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Abstract. We investigate the probability that a random composition (ordered partition) of the positive integer n has
no parts occurring exactly j times, where j belongs to a specified finite ‘forbidden set’ A of multiplicities. This
probability is also studied in the related case of samples I' = (I'1, 'z, . .., ') of independent, identically distributed
random variables with a geometric distribution.

Résumé. Nous examinons la probabilité qu’une composition faite au hasard (une partition ordonnée) du nombre
entier positif n n’a pas de partie qui arrivent exactement j fois, ou j appartient a une série interdite, finie et spécifié A
de multiplicités. Cette probabilité est aussi étudiée