especially surprising because the triangu-
lation and the order complex of (W,�) have dif-
ferent topology. This result is new for all W.

The same is true of k-chains in NC(W ) and k-
simplices in the same triangulation of the W -
associahedron. This result is also new for all W.
blah blah blah blah blah blah blah blah blah blah
blah blah blah blah blah blah blah blah blah blah
blah blah blah blah blah

There is a recursion counting maximal chains
in (W,�) by summing the number of maximal
chains in (WJ ,�) for each maximal proper stan-
dard parabolic subgroupWJ . With 〈s〉 = S\{s},

MC(W,�) =
∑
s∈S

(
|W |∣∣W〈s〉∣∣ − 1

)
MC(W〈s〉,�).

There is a similar recursion [23, Corollary 3.1]
counting maximal chains in NC(W ).

MC(NC(W )) =
h

2

∑
s∈S

MC(NC(W〈s〉)).

blah blah blah blah blah blah blah blah blah blah
blah blah blah blah blah blah blah blah blah
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(a) (b)

Fig. 1: a: The reflecting planes of S4, in stereographic projection. b: Shards in the case W = S4.

Each cutting subspace of H will be the intersection of H with some other hyperplane in A. Given H
and H ′ in A, let A′ be the set of hyperplanes in A containing H ∩H ′. Exactly one of the regions defined
by A′ contains the fixed region D; let D′ denote the A′-region containing D. The two hyperplanes in
A′ defining the facets of the cone D′ are called the basic hyperplanes of A′. The subspace H ′ ∩H is a
cutting subspace of H if and only if H is not basic in A′.

Example 2.2 Figure 2.a illustrates the definition of shards in the case where W is of type B2. In this
case, for any distinct hyperplanes H and H ′, we have A′ = A. Thus the two hyperplanes defining facets
ofD are never cut, but each of the other hyperplanes is cut at the origin. All of the shards are closed cones
containing the origin; however, some shards in the picture are offset slightly to indicate that they do not
continue through the origin.

D D

(a) (b)

Fig. 2: (a) Shards in the case W = B2. (b) Ψ(B2).

Example 2.3 The shards, for the case W = S4, are pictured in Figure 1.b. This figure is a stereographic
projection as explained in Example 2.1. The cone D is the small triangular region which is inside the
three largest circles. The shards are closed two-dimensional cones (which in some cases are entire planes).
Thus they appear as full circles or as circular arcs in the figure. To clarify the picture, we continue the



Noncrossing partitions and the shard intersection order 751

convention of Figure 2.a: Where shards intersect, certain shards are offset slightly from the intersection
to indicate that they do not continue through the intersection.

Let (Ψ(W ),⊇) be the set of arbitrary intersections of shards, partially ordered by reverse containment.
It is immediate that (Ψ(W ),⊇) is a join semilattice; the join operation is intersection. Interpreting the
empty intersection of shards to be the ambient vector space, we see that (Ψ(W ),⊇) is a lattice.

Example 2.4 This example continues Example 2.2. The set Ψ(W ), for the case where W is of type B2,
is pictured in Figure 2.b. The elements of Ψ(W ) are closed cones in R2, namely the origin, the six shards,
and the whole space R2 (arising as the intersection of the empty set of shards).

Example 2.5 This example continues Example 2.3. The set Ψ(S4) is pictured in Figure 3.a. The ele-
ments of Ψ(S4) are closed cones in R3, namely the origin, eleven one-dimensional cones (three of which
are entire lines), eleven shards (two-dimensional cones, three of which are entire planes) and the whole
space R3. Each cone intersects the unit sphere in one of six ways: an empty intersection, a single point,
a pair of antipodal points, an arc of a great circle, a great circle, or the entire sphere. Figure 3.a depicts
these intersections in a stereographic projection onto the plane. Thus the shards are shown as circles or
circular arcs and the one-dimensional cones are pictured as points or pairs of points. A white dot indicates
a point which is paired with its antipodal point. (To find antipodal points, note that any two of the circles
shown intersect in a pair of antipodal points.)

(a) (b)

Fig. 3: (a) Ψ(S4). (b) Shards and join-irreducible elements in the case W = S4.

The most important fact about the set Ψ(W ) is that it is in bijection with the elements of the group W.
The bijection employs the weak order on W and will be explained in Section 3.

3 The weak order
In this section, we review the weak order on a finite Coxeter group. The weak order is a partial order on
the elements of a Coxeter group W. When W is finite, this partial order is a lattice [4]. The weak order
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is relevant to the present discussion for at least two reasons: to motivate the definition of shards and to
explain the bijection between intersections of shards and elements of W.

Example 3.1 When W is the symmetric group Sn, the weak order has a simple description in terms of
the one-line notation for permutations: A cover relation in the weak order corresponds to swapping two
adjacent entries. Going “up” in the cover relation means placing the two entries out of numerical order.
The weak order on S4 is illustrated in Figure 4.a.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

(a) (b)

Fig. 4: Two views of the weak order on S4.

The weak order also has a geometric description in terms of the arrangement A of reflecting hyper-
planes. Recall that, once a region D is chosen to represent the identity, the elements of W are in bijection
with the regions defined byA. A cover relation in the weak order relates two adjacent regions. If H is the
hyperplane separating the two then the lower region is on the same side of H as the identity region D.

Example 3.2 The weak order onW can be visualized in the stereographic projection of Figure 1.a. A dot
representing each region and an edge representing each cover relation combine to form a “radial Hasse
diagram,” shown in Figure 4.b. Here the unique minimal element is the central element (contained in the
shaded region). The upper vertex of a cover relation is a greater distance in the plane from the center than
the lower vertex of the cover. The unique maximal element is the point at infinity.

For general finite W, the shards in A are in bijection [17, Proposition 2.2] with the join-irreducible
elements of the weak order: the elements j ∈ W covering exactly one other element j∗ ∈ W. The region
jD representing j is separated from the region j∗D by a common facet of both. The bijection sends j to
the unique shard Σ(j) containing the common facet. We will write the inverse map as Σ 7→ j(Σ).

Example 3.3 This example continues Example 2.3. Figure 3.b again shows the shards for W = S4. The
shaded triangles correspond to join-irreducible elements. Each such triangle has two convex sides and one
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concave side. The bijection between join-irreducible elements and shards sends the triangle to the shard
containing its concave side.

The bijection between join-irreducible elements and shards is the restriction of the bijection between
group elements and intersections of shards. We now describe the latter.

Each element w of W has [26, Theorem 8.1] a canonical join representation in the weak order on W.
A join representation is an expression for w as an irredundant join of join-irreducible elements. The
canonical join-representation of w is the unique minimal (i.e. lowest in the partial order) join represen-
tation for W, in a sense that can be made precise. For finite lattices, the property that each element
has a canonical join-representation and a canonical meet representation is equivalent to the property of
semi-distributivity [11, Theorem 2.24].

Let Can(w) be the set of join-irreducible elements occurring in the canonical join representation of w.
Define a map ψ : W → Ψ(W ) and a map ω : Ψ(W )→W by setting

ψ(w) =
⋂

j∈Can(w)

Σ(j), and ω(C) =
∨

Σ⊇C

j(Σ).

In the latter formula, the sum is over shards Σ containing C and the join is taken in the weak order on W.

Proposition 3.4 Let W be a finite Coxeter group. Then:

(i) ψ is a bijection from W to Ψ(W ) with inverse map ω.

(ii) ω is an order-preserving map from (Ψ,⊇) to the weak order (W,≤).

(iii) The number of right descents of w ∈W equals the codimension of ψ(w).

The right descents of w are the simple generators s ∈ S such that `(ws) < `(w). The proof of Proposi-
tion 3.4 employs geometric results about the cutting subspaces of hyperplanes as well as lattice-theoretic
results about the weak order.

Let (W,�) denote the lattice induced on W, via the bijection of Proposition 3.4, from (Ψ(W ),⊇). We
can give a direct characterization of � as follows: Given x <· y in the weak order, let Σ(x <· y) be the
shard containing the common facet of xD and yD. Let j(x <· y) = j(Σ(x <· y)). Given w ∈W , define
b(w) to be the meet of the elements covered by w and define A(w) = {j(x <· y) : b(w) ≤ x <· y ≤ w}.
Then v � w if and only if A(v) ⊆ A(w). Up to now, the geometric definition of (W,�) has been much
more useful in proofs than this direct combinatorial approach.

Example 3.5 Continuing Example 2.5, the lattice (W,�) is shown in Figure 5.a for the case W = S4.
Readers wishing to work through the details of this example will be aided by [19, Proposition 6.4], where
the map (x <· y) 7→ j(x <· y) is described explicitly in the case W = Sn.

In this section, we provide more detail on some of the properties of the lattice (W,�) listed in Table 1.

Proposition 3.6 The lattice (W,�) is graded, with the rank of w ∈ W equal to the number of right
descents of w. Alternately, the rank of a cone C ∈ Ψ(W ) is the codimension of C.

Theorem 3.7 For any w ∈ W , the lower interval [1, w]� is isomorphic to (WJ ,�), where J = Des(w)
is the set of right descents of w.
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1234

2341 2314 2134 1342 2413 3412 1324 3124 1243 1423 4123

3421 3241 3214 2431 3142 4231 2143 4213 1432 4132 4312

4321

1234

2314 2134 2413 1324 1243 1423

3214 2431 4231 2143 4213 1432

4321

(a) (b)

Fig. 5: (a) (S4,�). (b) (S4,�) restricted to c-sortable elements.

Theorem 3.7 should sound geometrically plausible, once it is translated into the context of (Ψ(W ),⊇).
The lower interval below a cone C in (Ψ(W ),⊇) is the set of shard intersections containing C. This is
analogous to the interval below a subspace in the intersection lattice ofA. The latter interval is isomorphic
to the intersection lattice ofAJ , the arrangement of reflecting hyperplanes ofWJ , for J as in Theorem 3.7.

Theorem 3.7 allows us to determine the Möbius number of (W,�): Up to a sign, it is the number of
elements of W not contained in any proper standard parabolic subgroup. The identity element of W is
the unique minimal element of (W,�) and the longest element w0 is the unique maximal element.

Theorem 3.8 The Möbius function of (W,�) satisfies µ�(1, w0) =
∑

J⊆S(−1)|J| |WJ |.

Proof: In light of Theorem 3.7, it is enough to show that the following sum vanishes:∑
w∈W

∑
J⊆Des(w)

(−1)|J| |WJ | =
∑
J⊆S

(−1)|J| |WJ |
∑

w∈W
J⊆Des(w)

1.

The inner sum is the number of maximal-length representatives of cosets of WJ in W. This number is
|W |/ |WJ |, so the sum reduces to zero. 2

The fact that the proof of Theorem 3.8 is so simple is an indication that the poset (W,�) is a natural
partial order on W. Theorem 3.7 also allows us to give a recursive formula for MC(W,�), the number of
maximal chains in (W,�). Recall that for s ∈ S, the symbol 〈s〉 stands for S \ {s}.
Theorem 3.9 For any finite Coxeter group W with simple generators S,

MC(W,�) =
∑
s∈S

(
|W |∣∣W〈s〉∣∣ − 1

)
MC(W〈s〉,�).

Proof: The number of maximal chains in (W,�) is the sum over all coatoms w of (W,�) of the number
of maximal chains in [1, w]. In light of Proposition 3.6, every coatom w is a maximal-length coset repre-
sentative of the subgroup W〈s〉 for some unique s ∈ S. On the other hand, for each s ∈ S, every coset of
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=⇒
x ≡ 0

=⇒ x ∨ y ≡ 0 ∨ y
i.e. 1 ≡ y
=⇒ a ∧ 1 ≡ a ∧ y
i.e. a ≡ 0.x y

a

1

0

x y

a

1

0

Fig. 6: Forcing in a polygonal lattice.

W〈s〉 has a unique maximal-length coset representative. This representative w has rank(W )− 1 descents
and thus is a coatom of (W,�), except if w is w0, which has rank(W ) descents. For each s ∈ S, there
are exactly |W | /

∣∣W〈s〉∣∣ cosets of W〈s〉, and exactly one of these cosets has w0 as its maximal length
representative. The proposition follows. 2

Remark 3.10 Recursions involving sums over maximal proper parabolic subgroups (such as the recur-
sion appearing in Theorem 3.9) are very natural in the context of Coxeter groups/root systems. We have
seen another such recursion in Table 1, counting maximal chains in NC(W ). Another example is a a recur-
sive formula for the face numbers of generalized associahedra [10, Proposition 3.7] [9, Proposition 8.3].
Yet another is a formula for the volume of the W -permutohedron which can be obtained by simple ma-
nipulations from Postnikov’s formula [15, Theorem 18.3] expressing volume in terms of Φ-trees.

4 Lattice congruences of the weak order
In this section, we discuss lattice congruences of the weak order. The goal is to motivate the definition of
shards in Section 2 and to lay the groundwork for the discussion of NC(W ) in Section ??.

A congruence on a finite latticeL is an equivalence relation≡ that respects the operations ∨ (least upper
bound) and ∧ (greatest lower bound). It is easy to verify that congruence classes are always intervals in L.
Therefore, the relation≡ is determined by transitivity, once one knows all equivalences of the form x ≡ y
for x <· y. We say that ≡ squashes the edge x <· y if x ≡ y.

Let us consider “building” a congruence by squashing one edge at a time. As one might expect, edges
cannot be squashed independently. Rather, there are some forcing relations.

As an example, consider a polygonal lattice L. That is, L is composed of two chains of length at least
two, with the tops of the two chains identified and the bottoms of the two chains identified.

A “side” edge of the polygon is an edge that is not incident to the top element or the bottom element.
A bottom edge is an edge incident to the bottom element, and a top edge is an edge incident to the top
element. (Since L is constructed from chains of length at least two, no edge can be both a top edge and
a bottom edge.) Edge forcing in a polygonal lattice is described as follows: One easily verifies that side
edges can be squashed independently. That is, for any side edge, there is a lattice congruence that squashes
that edge an no other edge. In contrast, squashing a bottom edge forces the opposite top edge and all side
edges to be squashed, as illustrated in Figure 6. In the figure, squashed edges are highlighted. Dually,
squashing a top edge forces the opposite bottom edge and all side edges.

Many of the intervals in the weak order on S4 are polygonal intervals; this is true for the weak order in
general. The polygonal intervals are the key to edge-forcings for congruences on the weak order.
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Theorem 4.1 LetW be a finite Coxeter group. Then all edge forcings for lattice congruences of the weak
order on W are determined locally within polygonal intervals.

For general lattices, forcing is much more complicated. The local property in Theorem 4.1 is equivalent
to the assertion that the weak order is congruence normal in the sense of Day [8]. Thus Theorem 4.1
follows from [7, Theorem 6] (Cf. [16, Theorem 27]), where a stronger property, congruence uniformity,
is established for the weak order.

Lattice congruences on the weak order have nice geometric properties. Interpret a lattice congruence as
an equivalence relation on the regions cut out by the reflecting hyperplanes. For each congruence class C,
let ∪C denote the union of the regions in C. The following is part of [19, Theorem 1.1]

Theorem 4.2 The sets ∪C are the maximal cones of a complete fan.

Shards arise naturally in the context of congruences on the weak order. When we interpret a lattice
congruence as an equivalence on regions, and then glue together equivalence classes of regions, squashing
edges means removing the common facet (or wall) separating two adjacent regions. A shard is a maximal
collections of walls which must always be removed together in a lattice congruence, because of edge-
forcing. Edge-forcing also implies some forcing relations among shards. In particular, choosing a lattice
congruence on the weak order corresponds to removing a collection of shards that is closed under forcing.

Example 4.3 Consider Example 2.2 and Figure 2.a, and notice that the lattice in Figure 4 is the weak
order on B2. The discussion above about forcing in polygonal lattices explains why each line bounding
the region D is not cut into two shards: a top edge is squashed if and only if the opposite bottom edge
is squashed. The other two lines are cut because side edges can be squashed independently. Removing
either of the shards bounding D forces each of the four shards not bounding D to be removed also.

We conclude this extended abstract by returning to the original motivation for the study of (W,�). We
review the usual construction of W -noncrossing partitions and then explain how the noncrossing partition
lattice NC(W ) arises as a sublattice of (W,�).

Let S be the set of simple generators for W and let T be the set of reflections. A Coxeter element c
of W is the product, in any order, of the elements of S. A reduced T -word for w ∈ W is a shortest
possible word for w in the alphabet T . (This contrasts with the usual notion of a reduced word for W, a
shortest possible word for w in the alphabet S.) The absolute order on W is the prefix order on reduced
T -words: we set u ≤ v if and only if any reduced T -word for u occurs as a prefix of some reduced T -word
for v. The W -noncrossing partition lattice NC(W ) is the interval [1, c]T in the absolute order, where c is
any Coxeter element of W. Up to isomorphism, this definition is independent of the choice of c.

Recall that lattice congruences are described by specifying a collection of shards to be “removed.” Re-
call also that there are forcing relations among shards, so that removing one shard may force the removal
of another. Let Θ be a lattice congruence on W and let Ψ(W/Θ) be the collection of all intersections of
shards not removed by Θ. It is immediate that (Ψ(W/Θ),⊇) is a join-sublattice of (Ψ(W ),⊇).

The noncrossing partition lattice NC(W ) can be realized as (Ψ(W/Θ),⊇) in the case where Θ is the
Cambrian congruence introduced in [20] and studied in [22, 25, 26]. There is a small set Rc of shards
(depending on a choice of Coxeter element c of W ) such that the Cambrian congruence Θc corresponds
to removing the shards in Rc and all other shards whose removal is then forced. The bijection between W
and Ψ(W ) restricts to an isomorphism between (Ψ(W/Θc),⊇) and the restriction of (W,�) to the c-
sortable elements defined in [21] and studied in [22, 25, 26]. In [21], a bijection ncc was defined between
c-sortable elements and NCc(W ) = [1, c]T . We can now take that result further:
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Theorem 4.4 The map ncc is an isomorphism between the restriction of (W,�) to c-sortable elements
and NCc(W ).

As indicated above, the restriction of (W,�) to c-sortable elements is isomorphic to the join-sublattice
(Ψ(W/Θc),⊇) of (Ψ(W ),⊇). In fact, one can show that (Ψ(W/Θc),⊇) is a sublattice of (Ψ(W ),⊇).

Corollary 4.5 The poset NCc(W ) is a lattice.

The first uniform proof [6] that NCc(W ) is a lattice also used the polyhedral geometry of cones. That
proof is, in a sense, dual to the proof discussed here (in the broadest outlines but not in any of the details).

Example 4.6 Figure 5.b shows the restriction of (S4,�) to c-sortable elements, with c = (1 2)(3 4)(2 3).
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We introduce a shifted analog of the plactic monoid of Lascoux and Schützenberger, the shifted plactic monoid. It
can be defined in two different ways: via the shifted Knuth relations, or using Haiman’s mixed insertion.

Applications include: a new combinatorial derivation (and a new version of) the shifted Littlewood-Richardson Rule;
similar results for the coefficients in the Schur expansion of a Schur P -function; a shifted counterpart of the Lascoux-
Schützenberger theory of noncommutative Schur functions in plactic variables; a characterization of shifted tableau
words; and more.
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[...] pour affirmer la nécessité d’installer le monoı̈de plaxique parmi les structures remar-
quables.

– M.-P. Schützenberger (16)

Introduction
The (shifted) plactic monoid. The celebrated Robinson-Schensted-Knuth correspondence (14) is a bijec-
tion between words in a linearly ordered alphabet X = {1 < 2 < 3 < · · · } and pairs of Young tableaux
with entries in X . More precisely, each word corresponds to a pair consisting of a semistandard insertion
tableau and a standard recording tableau. The words producing a given insertion tableau form a plactic
class. A. Lascoux and M. P. Schützenberger (11) made a crucial observation based on a result by D. E.
Knuth (6): the plactic classes [u] and [v] of two words u and v uniquely determine the plactic class [uv]
of their concatenation. This gives the set of all plactic classes (equivalently, the set of all semistandard
Young tableaux) the structure of a plactic monoid P = P(X). This monoid has important applications in
representation theory and the theory of symmetric functions; see, e.g., (10).

The main goal of this paper is to construct and study a proper analog of the plactic monoid for (semistan-
dard) shifted Young tableaux, with similar properties and similar applications. The problem of developing
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such a theory was already posed more than 20 years ago by B. Sagan (12). Shifted Young tableaux are
certain fillings of a shifted shape (a shifted Young diagram associated with a strict partition) with letters
in an alphabet X ′ = {1′ < 1 < 2′ < 2 < · · · }; see, e.g., (13). M. Haiman (5) defined the (shifted) mixed
insertion correspondence, a beautiful bijection between permutations and pairs of standard shifted Young
tableaux; each pair consists of the mixed insertion tableau and the mixed recording tableau. Haiman’s
correspondence is easily generalized to a bijection between words in the alphabet X and pairs consisting
of a semistandard shifted mixed insertion tableau and a standard shifted mixed recording tableau. (We
emphasize that this bijection deals with words in the original alphabetX rather than the extended alphabet
X ′.) We define a shifted plactic class as the set of all words which have a given mixed insertion tableau.
Thus, shifted plactic classes are in bijection with shifted semistandard Young tableaux. The following key
property, analogous to that of Lascoux and Schützenberger’s in the ordinary case, holds (Theorem 4): the
shifted plactic class of the concatenation of two words u and v depends only on the shifted plactic classes
of u and v. Consequently, one can define the shifted plactic monoid S = S(X) in which the product is,
again, given by concatenation. In analogy with the classical case, we obtain a presentation of S by the
quartic shifted Knuth (or shifted plactic) relations. So two words are shifted Knuth-equivalent if and only
if they have the same mixed insertion tableau.

Sagan (12) and Worley (20) have introduced the Sagan-Worley correspondence, another analog of
Robinson-Schensted-Knuth correspondence for shifted tableaux. In the case of permutations, Haiman
(5) proved that the mixed insertion correspondence is dual to Sagan-Worley’s. We use a semistandard
version of this duality to describe shifted plactic equivalence in yet another way, namely: two words u
and v are shifted plactic equivalent if and only if the recording tableaux of their inverses (as biwords) are
the same.

(Shifted) Plactic Schur functions. The plactic algebra QP is the semigroup algebra of the plactic
monoid. The shape of a plactic class is the shape of the corresponding tableau. A plactic Schur function
Sλ ∈ QP is the sum of all plactic classes of shape λ; it can be viewed as a noncommutative version of
the ordinary Schur function sλ. This notion was used by Schützenberger (15) to obtain a proof of the
Littlewood-Richardson rule along the following lines. It can be shown that the plactic Schur functions
span the ring they generate. Furthermore, this ring is canonically isomorphic to the ordinary ring of
symmetric functions: the isomorphism simply sends each Schur function sλ to its plactic counterpart Sλ.
It follows that the Littlewood-Richardson coefficient cλµ,ν is equal to the coefficient of a fixed plactic
class Tλ of shape λ in the product of plactic Schur functions SµSν . In other words, cλµ,ν is equal to the
number of pairs (Tµ, Tν) of plactic classes of shapes µ and ν such that TµTν = Tλ.

We develop a shifted counterpart of this classical theory. The shifted plactic algebra QS is the semi-
group algebra of the shifted plactic monoid, and a (shifted) plactic Schur P -function Pλ ∈ QS is the sum
of all shifted plactic classes of a given shifted shape. We prove that the plactic Schur P -functions span the
ring they generate, and this ring is canonically isomorphic to the ring spanned/generated by the ordinary
Schur P -functions. Again, the isomorphism sends each Schur P -function Pλ to its plactic counterpart Pλ.
This leads to a proof of the shifted Littlewood-Richardson rule (Corollary 16). Our version of the rule
states that the coefficient bλµ,ν of Pλ in the product PµPν is equal to the number of pairs (Tµ, Tν) of shifted
plactic classes of shapes µ and ν such that TµTν = Tλ, where Tλ is a fixed shifted plactic class of shape
λ. The first version of the shifted Littlewood-Richardson rule was given by Stembridge (19). In Lemma
18 we relate our rule to Stembridge’s by a simple bijection.

It turns out that the shifted plactic relations are a “relaxation” of the ordinary Knuth (plactic) relations.
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More precisely, the tautological map u 7→ u that sends each word in the alphabet X to itself descends
to a monoid homomorphism S → P. By extending this map linearly, we obtain the following theorem
(Corollary 21): For a shifted shape θ, the coefficient gθµ of sµ in the Schur expansion of Pθ is equal to the
number of shifted plactic classes of shifted shape θ contained in a fixed plactic class of shape µ. A simple
bijection (Theorem 23) recovers a theorem of Stembridge (19): gθµ is equal to the number of standard
Young tableaux of shape µ which rectify to a fixed standard shifted Young tableau of shape θ.

(Shifted) Tableau words. In the classical setting, an approach developed by Lascoux and his school
begins with the plactic monoid as the original fundamental object, and identifies each tableau T with a
distinguished canonical representative of the corresponding plactic class, the reading word read(T ). This
word is obtained by reading the rows of T from left to right, starting from the bottom row and moving up.
A word w such that w = read(T ) for some tableau T is called a tableau word. By construction, tableau
words are characterized by the following property. Each of them is a concatenation of weakly increasing
words w = ulul−1 · · ·u1, such that

(A) for 1 ≤ i ≤ l − 1, the longest weakly increasing subword of ui+1ui is ui.

For a tableau word w, the lengths of the segments ui are precisely the row lengths of the Young tableau
corresponding to w.

We develop an analog of this approach in the shifted setting by taking the shifted plactic monoid as
the fundamental object, and constructing a canonical representative for each shifted plactic class. Since
shifted Young tableaux have primed entries while the words in their respective shifted plactic classes have
not, the reading of a shifted Young tableau cannot be defined in as simple a manner as in the classical case.
Instead, we define the mixed reading word mread(T ) of a shifted tableau T as the unique word in the
corresponding shifted plactic class that has a distinguished special recording tableau. The latter notion is
a shifted counterpart of P. Edelman and C. Greene’s dual reading tableau (1).

A word w such that w = mread(T ) for some shifted Young tableau T is called a shifted tableau word.
Such words have a characterizing property similar to (A), with weakly increasing words replaced by hook
words (a hook word consists of a strictly decreasing segment followed by a weakly increasing one). We
prove that w is a shifted tableau word if and only if

(B) for 1 ≤ i ≤ l − 1, the longest hook subword of ui+1ui is ui.

For a shifted tableau word w, the lengths of the segments ui are precisely the row lengths of the shifted
Young tableau corresponding to w.

Semistandard decomposition tableaux. The proofs of our main results make use of the following ma-
chinery. Building on the concept of standard decomposition tableaux introduced by W. Kraśkiewicz (7)
and further developed by T. K. Lam (9), we define a (shifted) semistandard decomposition tableau (SSDT)
R of shifted shape λ as a filling of λ by entries inX such that the rows u1, u2, . . . , ul ofR are hook words
satisfying (B). We define the reading word of R by read(R) = ulul−1 · · ·u1, that is, by reading the rows
of R from left to right, starting with the bottom row and moving up.

As a semistandard analog of Kraśkiewicz’s correspondence (7), we develop the SK correspondence.
This is a bijection between words in the alphabet X and pairs of tableaux with entries in X . Every word
corresponds to a pair consisting of an SSDT called the SK insertion tableau and a standard shifted Young
tableau called the SK recording tableau. We prove that the mixed recording tableau and the SK recording
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tableau of a word w are the same. Furthemore, we construct a bijection Φ between SSDT and shifted
Young tableaux of the same shape that preserves the reading word: read(R) = mread(Φ(R)). In light
of the conditions (A) and (B) above, one can see that the counterpart of an SSDT in the ordinary case is
nothing but a semistandard Young tableau.

This text is an extended abstract of the preprint (17), where complete proofs can be found.

Acknowledgements I am grateful to Sergey Fomin for suggesting the problem and for his comments
on the earlier versions of the paper. I would also like to thank Marcelo Aguiar, Curtis Greene, Tadeusz
Józefiak, Alain Lascoux, Thomas Lam, Cedric Lecouvey, Pavlo Pylyavskyy, Bruce Sagan, John Stem-
bridge, and Alex Yong for helpful and inspiring conversations.

Main results
Preliminaries: shifted Young tableaux and the mixed insertion
A strict partition is a sequence λ = (λ1, λ2, . . . , λl) ∈ Zl such that λ1 > λ2 > · · · > λl > 0. The shifted
diagram, or shifted shape of λ is an array of square cells in which the i-th row has λi cells, and is shifted
i− 1 units to the right with respect to the top row.

Throughout this paper, we identify a shifted shape corresponding to a strict partition λ with λ itself.
The size of λ is |λ| = λ1 + λ2 + · · ·+ λl. We denote `(λ) = l, the number of rows.
To illustrate, the shifted shape λ = (5, 3, 2), with |λ| = 10 and `(λ) = 3, is shown below:

.

A skew shifted diagram (or shape) λ/µ is obtained by removing a shifted shape µ from a larger shape
λ containing µ.

A (semistandard) shifted Young tableaux T of shape λ is a filling of a shifted shape λ with letters from
the alphabet X ′ = {1′ < 1 < 2′ < 2 < · · · } such that:

• rows and columns of T are weakly increasing;

• each k appears at most once in every column;

• each k′ appears at most once in every row;

• there are no primed entries on the main diagonal.

If T is a filling of a shape λ, we write shape(T ) = λ.
A skew shifted Young tableau is defined analogously.
The content of a tableau T is the vector (a1, a2, . . .), where ai is the number of times the letters i and i′

appear in T .

Example 1 The shifted Young tableau

T =
1 1 2 3′ 4

4 5 5
6 9′

has shape λ = (5, 3, 2) and content (2, 1, 1, 2, 2, 1, 0, 0, 1).
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A tableau T of shape λ is called standard if it contains each of the entries 1, 2, . . . , |λ| exactly once. In
particular, standard shifted Young tableaux have no primed entries. Note that a standard shifted tableau
has content (1, 1, . . . , 1).

M. Haiman (5) has introduced shifted mixed insertion, a remarkable correspondence between permuta-
tions and pairs of shifted Young tableaux. Haiman’s construction can be viewed as a shifted analog of the
Robinson-Schensted-Knuth correspondence.

The following is a semistandard generalization of shifted mixed insertion, which we call semistandard
shifted mixed insertion. It is a correspondence between words in the alphabetX and pairs of shifted Young
tableaux, one of them semistandard and one standard. Throughout this paper we refer to semistandard
shifted mixed insertion simply as mixed insertion.

Definition 2 (Mixed insertion) Let w = w1 . . . wn be a word in the alphabet X . We recursively con-
struct a sequence (T0, U0), . . . , (Tn, Un) = (T,U) of tableaux, where Ti is a shifted Young tableau, and
Ui is a standard shifted Young tableau, as follows. Set (T0, U0) = (∅, ∅). For i = 1, . . . , n, insert wi into
Ti−1 in the following manner:

Insert wi into the first row, bumping out the smallest element a that is strictly greater than wi (in the
order given by the alphabet X ′).

1. if a is not on the main diagonal, do as follows:

(a) if a is unprimed, then insert it in the next row, using step (1);

(b) if a is primed, insert it into the next column to the right, using the same procedure as in row
insertion;

2. if a is on the main diagonal, then it must be unprimed. Prime it, and insert it into the next column
to the right.

The insertion process terminates once a letter is placed at the end of a row or column, bumping no new
element. The resulting tableau is Ti.

The shapes of Ti−1 and Ti differ by one box. Add that box to Ui−1, and write i into it to obtain Ui.
We call T the mixed insertion tableau and U the mixed recording tableau, and denote them Pmix(w)

and Qmix(w), respectively.

Example 3 The word u = 3415961254 has the following mixed insertion and recording tableau

Pmix(u) =
1 1 2 3′ 4

4 5 5
6 9′

Qmix(u) =
1 2 4 5 9

3 6 8
7 10

.

The shifted plactic monoid
The following is a shifted analog of Knuth’s Theorem (6). It can be considered a semistandard general-
ization of theorems by Haiman (5) and by Kraśkiewicz (7).

Theorem 4 Two words u and v have the same mixed insertion tableau if and only if they are equivalent
modulo the following relations:

abdc≡ adbc for a ≤ b ≤ c < d in X; (1)
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acdb≡ acbd for a ≤ b < c ≤ d in X; (2)

dacb≡ adcb for a ≤ b < c < d in X; (3)

badc≡ bdac for a < b ≤ c < d in X; (4)

cbda≡ cdba for a < b < c ≤ d in X; (5)

dbca≡ bdca for a < b ≤ c < d in X; (6)

bcda≡ bcad for a < b ≤ c ≤ d in X; (7)

cadb≡ cdab for a ≤ b < c ≤ d in X. (8)

See Remark 7 for a concise alternative description of relations (1)–(8).

Definition 5 Two words u and v in the alphabet X are shifted plactic equivalent, denoted u≡ v, if they
have the same mixed insertion tableau. By Theorem 4, u and v are shifted plactic equivalent if they are
equivalent modulo the shifted plactic relations (1)–(8).

A shifted plactic class is an equivalence class under ≡. We can associate a shifted plactic class with
its corresponding shifted Young tableau, or with any of the words in the class, which insert to the corre-
sponding tableau. The shifted plactic class corresponding to the Young tableau T is denoted [T ], and the
shifted plactic class that contains a word u is denoted [u]. The Appendix at the end of (17) shows all kinds
of shifted plactic classes of 4-letter words.

For a word w = w1w2 · · ·wn in X , let PRSK(w) be its Robinson-Schensted-Knuth insertion tableau.
Two words u and v in the alphabetX are plactic equivalent if PRSK(u) = PRSK(v). Knuth (6) has proved
that the latter holds if and only if u and v are equivalent modulo the plactic relations

acb ∼ cab for a ≤ b < c in X, (9)

bca ∼ bac for a < b ≤ c in X. (10)

Remark 6 (cf. (16)) Relations (9)–(10) can be restated as follows.
Let us call w a line word if

w1 > w2 > · · · > wn

or
w1 ≤ w2 ≤ · · · ≤ wn.

Line words are precisely those words w for which the shape of PRSK(w) is a single row or a single
column.

Two 3-letter words w and w′ in the alphabet X are plactic equivalent if and only if:
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• w and w′ differ by an adjacent transposition, and

• neither w nor w′ is a line word.

Remark 7 The shifted plactic relations can be described in a similar way. Define a hook word as a word
w = w1 · · ·wl such that for some 1 ≤ k ≤ l, we have

w1 > w2 > · · · > wk ≤ wk+1 ≤ · · · ≤ wl. (11)

It is easy to see that w is a hook word if and only if Pmix(w) consists of a single row.
Two 4-letter words w and w′ in the alphabet X are shifted plactic equivalent if and only if:

• w and w′ are plactic equivalent, and

• neither w nor w′ is a hook word.

The following proposition can be verified by direct inspection.

Proposition 8 Shifted plactic equivalence is a refinement of plactic equivalence. That is, each plactic
class is a disjoint union of shifted plactic classes. To put it yet in another way: if two words are shifted
plactic equivalent, then they are plactic equivalent.

For 4-letter words, Proposition 8 is illustrated in the Appendix to (17).

Definition 9 The shifted plactic monoid is the set of shifted plactic classes where multiplication is given
by [u][v] = [uv]. Equivalently, the monoid is generated by the symbols in X subject to the relations (1)–
(8).

An alternative point of view is to identify the shifted plactic classes with the corresponding shifted
Young tableaux, thus giving a notion of a (shifted plactic) product of shifted tableaux.

The shape of a shifted plactic class is defined as the shape of the corresponding shifted Young tableau.
The shifted plactic algebra QS is the semigroup algebra of the plactic monoid.

Example 10 One can check that both words in each of the shifted plactic relations have the same mixed
insertion tableau. For example, for relation (1),

Pmix(abdc) = Pmix(adbc) = a b c
d

.

Example 11 The words u = 3415961254 and v = 3451196524 are shifted Knuth equivalent, because
Pmix(u) = Pmix(v). (cf. Example 3.) Furthermore, one can obtain v from u by the following a sequence
of shifted plactic relations (where the relation to be used is stated and highlighted in bold)

u = 3415961254 (1)
≡ 3415961524 (3)
≡ 3415916524 (3)
≡ 3415196524 (7)
≡ 3451196524
= v.
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Plactic Schur P -functions and their applications
For a shifted Young tableau T , with content (a1, a2, . . .) define its corresponding monomial as xT =
xa1

1 x
a2
2 · · · .

For each strict partition λ, the Schur P -function is defined as the generating function for shifted Young
tableaux of shape λ, namely

Pλ = Pλ(x1, x2, . . .) =
∑

shape(T )=λ

xT .

The Schur Q-function is given by

Qλ = Qλ(x1, x2, . . .) = 2`(λ)Pλ,

or equivalently, as the generating function for a different kind of shifted Young tableaux, namely those in
which the elements in the main diagonal are allowed to be primed.

The skew Schur P - and Q-functions Pλ/µ and Qλ/µ = 2`(λ)−`(µ)Pλ/µ are defined similarly, on a skew
shifted shape λ/µ.

The following is an example of a Schur P -function in two variables:

Example 12 For λ = (3, 1),

Pλ(x1, x2) = x3
1x2 + x2

1x
2
2 + x2

1x
2
2 + x1x

3
2.

1 1 1
2

1 1 2′
2

1 1 2
2

1 2′ 2
2

The Schur P - and Q-Schur functions form bases for an important subring Ω of the ring Λ of symmetric
functions.

The shifted Littlewood-Richardson coefficients, bλµ,ν are of great importance in combinatorics, alge-
braic geometry, and representation theory. They appear in the expansion of the product of two Schur
P -functions,

PµPν =
∑
λ

bλµ,νPλ

and also in the expansion of a skew Schur Q-function

Qλ/µ =
∑
ν

bλµ,νQν .

The latter can be rewritten as
Pλ/µ =

∑
ν

2`(µ)+`(ν)−`(λ)bλµ,νPν .

Definition 13 A shifted plactic Schur P -function Pλ ∈ QS is defined as the sum of all shifted plactic
classes of shape λ. More specifically,

Pλ =
∑

shape(T )=λ

[T ].
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Example 14 We represent each shifted plactic class as [w], for some representative w, to obtain

P(3,1) = [1211] + [2211] + [1212] + [2212].

1 1 1
2

1 1 2′
2

1 1 2
2

1 2′ 2
2

The reader can check that each word gets mixed inserted into the tableau underneath, making it a valid
representative of its corresponding plactic class.

One can see that the Pλ are noncommutative analogs of the Schur P -functions. In the last example, P(3,1)

is the noncommutative analog of

P(3,1)(x1, x2) = x3
1x2 + 2x2

1x
2
2 + x1x

3
2 = s3,1(x1, x2) + s2,2(x1, x2). (12)

Theorem 15 The map Pλ 7→ Pλ extends to a canonical isomorphism between the algebra generated by
the ordinary and shifted plactic Schur P -functions, respectively. As a result, the Pλ commute pairwise,
span the ring they generate, and multiply according to the shifted Littlewood-Richardson rule. Namely,

PµPν =
∑
λ

bλµ,νPλ. (13)

Sagan (12) has extended the concept of jeu de taquin to shifted tableaux, and proved that, just as in the
ordinary case, the result of applying a sequence of (shifted) jeu de taquin moves is independent from the
order in which they are done. Throughout this paper we only apply shifted jeu de taquin to standard skew
tableaux, for which the process is exactly as it is done in the ordinary case. For pairs of standard skew
tableaux T and U , we say that T rectifies to U if U can be obtained from T by a sequence of shifted jeu
de taquin moves.

Our first application of Theorem 15 is a new proof (and a new version of) the shifted Littlewood-
Richardson rule. Stembridge (19) proved that the shifted Littlewood-Richardson number bλµ,ν is equal to
the number of standard shifted Young skew tableaux of shape λ/µwhich rectify to a fixed standard shifted
Young tableau of shape ν.

By taking the coefficient of the shifted plactic class [T ] corresponding to a fixed tableau T of shape λ
on both sides of (13), one obtains the following:

Corollary 16 (Shifted Littlewood-Richardson rule) Fix a shifted plactic class [T ] of shape λ. The
shifted Littlewood-Richardson coefficient bλµ,ν is equal to the number of pairs of shifted plactic classes
[U ] and [V ] of shapes µ and ν, respectively, such that [U ][V ] = [T ].

Remark 17 This rule can be restated in the language of words as follows. In Chapter 2 of (17) we
introduce a canonical representative of the shifted plactic class [T ] corresponding to the tableau T . This
representative is called the mixed reading word of T , and denoted mread(T ). A wordw is called a shifted
tableau word if w = mread(T ) for some shifted Young tableau T . The shape of a shifted tableau word is
given by the shape of the corresponding tableau.

With this terminology, the shifted Littlewood-Richardson rule can be restated as follows: Fix a shifted
tableau word w of shape λ. The shifted Littlewood-Richardson coefficient bλµ,ν is equal to the number of
pairs of shifted tableau words u, v of shapes µ, ν, respectively, such that w≡uv.
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Lemma 18 Fix a shifted tableau word w of shape λ and fix a standard shifted tableau Q of shape ν. The
number of pairs of shifted tableau words u, v of shapes µ and ν, respectively, such that uv = w is equal
to the number of standard shifted skew tableaux of shape λ/µ which rectify to Q.

As a corollary, we obtain the original result of Stembridge (19).

Corollary 19 Fix a standard shifted tableau Q of shape ν. The coefficient bλµ,ν is equal to the number of
standard shifted skew tableaux of shape λ/µ which rectify to Q.

Example 20 We compute b212,1 = 1. For this, we fix the shifted tableau word w = 132, associated to the
shifted Young tableau T = 1 2

3 . The only way to express w = uv where u and v are reading words of
shapes (2) and (1), respectively, is with u = 13, associated to the tableau U = 1 3 , and v = 2, associated
to the tableau V = 2 .

1 32 ≡ 13 · 2

1 2
3

1 3 2 .

The second application is a new proof (and a new version of) the Schur expansion of a Schur P -function.
Stembridge (19) has found a combinatorial interpretation for the coefficient gθµ in the sum

Pθ =
∑
µ

gθµsµ.

We find a different interpretation for the gθµ in terms of shifted plactic classes. Lascoux and Schützenberger
(11) have defined the plactic monoid P as follows. Two words are plactic equivalent if they have the same
Robinson-Schensted-Knuth insertion tableau. A plactic class is an equivalence class under plactic equiva-
lence. The plactic class of a word u in the alphabet X is denoted 〈u〉. P is the set of plactic classes where
multiplication is given by 〈u〉〈v〉 = 〈uv〉. Equivalently, it is generated by the symbols in X subject to the
Knuth relations (9)–(10).

Recall, by Proposition 8, any two shifted plactic equivalent words are plactic equivalent, or in other
words, plactic classes decompose into a union of shifted plactic classes. This yields the natural projection

π : S→ P,

in which the shifted plactic class [u] gets mapped to the plactic class 〈u〉.
We now consider the image of a plactic Schur P -function under π.

Theorem 21 The plactic Schur P -function Pθ gets mapped under π to a sum of plactic Schur func-
tions Sµ. The coefficients gθµ are the same as those in

π(Pθ) =
∑
µ

gθµSµ.

Moreover, gθµ is equal to the number of shifted plactic classes [u] of shifted shape θ such that π([u]) = 〈v〉
for some fixed plactic class 〈v〉 of shape µ.
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Example 22 Let µ be the ordinary shape (3, 1), and θ be the shifted shape (3, 1). We compute the
coefficient gθµ = 1; this is the coefficient of sµ in Pθ (cf. (12)). For this, we fix 〈u〉 = 〈2134〉, namely, the
plactic class corresponding to the Young tableau U = 1 3 4

2 . Note that the words in 〈u〉 are 2134, 2314,
and 2341. These get split into two shifted plactic classes, namely [2134] corresponding to the shifted
Young tableau 1 2′ 3 4 , and [2314] = [2341] corresponding to the shifted Young tableau 1 2′ 4

3 . Since the
only one of these plactic classes has shape µ, namely 〈2314〉, we get gθµ = 1.

Theorem 23 Let θ be a shifted shape, and Uθ a fixed standard shifted tableau of shape θ. Fix a plactic
class 〈Tµ〉 of shape µ. Let Gθµ be the set of shifted plactic classes [Tθ] of shape theta for which π([Tθ]) =
〈Tµ〉. Let Hθµ be the set of standard Young tableaux of shape µ which rectify to Uθ. Then the sets Gθµ and
Hθµ are in bijection.

As a corollary, we obtain the original result of Stembridge (19).

Corollary 24 The coefficient gθµ is equal to the number of standard Young tableaux Qµ of shape µ which
rectify to a fixed standard shifted Young tableau Qθ of shape θ.

For ordinary Young tableau, one uses the concept of rectification (under jeu de taquin) to obtain the
Littlewood-Richardson coefficients in the Schur expansion of a skew Schur function.

We have been unable to construct an analog of a jeu de taquin slide for skew semistandard shifted
tableaux, but nonetheless, we can define the rectification rect(T ) of such a tableau T ; see (17, Section
2.1). (In the notation of (17, Lemma 2.11), rect(T ) = Pmix(mread(T )).) We then define the shifted
plactic skew Schur P -function of shape λ/µ as the following element of QS:

Pλ/ν =
∑

shape(T )=λ/µ

[rect(T )].

Conjecture 25 Pλ/µ belongs to the ring generated by the plactic Schur P -functions.

Corollary 26 Fix a shifted Young tableau U of shape ν. The coefficient of Pν in Pλ/µ is equal to the
number of skew shifted Young tableaux T with rect(T ) = U .

Remark 27 For the moment we can prove a slightly weaker statement than Conjecture 25. The projection
π(Pλ/µ) (which lives in QP) belongs to the ring generated by the plactic Schur functions Sµ. This will
enable us to find a combinatorial interpretation for the coefficients in the Schur expansion of the skew
Schur P -functions.
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k-Parabolic Subspace Arrangements
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Abstract. In this paper, we study k-parabolic arrangements, a generalization of the k-equal arrangement for any
finite real reflection group. When k = 2, these arrangements correspond to the well-studied Coxeter arrangements.
Brieskorn (1971) showed that the fundamental group of the complement of the type W Coxeter arrangement (over C)
is isomorphic to the pure Artin group of type W . Khovanov (1996) gave an algebraic description for the fundamental
group of the complement of the 3-equal arrangement (over R). We generalize Khovanov’s result to obtain an algebraic
description of the fundamental group of the complement of the 3-parabolic arrangement for arbitrary finite reflection
group. Our description is a real analogue to Brieskorn’s description.

Résumé. Nous généralisons les arrangements k-égaux à tous les groupes de réflexions finis réels. Les arrange-
ments ainsi obtenus sont dits k-paraboliques. Dans le cas où k = 2 nous retrouvons les arrangements de Coxeter
qui sont bien connus. En 1971, Brieskorn démontra que le groupe fondamental associé au complément (complexe)
de l’arrangement de Coxeter de type W est en fait isomorphe au groupe pure d’Artin de type W . En 1996, Kho-
vanov donne une description algébrique du groupe fondamental du complément (réel) de larrangement 3-égaux.
Nous généralisons le résultat de Khovanov et obtenons une description algébrique du groupe fondamental de l’espace
complément d’un arrangement k-parabolique pour tous les groupes de réflexions finis et réels. Il se trouve que notre
description est l’analogue réel de la description de Brieskorn.

Keywords: Subspace Arrangements, Coxeter Groups, Discrete Homotopy Theory

1 Introduction
A subspace arrangement A is a collection of linear subspaces of a finite-dimensional vector space V , such
that there are no proper containments among the subspaces. Examples of subspace arrangements include
real and complex hyperplane arrangements. One of the main questions regarding subspace arrangements
is to study the structure of the complementM(A ) = V −∪X∈AX . A combinatorial tool that has proven
useful in studying the complement is the intersection lattice, L(A ), which is the lattice of intersections of
subspaces, ordered by inclusion. Many results regarding the homology and homotopy theory ofM(A )
can be found in the book by Orlik and Terao [17], when A is a real or complex hyperplane arrangement.

There are two interesting problems regarding homotopy ofM(A ) that we will concern ourselves with.
The first problem is determining whether or notM(A ) is an Eilenberg-MacLane space. An Eilenberg-
MacLane space (or K(π,m)-space) is a space X such that πk(X) = 0 for i 6= m and πm(X) = π.
A K(π, 1) subspace arrangement is an arrangement whose complement is a K(π, 1) space. It is worth
noting that not all complex hyperplane arrangements are K(π, 1)-spaces. The second problem is to find a
presentation for the fundamental group ofM(A ).
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We will look at several motivating examples where both questions have been answered. One example
of a complexK(π, 1) hyperplane arrangement is the braid arrangement, which is the collection of “diago-
nals” zi = zj for 1 ≤ i < j ≤ n from a complex n-dimensional vector space. In 1963, Fox and Neuwirth
[14] showed that the fundamental group of the complement is isomorphic to the pure braid group. It was
also shown by Fadell and Neuwirth [12] that the higher homotopy groups of the complement are trivial.
Thus this is an example of a K(π, 1)-arrangement.

An example of a realK(π, 1) subspace arrangement is the 3-equal arrangement, which is the collection
of all subspaces of the form xi = xj = xk for 1 ≤ i < j < k ≤ n in a real n-dimensional vector space.
It was Khovanov, in 1996, who proved that this is a K(π, 1) subspace arrangement [16]. He also gave a
presentation for the fundamental group of the complement. The presentation of this group, as well as the
presentation of the pure braid group, use the symmetric group in their construction. It is well known that
the symmetric group is generated by adjacent transpositions si = (i, i + 1), i ∈ [n − 1], subject to the
following relations:

1. s2
i = 1

2. sisj = sjsi, if |i− j| > 1

3. sisi+1si = si+1sisi+1

The braid group has presentation given by the same generating set, but subject only to relations 2 and
3. The pure braid group is the kernel of the surjective homomorphism, ϕ, from the braid group to the
symmetric group, given by ϕ(si) = si for all i ∈ [n − 1]. Khovanov’s presentation of the fundamental
group of the complement of the 3-equal arrangement is very similar. He defines the triplet group, which we
shall denote A′n−1. This group has a presentation given by the generators si, but subject only to relations
1 and 2, and he defines the pure triplet group to be the kernel of the surjective homomorphism, ϕ′ :
A′n−1 → An−1, given by ϕ′(si) = si for all i ∈ [n − 1]. Khovanov showed that the fundamental group
of the complement of the 3-equal arrangement is isomorphic to the pure triplet group. Thus, Khovanov
found a “real analogue” to the results of Fadell, Fox and Neuwirth.

The work of Fadell and Neuwirth has been generalized to other hyperplane arrangements. A simplicial
hyperplane arrangement is an arrangement whose regions are simplicial cones. In 1972, Deligne [11]
showed that the complexification of any simplicial hyperplane arrangement is a K(π, 1)-arrangement.
Given a finite real reflection group W , consider the complexification of the reflection arrangement associ-
ated toW . Since reflection arrangements are simplicial, their complexifications areK(π, 1)-arrangements.
Moreover, in 1971 Brieskorn [9] found that the fundamental group of the complement is isomorphic to
the pure Artin group of type W . We review the definition of Artin groups in Section 4.

Our primary interest is to give “real analogues” of these results for subspace arrangements in Rn that
correspond to finite real reflection groups. In particular, given a finite real reflection group W , we define
a family of (real) subspace arrangements which we call k-parabolic arrangements. We show in Theorem
4.1 that the fundamental group of the complement of a 3-parabolic arrangement has the following simple
description. We construct a new Coxeter group W ′ on the same generating set S as W , but we relax
all relations of W that are not commutative relations nor involutions. Then the fundamental group is the
kernel of a surjective homomorphism ϕ′ : W ′ → W given by ϕ′(s) = s for all s ∈ S. It turns out that
the 3-parabolic arrangement is also a K(π, 1) arrangement, a result due to Davis et al. (Theorem 0.1.9 in
[10]).
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Our primary tool for finding our presentation is the notion of discrete homotopy theory. Discrete homo-
topy theory is a theory that was developed in [2]. The theory involves constructing a bigraded sequence
of groups defined on an abstract simplicial complex that are invariants of a combinatorial nature. Instead
of being defined on the topological space of a geometric realization of a simplicial complex, the discrete
homotopy groups are defined in terms of the combinatorial connectivity of the complex. That is, we are
interested in how simplices intersect. In this paper, we show that the discrete fundamental group of the
Coxeter complex is isomorphic to π1 of the complement of the 3-parabolic arrangement. Thus, our result
shows that sometimes we can replace a group defined in terms of the topology of the space with a group
defined in terms of the combinatorial structure of the space.

In Section 2 we give a definition of the k-parabolic arrangement, and review some necessary definitions
related to Coxeter groups. We also relate k-parabolic arrangements to previous analogues of the k-equal
arrangement given by Björner and Sagan [7] for types B and D. In Section 3, we give a brief overview
of discrete homotopy theory and the definition of the Coxeter complex. Then we give an isomorphism
between the classical fundamental group of the complement of the 3-parabolic arrangement and the dis-
crete fundamental group of the corresponding Coxeter complex. In Section 4, we use this isomorphism
and a study of discrete homotopy loops in the Coxeter complex to obtain our algebraic description of the
fundamental group of the complement of the 3-parabolic arrangement. In Section 5 we conclude with
some open questions related to Wn,k-arrangements as well as a discussion on the K(π, 1) problem.

2 Definition of theWn,k-arrangement
Let W be a finite real reflection group acting on Rn and fix a root system Φ associated to W . Let Π ⊂ Φ
be a fixed simple system. Finally, let S be the set of simple reflections associated to Π. Assume that Π
spans Rn. We let m(s, t) denote the order of st in W . We know that m(s, s) = 1 and m(s, t) = m(t, s)
for all s, t ∈ S. Finally, given a root α, let sα denote the corresponding reflection, and let (·, ·) denote the
standard inner product.

Recall that there is a hyperplane arrangement associated toW , called the Coxeter arrangement H (W ),
which consists of hyperplanes Hα = {x ∈ Rn : (x, α) = 0} for each α ∈ Φ+. Since Π spans Rn, the
Coxeter arrangement is central and essential, which implies that the intersection of all the hyperplanes is
the origin.

Since we are generalizing the k-equal arrangement, which corresponds to the case W = An, we use
it as our motivation. For this paper, we will actually work with the essentialized k-equal arrangement.
The k-equal arrangement, An,k, is the collection of all subspaces given by xi1 = xi2 = . . . = xik
over all indices {i1, . . . , ik} ⊂ [n + 1], with the relation

∑n+1
1 xi = 0. The k-equal arrangement is an

arrangement that has been studied extensively ([6], [8], [16]). We note that the intersection poset L(An,k)
is a subposet of L(H (An)). There is already a well-known combinatorial description of both of these
posets. The poset of all set partitions of [n + 1] ordered by refinement is isomorphic to L(H (An)), and
under this isomorphism, L(An,k) is the subposet of set partitions where each block is either a singleton,
or has size at least k. However, our generalization relies on a lesser-known description of these posets in
terms of parabolic subgroups.

Definition 2.1 A subgroup G ⊆ W is a parabolic subgroup if there exists a subset T ⊆ S of simple
reflections, and an element w ∈W such that G =< wTw−1 >. If w can be taken to be the identity, then
G is a standard parabolic subgroup. We view (G,wTw−1) as a Coxeter system, and call G irreducible if
(G,wTw−1) is an irreducible system.
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It is well known that the lattice of standard parabolic subgroups, ordered by inclusion, is isomorphic
to the Boolean lattice. However, the lattice of all parabolic subgroups, P(W ), ordered by inclusion,
was shown by Barcelo and Ihrig [1] to be isomorphic to L(H (W )). Since this isomorphism is essential
to our generalization, we review it. The isomorphism is given by sending a parabolic subgroup G to
Fix(G) = {x ∈ Rn : wx = x, ∀w ∈ G}, and the inverse is given by sending an intersection of
hyperplanes X to Gal(X) = {w ∈W : wx = x, ∀x ∈ X}.

This Galois correspondence gives a description of L(H (An)) in terms of parabolic subgroups of An.
We also obtain another description of L(An,k) under this correspondence.

Proposition 2.2 The Galois correspondence gives a bijection between subspaces of An,k and irreducible
parabolic subgroups of An of rank k − 1.

Proof: Let X be a subspace of Rn+1 given by x1 = . . . = xk. The k-equal arrangement is the orbit of
X under the action of An = Sn+1, and Gal(X) =< (1, 2), ..., (k − 1, k) >, hence is irreducible. For
w ∈ An, Gal(wX) = wGal(X)w−1, so all of the subspaces in the k-equal arrangement have irreducible
Galois groups.

Conversely, every irreducible parabolic subgroup of rank k − 1 in An is the Galois group of some
subspace in the k-equal arrangement. To see this, consider an irreducible parabolic subgroup G of rank
k−1. Then there exists a standard parabolic subgroupH and an element w ∈W such thatG = wHw−1.
Since H is an irreducible standard parabolic subgroup, H =< (i, i+ 1), ..., (i+k− 1, i+k) > for some
1 ≤ i ≤ n+1−k. Thus, Fix(H) is given by xi = . . . = xk, and Fix(G) = Fix(wHw−1) = wFix(G)
is given by xw(i) = . . . xw(k), which is a subspace in the k-equal arrangement. 2

With this proposition as motivation, we give the following definition for a k-parabolic arrangement.

Definition 2.3 Let W be an finite real reflection group of rank n. Let Pn,k(W ) be the collection of all
irreducible parabolic subgroups of W of rank k − 1.

Then the k-parabolic arrangement Wn,k is the collection of subspaces

{Fix(G) : G ∈Pn,k(W )}.

The k-parabolic arrangements have many properties in common with the k-equal arrangements. Both
of these arrangements can be embedded in the corresponding Coxeter arrangement. That is, every sub-
space in these arrangements can be given by intersections of hyperplanes of the Coxeter arrangements.
Moreover, L(Wn,k) is a subposet of L(H (W )) = L(Wn,2), and these arrangements are invariant under
the action of W . Indeed, consider a subspace X in Wn,k and an element w ∈ W . Since X is in Wn,k,
Gal(X) is an irreducble parabolic subgroup of rank k− 1. It is clear that Gal(wX) = wGal(X)w−1, so
Gal(wX) is also an irreducible parabolic subgroup of rank k− 1, whence Gal(wX) ∈Pn,k(W ). Since
Fix(Gal(wX)) = wX , it follows that wX ∈ Wn,k.

When W is of type A, we see that we have recovered the k-equal arrangement. To see what happens
when W is type B or D, first we recall type B and D analogues of the k-equal arrangement. In 1996,
Björner and Sagan defined a class of subspace arrangements of type B and D [7], which they call the
Bn,k,h-arrangements and Dn,k-arrangements.

Definition 2.4 The Dn,k-arrangement consists of subspaces given by ±xi1 = ±xi2 = . . . = ±xik ,
over distinct indices i1, . . . , ik. The Bn,k,h-arrangements are obtained from the Dn,k-arrangements by
including subspaces given by xi1 = . . . = xih = 0 over distinct indices i1, . . . , ih, with h < k.
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The Betti numbers ofM(Bn,k,h) were computed by Björner and Sagan in [7], while the Betti numbers
ofM(Dn,k) were computed by Kozlov and Feichtner in [13].

Example 2.5 (When W is of type B) WhenW is of typeB, the k-parabolic arrangement is the Bn,k,k−1-
arrangement of Björner and Sagan [7]. Recall that Bn has presentation given by generators si, 0 ≤ i ≤
n, such that < s1, . . . , sn > generate the symmetric group, (s0s1)4 = 1, and s0si = sis0 for i > 1. It
is well-known that the Bn,k,k−1-arrangement is the orbit of two subspaces given by x1 = . . . = xk and
x1 = . . . = xk−1 = 0, under the action of Bn. Clearly the Galois groups of these two spaces are given
by < s1, . . . , sk−1 > and < s0, . . . , sk−2 >. These are both irreducible parabolic subgroups of rank
k− 1, so every subspace of the Bn,k,k−1-arrangement corresponds to an irreducible parabolic subgroup
of rank k − 1. Similarly, given an irreducible parabolic subgroup of rank k − 1, it is not hard to show
that this subgroup corresponds to a subspace in the Bn,k,k−1-arrangement. The argument is similar to
the case for type A, and we omit the details.

3 Discrete Homotopy Theory
To facilitate the proofs of our algebraic description for π1(M(Wn,k)), first we give a combinatorial de-
scription of π1(M(Wn,k)) in terms of discrete homotopy theory of the Coxeter complex for W . As
motivation, we mention the following result:

Theorem 3.1 Let M(An,k) be the complement of the k-equal arrangement An,k. Let C (An) be the
order complex of the Boolean lattice.

Then π1(M(An,k)) ∼= An−k+1
1 (C (An)), where Aq1 is a discrete homotopy group, to be defined below.

This result was shown independently by Björner [5] and Babson (appears in [3]) in 2001). It turns out
that the order complex of the Boolean lattice is the Coxeter complex of type A, which explains our choice
of notation.

One of the original motivations for discrete homotopy theory was to create a sequence of groups for
studying social networks being modeled as simplicial complexes. However, as Theorem 3.1 shows, dis-
crete homotopy theory has applications in other areas of mathematics. We will show that there is an
isomorphism between π1(M(Wn,k)) and the discrete fundamental group, An−k+1

1 , of the Coxeter com-
plex, a combinatorial structure associated to the Coxeter arrangement. Essentially, we are replacing a
topologically defined group with a combinatorially defined group. First, however, we give an overview
of some of the needed basic definitions and results from discrete homotopy theory. Many details and
background history of discrete homotopy theory can be found in [2].

Fix a positive integer d. Let ∆ be a simplicial complex of dimension d, fix 0 ≤ q ≤ d, and let σ0 ∈ ∆
be maximal with dimension ≥ q. Two simplicies σ and τ are q-near if they share q + 1 elements. A
q-chain is a sequence σ1, . . . , σk, such that σi, σi+1 are q-near for all i. A q-loop based at σ0 is a q-chain
with σ1 = σk = σ0.

Definition 3.2 We define an equivalence relation, ' on q-loops with the following conditions:

1. The q-loop
(σ) = (σ0, σ1, . . . , σi, σi+1, . . . , σn, σ0)

is equivalent to the q-loop

(σ)′ = (σ0, σ1, . . . , σi, σi, σi+1, . . . , σn, σ0),
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432
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Fig. 1: An example of a homotopy grid

which we refer to as stretching.

2. If (σ) and (τ) are two q-loops that have the same length then they are equivalent if there is a
diagram as in figure 1. The vertices represent simplices, and two vertices are connected by an edge
if and only if the corresponding simplices are q-near. Thus, every row is a q-loop based at σ0, and
every column is a q-chain. Such a diagram is called a (discrete) homotopy between (σ) and (τ).

Define Aq1(∆, σ0) to be the collection of equivalence classes of q-loops based at σ0. Then the operation
of concatenation of q-loops gives a group operation onAq1(∆, σ0), the discrete homotopy group of ∆. The
identity is the equivalence class containing the trivial loop (σ0), and given an equivalence class [σ] for the
q-loop (σ) = (σ0, σ1, . . . , σk, σ0), the inverse [σ]−1 is the equivalence class of (σ0, σk, σk−1, . . . , σ2, σ1, σ0).
As in classical topology, if a pair of maximal simplices σ, τ of dimension at least q in ∆ are q-connected,
then Aq1(∆, σ) ∼= Aq1(∆, τ). Thus, in the case ∆ is q-connected, we will set Aq1(∆) = Aq1(∆, σ0) for any
maximal simplex σ0 ∈ ∆ of dimension at least q.

Before we use discrete homotopy theory, we need a result from [2] that relates discrete homotopy theory
of a simplicial complex to classical homotopy theory of a related space. Given 0 ≤ q ≤ d, let Γq(∆) be a
graph whose vertices are maximal simplices of ∆ of size at least q, and with edges between two simplices
σ, τ , if and only if σ and τ are q-near. Then the following result relates Aq1(∆, σ0) in terms of a cell
complex related to Γq(∆).

Proposition 3.3 (Proposition 5.12 in [2])

Aq1(∆, σ0) ∼= π1(XΓ, σ0)

where XΓ is a cell complex obtained by gluing a 2-cell on each 3- and 4-cycle of Γ = Γq(∆).

Let W,H(W ),Φ,Π, S be as in section 2. As mentioned previously, we study the discrete homotopy
groups of the Coxeter complex associated to W , and relate them to π1(M(Wn,k)). The majority of these
details can be found in Section 1.14 in Humphrey’s book on Coxeter groups [15]. The concepts regarding
fans and zonotopes can be found in Chapter 7 of Zeigler’s book on polytopes [18].

For a given set I ⊆ S, let WI =< I >, and ΠI = {α ∈ Π : sα ∈ I}. We can associate to WI the
set of points CI = {x ∈ Rn : (x, α) = 0,∀α ∈ ΠI , and (x, α) > 0,∀α ∈ Π − ΠI}. The set CI is the
intersection of hyperplanes Hα for α ∈ ΠI with certain open half-spaces. We see that C∅ corresponds to
the interior of a fundamental region, and CS is the origin.
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For a given coset wWI , we can associate the set of points wCI . The collection C (W ) of wCI for
all w ∈ W, and all I ⊆ S partitions Rn, and is called the Coxeter complex of W . The face poset of
the Coxeter complex can be viewed as the collection of cosets wWI for any w ∈ W, I ⊆ S, ordered by
reverse inclusion. We note that this poset is not L(H (W )). For W = An, we have already mentioned
that L(H (W )) is isomorphic to the partition lattice. The face poset of the braid arrangement, however,
is isomorphic to the order complex of the boolean lattice. Since chains in the boolean lattice are in one-
to-one correspondence with ordered set partitions, these two posets are related, but are very different.
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x=z

(23)C∅(132)C∅

(12)C∅

(13)C∅ (123)C∅

C∅

C(12)

(23)C(12)(13)C(12)

C(23)

(13)C(23)

(12)C(23)

Fig. 2: Coxeter Complex and Zonotope for W = A3. Note that CS is the origin.

For a given w, I , the closure of wCI is a convex polyhedral cone. In fact, the collection of all wC̄I
forms a fan of Rn, which is the fan associated to H (W ). Under this view, the sets wC̄I are the faces of
the arrangement.

Recall that we can associate a zonotope to a hyperplane arrangement. That is, given line segments of
unit length normal to the hyperplanes, one can form a polytope by taking the Minkowski sum of these
line segments. For a Coxeter arrangement of type W this zonotope is called the W -Permutahedron.
Also, the fan of the arrangement is the normal fan of the zonotope. Thus, we can label the faces of
the W -Permutahedron by cosets wWI , where a face F gets the label wWI if the normal cone for F
is wC̄I . Under this labeling, the face poset of the W -Permutahedron is indexed by cosets wWI for all
w ∈W, I ⊆ S, ordered by inclusion.

We observe that in the W -Permutahedron, the vertices correspond to elements of W , and two vertices
share an edge if and only if the corresponding regions share an (n − 1)-dimensional boundary, that is if
and only if the corresponding elements of W differ by multiplication on the right by a simple reflection.
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From this it follows that the graph (one-skeleton) of the W -Permutahedron is the graph Γn−2(C (W ))
defined before Proposition 3.3.

We also characterize the cycles that are boundaries of 2-faces in the W -Permutahedron. Given a 2-
dimensional face F and a vertex w in F , we see that one edge adjacent to w in F is of the form w,ws
for some s ∈ S. Likewise, one of the two edges of F incident to the edge w,ws is the edge ws,wst,
where t ∈ S − s. Thus we see that the coset associated to the normal cone of F contains both wWs and
wsWt. Likewise, it is the smallest coset to contain these two cosets, so the corresponding coset is given
by wW{s,t}. The cycle that is the boundary of F is seen to have length 2m(s, t). This means that the
graph has no 3-cycles, and 4-cycles are boundaries of faces which correspond to a coset of W{s,t}, where
s, t ∈ S and m(s, t) = 2. The fact that the graph has no 3-cycles will turn out to be useful in section 4.

Now we turn to the main result of this section.

Theorem 3.4 LetM(Wn,k) be the complement of the k-parabolic arrangement Wn,k.
Then π1(M(Wn,k)) ∼= An−k+1

1 (C (W )).

The proof is given in the full version of the paper [4].

4 An algebraic description of π1(M(Wn,3))
In this section, we give a description of π1(M(Wn,k)) that is similar to the idea of a pure Artin group. In
our case, the group we consider is a (possibly infinite) Coxeter group. Recall thatW affords the following
presentation: W is generated by S subject to the relations:

1. s2 = 1, ∀s ∈ S

2. st = ts, ∀s, t ∈ S such that m(s, t) = 2

3. sts = tst, ∀s, t ∈ S, such that m(s, t) = 3
...

i. stst · · ·︸ ︷︷ ︸
i

= tsts · · ·︸ ︷︷ ︸
i

, ∀s, t ∈ S, such that m(s, t) = i

...

where of course we have no relation of the form st · · · = ts · · · if m(s, t) =∞.
If G is a group generated by S subject to every relation except relations of type 1, then G is an Artin

group. There is a surjective homomorphism ϕ : G → W given by ϕ(s) = s for all s ∈ S. The kernel
of ϕ is the pure Artin group. As stated in the introduction, the pure Artin group is isomorphic to the
fundamental group of the complement of the complexification of the Coxeter arrangement for W . The
goal of this section is to give a real analogue of this result for the Wn,3-arrangements.

In our case, let W ′ be a group on S subject to only the relations of type 1 and 2. Equivalently, W ′ is
subject to s2 = 1 for all s ∈ S, and two elements s, t ∈ S commute in W ′ if and only if they commute in
W . In essence, given the Dynkin diagram D for W , W ′ is obtained by replacing all the edge labels in D
with the edge label∞, and letting W ′ be the resulting Coxeter group.

Consider the surjective homomorphism ϕ′ : W ′ → W given by ϕ′(s) = s for all s ∈ S. Then the
following result holds:
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5

∞
∞

∞ ∞

D′5

∞∞∞

H4 H ′4

D5

Fig. 3: Dynkin diagrams for W and W ′

Theorem 4.1 π1(M(Wn,3)) ∼= kerϕ′.

When W is of type A or B, Theorem 4.1 was shown by Khovanov [16], where the arrangements are
referred to using different terminology. However, we give a proof for any finite real reflection group.

As a result of Theorem 3.4, we know that we can study π1(M(Wn,k)) using discrete homotopy theory
of C (W ). Before we prove Theorem 4.1 we first investigate the structure of (n − 2)-loops in C (W ) in
more detail. For the duration of the section we will use the term loop to mean (n− 2)-loop. To any such
loop (σ) = (σ0, . . . , σ`, σ0) in C (W ) we associate a sequence of elements of S ∪ {1} of length ` in the
following way: For any i ∈ [`], if σi = σi−1, let si = 1. Otherwise let si be the unique element s of S
for which σi−1s = σi. Thus we associate a word f(σ) in S∗ to (σ): the product of the elements of the
corresponding sequence in order.

We note that if (σ) is a loop, then f(σ) = 1 in W . This implies that when viewing f(σ) as a product
in W ′, f(σ) ∈ kerϕ′. We also note that to any element w = s1 · · · sk in S∗ we can associate a chain
g(w) = (σ0, σ0s1, . . . , σ0s1 · · · sk), where the elements s1 · · · si are being viewed as elements of W . If
w = 1 when viewed as an element of W , then g(w) is actually a loop. It is easy to see that for two loops
(σ), (τ), f((σ) ∗ (τ)) = f(σ)f(τ), and if u, v ∈ S∗, u = v = 1 in W , then g(uv) = g(u) ∗ g(v).

Suppose there is a homotopy between two loops (σ) and (τ) of the same length. Since Γn−2(C(W ))
does not have any 3-cycles, it turns out that there is a (discrete) homotopy between them where adjacent
rows in the grid follow one of the three following discrete homotopy operations. In each case, we also
show how the associated words differ between the adjacent rows. Finally, e refers to the identity element
of W .

(T1) Repeating simplices. A simplex α is repeated consecutively on the top row, and a different simplex
β is repeated consecutively on the bottom row. Note that this results in no change in the associated
words.

σ

σ

e

e

τ

τ

α
r s t

r s t

α β

α β β

rst

rst

(T2) Inserting or removing a simplex. On one row there are three adjacent identical simplices α, and on
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the bottom row the middle simplex of this triple is replaced with a new simplex β that is (n−2)-near
α. Note that the corresponding words differ by an involution relation.

σ

σ

e
τ

τ

α
r t

r s t

α

α β

α

α

e

s

rt

rsst

(T3) Exchanging pairs that are (n − 2)-near. We happen to know that (α, β, τ, γ) is a loop of distinct
simplices. We construct a discrete homotopy as shown in the figure. We note that the resulting
words differ by an application of a commutative relation. It is also worth noting this operation can
only be performed when s, t commute.

σ

σ

τ

τ

α
r

r α

rst

rts

s t e

e t s

β τ

α γ

Thus for any discrete homotopy operation, the corresponding words are either equal, or differ by one
of the generating relations of W ′. In the full paper [4], we use this observation to prove the following
lemma.

Lemma 4.2 1. Let (σ), (τ) be loops. If (σ) ' (τ) then f(σ) = f(τ) in W ′.

2. Let w ∈ S∗. If w = 1 in W ′, then g(w) is contractible.

3. Let w, v ∈ S∗. If w = v in W ′, then g(w) ' g(v).

Proof of Theorem 4.1:
The isomorphism is given by sending the equivalence class with representative (σ) to f(σ), and the

inverse is given by sending an element w ∈ W ′, expressed as s1s2 · · · sk, k ∈ N, s1, . . . , sk ∈ S, to
g(s1 · · · sk). The details that these functions are well-defined isomorphisms is given in the full paper [4].
2

5 Conclusion and Open Problems
It follows as a result of Corollary 5 in [8] that for k > 3, the k-parabolic arrangements are not K(π, 1).
However, the Wn,3 -arrangement is aK(π, 1)-arrangement. As a result of Davis, Januszkiewicz and Scott,
if A is any collection of codimension 2 subspaces of H (W ) that are invariant under the action of W ,
then A is a K(π, 1)-arrangement (Theorem 0.1.9 in [10]).

Currently there is no presentation for the fundamental groups of the complement of such W -invariant
arrangements. Motivated by our results, and the work of Khovanov [16], we give the following conjec-
tured presentation.
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Conjecture 5.1 Let P be a collection of rank 2 parabolic subgroups of a finite real reflection group W
such that P is closed under conjugation, and let W = {Fix(G) : G ∈P} Define a new Coxeter group
W ′ with the same generating set S as W , and subject to:

m′(s, t) =
{
∞ if < s, t >∈P
m(s, t) else

and let ϕ : W ′ →W be given by sending s→ s for all s ∈ S. Then π1(M(W )) ∼= kerϕ.

In [2], a definition is given for higher discrete homotopy groups, which are denote Aqm(∆, σ0). A
natural question is whether or not these groups are related to the higher homotopy groups ofM(Wn,k).

Conjecture 5.2 LetM(Wn,k) be the complement of the k-parabolic arrangement Wn,k.
Then πm(M(Wn,k)) ∼= An−k+1

m (C (W )).

Form < k, it would suffice to show thatAn−k+1
m (C (W )) is trivial. The conjecture becomes interesting

for k > 3,m = k, because in this case the k-th homology group of M(Wn,k) is isomorphic to the
k-th homotopy group. Thus, one could find the formulas for the first non-zero Betti numbers using
discrete homotopy theory. Determining the Betti numbers for the k-parabolic arrangements is also an
open problem, in the case that W is an exceptional groups.

Finally, one may if it is possible to generalize Theorem 3.4 to other hyperplane arrangements. That is,
given a hyperplane arrangement H , let C (H ) be the face complex of H . Is there a subspace arrange-
ment A for which π1(M(A )) ∼= An−2

1 (C (H ))? This would be an example of using discrete homotopy
theory of a complex that arises from geometry to study a topological space related to the original complex.
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[6] Anders Björner and László Lovász, Linear decision trees, subspace arrangements and Möbius func-
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The Discrete Fundamental Group of the
Associahedron

Christopher Severs1 and Jacob White1
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Abstract. The associahedron is an object that has been well studied and has numerous applications, particularly in
the theory of operads, the study of non-crossing partitions, lattice theory and more recently in the study of cluster
algebras. We approach the associahedron from the point of view of discrete homotopy theory, that is we consider
5-cycles in the 1-skeleton of the associahedron to be combinatorial holes, but 4-cycles to be contractible. We give
a simple description of the equivalence classes of 5-cycles in the 1-skeleton and then identify a set of 5-cycles from
which we may produce all other cycles. This set of 5-cycle equivalence classes turns out to be the generating set for
the abelianization of the discrete fundamental group of the associahedron. In this paper we provide presentations for
the discrete fundamental group and the abelianization of the discrete fundamental group. We also discuss applications
to cluster algebras as well as generalizations to type B and D associahedra.

Résumé. L’associahèdre est un objet bien etudié que l’on retrouve dans plusieurs contextes. Par exemple, il est associé
à la théorie des opérades, à l’étude des partitions non-croisées, à la théorie des treillis et plus récemment aux algèbres
dámas. Nous étudions cet objet par le biais de la théorie des homotopies discretes. En bref cette théorie signifie qu’un
cycle de longueur 5 (sur le squelette de l’associahèdre) est considéré comme étant le bord d’un trou combinatoire,
alors qu’un cycle de longueur 4 peut être contracté sans problème. Les classes d’homotopies discrètes sont donc des
classes d’équivalence de cycles de longueurs 5. Nous donnons une description simple de ces classes d’équivalence et
identifions un ensemble de générateurs du groupe correspondant (abélien) d’homotopies discrètes. Nous d’ecrivons
également les liens entre notre construction et les algèbres d’amas.

Keywords: associahedron, discrete fundamental group, conic arrangements

1 Introduction
Let Tn be the abstract simplicial complex on the set of all diagonals of a regular (n + 3)-gon whose
maximal simplices, Ti, correspond to triangulations of the regular (n+3)-gon. It is well known that if we
(partially) order the simplices of Tn by reverse inclusion then we have a poset that is isomorphic to the
face poset of the associahedron [14]. There is a wealth of recent literature focusing on the associahedron
and its generalizations, [4, 6, 5, 9, 16, 12, 15]. Simion, in [14], gives an excellent description of the
origins and early study of the associahedron. It is our intention to study the associahedron through the
lens of the discrete homotopy theory, or A-theory, of Barcelo, Kramer, Laubenbacher and Weaver [1, 2].
This approach highlights some interesting combinatorial properties of the associahedron and provides a
framework to study several of the generalizations of the associahedron in the same manner.
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Our approach is not completely novel; we are motivated by the study of the discrete fundamental group
of the permutahedron done by Barcelo and Smith. It had been shown previously by Babson [2] and
independently by Björner that that the discrete fundamental group of the permutahedron is isomorphic
to the classical homotopy group of the real complement of the k-equal arrangement, Mn,k. In [3], the
authors provide a combinatorial method for calculating the abelianization of the discrete fundamental
group of the permutahedron, which in turn gives a purely combinatorial method of calculating the Betti
number ofMn,k. In our case, due to the structure of the associahedron we do not have a resulting subspace
arrangement but we will give a link to what we call a conic arrangement as well as a connection to cluster
algebras.

We present a short overview of the facts about A-theory needed here but for a more thorough under-
standing we refer the reader to [1, 2].

Recall that a triangulation of an (n + 3)-gon contains n non crossing diagonals. Given two maximal
simplices (triangulations) T1, T2 in Tn, we say they are near if |T1∩T2| = n−1. We may also restate this
as: T1 and T2 are near if they differ by a diagonal flip. A sequence of maximal simplices, T1−T2−· · ·−Tk

is called a chain if Ti, Ti+1 are near for all 0 ≤ i ≤ k and a chain that starts and ends with the same simplex
is called a loop. Note that in the general discrete homotopy theory, one can vary the definition of near by
adjusting a parameter q. This parameter q is fixed in our case to be n− 2.

There is an equivalence relation, 'A, that may be placed on the set of all loops based at T0. A full
description of this relation can be found in [1, 2].

Let An−2
1 (Tn, T0) be the set of equivalence classes of loops based at T0 (the superscript n − 2 is

the parameter q mentioned previously). By Proposition 2.3 in [1], a group structure can be imposed on
An−2

1 (Tn, T0) by adding the operation of concatenation of loops. We call An−2
1 (Tn, T0) with this group

structure, the discrete fundamental group of Tn. A grid between loops in An−2
1 (Tn, T0) can be thought

of as analogous to a continuous deformation of one curve to another in classical homotopy theory. The
structure of An−2

1 (Tn, T0) gives us information about Tn in the same way the classical homotopy group
gives us information about a topological space.

Given the complex Tn, we may also define a graph, Γn−2(Tn), where the vertex set of Γn−2(Tn) is in
bijection with the set of maximal simplices of Tn and we put an edge between Ti and Tj if they are near.
It is shown in [1] that closed walks based at T0 in Γn−2(Tn) are in bijection with loops using elements
from Tn, and in fact two closed based walks in Γn−2(Tn) are homotopic if they differ by 3- and 4-cycles
only. Thus we may think of An−2

1 (Tn, T0) as being the group of equivalence classes of closed based
walks in Γn−2(Tn) with the obvious operation of concatenation and the identity and inverses just as in the
previous description of An−2

1 (Tn, T0) in terms of loops. It is well known [14] that the graph Γn−2(Tn) is
the 1-skeleton of the associahedron, hereafter referred to as Ascn to reinforce the connection between Tn

and the associahedron in the mind of the reader. Hence when we discuss An−2
1 (Tn, T0), we may think of

elements in terms of walks in the 1-skeleton of the associahedron.
By Proposition 5.12 in [1], we know that An−2

1 (Tn, T0) ' π1(XΓ), where XΓ is the topological space
obtained by attaching a 2-cell to every 3- and 4-cycle of Γn−2(Tn). We refer to cycles in Ascn that bound
a 2-face of the associahedron as basic cycles. If we continue our analogy between discrete and classical
homotopy theory, we can see now that a hole in Tn corresponds to a basic cycle in Ascn of length ≥ 5.
However, becauseXΓ is not a graph, it is not guaranteed thatAn−2

1 (Tn, T0) is free and we show that there
are in fact commutivity relations between the generators of An−2

1 (Tn, T0).
When we move on to the abelianization of An−2

1 (Tn, T0), we are considering the equivalence classes
of holes, corresponding to 5-cycles in Ascn, but we are able to show that although there are

(
n+3

5

)
equiv-



The Discrete Fundamental Group of the Associahedron 785

alence classes, we may recover all of the equivalence classes of 5-cycles using only a set of
(
n+2

4

)
equiv-

alence classes. This leads to the main result of Section 4.

Theorem 1.1 The abelianization of An−2
1 (Tn, T0) is a free abelian group of rank

(
n+2

4

)
.

Although the classical fundamental group of a convex polytope is always trivial, the discrete funda-
mental group is not, and seems to provide an indication of the complexity of the polytope as compared
to the n-simplex. In [10], the authors provide an excellent view of the associahedron as a a truncation of
the n-simplex and the permutahedron as a truncation of the associahedron. At each step in the truncation
process, the number of generators of the abelianization of the discrete fundamental group increases, going
from trivial in the case of the n-simplex to

(
n+2

4

)
for the associahedron and 2n−3(n2 − 5n + 8) − 1 for

the permutahedron.
In Section 2 we establish a labeling scheme for edges of Ascn and a set of words whose letters are

the labels of edges in Ascn. It is shown in [1] that loops based at T0 are in one-to-one correspondence
with closed walks in Γn−2(Tn) based at T0 (we abuse notation here and use T0 to refer to both a maximal
simplex of Tn and a vertex of Γn−2(Tn)). Thus we may think of An−2

1 (Tn, T0) both as the group on
equivalence classes of loops and as a group on equivalence classes of based walks in Ascn. This will
allow us to work entirely with closed walks in Ascn and words constructed from those walks.

In Section 3 we give a generating set for the group An−2
1 (Tn, T0) using a description of the classical

fundamental group in terms of the cycles that bound 2-faces in the associahedron. This approach is
informative in that it gives us a combinatorial description of the generating set for An−2

1 (Tn, T0).
Section 4 contains the proof of Theorem 1.1 as well as a series of lemmas needed to prove the result.

We have omitted many of the proofs of these lemmas due to space considerations, however many of
them follow easily from the definitions and ideas in Section 2. In proving Theorem 1.1 we give a simple
combinatorial description of the generators.

Finally, we conclude in Section 5 with a description of applications and two directions for future study.
Due to space considerations we have omitted some details of proofs and background, however all of

the material here appears in full detail in the first author’s PhD thesis ([13]).

2 Properties of Ascn
As noted in the introduction, the associahedron has been very well studied. For an overview of the basic
properties and facts of this object we refer the reader to the list of references presented in the introduction.
In this section we establish a labeling scheme for the edges of Ascn. Using this new labeling scheme
as an alphabet, we are able to translate a loop of simplices, or a walk in Ascn, to a word. The use of
words makes our proofs in the following sections more clear and gives an algebraic framework for our
discussions of discrete homotopy theory.

We also look more closely at the equivalence relation 'A, giving a shorter description as in [3]. Due
to the lack of triangles in Ascn, we may write any discrete homotopy between loops as a series of three
fundamental changes to the loop; stretching at a simplex, inserting a new simplex, and commuting two
simplices.

We begin with the edge labels for Ascn. Fix a regular (n + 3)-gon and label the vertices clockwise in
order with 1, . . . , n+ 3. Recall that an edge in Ascn corresponds to changing one diagonal between two
triangulations of an (n + 3)-gon, or a diagonal flip. We may use this flip to label the edge in a distinct
way.
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Definition 2.1 Let e be an edge in Ascn which corresponds to changing the diagonal ac to the diagonal
bd. Define the label set of e, L(e) to be the set {a, b, c, d}, where a, b, c, d are elements of {1, . . . , n+ 3}
corresponding to the vertices of the (n+ 3)-gon.

Note that while the every edge has exactly one label set, many edges may share the same label set.
We also may derive the label for an edge by considering its corresponding simplex in Tn. Edges in

Ascn correspond to a simplex S with n − 1 diagonals, so we may take the (n + 3)-gon and add all
of the diagonals in S. When we have added all of the diagonals in S we have one region inside the
(n + 3)-gon which has not been triangulated. This region is a quadrilateral and the vertices that bound
it are exactly the label set of the edge corresponding to S. This method of determining the label set is
very easy to understand with an illustration, so we have provided the graph Asc2 with the triangulated
5-gon corresponding to each vertex, and each edge labeled with our scheme in Figure 1. Observe that
each diagonal flip occurs inside a fixed quadrilateral and we may read off the edge label from the vertices
of that quadrilateral.

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

4 3

25

1

{1, 2, 3, 4}

{1, 2, 4, 5}

{2, 3, 4, 5}

{1, 2, 3, 5}

{1, 3, 4, 5}

Fig. 1: The graph Asc2 with vertices as triangulations of a regular 5-gon and edges labeled.

Just as we have label sets for the edges of Ascn, we also introduce the notion of basic cycle label sets.
The basic cycle label is a natural extension of the edge label obtained in a very similar manner.

Definition 2.2 Let C be a basic cycle in Ascn and let e and f be two edges on C, with L(e) 6= L(f).
Define the label set of C, L(C) to be the set L(e) ∪ L(f).

We also have an intuitive way to see the label set of a basic cycle given its corresponding partial triangu-
lation of an (n+3)-gon. As in the case of edge label sets, we consider the simplex S that corresponds to a
basic cycle. This simplex has (n−2) diagonals and so when we add these diagonals to the (n+3)-gon we
have a partial triangulation. Each missing diagonal gives us a quadrilateral region inside the (n+ 3)-gon.
The boundary vertices of these two regions give us the label set of the cycle. An illustration of the regions
corresponding to a basic 4-cycle and a basic 5-cycle can be seen in Figure 2.
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a

b

c

de

f

g

h a
b

c

d

e

Fig. 2: Regions inside a regular (n+3)-gon corresponding to a basic 4-cycle and basic 5-cycle respectively. Shading
indicates a region is triangulated.

In the case that the two regions have interiors that overlap it must be the case that they share three
boundary vertices and hence their intersection is a pentagon. As seen in Figure 1, there are five ways to
triangulate a pentagon and so we obtain a corresponding basic 5-cycle in Ascn. If the regions do not have
intersecting interiors then it is easy to see we may triangulate them each in two different ways, giving us
the four vertices of a basic 4-cycle.

If a basic cycle is a 4-cycle then the opposite edges on the cycle must have the same label set, since
we are performing two separate flips in sequence and then performing the exact same flips in the same
sequence again, in effect undoing them. If a basic cycle is a 5-cycle, then the edges of the cycle must have
distinct label sets. This can be observed in Figure 1. In fact, given a basic 5-cycle we know even more
about the label sets of the edges.

Proposition 2.3 At least one of the edges of a basic 5-cycle has a label set that does not contain the
element 1.

Proof: Let C be a basic 5-cycle with label set L(C). Then if e1, . . . , e5 are the edges of C, the label sets
L(e1), . . . , L(e5) are the five subsets of L(C) of size 4. If 1 ∈ L(C) then one subset of L(C) of size 4
must not contain 1 (If 1 /∈ L(C) it is clear no subset of size 4 will contain 1). 2

Now that we have established labels for the edges of Ascn, we may think of elements of An−2
1 (Tn, T0)

in terms of words on the alphabet of edge labels. Due to the fact that the elements of An−2
1 (Tn, T0) are

closed walks based at T0, we have a very easy way to write down the corresponding words.

Definition 2.4 Let W = e1 . . . en be a closed walk in Ascn based at vertex T0. The word for the walk W
is w = L(e1) · · ·L(en).

Although we still consider elements of An−2
1 (Tn, T0) primarily as closed walks based at T0, it will

be useful to operate on the words corresponding to the walks. To do this we must establish how the
relation 'A affects words. We make use of a result from [3] that because Ascn is triangle free, there
are only 3 possible changes we may make to walks and words that will preserve 'A. We list the three
changes (T1)-(T3) briefly and refer the reader to the reference above for further information due to space
considerations.
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• (T1) Stretch. We may stretch a loop by repeating a vertex one or more times.

` = T0 − · · · − Ti − · · · − T0 ' T0 − · · · − Ti − Ti − · · · − T0

In Ascn we have not traversed any new edges so the walk stays the same. We may think of this
operation as holding at a vertex. This operation also does not change a word since there is no new
edge label added.

• (T2) Insertion. This change consists of inserting a new simplex in a loop. Suppose we have already
stretched at Ti and suppose Tj and Ti are near. Then

` = T0 − · · · − Ti − Ti − · · · − T0 ' T0 − · · · − Ti − Tj − Ti − · · · − T0.

In Ascn this change corresponds to traversing an edge e from Ti to a new vertex Tj , then traversing
e in the opposite direction to return to the original walk. In the word corresponding to the walk we
have added the letter L(e) twice.

• (T3) Switch. Let ` = T0 − · · · − Ti−1 − Ti − Ti+1 − Ti+1 − · · · − T0 be a loop and let Tj be near
to both Ti−1 and Ti+1. Then we may switch Tj for Ti and have

` = T0 − · · · − Ti−1 − Ti−Ti+1 − Ti+1 − · · · − T0

' T0 − · · · − Ti−1 − Ti−1 − Tj − Ti+1 − · · · − T0.

In Ascn we have a 4-cycle Ti−1, Ti, Ti+1, Tj with the edges e1, e2, e3, e4 respectively, and we
change the walk from traversing edges e1, e2 to edges e4, e3. Recall that the opposite edges in a
4-cycle have the same label set, hence L(e1) = L(e3) L(e2) = L(e4). Thus in the word corre-
sponding to the walk, we have commuted the letters L(e1) and L(e2).

Remark 2.5 The change (T3) tells us that two letters commute if their associated edge label sets are
adjacent on some 4-cycle in Ascn. Recall that the label set of an edge e, L(e), gives the boundary
vertices of a quadrilateral region inside an (n + 3)-gon. Thus, given a letter L(e), we may commute it
with any letter L(f) as long as the region inside an (n + 3)-gon bounded by the elements of L(e) does
not intersect the region bounded by the elements of L(f). This implies that |L(e) ∪ L(f)| ≤ 2, but it is
not a sufficient condition for L(e) and L(f) to commute as letters.

Another important fact about (T2)-(T3) concerns their effect on the parity of letters in a word w.

Remark 2.6 The changes (T2)-(T3) preserve the parity of letters in a word.

It should also be noted that we may apply the relation 'A to paths in Ascn that have the same start
and end point. This is equivalent to comparing two chains of simplices that have the same start and end
simplices. All of the changes (T1)-(T3) make sense in this case and the underlying idea of having a grid
between the two chains works the same. We use this type of comparison of paths in Section 4.
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3 A Description of An−2
1 (Tn, T0)

We now give a description of An−2
1 (Tn, T0). Though we are primarily concerned in this abstract with the

abelianization of An−2
1 (Tn, T0), we feel that exposing the structure of An−2

1 (Tn, T0) is still a rewarding
exercise in and of itself. We omit the majority of the proofs due to space considerations but provide a
sketch of our main result as it gives us insight into the generators of An−2

1 (Tn, T0)..
In [7] the authors show that the classical fundamental group of the 1-skeleton of the associahedron is

generated by all of the basic 4- and 5-cycles, pinned down to a base point. This result follows from two
theorems in Massey ([11]). We note that the theorems in Massey allow us to choose the paths from the
base point to a basic cycle and we make use of this to choose paths such that any two cycles with the same
label will have corresponding loops that are homotopic.

Given a basic cycle label class, we fix a representative C of that class by fixing a partial triangulation
such that all of the diagonals outside of the embedded pentaton are connected to the smallest labeled
vertex in the region of the (n + 3)-gon that they are in. We then fix a path P from the base vertex v0 to
the basic cycle C. Now, for every other cycle C ′ with the same label we fix a path PQ to the cycle, such
that P is the path from v0 to C and Q is a path from C to C ′. Such a path exists by Lemma 4.1. Also,
we may use Theorem 4.3 to conclude that any two loops that use basic cycles with the same label set are
homotopic.

Theorem 3.1 A generating set of An−2
1 (Tn, T0) is given by {PCP−1}, where C ranges over all fixed

representatives of label set equivalence classes such that 1 is in the label set. P is as described above.
There are

(
n+2

4

)
such loops.

Proof: This result follows from the description of the classical homotopy group of Ascn given above, the
relationship between π1(Ascn) and An−2

1 (Tn, T0), and Theorem 4.3. Full details are provided in [13]. 2

We note that we have not given a nice description of the relations between the generators here. Doing
so is much more complicated and loses some of the elegance of this description, however in [13] we do
give a full presentation of An−2

1 (Tn, T0).

4 The abelianization of An−2
1 (Tn, T0)

Just as in [3], in order to find An−2
1 (Tn, T0)ab we must count the equivalence classes of basic cycles

under the relation 'A. Recall that Ascn has only basic 4- and 5-cycles, and that under 'A 4-cycles are
contractible, so our goal may be reduced to counting the equivalence classes of basic 5-cycles in Ascn.
In the case of Asc3, which is shown in Figure 3, we can see that there are six basic 5-cycles, however we
know from a simple computation that we may write the outside basic 5-cycle as a product of those inside.

It does not suffice to count the classes of basic 5-cycles; we must also provide a minimal generating
set. It turns out that there is a very simple combinatorial description of the equivalence classes of basic 5-
cycles using the cycle labels introduced in Section 2, and that a minimal generating set forAn−2

1 (Tn, T0)ab

contains only the equivalence classes of basic 5-cycles whose label set contain 1.
We start with some results needed to prove Theorem 1.1.

Lemma 4.1 Let C = e1, . . . , e5 and C ′ = e′1, . . . , e
′
5 be two basic 5-cycles with L(C) = L(C ′). Then

there is a series of edges p1, . . . , pk inAscn between ei and e′i such that L(pj) (taken as letters in a word)
commute with L(ei) and L(e′i) for every i and j.
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2356
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Fig. 3: Asc3 with edge labels.

Proof: This result is obtained by flipping diagonals outside of the pentagon region given by the label set
of both C and C ′ in the partially triangulated (n + 3)-gon. We have omitted the full details but they are
available in [13]. 2

Lemma 4.2 Given two basic 5-cycles C = e1, . . . , e5 and C ′ = e′1, . . . , e
′
5 in Ascn, if L(C) 6= L(C ′)

then, there is at most one pair, ei, e
′
j such that L(ei) = L(e′j).

Proof: This result follows very easily from Definition 2.2. Full details are available in [13]. 2

We are now ready to provide a necessary and sufficient condition for two basic 5-cycles to be equivalent
under 'A.

Theorem 4.3 Let C and C ′ be basic 5-cycles in Ascn. Then L(C) = L(C)′ if and only if C 'A C ′.

Proof: We keep this proof in its entirety as we feel that it provides a method to visualize the homotopies
between basic 5-cycles in Ascn.

We start by showing that if L(C) = L(C ′), thenC 'A C ′. By Lemma 4.1 we know there is a sequence
of edges between C and C ′ whose associated letters commute with the letters of C and C ′. Let C have
associated word w = L(e1)L(e2)L(e3)L(e4)L(e5). Using changes (T2) and (T3) we can inductively
construct a new word w′ which is equivalent to w and has associated 5-cycle C ′.

Suppose the sequence of edges is length 1 with associated letter L(x). We change w as follows:

L(e1)L(e2)L(e3)L(e4)L(e5) 'A L(e1)L(e2)L(e3)L(x)L(x)L(e4)L(e5) (T2) (1)
'A L(e1)L(e2)L(x)L(e3)L(e4)L(x)L(e5) (T3) (2)
'A L(e1)L(x)L(e2)L(e3)L(e4)L(e5)L(x) (T3) (3)
'A L(x)L(e1)L(e2)L(e3)L(e4)L(e5)L(x) (T3). (4)
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Now suppose the sequence is of length k with associated letters L(x1), . . . , L(xk) and assume that
the hypothesis holds for a sequence of length k − 1. Then we use the hypothesis to insert letters
L(x1), . . . , L(xk−1) and commute them so we have a word

(L(x1) · · ·L(xk−1))L(e1)L(e2)L(e3)L(e4)L(e5)(L(x1) · · ·L(xk−1))−1 'A w

Using the same argument above, we can then insert L(xk) and obtain a new equivalent word w′ =
(L(x1) · · ·L(xk))L(e1)L(e2)L(e3)L(e4)L(e5)(x1 · · ·xk)−1. This new word corresponds to a path that
goes around C ′ and is equivalent to the path around C.

What we are doing is forming a net of basic 4-cycles between the two basic 5-cycles with the same
label set. At each step on the path we have a new basic 5-cycle with the same label set and the homotopy
relation can be read off immediately.

For the other direction we proceed by contradiction. Assume that we have two 5-cycles, C and C ′ that
do not have the same label set.

Letw = L(e1)L(e2)L(e3)L(e4)L(e5) andw′ = L(e′1)L(e′2)L(e′3)L(e′4)L(e′5) be the words associated
to C and C ′. By Lemma 4.2, if L(C) 6= L(C ′) then they share at most one edge label, and hence their
words share at most one letter. However, by Remark 2.6, we are unable to change the parity of letters by
using (T1), (T2) and (T3), so w has a letter of odd parity that can only have even parity in w′. This implies
we cannot change w to w′ using (T1), (T2) and (T3), which contradicts C 'A C ′.

2

Now that we have established that the equivalence classes of basic 5-cycles are in bijection with the
label sets we may count the equivalence classes easily. We obtain a label set for a basic 5-cycle by
choosing five vertices on the (n + 3)-gon to form a pentagon region and then we may triangulate all
regions outside that pentagon to arrive at a specific cycle with that label set. There are

(
n+3

5

)
label sets for

basic 5-cycles and thus
(
n+3

5

)
equivalence classes of basic 5-cycles. If we stipulate that a label set must

contain the element 1, then we have
(
n+2

4

)
equivalence classes of 5-cycles with 1 in their label set, and

now we show that in fact any equivalence class of basic 5-cycles without 1 in its label set can be written
as a product of those that do have 1 in their label set.

We first consider Asc3 (Figure 3). It is easy to show (though we do not do so here due to space
considerations) that we can write the outside 5-cycle of Asc3 as a product homotopic to the product the
inner 5-cycles. Having done this for Asc3, we show that there is an isomorphic copy of Asc3 in Ascn for
n > 3 and so we may reduce to that case for all n.

Due to the structure of Ascn, we can find an isomorphic copy of Asc3 where the outside basic 5-cycle
can have any label set that does not include 1. The basic 5-cycles inside still have 1 in their label sets and
in this way we may write any basic 5-cycle without 1 in its label set as a product of basic 5-cycles that
have 1 in their label sets.

Lemma 4.4 Any basic 5-cycle C in Ascn such that 1 /∈ L(C) can be written as a product of basic
5-cycles whose label set do contain 1.

Proof: The result follows easily however since we may create a copy ofAsc3 insideAscn with the desired
labels by choosing an appropriate hexagon region inside the (n+3)-gon and triangulating it in all possible
ways. Full details available in [13]. 2
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We now know that any basic 5-cycle whose label set does not contain 1 may be written as a product of
those that do contain 1, so we need at most

(
n+2

4

)
classes of basic 5-cycles to generate An−2

1 (Tn, T0)ab.
In fact, we cannot reduce the number of generators below

(
n+2

4

)
.

Lemma 4.5 The
(
n+2

4

)
equivalence classes of basic 5-cycles whose label set contain 1 is a minimal

generating set for An−2
1 (Tn, T0)ab.

Proof: This result follows similarly to the latter half of the proof of Theorem 4.3. 2

We have a minimal generating set forAn−2
1 (Tn, T0)ab and we can see that there are no relations between

the generators outside of commutivity. Theorem 1.1 follows; that is, An−2
1 (Tn, T0)ab is free abelian and

of rank
(
n+2

4

)
.

5 Applications and Future Directions
We have provided a study of the discrete fundamental group of the complex Tn, and now we give a sketch
of the applications of this study as well as two areas for future research.

We first consider an application to cluster algebras. It is well known that the complex Tn is a cluster
complex and its exchange graph is Ascn [8]. In the same paper, it is also noted that the first szygy module
of the cluster algebra is generated by all of the edges ofAscn. It is easy then to see thatAn−2

1 (Tn, T0)ab is
giving us a quotient of the second szygy module of the cluster algebra. The basic 5-cycles that generate this
module correspond exactly to occurences of the pentagon recurrence noted in [8] and in taking a quotient
by the 4-cycles we are removing any basic cycles that do not correspond to this pentagon recurrence. The
equivalence classes of An−2

1 (Tn, T0)ab correspond exactly to equivalences in the pentagon reccurence
as well. That is, two cycles are homotopic if and only if they give the same recurrence. By studying
An−2

1 (Tn, T0)ab, we are able to identify all the ways the pentagon recurrence occurs in the cluster algebra
and classify them combinatorially.

A second application involves what we will define as a conic arrangement. Let F be the normal fan of
the associahedron and C ⊂ F be the set of cones corresponding to the 2-faces bounded by basic 5-cycles.
Then, in a similar fashion to [3], we are able to show a link between An−2

1 (Tn, T0) and the classical
fundamental group of the topological space obtained by removing all of the cones in C from Rn.

Finally, we are led to two natural expansions of our study of An−2
1 (Tn, T0). First, we note that the

associahedron is a graph associahedra. In [5], [12] and [16] the authors give methods of constructing and
realizing graph associahedra as well as many of their properties. Our initial investigations suggest that
many of the results obtained in the study of An−2

1 (Tn, T0) may be applied to this generalization.
A second expansion brings us back to cluster algebras. In [13], we study the discrete fundamental group

of the cluster complexes of type B and D. These complexes have combinatorial descriptions similar to
those of the associahedron and provide similar insight into the syzygy modules of the corresponding
cluster algebras.
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A further correspondence between
(bc, b̄)-parking functions and (bc, b̄)-forests

Heesung Shin† and Jiang Zeng‡

Université de Lyon; Université Lyon 1; Institut Camille Jordan, CNRS UMR 5208; 43 boulevard du 11 novembre
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Abstract. For a fixed sequence of n positive integers (a, b̄) := (a, b, b, . . . , b), an (a, b̄)-parking function of length n
is a sequence (p1, p2, . . . , pn) of positive integers whose nondecreasing rearrangement q1 ≤ q2 ≤ · · · ≤ qn satisfies
qi ≤ a + (i − 1)b for any i = 1, . . . , n. A (a, b̄)-forest on n-set is a rooted vertex-colored forests on n-set whose
roots are colored with the colors 0, 1, . . . , a − 1 and the other vertices are colored with the colors 0, 1, . . . , b − 1.
In this paper, we construct a bijection between (bc, b̄)-parking functions of length n and (bc, b̄)-forests on n-set with
some interesting properties. As applications, we obtain a generalization of Gessel and Seo’s result about (c, 1̄)-
parking functions [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. 11(2)R27, 2004] and a refinement of
Yan’s identity [Catherine H. Yan, Adv. Appl. Math. 27(2–3):641–670, 2001] between an inversion enumerator for
(bc, b̄)-forests and a complement enumerator for (bc, b̄)-parking functions.

Résumé. Soit (a, b̄) := (a, b, b, . . . , b) une suite d’entiers positifs. Une (a, b̄)-fonction de parking est une suite
(p1, p2, . . . , pn) d’entiers positives telle que son réarrangement non décroissant q1 ≤ q2 ≤ · · · ≤ qn satisfait
qi ≤ a + (i − 1)b pour tout i = 1, . . . , n. Une (a, b̄)-forêt enracinée sur un n-ensemble est une forêt enracinée
dont les racines sont colorées avec les couleurs 0, 1, . . . , a − 1 et les autres sommets sont colorés avec les couleurs
0, 1, . . . , b−1. Dans cet article, on construit une bijection entre (bc, b̄)-fonctions de parking et (bc, b̄)-forêts avec des
des propriétés intéressantes. Comme applications, on obtient une généralisation d’un résultat de Gessel-Seo sur (c, 1̄)-
fonctions de parking [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. 11(2)R27, 2004] et une extension de
l’identité de Yan [Catherine H. Yan, Adv. Appl. Math. 27(2–3):641–670, 2001] entre l’énumérateur d’inversion de
(bc, b̄)-forêts et l’énumérateur complémentaire de (bc, b̄)-fonctions de parking.

Keywords: Bijection, Forests, Parking functions

1 Introduction
It is well-known [Sta99] that parking functions and (rooted) forests on n-set are both counted by Cayley’s
formula (n+ 1)n−1. Foata and Riordan [FR74] gave the first bijection between these two equinumerous
sets. In the past years, many generalizations and refinements of this result were obtained (See [MR68,
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Kre80, Yan01, SP02, KY03, GS06]). In particular, Stanley and Pitman [SP02] introduced the notion of
(a, b̄)-parking functions where a and b are two positive integers.

Recall that an (a, b̄)-parking function (of length n) (see [SP02]) is a sequence (p1, p2, . . . , pn) of pos-
itive integers whose nondecreasing rearrangement q1 ≤ q2 ≤ · · · ≤ qn satisfies qi ≤ a + (i − 1)b for
1 ≤ i ≤ n. It is shown [SP02] that the number of (a, b̄)-parking functions is

a(a+ bn)n−1.

Looking for its forest counter parts, Yan [Yan01] defined a (rooted) (a, b̄)-forest (see section 2.2) to be
a vertex-colored forest in which all roots are colored with the colors 0, 1, . . . , a− 1 and the other vertices
are colored with the colors 0, 1, . . . , b − 1. She proved that the enumerator P̄ (a,b̄)

n (q) of complements of
(a, b̄)-parking functions and the enumerator I(a,b̄)

n (q) of (a, b̄)-forests by the number of their inversions
are identical, i.e.,

I(a,b̄)
n (q) = P̄ (a,b̄)

n (q). (1)

It is an open problem to give a bijective proof of the identity (1). Generalizing a bijection of Foata and
Riordan [FR74], Yan [Yan01] did give a bijection between (a, b̄)-forests and (a, b̄)-parking functions
which is a bijective proof of (1) for q = 1, but this bijection does not keep track of the statistics involved
in (1) even in ordinary a = b = 1 case. Note that Eu et al. [EFL05] were able to extend the bijection of
Foata and Riordan to enumerate (a, b̄)-parking functions by their leading terms. Recently, Shin [Shi08]
gave a bijective proof of (1) when a = b = 1.

A different refinement of Cayley’s formula was given by Gessel and Seo [GS06]. Using generating
functions, they showed that the enumerator of forests with respect to proper vertices and the number of
trees and the lucky enumerator of (a, 1̄)-parking function are both equal to

au

n−1∏
i=1

(i+ u(n− i+ a)).

Bijective proof of above results for a = 1 have been given by Seo and Shin [SS07] and Shin [Shi08].
In this paper, we prove three main results. First, in Theorem 1, we establish a bijection between

(bc, b̄)-parking functions and (bc, b̄)-forests, which is a generalization of the first author’s recent bijection
[Shi08]. Secondly, in Theorem 4, we generalize the aforementioned formula of Gessel and Seo to (bc, b̄)
case. Finally, in Theorem 5, we extend Gessel and Seo’s hook-length formula [GS06, Corollay 6.3] for
forests to (a, b̄)-forests.

The rest of this paper is organized as follows: In Section 2, we introduce definitions of various statistics
on general parking functions and forests. The main theorems of this paper are presented in Section 3. The
proofs of main theorems are given in Sections 4, 5, 6.

2 Definitions
2.1 Statistics on (bc, b̄)-parking functions
From now on, we fix a = bc. We define a parking algorithm for (bc, b̄)-parking functions by generalizing
algorithm in [GS06] for (c, 1̄)-parking functions. Suppose that there are 1, 2, . . . , (n + c − 1)b parking
lots with only n+ c− 1 available parking spaces at b, 2b, . . . , (n+ c− 1)b, that means the positions are
multiples of b.
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Parking Space 1 2 3© 4 5 6© 7 8 9© 10 11 12© 13 14 15© 16 17 18©
Cars’ Number, c 2 2 3 2 2 1 2 2 5 2 2 ∅ 2 2 4 2 2 2
jump(P ; c) 0 1 7 0 2 jump(P ) = 10
block(P ; c) 1 1 1 0 0 block(P ) = 3
jump(6,3̄)(P ; c) 3 4 10 0 2 jump(6,3̄)(P ) = 19
lucky car X X lucky(P ) = 2
critical car X X X crit(P ) = 3

JUMP(6,3̄)(P ) =
(

1 0 1 0 0 0 0 0 0 · · · 0
1 1 0 0 0 0 0 1 0 · · · 0

)

Fig. 1: A (bc, b̄)-parking function P = (5, 16, 3, 15, 2) of length 5 and statistics of P for b = 3, c = 2 where circled
numbers are available parking spaces

b© 2b©

Entrance
This is a one-way road

3b© 4b© 5b©

Given a (bc, b̄)-parking function P = (p1, p2, . . . , pn) of length n, suppose that Cars 1, 2, . . . , n come to
the parking lots in this order and car i prefers parking space pi. We can park the n cars with n + c − 1
parking spaces by the following parking algorithm: If pi is occupied or non-available, then car i takes the
next available space. If qi be the actual parking space with i-th car for i = 1, . . . , n, we define

park(p1, . . . , pn) = (q1, . . . , qn).

In Figure 1, we give an example of a (bc, b̄)-parking function (5, 16, 3, 15, 2) for b = 3 and c = 2. By the
Parking Algorithm, we get a sequence with length 5,

park(5, 16, 3, 15, 2) = (6, 18, 3, 15, 9).

The difference between the favorite parking space pi and the actual parking space qi is called the jump
of car i, and denoted by jump(P ; i), that is,

jump(P ; i) = qi − pi if park(p1, . . . , pn) = (q1, . . . , qn).

Let jump(P ) denote the sum of the jumps of P , that is,

jump(P ) =
∑
i

jump(P ; i).

Clearly jump(P ; i) ≥ 0. We say that car i is lucky if jump(P ; i) = 0. Denote the number of lucky cars
of P by lucky(P ).

After parking all the n cars, there are c − 1 non-occupied parking spaces which divide the parking
lots into c blocks of parking lots. Let block(P ; i) be the number of non-occupied parking spaces on the
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right of car i after running parking algorithm. Let block(P ) denote the sum of blocks of all cars, i.e.,
block(P ) =

∑
i block(P ; i). We define (bc, b̄)-jump of (bc, b̄)-parking function

jump(bc,b̄)(P ; i) = jump(P ; i) + b · block(P ; i),

jump(bc,b̄)(P ) = jump(P ) + b · block(P ) = bcn+
(
n

2

)
b− |P | ,

where |P | =
∑
pi. Note that (bc, b̄)-jump is identical to the complement of |P | in [Yan01].

Let luckyj,k(P ) denote the number of cars i such that block(P ; i) = j and jump(P ; i) = k. We define
the multi-statistic JUMP(bc,b̄) by

JUMP(bc,b̄)(P ) =


lucky0,0(P ) lucky0,1(P ) · · · lucky0,N (P )
lucky1,0(P ) lucky1,1(P ) · · · lucky1,N (P )

...
...

. . .
...

luckyc−1,0(P ) luckyc−1,1(P ) · · · luckyc−1,N (P )

 ,

where N =
(
n+1

2

)
b− n.

A car c is called critical if there are only former cars parked on the right of the block containing c after
parking. If car c is critical in a (bc, b̄)-parking function P , crit(P ; c) = 1. Otherwise, crit(P ; c) = 0.
Denote the number of critical cars in a (bc, b̄)-parking function P by crit(P ).

As an example, a (bc, b̄)-parking function is given in Figure 1 for b = 3 and c = 2 in order to illustrate
different statistics.

2.2 Statistics on (bc, b̄)-Forests
A (rooted) forest is a simple graph on [n] = {1, . . . , n}without cycles, whose every connected component
has a distinguished vertex, called a root. A (rooted) (a, b̄)-forest on [n] is a pair (F, κ) where F is a forest
on [n], κ is a mapping from the set of vertices in F to non-negative integers such that κ(v) < a if v is a
root and κ(v) < b, otherwise.

In a rooted forest F , a vertex j is called a descendant of a vertex i if the vertex i lies on the unique
path from the root to the vertex j. In particular, every vertex is a descendant of itself. Denote the set of
descendants of a vertex v by DF (v). The hook-length hv of v is defined by the number of descendants of
v in a forest. A vertex v is a parent of u if v and u are connected by one edge and u is a descendant of v.

As defined by Mallows and Riordan [MR68], an inversion in a rooted forest is an ordered pair (i, j)
such that i > j and j is a descendant of i. Let Inv(F ; v) denote the set of ordered pairs (v, x) such that
v > x and x ∈ DF (v). Denote the number of all inversions in a rooted forest F by inv(F ). We need
to generalize the notion of inversions to (bc, b̄)-forests as follows: Let κ̄(v) denote the remainder of κ(v)
modulo b, i.e.,

κ(v) ≡ κ̄(v) mod b with 0 ≤ κ̄(v) ≤ b− 1.

Define the inversion inv(F ; v) of a (bc, b̄)-forest F by

inv(F ; v) = |Inv(F ; v)|+ κ̄(v) · |DF (v)| .
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1

3

5

4 25

10

0 2F

Vertex v 1 2 3 4 5
κ(v) 1 2 5 0 0
|Inv(F ; v)| 0 0 1 0 0
κ̄(v) 1 2 2 0 0
|DF (v)| 1 1 3 1 1
inv(F ; v) 1 2 7 0 0 inv(F ) = 10
tcol(F ; v) 1 0 1 0 1 tcol(F ) = 3
inv(6,3̄)(F ; v) 4 2 10 0 3 inv(6,3̄)(F ) = 19
proper vertex X X prop(F ) = 2
root X X X tree(F ) = 3

INV(6,3̄)(F ) =
(

1 0 1 0 0 0 0 0 0 · · · 0
1 1 0 0 0 0 0 1 0 · · · 0

)

Fig. 2: A (bc, b̄)-forest F on [5] and statistics of F for b = 3, c = 2 where κ(v) is boxed

Let inv(F ) denote the sum of inv(F ; v) over all vertices v of F , i.e.,

inv(F ) =
∑
v

inv(F ; v).

Given a (bc, b̄)-forest F , a vertex v is called a proper vertex if the vertex v is the smallest among all its
descendants and its color is a multiple of b, that is, inv(F ; v) = 0. Let prop(F ) denote the number of all
proper vertices in a rooted forest F . By definition, every leaf v with κ̄(v) = 0 is a proper vertex.

Denote the root of the tree including a vertex v in an (bc, b̄)-forest F by R(v). A tree-color tcol(F ; v)
of a vertex v in a (bc, b̄)-forest F is defined by tcol(F ; v) = bκ(R(v))

b c. Let tcol(F ) denotes the sum of
root colors of all vertices, i.e., tcol(F ) =

∑
v tcol(F ; v). We define the (bc, b̄)-inversion of (bc, b̄)-forest

F by

inv(bc,b̄)(F ; v) = inv(F ; v) + b · tcol(F ; v),
inv(bc,b̄)(F ) = inv(F ) + b · tcol(F ).

Note that (bc, b̄)-inversion is identical to the (bc, b)-inversion in [Yan01].
Let propj,k(F ) denote the number of vertices such that tcol(F ; v) = j and inv(F ; v) = k. We define

the multi-statistic INV(bc,b̄) by

INV(bc,b̄)(F ) =


prop0,0(F ) prop0,1(F ) · · · prop0,N (F )
prop1,0(F ) prop1,1(F ) · · · prop1,N (F )

...
...

. . .
...

propc−1,0(F ) propc−1,1(F ) · · · propc−1,N (F )

 ,
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where N =
(
n+1

2

)
b− n.

If a vertex v is a root of a forest F , we define tree(f ; v) = 1. Otherwise, tree(f ; v) = 0. Denote the
number of trees (or roots) in a (bc, b̄)-forest F by tree(F ).

In Figure 2, an example of a (bc, b̄)-forest F on n-set is given for b = 3 and c = 2 in order to illustrate
different statistics.

3 Main Results
Let PF(bc,b̄) be the set of (bc, b̄)-parking functions of length n and F(bc,b̄) be the set of (bc, b̄)-forests
on [n]. First of all, we recall the mapping ϕ : F(1,1̄) → PF(1,1̄) between forests and ordinary parking
functions in [Shi08]. Given a forest F ∈ F(1,1̄) and a vertex v ∈ [n], let hv be the number of descendants
of v in F and DF (v) = {d1, d2, . . . , dhv

} is the set of descendants of v in F . We define a cyclic
permutation θv on DF (v) by

θv = (d1d2 · · · dk−1v)

where d1 > d2 > . . . > dk−1 are all the descendants of v ∈ V (F ) greater than v and θv(di) = di+1 for
1 ≤ i ≤ k − 1 and θv(v) = d1. Let θF = θ1θ2 · · · θn. We attach to each vertex v in F a triple of labels

(θF (v), inv(F : v),post(θF (F ) : θF (v)))

where θF (F ) is a forest by relabeling v by θF (v) and post(F : v) is a postorder index of v in F . We
define the mapping f : [n]→ [n] by

v 7→ post(θF (F ) : θF (v))− inv(F : v)

for every vertex v. The bijection ϕ : F(1,1̄) → PF(1,1̄) is defined by

ϕ(F ) = (f(θ−1
F (1)), f(θ−1

F (2)), . . . , f(θ−1
F (n))). (2)

Now we generalize the mapping ϕ to a bijection between (bc, b̄)-forests and (bc, b̄)-parking functions.
We define the mapping ϕ : F(bc,b̄) → PF(bc,b̄) as follows: Given a F ∈ F(bc,b̄), the connected components
of a forest F can be classified according to tree-colors. Let Fk be the sub-forests of F satisfying

tcol(F : v) = k

for all v ∈ Fk. We define a cyclic permutation θv on DF (v) as above. When we define a postorder index
post(F : v) of v in F , forests Fc−1, Fc−2, . . . , F0 are traversed in this order. We attach to each vertex v
in F a quadruple of labels

(θF (v), inv(F : v),post(θF (F ) : θF (v)), tcol(F : v))

where θF (F ) is a forest by relabeling v by θF (v). After that, we define the mapping f : [n]→ [n] by

v 7→ (post(θF (F ) : θF (v)) + c− 1− tcol(F : v))b− inv(F : v)

on every vertex v. The mapping ϕ : F(bc,b̄) → PF(bc,b̄) is also defined by (2). For example, the forest F
in Figure 2 goes to the parking function P in Figure 1 by the mapping ϕ.
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Theorem 1 (Main Theorem) The mapping ϕ is a bijection between (bc, b̄)-forests and (bc, b̄)-parking
functions satisfying

(INV(bc,b̄), tree)(F ) = (JUMP(bc,b̄), crit)ϕ(F ),

for all (bc, b̄)-forests F .

By definitions, the statistics inv(bc,b̄), inv, tcol, and prop can be written as follows:

inv(bc,b̄)(F ) = inv(F ) + b · tcol(F ),

inv(F ) = (1, 1, 1, . . . , 1) INV(bc,b̄)(F )(0, 1, 2, . . . , N)T ,

tcol(F ) = (0, 1, 2, . . . , (c− 1)) INV(bc,b̄)(F )(1, 1, 1, . . . , 1)T ,

prop(F ) = (1, 1, 1, . . . , 1) INV(bc,b̄)(F )(1, 0, 0, . . . , 0)T .

Similarly, the statistics jump(bc,b̄), jump, block, and lucky can also be written as follows:

jump(bc,b̄)(P ) = jump(P ) + b · block(P ),

jump(P ) = (1, 1, 1, . . . , 1) JUMP(bc,b̄)(P )(0, 1, 2, . . . , N)T ,

block(P ) = (0, 1, 2, . . . , (c− 1)) JUMP(bc,b̄)(P )(1, 1, 1, . . . , 1)T ,

lucky(P ) = (1, 1, 1, . . . , 1) JUMP(bc,b̄)(P )(1, 0, 0, . . . , 0)T .

As a consequence, we derive the following corollary from Theorem 1.

Corollary 2 The bijection ϕ : F(bc,b̄) → PF(bc,b̄) has the following property:

(inv(bc,b̄), inv, tcol,prop, tree)(F ) = (jump(bc,b̄), jump,block, lucky, crit)ϕ(F ),

for F ∈ F(bc,b̄).

Introduce the following enumerators of (bc, b̄)-forest and (bc, b̄)-parking functions:

I(bc,b̄)
n (q, u, t) =

∑
F∈F(bc,b̄)

qinv(bc,b̄)(F )uprop(F )ttree(F ),

P̄ (bc,b̄)
n (q, u, t) =

∑
P∈PF(bc,b̄)

qjump(bc,b̄)(P )ulucky(P )tcrit(P ).

Then we can derive a partial refinement of (1) from Corollary 2.

Corollary 3 We have
I(bc,b̄)
n (q, u, t) = P̄ (bc,b̄)

n (q, u, t).

Define the homogeneous polynomial

Pn(a, b, c) = c

n−1∏
i=1

(ai+ b(n− i) + c).
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Theorem 4 We have∑
P∈PF(bc,b̄)

ulucky(P )tcrit(P ) =
∑

F∈F(bc,b̄)

uprop(F )ttree(F ) = Pn(b, b− 1 + u, ct(b− 1 + u)). (3)

Remark. For b = c = 1 and b = t = 1, we recover, respectively, two results of Gessel and Seo [GS06,
Theorem 6.1 and Corollay 10.2].

Theorem 5 We have the hook-length formula of (a, b̄)-forests

∑
F∈F(a,b̄)

ctree(F )
∏
v

(
1 +

α

hv

)
= Pn(b, b(1 + α), ac(1 + α)), (4)

where the sum is over all (a, b̄)-forests on n-set.

Remark. For a = b = 1 this is Gessel and Seo’s hook-length formula [GS06, Corollay 6.3].

4 Proof of Theorem 1
The inverse map of the extended mapping ϕ can be defined like the method in the paper [Shi08]: Given
a (bc, b̄)-parking function P , all cars are parked by the parking algorithm. At that time, we record the
jump(P ; c) for every car in next row. After finishing, we draw an edge between the car c and the closest
car on its right which is larger than c in its same block. We get the forest-structure on the cars as vertices.
That is a forest D. By defining

|inv(F ; v)| ≡ jump(P ; c) mod |DF (v)| ,

we can recover two forests I and F . By κ̄(v) := b jump(P ;c)
b c, we can recover the color of v in F where

θF (v) = c.
We can prove that ϕ is weight preserving by the following lemma.

Lemma 6 There is a bijection ϕ : F(bc,b̄) → PF(bc,b̄) between (bc, b̄)-forests and (bc, b̄)-parking func-
tions such that

(inv, tcol, tree)(F ; v) = (jump,block, crit)(ϕ(F ); θF (v)),

for all (bc, b̄)-forests F and all vertices v ∈ F .

Proof: If we use the function d 7→ (g+ c− 1−k)b instead of d 7→ (g+ c− 1−k)b− i, all cars are lucky
since all images of f are different. So using the original function d 7→ ((g + c − 1 − k)b − i), the value
of jump(P : c) increases by inv(T : v) where θF (v) = c. Thus inv(F : v) = jump(ϕ(F ) : θF (v)).

Suppose that tcol(F ; v) = k, which means that a vertex v is in Fk. So a label of θF (v) is also in Dk.
Then car θF (v) is parked actually in a k-th block. Then block(ϕ(F ); θF (v)) = k.

If a vertex v is a root of a tree in F , a parent of θF (v) is the root of D. So there is no car larger than the
car θF (v) on its right in same block. Hence the car θF (v) is critical. 2
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5 Proof of Theorem 4

The first equality follows from Corollary 3 for q = 1, i.e.,∑
F∈F(bc,b̄)

uprop(F )ttree(F ) =
∑

P∈PF(bc,b̄)

ulucky(P )tcrit(P ).

To prove the second equality in Theorem 4, we need to appear for two Prüfer-like algorithms: the
colored Prüfer code [CKSS04] and reverse Prüfer algorithm in [SS07]. Given a (bc, b̄)-forest F , deleting
the largest leaves successively vn, . . . , v1 where σi is the parent of vi or σi = − tcol(F : vi) if vi is a root
and the color ci = κ̄(vi). Then the colored Prüfer code of F is defined by

σ =
(
σn σn−1 · · · σ1

cn cn−1 · · · c1

)
∈
(
{−(c− 1), . . . , n}
{0, . . . , b− 1}

)n−1

×
(
{−(c− 1), . . . , 0}
{0, . . . , b− 1}

)
.

In order to count the number of proper vertices, we define the reverse colored Prüfer algorithm as

follows: Starting from a colored Prüfer code σ =
(
σn σn−1 · · · σ1

cn cn−1 · · · c1

)
. Let F1 be the forest with

unlabeled single vertex v1 by tcol(F : v1) = −σ1. For each i = 2, . . . , n, we assume that Fi−1 is the

forest obtained from the subcode
(
σi−1 σi−2 · · · σ1

ci−2 · · · c1

)
. Let ` be the minimal element in [n] which

does not appear in Fi−1. To construct Fi from Fi−1 and (σi, ci−1), we should consider the following two
cases.

1. Suppose that σi appears in Fi−1. Then the unlabeled vertex v in Fi−1 is labeled by ` with color
ci−1 in Ti. Since the new label ` is minimal among the unused labels in Ti−1, the vertex v with the
color ci−1 is a proper vertex in T if and only if ci−1 = 0.

2. Suppose that σi does not appear in Ti−1. Then the unlabeled vertex v in Fi−1 is labeled by σi in
Fi.

(a) If σi ≤ 0, then the vertex v is a proper vertex in F , as in case (1) and the unlabeled vertex in
Fi becomes a root in F .

(b) If σi = l, then the vertex v is a proper vertex in F , as in case (1).

(c) If σi 6= l, then the vertex v will have a descendant labeled by `. Thus, the vertex v is not
proper vertex in F .

So there are exactly i − 1 + c choices of σi and one choice of ci−1 in case (1), case (2a), and case (2b),
such that the newly labeled vertex v is a proper vertex in F . Because the number of i’s such that σi ≤ 0 in
a colored Prüfer-code equals the number of the roots in F , tree(F ) is enumerated by nonpositive number
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in the colored Prüfer-code of a forest F . Thus we have the following formula:∑
F∈F(bc,b̄)

uprop(F )ttree(F ) = ct by σ1 ∈ {0,−1, . . . ,−(c− 1)}

×
n∏
i=2

(b(n− i+ 1) + (i− 1 + ct)(b− 1 + u)) by (σi, ci−1)

× (b− 1 + u) by cn−1

=Pn(b, b− 1 + u, ct(b− 1 + u)).

This completes the bijective proof of equation (3).

6 Proof of Theorem 5
By Theorem 4, the right side of (4) is∑

F∈F(b,b̄)

(1 + bα)prop(F )(
ac

b
)tree(F ).

Replacing α by α/b in (4), it suffices to prove the identity:

∑
F∈F(a,b̄)

ctree(F )
∏
v

(
1 +

α

bhv

)
=

∑
F∈F(b,b̄)

(1 + α)prop(F )(
ac

b
)tree(F ). (5)

We follow Gessel and Seo’s proof [GS06] in the case of a = b = 1. For each (unlabeled) forest F̃
on n sets, a labeling of F̃ is a bijection from V (F̃ ) to [n] and (a, b̄)-coloring κ is a mapping from V (F̃ )
to nonnegative numbers such that κ(v) < a if v is a root and κ(v) < b otherwise. Define the set of
(a, b̄)-forests

L(a,b̄)(F̃ ) =
{

(L, κ) : L is a labeling and κ is a (a, b̄)-coloring of F̃
}
.

Lemma 7 Let F̃ be a (unlabeled) forest with n vertices. If S is a subset of V (F̃ ), then the number of
labelings L ∈ L(b,b̄)(F̃ ) such that every vertex in S is a proper vertex is

n!bn∏
v∈S(bhv)

. (6)

Proof: Clearly the cardinality of L(b,b̄)(F̃ ) is n!bn. Among the elements of L(b,b̄)(F̃ ), the probability that
some vertex v ∈ S is a proper vertex equals 1

bhv
. In other words, the number of labelings L ∈ L(b,b̄)(F̃ )

such that every vertex in S is a proper vertex is 1
bhv

times the number of labelings in which every vertex
in S \ {v} is a proper vertex. By induction on |S|, we are done. 2
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Let us consider the formula∑
L∈L(b,b̄)(F̃ )

(1 + α)prop(L)(
ac

b
)tree(L) =

∑
L∈L(b,b̄)(F̃ )

∑
S

α|S|(
ac

b
)tree(L),

where S runs over the subsets of the set of proper vertices of L. Reversing the order of two summations,
it follows by Lemma 7 that∑

S⊂V (F̃ )

(
ac

b
)tree(F̃ )

∑
L

α|S| =
∑

S⊂V (F̃ )

(
ac

b
)tree(F̃ ) n!bn∏

v∈S(bhv)
α|S|

= n!bn(
ac

b
)tree(F̃ )

∏
v∈V (F̃ )

(1 +
α

bhv
),

where L ∈ L(b,b̄)(F̃ ) such that every vertex in S is a proper vertex. Therefore,∑
L∈L(b,b̄)(F̃ )

(1 + α)prop(L)(
ac

b
)tree(L) = n!bn(

ac

b
)tree(F̃ )

∏
v∈V (F̃ )

(1 +
α

bhv
) (7)

Let us say that two labelings with colorings of a forest F̃ are equivalent if there is an automorphism
of F̃ that takes one labeling with coloring to the other. Let F̃ be a forest on n set with automorphism
group G. Then the n!bn−tree(F̃ )atree(F̃ ) labelings with colorings of F fall into n!bn−tree(F̃ )atree(F̃ )/ |G|
equivalence classes. Define

L̃(a,b̄)(F̃ ) =
{
L ∈ F(a,b̄) : The underlying graph of L is F̃

}
.

Clearly
∣∣∣L̃(a,b̄)(F̃ )

∣∣∣ = n!bn−tree(F̃ )atree(F̃ )/ |G| and equivalent labelings with coloring have the same
number of proper vertices of trees, dividing (7) by |G|, so we obtain the following.∑

L∈L̃(b,b̄)(F̃ )

(1 + α)prop(L)(
ac

b
)tree(L) =

∣∣∣L̃(a,b̄)(F̃ )
∣∣∣ ctree(F̃ )

∏
v∈V (F̃ )

(1 +
α

bhv
).

Summing over all (unlabeled) forests F̃ yields∑
F̃

∑
L∈L̃(b,b̄)(F̃ )

(1 + α)prop(L)(
ac

b
)tree(L) =

∑
F̃

∣∣∣L̃(a,b̄)(F̃ )
∣∣∣ ctree(F̃ )

∏
v∈V (F̃ )

(1 +
α

bhv
).

As F(a,b̄) =
⋃
F̃

L̃(a,b̄)(F̃ ), we obtain (5).

7 Concluding Remarks
In this paper, we give a bijective proof of (1) in the (bc, b̄) case. The problem of giving a bijective proof
of (1) in the general (a, b̄) case is still open. It seems that the construct of such a bijection in the (1, b̄)
case is crucial.
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A Combinatorial Approach to Multiplicity-Free
Richardson Subvarieties of the
Grassmannian

Michelle Snider1

1Cornell University, Ithaca, NY 14853, USA.

Abstract. We consider Buch’s rule for K-theory of the Grassmannian, in the Schur multiplicity-free cases classified
by Stembridge. Using a result of Knutson, one sees that Buch’s coefficients are related to Möbius inversion. We give a
direct combinatorial proof of this by considering the product expansion for Grassmannian Grothendieck polynomials.
We end with an extension to the multiplicity-free cases of Thomas and Yong.

R’esum’e. On examine la règle de Buch pour la K-théorie de la variété grassmannienne dans les cas sans multiplicité
de Schur, qui ont étés classifiés par Stembridge. En utilisant un résultat de Knutson, on démontre que les coefficients
de Buch sont liés à l’inversion de Möbius. On en fait une preuve directe et combinatoire qui passe par le developpe-
ment de produits de polynômes de Grothendieck. Pour conclure, on donne une application de cette théorie aux cas
sans multiplicité de Thomas et Yong.

Keywords: Grassmannian, Richardson varieties, Grothendieck polynomials, Schur multiplicity free

1 Motivation
1.1 Schubert and Richardson varieties
We consider the Grassmannian GrkCn := {V ≤ Cn | dim(V ) = k}. For a partition λ contained in a
k× (n− k) box, consider the path from the northeast corner to its southwest corner of the box that traces
the partition. For the standard flag (Ci = (∗1, . . . , ∗i, 0, . . . 0)), we define the Schubert variety as

Xλ = {V ∈ GrkCn | dim(V ∩ Ci) ≥ #( south steps in the first i steps of the path )}.

We denote the Schubert class in cohomology as Sλ := [Xλ]H ∈ H?(GrkCn). The set

{Sλ | λ ⊂ k × (n− k) box}

forms a Z−basis for H?(GrkCn), where

SλSµ =
∑

cνλµSν
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for |ν| = |λ| + |µ|, ν ⊂ k × (n − k) box, and cνλµ the Littlewood-Richardson coefficients. This follows
from the surjective homomorphism

{ring of symmetric polynomials}� {H?(GrkCn)}

sλ 7−→
{
Sλ, if λ fits in k × (n− k) box;
0, otherwise.

for Schur functions sλ.
The Möbius function µP(ν) is defined recursively on a poset P as the unique function satisfying∑

α≥Pν

µP(α) = 1

The connection of this definition to K-classes is shown in [Kn08]. Since we are primarily interested in
working in K-theory, we will use [A] to denote the K-class of a subscheme of A, and [A]H to denote
its homology class. Any subvariety X of a flag manifold is rationally equivalent to a linear combina-
tion of Schubert cycles with uniquely determined non-negative integer coefficients [Br03]. We say X is
multiplicity-free if these coefficients are 0 or 1.

Theorem 1 [Kn08] Let X be a multiplicity-free irreducible subvariety of G/P , in the sense of [Br03],
with [X]H =

∑
d∈D[Xd]H ,D a subset of the Bruhat order, and P a parabolic subgroup. LetP ⊆W/WP

be the set of Schubert varieties contained in ∪d∈DXd (an order ideal in the Bruhat order on W/WP ).
Then as an element of K(G/P ),

[X] =
∑

Xe⊆
S
d∈D Xd

µP(Xe) [Xe].

We will give an independent combinatorial proof of this fact in the case that X is a multiplicity-free
Richardson variety in a Grassmannian, the intersection of a Schubert variety Xλ with an opposite Schu-
bert variety w0 · Xµ, for w0 the longest word. For any Xλ ⊂ GrkCn, let Gλ := [Xλ]. We have that
{Gλ | λ ⊂ k × (n− k) box} form a basis for K(GrkCn). For certain symmetric polynomials gλ which
we will define in the next section, we have a surjective homomorphism [Bu02]:

{ring of symmetric functions}� {K(GrkCn)}

gλ 7−→
{
Gλ, if λ fits in k × (n− k) box;
0, otherwise.

Our main theorem will show that, for a poset P that we will define,

Gλ ·Gµ =
∑
ν

µP(Gν) Gν

where the sum is over ν such that ν ⊆ (k × n− k) box and |ν| ≥ |λ|+ |µ|. Our proof will proceed with
sign-reversing involutions on this poset, and many reductions in the sizes of the partitions in the product.
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1.2 Grothendieck Polynomials
For finite non-empty sets in Z+, a and b, we say a < b if max(a) < min(b), and a ≤ b if max(a) ≤
min(b). For a partition λ, Buch defined a set-valued (English) tableau (SVT) as a filling of a Young dia-
gram with nonempty sets in Z+ [Bu02]. If each box has a single entry, it is a Young tableau. A tableau is
a semistandard tableau (SS) if it is weakly increasing across rows and strictly increasing down columns.
The superstandard filling of a tableau is the one in which each box (i, j) has a single entry, i (its row).
In all of our examples, we will use numbers smaller than 10, so we can avoid the use of set notation: we
use 45 to denote the set {4, 5}.

Recall the combinatorial definition for the Schur polynomials,

sλ =
∑

T∈SSY T (λ)

xT .

We consider the Grothendieck polynomials gλ of Lascoux and Schützenberger [LS82]. For λ a partition,
Buch [Bu02] gives the formula

gλ =
∑

T∈SS−SV T (λ)

(−1)|T |−|λ|xT

where
|T | =

∑
i,j

|T (i, j)|.

He proves that this is a special case of the Lascoux-Schützenberger formula (which we will not need) for
gπ in the case when π is a Grassmannian permutation. These are the {gλ} representing the Gλ in section
1.1. As with the Schur polynomials, it is not obvious from the combinatorial definition that these poly-
nomials are in fact symmetric and a basis for the symmetric polynomials [Bu02]. Linear independence
follows from the fact that the lowest homogeneous component of gλ is sλ.

We define the word of a tableau w(T ) to be the entries read right to left, top to bottom. Note that
entries in a set are listed in increasing order, so that they occur in decreasing order in the word. A word is
called a reverse lattice word (RLW) if for any initial string (e.g. 001 in 001110101),

multiplicity(i) ≥ multiplicity(i+ 1) ∀ i ≥ 1

A word that satisfies this condition is sometimes called an election word (or ballot sequence). For
tableaux of shape λ and µ, we define the shape λ × µ as the skew tableau formed by placing µ directly
southwest of λ. When we refer to a filling of the shape λ×µ, we will call λ the “northeast” partition, and
µ the “southwest” partition. Buch [Bu02] gives a combinatorial rule for the product of two Grothendieck
polynomials:

gλgµ =
∑

c′
ν
λµgν

where the coefficients are given by

c′
ν
λµ = (−1)|ν|−|λ|−|µ|#(T )
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for SS-SVT T of shape λ × µ, content ν, with w(T ) a RLW. We call these the K-theoretic Littlewood-
Richardson numbers, since if |ν| = |λ|+ |µ|, then c′νλµ = cνλµ, the usual Littlewood-Richardson number.
Figure 1 shows the calculation of the expansion of g1 · g1.

1 1

1

1

2 12

Fig. 1: g1g1 = g2 + g11 − g21

First, we note that the reverse lattice word condition requires that the filling of the northeast tableau
λ always be superstandard. We will construct a poset out of all of the allowed fillings of the southwest
tableau µ, where each vertex is labeled with all tableaux of a given content, and for vertices ν, ν′, ν ≤P ν′
if content(ν) ⊃ content(ν′). We are interested in a poset, since its Möbius function will allow us to
compute structure constants. Note that for each tableau, the row in the poset corresponds to the number
of “extra” elements in the filling (e.g. the top row has only semistandard Young tableaux, corresponding
to the product sλ · sµ).

Example 1 Consider the product G2,1 ·G2,2 and its poset in Figure 2. From the second line of this poset,
we can see that the coefficient of G431 is 2 since there are two tableaux on the corresponding vertex,
while G422 has coefficient 1. Note that this product is H-multiplicity-free, but not K-multiplicity-free. The
K-multiplicity-free cases are extremely rare, occurring only when both partitions λ and µ are rectangles
or one of them is a single box or empty ([Bu02, Proposition 7.2]).

32

1

2

1

3

1

2

1

3

22

2

1 1 332

3 4 432

1

1

2 42

1

3

1

2 3

1

3 4

1

2 3

1

434

1

3

312

2 4

1

3 4

1

23 4

1

23 3

1

4

1

12

23

12 13

23

23 23 12

12312 123 23

123

23

Fig. 2: The poset corresponding to G2,1 ·G2,2: the product satisfies Stembridge cases (3) and (4) from Theorem 3.

We will consider our products as being inside an ambient box of size k× (n− k). That is, we limit the
terms in the expansion to those indexed by partitions that fit inside this box. We note that this restriction
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gives us a sub-poset of the full poset. The Möbius function on the remaining terms is unaffected by the
removal of vertices with content exceeding the box size, since all terms above a vertex ν have content
contained in the content of ν. That is, for a given vertex ν with content in the ambient box, no vertex in
its upwards order ideal will have content exceeding the ambient box. We are interested in cases in which
the terms in the Grothendieck expansion which correspond to the Schur expansion are multiplicity-free,
i.e. that their coefficients are 0 or 1.

Then Theorem 1 implies the following:

Theorem 2 Consider partitions λ = (λβ1
1 , . . . , λβll ) and µ = (µα1

1 , . . . , µαmm ) such that Gλ · Gµ in a
k× (n− k) box is a Schur-multiplicity-free product. In the corresponding poset, for each vertex ν′, µ(ν′)
gives the coefficient of Gν in the Buch expansion of the product, where ν = ν′

⋃
(1λ1 , . . . , lλl).

These Schur-multiplicity-free cases have been classified by Stembridge [St01] as follows, and our proof
explicitly uses his analysis. We begin by recalling Stembridge’s definitions and classification of Schur-
multiplicity-free cases.

Definition 1 [St01] A partition µ with at most one part size (i.e., empty, or of the form (cr) for suitable
c, r > 0) is said to be a rectangle. If it has k rows or k columns (i.e., k = r or k = c), then we say ν is
a k-line rectangle. A partition µ with exactly two part sizes (i.e., µ = (brcs) for suitable b > c > 0 and
r, s > 0) is said to be a fat hook. If it is possible to obtain a rectangle by deleting a single row or column
from the fat hook µ, then we say that µ is a near rectangle.

We will call these top, bottom, left, or right near rectangles, to denote the location of the extra row or
column. We say that a product of Schur functions is multiplicity-free if all of the Littlewood-Richardson
coefficients of the expansion are 0 or 1.

Theorem 3 [St01] The product of Schur functions sλ · sµ is multiplicity-free if and only if

1. λ and µ are rectangles, or

2. (Pieri rule) λ is arbitrary, and µ is a 1-line rectangle

3. λ is a rectangle and µ is a near-rectangle

4. µ is a fat hook and λ is a 2-line rectangle

We now mention some speculative geometry that motivated our combinatorial proof of Theorem 2.
Buch shows that the expansion of Xλ ∩ (w0 · Xµ) into Schubert classes has signs that alternate with
dimension ([Bu02]). This suggests that there exists an exact sequence on sheaves

0→ OS
ν∈P Xν

→
⊕

T,|T |=|ν|+1

OXcontent(T ) → · · · →
⊕

T,|T |=|ν|+k−1

OXcontent(T ) → · · · (1)

where the kth nonzero term sums over Buch Littlewood-Richardson tableaux with k − 1 extra entries.
This leads to a sequence for the point in the Grassmannian corresponding to each λ,

0→ C1 → · · · →
⊕

T,|T |=|ν|+k−1,content(T )⊆λ

C1 → · · ·

One can hope that this sequence is in fact exact. Our main result is
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Theorem 4 There exists such an exact sequence of vector spaces, and it can be explicitly constructed as
a direct sum of exact sequences with exactly two non-zero terms.

The proof requires an involution which pairs terms differing in size by one. In some cases, we provide a
single rule that matches all terms required. In other cases however, we must resort to a multistage divide
and conquer approach, where the involution is defined differently on several disjoint subsets. Assuming
Theorem 4, we can prove Theorem 2 as a corollary.

Proof of Theorem 2: The exactness of the sequence (1) gives us that the alternating sum of dimensions
is 0. Thus the sum of the coefficients of the pairs of Buch tableaux, with signs alternating with number
of extra numbers (i.e. how many more than a single entry), is also 0. Together with the extra 1 from
the single fixed point tableau, this is equivalent to the statement that the coefficient of ν′ is given by the
Möbius function. 2

2 An Extension to the Thomas-Yong Cases
Consider partitions λ and µ in a (k × (n − k)) box. We will review the notation introduced in [TY07].
We call R = (λ, µ, k × (n− k)) a Richardson quadruple, and use the notation poset(R) to denote the
associated poset of allowed fillings of µ. Place λ in the upper left corner of the box, then rotate µ by 180◦

(call this rotate(µ)) and place it in the lower right corner. This quadruple (λ, µ, k × (n − k)) is called
basic if λ

⋃
rotate(µ) does not contain any full rows or columns. If it is not basic, we can remove all full

rows and columns to get a basic demolition R̃ = (λ̃, µ̃, k̃×(ñ− k̃)). We call each row (column) removal
a row (column) demolition. Notice that if λ

⋂
rotate(µ) 6= ∅, then Gλ · Gµ = 0, so the demolition is

undefined. In order to determine whether a Richardson quadruple is multiplicity-free, we consider its
basic demolition.

Theorem 5 [TY07] A Richardson quadruple is multiplicity-free if and only if its basic Richardson quadru-
ple is multiplicity-free. If a the basic demoltion of a Richardson quadruple (λ, µ, k×n−k) is multiplicity-
free, then it must be in the cases classified by [St01].

For example, consider the case ((4, 4, 2, 2, 1), (4, 3, 2, 1), 5 × 5). This product is not multiplicity-free,
but has a basic demolition of (1, 1, 2× 2), which is multiplicity-free.

We will show that our analysis of the [St01] multiplicity-free cases extends to this larger class of prod-
ucts by showing that the posets of a Richardson quadruple and its basic demolition are isomorphic. Let us
define the accessible word wA as the independent values of λ read in increasing order, or equivalently

wA(j) = 1 + #(rows of λ in column n− k − j).

Lemma 1 (Column Demolition Lemma) For R = (λ, µ, k × (n − k)), if column c is full, let R̃ be the
quadruple with column c removed. Then poset(R̃) is isomorphic to poset(R).

Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µm). There is a full row in the diagram if and only if λr +
µk−r+1 = n− k.

Lemma 2 For R = (λ, µ, k × (n − k)), if λ1 = n − k, let R̃ be the quadruple with λ1 removed. Then
poset(R) is isomorphic to poset(R̃) for R̃ = ((λ2, . . . , λl), µ, (k − 1)× (n− k)).
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Lemma 3 (Row Demolition Lemma) For R = (λ, µ, k × (n− k)), if row r is full, then the poset(R̃) is
isomorphic to poset(R).

We note that basic demolition is well defined, i.e. independent of the order of full column/row removal,
thus so are the corresponding isomorphisms between posets.

Figure 3 is an example of a case with both a full row and column. (This product is Stembridge
multiplicity-free in any ambient box, but is a good example of the row and column demolition com-
mutativity.)

1 3
2

1 3
3

1 3
23

1
2

1
3

1
23

1 2 2 2

12 2

1 2

12

remove column 2remove row 2

remove row 2remove column 2

Fig. 3: Two demolition paths of ((2, 2), (2, 1), 3× 3) to ((1), (1), 2× 2).

Proposition 1 Theorem 4 holds for any Richardson quadruple whose basic demolition is a Stembridge
case.

Acknowledgements
I would like to extend special thanks to Allen Knutson for both the statement of the question and contin-
uing guidance throughout the process.

References
[Br03] M. Brion, Multiplicity-free subvarieties of flag varieties, Contemporary Math. 331, 13-23, Amer.

Math. Soc., Providence, 2003. math.AG/0211028

[Bu02] A. Buch, A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math. 189
(2002), no. 1, 37–78. math.AG/0004137



814 Michelle Snider

[St01] J.R. Stembridge, Multiplicity-free products of Schur functions, Annals of Combinatorics (2001),
no. 5, 113–121

[TY07] H. Thomas, A. Yong, Multiplicity-free Schubert calculus, (2007). math/0511537

[Kn08] A. Knutson, Frobenius splitting and Möbius inversion, In preparation (2008)
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Abstract. Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or −1 whose rows and columns
sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals
of subposets of a certain poset, proving that they are in bijection with a variety of interesting combinatorial objects,
including ASMs, totally symmetric self–complementary plane partitions (TSSCPPs), Catalan objects, tournaments,
semistandard Young tableaux, and totally symmetric plane partitions. We use this perspective to prove an expansion
of the tournament generating function as a sum over TSSCPPs which is analogous to a known formula involving
ASMs.

Résumé. Les matrices à signe alternant (ASMs) sont des matrices carrées dont les coefficients sont 0, 1 ou −1, telles
que dans chaque ligne et chaque colonne la somme des entrées vaut 1 et les entrées non nulles ont des signes qui
alternent. Nous incluons les ASMs dans un cadre plus vaste, en étudiant les idéaux des sous-posets d’un certain
poset, dont nous prouvons qu’ils sont en bijection avec de nombreux objets combinatoires intéressants, tels que les
ASMs, les partitions planes totalement symétriques autocomplémentaires (TSSCPPs), des objets comptés par les
nombres de Catalan, les tournois, les tableaux semistandards, ou les partitions planes totalement symétriques. Nous
utilisons ce point de vue pour démontrer un développement de la série génératrice des tournois en une somme portant
sur les TSSCPPs, analogue à une formule déjà connue faisant apparaı̂tre les ASMs.

Keywords: alternating sign matrices, posets, plane partitions, order ideals, Catalan numbers, tournaments

1 Introduction
Alternating sign matrices (ASMs) are simply defined as square matrices with entries 0, 1, or −1 whose
rows and columns sum to 1 and alternate in sign, but have proved quite difficult to understand (and even
count). Totally symmetric self–complementary plane partitions (TSSCPPs) are plane partitions, each
equal to its complement and invariant under all permutations of the coordinate axes. TSSCPPs inside a
2n× 2n× 2n box are equinumerous with n× n ASMs, but no explicit bijection between these two sets
of objects is known. In this paper we present a new perspective which sheds light on ASMs and TSSCPPs
and brings us closer to constructing a explicit ASM–TSSCPP bijection.

2 The tetrahedral poset
Given an n × n ASM A, consider the following bijection to objects called monotone triangles of or-
der n [2]. For each row of A note which columns have a partial sum (from the top) of 1 in that row.
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Record the numbers of the columns in which this occurs in increasing order. This gives a triangular array
of numbers 1 to n. This process can be easily reversed, and is thus a bijection. Monotone triangles can be
defined as objects in their own right as follows [2].

Definition 2.1 Monotone triangles of order n are all triangular arrays of integers with bottom row
1 2 3 . . . n and integer entries aij such that ai,j ≤ ai−1,j ≤ ai,j+1 and aij < ai,j+1.

Note that the bottom row of a monotone triangle of order n is always 1 2 3 . . . n. If we rotate the
monotone triangle clockwise by π

4 we obtain a semistandard Young tableau (SSYT) of staircase shape
δn = n (n− 1) (n− 2) . . . 3 2 1 whose northeast to southwest diagonals are weakly increasing. Thus we
have the following theorem.

4× 4 ASM
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

 ⇐⇒

Monotone triangle of order 4
2

1 4
1 3 4

1 2 3 4

⇐⇒

Rotated array
1 1 1 2
2 3 4
3 4
4

Theorem 2.2 n×n alternating sign matrices are in bijection with SSYT of staircase shape δn with entries
yi,j at most n such that yi,j ≤ yi+1,j−1. Denote this set as SSAn.

Ordered by componentwise comparison of the entries, SSAn forms a distributive lattice J(P ) where
the Hasse diagram of the poset of join-irreducibles P (for n = 4) is shown below:

Given a TSSCPP t = {ti,j}1≤i,j≤2n take a fundamental domain consisting of the triangular array of
integers {ti,j}n+1≤i≤j≤2n. In this triangular array ti,j ≥ ti+1,j ≥ ti+1,j+1 since t is a plane partition.
Also for these values of i and j the entries ti,j satisfy 0 ≤ ti,j ≤ 2n+ 1− i. Now if we reflect this array
about a vertical line then rotate clockwise by π

4 we obtain a staircase shape array x whose entries xi,j
satisfy the conditions xi,j ≤ xi,j+1 ≤ xi+1,j and 0 ≤ xi,j ≤ j. Now add i to each entry in row i. This
gives us the following theorem.

Theorem 2.3 Totally symmetric self–complementary plane partitions inside a 2n × 2n × 2n box are in
bijection with SSYT of staircase shape δn with entries yi,j at most n such that yi,j ≤ yi−1,j+1 +1. Denote
this set as SSTn.
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TSSCPP
8 8 8 8 6 6 4 4
8 8 8 8 6 5 4 4
8 8 7 6 5 4 3 2
8 8 6 5 4 3 2 2
6 6 5 4 3 2 · ·
6 5 4 3 2 1 · ·
4 4 3 2 · · · ·
4 4 2 2 · · · ·

⇐⇒

Fundamental
domain

3
2 1
· · ·
· · · ·

⇐⇒

Reflected
& rotated
· · 1 3
· · 2
· ·
·

⇐⇒

i added
to row i

1 1 2 4
2 2 4
3 3
4

Ordered by componentwise comparison of the entries, SSTn forms a distributive lattice J(Q) where
the Hasse diagram of the poset of join-irreducibles Q (for n = 4) is shown below. (Note that in this paper
we will extend the definition of a Hasse diagram slightly by at times drawing edges in the Hasse diagram
from x to y when x < y but y does not cover x, like the yellow edges below.)

Suppose we put the posets P and Q together and consider SSYT with both conditions on the diagonals.
The Hasse diagram of our new poset looks like a tetrahedron with one direction of edges missing:

Inserting those extra edges yields a tetrahedral poset, denoted Tn, whose lattice of order ideals we find to
be in bijection with totally symmetric plane partitions (TSPPs) inside an (n− 1)× (n− 1)× (n− 1) box.

We define Tn precisely as follows. Define the unit vectors −→r = (
√

3
2 ,

1
2 , 0), −→g = (0, 1, 0), and

−→
b = (−

√
3

2 ,
1
2 , 0), −→y = (

√
3

6 ,
1
2 ,
√

6
3 ), −→o = (−

√
3

3 , 0,
√

6
3 ), −→s = (−

√
3

6 , 1
2 ,−

√
6

3 ). Let the elements of Tn
be defined as the coordinates of all the points reached by linear combinations of −→r , −→g , and −→y . Thus as
a set Tn = {c1−→r + c2

−→g + c3
−→y , c1, c2, c3 ∈ Z≥0, c1 + c2 + c3 ≤ n − 2}. Let all the vectors −→r , −→g ,

and −→y used to define the elements of Tn be directed edges in the Hasse diagram of colors red, green, and
yellow. Additionally draw as edges of colors blue, orange, and silver the vectors

−→
b , −→o , and −→s between

poset elements wherever possible. The partial order of Tn is defined so that the corner vertex with edges
colored red, green, and yellow is the smallest element, the corner vertex with edges colored silver, green,
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and blue is the largest element, and the other two corner vertices are ordered such that the one with silver,
yellow, and orange edges is above the one with orange, red, and blue edges.

Since the ASM and TSSCPP posets appear as subposets of Tn with certain edge colors, we now in-
vestigate the subposets of Tn made up of all the different combinations of edge colors. Surprisingly, for
almost all of these posets, there exists a nice product formula for the number of order ideals and a bijec-
tion between these order ideals and an interesting set of combinatorial objects. We wish to consider only
subsets of the colors which include all the colors whose covering relations are induced by combinations
of other colors, which are the admissible subsets of the following definition.

Definition 2.4 Let a subset S of the six colors {red, blue, green, orange, yellow, silver} (abbreviated
{r, b, g, o, y, s}) be admissible if all of the following are true: If {r, b} ⊆ S then g ∈ S, if {o, s} ⊆ S then
b ∈ S, if {s, y} ⊆ S then g ∈ S, and if {r, o} ⊆ S then y ∈ S.

Given an admissible subset S of the colors {r, b, g, o, y, s}, let Tn(S) denote the poset formed by the
vertices of Tn together with all the edges whose colors are in S. The induced colors will be in parentheses.

We give a bijection between order ideals of Tn(S), S an admissible subset of {r, b, g, y, o, s}, and
arrays of integers with certain inequality conditions.

Definition 2.5 Let S be an admissible subset of {r, b, g, y, o, s} and suppose g ∈ S. Define Yn(S) to be
the set of all integer arrays x of staircase shape δn with entries xi,j , 1 ≤ i ≤ n, 0 ≤ j ≤ n− i satisfying
both i ≤ xi,j ≤ j + i and the following inequality conditions corresponding to the additional colors in
S: orange: xi,j < xi+1,j , red: xi,j ≤ xi−1,j+1 + 1, yellow: xi,j ≤ xi,j+1, blue: xi,j ≤ xi+1,j−1, silver:
xi,j ≤ xi,j−1 + 1

For the proof of the following proposition we will need to note the following: Tn({r, b, (g)}) is a
disjoint poset, whose connected components we will call, from smallest to largest, P2, P3, . . . Pn. Thus Tn
can be thought of as the poset which results from beginning with Pn, overlaying Pn−1, Pn−2, . . . , P3, P2

successively, and connecting each Pi to Pi−1 by the orange, yellow, and silver edges.

Proposition 2.6 If S is an admissible subset of {r, b, g, y, o, s} and g ∈ S then Yn(S) is in weight–
preserving bijection with J(Tn(S)) where the weight of x ∈ Yn(S) is given by

∑n−1
i=1

∑n−i
j=0(xi,j − i)

and the weight of I ∈ J(Tn(S)) equals |I|.

Proof: Let S be an admissible subset of {r, b, g, y, o, s} and suppose g ∈ S. Recall that Tn is made
up of the layers Pk where 2 ≤ k ≤ n. Since g ∈ S, Pk contains k − 1 green–edged chains of length
k − 1, . . . , 2, 1. For each Pk ⊆ Tn let the k − 1 green chains inside Pk determine the entries xi,j (j 6= 0)
of an integer array on the diagonal where i + j = k. In particular, given an order ideal I of Tn(S) form
an array x by setting xi,j equal to i plus the number of elements in the induced order ideal of the length j
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green chain inside Pi+j (in column 0 xi,0 = i). This defines x as an integer array of staircase shape δn
whose entries satisfy i ≤ xi,j ≤ j + i. Also since each entry xi,j is given by an induced order ideal and
since each element of Tn is in exactly one green chain we know that |I| =

∑
i,j xi,j − i. Thus the weight

is preserved.
Now it is left to determine what the other colors mean in terms of the array entries. Since the colors

red and blue connect green chains from the same Pk we see that inequalities corresponding to red and
blue should relate entries of x on the same northeast to southwest diagonal of x. So if r ∈ S then
xi,j ≤ xi−1,j+1 + 1 and if b ∈ S then xi,j ≤ xi+1,j−1. The colors yellow, orange, and silver connect Pk
to Pk+1 for 2 ≤ k ≤ n − 1. So from our construction we see that if o ∈ S then xi,j ≤ xi+1,j , if y ∈ S
then xi,j ≤ xi,j+1, and if s ∈ S then xi,j ≤ xi,j−1 + 1. 2

3 Combinatorial objects as subposet order ideals
We will now give product formulas for the number of order ideals of Tn(S) for S an admissible set of
colors along with the rank generating functions wherever we have them, where F (P, q) denotes the rank
generating function for the poset P . For the sake of comparison we have also written each formula as a
product over the same indices 1 ≤ i ≤ j ≤ k ≤ n − 1 in a way which is reminiscent of the MacMahon
box formula. See Figure 1 for the big picture of inclusions and bijections between these order ideals. For
a more detailed discussion, see [6].

Theorem 3.1 For any color x ∈ {r, b, y, g, o, s}

F (J(Tn({x})), q) =
n∏
j=1

j!q =
∏

1≤i≤j≤k≤n−1

[i+ 1]q
[i]q

. (1)

Proof: Tn({x}) is the disjoint sum of n − j chains of length j − 1 as j goes from 1 to n − 1. So the
number of order ideals is the product of the number of order ideals of each chain. 2

Theorem 3.2 If S ∈ {{g, o}, {r, s}, {b, y}} then

F (J(Tn(S)), q) =
n∏
j=1

[
n

j

]
q

=
∏

1≤i≤j≤k≤n−1

[j + 1]q
[j]q

. (2)

Proof: The arrays Yn({g, o}) strictly decrease down columns and have no conditions on the rows. Thus in
a column of length j there must be j distinct integers between 1 and n; this is counted by

(
n
j

)
. If we give a

weight to each of these integers of q to the power of that integer minus its row, we have a set q–enumerated
by the q–binomial coefficient

[
n
j

]
q
. Thus

∏n
j=1

[
n
j

]
q

is the generating function of the arrays Yn({g, o})
and also of the order ideals F (J(Tn({g, o})), q). The posets Tn({g, o}), Tn({r, s}), and Tn({b, y}} are
all isomorphic, thus the result follows by poset isomorphism. 2

Theorem 3.3 If S1 ∈ {{b, g}, {b, s}, {y, o}, {g, s}} and S2 ∈ {{r, y}, {r, g}, {y, g}, {b, o}} then

|J(Tn(S1))| = |J(Tn(S2))| =
n∏
j=1

Cj =
n∏
j=1

1
j + 1

(
2j
j

)
=

∏
1≤i≤j≤k≤n−1

i+ j + 2
i+ j

(3)
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F (J(Tn(S1)), q) = F (J(T ∗n(S2)), q) =
n∏
j=1

Cj(q) (4)

where ∗ is poset dual, Cj is the jth Catalan number, and Cj(q) is the Carlitz–Riordan q–Catalan number

defined by the recurrence Cj(q) =
j∑

k=1

qk−1Ck−1(q)Cj−k(q) with initial conditions C0(q) = C1(q) = 1.

Proof: Tn({b, g}) is isomorphic to the disjoint sum of posets Pj({b, g}) for 2 ≤ j ≤ n with rank
generating functions Cj(q). This can be shown using an easy bijection between these order ideals and
Dyck paths from (0, 0) to (2j, 0). Thus the number of order ideals |J(Tn({b, g}))| equals the product∏n
j=1 Cj and the rank generating function F (J(Tn({b, g})), q) equals the product

∏n
j=1 Cj(q). Finally,

the posets Tn(S1) for any choice of S1 ∈ {{b, g}, {b, s}, {y, o}, {g, s}} and the posets T ∗n(S2) for any
S2 ∈ {{r, y}, {r, g}, {y, g}, {b, o}} are all isomorphic, thus the result follows by poset isomorphism. 2

Theorem 3.4 If S is an admissible subset of {r, b, g, o, y, s}, |S| = 3, and S /∈ {{r, g, y}, {s, b, r}} then

F (J(Tn(S)), q) =
n−1∏
j=1

(1 + qj)n−j =
∏

1≤i≤j≤k≤n−1

[i+ j]q
[i+ j − 1]q

. (5)

Thus if we set q = 1 we have |J(Tn(S))| = 2(n
2).

We will prove Theorem 3.4 using two lemmas since there are two nonisomorphic classes of posets
Tn(S) where S is admissible, |S| = 3, and S /∈ {{r, g, y}, {s, b, r}}. The first lemma is the case where
Tn(S) is a disjoint sum of posets and the second lemma is the case where Tn(S) is a connected poset.

Lemma 3.5 Suppose S ∈ {{o, s, (b)}, {s, y, (g)}, {o, r, (y)}, {b, r, (g)}}. Then

F (J(Tn(S)), q) =
n−1∏
j=1

(1 + qj)n−j =
∏

1≤i≤j≤k≤n−1

[i+ j]q
[i+ j − 1]q

.

Proof: Tn({b, r, (g)}) is a disjoint sum of the Pj posets for 2 ≤ j ≤ n. The order ideals of Pj are
counted by 2j−1 and the rank generating function of J(Pj) is given by

∏j−1
i=1 (1 + qi), both of which

are proved by induction. Thus F (Tn({b, r, (g)}), q) is the product of
∏j−1
i=1 (1 + qi) for 2 ≤ j ≤ n.

Rewriting the product we obtain
∏n
j=2

∏j−1
i=1 (1 + qi) =

∏n−1
j=1 (1 + qj)n−j . The posets Tn(S) where

S ∈ {{o, s, (b)}, {s, y, (g)}, {o, r, (y)}} are isomorphic to Tn({b, r, (g)}) so the result follows by poset
isomorphism. 2

Lemma 3.6 Suppose S ∈ {{r, g, s}, {o, b, y}, {y, g, o}, {b, g, o}, {y, g, b}}. Then

F (J(Tn(S)), q) =
n−1∏
j=1

(1 + qj)n−j =
∏

1≤i≤j≤k≤n−1

[i+ j]q
[i+ j − 1]q

.
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Fig. 1: The big picture of inclusions and bijections between order ideals J(Tn(S)). The one sided arrows represent
inclusions of one set of order ideals into another. The two sided arrows represent bijections between sets of order
ideals. The bijection between the order ideals of the three color posets is in Section 4 and the bijections between
TSSCPP posets is by poset isomorphism. The only missing bijection between sets of order ideals of the same size is
between ASM and TSSCPP.
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Proof: The arrays Yn({g, y, o}) are by Definition 2.5 equivalent to SSYT of staircase shape δn, thus their
generating function is given by the Schur function sδn

(x1, x2, . . . , xn). Now

sδn(x1, x2, . . . , xn) =
det(x2(n−j)

i )ni,j=1

det(xn−ji )ni,j=1

=
∏

1≤i<j≤n

x2
i − x2

j

xi − xj
=

∏
1≤i<j≤n

(xi + xj)

using the algebraic Schur function definition and the Vandermonde determinant. The principle special-
ization of this generating function yields the q–generating function

∏n−1
j=1 (1 + qj)n−j . The posets Tn(S)

where S ∈ {{r, g, s}, {o, b, y}, {b, g, o}, {y, g, b}} are isomorphic to Tn({g, y, o}) so the result follows
by poset isomorphism. 2

Proof of Theorem 3.4: By Lemma 3.5, if S ∈ {{o, s, (b)}, {s, y, (g)}, {o, r, (y)}, {b, r, (g)}} then the
generating function F (J(Tn(S)), q) is as above. By Lemma 3.6, if S ∈ {{r, g, s}, {o, b, y}, {y, g, o},
{b, g, o}, {y, g, b}} then generating function F (J(Tn(S)), q) is as above. These are the only admissible
subsets S of {r, b, g, o, y, s} with |S| = 3 and S /∈ {{r, g, y}, {s, b, r}}. 2

There seems to be no nice product formula for the number of order ideals of the dual posets Tn({r, g, y})
and Tn({s, b, r}). The number of order ideals up to n = 6 are: 1, 2, 9, 96, 2498, 161422.

Theorem 3.7 If S is an admissible subset of {r, b, g, o, y, s} and |S| = 4 then

|J(Tn(S))| =
n−1∏
j=0

(3j + 1)!
(n+ j)!

=
∏

1≤i≤j≤k≤n−1

i+ j + k + 1
i+ j + k − 1

. (6)

Proof: The posets Tn(S) for S admissible and |S| = 4 are Tn({g, y, b, o}), the three isomorphic
posets Tn({r, o, (y), g}), Tn({r, b, (g), y}), and Tn({y, s, (g), r}), and the three posets dual to these,
Tn({y, s, (g), b}), Tn({o, s, (b), g}), Tn({r, b, (g), s}). In Theorem 2.2 we showed that the order ideals
of Tn({g, y, b, o}) are in bijection with n× n ASMs and in Theorem 2.3 we showed that the order ideals
of Tn({r, o, (y), g}) are in bijection with TSSCPPs inside a 2n×2n×2n box. Therefore by poset isomor-
phism TSSCPPs inside a 2n×2n×2n box are in bijection with the order ideals of any of Tn({r, o, (y), g}),
Tn({r, b, (g), y}), Tn({y, s, (g), r}), T ∗n({y, s, (g), b}), T ∗n({o, s, (b), g}), or T ∗n({r, b, (g), s}). Thus by
the enumeration of ASMs in [8] and [3] and the enumeration of TSSCPPs in [1] we have the above formula
for the number of order ideals. 2

There are two different cases for five colors: one case consists of the dual posets Tn({(g), (b), o, y, s})
and Tn({r, b, (g), o, (y)}) and the other case is Tn({r, b, s, (y), g}). A nice product formula has not yet
been found for either case.

Theorem 3.8

|J(Tn)| =
∏

1≤i≤j≤n−1

i+ j + n− 2
i+ 2j − 2

=
∏

1≤i≤j≤k≤n−1

i+ j + k − 1
i+ j + k − 2

(7)

Proof: Totally symmetric plane partitions are plane partitions which are symmetric with respect to all
permutations of the x, y, z axes. Thus we can take as a fundamental domain the wedge where x ≥ y ≥ z.
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Then if we draw the lattice points in this wedge (inside a fixed bounding box of size n − 1) as a poset
with edges in the x, y, and z directions, we obtain the poset Tn where the x direction corresponds to
the red edges of Tn, the y direction to the orange edges, and the z direction to the silver edges. All
other colors of edges in Tn are induced by the colors red, silver, and orange. Thus TSPPs inside an
(n− 1)× (n− 1)× (n− 1) box are in bijection with the order ideals of Tn. Thus by the enumeration of
TSPPs in [5] the number of order ideals |J(Tn)| is given by the above formula. 2

4 Bijections with tournaments
Theorem 3.4 states that the order ideals of the three color posets J(Tn(S)) where S is admissible, |S| = 3,
and S /∈ {{r, g, y}, {s, b, r}} are counted by 2(n

2). This is also the number of graphs on n labeled vertices
and equivalently the number of tournaments on n vertices. A tournament is a complete directed graph
with labeled vertices. We now discuss bijections between these order ideals and tournaments.

Theorem 4.1 There exists an explicit bijection between the order ideals of the poset Tn({b, r, (g)}) and
tournaments on n vertices.
1 1 1
2 2
3

1 1 2
2 2
3

1 1 2
2 3
3

1 1 3
2 3
3

1 2 1
2 2
3

1 2 2
2 2
3

1 2 2
2 3
3

1 2 3
2 3
3

Proof: The colors blue and red correspond to inequalities on Yn({b, r, (g)}) such that as one goes up the
southwest to northeast diagonals at each step the next entry has the choice between staying the same and
decreasing by one. Therefore since each of the

(
n
2

)
entries of the array not in the 0th column has exactly

two choices of values given the value of the entry to the southwest, we may consider each array entry αi,j
with j ≥ 1 to symbolize the outcome of the game between i and i+ j in a tournament. If αi,j = αi+1,j−1

say the outcome of the game between i and i + j is an upset and otherwise not. Thus tournaments on n
vertices are in bijection with the arrays Yn({b, r, (g)}) and also with the order ideals of Tn({b, r, (g)}). 2

The bijection between the order ideals of the connected three color posets of Lemma 3.6 and tourna-
ments is due to Sundquist in [7] and involves repeated use of jeu de taquin and column deletion to go from
SSYT of shape δn and largest entry n to certain tableaux in bijection with tournaments on n vertices.

Next we describe which subsets of tournaments correspond to TSSCPPs.

Theorem 4.2 TSSCPPs inside a 2n× 2n× 2n box are in bijection with tournaments on vertices labeled
1, 2, . . . , n which satisfy the following condition on the upsets: if vertex v has k upsets with vertices in
{u, u+ 1, . . . , v − 1} then vertex v − 1 has at most k upsets with vertices in {u, u+ 1, . . . , v − 2}.

Proof: We have seen in Theorem 4.1 the bijection between the order ideals of Tn({r, b, (g)}) and tour-
naments on n vertices. Thus if we consider the TSSCPP arrays Yn({r, b, (g), y}) we need only find an
interpretation for the yellow edges in terms of tournaments. Recall that yellow corresponds to a weak
increase across the rows of α. To satisfy this condition, for each choice of i ∈ {1, . . . , n − 1} and
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j ∈ {1, . . . , n − i − 1} the number of diagonal equalities to the southwest of αi,j must be less than or
equal to the number of diagonal equalities to the southwest of αi,j+1. So in terms of tournaments, the
number of upsets between i + j + 1 and vertices greater than or equal to i must be greater than or equal
to the number of upsets between i+ j and vertices greater than or equal to i. 2

5 Connections between ASMs, TSSCPPs, and tournaments
In this section we discuss the expansion of the tournament generating function as a sum over ASMs
and derive a new expansion as a sum over TSSCPPs. We begin with the following theorem of Rob-
bins and Rumsey [4]. We need the following notion: the inversion number of an ASM A is defined as
I(A) =

∑
AijAk` where the sum is over all i, j, k, ` such that i > k and j < `.

Theorem 5.1 (Robbins–Rumsey) Let An be the set of n× n alternating sign matrices, and for A ∈ An
let I(A) denote the inversion number of A and N(A) the number of −1 entries in A, then∏

1≤i<j≤n

(xi + λxj) =
∑
A∈An

λI(A)
(
1 + λ−1

)N(A)
n∏

i,j=1

x
(n−i)Aij

j . (8)

Note that the left–hand side is the generating function for tournaments on n vertices where each factor
of (xi + λxj) represents the outcome of the game between i and j in the tournament. If xi is chosen then
the expected winner, i, is the actual winner, and if λxj is chosen then j is the unexpected winner and the
game is an upset. Thus in each monomial in the expansion of

∏
1≤i<j≤n(xi+λxj) the power of λ equals

the number of upsets and the power of xk equals the number of wins of k.
We rewrite Theorem 5.1 in different notation which will also be needed later. For any staircase shape

integer array α ∈ Yn(S) let Ei,k(α) be the number of entries of value k in row i equal to their southwest
diagonal neighbor, Ei(α) be the number of entries in (southwest to northeast) diagonal i equal to their
southwest diagonal neighbor, andEi(α) be the number of entries in row i equal to their southwest diagonal
neighbor, that is, Ei(α) =

∑
k Ei,k(α). Also let E(α) be the total number of entries of α equal to their

southwest diagonal neighbor, that is, E(α) =
∑
iEi(α) =

∑
iE

i(α). We now define variables for the
content of α. Let Ci,k(α) be the number of entries in row i with value k and let Ck(α) be the total
number of entries of α equal to k, that is, Ck(α) =

∑
i Ci,k(α). Let N(α) be the number of entries of α

strictly greater than their neighbor to the west and strictly less than their neighbor to the southwest. When
α ∈ Yn({b, y, o, g}) then N(α) equals the number of −1 entries in the corresponding ASM.

Using this notation we reformulate Theorem 5.1 in the following way.

Theorem 5.2 The generating function for tournaments on n vertices can be expanded as a sum over the
ASM arrays Yn({b, y, o, g}) in the following way.∏

1≤i<j≤n

(xi + λxj) =
∑

α∈Yn({b,y,o,g})

λE(α)(1 + λ)N(α)
n∏
k=1

x
Ck(α)−1
k (9)

Proof: First we rewrite Equation 8 by factoring out λ−1 from each
(
1 + λ−1

)
.

∏
1≤i<j≤n

(xi + λxj) =
∑
A∈An

λI(A)−N(A) (1 + λ)N(A)
n∏

i,j=1

x
(n−i)Aij

j
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Let α ∈ Yn({b, y, o, g}) be the array which corresponds toA. It is left to show that I(A)−N(A) = E(α)
and

∏n
i,j=1 x

(n−i)Aij

j =
∏n
j=1 x

Cj(α)−1
j . In the latter equality take the product over i of the left hand side:∏n

i,j=1 x
(n−i)Aij

j =
∏n
j=1 x

Pn
i=1(n−i)Aij

j . We wish to show Cj(α)−1 =
∑n
i=1(n−i)Aij . Cj(α) equals

the number of entries of α with value j, so Cj(α)− 1 equals the number of entries of α with value j not
counting the j in the 0th column. Now the number of js in columns 1 through n−1 of α equals the number
of 1s in column j of A plus the number of zeros in column j of A which are south of a 1 with no −1s in
between. This is precisely what

∑n
i=1(n − i)Aij counts by taking a positive contribution from every 1

and every entry below that 1 in column j and then subtracting one for every −1 and every entry below
that −1 in column j. Thus Cj(α)− 1 =

∑n
i=1(n− i)Aij so that

∏n
i,j=1 x

(n−i)Aij

j =
∏n
j=1 x

Cj(α)−1
j .

Now we wish to show that I(A) − N(A) = E(α). Fix i, j, and ` and consider
∑
k<iAijAk`. Let

k′ be the row of the southernmost nonzero entry in column ` such that k′ < i. If there exists no such
k′ (that is, Ak` = 0 ∀ k < i) or if Ak′` = −1 then

∑
k>iAijAk` = 0 since there must be an even

number of nonzero entries in {Ak`, k < i} half of which are 1 and half of which are −1. If Ak′` = 1
then

∑
k<iAijAk` = Aij . Thus I(A) =

∑
i,j αijAij where αij equals the number of columns east of

column j such that Ak′` with k′ > i exists and equals 1. Let column `′ be one of the columns counted
by αij . Then Ai`′ cannot equal 1, otherwise Ak′`′ would either not exist or equal −1. If Ai`′ = 0 then in
α there is a corresponding diagonal equality. If Ai`′ = −1 then there is no diagonal equality in α. Thus
I(A) = E(α) +N(A). 2

Many people have wondered what the TSSCPP analogue of the −1 in an ASM may be. The following
theorem does not give a direct analogue, but rather expands the left–hand side of (9) as a sum over
TSSCPPs instead of ASMs.

Theorem 5.3 The generating function for tournaments on n vertices can be expanded as a sum over the
TSSCPP arrays Yn({b, r, (g), y}) in the following way.

∏
1≤i<j≤n

(xi + λxj) =
∑

α∈Yn({b,r,(g),y})

λE(α)
n−1∏
i=1

x
n−i−Ei(α)
i

∑
row shuffles α′ of α

n−1∏
j=1

x
Ej(α′)
j (10)

where a row shuffle α′ of α ∈ Yn({b, r, (g), y} is an array obtained by reordering the entries in the rows
of α in such a way that α′ ∈ Yn({b, r, (g)}. Also, setting the x’s to 1 we have

(1 + λ)(
n
2) =

∑
α∈Yn({b,r,(g),y})

λE(α)
∏

1≤i≤k≤n−1

(
Ci+1,k(α)
Ei,k(α)

)
. (11)

Proof: We begin with the set Yn({b, r, (g), y}) and remove the inequality restriction corresponding to
the color yellow to obtain the arrays Yn({b, r, (g)}) (which are in bijection with tournaments). We use
the following algorithm for turning any α ∈ Yn({b, r, (g)}) into an element of Yn({b, r, (g), y}) thus
grouping all the elements of Yn({b, r, (g)}) into fibers over the elements of Yn({b, r, (g), y}). Assume
each row of α below row i is weakly increasing. Thus αi+1,j ≤ αi+1,j+1. If αi+1,j < αi+1,j+1 then
αi,j+1 ≤ αi+1,j+2 since αi,j+1 ∈ {αi+1,j , αi+1,j − 1} and αi,j+2 ∈ {αi+1,j+1, αi+1,j+1 − 1} by the
inequalities corresponding to red and blue. So the only entries which may be out of order in row i are
those for which their southwest neighbors are equal. If αi+1,j = αi+1,j+1 but αi,j+1 > αi,j+2 it must
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be that αi,j+1 = αi+1,j and αi,j+2 = αi+1,j+1 − 1. So we may swap αi,j+1 and αi,j+2 along with their
entire northeast diagonals while not violating the red and blue inequalities. By completing this process
for all rows we obtain an array with weakly increasing rows which is thus in Yn({b, r, (g), y}).

Now we do a weighted count of how many arrays in Yn({b, r, (g)}) are mapped to a given array in
Yn({b, r, (g), y}). Again we rely on the fact that entries in a row can be reordered only when their south-
west neighbors are equal. Thus to find the weight of all the Yn({b, r, (g)}) arrays corresponding to a single
Yn({b, r, (g), y}) array we simply need to find the set of diagonals containing equalities. The diagonal
equalities give a weight dependent on which diagonal they are in, whereas the diagonal inequalities give
a weight according to their row (which remains constant). Thus if we are keeping track of the xi weight
we can do no better than to write this as a sum over all the allowable shuffles of the rows of α with the x
weight of the diagonal equalities dependent on the position. Thus we have Equation (10).

If we set xi = 1 for all i and only keep track of the λ we can make a more precise statement. The above
proof shows that the λ’s result from the diagonal equalities, and the number of different reorderings of
the rows tell us the number of different elements of Yn({b, r, (g)}) which correspond to a given element
of Yn({b, r, (g), y}). We count this number of allowable reorderings as a product over all rows i and all
array values k as

(Ci+1,k(α)
Ei,k(α)

)
. This yields Equation (11). 2

The difference in the weighting of ASMs and TSSCPPs in Theorems 5.2 and 5.3 is substantial. For
ASMs the more complicated part of the formula arises in the power of λ and for TSSCPPs the complica-
tion comes from the x variables. These theorems are also strangely similar. They show that the tournament
generating function can be expanded as a sum over either ASMs or TSSCPPs, but we still have no direct
reason why the number of summands should be the same. The combination of Theorems 5.2 and 5.3 may
contribute toward finding a bijection between ASMs and TSSCPPs, but the differences between these
expansions show why a bijection is not obvious.
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Postnikov constructed a decomposition of a totally nonnegative Grassmannian(Grkn)≥0 into positroid cells. We
provide combinatorial formulas that allow one to decide which cell a given point in(Grkn)≥0 belongs to and to
determine affine coordinates of the point within this cell. This simplifies Postnikov’s description of the inverse
boundary measurement map and generalizes formulas for the top cell given by Speyer and Williams. In addition,
we identify a particular subset of Plücker coordinates as atotally positive base for the set of non-vanishing Plücker
coordinates for a given positroid cell.
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Postnikov [4] has described a cell decomposition of a totally nonnegative Grassmannian into positroid
cells, which are indexed by

Γ

-diagrams; this decomposition is analogous to the matroid stratification
of a real Grassmannian given by Gel’fand, Goresky, MacPherson, and Serganova [2]. Postnikov also
introduced a parametrization of each positroid cell using acollection of parameters which we call

Γ

-
coordinates.

In this extended abstract, we give an informal description of the main results of [8], in which the reader
will find rigorous formulations and proofs. Specifically, wegive an explicit criterion for determining
which positroid cell contains a given point in a totally nonnegative Grassmannian and explicit combina-
torial formulas for the

Γ

-coordinates of a point. This generalizes the formulas of Speyer and Williams
given for the top dimensional positroid cell [5], and provides a simpler description of Postnikov’s inverse
boundary measurement map, which was given recursively in [4]. For a fixed positroid cell, our formulas
are written in terms of a minimal set of Plücker coordinates, and this minimal set forms a totally positive
base (in the sense of Fomin and Zelevinsky [1]) for the set of Plücker coordinates which do not vanish on
the specified cell.

1 Positroid stratification and the boundary measurement map
In this section, we review Postnikov’s positroid stratification of a totally nonnegative Grassmannian and
boundary measurement map.

Let Grkn denote the Grassmannian ofk-dimensional subspaces ofR
n. A point x ∈ Grkn can be

described by a collection of (projective) Plücker coordinates(PJ (x)), indexed by thek-element subsets

1365–8050c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



828 Kelli Talaska

J ⊂ [n]. Thetotally nonnegative Grassmannian(Grkn)≥0 is the subset of pointsx ∈ Grkn such that all
Plücker coordinatesPJ (x) can be chosen to be simultaneously nonnegative.

In [2], the authors gave a decomposition of the GrassmannianGrkn into matroid strata. More precisely,
for a matroidM ⊆

(

[n]
k

)

, let SM denote the subset of pointsx ∈ Grkn such thatPJ (x) 6= 0 if and
only if J ∈ M. In particular, each possible vanishing pattern of Plücker coordinates is given by a
unique (realizable) matroidM. In [4], Postnikov studies a natural analogue of the matroidstratification
for the totally nonnegative Grassmannian, a decompositioninto disjoint positroid cellstaking the form
(SM)≥0 = SM ∩ (Grkn)≥0.

Definition 1.1. A

Γ

-diagramis a partitionλ together with a filling of the boxes of the Young diagram
of λ with entries0 and+ satisfying the

Γ

-property: there is no0 which has a+ above it (in the same
column) and a+ to its left (in the same row).

Replacing the boxes labeled+ in a

Γ

-diagram with positive real numbers, called

Γ

-coordinates, we
obtain a

Γ

-tableau. Let TL denote the set of

Γ

-tableaux whose vanishing pattern is determined by the

Γ

-diagramL. Note thatTL is an affine space whose dimension is equal to the number of “+”entries in
L, which we denote by|L|.

For a boxB in λ, we letLB andTB denote the labels of the boxB in the

Γ

-diagramL and the

Γ

-tableau
T , respectively.

In the positroid cell decomposition of(Grkn)≥0 given in [4], the positroid cells are indexed by

Γ

-
diagramsL which fit inside ak × (n − k) rectangle. Further, the positroid corresponding to a fixed

Γ

-diagramL is parametrized by the

Γ

-tableauxT ∈ TL, i.e., those with vanishing pattern given byL.

1

2

3

8

91112 10

4
5

67

T17

T24

T36 T34 T33 T31

T45 T44 T43

T57 T56 T55 T54

T17

T24

T36 T31T34

T45 T44

T56T57 T54T55

T43

T33

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

Fig. 1: The

Γ

-tableauT and Γ-network NT for a point in (Gr5,12)≥0. We have shapeλ = (7, 7, 7, 6, 4) and
boundary sourcesI = {1, 2, 3, 5, 8}.

The parametrization described below is a special case of Postnikov’s boundary measurement map. To
give a formula for this parametrization, we need to introduce certain planar networks, calledΓ-networks,
which are in bijection with

Γ

-tableaux. As shown in Figure 1, given a

Γ

-tableauT , we start with a
boundary disk of shapeλ, draw a hook for each positive entryLB, and give the resulting face under that



Combinatorial formulas for

Γ

-coordinates in a totally nonnegative Grassmannian 829

hook the weightLB. Further, ifT has an empty row or column, we place an isolated vertex on the east or
south boundary of the disk. All edges are directed from east to west or north to south. We now have one
boundary sourcefor each row ofλ and oneboundary sinkfor each column of lambda. LetI denote the
set of boundary sources.

In the special case ofΓ-networks, the definition of Postnikov’s map given in [4] canbe viewed as an
instance of the classical formula of Lindström [3]. This formula is usually given in terms of weights of
edges; we apply Postnikov’s transformation from edge weights to face weights [4] to obtain the following
restatement of his definition.

Definition 1.2. For each

Γ

-diagramL which fits in ak × (n − k) rectangle, theboundary measurement
mapMeasL : TL → (Grkn)≥0 is defined by

PJ (MeasL(T )) =
∑

A∈AJ (NT )

wt(A), where

• NT is theΓ-network corresponding to the

Γ

-tableauT , and its boundary source set is labeled byI,

• AJ(NT ) is the collection of non-intersecting path familiesA = {Ai}i∈I in NT from the boundary
sourcesI to the boundary destinationsJ ,

• wt(A) =
∏

i∈I wt(Ai), and

• the weightwt(Ai) of a pathAi in the familyA is the product of the weights of the faces ofNT

which lie southeast ofAi.

For a

Γ

-diagramL, let GL be the correspondingΓ-graph. Let us define the setML ⊆
(

[n]
k

)

by the
condition thatJ ∈ ML if and only if there exists a non-intersecting path collection inGL with sourcesI
and destinationsJ . It can be shown thatML has the structure of a matroid, but this is not necessary for
our purposes. Further, it is easily verified that for distinct

Γ

-diagramsL andL∗, we haveML 6= ML∗ .

Theorem 1.3. [4] For each

Γ

-diagramL which fits in ak × (n − k) rectangle, the map
MeasL : TL → (Grkn)≥0 is injective, and the imageMeasL(TL) is exactly the positroid cell(SML

)≥0.

These positroid cells are pairwise disjoint, and the union
⋃

L(SML
)≥0, taken over all

Γ

-diagramsL
which fit inside thek× (n−k) rectangle, is the entire totally nonnegative Grassmannian(Grkn)≥0. Each
positroid cell(SML

)≥0 is a topological cell; that is,(SML
)≥0 is isomorphic toR|L|, where|L| is the

number of “+” entries inL. Thus, the positroid cells form a cell decomposition of(Grkn)≥0.

In Postnikov’s work [4], this result is proved by giving a recursive algorithm for finding the

Γ

-tableau
T corresponding to a given point in(Grkn)≥0. In [8], we obtain explicit combinatorial formulas solving
the same problem. This is done in two stages. First, we give anexplicit rule for determining which
positroid cell contains a given point. Next, we give two combinatorial formulas for the inverse of each
particular mapMeasL (i.e., formulas for the corresponding

Γ

-coordinates) in terms of the relevant Plücker
coordinates.



830 Kelli Talaska

2 Determining the positroid cell of a point in (Grkn)≥0

In this section, we give an explicit formula for the

Γ

-tableauL(x) that determines which positroid cell
(SML

)≥0 a given pointx ∈ (Grkn)≥0 belongs to. Letx ∈ (Grkn)≥0 be given by its Plücker coordinates
(

PJ(x) : J ∈

(

[n]

k

))

.

Order thek-subsets of[n] lexicographically. That is, ak-subsetA = {a1 < a2 < · · · < ak} is less than
or equal to ak-subsetB = {b1 < b2 < · · · < bk} if at the smallest indexm for whicham 6= bm, we have
am < bm.

SetM(x) = {J ∈
(

[n]
k

)

: PJ (x) 6= 0}. Let I = {i1 < i2 < · · · < ik} be the lexicographically
minimum set inM(x). Let λ(x) be the partition in thek × (n − k) rectangle whose southeastern border
is given by the path from the northeast corner of thek × (n − k) rectangle to its southwest corner which
has edges to the south in positionsI and edges to the west in positions[n] \ I. Thenλ(x) is the shape of
the

Γ

-diagram corresponding tox.
Next, letAr,c = {1, 2, . . . , ir} ∪ {jc, jc + 1 . . . , n}. As an intermediate step, we set

M ′(B) = lexmax {J ∈ M(x) : J ∩ Ar,c = I ∩ Ar,c}. In plain language, this says that we are taking
the maximum over setsJ which contain all of the sources outside the open interval from ir to jc and none
of the sinks, i.e., those sets whose interesting behavior happensinsidethe interval. This lexicographically
maximal set gives the destinations of the non-intersectingpath collection which is nested as far northwest
as possible (strictly) under the hook along rowr and columnc.

Let M(B) = (M ′(B) \ {ir}) ∪ {jc}. This corresponds to adding the hook along rowr and columnc
to the path collection above.

Theorem 2.1. For x ∈ (Grkn)≥0. Then the filling ofλ(M(x)) given by

L(x)B =

{

0 if PM(B)(x) = 0;

+ if PM(B)(x) 6= 0.

is a

Γ

-diagram, andx lies in the positroid cell(SML
)≥0.

1

2

3

8

91112 10

45

67

1

2

3

8

91112 10

45

67

Fig. 2: The Γ-graph of an example in(Gr5,12)≥0 and the path families corresponding toM ′((2, 6),ML) and
M((2, 6),ML).
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Example 2.2. On the left in Figure 2, we have theΓ-graph of the example in Figure 1. We see that
M ′((2, 6),ML) = {1, 2, 7, 9, 10}, corresponding to the solid path collection on the right in Figure 2.
Adding in the potential (dotted) hook fromi2 = 2 to j6 = 11, we haveM((2, 6),ML) = {1, 7, 9, 10, 11}.
Since this hook does not occur in theΓ-graph, we must havePM((2,6),ML)(x) = 0 for this point.

3 The

Γ

-tableau associated with a point in (SML
)≥0

In Postnikov’s original work, the map from(Grkn)≥0 to
⋃

L TL is given recursively. In this section,
we provide an explicit description of that map. More precisely, given a pointx ∈ (SML

)≥0, we give
combinatorial formulas for the entries of the parametrizing

Γ

-tableau, which we call

Γ

-coordinatesfor x.
Informally, for a directed pathW in a Γ-graph, we letOC(W ) index the boxes whereW turns to the

south, andIC(W ) index the boxes whereW turns to the west, as in Figure 3. We call these boxesouter
cornersandinner corners, respectively.

1

2

3

8

91112 10

45

67

F oc

oc

oc

ic

ic

1

2

3

8

91112 10

45

67

F

oc

oc

oc

ic

ic

Fig. 3: Finding the outer corners (marked “oc”) and the inner corners (marked “ic”) of the two paths in bold.

For a faceF = F (B) with the boxB in its northwest corner, letUF be the unique hook which
determines the northwest boundary ofF , and letDF be the unique path which has the same endpoints as
UF and determines the southeast boundary ofF . (If F touches the boundary of the disk,DF may consist
of a union of non-intersecting paths.)

Definition 3.1. For any two facesF1 = F (B1) andF2 = F (B2) of GL, we have

µL(F1, F2) =











1 if F1 = F2 or B2 ∈ IC(DF1)

−1 if B2 ∈ OC(DF1)

0 otherwise.

Theorem 3.2. Supposex ∈ (SML
)≥0. Then the

Γ

-coordinates ofx are the entries of the

Γ

-tableau
T (x) ∈ TL defined below. That is,MeasL(T (x)) = x, andT (x) is the unique

Γ

-tableau whose image
underMeasL is x.

T (x)B =







0 if PM(B)(x) = 0;
∏

LC=+

(

PM(C)(x)

PM′(C)(x)

)µ(B,C)

if PM(B)(x) 6= 0.
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4

Γ

-coordinates of a positroid cell in terms of a minimal set of
Plücker coordinates

By Theorem 1.3, the dimension of a positroid cell(SML
)≥0 is |L|, the number of “+” entries in the cor-

responding

Γ

-diagramL. However, finding the

Γ

-coordinates of a pointx ∈ (SML
)≥0 via equation (4.1)

may require roughly twice this many Plücker variables. In this section, we give a formula for the map
from (SML

)≥0 to TL, using precisely|L| Plücker variables. This formula is, of course, equivalentto our
first formula modulo Plücker relations, but we now use exactly the desired number of parameters.

Supposex ∈ (SML
)≥0 andMeasL(T ) = x. As in the previous section, letUF andDF denote paths

determining the upper and lower boundaries of the faceF . Let U ′
F andD′

F be the northwest-most paths
lying strictly southeast ofUF andDF , respectively. (Again, it is possible that these are unionsof disjoint
paths.)

For a pathW in aΓ-networkN and a boxB in λ, we set

εW (B) =











1 if B ∈ OC(W );

−1 if B ∈ IC(W );

0 otherwise.

Theorem 4.1. Supposex ∈ (SML
)≥0 andMeasL(T ) = x. Then the

Γ

-coordinates ofx may be written
in the alternate form

TB =

{

0 if PM(B)(x) = 0;
∏

LC=+(PM(C)(x))ε(C) if PM(B)(x) 6= 0,

whereε(C) = [εUF
(C) − εU ′

F
(C)] − [εDF

(C) − εD′

F
(C)].

While this formula may look complicated, it is very easy to use in practice: we simply trace out four
easily defined paths, keeping track of where they turn.

The following corollary uses thetotally positive basesof [1].

Corollary 4.2. The set of Pl̈ucker coordinates

PL = {PM(B) : LB = +}

forms atotally positive basefor the non-vanishing Plücker coordinates{PJ : J ∈ ML} of the positroid
cell (SML

)≥0. That is, every Pl̈ucker coordinatePJ with J ∈ ML can be written as a subtraction-free
rational expression (i.e., a ratio of two polynomials with nonnegative integer coefficients) in the elements
of PL, andPL is a minimal set (with respect to inclusion) with this property. Further, eachPJ with
J ∈ ML is a Laurent polynomial in the elements ofPL, with nonnegative coefficients.
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Type B plactic relations for r-domino tableaux

Müge Taşkın†

Bog̃aziçi University, Turkey.

The recent work of Bonnafé et al. (2007) shows through two conjectures that r-domino tableaux have an important
role in Kazhdan-Lusztig theory of type B with unequal parameters. In this paper we provide plactic relations on
signed permutations which determine whether given two signed permutations have the same insertion r-domino
tableaux in Garfinkle’s algorithm (1990). Moreover, we show that a particular extension of these relations can describe
Garfinkle’s equivalence relation on r-domino tableaux which is given through the notion of open cycles. With these
results we enunciate the conjectures of Bonnafé et al. and provide necessary tool for their proofs.

Keywords: insertion algorithm, domino tableaux, plactic relations

1 Introduction
Let W be a finite Coxeter group and let L : W 7→ Z≥0 be a weight function such that

L(uw) = L(u) + L(w) if and only if l(uw) = l(u) + l(w)

where l : W 7→ Z≥0 is the usual length function on W . As it is described by Lusztig in (15) every weight
function determines an Iwahori-Hecke algebra and some preorders on W whose equivalence classes are
called left, right and two-sided cells. The importance of these cells lies in the fact that they carry represen-
tations of W and its corresponding Iwahori-Hecke algebraH. Furthermore they have an important role in
the representation theory of reductive algebraic groups over finite or p-adic fields (15) and in the study of
rational Cherednik algebras (8) and the Calogero-Moser spaces (9).

The case L = l is in fact first introduced by Kazhdan and Lusztig in (11) as a purely combinatorial tool
for the theory of primitive ideals in the universal enveloping algebras of semisimple complex Lie algebras.
In this case the combinatorial characterizations of cells are well known, where Knuth (or plactic) relations
appear as the mediating tool. Namely, when W is type A then each right (left) cell corresponds to the
plactic (respectively coplactic) class of some standard Young tableau, whereas each two-sided cell consists
of those permutations which lie in the plactic classes of tableaux of the same shape. This characterizations
depend on Joseph’s classification of primitive ideals in type A, where Knuth (plactic) relations play a
crucial role.

In the types B,C and D, on the other hand the emerging combinatorial objects are standard domino
tableaux. The connection is first revealed in the work of Barbash and Vogan (1) where they provide

†This work is part of my postdoctoral study at York University and Fields Institute, Toronto, Canada.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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necessary conditions for the characterizations of primitive ideals through an algorithm which uses the
palindrome representations of signed permutations in order to assign to every signed permutation α a pair
of same shape standard r-domino tableaux (P r(α), Qr(α)) bijectively, for r = 0 or r = 1. Meanwhile,
an analog of Knuth relations provided by Joseph in (10) established the sufficient conditions. On the
other hand Garfinkle (4; 5; 6) finalized classification problem for these types by showing through her two
algorithms on domino tableaux that these two sets of relations are in fact equivalent. Her first algorithm
assigns any signed permutation to a pair of same shape standard r-domino tableaux for r equals to 0 or
1 and the second defines an equivalence relation between domino tableaux through the notion of open
cycles. We remark that the extension of Garfinkle and Barbash-Vogan algorithm for larger r is given in
(14) and (3) respectively.

The case L 6= l is also known as unequal parameters Kazhdan-Lusztig theory and it appears for the
typesBn, I2(n) and F4, where the classification problem for the latter two can be dealt with computational
methods, see (7). For type Bn, the weight function is determined by two integers a, b > 0 such that
L(si) = a if 1 ≤ i ≤ n − 1 and it is equal to b if i = 0 where s0 is the transposition (−1, 1) and
{si = (i, i+ 1)|1 ≤ i ≤ n− 1} are the type A generators of Bn. Recently, the role of r-domino tableaux
in this theory is revealed in the work of Bonnafé, Geck, Iancu, and Lam (3) through two main conjectures:

• Conjecture A: If ra < b < (r + 1)a for some r ≥ 0 then two signed permutations lie in the same
Kazhdan Lusztig right (left) cell if and only if their insertion (recording) r-domino tableau are the
same.

• Conjecture B: If b = ra for some r ≥ 1 then two signed permutations lie in the same Kazhdan
Lusztig right (left) cell if and only if their insertion (recording) r-domino tableau or (r−1)-domino
tableau are the same.

On the other hand, in order to establish the proofs of these conjecture one definitely needs the plactic
relations between signed permutations which determines when the insertion r-domino tableaux of two
signed permutations are the same. Our aim here is to fill this gap.

Definition 1.1 For α = α1 . . . αn ∈ Bn and r ≥ 0 consider the following relations:

Dr
1: If αi < αi+2 < αi+1 or αi < αi−1 < αi+1 for some i, then

α = α1 . . . αi−1 (αi αi+1) αi+2 . . . αn ∼ α1 . . . αi−1 (αi+1 αi) αi+2 . . . αn

Dr
2: If there exists 0 < j ≤ r such that αj > 0 and αj+1 < 0 (or αj < 0 and αj+1 > 0) and
α1 . . . αj αj+1 is a shuffle of some positive decreasing and negative increasing sequence ending
with αj and αj+1 (or respectively αj+1 and αj) then

α = α1 . . . (αj αj+1) . . . αr+2 . . . αn ∼ α1 . . . (αj+1 αj) . . . αr+2 . . . αn

Dr
3: If |α1| > |αi| for all 2 ≤ i ≤ r + 2 and α2 . . . αr+2 is a shuffle of some positive decreasing and

negative increasing sequences, then

α = α1 α2 . . . αr+2 . . . αn ∼ (−α1) α2 . . . αr+2 . . . αn

Now we are ready to state our results.
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Theorem 1.2 α and β in Bn are equivalent through a series of Dr
1, Dr

2 or Dr
3 relations if and only if they

have the same insertion r-domino tableaux.

Remark 1.3 A set of relations for r-domino tableaux is defined in (3), but as it is already discussed there
it is far from being sufficient for the characterization. In fact the plactic relation in (3, Section 3.8) can
be shown to be equivalent to the one given with Dr

1 and Dr
2 here. Recently T. Pietraho has independently

found another set of generators (17). Finally depending on his result and earlier version (20) of this paper,
Bonnafé proved that r-plactic and r-cycle equivalence are sufficient for Conjecture A and B respectively,
see (2).

Remark 1.4 Recall that for a signed permutation α = α1 . . . αn in Bn, its palindrome representation is
given by αn . . . α10α1 . . . αn where αi = −αi. Then Dr

1 is just the usual Knuth (plactic) relation on the
palindrome representation of α for any non negative integer r. On the other hand it is easy to see that
when r = 1, Dr

2 and Dr
3 are also usual Knuth relation on the palindrome representation of α.

In this paper, the descriptions of Barbash-Vogan and Garfinkle’s algorithms can be found in Section 2
together with some lemmas which are essential in the proofs of our results. Section 3 is devoted to the
proof of Theorem 1.2.

2 Related background
A sequence λ = (λ1, . . . , λk) is a partition of n, denoted by λ ` n, if

∑k
i=1 λi = n and λi ≥ λi+1 > 0

where its Ferrers diagram consists of left justified arrows of boxes such that the i-th row has λi boxes.
A partition λ = (λ1, . . . , λk) can be also seen as a set of integer pairs (i, j) such that 1 ≤ i ≤ k and

1 ≤ j ≤ λi. Therefore for two partitions λ and µ, we can define usual set operations such as λ∪µ, λ∩µ,
λ ⊂ µ, λ− µ, but the resulting sets do not necessarily correspond to some partitions.

Definition 2.1 For two partitions λ and µ satisfying µ ⊂ λ we define λ/µ = λ−µ to be the skew partition
determined by λ and µ.

Definition 2.2 Let γ and γ′ be two skew shapes.

1. If γ ∩ γ′ = ∅ and γ ∪ γ′ also corresponds a skew shape then we define γ ⊕ γ′ = γ ∪ γ′.

2. If γ′ ⊂ γ and γ − γ′ also corresponds a skew shape then we define γ 	 γ′ = γ − γ′.

Definition 2.3 Let λ be a partition and (i, j) ∈ λ.

1. If (i, j) ∈ λ and λ	 (i, j) is also a partition then (i, j) is called a corner of λ.

2. If (i, j) 6∈ λ and λ⊕ (i, j) is also a partition then (i, j) is called an empty corner of λ.

Definition 2.4 A skew tableau T of shape λ/µ is obtained by labeling the cells of λ/µ with non repeating
positive integers such that the numbers increase from left to right and from top to bottom. If µ = ∅ then
T is called a Young tableau. We denote by label(T ) the set of numbers labeling each box of T and by
shape(T ) the partition underlying T . If the size of shape(T ) = n and label(T ) = {1, 2, . . . , n} then T
is called a standard skew or standard Young tableau according to the shape of T . We denote by SY Tn
the set of all standard Young tableaux of n cells.
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There is an important connection, between standard Young tableaux SY Tn and the symmetric group
Sn, known as the Robinson-Schensted correspondence (RSK), which was realized by Robinson and Schen-
sted independently. In this correspondence, every permutation w ∈ Sn is assigned bijectively to a pair
of same shape tableaux (P (w), Q(w)) in SY Tn × SY Tn through insertion and recording algorithms.
There are two equivalence relations introduced by Knuth which have very important applications in the
combinatorics of tableaux.

Definition 2.5 For u ∈ Sn consider the following relation: If ui < ui+2 < ui+1 or ui < ui−1 < ui+1

for some i then u = u1 . . . ui−1(ui ui+1) ui+2 . . . un
K∼ u1 . . . ui−1(ui+1 ui) ui+2 . . . un = u′.

We say u,w ∈ Sn are Knuth equivalent, u K∼ w, ifw can be obtained from u by applying a sequence of
K∼ relations. On the other hand if u−1 K∼ w−1 then u and w are called dual Knuth equivalent, u K∗∼ w.

The following theorem given by Knuth (12) is fundamental.

Theorem 2.6 Let u,w ∈ Sn. Then u K∼ w ⇐⇒ P (u) = P (w) and u K∗∼ w ⇐⇒ Q(u) = Q(w).

Definition 2.7 The set of two adjacent cells A = {(i, j), (i, j + 1)} (or A = {(i, j), (i+ 1, j)}) is called
a horizontal (or respectively vertical) domino cell. By a labeling of domino cell A we mean a pair of
positive numbers (a, a′) which label the boxes of A such that a ≤ a′ and a labels the cell of A which is
smaller in the lexicographic order. When we want to indicate the domino cell A with its labeling, we use
the notation

[A, (a, a′)]

so that shape([A, (a, a′)]) = A and label([A, (a, a′)]) = (a, a′).

Let λ be a partition and A be a domino cell. If λ ⊕ A is a partition then A is called an empty domino
corner of λwhereas if λ	A is also a partition thenA is called a domino corner of λ. Clearly, if a partition
has no domino corner then it must be a r-staircase shape (r, . . . , 2, 1) for some r > 0. On the other hand
it is easy to see that any partition λ can be reduced uniquely to a r-staircase shape (r, . . . , 2, 1) for some
r ≥ 0, by subsequent removal of existing domino corners one at a time. In this case we say λ has a 2-core
equivalent to (r, . . . , 2, 1) and we denote by P (2n, r) the set of all such partitions of size 2n+r(r+1)/2.

Definition 2.8 A r-domino tableau T of shape λ ∈ P (2n, r) is obtained by tiling the skew partition
λ/(r, . . . , 2, 1) with labeled horizontal or vertical dominos {[A1, (a1, a1)], . . . [An, (an, an)]} such that
ai 6= aj for i 6= j and the labels increase from left to right and from top to bottom. In this case we have

label(T ) = {a1, a2, . . . , an}.

A standard r-domino tableau T is a r-domino tableau which has label(T ) = {1, . . . , n}. We denote by
SDT r(n) the set of all standard r-domino tableaux of n dominos.

Definition 2.9 Let T be a r-domino tableau and λ = shape(T ). For a ∈ label(T ) and A is a domino
cell in λ we define,

1. Dom(T, a) to be the domino cell of T whose both cells are labeled with a in T .

2. dom(T, a) = shape(Dom(T, a)).

3. label(T,A) to be the pair of integers (a, a′) which label the domino cell A in T , where a ≤ a′.
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Example 2.10 For example the following is a 2-domino tableau in SD2(5).

T = 1 1 5

3 4 4 5

2 3

2

T has two domino corners: A1 = {(1, 5), (2, 5)} and A2 = {(2, 4), (2, 5)}. label(T,A1) = (5, 5) and
label(T,A2) = (4, 5). On the other hand dom(T, 5) = A1 and dom(T, 4) = {(2, 3), (2, 4)} 6= A2.

Definition 2.11 For two r-domino tableau S and T satisfying S ⊂ T we define T/S = T − S to be the
skew r-domino tableau determined by S and T .

Definition 2.12 Let R and R′ be two skew r-domino tableaux with shape(R) = γ and shape(R′) = γ′.

1. If γ ⊕ γ′ is defined and R ∪R′ corresponds to some skew r-domino tableau as a set then we define
R⊕R′ = R ∪R′

2. If γ 	 γ′ is defined and if R − R′ corresponds to some skew r-domino tableau as a set then we
define R	R′ = R−R′

Definition 2.13 Let T be a (skew) r-domino tableau and a ∈ label(T ). Then we define

1. T<a (T≤a) to be the r-domino tableau obtained by restricting T to its dominos which are labeled
with integers less than (and equal to) a.

2. T>a (T≥a) to be the skew r-domino tableau obtained by restricting T to its dominos which are
labeled with integers greater than (and equal to) a.

2.1 Garfinkle’s algorithm and reverse insertion
Recall that a signed permutation α ∈ Bn is a bijection of [−n,+n] such that α(−i) = −α(i). The
usual presentation of α ∈ Bn is denoted as α = α1α2 . . . αn where αi = α(i) for 1 ≤ i ≤ n and
{|α1|, |α2| . . . , |αn|} = {1, 2, . . . , n}.

In (4) Garfinkle provide an algorithm for r = 0, 1 by which any signed permutation α ∈ Bn is assigned
bijectively to a pair of same shape standard r-domino tableau (P r(α), Qr(α)), where P r(α) is called
insertion and Qr(α) is called recording tableau of α. Detailed explanations of this algorithm can be
found in (13) and (21). Based on Garfinkle’s algorithm we now describe the reverse-insertion of domino
corners through the Corollary below. Then we will state several lemmas which are the main tool in the
proof of Theorem 1.2.

Let T be a r-domino tableau and A be a domino corner in shape(T ). We denote by T ↑A and η(T ↑A)
respectively the tableau which is obtained by the reverse-insertion of A, and the number which is bumped
out of T as a result of this operation.

Corollary 2.14 Let T be an r-domino tableau and A is a domino corner. Furthermore let A′ be the
domino cell which is pushed back by A in reverse insertion T ↑A. Then,
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i) If A = {(i, j), (i, j + 1)} and label(T,A) = (a, a) then A′ ⊂ {(i− 1, k) | k ≥ j}.

ii) If A = {(i, j), (i, j + 1)} and label(T,A) = (a′, a) for some a′ < a then A′ = {(i− 1, j), (i, j)}.

iii) If A = {(i, j), (i+ 1, j)} and label(T,A) = (a, a) then A′ ⊂ {(k, j − 1) | k ≥ i}.

iv) If A = {(i, j), (i+ 1, j)} and label(T,A) = (a′, a) for some a′ < a then A′ = {(i, j − 1), (i, j)}.

Example 2.15 Let S ∈ SD3(5) as given below. We will show that η(S↑A) = 1 whereA = {(3, 3), (4, 3)}.
In the following the barred letters indicate the domino cell which is pushed back during the reverse inser-
tion algorithm.

1 1

3 3

2 4 4
2 5 5

7→ 1 1

3 3

2 4/5 4
2 5

7→ 1 1

3/43/4

2 5

2 5

7→ 1/31/3

4 4

2 5

2 5

7→ 3 3

4 4

2 5

2 5

= S↑A

Lemma 2.16 Let T be a r-domino tableau and A be a domino corner of shape(T ). Then T ↑A and
η(T ↑A) are unique.

Definition 2.17 Let T be a r-domino tableau and A be a domino corner of shape(T ) such that A =
{(i, j), (i, j + 1)} or A = {(i, j), (i + 1, j)}. We denote by (T,A,ne) and (T,A,ne) the regions of T
such that

(T,A,ne) := {(k, l) | k < i and l ≥ j}
(T,A, sw) := {(k, l) | k ≥ i and l < j}

as illustrated in Figure 1.

T= A
T=

A

(T, A, ne) 

(T, A, sw) (T, A, sw)

(T, A, ne) 

Fig. 1:

Lemma 2.18 Let A and B be a domino corners of shape(T ) and shape(T ↑A) respectively.

i) If B lies in the portion (T,A, sw) then η(T ↑A↑B) < η(T ↑A).

ii) If B lies in the portion (T,A,ne) then η(T ↑A↑B) > η(T ↑A).

Proof: The proof is omitted for the sake of place. 2
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2.2 Barbash and Vogan algorithm and descents of r-domino tableaux.
We will now explain the algorithm which is provided by Barbash and Vogan in (1) to establish the bijection
between signed permutations and standard r-domino tableaux for r = 0, 1 whereas its extension for larger
cores is provided in (3). We also remark that the equivalence of Barbash-Vogan algorithm to Garfinkle’s
algorithm for r = 0, 1, is due to Van Leeuwen (14).

Recall that for α = α1 α2 . . . αn a signed permutation the palindrome representation of α is given by
α0 = αn . . . α2 α1 α1 α2 . . . αn if α lies in Cn, or α1 = αn . . . α2 α1 0 α1 α2 . . . αn if α lies in Bn,
where αi = −αi. We will call α0 and α1 as 0-core and 1-core representation of α respectively. By
following the approach of (3) let us describe how to extend this representation for larger cores. We first
identify {1, 2, . . . , r(r + 1)/2} with {01, 02, . . . , 0r(r+1)/2} together with the total ordering −n < . . . <
−2 < −1 < 01 < 02 < . . . < 0r(r+1)/2 < 1 < 2 . . . < n. Let w ∈ Sr(r+1)/2 be a permutation under
this identification, whose RSK insertion tableau is of shape (r, r − 1, . . . , 1). Now for α ∈ Bn let r-core
representation of α to be αr = αn . . . α2 α1 w α1 α2 . . . αn. The algorithm first applies RSK algorithm
on αr. Then starting from the lowest number n̄, it vacates the negative integer ī in the tableaux by jeu
de taquin slides until it becomes adjacent to i, where the vacation is repeated for i− 1 until i = 1. The
following example illustrates this algorithm for r = 1.

Example 2.19 For α = 3 1̄ 2 ∈ Bn, we have α1 = 2̄ 1 3̄ 0 3 1̄ 2 be its 1-core representation. Then

P (α1) = 3̄ 1̄ 2

2̄ 0 3

1

7→ 2̄ 1̄ 2

0 3̄ 3

1

7→ 1̄ 2̄ 2

0 3̄ 3

1

7→ 0 2̄ 2

1̄ 3̄ 3

1

7→ 2 2

1 3 3

1

= P 1(α).

Theorem 2.20 ((3), Theorem 3.3) Signed permutationsα and β have the same insertion r-domino tableau
if and only if αr and βr have the same RSK insertion tableau.

The following proposition is a consequence of Theorem 2.20 and Theorem 2.6.

Proposition 2.21 Let α and β be two signed permutations which differ by a single Dr
1 relation. Then

P r(α) = P r(β), in other words α and β have the same insertion r-domino tableau.

Recall that Bn carries a Coxeter group structure with the generator set S = {s0, s1, . . . , sn−1} where
{si = (i, i+ 1)|1 ≤ i ≤ n− 1} is the set of transpositions which also generates the symmetric group Sn
and s0 corresponds to the transposition (−1, 1). Let l(α) denote the length of α, which is the minimum
number of generators of α and let

DesL(α) := {i | l(siα) < l(α) and 0 ≤ i ≤ n− 1}
= {i | if 1 ≤ i ≤ n− 1 and i+ 1 comes before i in α0} ∪ {0 | if 1 comes before − 1 in α0}

denote respectively the sets of left and right descents of α. On the other hand the descent set of a r-domino
tableau T is defined in the following way:

Des(T ) := {i | if the domino labeled with (i+ 1, i+ 1) lies below the one labeled with (i, i)}
∪{0 | if the domino labeled with (1, 1) is vertical}

It is a well known property of RSK algorithm that DesL(w) = Des(P (w)) for any w ∈ Sn whereas the
descent set of a (skew or Young) tableau T is defined by Des(T ) = {i | i + 1 lies below i in T}. On the
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other hand it is easy to see that jeu de taquin slides do not change the descent sets of tableaux, therefore
the following result is a consequence of Theorem 2.20.

Corollary 2.22 For α ∈ Bn we have DesL(α) = Des(P r(α)).

Observe that if α and β differ by a single Dr
1 relations in Bn then P r(α) = P r(β) and we have either

β−1 = si ·α−1 or β−1 = si+1 ·α−1 and moreover we have either i ∈ DesL(α−1) but i+1 6∈ DesL(α−1)
or i 6∈ DesL(α−1) but i + 1 ∈ DesL(α−1) for some 1 ≤ i ≤ n − 2. In the following we will follow
Garfinkle’s approach in (4) to study the effect of a single Dr

1 relation on the recording tableaux.
For i, j two adjacent integers satisfying 1 ≤ i, j ≤ n− 1, consider the following sets:

Di,j(Bn) := {α ∈ Bn | i ∈ DesL(α) but j 6∈ DesL(α)}
Di,j(SDT r(n)) := {T ∈ SDT r(n) | i ∈ Des(T ) but j 6∈ Des(T )}

together with the map Vi,j : Di,j(Bn) 7→ Dj,i(Bn) where Vi,j(α) = {si · α, sj · α} ∩ Dj,i(Bn). We
also define a map Vi,j : Di,j(SDT r(n)) 7→ Dj,i(SDT r(n)) in the following manner: Without loss of
generality we assume that j > i, i.e., j = i + 1. Observe that if i ∈ Des(T ) but i + 1 6∈ Des(T ) then
i + 1 lies strictly below i in T whereas i + 2 lies strictly right to i + 1 in T . On the other hand we have
two cases according to the positions of dominos labeled with (i, i) and (i+ 2, i+ 2) with respect to each
other.
Case 1. We first assume that i + 2 lies strictly below i in T . Since the i + 2 lies strictly to the right
of i + 1 and i + 1 lies below i we have two cases to consider: If the boundaries Dom(T, i + 1) and
Dom(T, i) intersect at most on a point then Vi,i+1(T ) is obtained by interchanging the labels i and i+ 1
in T . Otherwise there is only one possibility which satisfies i + 2 lies below i and it lies to the right of
i + 1, in which T has the subtableau U as illustrated below and Vi,i+1(T ) is obtained by substituting U
with U ′ in T .

U =
i i

i + 1 i + 2

i + 1 i + 2

U ′ =
i i + 1

i i + 1

i + 2 i + 2

Case 2. Now we assume i+ 2 lies strictly right to i in T . Again if the boundaries of Dom(T, i+ 1) and
Dom(T, i + 2) intersect at most on a point then Vi,i+1(T ) is obtained by interchanging the labels i + 1
and i+ 2 in T . Otherwise there is only one possible case where T has the subtableau U given below and
Vi,i+1(T ) is obtained by substituting U with U ′ in T .

U =
i i i + 2

i + 1 i + 1 i + 2

U ′ =
i i + 1 i + 1

i i + 2 i + 2

Example 2.23 We have T2 = V5,6(T1), T3 = V3,4(T2), and T4 = V4,5(T3) = V6,5(T3) for the following
tableaux.

T1 = 1 2 5

1 2 5

3 3 7

4 6 7

4 6

T2 = 1 2 6

1 2 6

3 3 7

4 5 7

4 5

T3 = 1 2 6

1 2 6

3 4 7

3 4 7

5 5

T4 = 1 2 5

1 2 5

3 4 7

3 4 7

6 6
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Remark 2.24 The map Vi,j is first introduced on the symmetric group by Vogan (22), with the aim of
classifying the primitive ideals in the universal enveloping algebra of complex semi simple Lie algebras.
In fact when it is considered on the symmetric group the map Vi,j produces nothing but the dual Knuth
relation on the permutations and their insertion tableaux.

Lemma 2.25 Let i and j be two consecutive integers such that 1 ≤ i, j ≤ n− 1. Suppose α ∈ Di,j(Bn).
Then P r(α) ∈ Di,j(SDT r(n)) and P r(Vi,j(α)) = Vi,j(P r(α)).

Proof: This result is first proven by Garfinkle (5, Theorem 2.1.19.) for r = 0, 1. On the other hand one
can check that her proof does not depend on the specific value of r and it can easily be extended for any
value of r. We omit the proof for the sake of space. 2

The following result follows directly from Lemma 2.25 and it has an important role in the proof of
Theorem 1.2.

Corollary 2.26 Suppose α = α1 . . . αi−1(αiαi+1)αi+2 . . . αn and β = α1 . . . αi−1(αi+1αi)αi+2 . . . αn
differ by a single Dr

1 relation. Then one of the following is satisfied:

i) αi < αi+2 < αi+1 for some i ≤ n− 2 and β−1 = Vi+1,i(α−1) and Qr(β) = Vi+1,i(Qr(α)).

ii) αi > αi+2 > αi+1 for some i ≤ n− 2 and β−1 = Vi,i+1(α−1) and Qr(β) = Vi,i+1(Qr(α)).

iii) αi < αi−1 < αi+1 for some i ≤ n− 1 and β−1 = Vi−1,i(α−1) and Qr(β) = Vi−1,i(Qr(α)).

iv) αi > αi−1 > αi+1 for some i ≤ n− 1 and β−1 = Vi,i−1(α−1) and Qr(β) = Vi,i−1(Qr(α)).

3 Plactic relations for r-domino tableaux

3.1 Proof of Theorem 1.2
In this section we will prove the main Theorem 1.2, i.e., we will show that the relations Dr

1,Dr
2 and

Dr
3 from Definition 1.1 are sufficient and necessary to characterize plactic classes of standard r-domino

tableaux.

Proof: ( Proof of Theorem 1.2) Let α and β be two signed permutations which differ by a sequence of Dr
1,

Dr
2 or Dr

3 relations. By using Garfinkle’s insertion algorithm for r-domino tableau and Proposition 2.21 it
is easy to check that P r(α) = P r(α′) if α and α′ differs by a single Dr

i relation for i = 1, 2, 3. Therefore
P r(α) must be equal to P r(β).

Now we let α = α1 . . . αn−1αn and β = β1 . . . βn−1βn such that T = P r(α) = P r(β). We will show
by induction that α

pr∼ β. Let r ≥ 0 be arbitrary. If n = 1 there is nothing to prove. Therefore we assume
that the statement holds for all signed permutations of size n− 1.

If P r(α1 . . . αn−1) = P r(β1 . . . βn−1) = T ↑A for some domino corner A of shape(T ) then αn = βn
by Lemma 2.16. By induction we can assume that α1 . . . αn−1

pr∼ β1 . . . βn−1. Therefore α
pr∼ β.

If P r(α1 . . . αn−1) 6= P r(β1 . . . βn−1) then there exist two different domino corners say A and B of
T such that

T ↑A = P r(α1 . . . αn−1) and η(T ↑A) = αn
T ↑B = P r(β1 . . . βn−1) and η(T ↑B) = βn.

(1)
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In the following we proceed according to the orientation of A and B as illustrated in Figure 2 where in
the first four pictures (T,A,ne) ∩ (T,B, sw) is represented with the shaded areas.

A

 B

A

 B

A

A

A

 B

 B
 B

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

(1) (2) (3) (4) (5)

Fig. 2:

Cases (1),(2) and (3): We will first show that α
pr∼ β for the first three cases of Figure 2. Consider the

domino corner B of T ↑A and let b = η(T ↑A↑B). It is easy to see that there exists a domino corner, say C
of T ↑A↑B which lies in (T,A,ne) ∩ (T,B, sw). Let c = η(T ↑A↑B↑C) and ũ be a signed word such that
P r(ũ) = T ↑A↑B↑C . Therefore by Lemma 2.16 we have

P r(ũcbαn) = P r(ũ)↓c↓b↓αn = (T ↑A↑B↑C)↓c↓b↓αn = (T ↑A↑B)↓b↓αn = (T ↑A)↓αn = T

and by induction hypothesis ũcb
pr∼ α1 . . . αn−1 since P r(ũcb) = T ↑A = P r(α1 . . . αn−1). Therefore

letting u denote the signed permutation ũcbαn, we have α
pr∼ u.

Observe that since P r(ũ) = T ↑A↑B↑C , the recording tableauQr(ũcbαn) has its domino cellsA, B and
C labeled with (n, n), (n− 1, n− 1) and (n− 2, n− 2) respectively.

On the other hand having B in (T,A,ne) and C in (T,B, sw) yields by Lemma 2.18 that

b = η(T ↑A↑B) > η(T ↑A) = αn and b = η(T ↑A↑B) > η(T ↑A↑B↑C) = c.

Therefore we have by Corallary 2.26

either b > αn > c, and hence u = ũcbαn
Dr

1∼ ũbcαn = w and Vn−1,n−2(Qr(u)) = Qr(w)

or b > c > αn, and hence u = ũcbαn
Dr

1∼ ũcαnb = w and Vn−1,n−2(Qr(u)) = Qr(w)

The last argument implies that in both cases the signed permutation w has its recording tableau Qr(w)
obtained by interchanging the labels (n, n) of A and (n − 1, n − 1) of B in Qr(u) i.e., Qr(w) had the
domino corner B labeled with (n, n). Then by Lemma 2.16 we have

P r(w1 . . . wn−1) = T ↑B = P r(β1 . . . βn−1) and wn = βn

and by induction w1 . . . wn−1
pr∼ β1 . . . βn−1. Therefore w

pr∼ β. and α
pr∼ u

pr∼ w
pr∼ β.

Case (4): For the fourth case of Figure 2, let α, β ∈ Bn as in 1. If there exist a domino corner in
(T,A,ne) ∩ (T,B, sw) then one can follow the same argument which is used for Cases (1),(2),(3). On
the other hand it may happen that (T,A,ne) ∩ (T,B, sw) is a staircase shape and in the following we
consider several subcases as illustrated in Figure 3.
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A

 B

A

 B

A

 B

C

C

C

A

 B

(a) (b) (c) (d)

C'

C'
C'

Fig. 3:

Observe that, in case T has the configuration of Figure 3(a), we have n ≤ r + 1, αn < 0, βn > 0 and

η(T ↑A↑B) = βn
η(T ↑B↑A) = αn

P r(α1 . . . αn−2) = T ↑A↑B = T ↑B↑A = P r(β1 . . . βn−2).

Let ũ be a signed word such that P r(ũ) = T ↑A↑B = T ↑B↑A. Clearly ũ must be a shuffle of pos-
itive decreasing and negative increasing sequences and P r(ũαnβn) = T = P r(ũβnαn). Therefore

ũαnβn
Dr

2∼ ũβnαn. On the other hand P r(ũβn) = T ↑A and P r(ũαn) = T ↑B and by induction hypothe-
sis we have α1 . . . αn−1

pr∼ ũβn and β1 . . . βn−1
pr∼ ũαn. Hence

α = α1 . . . αn−1αn
pr∼ ũβnαn

Dr
2∼ ũαnβn

pr∼ β1 . . . βn−1βn = β.

Now we assume that T has the configuration of Figure 3(d) i.e. the corner C and A (or C ′ and B)
intersect. Again we let σ1 . . . σn ∈ Bn such that P r(σ1 . . . σn−1) = T ↑C . Observe that there is a domino
corner in (T,C,ne) ∩ (T,B, sw) therefore β

pr∼ σ follows. We only need to show α
pr∼ σ.

Observe that since T has the configuration of Figure 3(d) we have a domino corner A′ of T ↑A and A′′

of T ↑A↑A
′

as it is illustrated in Figure 4 below.

AA'

A''

n-1

nn-1

n

n-2n-2 n-1

n

n-1

n

n-2

n-2

C

C'' C'

P (u) Q (u) P (w)Q (w)
r r r r 

Fig. 4:

Let a′ = η(T ↑A↑A
′
) and a′′ = η(T ↑A↑A

′↑A′′). Suppose ũ be a signed word such that P r(ũ) =
T ↑A↑A

′↑A′′ . Then the signed permutation u = ũa′′a′αn has P r(u) = T whereas its recording tableau
Qr(u) must have the form as it is shown in Figure 4.

On the other hand sinceP r(ũa′′a) = T ↑A = P r(α1 . . . αn−1) we have by induction ũa′′a′
pr∼ α1 . . . αn−1

and therefore u = ũa′′a′αn
pr∼ α1 . . . αn−1αn = α.
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Furthermore having A′ in (T,A, sw) and A′′ in (T,A′,ne) yields a′ = η(T ↑A↑A
′
) < η(T ↑A) =

αn and a′ = η(T ↑A↑A
′
) < η(T ↑A↑A

′↑A′′) = a′′ by Lemma 2.18. Therefore we have

either a′′ > αn > a′, and hence u = ũa′′a′αn
Dr

1∼ ũa′a′′αn = w and Qr(w) = Vn−2,n−1(Qr(u))

or αn > a′′ > a′, and hence u = ũa′′a′αn
Dr

1∼ ũa′′αna
′ = w and Qr(w) = Vn−2,n−1(Qr(u)).

In both cases Corollary 2.26 yields that the recording tableau Qr(w) of w has the form illustrated in
Figure 4 and by Lemma 2.16 we have

P r(w1 . . . wn−1) = T ↑C = P r(σ1 . . . σn−1) and wn = βn.

Then by induction w1 . . . wn−1
pr∼ σ1 . . . σn−1 and hence w

pr∼ σ. Hence as desired α
pr∼ u

Dr
1∼ w

pr∼ β.

If T has the configuration of Figure 3(b) or Figure 3(c), T may have a domino corner, say C lying
in (T,A,ne). Let σ = σ1 . . . σn ∈ Bn such that = P r(σ1 . . . σn−1) = T ↑C . Observe that there exist a
domino corner in (T,C,ne)∩(T,A, sw) and (T,C,ne)∩(T,B, sw) therefore we can apply the argument
which is used for Cases (1),(2) and (3) in order to get α

pr∼ σ and β
pr∼ σ and hence α

pr∼ β. On the other
hand if T has domino corner C ′ lying in (T,B, sw) the same argument applied on T t gives the desired
result.

Case (5): Again let α, β ∈ Bn as in 1 and suppose that T has the configuration of Figure 2(5) . We
consider Figure 5 for several cases.
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If T has a corner, say C, lying in (T,A, sw), as it is illustrated in Figure 5(a), let σ1 . . . σn ∈ Bn such
that

P r(σ1 . . . σn−1) = T ↑C .

Since there is a domino corner in (T,C,ne) ∩ (T,B, sw) we have β
pr∼ σ as in the Cases (1),(2) and (3).

If C is a vertical domino corner, the argument of the Case (4) applied on the domino corners A and C
gives that α

pr∼ σ. On the other hand if C is a horizontal domino corner then the argument of the Cases
(1),(2) and (3) applied on A and C gives α

pr∼ σ. Therefore α
pr∼ β. On the other hand T has a corner,

say C ′, lying in (T,B, ne) one can use the same argument in the transpose of T .
If there no domino corner in T other then A and B there are two possibility as illustrated in Figure 5(b)

and Figure 5(c). Observe that the case given in Figure 5(b) is just the transpose of the Case (4) illustrated
in Figure 4(d), therefore it follows directly that α

pr∼ β.
For the latter case shown in Figure 5(c), observe that the shaded area is a r-staircase shape and we must

have either the domino cornerA orB of T labeled by (n, n). Here we assumeA is labeled by (n, n) since
for the other case one can use the same argument on the transpose tableau T t. So as Figure 5(c) illustrates,
let x1 . . . xk be the labels of horizontal domino cells and y1 . . . yl be the vertical domino cells which are
both positive decreasing sequence such that r + 1 = k + l. Observe that η(T ↑A) = η(T ↑B) = xk > 0
therefore αn = βn = xk. Let ũ be a signed word which is a shuffle of x1 . . . xk−1 and −y1 . . . −
yl. It is easy to see that P r(nũxk) = T = P r(−nũxk), and nũxk

Dr
3∼ (−n)ũxk. On the other hand

P r(nũ) = T ↑A and P r(−nũ) = T ↑B and by induction hypothesis we have nũ
pr∼ α1 . . . αn−1 and

(−n)ũ
pr∼ β1 . . . βn−1. Hence α = α1 . . . αn−1xk

pr∼ nũxk
Dr

3∼ (−n)ũxk
pr∼ β1 . . . βn−1xk = β. 2
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Spanning forests, electrical networks, and a
determinant identity†

Elmar Teufl1 and Stephan Wagner2
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Abstract. We aim to generalize a theorem on the number of rooted spanning forests of a highly symmetric graph
to the case of asymmetric graphs. We show that this can be achieved by means of an identity between the minor
determinants of a Laplace matrix, for which we provide two different (combinatorial as well as algebraic) proofs in
the simplest case. Furthermore, we discuss the connections to electrical networks and the enumeration of spanning
trees in sequences of self-similar graphs.

Résumé. Nous visons à généraliser un théorème sur le nombre de forêts couvrantes d’un graphe fortement symétrique
au cas des graphes asymétriques. Nous montrons que cela peut être obtenu au moyen d’une identité sur les deter-
minants mineurs d’une matrice Laplacienne, pour laquelle nous donnons deux preuves différentes (combinatoire ou
bien algébrique) dans le cas le plus simple. De plus, nous discutons les relations avec des réseaux électriques et
l’énumération d’arbres couvrants dans de suites de graphes autosimilaires.

Keywords: spanning forest, electrical network, Laplace matrix, determinant identity

1 Introduction
It is known since Kirchhoff’s days [10] that there is a close relationship between electrical networks,
spanning trees, and the Laplace matrix of a graph. There is a vast amount of literature on spanning trees,
electrical networks and related notions: see e.g. [1, 4, 8, 12, 13]. The relation to probability theory was
studied in [9, 14]. The celebrated matrix-tree theorem is the most important tool for the enumeration of
spanning trees, and it has been successfully used to find closed formulæ for the number of spanning trees
in various classes of graphs. A version of the matrix-tree theorem considers all minors of the Laplace
matrix of a graph G rather than just those that result from deleting one row and one column. It turns out
that the determinants of smaller submatrices count spanning forests of G:

Theorem 1 Let G = (V,E) be a graph and L = LG its Laplace matrix. For a subset R ⊆ V , let L(R)
be the matrix that results from deleting all rows and columns that correspond to vertices in R. Then, the
number r(R) = rG(R) of rooted spanning forests whose roots are precisely the vertices in R is given by

r(R) = detL(R).
†This material is based upon work supported by the German Research Foundation DFG under grant number 445 SUA-113/25/0-1

and the South African National Research Foundation under grant number 65972.
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We refer the interested reader to [5, 6, 15] for a proof of this theorem. This important result was used
in a recent paper by the authors [17], in which the following theorem was given as a byproduct:

Theorem 2 Let G be a connected, finite (multi-)graph and let D ⊆ V be a subset of θ distinguished
vertices. Suppose that G is strongly symmetric with respect to D, i.e. the restriction of the automorphism
group of G to D is either the entire symmetric group or the alternating group. Then we have

r(R) = kρk−1θ1−kt(G)

for all sets R ⊆ D of cardinality k, where ρ is the resistance scaling factor of G with respect to D and
t(G) is the number of spanning trees of G.

A precise definition of the resistance scaling factor is given in Section 3. The above result was inspired
by the problem of enumerating spanning trees in certain sequences of self-similar graphs which in turn
was motivated by applications in statistical physics [7]. However, it appeared that the condition “strongly
symmetric with respect to the distinguished vertices” is stronger than necessary, and experimentally, it
seemed that it could be relaxed to “the automorphism group acts 2-homogeneously on the set of distin-
guished vertices”. In this paper, we show that this will be a consequence of a certain determinant identity,
thus providing a generalization to the case of graphs that lack symmetry. We prove this determinant iden-
tity in the simplest case (three distinguished vertices) in two different ways and discuss its implications to
the theory of electrical networks and the aforementioned enumeration of spanning trees in sequences of
self-similar graphs. The general form of the determinant identity is left as a conjecture to be proved at a
later stage. This conjecture reads as follows:

Conjecture 3 Let G be a (possibly edge-weighted, not necessarily connected) graph and L its weighted
Laplace matrix. For a set R of vertices, we write L(R) for the matrix that results from deleting all rows
and columns corresponding to R as before. Furthermore, we set r(R) = detL(R), and t(G) denotes the
number of spanning trees of G (counted according to the weights). Then, the identity

r(R)t(G)|R|−2 =
∑
B

α(B)
∏

{v,w}∈E(B)

r({v, w}) (1)

holds for all sets R with |R| ≥ 2, where the sum is taken over all graphs B with vertex set R and the
following properties:

• The number of edges of B is exactly |R| − 1,

• All components ofB are either paths (possibly single vertices) or cycles (which includes the 2-cycle
with two edges connecting the same vertices).

The coefficient α(B) is then given by

α(B) =
∏

C∈C(B)

β(C),

where C(B) is the set of all components of B and

β(C) =


21−` if C is a path of length ` > 0,
−21−` if C is a cycle of length ` > 2,
1 if C is a single vertex,
− 1

4 if C is a 2-cycle.
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Remark 1 Note that t(G) = r({v}) for any vertex v. Hence, (1) remains true for |R| = 1 if the empty
product is considered to be 1.

If the graph G is connected (hence t(G) > 0), we may write Formula (1) in the form

r(R)
t(G)

=
∑
B

α(B)
∏

{v,w}∈E(B)

r({v, w})
t(G)

.

Thus the equation above relates the quotient r(R)/t(G) for arbitrary root set R to the same quantities for
root sets of size 2. The quantity r({v, w})/t(G) measures the effective resistance between v and w, see
Section 3 for further information about this.

2 Proof of the special case
As mentioned in the introduction, we want to exhibit two different ways to prove our determinant identity
in the case of three distinguished vertices. In this simple case, it reads as follows:

r({v, w, x})r({v}) = 1
2

(
r({v, w})r({v, x}) + r({v, w})r({w, x}) + r({v, x})r({w, x})

)
− 1

4

(
r({v, w})2 + r({v, x})2 + r({w, x})2

)
(2)

for arbitrary vertices v, w, x ∈ V .

2.1 Combinatorial proof
First, we construct a graph H as follows: let G and G′ be disjoint isomorphic copies of G, with an
isomorphism φ : G → G′. The vertices in G′ that correspond to v, w, x are denoted by v′, w′, x′. Now,
we identify v and v′, w and w′, and x and x′. Furthermore, we impose an additional weight λ on all edges
of G and an additional weight µ on all edges of G′ (note that edges connecting v, w, x are doubled and
thus receive a weight of λ+ µ). If the Laplace matrix of G has the shape

LG =

L1 L2

L3 L4

 ,

where L1 and L2 form the rows corresponding to v, w, x, and L1 and L3 form the respective columns,
then the Laplace matrix of H has the shape

LH =


(λ+ µ)L1 λL2 µL2

λL3 λL4 0

µL3 0 µL4

 .

We delete the first row and column to obtain a matrix L̃ of the form

L̃ =


(λ+ µ)L̃1 λL̃2 µL̃2

λL̃3 λL4 0

µL̃3 0 µL4

 .
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The weighted number of spanning trees of H is given by

det L̃ = det


(λ+ µ)L̃1 λL̃2 µL̃2

λL̃3 λL4 0

0 −µL4 µL4

 = det


(λ+ µ)L̃1 (λ+ µ)L̃2 µL̃2

λL̃3 λL4 0

0 0 µL4


= (λ+ µ)2λ|V |−3µ|V |−3 det

L̃1 L̃2

L̃3 L4

 detL4.

Note that the coefficient of λ|V |−2µ|V |−2 gives those spanning trees which contain |V | − 2 edges in G
and |V | − 2 edges in G′ and thus induce two spanning forests with two components each on G and G′.
From the above expression for the determinant, it is obvious that this coefficient is exactly

2 det

L̃1 L̃2

L̃3 L4

detL4 = 2r({v})r({v, w, x}).

This means that the left hand side of (2) is also the (weighted) number of unordered pairs (F1, F2) of
spanning forests with two components in G resp. G′ and the property that their union is a spanning tree in
H (note that φ(F1) 6= F2 for such a pair, since this would yield a cycle, and thus the number of unordered
pairs is indeed just 1

2 of the number of ordered pairs). We want to show that this is exactly the right
hand side of (2). Each component of F1 and F2 has to contain at least one of the vertices v, w, x, since
their union forms a spanning tree, and they are only joined at v, w, x. The right hand side of (2) only
counts pairs of (rooted) spanning forests with this property by definition, hence it suffices to consider
such spanning forests.

Now we only have to show that an unordered pair (F1, F2) of spanning forests with two components
each of which contains at least one vertex of {v, w, x} is counted with coefficient 1 on the right hand side
of (2) if the union is a spanning tree and with coefficient 0 otherwise. We distinguish three cases:

• F1 and F2 induce distinct connections on the set {v, w, x}, so that the union forms a spanning tree.
Without loss of generality, we assume that F1 connects v and w, while F2 connects v and x. Then,
F1 can be rooted at v and x or at w and x, and F2 can be rooted at v and w or at w and x. The four
possibilities yield a total coefficient of 1:

roots of F1 roots of F2 coefficient

v, x v, w 1
2

v, x w, x 1
2

w, x v, w 1
2

w, x w, x −2 · 1
4

• F1 and F2 induce the same connections on the set {v, w, x}, so that a cycle is formed, but φ(F1) 6=
F2. Without loss of generality, we assume that F1 and F2 connect v and w. Again, we have to
consider four possibilities:
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roots of F1 roots of F2 coefficient

v, x v, x −2 · 1
4

v, x w, x 1
2

w, x v, x 1
2

w, x w, x −2 · 1
4

The total coefficient is 0, as desired.

• φ(F1) = F2. Suppose for instance that F1 connects v and w. As in the previous case, the union is
not a spanning tree, and again, we obtain a coefficient 0:

roots of F1 roots of F2 coefficient

v, x v, x − 1
4

v, x w, x 1
2 · 1

2

w, x v, x 1
2 · 1

2

w, x w, x − 1
4

Putting everything together, we reach the desired result.

2.2 Algebraic proof
We are now going to derive Formula (2) using basic linear algebra and the Desnanot-Jacobi identity (also
known as condensation formula, see for example [3]): For simplicity we assume that the vertex set V is
given by V = {1, 2, . . . , n}with v = 1, w = 2, x = 3. Furthermore, we write LAB to denote the submatrix
of L obtained by deleting the rows in A ⊆ V and columns in B ⊆ V and set DA

B = det(LAB). Then
Formula (2) reads as follows:

D1
1D

1,2,3
1,2,3 = 1

2

(
D1,2

1,2D
1,3
1,3 +D1,2

1,2D
2,3
2,3 +D1,3

1,3D
2,3
2,3

)
− 1

4

((
D1,2

1,2

)2 +
(
D1,3

1,3

)2 +
(
D2,3

2,3

)2)
In order to prove this identity we start with the following simple observation: Let b1, b2, . . . , bn be the
column vectors of L1,2. Then b1 + b2 + b3 + b4 + · · ·+ bn = 0, since the sum of column vectors in L is
equal to 0. Hence

0 = det(b1 + b2 + b3, b4, . . . , bn)

= det(b3, b4, . . . , bn) + det(b2, b4, . . . , bn) + det(b1, b4, . . . , bn) = D1,2
1,2 +D1,2

1,3 +D1,2
2,3.

By symmetry of L the minors D1,2
2,3 and D2,3

1,2 are equal. Thus

D1,2
1,2 +D1,2

1,3 +D2,3
1,2 = 0.

Similarly, we find that

D1,2
1,3 +D1,3

1,3 +D2,3
1,3 = 0 and D2,3

1,2 +D2,3
1,3 +D2,3

2,3 = 0.
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Adding the first two equations and subtracting the last one we obtain

2D1,2
1,3 = D2,3

2,3 −D1,2
1,2 −D1,3

1,3. (3)

By the Desnanot-Jacobi identity we have

D1,2,3
1,2,3D

1
1 = D1,2

1,2D
1,3
1,3 −D1,2

1,3D
1,3
1,2 = D1,2

1,2D
1,3
1,3 −

(
D1,2

1,3

)2
, (4)

where D1,2
1,3 = D1,3

1,2 by symmetry of L. By inserting (3) into (4) we finally obtain the asserted identity.

Remark 2 Let us note that we have verified Conjecture 3 for the case of four and five boundary vertices
using a similar algebraic argument and a more general version of the Desnanot-Jacobi identity (see [11]).

3 Electrical networks
Let G = (V,E, c) be an edge-weighted graph (network) with weights (conductances) c : E → [0,∞).
The (weighted) Laplace matrix L is defined by its entries

Lx,y =

{
−c({x, y}) if x 6= y,∑
z∼x c({x, z}) if x = y

for all vertices x, y ∈ V . We say that two networks (V (G), E(G), cG) and (V (H), E(H), cH) are
electrically equivalent with respect to D ⊆ V (G) ∩ V (H), if they cannot be distinguished by applying
voltages to D and measuring the resulting currents on D. By Kirchhoff’s current law this means that the
rows corresponding to D of LGH

V (G)
D and LHH

V (H)
D are equal, where HV (G)

D is the matrix associated
to harmonic extension. If u, v ∈ V (G) are vertices in G and H is the complete graph with vertex set
{u, v}, then there exists a conductance ceff(u, v) on the single edge of H , so that (V (G), E(G), cG)
and H equipped with ceff(u, v) are equivalent. The number ρeff(u, v) = ceff(u, v)−1 is called effective
resistance of u and v.

In combinatorics unit conductances are of great interest because of the well-known relation between
electrical networks and the number of spanning trees. Let G be a graph and cG be unit conductances on
the edges of G. We say that G has resistance scaling factor ρ = ρD with respect to D ⊆ V , if (G, cG)
is electrically equivalent to (H, ρ−1cH), where H is a complete graph with vertex set V (H) = D and
cH are unit conductances on H . Note that the effective resistance of vertices u and v in a graph with unit
conductances is exactly the resistance scaling factor with respect to {u, v}.

Theorem 2 implies that the effective resistance of two vertices u, v in a connected graph with unit
conductances is given by

ρeff(u, v) =
rG({u, v})
t(G)

. (5)

This can also be obtained from Kirchhoff’s famous result connecting currents and spanning trees (see for
example [2]). Now Conjecture 3 allows the following interpretation: given all effective resistances of a
graph, we can determine all quotients of the form

rG(R)
t(G)

.
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In particular, if two graphs G and H are electrically equivalent with respect to D, then

rG(R)
t(G)

=
rH(R)
t(H)

for all R ⊆ D (note that Theorem 2 is the special case when H = Kθ). If we pursue this thought to its
climax, we finally end up with the following question: Given all effective resistances of a graph, can we
reconstruct the original graph?

Of course, we may state this question more generally for networks: Let G be a complete graph on n
vertices and conductances on the edges. Clearly the conductances comprise a tuple of

(
n
2

)
non-negative

numbers. Given the conductances we can compute all effective resistances in this network easily. The
effective resistances also form a tuple of

(
n
2

)
non-negative numbers. Hence we may ask whether it is

possible to reverse this computation.

Conjecture 4 Given effective resistances for each pair of vertices of a complete graph, there is exactly
one tuple of conductances, which yields the given effective resistances, and there is a formula similar to
(1) that determines them.

It is plausible that this or similar problems have been considered in physics and related fields. Yet
we were unable to find anything in the literature we studied, and the expert colleagues we discussed the
problem with were not aware of any results in this direction either.

If we are given the numbers t(G) and rG({u, v}) for all u, v ∈ V (G) of a connected graph, we can
compute all effective resistances of G by means of (5). Assuming that the conjecture above holds, we can
now reconstruct the network and hence the graph. With full information it is finally easy to compute the
numbers rG(R) for all R ⊆ V (G). Hence Conjecture 3 is plausible, if Conjecture 4 holds.

Let us briefly discuss Conjecture 4 for n = 3: Let V = {u, v, w}. A simple computation yields that

ceff(u, v) = c({u, v}) +
c({v, w})c({w, u})
c({v, w}) + c({w, u}) =

t(G)
c({v, w}) + c({w, u}) ,

ceff(v, w) = c({v, w}) +
c({w, u})c({u, v})
c({w, u}) + c({u, v}) =

t(G)
c({w, u}) + c({u, v}) ,

ceff(w, u) = c({w, u}) +
c({u, v})c({v, w})
c({u, v}) + c({v, w}) =

t(G)
c({u, v}) + c({v, w}) ,

noting that t(G) = c({u, v})c({v, w}) + c({v, w})c({w, u}) + c({w, u})c({u, v}). From this it is easy
to deduce that given effective conductances ceff(u, v), ceff(v, w), and ceff(w, u) there is at most one so-
lution for the conductances c({u, v}), c({v, w}), and c({w, u}) of the system above (that can be given
explicitly). Finally, a simple manipulation shows that

c({u, v}) = 1
2 t(G)

(
ρeff({u,w}) + ρeff({v, w})− ρeff({u, v})

)
,

or
c({u, v}) = 1

2

(
rG({u,w}) + rG({v, w})− rG({u, v})),

which shows a certain resemblance to Equation (1).
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4 Enumeration of spanning trees
Recently, it was shown in two papers independently [7, 16] how the number of spanning trees in Sierpiński
graphs (i.e., the finite approximations to the Sierpiński gasket) can be calculated. If Sn denotes the level-n
Sierpiński graph (starting with S0 = K3, see Figure 1), the number of spanning trees is given by the
formula

S0

S1

S2

Fig. 1: Sierpiński graphs

t(Sn) = 4

√
3
20 ·

(
5
3

)−n/2 · ( 4
√

540
)3n

. (6)

The proofs given in [7, 16] make extensive use of symmetry; in this section, we show that all that is
essentially needed is electrical equivalence. To this end, we consider a modified version T0, T1, T2, . . .
of the Sierpiński graphs (see Figure 2). Obviously, the resulting graphs are not as symmetric as the
Sierpiński graphs and we note that the arguments of [7, 16] are not applicable anymore. We do not only
modify the initial graph but also change the number of subdivisions in the construction, since for the
simpler construction rule of Sierpiński graphs not all possible phenomena occur. It is not difficult to see
that the initial graph T0 is electrically equivalent to aK3 (with unit conductances) with respect to the three
corner vertices, and thus this is also the case for all graphs Tn in the sequence (up to a resistance scaling
factor of

(
15
7

)n
, which is easily shown by induction). We write x1,n, x2,n, x3,n for the corner vertices

of Tn; then, if Hn is the complete graph with vertices x1,n, x2,n, x3,n and edge weights (conductances)(
7
15

)n
, we have

rTn(R)
t(Tn)

=
rHn(R)
t(Hn)

for all subsets R ⊆ {x1,n, x2,n, x3,n} of cardinality 2, since the effective resistances are the same. But
this is trivially true for subsets of cardinality 1, and the special case of Conjecture 3 for three vertices
shows that it is also the case for R = {x1,n, x2,n, x3,n}.

Now consider the graph Tn+1, which comprises of six copies of Tn. Fix one of these copies and
call it C. The graph induced by the remaining edges is called B. Every spanning tree of Tn+1 induces
spanning forests on B and C. Now fix a spanning forest F on B that can be extended to a spanning tree
of Tn+1. F induces certain connections on the corner vertices u, v, w of C: If the corner vertices of
C are not connected at all by F , a spanning tree on C is needed to complete a spanning tree on Tn+1.
If F connects precisely two of the corner vertices of C (say u and v), then we need a spanning forest
with two components and the property that u and v are in different components. However, this can also
be interpreted as a rooted spanning forest with roots u and v! If all corner vertices of C are connected
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T0

T1

T2

Fig. 2: Modified Sierpiński graphs with three subdivisions

“from the outside” by F , then we need a rooted spanning forest with three components on C to complete
a spanning tree, where the roots are precisely the corner vertices again. Hence there are coefficients νR
such that

t(Tn+1) =
∑

R⊆{u,v,w}

νR · rC(R),

and these coefficients only depend on B. Note that the coefficient ν{u,v,w} is 0 in the case of ordinary
Sierpiński graphs (Figure 1), which is the reason why we deal with three subdivisions instead of two. If
we replace C by Hn now to obtain a graph T ′n+1, the above considerations show that

t(T ′n+1) =
∑

R⊆{u,v,w}

νR · rHn(R) =
t(Hn)
t(C)

·
∑

R⊆{u,v,w}

νR · rC(R)

=
t(Hn)
t(C)

· t(Tn+1) =
t(Hn)
t(Tn)

· t(Tn+1).

Applying this procedure repeatedly for all three copies of Tn, we obtain

Tn Tn Tn

Tn Tn

Tn

Tn+1

Hn Hn Hn

Hn Hn

Hn

Yn+1

Fig. 3: Replacing Tn by Hn

t(Tn+1) =
(
t(Tn)
t(Hn)

)6

· t(Yn+1),
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where Yn+1 comprises of three copies of Hn, as indicated in Figure 3. But Hn and Yn+1 are small graphs
for which the (weighted) number of spanning trees is easily computed explicitly: one has

t(Hn) = 3 · ( 7
15

)2n
and t(Yn+1) = 5292 · ( 7

15

)9n
and thus

t(Tn+1) = 196
27 ·

(
15
7

)3n · t(Tn)6.
Now it is just an easy induction to show that

t(Tn) =
(

312

210 · 53 · 77

)1/25

·
(

15
7

)−3n/5

·
((

210 · 53 · 77

312

)1/25

t(T0)
)6n

In the case of the sequence depicted in Figure 2, we have t(T0) = 12 and obtain

t(Tn) =
(

312

210 · 53 · 77

)1/25

·
(

15
7

)−3n/5

·
(
260 · 312 · 53 · 77

)6n/25

In a similar way, one can derive Equation (6) for the number of spanning trees of the ordinary Sierpiński
graphs. The essential point in this approach was the fact that the graphs S0, S1, . . . and T0, T1, . . . were
electrically equivalent to simple graphs with resistances that could be determined explicitly. If this is
not the case any more, things become more complicated, as can be seen from the final example below.
Nonetheless, we believe that the technique of replacing subgraphs by electrically equivalent graphs can be
very useful for the enumeration of spanning trees (and we also conjecture that it is applicable in general,
not just in the case of three boundary vertices).

U0

U1

U2

Fig. 4: Another modification of the Sierpiński graphs

Let us now consider the sequence of self-similar graphs depicted in Figure 4. We can still replace
the four copies of Un in Un+1 by simple complete graphs Hn ' K3 to obtain a graph Yn+1, but the
conductances in Hn are not all equal any longer. The effective conductances in Un can be found by
iterating the map that is shown in Figure 5: starting with (a0, b0) = (1, 1), one applies the recursion

(an+1, bn+1) =
(

(2an + bn)(3a2
n + 8anbn + b2n)

2(3an + 2bn)(3an + 5bn)
,
bn(2an + bn)
3an + 2bn

)
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a a
a

a

b b b b

b b

b b

≃

(2a+b)(3a2+8ab+b2)
2(3a+2b)(3a+5b)

b(2a+b)
3a+2b

b(2a+b)
3a+2b

Fig. 5: The map that defines the conductances recursively

to obtain the effective conductances (an+1, bn+1) of Un+1 from those of Un. Arguing as in the previous
example, one obtains

t(Un+1) =
(
t(Un)
t(Hn)

)4

· t(Yn+1).

Now one has

t(Hn) = bn(2an + bn) and t(Yn+1) = 2b3n(2an + bn)3(an + 3bn)

and thus

t(Un+1) =
2(an + 3bn)
bn(2an + bn)

· t(Un)4.

There are no simple formulæ for an and bn, but one can show that they behave asymptotically like

an = A · ( 5
9

)n(1 +O
((

2
3

)n))
, bn = 3A · ( 5

9

)n(1 +O
((

2
3

)n))
for some constant A, which results in the following asymptotic behavior for t(Un):

t(Un) ∼ B ·
(

9
5

)−n/3 · C4n

for certain constants B and C. Note that the structure of this asymptotic formula is still the same as for
the sequence of Sierpiński graphs.
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Branching rules in the ring of superclass functions
of unipotent upper-triangular matrices

Nathaniel Thiem
University of Colorado at Boulder

It is becoming increasingly clear that the supercharacter theory of the finite group of unipotent upper-triangular matrices has
a rich combinatorial structure built on set-partitions that is analogous to the partition combinatorics of the classical repre-
sentation theory of the symmetric group. This paper begins by exploring a connection to the ring of symmetric functions in
non-commuting variables that mirrors the symmetric group’s relationship with the ring of symmetric functions. It then also
investigates some of the representation theoretic structure constants arising from the restriction, tensor products and superin-
duction of supercharacters.

Keywords: set partitions, supercharacters, branching rules, symmetric functions

1 Introduction
The representation theory of the symmetric group Sn –with its connections to partition and tableaux combinatorics–
has become a fundamental model in combinatorial representation theory. It has become clear in recent years that
the representation theory finite group of unipotent upper-triangular matrix groups Un(q) can lead to a similarly
rich combinatorial theory. While understanding the usual representation theory of Un(q) is a wild problem, André
[1, 2, 3, 4] and Yan [23, 24] constructed a natural approximation to the representation theory that leads to a more
computable theory. This approximation (known as a super-representation theory) now relies on set-partition com-
binatorics in the same way that the representation theory of the symmetric group relies on partition combinatorics.

A fundamental tool in symmetric group combinatorics is the ring of symmetric functions, which encodes the
character theory of all symmetric groups simultaneously in a way that polynomial multiplication in the ring of
symmetric functions becomes symmetric group induction from Young subgroups. This kind of a relationship has
been extended to wreath products and type A finite groups of Lie type (for descriptions see for example [17, 21]).
One of the purposes of this paper is to suggest an analogous relationship between the supercharacter theory of
Un(q) and the ring on symmetric functions in non-commuting variables NCSym. In particular, Corollary 3.2
shows that there are a family of algebra isomorphisms from the ring of supercharacters to NCSym, where we
replace induction from subgroups with its natural analogue superinduction from subgroups. Unfortunately, there
does not yet seem to be a canonical choice (ideally, such a choice would take the Hopf structure of NCSym into
account).

The other purpose of this paper is to use the combinatorics of set partitions to supply recursive algorithms for
computing restrictions to a family of subgroups called parabolic subgroups. It turns out that if k ≤ n, then there
are many ways in which Uk(q) sits inside Un(q) as a subgroup. In fact, for every subset S ⊆ {1, 2, . . . , n} with
k elements, there is a distinct subgroup US of Un(q) isomorphic to Uk(q). The restriction from Un(q) to US
depends on S, and Theorem 4.4 sorts out the combinatorial differences for all possible subsets S. This result
can then be easily extended to give restriction rules for all parabolic subgroups. These computations require
knowledge of tensor product results that were previously done by André [1] for large prime and by Yan [23] for
arbitrary primes. For completeness, this paper supplies an alternate proof that relates tensor products to restriction
and a generalization of the inflation functor (see Lemma 4.5).

By Frobenius reciprocity we then also obtain the coefficients of superinduction from these subgroups. Corol-
lary 4.10 concludes by stating that superinduced supercharacters from parabolic subgroups are essentially twisted
super-permutation characters (again using the generalization of the inflation map). These results give the struc-
ture constants for the ring of superclass functions of the finite unipotent upper-triangular groups. However, the
underlying coefficient ring is Z[q−1], unlike in the case of the symmetric group where the ring is Z.
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Section 2 introduces some set-partition combinatorics; describes the parabolic subgroups that will replace Young
subgroups in our theory; reviews the supercharacter theory of pattern groups (as defined in [12]); and recalls the
ring of symmetric functions in non-commuting variables NCSym. We proceed in Section 3.2 by describing the
family of isormorphisms between NCSym and the ring of supercharacters. Section 4 uses the fact that supercharac-
ters of Un(q) decompose into tensor products of simpler characters to supply algorithms for computing restrictions
and superinductions of supercharacters. These results generalize restriction results in [21], and make use of a new
generalization of the inflation functor to supercharacters of pattern groups.

This paper builds on [18] and [20] by giving restriction and superinduction formulas for larger families of groups.
These formulas are computable, and are being implemented in Python as part of an honors thesis at the University
of Colorado. Other recent work in this area worth mentioning includes extensions by André and his collaborators
to supercharacter theories of other types [5] and over other rings [6], explorations of all supercharacter theories for
a given group by Hendrickson in his thesis [16], and an intriguing unexplored connection to L-packets in the work
of Drinfeld and Boyarchenko [11]. This abstract omits the proofs, since they relatively straight-forward once the
results are known.

2 Preliminaries
This section reviews the combinatorics needed for the main results, gives a brief introduction to the supercharacter
theory of pattern groups, and recalls the ring of symmetric functions in non-commuting variables.

2.1 Fq-labeled set-partitions
For S ⊆ {1, 2, . . . , n}, let

SS = {set-partitions of S},

and
S =

⋃
n≥0

Sn, where Sn = S{1,2,...,n}.

An arc i _ j of K ∈ SS is a pair (i, j) ∈ S × S such that

(1) i < j,

(2) i and j are in the same part of K,

(3) if k is in the same part as i and i < k ≤ j, then k = j.

Thus, if we order each part in increasing order, then the arcs are pairs of adjacent elements in each part. For
example,

{1, 5, 7} ∪ {2, 3} ∪ {4} ∪ {6, 8, 9} ∈ S9

has arcs 1 _ 5, 5 _ 7, 2 _ 3, 6 _ 8, and 8 _ 9. We can also represent the set partition K as a diagram
consisting of |K| vertices with an edge connecting vertex i to vertex j if i _ j is an arc of K; for example,

{1, 5, 7} ∪ {2, 3} ∪ {4} ∪ {6, 8, 9} ←→ • • • • • • • • •
1 2 3 4 5 6 7 8 9

.

The arc set A(K) of K ∈ SS is
A(K) = {arcs of K}.

A crossing of K ∈ SS is a pair of arcs (i _ k, j _ l) ∈ A(K)×A(K) such that i < j < k < l. The crossing
set C(K) of K is

C(K) = {crossings of K}.

For example, if K = {1, 5, 7} ∪ {2, 3} ∪ {4} ∪ {6, 8, 9}, then K has one crossing (5 _ 7, 6 _ 8), as is easily
observed in the above diagrammatic representation of K.

An Fq-labeled set-partition of S is a pair (λ, τλ), where λ is a set-partition of S and τλ : A(λ) → F×q is a
labeling of the arcs by nonzero elements of Fq . By convention, if τλ(i _ j) = a, then we write the arc as i a

_ j.
Thus, we can typically suppress the labeling function in the notation. Let

SS(q) = {Fq-labeled set-partitions of S},
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and
S(q) =

⋃
n≥0

Sn(q), where Sn(q) = S{1,2,...,n}(q).

Note that if sn(q) = |Sn(q)|, then the generating function∑
n≥0

sn(q)
xn

n!
= e

e(q−1)x−1
q−1

is a q-analogue of the usual exponential generating function of the Bell numbers (where q = 2 gives the usual
generating function).

Suppose S ⊆ T ⊆ {1, 2, . . . , n}. Then there is a function

〈·〉T :
{

Fq-labeled
set-partitions of S

}
−→

{
Fq-labeled

set-partitions of T

}
λ 7→ 〈λ〉T

where 〈λ〉T is the unique Fq-labeled set-partition of T with arc set A(λ) and labeling function τλ. We will use the
convention that 〈λ〉n = 〈λ〉{1,2,...,n}.

2.2 Pattern groups
For n ∈ Z≥1, let Un(q) be the group of n×n unipotent upper-triangular matrices with entries in Fq . Given a poset
P of {1, 2, . . . , n}, the pattern group UP(q) is

UP(q) = {u ∈ Un(q) | uij 6= 0 implies i � j in P}.

Remark. If Tn(q) is the group of n× n diagonal matrices with entries in F×q , then the set of pattern subgroups of
Un(q) can be characterized as the set of subgroups fixed by the conjugation action of Tn(q) on Un(q).

Consider the injective map

Sn −→
{

Posets of
{1, 2, . . . , n}

}
K 7→ PK

where i ≺ j in PK if and only if i < j and both i and j are in the same part of K.
A pattern subgroup UP(q) is a parabolic subgroup of Un(q) if there exists K ∈ Sn such that P = PK . Note

that if K = K1 ∪K2 ∪ · · · ∪K` is the decomposition of K into parts, then

UPK (q) ∼= U|K1|(q)× U|K2|(q)× · · · × U|K`|(q).

Thus, the parabolic subgroups of UP(q) are reminiscent of the Young subgroups of the symmetric groups Sn or
parabolic subgroups of a reductive groups of Lie type (such as the general linear group GLn(q)). In fact, we will
follow this analogy into the supercharacter theory of Un(q). To simplify notation, we will typically write

UK(q) = UPK (q), for K ∈ Sn.

Remark. These subgroups are not generally block diagonal. For example,

UP{1,3,5}∪{2,4} =




1 0 ∗ 0 ∗
0 1 0 ∗ 0
0 0 1 0 ∗
0 0 0 1 0
0 0 0 0 1


∣∣∣∣∗ ∈ Fq


∼= U3(q)× U2(q).

However, parabolic subgroups do not include all possible copies of pattern subgroups isomorphic to a direct product
of Uk(q)’s. For example,

U 4

3
��

2

==

��
1

=




1 0 ∗ ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 1

∣∣∣∣∗ ∈ Fq

 ∼= U3(q)× U2(q)

is not a parabolic subgroup of U4(q).



864 Nathaniel Thiem

2.3 A supercharacter theory for pattern groups
Given a group G, a supercharacter theory is an approximation to the usual character theory. To be more precise, a
supercharacter theory consists of a set of superclasses K and a set of supercharacters X , such that

(a) the set K is a partition of G such that each part is a union of conjugacy classes,

(b) the set X is a set of characters such that each irreducible character appears as the constituent of exactly one
supercharacter,

(c) the supercharacters are constant on superclasses,

(d) |K| = |X |,

(e) the identity element 1 of G is in its own superclass, and the trivial character 11 of G is a supercharacter.

This general notion of a supercharacter theory was introduced by Diaconis and Isaacs [12] to generalize work of
André and Yan on the character theory of Un(q).

Remark. The definition includes a reasonable amount of redundancy, as explored in [12, 16].

Diaconis and Isaacs extended the construction of André of a supercharacter theory for Un(q) to a larger family
of groups called algebra groups. We will review the construction for pattern groups (a subset of the set of algebra
groups). Let P be a poset of {1, 2, . . . , n} and let

nP(q) = UP(q)− 1,

which is an Fq-algebra.
Fix a nontrivial homomorphism ϑ : F+

q → C×. The pattern group UP(q) acts on the left and right on both
nP(q) and the dual space nP(q)∗, and the two-sided orbits lead to the sets K and X by the following rules. The
superclasses are given

UP(q)\nP(q)/UP(q) ←→ K
UP(q)XUP(q) 7→ 1 + UP(q)XUP(q),

and the supercharacters are given by

UP(q)\nP(q)∗/UP(q) ←→ X

UP(q)λUP(q) 7→ χλ =
|λUP(q)|

|UP(q)λUP(q)|
∑

µ∈UP(q)λUP(q)

ϑ ◦ µ.

The corresponding UP -modules are given by

V λ = C-span{vµ | µ ∈ UPλ}, (2.1)

with action
gvµ = ϑ

(
(gµ)(1− g)

)
vgµ, for g ∈ UP and µ ∈ UPλ.

Example. The group Un(q) was the original motivation for studying supercharacter theories. The following results
are due to André, Yan, and Arias-Castro–Diaconis–Stanley. The number of superclasses is

|K| = |X | = |Sn(q)|,

where, for example,

Sn(q) −→ K
µ 7→ uµ,

and (uµ)ij =

 1, if i = j,
τµ(i _ j), if i _ j ∈ A(µ),
0, otherwise.

The corresponding supercharacter formula for λ, µ ∈ Sn(q) is

χλ(uµ) =


∏

i_l∈A(λ)

ql−i−1ϑ
(
τλ(i _ l)τµ(i _ l)

)
q|{j_k∈A(µ)|i<j<k<l}| ,

if i < j < k, i _ k ∈ A(λ)
implies i _ j, j _ k /∈ A(µ),

0, otherwise,

(2.2)



Branching rules in the ring of superclass functions of unipotent upper-triangular matrices 865

where τµ(i _ j) = 0 if i _ l /∈ A(µ) (see [14] for the corresponding formula for arbitrary pattern groups). Note
that the degree of each character is

χλ(1) =
∏

i_l∈A(λ)

ql−i−1. (2.3)

It follows directly from the formula that the supercharacters factor nicely

χλ =
∏

i
a
_l∈A(λ)

χ〈i
a
_l〉n .

It also follows from (2.2) and (2.3) that χλ is linear if and only if

i _ k ∈ A(λ) implies k = i+ 1.

The set C(λ) measures how close the supercharacter χλ is to being irreducible. In fact,

〈χλ, χµ〉 = q|C(λ)|δλµ, (2.4)

where 〈·, ·〉 is the usual inner product on characters.

Remark. If instead of considering Un(q)-orbits on nn(q) and nn(q)∗, we consider orbits of the full Borel subgroup
Bn(q) = Tn(q)Un(q) on these spaces, then the corresponding supercharacter theory no longer depends on the finite
field q. In this case, the combinatorics reduces to considering set-partitions rather than Fq-labeled set-partitions.

Supercharacters satisfy a variety of nice properties, as described in [12]. The above construction satisfies

(a) The product of two supercharacters is a Z≥0-linear combination of supercharacters.

(b) The restriction of a supercharacter from one pattern group to a pattern subgroup is a Z≥0-linear combination
of supercharacters.

However, it is not true that the induction functor sends a supercharacter to a Z≥0-linear combination of superchar-
acters. In fact, an induced supercharacter is generally no longer even a superclass function.

Diaconis and Isaacs therefore define a map superinduction on supercharacters that is adjoint to restriction with
respect to the usual inner product on class functions; it turns out that this function averages over superclasses in
the same way induction averages over conjugacy classes. In particular, if H ⊆ G are pattern groups (or more
generally algebra groups), then superinduction is the function

SInd :
{

Superclass functions
of H

}
−→

{
Superclass functions

of G

}
χ 7→ SIndGH(χ),

where
SIndGH(χ)(g) =

1
|G||H|

∑
x,y∈G

x(g−1)y+1∈H

χ(x(g − 1)y + 1), for g ∈ G.

Unfortunately, while SInd sends superclass functions to superclass functions, it sends supercharacters to Z≥0[1/q]-
linear combinations of supercharacters (where q comes from the underlying finite field). In fact, the image is not
even generally a character. See also [18] for a further exploration of the relationship between superinduction and
induction.

2.4 The ring of symmetric functions in non-commutative variables
Fix a set X = {X1, X2, . . .} of countably many non-commuting variables. For K = K1 ∪K2 ∪ · · · ∪K` ∈ Sn,
define the monomial symmetric function

mK(X) =
∑

k=(k1,k2,...,k`)∈Z
`
≥1

ki 6=kj,1≤i<j≤`

Xπ1(k)Xπ2(k) · · ·Xπ`(k), where πj(k) = ki if j ∈ Ki.
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The space of symmetric functions in non-commuting variables of homogeneous degree n is

NCSymn(X) = C-span{mK(X) | K ∈ Sn},

and the ring of symmetric functions in non-commuting variables is

NCSym =
⊕
n≥0

NCSymn(X),

where a possible multiplication is given by usual polynomial products. However, note that if K = {a1 < a2 <
· · · < am} ∪ {b1 < b2 < · · · < bn} ∈ Sm+n with σ = (a1, a2, · · · , akm , b1, b2, . . . , bn) the corresponding
permutation of m+ 1 elements, then we could “shuffle” two words according to K,

(Xi1Xi2 · · ·Xim) ∗K (Xim+1 · · ·Xim+n) = Xiσ−1(1)
Xiσ−1(2)

· · ·Xiσ−1(m+n)
.

These operations give a variety of alternate shuffle products for NCSym.
The ring NCSym naturally generalizes the usual ring of symmetric functions [17], but is different from other

generalizations such as the ring of noncommutative symmetric functions studied in, for example, [15]. The ring
NCSym was introduced by Wolf [22], and further explored by Rosas and Sagan [19]. There has been recent
interest in the Hopf structure of NCSym and its Hopf dual – for example, [9, 10]. In particular, [9] show that it has
a representation theoretic connection with partition lattice algebras. This paper suggests that the supercharacter
theory of Un(q) also has a representation theoretic connection to NCSym in a way that is more analogous to
how the ring of symmetric functions dictates the representation theory of Sn. However, the precise nature of this
connection remains open. In particular, it is not clear whether the Hopf structure of NCSym translates naturally
into a representation theoretic Hopf structure for the supercharacters of Un(q).

3 The ring of unipotent superclass functions
This section explores the relationship between NCSym and the space of supercharacters

C(q) =
⊕
n≥0

Cn(q), where Cn(q) = C-span{χλ | λ ∈ Sn(q)}.

3.1 Parabolic subgroups and set-partition combinatorics

There are different copies of Um(q) × Un(q) as subgroups of Um+n(q) which are not related via an inner auto-
morphism of Um+n(q). In fact, for every K = K1 ∪K2 ∈ Sm+n with |K1| = m and |K2| = n, Um+n(q) has a
parabolic subgroup Um(q)×K Un(q) = UK(q) ∼= Um(q)× Un(q).

Thus, the space C has a variety of different products. For λ ∈ Sm(q), µ ∈ Sn(q), and K = K1 ∪K2 ∈ Sm+n

with |K1| = m and |K2| = n, define

χλ ∗K χµ = SIndUm+n(q)
Um(q)×KUn(q)(χ

λ × χµ).

There is a related map
∪K : Sm(q)× Sn(q) −→ Sm+n(q)

(λ, µ) 7→ λ ∪K µ,

where λ ∪K µ = λ′ ∪ µ′ with λ′ ∈ SK1(q) and µ′ ∈ SK2(q) the same Fq-labeled set-partitions as λ and µ
respectively, but with {1, 2, . . . ,m} relabeled as K1 and {1, 2, . . . , n} relabeled as K2. For example,

• •
a

•
1 2 3

∪{1,4,6}∪{2,3,5,7} •
b

•
c

• •
1 2 3 4

= • •
b

•

c

•
a

• • •
1 2 3 4 5 6 7

.

It will follow from Corollary 4.10 that χλ∪Kµ is always a nonzero constituent of χλ ∗K χµ.
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3.2 A characteristic map for supercharacters
For µ ∈ Sn(q), let κµ : Un → Un be the superclass characteristic function given by

κµ(u) =
{

1, if u is in the same superclass as uµ,
0, otherwise,

and

zµ =
|Un|

|Un(uµ − 1)Un|

Proposition 3.1 For µ ∈ Sm(q) and ν ∈ Sn(q),

SIndUm+n
Um×KUn

(
(zµκµ)⊗ (zνκν)

)
= zµ∪Kνκµ∪Kν .

Let NCSym be the ring of symmetric functions in non-commuting variables. Let

{pλ | λ ∈ S}

be any basis that satisfies
pλ ∗K pµ = pλ∪Kµ

for all K = K1 ∪K2 ∈ S with |K1| = |λ| and |K2| = |µ|. Note that NCSym in fact has several of such bases,
such as {pλ} in [19] and {xλ} in [9].

Corollary 3.2 The function
ch : C(2) −→ NCSym

κµ 7→ 1
zµ
pµ

is an isometric algebra isomorphism.

Questions. This result immediately raises the following questions.

(1) Does the Hopf algebra structure of NCSym transfer in a representation theoretic way to C?

(2) What is the correct choice of basis pµ? In particular, the {pλ} of [19] do not seem to give a nice Hopf
structure to C.

(3) Is there a corresponding NCSym-space for q > 2?

Questions (1) and (2) presumably need simultaneous answers, and question (3) suggests there might be an analogue
of the ring symmetric functions corresponding to wreath products.

4 Representation theoretic structure constants
This section explores the computation of structure constants in C. We begin with a family of natural embedding
maps of Cm(q) ⊆ Cn(q) for m ≤ n using a generalization of the inflation functor, and then give algorithms
for computing restrictions from Cm+n(q) to Cm(q) ⊗ Cn(q). To finish the computations we require a method
for decomposing tensor products Cn(q) ⊗ Cn(q) → Cn(q). We conclude with a discussion of the corresponding
superinduction coefficients. In this section we will assume a fixed q, and suppress the q from the notation; that is
Un = Un(q), etc.

4.1 Superinflation of characters
Let T ⊆ G be pattern groups with corresponding algebras t and g, respectively. There exists a surjective projection

π : g = t⊕ t⊥ −→ t
X + Y 7→ X,

with a corresponding inflation map
Infg

t : t∗ −→ g∗

µ 7→ µ ◦ π.



868 Nathaniel Thiem

The superinflation map on supermodules is given by

SinfGT :
{

Supermodules
of T

}
−→

{
Supermodules

of G

}
V µ 7→ V Infg

t (µ),

where supermodules are as in (2.1).
Note that superinflation takes supermodules to supermodules, just as the usual inflation map on characters takes

irreducible characters to irreducible characters. Recall, the usual inflation map is constructed from a surjection
π : G→ T is given by

InfGT : {T -modules} −→ {G-modules}
V 7→ InfGT (V ),

where gv = π(g)v for g ∈ G, v ∈ InfGT (V ). The following proposition says that superinflation is inflation
whenever possible.

Proposition 4.1 Suppose G is a pattern group with pattern subgroups T and H such that G = T nH . Then for
any supermodule V λ of T ,

SinfGT (V λ) ∼= InfGT (V λ).

We will be primarily be interested in the superinflation function between parabolic subgroups of Un(q). In this
case, if UK(q) ⊆ UL(q), then

SinfUL(q)
UK(q)(χ

λ) = χ〈λ〉L .

For example,
U{2,3,5,7}

Sinf−→ U{1}∪{2,3,5,7}
Sinf−→ U7

χ◦ •
a

• ◦ •
b

◦ • 7→ χ• •
a

• ◦ •
b

◦ • 7→ χ• •
a

• • •
b

• •.

Thus, superinflation allows us to embed Cm(q) ⊆ Cn(q) for all m < n, although this embedding still depends on
the embedding of Um(q) inside Un(q).

Remark. While the superinflation function does match up with the usual inflation when possible, it does not
generally behave as nicely as the usual inflation function. In particular, it is no longer generally true that ResGT ◦
SinfGT (χ) = χ for χ a class function of T . For example,

χ◦ •
a

• ◦ •
b

◦ •(1) = q1 6= q3 = χ• •
a

• • •
b

• •(1).

4.2 Restrictions
In this section we give algorithms for computing restrictions between parabolic subgroups of Un(q). Since super-
characters decompose into tensor products of arcs, for λ ∈ Sn(q),

χλ =
∏

i
a
_l∈A(λ)

χ〈i
a
_l〉n ,

our strategy is to compute restrictions to for each χ〈i
a
_l〉n . We then use a tensor product result in Section 4.3 to

glue back together the resulting restrictions.
We begin with two observations, and then Theorem 4.4 gives a general algorithm. Recall that for K = K1 ∪

K2 ∪ · · · ∪K` ∈ Sn, UK is a subgroup of Un(q) isomorphic to

U|K1| × U|K2| × · · · × U|K`|.

Proposition 4.2 Let UK ⊆ UL be parabolic subgroups of Un with L = L1 ∪ L2 ∪ · · · ∪ L` ∈ Sn. Then

ResULUK (χλ1 × · · · × χλ`) = ResUL1
UK1

(χλ1)× ResUL2
UK2

(χλ2)× · · · × Res
UL`
UK`

(χλ`)

where UKj is the parabolic subgroup of ULj corresponding to the vertices Lj .
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The next proposition gives information about each factor in Proposition 4.2.

Proposition 4.3 For i < l, a ∈ F×q and K = K1 ∪K2 ∪ . . . ∪K` ∈ Sn,

ResUnUK (χ〈i
a
_l〉n) =

ResUnUK1
(χ〈i

a
_l〉n)

q|{i<k<l|k/∈K1}|
×

ResUnUK2
(χ〈i

a
_l〉n)

q|{i<k<l|k/∈K2}|
× · · · ×

ResUnUK` (χ
〈i a_l〉n)

q|{i<k<l|k/∈K`}|

For S ⊆ {1, 2, . . . , n}, let
US = {u ∈ Un | uij 6= 0 implies i, j ∈ S}.

Note that while US is not itself a parabolic subgroup of Un, it is isomorphic to the parabolic subgroup U〈S〉n .

Theorem 4.4 Let S ⊆ {1, 2, . . . , n}. Then for 1 ≤ i < l ≤ n and a ∈ F×q ,

ResUnUS (χ〈i
a
_l〉n) =



q|{i<k<l|k/∈S}|χ〈i
a
_l〉S , if i, l ∈ S,

q|{i<k<l|k/∈S}|
(

11 +
∑

i<j<l,j∈S
b∈F×q

χ〈j
b
_l〉S

)
, if i /∈ S, l ∈ S,

q|{i<k<l|k/∈S}|
(

11 +
∑

i<k<l,k∈S
b∈F×q

χ〈i
b
_k〉S

)
, if i ∈ S, l /∈ S,

q|{i<k
′<l|k′ /∈S}|

(
(|S ∩ [i, l]|(q − 1) + 1)11 + (q − 1)

∑
i<j′<k′<l
j′,k′∈S,c∈F×q

χ〈j
′ c_k′〉S

)
, if i, l /∈ S.

Example. Let n = 7, j = 2, k = 5, so that

U[2,5] = U{2,3,4,5} =




1 0 0 0 0 0 0
0 1 ∗ ∗ ∗ 0 0
0 0 1 ∗ ∗ 0 0
0 0 0 1 ∗ 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


 ⊆




1 ∗ ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 1 ∗
0 0 0 0 0 0 1


 = U7

Then

ResU7
U[2,5]

(χ•
a

• • • • • •) = χ◦ • • • • ◦ ◦+
∑
b∈F×q

χ◦ •
b

• • • ◦ ◦+
∑
b∈F×q

χ◦ • •
b

• • ◦ ◦+
∑
b∈F×q

χ◦ • • •
b

• ◦ ◦

ResU7
U[2,5]

(χ•
a

• • • • • •) = q

(
(4q − 3)χ◦ • • • • ◦ ◦+ (q − 1)

∑
b∈F×q

χ◦ •
b

• • • ◦ ◦+ (q − 1)
∑
b∈F×q

χ◦ • •
b

• • ◦ ◦

+ (q − 1)
∑
b∈F×q

χ◦ • • •
b

• ◦ ◦+ (q − 1)
∑
b∈F×q

χ◦ •
b

• • • ◦ ◦+ (q − 1)
∑
b∈F×q

χ◦ •
b

• • • ◦ ◦

+ (q − 1)
∑
b∈F×q

χ◦ • •
b

• • ◦ ◦
)
.

4.3 Tensor products
We have seen in the previous section that when we decompose supercharacters into tensor products of irreducible
characters, the restriction rules are manageable to compute. This section explains how to glue back together the
resulting products of characters. The main result – Corollary 4.6 – has been computed by André for large primes
in [1, Lemmas 6–8] and for arbitrary primes by Yan in [23, Propositions 7.2-7.5], but we reprove it here quickly
using the machinery developed in this paper.

We begin with a lemma that further establishes the relationship between tensor products and restrictions. For
H ⊆ G and χ a superclass function of G, let

SinfResGH(χ) = SinfGHResGH(χ).
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Lemma 4.5 For i < j < k < l,

χ〈i
a
_k〉n ⊗ χ〈i

b
_l〉n = SinfResUnU[i+1,l]

(χ〈i
a
_k〉n)⊗ χ〈i

b
_l〉n , a, b ∈ F×q ,

χ〈i
a
_l〉n ⊗ χ〈j

b
_l〉n = χ〈i

a
_l〉n ⊗ SinfResUnU[i,l−1]

(χ〈j
b
_l〉n), a, b ∈ F×q ,

χ〈i
a
_l〉n ⊗ χ〈i

−a
_l〉n = SinfResUnU[i+1,l]

(χ〈i
a
_l〉n)⊗ SinfResUnU[i,l−1]

(χ〈i
−a
_l〉n), a ∈ F×q ,

χ〈i
a
_l〉n ⊗ χ〈i

b
_l〉n = χ〈i

a+b
_ l〉n ⊗ SinfResUnU[i+1,l−1]

(χ〈i
a+b
_ l〉n), a, b ∈ F×q , b 6= −a.

Combining Lemma 4.6 with Theorem 4.4 we obtain the following corollary.

Corollary 4.6 For i < k, j < l, a, b ∈ F×q , and {i, k} 6= {j, l},

χ〈i
a
_k〉n ⊗ χ〈j

b
_l〉n =



χ〈{i
a
_k}∪{j b_l}〉n , if {i, k} ∩ {j, l} = ∅,

χ〈i
a
_j

b
_l〉n , if i < j = k < l,

χ〈i
b
_l〉n +

∑
i<j′<k
c∈F×q

χ〈{j
′ c_k}∪{i b_l}〉n , if i = j < k < l,

χ〈i
a
_l〉n +

∑
j<k′<l
c∈F×q

χ〈{i
a
_l}∪{j c_k′}〉n , if i < j < k = l,

For i < l, a, b ∈ F×q ,

χ〈i
a
_l〉n ⊗ χ〈i

b
_l〉n =



11 +
∑
i<j′<l
c∈F×q

χ〈i
c
_j′〉n +

∑
i<k′<l
c∈F×q

χ〈k
′ c_l〉n +

∑
i<j′,k′<l
c,d∈F×q

χ〈{i
c
_j′}∪{k′ d_l}〉n , if b = −a,

((l − i− 1)(q − 1) + 1)χ〈i
a+b
_ l〉n + (q − 1)

∑
i<j′<k′<l
c∈F×q

χ〈{j
′ c_k′}∪{ia+b_ l}〉n , otherwise.

Remark. The coefficients of the tensor products are not understood in general, although it is clear from Corollary
4.6 that they are polynomial in q.

4.4 Superinduction
Let S ⊆ {1, 2, . . . , n}. If µ ∈ SS(q) and λ ∈ Sn(q), then by Frobenius reciprocity,

〈χλ,SIndUnUS (χµ)〉Un = 〈ResUnUS (χλ), χµ〉US .

Thus, if
SIndUnUS (χµ) =

∑
ν

aνµχ
ν and ResUnUS (χλ) =

∑
γ

bλγχ
γ ,

then by (2.4)
q|C(λ)|aλµ = q|C(µ)|bλµ,

where C(ν) is the set of crossings of ν. Therefore,

SIndUnUS (χµ) =
∑
ν

aνµχ
ν =

∑
ν

q|C(µ)|−|C(ν)|bνµχ
ν .

In general, if UK ⊆ Un with K ∈ Sn, then

SIndUnUK (χµ) =
∑
ν

q|CK(µ)|−|C(ν)|bνµχ
ν , (4.1)

where CK(ν) is the set of crossings that occur within the same parts of K.
With this discussion, we obtain the following corollary of Sections 4.2 and 4.3. When combined with Corollary

4.10, below, these results give a reasonably direct way to compute superinduction for some cases.
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Corollary 4.7 Let K = {1, 2, . . . , k} ∪ {k + 1, k + 2, . . . , n} ∈ Sn be a set-partition with two parts. Then

SIndUnUK (11) =
∑

λ∈Sn(q)
if i _ j ∈ λ,

then i � j ∈ K

q−|C(λ)|χλ,

where i ∼ j if and only if i and j are in the same part in K.

Corollary 4.7 has some immediate combinatorial consequences. Let

SGn×m = {a ∈Mn×n({0, 1}) | a has at most one 1 and every row and column}

be the set of m× n 0-1 matrices with at most one 1 in every row an column. Define statistics for w ∈ SGm×n

ones(w) = |{(i, j) ∈ [1, n]× [1,m] | wij = 1}|
sow(w) = |{(j, k) ∈ [1, n]× [1,m] | wjk = 0, wik = 1 for some i < j or wjl = 1 for some k < l}|.

For example, if

w =

 0 1 0 0
0 0 0 1
0 0 0 0

 , then
ones(w) = 2
sow(w) = 6.

Corollary 4.8 Let m and n be positive integers. Then

(a) qmn =
∑

w∈SGm×n

(q − 1)ones(w)qsow(w)

(b) 0 =
∑

w∈SGm×n

(−1)w1n(q − 1)ones(w)qsow(w).

We conclude with some observations relating superinduction to these superpermutation “characters.” The first
corollary follows from Frobenius reciprocity.

Corollary 4.9 LetH ⊆ G be pattern groups, and let µ ∈ (H−1). If χµ(1)SinfGH(χµ)(h) = SinfGH(χµ)(1)χµ(h),
for all h ∈ H , then

SIndGH(χµ) =
χµ(1)

SinfGH(χµ)(1)
SinfGH(χµ)⊗ SIndGH(11).

The assumption in Corollary 4.9 is not so unusual. In fact,

Corollary 4.10 Let UK ⊆ UL be parabolic subgroups of Un, where K = K1 ∪K2 ∪ · · · ∪K`, L ∈ Sn. Then for
µ ∈ SK1(q)× SK2(q)× · · · × SK`(q),

SIndULUK (χµ) =
χµ(1)

SinfULUK
(
χµ
)
(1)

SinfULUK (χµ)⊗ SIndULUK (11).

Remark. While the assumption in Corollary 4.9 is sufficient, it is not necessary. For example, if

H =


 1 ∗ ∗

0 1 0
0 0 1

 ⊆ U3 =


 1 ∗ ∗

0 1 ∗
0 0 1

 .

then for these groups,

χ

„
0 0 1
0 0 0
0 0 0

« 1 1 0
0 1 0
0 0 1

 = 1 and SinfU3
H

(
χ

„
0 0 1
0 0 0
0 0 0

«) 1 1 0
0 1 0
0 0 1

 = 0.

However, it remains true that

SIndGH

(
χ

„
0 0 1
0 0 0
0 0 0

«)
= q−1SinfGH

(
χ

„
0 0 1
0 0 0
0 0 0

«)
⊗ SIndGH(11).

In fact, the conclusion of Corollary 4.9 may be true for all pattern groups; I know of no counter-example.
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1 Introduction
A classical result due to Furstenberg, Katznelson and Weiss (6) states that if E ⊂ R2 has positive upper
Lebesgue density, then for any δ > 0, the δ-neighborhood ofE contains a congruent copy of a sufficiently
large dilate of every three-point configuration. For higher dimensional simplexes, Bourgain (4) showed
that if E ⊂ Rd has positive upper density, and ∆ is a k-simplex with k < d, then E contains a rotated
and translated image of every large dilate of ∆. The cases k = d and k = d+ 1 still remain open. Magyar
(10; 11) studied related problems in the integer lattice Zd. He showed (11) that if d > 2k+4, andE ⊂ Zd

has positive upper densitiy, then all large (depending on density of E) dilates of a k-simplex in Zd can be
embedded in E.

Hart and Iosevich (7) made the first investigation in an analog of this question in finite field geometries.
They showed that if E ⊂ Fd

q , d ≥
(
k+1

2

)
of cardinality |E| ≥ Cq

kd
k+1 q

k
2 for a sufficiently large constant

C > 0, then E contains an isometric copy of every k-simplex. Using graph theoretic method, the author
(14) showed that the same result holds for d ≥ 2k and |E| � q

d−1
2 +k (cf. Theorem 1.4 in (14)).

Note that serious difficulties arise when the size of the simplex is sufficiently large with respect to the
ambient dimension. Even in the case of triangles, the result in (14) is only non-trivial for d ≥ 4. In
(5), Covert, Hart, Iosevich, and Uriarte-Tuero addressed the case of triangles in two-dimensional vector
spaces over finite fields. They showed that if E has density ≥ ρ, for some C√

q ≤ ρ ≤ 1 with a sufficiently
large constant C > 0, then the set of triangles determined by E, up to congruence, has density ≥ cρ. In
(15), the author studied the remaining case; triangles in three-dimensional vector spaces over finite fields.
Using a combination of graph theory method and Fourier analysis, the author showed that if E ⊂ Fd

q ,
d ≥ 3, such that |E| � q

d+2
2 , then E determines almost all triangles up to congruence. The arguments in

(15), however, do not work for k ≥ 5.
In this paper, we will study the case of k-simplexes in (2k − 1)-dimensional vector spaces with k ≥ 3.

Given E1, . . . , Ek ⊂ Fd
q , where Fq is a finite field of q elements, define

Tk(E1, . . . , Ek) = {(x1, . . . xk) ∈ E1 × . . .× Ek}/ ∼ (1.1)

with the equivalence relation ∼ such that (x1, . . . , xk) ∼ (x′1, . . . , x
′
k) if there exist τ ∈ Fd

q and O ∈
SOd(Fq), the set of d-by-d orthogonal matrices over Fq with determinant 1, such that

(x′1, . . . , x
′
k) = (O(x1) + τ, . . . , O(xk) + τ). (1.2)

The main result of this paper is the following.

Theorem 1.1 Let E ⊂ F2k−1
q with k ≥ 3, and suppose that

|E| � q2k−1− 1
2k .

There exists c > 0 such that
|Tk+1(E)| ≥ cq(

k+1
2 ).

In other words, we always get a positive proportion of all k-simplexes if E � qk−1− 1
2k and k ≥ 3.

The rest of this short paper is organized as follows. In Section 2, we establish some results about the
occurrences of colored subgraphs in a pseudo-random coloring of a graph. In Section 3, we construct our
main tools to study simplexes in vector spaces over finite fields, the finite Euclidean and non-Euclidean
graphs. We then prove our main result, Theorem 1.1 in Section 4.
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2 Subgraphs in expanders
We call a graph G = (V,E) (n, d, λ)-graph if G is a d-regular graph on n vertices with the absolute
values of each of its eigenvalues but the largest one are at most λ. Suppose that a graph G of order n is
colored by t colors. Let Gi be the induced subgraph of G on the ith color. We call a t-colored graph G
(n, d, λ)-r.c. (regularly colored) graph if Gi is an (n, d, λ)-regular graph for each color i ∈ {1, . . . , t}. In
this section, we will study the occurrences of colored subgraphs in an (n, d, λ)-r.c. graph.

2.1 Colored subgraphs
It is well-known that if λ � d then an (n, d, λ)-graph behaves similarly as a random graph Gn,d/n.
Precisely, we have the following result.

Theorem 2.1 ((1, Theorem 9.2.4)) Let G be an (n, d, λ)-graph. For a vertex v ∈ V and a subset B of
V , denote by N(v) the set of all neighbors of v in G, and let NB(v) = N(v) ∩ B denote the set of all
neighbors of v in B. For every subset B of V , we have∑

v∈V

(|NB(v)| − d

n
|B|)2 6

λ2

n
|B|(n− |B|). (2.1)

The following result is an easy corollary of Theorem 2.1.

Theorem 2.2 ((1, Corollary 9.2.5)) Let G be an (n, d, λ)-graph. For every set of vertices B and C of G,
we have

|e(B,C)− d

n
|B‖C‖ 6 λ

√
|B‖C|, (2.2)

where e(B,C) is the number of edges in the induced bipartite subgraph of G on (B,C) (i.e. the number
of ordered pair (u, v) where u ∈ B, v ∈ C and uv is an edge of G).

Let H be a fixed graph of order s with r edges. Let Aut(H) be an automorphism group of H . It is
well-known that for every constant p ∈ (0, 1), the random graph G(n, p) contains

(1 + o(1))pr(1− p)(s
2)−r ns

|Aut(H)|
(2.3)

induced copies ofH . Alon extended this result to (n, d, λ)-graph. He proved that every large subset of the
set of vertices of a (n, d, λ)-graph contains the “correct” number of copies of any fixed small subgraph.

Theorem 2.3 ((9, Theorem 4.10)) Let H be a fixed graph with r edges, s vertices and maximum degree
∆, and let G = (V,E) be an (n, d, λ)-graph, where, say, d 6 0.9n. Let m < n satisfies m � λ

(
n
d

)∆
.

Then, for every subset U ⊂ V of cardinality m, the number of (not necessrily induced) copies of H in U
is

(1 + o(1))
ms

|Aut(H)|

(
d

n

)r

. (2.4)

In (14), we observed that Theorem 2.3 can be extended to (n, d, λ)-r.c. graph. Precisely, we showed
that every large subset of the set of vertices of an (n, d, λ)-r.c. graph contains the “correct” number of
copies of any fixed small colored graph. We present here a multiset version of this statement.
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Theorem 2.4 Let H be a fixed t-colored graph with r edges, s vertices, maximum degree ∆ (with the
vertex set is ordered), and let G be a t-colored graph of order n. Suppose that G is an (n, d, λ)-r.c graph,
where, say, d � n. Let E1, . . . , Es ⊂ V satisfy |Ei| � λ

(
n
d

)∆
. Then the number of (not necessrily

induced) copies of H in E1 × . . .× Es (one vertex in each set) is

(1 + o(1))
s∏

i=1

|Ei|
(
d

n

)r

. (2.5)

The proof of this theorem is similar to the proofs of (9, Theorem 4.10) and (14, Theorem 2.3). Note
that going from one color formulation ((9, Theorem 4.10)) and one set formulation ((14, Theorem 2.3)) to
a multicolor-multiset formulation (Theorem 2.4) is just a matter of inserting different letters in a couple
of places.

2.2 Colored stars
Given any k colors r1, . . . , rk, a k-star of type (r1, . . . , rk) has k + 1 vertices, one center vertex x0 and
k leaves x1, . . . , xk, with the edge (x0, xi) is colored by the color ri. The following result gives us an
estimate for the number of colored k-stars in an (n, d, λ)-r.c. graph G (see (15) for an earlier version).

Theorem 2.5 Let G be an (n, d, λ)-r.c. graph. Given any k colors r1, . . . , rk in the color set. Suppose
that E0, E1, . . . , Ek ⊂ V (G) with

|E0|2
∏
i∈I

|Ei| �
(n
d
λ
)2|I|

(2.6)

for all I ⊂ {1, . . . , k}, |I| ≥ 2, and

|E0||Ei| �
(n
d
λ
)2

(2.7)

for all i ∈ {1, . . . , k}. Let e{r1,...,rk}(E0; {E1, . . . , Ek}) denote the number of k-stars of type (r1, . . . , rk)
in E0 × E1 × . . .× Ek (with the center in E0). We have

e{r1,...,rk}(E0; {E1, . . . , Ek}) = (1 + o(1))
(
d

n

)k k∏
i=0

|Ei|, (2.8)

where k is fixed and n, d, λ� 1.

Proof: The proof proceeds by induction. We first consider the bast case, k = 1. Since |E| � n
dλ and the

number of 1-stars of type a in E0 × E1 is just the number of a-colored edges in E0 × E1, the statement
follows immediately from Theorem 2.2 and (2.7).

Suppose that the statement holds for all colored l-stars with l < k. For a vertex v ∈ V and a color r,
let Nr

E(v) denote the set of all r-colored neighbors of v in E. From Theorem 2.1, we have

∑
v∈E0

(|Nri

Ei
(v)| − d

n
|Ei|)2 6

∑
v∈V

(|Nri

Ei
(v)| − d

n
|Ei|)2 6

λ2

n
|Ei|(n− |Ei|) 6 λ2|Ei|. (2.9)
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For k > 2, by the Cauchy-Schwartz inequality, we have

k∏
i=1

 n∑
j=1

a2
i.j

 >

 n∑
j=1

k−1∏
i=1

a2
i,j

 n∑
j=1

a2
k.j

 >

 n∑
j=1

k∏
i=1

ai,j

2

. (2.10)

It follows from (2.9) and (2.10) that(∑
v∈E0

k∏
i=1

(Nri

Ei
(v)− d

n
|Ei|)

)2

6
k∏

i=1

∑
v∈E0

(|Nri

Ei
(v)| − d

n
|Ei|)2 6 λ2k

k∏
i=1

|Ei|.

It can be written as∣∣∣∣∣∣
∑

I⊂{1,...,k}

(−1)k−|I|
(
d

n

)k−|I|∏
j /∈I

|Ej |
∑

v∈E0

∏
i∈I

Nri

Ei
(v)

∣∣∣∣∣∣ 6 λk

√√√√ k∏
i=1

|Ei|. (2.11)

For any I ⊂ {1, . . . , k} with 0 < |I| < k, by the induction hypothesis, we have

∑
v∈E0

∏
i∈I

Nri

Ei
(v) = eI(E0; {Ei}i∈I) = (1 + o(1))

(
d

n

)|I|
|E0|

∏
i∈I

|Ei|. (2.12)

Putting (2.11) and (2.12) together, we have

∣∣∣∣∣∑
v∈E0

k∏
i=1

Nri

Ei
(v)− (1 + o(1))

(
d

n

)k k∏
i=0

|Ei|

∣∣∣∣∣ 6 λk

√√√√ k∏
i=1

|Ei|.

Since |E0|2
∏k

i=1 |Ei| � (n
dλ)2k, the left hand side is dominated by (1 + o(1))

(
d
n

)k∏k
i=0 |Ei|. This

implies that

e{r1,...,rk}(E0; {E1, . . . , Ek}) =
∑

v∈E0

k∏
i=1

Nri

Ei
(v) = (1 + o(1))

(
d

n

)k k∏
i=0

|Ei|,

completing the proof of the theorem. 2

3 Finite Euclidean and non-Euclidean graphs
In this section, we construct our main tools to study simplexes in vector spaces over finite fields, the
graphs associated to finite Euclidean and non-Euclidean spaces. The construction of finite Euclidean
graphs follows one of Medrano et al. in (12) and the construction of finite non-Euclidean graphs follows
one of Bannai, Shimabukuro, and Tanaka in (3).
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3.1 Finite Euclidean graphs
Let Fq be a finite field with q elements where q � 1 is an odd prime power. For any x = (x1, . . . , xd) ∈
F

d
q , let

‖x‖ = x2
1 + . . .+ x2

d.

For a fixed a ∈ Fq , the finite Euclidean graph Gq(a) in Fd
q is defined as the graph with the vertex set Fd

q ,
and the edge set

{(x, y) ∈ Fd
q ×Fd

q | x 6= y, ||x− y|| = a}.

Medrano et al. (12) studied the spectrum of these graphs and showed that these graphs are asymptotically
Ramanujan graphs. Precisely, they proved the following result.

Theorem 3.1 ((12)) The finite Euclidean graph Gq(a) is a regular graph with n(q, a) = qd vertices of
valency

k(q, a) =


qd−1 + χ((−1)(d−1)/2a)q(d−1)/2 a 6= 0, d odd,
qd−1 − χ((−1)d/2))q(d−2)/2 a 6= 0, d even,
qd−1 a = 0, d odd,
qd−1 − χ((−1)d/2))(q − 1)q(d−2)/2 a = 0, d even.

where χ is the quadratic character

χ(a) =

 1 a 6= 0, a is square in Fq,
−1 a 6= 0, a is nonsquare in Fq,
0 a = 0.

Let λ be any eigenvalues of the graph Gq(a) with λ 6= valency of the graph then

|λ| ≤ 2q
d−1
2 . (3.1)

3.2 Finite non-Euclidean graphs
Let V = F

2k−1
q be the (2k − 1)-dimensional vector space over the finite field Fq (q is an odd prime

power). For each element x of V , we denote the 1-dimensional subspace containing x by [x]. Let Ω be
the set of all square type non-isotropic 1-dimensional subspaces of V with respect to the quadratic form
Q(x) = x2

1 + . . . + x2
2k−1. The simple orthogonal group O2k−1(Fq) acts transtively on Ω, and yields a

symmetric association scheme Ψ(O2k−1(Fq),Ω) of class (q + 1)/2. The relations of Ψ(O2k−1(Fq),Ω)
are given by

R1 = {([U ], [V ]) ∈ Ω× Ω | (U + V ) · (U + V ) = 0},
Ri = {([U ], [V ]) ∈ Ω× Ω | (U + V ) · (U + V ) = 2 + 2ν−(i−1)} (2 6 i 6 (q − 1)/2)

R(q+1)/2 = {([U ], [V ]) ∈ Ω× Ω · (U + V ) · (U + V ) = 2},

where ν is a generator of the field Fq and we assume U ·U = 1 for all [U ] ∈ Ω (see (2) for more details).
The graphs (Ω, Ri) are asymptotic Ramanujan for large q. The following theorem summaries the results

from Section 2 in (3) in a rough form.
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Theorem 3.2 (3) The graphs (Ω, Ri) (1 ≤ i ≤ (q + 1)/2) are regular of order q2k−2(1 + oq(1))/2 and
valency Kq2k−3. Let λ be any eigenvalue of the graph (Ω, Ri) with λ 6= valency of the graph then

|λ| ≤ kq(2k−3)/2,

for some k,K > 0 (In fact, we can show that k = 2 + oq(1) and K = 1 + oq(1) or 1/2 + oq(1)).

4 Proof of Theorem 1.1
We now give a proof of Theorem 1.1. For any {aij}1≤i<j≤k+1 ∈ F

(k+1
2 )

q , define

T{aij}1≤i<j≤k+1(E) = {(xi)k+1
i=1 ∈ E

k+1 : ‖xi − xj‖ = aij}.

Hart and Iosevich (7) observed that in vector spaces over finite fields, a (non-degenerate) simplex is
defined uniquely (up to translation and rotation) by the norms of its edges.

Lemma 4.1 ((7)) Let P be a (non-degenerate) simplex with vertices V0, V1, . . . , Vk where Vj ∈ Fd
q . Let

P ′ be another (non-degenerate) simplex with vertices V ′0 , . . . , V
′
k . Suppose that

‖Vi − Vj‖ = ‖V ′i − V ′j ‖ (4.1)

for all i, j. There exists τ ∈ Fd
q and O ∈ SOd(Fq) such that τ +O(P ) = P ′.

Therefore, it suffices to show that if E ⊂ F2k−1
q (k ≥ 3) of cardinality |E| � q2k−1− 1

2k , then∣∣∣∣{{aij}1≤i<j≤k+1 ∈ F
(k+1

2 )
q : |T{aij}1≤i<j≤k+1(E)| > 0

}∣∣∣∣ > cq(
k+1
2 ). (4.2)

Consider the set of colors L = {c0, . . . , cq−1} corresponding to elements ofFq . We color the complete
graph Gq with the vertex set F2k−1

q , by q colors such that (x, y) ∈ F2k−1
q × F2k−1

q is colored by ci
whenever ||x− y|| = i.

Suppose that |E| � q2k−1− 1
2k , we have

|E| �
(

q2k−1 · 2qk−1

q2k−2(1 + o(1))

) 2i
i+2

,

for all 2 ≤ i ≤ k. From Theorem 3.1, Gq is a (q2k−1, q2k−2(1 + o(1)), 2qk−1)-r.c. graph when k ≥ 3.
Therefore, applying Theorem 2.5 for the number of k-stars of type (a12, . . . , a1(k+1)) in Ek+1, we have

ea12,...,a1(k+1)(E; {E, . . . , E}) =
(
q2k−2(1 + o(1))

q2k−1

)k

|E|k+1(1 + o(1)) =
|E|k+1(1 + o(1))

qk
,

for any a12, . . . , a1(k+1) ∈ Fq .
Let F∗� denote the set of non-zero squares in Fq . For any a12, . . . , a1(k+1) ∈ F∗�, then

|{(x1, . . . , xk+1) ∈ Ek+1 : ‖x1 − xi‖ = a1i}| = ea12,...,a1(k+1)(E; {E, . . . , E})

=
|E|k+1(1 + o(1))

qk
.
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By the pigeon-hole principle, there exists x1 ∈ E such that

{(x2, . . . , xk+1) ∈ Ek : ‖x1 − xi‖ = a1i}| =
|E|k(1 + o(1))

qk
.

Let St = {v ∈ F2k−1
q : ||v|| = t} denote the sphere of radius t in F2k−1

q , then

|St| = q2k−2(1 + o(1))

for any t ∈ Fq . Let

Ei = {v ∈ E : ‖x1 − v‖ = a1i} ⊂ Sai
, 2 ≤ i ≤ k + 1,

then

|E2| . . . |Ek+1| =
|E|k(1 + o(1))

qk
,

and
|E2|, . . . , |Ek+1| ≤ O(q2k−2).

This implies that

|Ei| ≥ Ω
(
|E|k(1 + o(1))
qk+(2k−2)(k−1)

)
� q2k− 5

2 .

There are (q − 1)k/2k possibilities of a12, . . . , a1(k+1) ∈ F∗�. From Lemma 4.1, it suffices to show

that Tk(E2, . . . , Ek+1) ≥ cq(
k
2) for some c > 0. Let

E′i = {[x] : x ∈ Ei} ⊂ Ω

where Ω is the set of all square type non-isotropic 1-dimensional subspaces of F2k−1
q with respect to the

quadratic form Q(x) = x2
1 + . . . + x2

2k−1. Since each line through origin in F2k−1
q intersects the unit

sphere S1 at two points, |E′i| ≥ |Ei|/2 � q2k− 5
2 . Suppose that ([U ], [V ]) ∈ E′i × E′j is an edge of

(Ω, Rl), 2 ≤ l ≤ (q − 1)/2. Then

(U + V ) · (U + V ) = 2 + αl,

where αl = 2ν−(l−1). Since U · U = V · V = 1, we have (U − V ) · (U − V ) = 2 − αl. The distance
between U and V (in E′i × E′j) is either (U + V ) · (U + V ) or (U − V ) · (U − V ). Hence,

||U − V || ∈ {2 + αl, 2− αl}. (4.3)

Consider the set of colors L = {r1, . . . , r(q+1)/2} corresponding to classes of the association scheme
Ψ(O2k−1(Fq),Ω). We color the complete graph Pq with the vertex set Ω, by (q + 1)/2 colors such that
([U ], [V ]) ∈ Ω× Ω is colored by ri whenever ([U ], [V ]) ∈ Ri.

From Theorem 3.2, Pq is a ((1 + o(1))q2k−2/2,Kq2k−3, kq(2k−3)/2)-r.c. graph when k ≥ 3. Since
|E′i| � q2k− 5

2 , we have

|E′i| � kq(2k−3)/2

(
(1 + o(1))q2k−2/2

Kq2k−3

)k−1

.

Therefore, applying Theorem 2.4 for colored k-complete subgraphs of Pq then Pq contains all possible
colored k-complete subgraphs. From (4.3), ([U ], [V ]) is colored by rl (2 ≤ l ≤ (q−1)/2) then ||U−V || ∈
{2 + αl, 2− αl}. Hence, Tk(E2, . . . , Ek+1) ≥ cq(

k
2) for some c > 0. The theorem follows.
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A promotion operator on rigged configurations

Qiang Wang1 †

1 Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616-8633, U.S.A.

In a recent paper, Schilling proposed an operator pr on unrestricted rigged configurations RC, and conjectured it to
be the promotion operator of the type A crystal formed by RC. In this paper we announce a proof for this conjecture.

Keywords: promotion operator, rigged configurations, affine crystals

1 Introduction
Rigged configurations appear in the Bethe Ansatz study of exactly solvable lattice models as combinato-
rial objects to index the solutions of the Bethe equations [5, 6]. Based on work by Kerov, Kirillov and
Reshetikhin [5, 6], it was shown in [7] that there is a statistic preserving bijection Φ between Littlewood-
Richardson tableaux and rigged configurations. The description of the bijection Φ is based on a quite
technical recursive algorithm.

Littlewood-Richardson tableaux can be viewed as highest weight crystal elements in a tensor product
of Kirillov–Reshetikhin (KR) crystals of type A(1)

n . KR crystals are affine finite-dimensional crystals
corresponding to affine Kac–Moody algebras, in the setting of [7] of type A(1)

n . The highest weight
condition is with respect to the finite subalgebra An. The bijection Φ can be generalized by dropping
the highest weight requirement on the elements in the KR crystals [1], yielding the set of crystal paths
P . On the corresponding set of unrestricted rigged configurations RC, the An crystal structure is known
explicitly [12]. One of the remaining open questions is to define the full affine crystal structure on the
level of rigged configurations. Given the affine crystal structure on both sides, the bijection Φ has a much
more conceptual interpretation as an affine crystal isomorphism.

In type A(1)
n , the affine crystal structure can be defined using the promotion operator pr, which corre-

sponds to the Dynkin diagram automorphism mapping node i to i + 1 modulo n + 1. On crystals, the
promotion operator is defined using jeu-de-taquin [13, 15]. In [12], Schilling proposed an algorithm pr
on RC and conjectured [12, Conjecture 4.12] that pr corresponds to the promotion operator pr under the
bijection Φ. Several necessary conditions of promotion operators were established and it was shown that
in special cases pr is the correct promotion operator.

†Partially supported by NSF grants DMS–0501101, DMS–0652641, and DMS–0652652.
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In this paper, we show in general that Φ ◦ pr ◦Φ−1 = pr (i.e., Φ is the intertwiner between pr and pr):

P Φ−−−−→ RC

pr

y ypr

P −−−−→
Φ

RC.

Thus pr is indeed the promotion on RC and Φ is an affine crystal isomorphism.
Another reformulation of the bijection from tensor product of crystals to the rigged configurations in

terms of the energy function of affine crystals and the inverse scattering formalism for the periodic box
ball systems was given in [8, 9, 10, 11].

This paper is orangized as follows. In Section 2, we review the definitions of crystal paths and rigged
configurations and state the main result in Theorem 2.27. In Section 3, we outline the proof by a running
example. Due to the limitation of space, details of the proof are not included. A long version of this paper
that contains all technical details is in progress [17] and will appear elsewhere.

2 Preliminaries and the main result
Throughout this paper the positive integer n stands for the rank of the Lie algebra An. Let I = [n] be the
index set of the Dynkin diagram of type An. Let H = I × Z>0 and define Bn to be a finite sequence of
pairs of positive integers

Bn = ((r1, s1), . . . , (rK , sK))

with (ri, si) ∈ H and 1 ≤ i ≤ K. We use Ln as a finite (multi-)set of pairs of positive integers

Ln = {(r1, s1), . . . , (rK , sK)}

with (ri, si) ∈ H and 1 ≤ i ≤ K. We omit the subscript n when its value is irrelevant or clear from the
context. We also write L(B) for the underlying (multi-)set of B. When L is used this way, it is called the
multiplicity array of B.
B represents a sequence of rectangles where the i-th rectangle is of height ri and width si. We some-

times use the phrase “leftmost rectangle” (resp.“rightmost rectangle”) to mean the first (resp. last) pair
in the list. We use |B| = K for the number of pairs in B, and B[i] = (ri, si) as the i-th pair in
B. Similarly, we can think of L as a (multi-)set of rectangles. It is sometimes useful (especially in
the setting of rigged configurations) to consider the multiplicity of a given (a, i) ∈ H in L by setting
L

(a)
i = #{(r, s) ∈ L | r = a, s = i}.
Given a sequence of rectangles B, we will use the following operations for successively removing

boxes from it. In the following subsections, we define the set of paths P(B) and rigged configurations
RC(L(B)), and discuss the analogous operations defined on P(B) and RC(L(B)). They are used to
define the bijection Φ between P(B) and RC(L(B)) recursively. The proof exploits this recursion.

Definition 2.1 [1, Section 4.1,4.2].

1. If B = ((1, 1), B′), let lh(B) = B′. This operation is called left-hat.

2. IfB = ((r, s), B′) with s ≥ 2, let ls(B) = ((r, 1), (r, s−1), B′). This operation is called left-split.
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3. If B = ((r, 1), B′) with r ≥ 2, let lb(B) = ((1, 1), (r − 1, 1), B′). This operation is called
box-split.

2.1 Inhomogeneous lattice paths
Definition 2.2 Given (r, s) ∈ H, define Pn(r, c) to be the set of semi-standard Young tableaux of (rect-
angular) shape (sr) over the alphabet {1, 2, . . . , n+ 1}.

Recall that for each semi-standard Young tableau t, we can associate a ambient weight wt(t) =
(λ1, λ2, . . . , λn+1) where λi is the number of times that i appears in t. Moreover, Pn(r, s) is endowed
with a type An-crystal structure, with the Kashiwara operator ea, fa for 1 ≤ a ≤ n defined by the
signature rule. For a detailed discussion see for example [4, Chapters 7 and 8].

Definition 2.3 Given a sequence Bn as defined above, Pn(Bn) = Pn(r1, s1)⊗ · · · ⊗ Pn(rK , sK).

As a set Pn(Bn) is a sequence of rectangular semi-standard Young tableaux. It is also endowed with a
crystal structure through the tensor product rule. The Kashiwara operators ea, fa for 1 ≤ a ≤ n naturally
extend from semi-standard tableaux to a list of tableaux using signature rule. For b1 ⊗ b2 ⊗ · · · ⊗ bK ∈
Pn(Bn), wt(b1⊗ b2⊗· · ·⊗ bK) = wt(b1) + wt(b2) + · · ·+ wt(bK). We note here that the convention of
tableaux tensor product in this paper follows that of [1, Section 2], which is opposite to the Kashiwara’s
original convention [2].

Definition 2.4 Let λ = (λ1, λ2, . . . , λn+1) be an list of nonnegative integers, define

Pn(Bn, λ) = {p ∈ Pn(Bn) | wt(p) = λ}

Example 2.5 Let B3 = ((2, 2), (1, 2), (3, 1)). Let

p = 1 2
2 3

⊗ 1 2 ⊗
1
2
4

Then p is an element of P(B3) and wt(p) = (3, 4, 1, 1).

As in the above example, we often omit the subscript n, writing P instead of Pn when n is irrelevant
or clear from the discussion.

We often refer to a rectangular tableau just as a “rectangle” when there is no ambiguity, for example,
the leftmost rectangle in p of above example is the tableau:

1 2
2 3

.

The following maps on P(B) are the counterparts to the maps lh, lb and ls defined on B.

Definition 2.6 [1, Sections 4.1,4.2]..

1. Let b = c⊗ b′ ∈ P((1, 1), B′). Then lh(b) = b′ ∈ P(B′).

2. Let b = c ⊗ b′ ∈ P((r, s), B′), where c = c1c2 · · · cs and ci denotes the i-th column of c. Then
ls(b) = c1 ⊗ c2 · · · cs ⊗ b′.
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3. Let b =

b1
b2
...
br

⊗ b′ ∈ P((r, 1), B′), where b1 < · · · < br. Then lb(b) = br ⊗
b1
...

br−1

⊗ b′.

2.2 Rigged configurations

This section follows [12, Section 3.1]. In this paper we only consider rigged configurations of type A(1)
n .

The (highest-weight) rigged configurations are indexed by the multiplicity array L and a dominant
weight Λ. The sequence of partitions ν = {ν(a) | a ∈ I} is a (L,Λ)-configuration if∑

(a,i)∈H

im
(a)
i αa =

∑
(a,i)∈H

iL
(a)
i Λa − Λ, (2.1)

where m(a)
i is the number of parts of length i in partition ν(a), αa is the a-th simple root and Λa is the

a-th fundamental weight. Denote the set of all (L,Λ)-configurations by C(L,Λ). The vacancy number
of a configuration is defined as

p
(a)
i =

∑
j≥1

min(i, j)L(a)
j −

∑
(b,j)∈H

(αa|αb) min(i, j)m(b)
j .

Here (·|·) is the normalized invariant form on the weight lattice P such that Aab = (αa|αb) is the Cartan
matrix (of type An in our case). The (L,Λ)-configuration ν is admissible if p(a)

i ≥ 0 for all (a, i) ∈ H,
and the set of admissible (L,Λ)-configurations is denoted by C(L,Λ).

A partition p can be viewed as a linear ordering (p,�) of a finite multiset of positive integers, where
elements of different values are ordered by their value, and elements the same value are given an arbitrary
ordering. Implicitly, when we draw a Young diagram of p, we are giving such an ordering. A labeling of
a partition p is then a map J (p) : (p,�)→ Z≥0 satisfying that if i, j ∈ p are of the same value and i� j
then J (p)(i) ≥ J (p)(j) as integers. The pairs (x, J (p)(x)) are referred to as strings; x is referred to as the
length or size of the string and J (p)(x) as the label or quantum number.

A rigging J of an (admissible) (L,Λ)-configuration ν is a sequence of maps J = (J (a)), each J (a) is
a labeling of the partitions ν(a) with the extra requirement that for any part i ∈ ν(a)

0 ≤ J (a)(i) ≤ p(a)
i .

The difference cJ (a)(i) = p
(a)
i − J (a)(i) is referred to as the colabel or coquantum number of the part

i. A part is said to be singular if its colabel is 0. Since cJ and J uniquely determine each other, we
sometimes refer to a string by (x, cJ (p)(x)) when it is more convenient.

Definition 2.7 The pair (ν, J) described above is called a (restricted-)rigged configuration. The set of all
rigged (L,Λ)-configurations is denoted by RCn(L,Λ). In addition, define RC(L) =

⋃
Λ∈P+ RC(L,Λ).

The equation (2.1) provides an obvious way of defining weight function on RC(L). Namely, for rc ∈
RC(L)

wt(rc) =
∑

(a,i)∈H

iL
(a)
i Λa −

∑
(a,i)∈H

im
(a)
i αa (2.2)



A promotion operator on rigged configurations 887

When working with rigged configuration, it is often convenient to take the fundamental weights as basis
for the weight space. On the other hand, we presented weights in the ambient weight space when working
with lattice paths. Conceptually, this distinction is not necessary, as weights can be considered as abstract
vectors in the weight space. Identifying the fundamental weight Λi with (1i, 0n+1−i) we can switch from
one representation to the other.

Remark 2.8 From the above definition, it is clear that RC(L) is not sensitive to the ordering of the
rectangles in L.

Definition 2.9 Let L be a multiplicity array. Define the set of unrestricted rigged configurations RC(L)
as the closure of RC(L) under the operators fa, ea for a ∈ I , with fa, ea given by:

1. Define ea(ν, J) by removing a box from a string of length k in (ν, J)(a) leaving all colabels fixed
and increasing the new label by one. Here k is the length of the string with the smallest negative
rigging of smallest length. If no such string exists, ea(ν, J) is undefined.

2. Define fa(ν, J) by adding a box to a string of length k in (ν, J)(a) leaving all colabels fixed and
decreasing the new label by one. Here k is the length of the string with the smallest non positive
rigging of largest length. If no such string exists, add a new string of length one and label -1. If the
result is not a valid unrestricted rigged configuration fa(ν, J) is undefined.

The weight function (2.2) defined on RC(L) extends to RC(L) with no change.
As their names suggested, fa and ea are indeed the Kashiwara operators with respect to the weight

function above, and define a crystal structure on RC(L). This was proved in [12].
From the definition of fa, it is clear that the labels of parts in an unrestricted rigged configuration may

be negative. It is natural to ask what shapes and labels can appear in an unrestricted rigged configuration.
There is an explicit characterization of RC(L) which answers this question [1, Section 3]. The statement is
rather long and is not directly used by our proof, so we will just give rough outline and leave the interested
reader to the original paper for detail: In the definition of RC(L), we required that the vacancy number
associated to each part non-negative. We drop this requirement for RC(L). Yet a vacancy numbers in
RC(L) still serves as the upper bound of the label, much like the role a vacancy number plays for a
restricted rigged configuration. For restricted rigged configurations, the lower bound for the label of a
part is uniformly 0. For unrestricted rigged configurations, this is not the case. The characterization gives
a way on how to find lower bound for each part.

Example 2.10 Here is an example on how we normally visualize a restricted/unrestricted rigged config-
uration. Let B3 = ((2, 2), (1, 2), (3, 1)), and L3 = L(B3). Then

rc = −1 1 −1

is an element of RC(L3,−Λ1 + 3Λ2).
In this example, the sequence of partitions ν is ((2),(1),(1)). The number that follows each part is the

label assigned to this part by J . The vacancy numbers associated to these parts are p(1)
2 = −1, p(2)

1 = 1,
and p(3)

1 = 0. Note that the labels are all less than or equal to the vacancy numbers, in the case that they
are equal, e.g. parts in ν(1) and ν(2), those parts are called singular as restricted rigged configuration.

In this example rc ∈ RC \ RC, the idea is the same for rc ∈ RC.
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The following maps on RC(L(B)) are the counterparts to the lh, lb and ls map defined on B.

Definition 2.11 [1, Section 4.1,4.2] .

1. Let rc = (ν, J) ∈ RC(L(B)). Then lh(rc) ∈ RC(L(lh(B))) is defined by: first set `(0) = 1 and
then repeat the following process for a = 1, 2, . . . , n − 1 or until stopped. Find the smallest index
i ≥ `(a−1) such that J (a)(i) is singular. If no such i exists, set rk(ν, J) = a and stop. Otherwise
set `(a) = i and continue with a+ 1. Set all undefined `(a) to∞.

The new rigged configuration (ν̃, J̃) = lh(ν, J) is obtained by removing a box from the selected
strings and making the new strings singular again.

2. Let rc = (ν, J) ∈ RC(L(B)). Then ls(rc) ∈ RC(L(ls(B))) is the same as (ν, J).

3. Let rc = (ν, J) ∈ RC(L(B)). Then lb(rc) ∈ RC(L(ls(B))) is defined by adding singular strings
of length 1 to (ν, J)(a) for 1 ≤ a < r. Note that the vacancy numbers remain unchanged under lb.

2.3 The bijection between P(B) and RC(L(B))

The map Φ : P(B, λ) → RC(L(B), λ) is defined recursively by various commutative diagrams. Note
that it is possible to go from B = ((r1, s1), (r2, s2), . . . , (rK , sK)) to the empty crystal via successive
application of lh, ls and lb. For further details see [1, Section 4].

Definition 2.12 Define the map Φ : P(B, λ)→ RC(L(B), λ) such that the empty path maps to the empty
rigged configuration and such that the following conditions hold:

1. Suppose B = ((1, 1), B′). Then the following diagram commutes:

P(B, λ) Φ−−−−→ RC(L(B), λ)

lh

y yδ⋃
µ∈λ−

P(lh(B), µ) −−−−→
Φ

⋃
µ∈λ−

RC(L(lh(B)), µ)

where λ− is the set of all partitions obtained from partitionλ by removing a box.

2. Suppose B = ((r, s), B′) with s ≥ 2. Then the following diagram commutes:

P(B, λ) Φ−−−−→ RC(L(B), λ)

ls

y yls

P(ls(B), λ) −−−−→
Φ

RC(L(ls(B)), λ)

3. Suppose B = ((r, 1), B′) with r ≥ 2. Then the following diagram commutes:

P(B, λ) Φ−−−−→ RC(L(B), λ)

lb

y ylb

P(lb(B), λ) −−−−→
Φ

RC(L(lb(B)), λ)
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2.4 Promotion operators
The promotion operator pr on Pn(B) is defined in [15, page 164]. For the purpose of our proof, we will
phrase it as a composition of one lifting operator and then several sliding operators defined on Pn(B).

Definition 2.13 The lifting operator l on Pn(B) lifts p ∈ Pn(B) to l(p) ∈ Pn+1(B) by adding 1 to each
box in each rectangle of p.

Definition 2.14 Given p ∈ Pn+1(B), the sliding operator ρ is defined as the following algorithm: find
in p the rightmost rectangle that contains n + 2, remove one appearance of n + 2, apply jeu-de-taquin
on this rectangle to move the empty box to the opposite corner, fill in 1 in this empty box. If no rectangle
contains n+ 2, then ρ is the identity map.

Definition 2.15
pr(p) = ρm ◦ l(p)

where m is the total number of n+ 2 in p.

This promotion operator is used to construct the affine crystal structure on P(B). See [15, page 164]
for a detailed discussion.

The proposed promotion operator pr on RCn(L) is defined in [12, Definition 4.8]. To draw the parallel
with pr we will phrase it as a composition of one lifting operator and then several sliding operators defined
on RC(L).

Definition 2.16 The lifting operator l on RCn(L) lifts rc ∈ RCn(L) to l(rc) ∈ RCn+1(L) by setting
l(rc) = fλ1

1 fλ2
2 · · · f

λn+1
n+1 (rc), where λ = (λ1, λ2, . . . , λn+1) is the ambient weight of rc

∑
i∈[n+1] λi =∑

(r,s)∈L r · s. Notice here we use the fact that RCn(L) is naturally embedded in RCn+1(L) by simply
treating the (n+ 1)st partition v(n+1) to be ∅.

Definition 2.17 [12, Definition 4.8] Given rc ∈ RCn+1(L), the sliding operator ρ is defined as the
following algorithm: Find the smallest singular string in rc(n+1). Let the length be `(n+1). Repeatedly
find the smallest singular string in (ν′, J ′)(k) of length `(k) ≥ `(k+1) for all 1 ≤ k < n+ 1. Shorten the
selected strings by one and make them singular again.

Definition 2.18
pr(rc) = ρm ◦ l(rc)

where m is the number of boxes in rc(n+1).

Remark 2.19 It is a easy matter to show that l = Φ(l) (that is l = Φ ◦ l ◦ Φ−1)). Indeed, we could have
defined l(p) = fλ1

1 fλ2
2 · · · f

λn+1
n+1 (p), where λ = (λ1, λ2, . . . , λn+1) is the weight of p.

There is a question in Definition 2.14 on whether a sequence of m ρ operators can be always applied.
The same question can be asked for Definition 2.17. The following are examples on how things could go
wrong:

Example 2.20 Let

p = 1 1
4 4

∈ P3((2, 2)) (2.3)
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If we try to construct ρ(p), we realize that after removing a copy of 4 and move the empty box to the

upper left corner we get 1
1 4

, and filling the empty box with 1 will violate the column-strictness of

semi-standard Young tableaux.
On the RC side, let

rc = 0 0 ∅ ∈ RC3((2, 2))

We see that ρ(rc) is not well-defined.

Therefore, ρ and ρ are partial functions on Pn+1 and RCn+1. This, however, will not cause problems
in our discussion because of the following two remarks.

Remark 2.21 ρ is well-defined on ρk(Img(l)) for any k. This follows from the well known fact that if T
is a semi-standard rectangular tableau, and if we remove all cells that contain the largest number (which
is a horizontal strip in the last row) and apply ”jeu de taquin” to move these empty cells to the upper left
corner, then these empty cells form a horizontal strip.

Thus we could have just restricted the domain of ρ to:

Definition 2.22
Dom(ρ) =

⋃
k=0,1,2...

ρk(Img(l)) (2.4)

Remark 2.23 It is not known at this stage that ρ is fully defined on Φ(Dom(ρ)). In fact, it is a conse-
quence of our proof.

2.5 Combinatorial R-matrix and right-split
Let B = ((r1, s1), . . . , (rK , sK)) be a sequence of rectangles, and let σ ∈ SK be a permutation of K
letters. The R-matrix is the affine crystal isomorphism R : P(B) → P(σ(B)), which sends u1 ⊗ · · · ⊗
uK to uσ(1) ⊗ · · · ⊗ uσ(K), where ui ∈ P(ri, si) is the unique tableau of content (sri

i ) and σ(B) =
((rσ(1), sσ(1)), . . . , (rσ(K), sσ(K))). It was shown in [7, Lemma 8.5] that Φ ◦R = R ◦ Φ, where R is the
identity map. Together with the fact that R preserves the crystal structure [12] this implies the following
result.

Remark 2.24 The following diagram commutes:

P(B) Φ−−−−→ RC(L(B))

R

y yR=id

P(σ(B)) −−−−→
Φ

RC(L(σ(B)).

Remark 2.25 Since any σ ∈ SK is generated by simple transpositions, it suffices to work with cases
where |B|=2, and σ being the only simple transposition is S2.

Definition 2.26 rs, rs are called right-split. rs operates on sequences of rectangles as follow: Let B =
((r1, s1), . . . , (rK , sK)), and suppose sK > 1 (i.e, the rightmost rectangle is not a single column). Then
rs(B) = ((r1, s1), . . . , (rK , sK − 1), (rK , 1)), that is, rs splits one column off the rightmost rectangle.
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rs operates on RC(L(B)) as follow: If rc ∈ RC(L(B)), then rs(rc) ∈ RC(L(rs(B))) is obtained by
increasing the riggings by 1 for all parts in ν(rK) of size less than sK . Observe that this will leave the
co-riggings of all parts unchanged.

rs, which operates on P(B), is defined to be Φ ◦ rs ◦ Φ−1.

2.6 The main result

We now state the main result of this paper.

Theorem 2.27 Let B = ((r1, s1), . . . , (rK , sK)) be a sequence of rectangles, and P(B), RC(L(B)), Φ,
pr, and pr as given as above. Then the following diagram commutes:

P(B) Φ−−−−→ RC(L(B))

pr

y ypr

P(B) −−−−→
Φ

RC(L(B)).

(2.5)

3 The outline of the proof
In this part, we outline the proof by a running example. The details of the proofs can be found in [17].

Recall we want to prove (2.5). By Remark 2.19 it suffices for us to show that the following diagram
commutes:

Dom(ρ) Φ−−−−→ Φ(Dom(ρ))

ρ

y yρ
Dom(ρ) −−−−→

Φ
Φ(Dom(ρ)).

In particular, we need to show that ρ is defined on Φ(Dom(ρ)).
As an abbreviation, for any p ∈ Dom(ρ), we use D(p) to mean the following statement: “ρ(Φ(p)) is

well-defined and the diagram

p
Φ−−−−→ •

ρ

y yρ
• −−−−→

Φ
•

commutes”.
For p, q ∈ Dom(ρ) we write D(p) ; D(q) to mean that D(p) reduces to D(q), that is, D(q) is a

sufficient condition for D(p).
We will use the following p ∈ P3((2, 2), (3, 2), (2, 2)) as the starting point of the running example:

p = 2 2
4 4

⊗
1 2
2 3
3 4

⊗ 1 2
2 3

.



892 Qiang Wang

After lifting to P4 we have:

l(p) = 3 3
5 5

⊗
2 3
3 4
4 5

⊗ 2 3
3 4

∈ Dom(ρ).

Our goal is to show D(l(p)) by a sequence of reductions. Note that the rightmost 5 (which is n + 2
where n=3) appears in the second rectangle. Thus ρ acts on the second rectangle. The motivation behind
our reductions is to try to get rid of boxes from the left and make ρ act on the leftmost rectangle:

Step 1

D( 3 3
5 5

⊗
2 3
3 4
4 5

⊗ 2 3
3 4

) ls
; D( 3

5
⊗ 3

5
⊗

2 3
3 4
4 5

⊗ 2 3
3 4

)

This is called a ls-reduction.

Step 2

D( 3
5
⊗ 3

5
⊗

2 3
3 4
4 5

⊗ 2 3
3 4

) lb
; D( 5 ⊗ 3 ⊗ 3

5
⊗

2 3
3 4
4 5

⊗ 2 3
3 4

)

This is called a lb-reduction.

Step 3

D( 5 ⊗ 3 ⊗ 3
5
⊗

2 3
3 4
4 5

⊗ 2 3
3 4

) lh
; D( 3 ⊗ 3

5
⊗

2 3
3 4
4 5

⊗ 2 3
3 4

)

This is called a lh-reduction.

Step 4 Another application of lh-reduction.

D( 3 ⊗ 3
5
⊗

2 3
3 4
4 5

⊗ 2 3
3 4

) lh
; D( 3

5
⊗

2 3
3 4
4 5

⊗ 2 3
3 4

)

We repeat above reductions until the rightmost tableau containing 5 becomes the first tableau in the list.
After that we want to further simplify the list, if possible, to get rid of boxes from right by pushing them
column-by-column to the left using the R-matrix map R, until we reach the place where can prove D(•)
directly:

Step 8

D(
2 3
3 4
4 5

⊗ 2 3
3 4

) rs
; D(

2 3
3 4
4 5

⊗ 3
4
⊗ 2

3
)

This is called a rs-reduction.
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Step 9

D(
2 3
3 4
4 5

⊗ 3
4
⊗ 2

3
) R

; D( 3
4
⊗

2 3
3 4
4 5

⊗ 2
3

)

This is called a R-reduction.

Now since the rectangle that ρ acts on is no longer the leftmost one we can go back to Step 1. Repeat
above steps until ρ acts on the leftmost rectangle again, then we need one more R-reduction:

Step 13

D(
2 3
3 4
4 5

⊗ 2
3

) R
; D( 3

5
⊗

2 2
3 3
4 4

)

Repeating, we will eventually reach one of the following two cases (not mutually exclusive):

• Base case 1: p is a single rectangle that contains n+ 2 (which is 5 in the above example); or

• Base case 2: p = S ⊗ q where S is a single column that contains n + 2 (which is 5 in the above
example), and n+ 2 does not appear in q.

In the above example, we reached the second case.

Step 14 Now we have to prove this base case directly:

D( 3
5
⊗

2 2
3 3
4 4

)
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Permutations with Kazhdan-Lusztig
polynomial Pid,w(q) = 1 + qh
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Abstract. Using resolutions of singularities introduced by Cortez and a method for calculating Kazhdan-Lusztig
polynomials due to Polo, we prove the conjecture of Billey and Braden characterizing permutations w with Kazhdan-
Lusztig polynomial Pid,w(q) = 1 + qh for some h.

Résumé. On démontre la conjecture de Billey et Braden sur les permutations w pour lesquelles le polynôme de
Kazhdan-Lusztig Pid,w(q) = 1 + qh pour un entier h. On emploie une résolution des singularités présentées par
Cortez et une méthode de Polo pour calculer ces polynômes.

Keywords: Kazhdan-Lusztig polynomials, Schubert varieties

1 Introduction
The results mentioned in this extended abstract have been published in [33] along with most of the intro-
ductory material. We explain here the alternative approach mentioned in [33, Remark 4.7]. This approach
recasts some of the geometry into combinatorial language, but the details in the proofs of the lemmas will
be essentially the same.

Kazhdan-Lusztig polynomials are polynomials Pu,w(q) in one variable associated to each pair of el-
ements u and w in the symmetric group Sn (or more generally in any Coxeter group). They have an
elementary definition in terms of the Hecke algebra [24, 21, 9] and numerous applications in represen-
tation theory, most notably in [24, 1, 13], and the geometry of homogeneous spaces [25, 17]. While
their definition makes it fairly easy to compute any particular Kazhdan-Lusztig polynomial, on the whole
they are poorly understood. General closed formulas are known [5, 10], but they are fairly complicated;
furthermore, although Kazhdan-Lusztig polynomials are known to be positive (for Sn and other Weyl
groups), these formulas have negative signs. For Sn, positive formulas are known only for 3412 avoid-
ing permutations [26, 27], 321-hexagon avoiding permutations [7], and some isolated cases related to the
generic singularities of Schubert varieties [8, 29, 16, 32].

One important interpretation of Kazhdan-Lusztig polynomials is as local intersection homology Poin-
caré polynomials for Schubert varieties. This interpretation, originally established by Kazhdan and
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Lusztig [25], shows, in an entirely non-constructive manner, that Kazhdan-Lusztig polynomials have non-
negative integer coefficients and constant term 1. Furthermore, as shown by Deodhar [17], Pid,w(q) = 1
(for Sn) if and only if the Schubert variety Xw is smooth, and, more generally, Pu,w(q) = 1 if and only if
Xw is smooth over the Schubert cell X◦u.

The purpose of this paper is to prove the following theorem.

Theorem 1.1 Suppose the singular locus ofXw has exactly one irreducible component, and w avoids the
patterns 653421, 632541, 463152, 526413, 546213, and 465132. Then Pid,w(1) = 2.

More precisely, when the hypotheses are satisfied, Pid,w(q) = 1 + qh where h is the minimum height
of a 3412 embedding, with h = 1 if no such embedding exists.

Here, a 3412 embedding is a sequence of indices i1 < i2 < i3 < i4 such that w(i3) < w(i4) <
w(i1) < w(i2), and its height is w(i1)−w(i4). Given the first part of the theorem, the second part can be
immediately deduced from the unimodality of Kazhdan-Lusztig polynomials [22, 12] and the calculation
of the Kazhdan-Lusztig polynomial at the unique generic singularity [8, 29, 16]. Indeed, unimodality and
this calculation imply the following corollary.

Corollary 1.2 Suppose w satisfies the hypotheses of Theorem 1.1. Let Xv be the singular locus of Xw.
Then Pu,w(q) = 1 + qh (with h as in Theorem 1.1) if u ≤ v in Bruhat order, and Pu,w(q) = 1 otherwise.

The permutation v and the singular locus in general has a combinatorial description given in Theo-
rem 2.1, which was originally proved independently in [8, 16, 23, 28]. This description is used in our
proof. Furthermore, Billey and Weed recently found a combinatorial version [33, Theorem A.1] of Theo-
rem 1.1, replacing the geometric condition that Xw has one irreducible component with sixty additional
patterns.

Theorem 1.1 was conjectured by Billey and Braden [6]. They claim to have a proof for the converse
in their paper. An outline of their proof is as follows. If Pid,w(1) = 1 then Xw is nonsingular [17].
The methods for calculating Kazhdan-Lusztig polynomials due to Braden and MacPherson [12] show that
Pid,w(1) ≤ 2 implies that the singular locus of Xw has at most one component. That Pid,w(1) ≤ 2
implies the pattern avoidance conditions follows from [6, Thm. 1] and the computation of Kazhdan-
Lusztig polynomials for the six pattern permutations.

Example 1.3 To illustrate the theorem, Pid,643521(q) = 1 + q (as 643521 has no 3412 embedding),
Pid,254613(q) = 1 + q (as h = 1), Pid,2657413(q) = 1 + q2, and Pid,564312(q) = 1 + q3. On the other
hand, Pid,34512(q) = 1 + 2q (as the singular locus of X34512 has three irreducible components), and
Pid,2574163(q) = 1 + q + q2 (as 2574163 does not avoid 463152).

The proof of Theorem 1.1 outlined in this abstract requires two cases. When w has no 3412 embedding,
we analyze the algorithm of Lascoux [26] for calculating Kazhdan-Lusztig polynomials for such w. For
w containing a 3412 embedding, we use a resolution of singularities for Schubert varieties introduced
by Cortez [16]. In general, the maps introduced by Cortez [16] do not necessarily come from a smooth
variety, but they are actual resolutions forw satisfying the conditions of Theorem 1.1. A Bialynicki-Birula
decomposition [3, 4, 14] of the resolution gives us a combinatorial formula purely in terms of permutations
for the Poincaré polynomials for the fibers of the resolution. Polo [30] gave a combinatorial interpretation
of the Decomposition Theorem [2] which allows us to then calculate Kazhdan-Lusztig polynomials from
these Poincaré polynomials. This calculation is in the spirit of Deodhar’s approach [18] to calculating
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Kazhdan-Luzstig polynomials Pu,w(q) from a reduced expression for w, but our calculation is simpler in
this particular case.

Corollary 1.2 suggests the problem of describing all pairs u and w for which Pu,w(1) = 2. It seems
possible to extend the methods of this paper to characterize such pairs; presumably Xu would need to lie
in no more than one component of the singular locus of Xw, and [u,w] would need to avoid certain inter-
vals (see Section 2.3). Our methods in theory extend to more permutations, but any further extension to
characterize w for which Pid,w(1) = 3 is likely to be extremely combinatorially intricate. An extension to
other Weyl groups would also be interesting, not only for its intrinsic value, but because methods for prov-
ing such a result may suggest methods for proving any (currently nonexistent) conjecture combinatorially
describing the singular loci of Schubert varieties for these other Weyl groups.

I wish to thank Eric Babson for encouraging conversations and Sara Billey for helpful comments and
suggestions on earlier drafts. I used Greg Warrington’s software [31] for computing Kazhdan-Lusztig
polynomials in explorations leading to this work.

2 Preliminaries
2.1 The symmetric group and Bruhat order
We begin by setting notation and basic definitions. We let Sn denote the symmetric group on n letters.
We let si ∈ Sn denote the adjacent transposition which switches i and i + 1; the elements si for i =
1, . . . , n− 1 generate Sn. Given an element w ∈ Sn, its length, denoted `(w), is the minimal number of
generators such that w can be written as w = si1si2 · · · si` . An inversion in w is a pair of indices i < j
such that w(i) > w(j). The length of a permutation w is equal to the number of inversions it has.

Unless otherwise stated, permutations are written in one-line notation, so that w = 3142 is the permu-
tation such that w(1) = 3, w(2) = 1, w(3) = 4, and w(4) = 2.

Given a permutation w ∈ Sn, the graph of w is the set of points (i, w(i)) for i ∈ {1, . . . , n}. We
will draw graphs according to the Cartesian convention, so that (0, 0) is at the bottom left and (n, 0) the
bottom right.

The rank function rw is defined by

rw(p, q) = #{i | 1 ≤ i ≤ p, 1 ≤ w(i) ≤ q}

for any p, q ∈ {1, . . . , n}. We can visualize rw(p, q) as the number of points of the graph of w in the
rectangle defined by (1, 1) and (p, q). There is a partial order on Sn, known as Bruhat order, which can
be defined as the reverse of the natural partial order on the rank function; explicitly, u ≤ w if ru(p, q) ≥
rw(p, q) for all p, q ∈ {1, . . . , n}. The Bruhat order and the length function are closely related. If
u < w, then `(u) < `(w); moreover, if u < w and j = `(w) − `(u), then there exist (not necessarily
adjacent) transpositions t1, . . . , tj such that u = tj · · · t1w and `(ti+1 · · · t1w) = `(ti · · · t1w)− 1 for all
i, 1 ≤ i < j. For a thorough exposition covering various definitions and properties of Bruhat order see [9,
Chap. 2].

2.2 Schubert varieties
Now we briefly define Schubert varieties. A (complete) flag F• in Cn is a sequence of subspaces {0} ⊆
F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Cn, with dimFi = i. As a set, the flag variety Fn has one point for
every flag in Cn. The flag variety Fn has an algebraic and geometric structure as GL(n)/B, where B is
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the group of invertible upper triangular matrices, as follows. Given a matrix g ∈ GL(n), we can associate
to it the flag F• with Fi being the span of the first i columns of g. Two matrices g and g′ represent the
same flag if and only if g′ = gb for some b ∈ B, so complete flags are in one-to-one correspondence with
left B-cosets of GL(n).

Fix an ordered basis e1, . . . , en for Cn, and let E• be the flag where Ei is the span of the first i basis
vectors. Given a permutation w ∈ Sn, the Schubert cell associated to w, denoted X◦w, is the subset of Fn
corresponding to the set of flags

{F• | dim(Fp ∩ Eq) = rw(p, q) ∀p, q}. (1)

The conditions in 1 are called rank conditions The Schubert variety Xw is the closure of the Schubert
cell X◦w; its points correspond to the flags

{F• | dim(Fp ∩ Eq) ≥ rw(p, q) ∀p, q}.

Bruhat order has an alternative definition in terms of Schubert varieties; the Schubert variety Xw is a
union of Schubert cells, and u ≤ w if and only if X◦u ⊂ Xw. In each Schubert cell X◦w there is a
Schubert point ew, which is the point associated to the permutation matrix w; in terms of flags, the flag
E

(w)
• corresponding to ew is defined by E(w)

i = C{ew(1), . . . , ew(i)}. The Schubert cell X◦w is the orbit
of ew under the left action of the group B.

Many of the rank conditions in (1) are actually redundant. Fulton [20] showed that for any w there is
a minimal set, called the coessential set(i), of rank conditions which suffice to define Xw. To be precise,
the coessential set is given by

Coess(w) = {(p, q) | w(p) ≤ q < w(p+ 1), w−1(q) ≤ p < w−1(q + 1)},

and a flag F• corresponds to a point in Xw if and only if dim(Fp ∩ Eq) ≥ rw(p, q) for all (p, q) ∈
Coess(w).

While we have distinguished between points in flag and Schubert varieties and the flags they correspond
to here, we will freely ignore this distinction in the rest of the paper.

2.3 Pattern avoidance and interval pattern avoidance
Let v ∈ Sm and w ∈ Sn, with m ≤ n. A (pattern) embedding of v into w is a set of indices i1 <
· · · < im such that the entries of w in those indices are in the same relative order as the entries of v.
Stated precisely, this means that, for all j, k ∈ {1, . . . ,m}, v(j) < v(k) if and only if w(ij) < w(ik). A
permutation w is said to avoid v if there are no embeddings of v into w.

Now let [x, v] ⊆ Sm and [u,w] ⊆ Sn be two intervals in Bruhat order. An (interval) (pattern)
embedding of [x, v] into [u,w] is a simultaneous pattern embedding of x into u and v into w using the
same set of indices i1 < · · · < im, with the additional property that [x, v] and [u,w] are isomorphic as
posets. For the last condition, it suffices to check that `(v)− `(x) = `(w)− `(u) [34, Lemma 2.1].

Note that given the embedding indices i1 < · · · < im, any three of the four permutations x, v, u, and w
determine the fourth. Therefore, for convenience, we sometimes drop u from the terminology and discuss
embeddings of [x, v] in w, with u implied. We also say that w (interval) (pattern) avoids [x, v] if there
are no interval pattern embeddings of [x, v] into [u,w] for any u ≤ w.

(i) Fulton [20] indexes Schubert varieties in a manner reversed from our indexing as it is more convenient in his context. As a
result, his Schubert varieties are defined by inequalities in the opposite direction, and he defines the essential set with inequalities
reversed from ours. Our conventions also differ from those of Cortez [15] in replacing her p− 1 with p.
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2.4 Singular locus of Schubert varieties
Now we describe combinatorially the singular loci of Schubert varieties. The results of this section are
due independently to Billey and Warrington [8], Cortez [15, 16], Kassel, Lascoux, and Reutenauer [23],
and Manivel [28].

Stated in terms of interval pattern embeddings as in [34, Thm. 6.1], the theorem is as follows. Permu-
tations are given in 1-line notation. We use the convention that the segment “j, · · · , i” means j, j − 1, j −
2, . . . , i+ 1, i. In particular, if j < i then the segment is empty.

Theorem 2.1 The Schubert variety Xw is singular at eu′ if and only if there exists u with u′ ≤ u < w
such that one of the following (infinitely many) intervals embeds in [u,w]:

I:
[
(y+1), z, · · · , 1, (y+z+2), · · · , (y+2); (y+z+2), (y+1), y, · · · , 2, (y+z+1), · · · , (y+2), 1

]
for some integers y, z > 0.

IIA:
[
(y + 1), · · · , 1, (y + 3), (y + 2), (y + z + 4), · · · , (y + 4); (y + 3), (y + 1), · · · , 2, (y + z +

4), 1, (y + z + 3), · · · , (y + 4), (y + 2)
]

for some integers y, z ≥ 0.

IIB:
[
1, (y + 3), · · · , 2, (y + 4); (y + 3), (y + 4), (y + 2), · · · , 3, 1, 2

]
for some integer y > 1.

Equivalently, the irreducible components of the singular locus of Xw are the subvarieties Xu for which
one of these intervals embeds in [u,w].

2.5 Bialynicki-Birula decompositions
Given a C∗ action on a smooth complex projective variety Y with finitely many fixed points, Bialynicki-
Birula [3, 4] defined a decomposition of Y into cells, which he showed are each isomorphic to Cn for
some n. More precisely, given a C∗-fixed point p, we can associate the cell

Y ◦p := {y ∈ Y | lim
t→0

t · y = p}.

In the case where Y is the flag variety, there is a C∗ action whose fixed points are the Schubert points and
whose resulting cells are the Schubert cells. Therefore, even though Schubert varieties are not smooth,
they have a Bialynicki-Birula decomposition.

Given a C∗-equivariant resolution of singularities π : Z → Xw, we also have a Bialynicki-Birula
decomposition of Z. Furthermore, if we let Pu denote the set of C∗-fixed points of Z in π−1(eu), we
have a cell decomposition

π−1(X◦u) =
⊔
p∈Pu

Y ◦p ,

and a decomposition of the fiber π−1(eu) into cells π−1(eu) ∩ Y ◦p which are respectively of dimensions
dim(Y ◦p )− dim(X◦u).

Therefore, the homology Poincaré polynomial for π−1(eu) is

Hu,π(q) =
∑
p∈Pu

qdim(Y ◦p )−`(u).

(Technically, the degrees should be doubled, but as we have halved the degrees since all cells will be
(R)-even-dimensional and this will match the usual degrees for Kazhdan-Lusztig polynomials.)
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2.6 The Decomposition Theorem
From the homology Poincaré polynomialsHu,π for a resolution π : Z → Xw we can, following Polo [30],
use the Decomposition Theorem [2] to calculate Kazhdan-Lusztig polynomials. More specifically, given
such a resolution,

Hu,π(q) = Pu,w(q) +
∑

u≤v<w

q`(w)−`(v)Ev(q)Pu,v(q).

In this statement, Ev(q) are Laurent polynomials in q
1
2 to be determined later; the Laurent polynomials

Ev(q) depend only on v and π and not on u, have with positive integer coefficients, and satisfy the identity
Ev(q) = Ev(q−1).

One case of the Decomposition Theorem is well-known in the theory of Kazhdan-Lusztig polynomials.
When Z is the full Bott-Samelson resolution of Xw constructed from a reduced word decomposition
w = si1 · · · si` , the fixed points of Z are indexed by the 2`(w) subwords of this reduced word. One
method of indexing leads to dim(Y ◦p ) − dim(X◦u) being Deodhar’s defect statistic [18], so that Hu,π is
precisely the sum, taken over subwords of our defining reduced word, of q raised to the number of defects
in the subword. Rearranged, the formula above is precisely Deodhar’s formula, and Ev(q) represents the
inadmissible masks.

Unfortunately the full Bott-Samelson resolution and Deodhar’s approach is too difficult to analyze in
this case. Instead we use a resolution of singularities due to Cortez [16] and calculate Hu,π for this
resolution π and certain crucial permutations u. This will give us enough information to calculate Ev for
those resolutions and determine Pid,w(q) when w satisfies the conditions of Theorem 1.1.

3 The covexillary case
A permutation w is covexillary if it avoids 3412. Generalizing a formula of Lascoux and Schützenberger
in the case where w has only one ascent, Lascoux [26] gave a formula for the Kazhdan-Lusztig polyno-
mials Pu,w(q) which applies whenever w is covexillary. This formula proceeds by constructing a rooted
tree Tw from w with nonnegative integer labels for the leaves of this tree based on how far u and w are
from each other. Given an edge labelling L of a tree by nonnegative integers, let s(L) be the sum of the
edge labels. Then Lascoux shows that

Pu,w =
∑
L

qs(L),

where the sum is over all nondecreasing edge labellings of Tw which are bounded by the labels for the
leaves.

A Schubert variety Xw for a covexillary permutation w has one component in its singular locus pre-
cisely when the labelling of the rooted tree Tw for id has only one leaf λ which is not labeled 0. Further-
more, the following lemmas hold.

Lemma 3.1 Suppose w avoids 632541. Then no single branch of Tw is two edges long by itself. (In other
words, every leaf is adjacent to a internal node with at least two children.)

Lemma 3.2 Suppose w avoids 653421. Then no leaf of Tw has a label greater than 1.

In consequence, when the singular locus of Xw has one component and w avoids 3412, 632541, and
653421, one must label all the edges of Tw by 0, except for the edge above λ which can be labelled 0 or
1. Therefore, Pid,w(q) = 1 + q.
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4 The 3412 containing case
In this section we treat the case where w contains a 3412 pattern. We use a resolution of singularities
defined by Cortez and the machinery mentioned above of a Bialynicki-Birula decomposition followed by
an application of the Decomposition Theorem.

4.1 Cortez’s resolution
We begin with some definitions necessary for defining a variety Z and a C∗-equivariant map π : Z → Xw

which we will show is a resolution of singularities. Our notation and terminology generally follows that
of Cortez [16]. Given an embedding i1 < i2 < i3 < i4 of 3412 into w, we call w(i1)− w(i4) its height
(hauteur), and w(i2)− w(i3) its amplitude. Among all embeddings of 3412 in w, we take the ones with
minimum height, and among embeddings of minimum height, we choose one with minimum amplitude.
As we will be continually referring this particular embedding, we denote the indices of this embedding by
a < b < c < d and entries of w at these indices by α = w(a), β = w(b), γ = w(c), and δ = w(d). We
let h = α− δ be the height of this embedding.

Let α′ be the largest number such that w−1(α′) < w−1(α′ − 1) < · · · < w−1(α + 1) < w−1(α) and
δ′ the smallest number such that w−1(δ) < w−1(δ − 1) < · · · < w−1(δ′). Also let a′ = w−1(α′) and
d′ = w−1(δ′). Now let κ = δ′ + α′ − α, let I denote the set of simple transpositions {sδ′ , · · · , sα′−1},
and let J be I \ {sκ}. Furthermore, let v = wJ0w

I
0w, where wJ0 and wI0 denote the longest permutations

in the parabolic subgroups of Sn generated by J and I respectively.

Example 4.1 Suppose w = 817396254 ∈ S9. Then a = 3, b = 5, c = 7, and d = 8, while α = 7, β = 9,
γ = 2, and δ = 5. We also have h = 2, α′ = 8 and δ′ = 4. Hence κ = 5 and v = 514398276.

Now consider the variety Z = PI ×PJ Xv . By definition, Z is a quotient of PI × Xv under the
free action of PJ where q · (p, x) = (pq−1, q · x) for any q ∈ PJ , p ∈ PI , and x ∈ Xv . We have
a map π : Z → Xw defined by π(p, x) = p · x; note this is well-defined. The map π is birational
and surjective [16, Proposition 4.4]. However, Z is not smooth in general, as Xv need not be smooth.
Nevertheless, we show the following for our case.

Lemma 4.2 Suppose the singular locus of Xw has only one component and w avoids 463152. Then Z is
smooth.

Cortez [16] introduced the variety Z along with several other varieties (constructed by defining κ =
δ′ + α′ − α + i − 1 for i = 1, . . . , h) to help in describing the singular locus of Schubert varieties(ii).
A virtually identical proof would follow from analyzing the resolution given by i = h instead of i = 1
as we are doing, but the other choices of i will give maps which are harder to analyze as they have more
complicated fibers.

4.2 Calculations for Hπ,u

We now need to identify the fixed points of Z under the C∗ action, calculate the dimensions of the cells
associated with them, and classify them according to the fixed point eu they map to under π. The fixed
points of Z are precisely {(σ, eτ )}, where σ is in WI , the parabolic subgroup of Sn generated by sk for

(ii) Cortez’s choice of 3412 embedding in [16] is slightly different from ours. For technical reasons she chooses one of minimum
amplitude among those satisfying a condition she calls “well-filled” (bien remplie). As she notes, 3412 embeddings of minimum
height are automatically “well-filled”.
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k ∈ I (considered as a subgroup ofGLn in the usual way), and τ ≤ v in Bruhat order on Sn. Several such
pairs (σ, τ) will be in the same PJ orbit, so they will represent the same point in Z. We can eliminate this
duplication by choosing one σ from each left WJ coset. For convenience, we will choose the one which
is minimal in Bruhat order; each coset has a unique minimal element since WJ is parabolic. Furthermore,
π(σ, eτ ) = eu if and only if στ = u.

When u is minimal in its rightWI coset, then the dimension of the cell associated to (σ, eτ ) ∈ π−1(eu)
is `(u) + `(σ). When u is not minimal in its right WI coset, then the dimension of the cell is harder to
calculate, but since π is PI -equivariant, the fiber of eu′ is the same as the fiber of eu whenever u′ and u
are in the same right WI coset. Therefore, given u ≤ w, let u′ denote the minimal element of its right WI

coset. Then
Hπ,u =

∑
(σ,τ)

q`(σ),

where σ ∈WI is minimal in its left WJ coset, τ ≤ v, and στ = u′.
It would be interesting to give a more direct formula for Hπ,u in general; hopefully this formula would

mimic that of Deodhar for the full Bott-Samelson resolution by placing some defect-like statistic in the
exponent of q.

Now we have the following combinatorial lemmas.

Lemma 4.3 Suppose that the singular locus of Xw has only one component and w avoids 546213. If
σ ∈ PI , τ ≤ v, and στ = id, then {1, . . . , κ− 1} ⊆ σ({1, . . . , κ}).

Lemma 4.4 Suppose that the singular locus of Xw has only one component and w avoids 465132. If
σ ∈ PI , τ ≤ v, and στ = id, then σ({1, . . . , κ}) ⊆ {1, . . . , κ+ h}.

In the case where h = 1, this shows that Hid,π(q) = 1 + q, since the only admissible σ are the
identity and the adjacent transposition sκ. This shows that Pid,w(q) = 1 + q. Otherwise, Hid,π(q) =
1 + q + · · ·+ qh. In this case, let ξ ∈ Sn be the cycle (γ, δ + 1, δ + 2, . . . , α = δ + h), and let ρ = ξw.
We then have the following lemma.

Lemma 4.5 Assume that the singular locus ofXw has only one component, that h > 1, and thatw avoids
526413. Then Hπ,u(1) > 1 only if u ≤ ρ, `(w)− `(ρ) = h, and Hπ,ρ = 1 + q + · · ·+ qh−1.

From these lemmas it follows by a calculation similar to one by Polo [30, Proposition 2.4(b)] that, in
the case h > 1,

Eu(q) = 0 for u 6= ρ,

Eρ(q) = q1−
h
2 + · · ·+ q

h
2−1,

and therefore
Pid,w = 1 + qh.
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1 Introduction
In 1988 (Mac), Macdonald introduced a family of symmetric functions with two variables that are known
as the Macdonald polynomials which becomes a basis for the space of symmetric functions. Upon intro-
ducing these polynomials, Macdonald conjectured that the coefficients of the Schur expansion of Macdon-
ald polynomials are polynomials in the parameters q and t with nonnegative integer coefficients. To prove
the positivity conjecture of Macdonald polynomials, Garsia and Haiman introduced certain bigraded Sn
modules Mµ (GH93) and Haiman proved that the bigraded Frobenius characteristic F(Mµ), which by
definition is simply the image of the bigraded character ofMµ under the Frobenius map, is the transformed
Macdonald polynomials, i.e.,

FMµ(x; q, t) = H̃µ(x; q, t),

where H̃µ(x; q, t) is the modified Macdonald polynomials (HHL05). For the Garsia-Haiman module Mµ,
if we define Hh,k(Mµ) to be the subspace of Mµ spanned by its bihomogeneous elements of degree h in
x and degree k in y, we can write a bivariate Hilbert series such as

HMµ
(q, t) =

n(µ)∑
h=0

n(µ′)∑
k=0

thqkdim(Hh,k(Mµ)).

Noting that the degree of the Sn character χλ is given by < pn1 , sλ >, where < , > is the usual inner
product on symmetric functions and pk is the kth power sum, we may write

HMµ
(q, t) =< pn1 ,FMµ

> .

Therefore, the coefficient of x1x2 · · ·xn of H̃µ(x; q, t) gives the Hilbert series of Garsia-Haiman module
Mµ.
On the other hand, Haglund, Haiman and Loehr found the combinatorial formula for the monomial ex-
pansion of H̃µ[X; q, t] given by (HHL05)

H̃µ(x; q, t) =
∑

σ:µ→Z+

qinv(µ,σ)tmaj(µ,σ)xσ (1)

where the definitions of inv(µ, σ) and maj(µ, σ) are given in Section 2. This combinatorial formula gives
a way of calculating the Hilbert series HMµ

(q, t) as a sum of n! monomials. In this paper, we introduce
a combinatorial formula for this Hilbert series which can be calculated over only the standard Young
tableaux of shape µ when µ has a hook shape. This combinatorial formula is motivated by the formula
for the 2 column shape case which is conjectured by Haglund and proved by Garsia and Haglund.

2 The Formula
We begin by recalling definitions of q-analogs :

[n]q = 1 + q + · · ·+ qn−1,

[n]q! = [1]q · · · [n]q.
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Given a sequence (µ1, µ2, . . . ) of nonincreasing, nonnegative integers with
∑
i µi = n, we say µ is a

partition of n, denoted by either |µ| = n or µ ` n. And let

dg(µ) = {(i, j) ∈ Z+ × Z+ : j ≤ µi}

be its Young (or Ferrers) diagram, whose elements are called cells. For simplicity, we henceforth write µ
instead of dg(µ) when it will not cause confusion. A filling is a function σ : µ → Z+ assigning integer
entries to the cells of µ. A semi-standard Young tableau is a filling which is weakly increasing along each
row of µ and strictly increasing along each column. A semi-standard Young tableau is standard if it is a
bijection from µ to [n] = {1, 2, . . . , n}. We define

SYT(µ)={ standard Young tableaux T : µ→ [n], T bijection }.
A descent of σ is a pair of entries σ(u) > σ(v), where the cell u is immediately above v. Define

Des(σ, µ) = {u ∈ µ : σ(u) > σ(v) a descent}.

The arm of a cell u ∈ µ is the number of cells strictly to the right of u in the same row, and its leg is the
number of cells strictly above u in the same column. Then define

maj(σ, µ) =
∑

u∈Des(σ,µ)

(leg(u) + 1).

Three cells u, v, w ∈ µ are said to form a triple if they are situated as shown below,

v
u w

namely, v is directly below u, and w is in the same row as u, to its right. Let σ be a filling and let x, y, z
be the entries of σ in the cells of a triple (u, v, w) :

x
y z

If a path starting from the smallest entry to the largest entry rotates in counter clockwise way, then the
triple is called an inversion triple. Otherwise, it is called a coinversion triple. Define

inv(σ, µ)= number of inversion triples in µ with σ filling,
coinv(σ, µ) = number of coinversion triples in µ with σ filling.

For a hook µ′ = (n− s, 1s), we define

G̃µ′(q, t) =
∑

T∈SYT(µ′)

n∏
i=1

[ai(T )]t · [s]q!

1 +
s∑
j=1

qjtαj(T )


where ai(T ) and αi(T ) are calculated in the following way : to construct T ∈ SYT(µ′), staring with
the cell containing 1, add cells containing 2, 3, . . . , i, one at a time. After adding the cell containing
i, ai(T ) counts the number of columns which have the same height with the column containing the
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square just added with i. And αj(T ) is the number of cells in the first row with column height 1 (i.e.,
strictly to the right of the first column) having bigger element than the element in (s − j + 1, 1) cell.
Then, for F̃(n−s,1s)′(q, t) =

∑
σ∈Sn q

maj(σ,µ′)tcoinv(σ,µ′), where F̃µ′(q, t) = tn(µ)Fµ
(

1
t , q
)

(i), n(µ) =∑
i≥q(i− 1)µi, we have the following theorem :

Theorem 2.1
F̃(n−s,1s)′(q, t) = G̃(n−s,1s)′(q, t).

Example 2.2 (µ = (2, 1) case) We calculate F̃(2,1)(q, t) =
∑
σ∈S3

qmaj(σ,µ′)tcoinv(σ,µ′) first.

1
2 3

1
3 2

2
1 3

2
3 1

3
1 2

3
2 1

From the above tableaux, reading from the left, we get

F̃(2,1)(q, t) = t+ 1 + qt+ 1 + qt+ q = 2 + q + t+ 2qt. (2)

Now we consider G̃(2,1)(q, t) over the two standard tableaux.

2
1 3=T1 ,

3
1 2=T2

For the SYT T1, if we add 1, there is only one column with height 1, so we multiply 1. And if we add 2,
since it is going on the top of the square with 1, it makes a column with height 2 and so there is only one
column with height 2 which gives us factor 1 again. Adding the square with 3, since there is one column
with height 1 and the column containing the square with 3 is height 1, it again gives the factor 1. Hence
for this tableau, the first factor is 1. For αj(T1), we compare the element in the first row to the right of the
square with 2, and that is 3 which is bigger than 2, so it gives α1(T1) = 0 which contributes the factor
(1 + qt). Hence, T1 gives the 1 · (1 + qt). Now we consider T2. If we add the second square with 2, then
it makes two columns with height 1, so we get a2(T2) = [2]t = (1 + t). Adding the last square gives the
factor 1, so the first factor is (1 + t). If we consider the second factor, since 3 is the biggest element in
this case, the power of t becomes 0 and that makes α1(T2) = 0. Hence from T2, we get (1 + t)(1 + q). If
we add two polynomials from two standard young tableaux of shape µ = (2, 1), we get

G̃(2,1)(q, t) = 1 · (1 + qt) + (1 + t)(1 + q) = 1 + qt+ 1 + t+ q + qt = 2 + q + t+ 2qt

which is equal to (2), i.e., F̃(2,1)(q, t) = G̃(2,1)(q, t).

Proof: We first note the Garsia-Haiman recursion for the Hilbert series of the hooks (GH96) : for µ =
(s+ 1, 1n−s−1),

Fµ(q, t) = [n− s− 1]tF(s+1,1n−s−2) +
(
n− 1
s

)
tn−s−1[n− s− 1]t![s]q! + q[s]qF(s,1n−s−1). (3)

(i) Note that Fµ(q, t) denotes the Hilbert series of Garsia-Haiman module Mµ.
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We derive the recursion formula for G̃µ′(q, t) over standard tableaux by fixing the position of the cell with
the largest number n :

n

n

Let’s first start from a SYT of shape (n− s, 1s−1) and say

G̃(n−s,1s−1)(q, t) =
∑

T∈SYT((n−s,1s−1))

n−1∏
i=1

[ai(T )]t · [s]q!

1 +
s−1∑
j=1

qjtαj(T )


and put the cell with n on the top of the first column. Then, since there is no other column with height
s+ 1, adding the cell with n on the top of the first column gives an = [1]t which doesn’t change the first
part of the above formula. Now as for the q part, we will have an additional factor of [s]q , and all the q
powers in the last parenthesis will be increased by 1 and it will have additional q from the top cell of the
first column. The exponent of t with that q is 0 since n is the largest possible number. Hence, for the first
case tableaux, the formula we get becomes

∑
T∈SYT((n−s,1s−1))

n−1∏
i=1

[ai(T )]t · [s]q!

1 + q

1 +
s−1∑
j=1

qjtαj(T )



=

 ∑
T∈SYT(n−s,1s−1)

n−1∏
i=1

[ai(T )]t · [s]q!

+ q[s]qG̃(n−s,1s−1)(q, t)

and in terms of G̃(n−s,1s−1)(q, t), this is equal to

[s]q!G̃(n−s,1s−1)(0, t) + q[s]qG̃(n−s,1s−1)(q, t).

In the second case, we start from a SYT of shape (n − s − 1, 1s) and add the cell with n in the end
of the first row. This increases the number of columns with height 1 from n − s − 2 to n − s − 1, so
contributes the t factor an = [n− s− 1]t. Since it doesn’t affect the first column, we don’t get any extra
q factor, but having the largest number n in the first row increases all the αj’s by 1. In other words, if we
let the formula for the SYT of shape (n− s− 1, 1s) as

G̃(n−s−1,1s)(q, t) =
∑

T∈SYT((n−s−1,1s))

n−1∏
i=1

[ai(T )]t · [s]q!

1 +
s∑
j=1

qjtαj(T )


then by adding the cell with n in the end of the first row, it changes to

∑
T∈SYT(n−s−1,1s)

[n− s− 1]t ·
n−1∏
i=1

[ai(T )]t · [s]q!

1 +
s−1∑
j=1

qjtαj(T )+1
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=
∑

T∈SYT(n−s−1,1s)

[n− s− 1]t ·
n−1∏
i=1

[ai(T )]t · [s]q!

t
1 +

s∑
j=1

qjtαj(T )

+ (1− t)

 .
Thus, in terms of G̃(n−s−1,1s), this can be expressed as

t[n− s− 1]tG̃(n−s−1,1s)(q, t) + (1− t)[n− s− 1]t[s]q!G̃(n−s−1,1s)(0, t).

In conclusion, the recursive formula is the following :

G̃(n−s,1s)(q, t) = q[s]qG̃(n−s,1s−1)(q, t) + t[n− s− 1]tG̃(n−s−1,1s)(q, t)

+[s]q!(G̃(n−s,1s−1)(0, t) + (1− tn−s−1)G̃(n−s−1,1s)(0, t)).

To compare it to the Hilbert series Fµ(q, t), we do the transformations G̃µ′(q, t) = Gµ
(

1
t , q
)
tn(µ), and

we get the recursion formula for Gµ(q, t)

G(s+1,1n−s−1)(q, t) = q[s]qG(s,1n−s−1)(q, t) + [n− s− 1]tG(s+1,1n−s−2)(q, t)

+[s]q!(G(s,1n−s−1)(0, t) + (tn−s−1 − 1)G(s+1,1n−s−2)(0, t)).

By calculation, we get

G(s,1n−s−1)(0, t) +G(s+1,1n−s−2)(0, t) = [n− s− 1]t![s]q!
(
n− 1
s

)
tn−s−1.

Thus the recursion formula for Gµ(q, t) simplifies to

G(s+1,1n−s−1)(q, t) = q[s]qG(s,1n−s−1)(q, t) + [n− s− 1]tG(s+1,1n−s−2)(q, t) (4)

+[n− s− 1]t![s]q!
(
n− 1
s

)
tn−s−1.

We compare two recursions (3) and (4) and we can confirm that Fµ(q, t) and Gµ(q, t) both satisfy the
same recursion. Based on the fact that F(2,1)(q, t) = G(2,1)(q, t) (note that we confirmed it in the previous
example), we conclude that Fµ(q, t) = Gµ(q, t) which implies F̃µ′(q, t) = G̃µ′(q, t). 2

Remark 2.3 We can construct a combinatorial way of calculating Fµ(q, t) directly over the standard
Young tableaux :

Fµ(q, t) =
∑

T∈SYT(µ)

n∏
i=1

[ai(T )]t[µ1 − 1]q!

µ1−1∑
j=1

qj−1tbj(T ) + qµ1−1


where ai(T ) counts the number of rows having the same width with the row containing i as adding the
cell i, from 1 to n, and bj(T ) counts the number of cells in the first column in rows strictly higher than
row 1 containing bigger numbers than the element in the cell (1, j + 1).
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3 Association with the Fillings
For the association with fillings, we are going to introduce a grouping table. For the general hook of
shape µ = (s, 1n−s), the way that we make the grouping table is the following : first we choose s many
numbers including 1 and n, in all possible ways. Note that for this we have

(
n−2
s−2

)
many choices. The

unchosen n−smany numbers will be placed in the first column above the (1, 1) cell, in all possible ways,
and the chosen s many numbers will come in the first row, in all possible ways. Then, this set of fillings
will correspond to one standard Young tableau. We read out the polynomial corresponding the standard
tableau in the following way : keeping in mind that we are calculating qinvtmaj, since the permutations
in the first column without including the (1, 1) cell give [n − s]t! factor and the permutations in the first
row without the (1, 1) cell give [s− 1]q! factor, we just consider s many different cases as we change the
element coming in the (1, 1) cell by the chosen ones and each will give qatb[n− s]t![s− 1]q! where a is
the number of elements in the first row to the right of (1, 1) cell which are smaller than the element in the
(1, 1) cell, and b is the number of elements in the first column above (1, 1) cell which are bigger than the
one in the (1, 1) cell. We repeat choosing s many numbers within 1 to n−k including 1 and n−k, where
k changes from 1 to n− s+ 1. Then the rest of the procedure will be the same. We consider an example
for µ = (3, 1, 1). The corresponding grouping table is the following :

1 2 3 4 5
× × ◦ ◦ ×
× ◦ × ◦ ×
× ◦ ◦ × ×
× × ◦ × ◦
◦ × × ◦ ×
× ◦ × × ◦
◦ × ◦ × ×
× × × ◦ ◦
◦ × × × ◦
◦ ◦ × × ×

The rows between dividing lines will be grouped in the same set and the entries marked by × will come
on the row and permute in all possible ways, and the entries marked by ◦ will come on the column not
including the (1, 1) cell, and permute all possible ways. All the fillings obtained by these permutations
of row and column will correspond to one standard tableau. For instance, from the first grouping × ×
◦ ◦ ×, we get 12 different fillings.

4
3
1 2 5

4
3
1 5 2

3
4
1 2 5

3
4
1 5 2 ,

4
3
2 1 5

4
3
2 5 1

3
4
2 1 5

3
4
2 5 1

4
3
5 1 2

4
3
5 1 3

3
4
5 1 2

3
4
5 2 1

If we calculate tmajqinv from the left of the top line, we get

t3 + qt3 + t2 + qt2 + qt3 + q2t3 + qt2 + q2t2 + q2t+ q3t+ q2 + q3 = (1 + t)(1 + q)(t2 + qt2 + q2)
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which will correspond to the standard tableau

5
4
1 2 3

Noting that the permutations of either column or row not including the (1, 1) cell will give (1 + t) from
the permutations of the column, and (1 + q) from the permutations of the row, the monomial coefficient
factors qatb multiplied by (1 + t)(1 + q) will be calculated by the following way : say k is placed in the
(1, 1) cell, then a is the number of chosen elements (i.e., × marked in the table) strictly smaller than k (or
number of ×’s strictly to the left of k), and b is the number of unchosen elements (i.e., ◦ marked in the
table) strictly bigger than k (or number of ◦’s strictly to the right of k). Following this method, we read
out the following polynomials from the grouping table, from the second line

(1 + t)(1 + q)(t2 + qt+ q2),
(1 + t)(1 + q)(t2 + q + q2),
(1 + t)2(1 + q)(t+ qt+ q2),
(1 + t)2(1 + q)(t+ q + q2),
(1 + t)(1 + t+ t2)(1 + q)(1 + q + q2).

And the corresponding standard tableaux are from the top

5
3
1 2 4

4
3
1 2 5

5
2
1 3 4

4
2
1 3 5

3
2
1 4 5

We use the modified Garsia-Procesi tree (GP92) to find the corresponding standard Young tableau given
the polynomial from the group of fillings. For the running example for µ = (3, 1, 1), the modified
Garsia-Procesi tree is given in the Figure 1. The way of finding the standard tableau from the modified
Garsia-Procesi tree is the following : given the polynomial from the fillings, either of the form (1+ t)(1+
q)(ta + qtb + q2) or (1 + t)2(1 + q)(ta + qtb + q2), compare (a, b) with the numbers on the right-top of
bottom leaves in the tree. Finding the same numbers in the tree, trace back the tree from the bottom to top
filling the cells from 1 to n (here n = 5) as the tree adds the cells. Then on the top of the tree, we get the
corresponding standard tableau giving exactly the same polynomial as we calculated before.

Proposition 3.1 The grouping table gives the complete Hilbert series.

Proof: By the way of constructing the grouping table that we don’t count the same filling multiple times,
we only need to check that the number of fillings that are counted in the grouping table is n!. From the
permutations on the first column and the first row not including (1, 1) we count (s − 1)!(n − s)!. In the
grouping table, the set with k lines will be

(
n−(k−1)
s−2

)
many and each line represents s different fillings.

Adding up them all, the number of fillings that the grouping table counts is

s!(n− s)!
((

n− 2
s− 1

)
+ 2
(
n− 3
s− 2

)
+ · · ·+ (n− s)

(
s− 1
s− 2

)
+ (n− s+ 1)

(
s− 2
s− 2

))
.
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Fig. 1: The modified Garsia-Procesi tree for µ = (3, 1, 1).

Therefore, we want to show the following identity(
n

s

)
=
(
n− 2
s− 1

)
+ 2
(
n− 3
s− 2

)
+ · · ·+ (n− s)

(
s− 1
s− 2

)
+ (n− s+ 1)

(
s− 2
s− 2

)
. (5)

Note the identity
n−1∑
j=k

(
j

k

)
=
(
n

k

)
. (6)

Then, by applying (6) twice, the right hand side of (5) becomes(
n− 2
s− 1

)
+ 2
(
n− 3
s− 2

)
+ · · ·+ (n− s)

(
s− 1
s− 2

)
+ (n− s+ 1)

(
s− 2
s− 2

)
=

((
n− 2
s− 1

)
+
(
n− 3
s− 2

)
+ · · ·+

(
s− 1
s− 2

)
+
(
s− 2
s− 2

))

+
((

n− 3
s− 2

)
+ · · ·+

(
s− 1
s− 2

)
+
(
s− 2
s− 2

))
+ · · · +

(
s− 2
s− 2

)
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=
(
n− 1
s− 1

)
+
(
n− 2
s− 1

)
+ · · ·+

(
s

s− 1

)
+
(
s− 1
s− 1

)
=

(
n

s

)
,

which is the left hand side of (5). This shows that we considered all n! possible fillings, hence the grouping
table gives the complete Hilbert series. 2

Proposition 3.2 The grouping table gives the association with the fillings corresponding to the standard
tableaux.

Proof: Remind that for the hook of shape µ = (s, 1n−s), the Hilbert series will be expressed as the
following.

Fµ(q, t) = [n− s]t![s− 1]q!
n−s+1∑
j1=2

· · ·
n∑

js−1=js−2+1

[j1 − 1]t(tb1 + qtb2 + · · ·+ qs−2tbs−1 + qs−1) (7)

where bi is the number of elements in the first column above the (1, 1) cell which are bigger than ji. We
start from the case where we have 1-lined set in the grouping table. Note that by knowing the tail part
of the standard tableaux in the Garsia-Procesi tree, we know that in this case, the standard tableaux look
like Figure 2. Then there are

(
n−2
s−2

)
possibilities for the choice of the rest of the (s − 2) elements in the

1 2
s− 2

Fig. 2: SYT corresponding to 1-lined set in grouping table

first row. Let’s say 1, a1, . . . , as−2, n, ai < aj for i < j, are chosen in the grouping table. If 1 comes
in the (1, 1) cell, then all the elements in the first row to the right and all the elements in the first column
above 1 are bigger than 1, so the monomial factor will be tn−s. And if a1 comes in the (1, 1) cell, then
we gain one power of q since 1 will be to the right of 2 in the first row, and the power of t will depend on
ai. Similarly, as ai comes in the (1, 1) cell, as i gets larger by 1, the power of q will be increased by 1,
and finally when n comes in the (1, 1) cell, since there are no bigger elements than n, it doesn’t have any
t powers and the power of q will be s− 1, since all the rest of the chosen numbers are smaller than n. So
this case gives the following form of polynomial

[n− s]t![s− 1]q!(tn−s + qtb1 + · · ·+ qs−2tbs−2 + qs−1)

where bi is the number of elements in the unchosen ones which are bigger than ai. Note that the fact that
we don’t have any repeated lines in the grouping table guarantees that we don’t get the same polynomials
multiple times, since the power of t, bi, is the number of unchosen ones to the right of ai in the grouping
table. Secondly, consider the two-lined sets in the grouping table. Again, by the tail looking of the
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1 3
2

s− 2

Fig. 3: SYT corresponding to 2-lined set in grouping table

standard tableaux in the tree, we know that this case takes care of the standard tableaux of the kind in
Figure 3. Then there are

(
n−3
s−2

)
many choices for the s− 2 elements in the rest of the first row. Let’s say

we have chosen 1, a1, . . . , as−2, n−1 in the first line. Then, by the construction, 2, a1+1, . . . , as−2+1, n
will be chosen as well in the second line. Notice that in the grouping table, the lost of one ◦ under n in the

1 2 a1 . . . as−2 n− 1 n
× [ ] × ◦
◦ × [ ] ×

Tab. 1: 2-lined set of the grouping table.

second line means that all the monomial factors from the first line have 1 more power of t than the ones
from the second line, hence we get (1 + t) factor after we sum them up all. So the polynomial that we get
from this case is the following

[n− s]t![s− 1]q!(1 + t)(tn−s−1 + qtb1 + · · ·+ qs−2tbs−s + qs−1)

where bi is the number of circles in the grouping table to the right of ai + 1. Now, we consider a
general case when we have k-lined set in the grouping table. This case takes care of the form of standard
tableaux in Figure 4. Again, there are

(
n−(k+1)
s−2

)
different possibilities for the different choice of numbers

1 k+1
2

k

..

.

s− 2

Fig. 4: SYT corresponding to k-lined set in grouping table

coming in the rest of the first column. Let’s say we choose 1, a1, . . . , as−2, n − k + 1 in the first line,
then 2, a1 + 1, . . . , as−2 + 1, n − k + 2 will be chosen in the second line, and finally in the kth line,
k, a′1, . . . , a

′
s−2, n will be chosen where a′i = ai+k− 1. Keeping in mind that the right most consecutive

circles in the same line will give the common t powers and having the same number of circles and the
same pattern means that the k lines have the common factor which comes from the kth line, this case gives
the polynomials as follows

[n− s]t![s− 1]q![k]t(tn−s−(k−1) + qtb1 + · · ·+ qs−2tbs−2 + qs−1)
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where bi is the number of circles to the right of a′i. In the last set of the grouping table, we choose
1, 2, . . . , s in the first line and n− s+ 1, . . . , n in the last (which is (n− s+ 1)th) line. This whole set of
fillings will correspond to the standard tableaux of the kind in Figure 5. The fact that there is no ◦ between

n−s+1

1
2
.
..

n−s+2 n. . .

Fig. 5: SYT corresponding to the last line in grouping table

times marks means there is no t powers combined with q and the consecutive circles to the right of the
chosen elements will give the common t factors. Adding up them all will give

[n− s]t![s− 1]q![n− s+ 1]t(1 + q + q2 + · · ·+ qs−1).

By comparing the polynomials coming from the grouping table and the polynomials added in the Hilbert
series, we can confirm that the sets in the grouping table give the polynomials corresponding standard
Young tableaux. Since we know that the grouping table gives the complete Hilbert series by Proposition
3.1, we conclude that the grouping table gives the association with fillings to the standard tableaux. 2

Remark 3.3 We note that the grouping table doesn’t give the information about what the right corre-
sponding standard tableau is. But since we can know which polynomial the standard tableau gives, once
the modified Garsia-Procesi tree is given, by using the powers of t combined with q’s, we can trace back
the tree to construct the corresponding the standard tableau, as we did in the example for µ = (3, 1, 1).
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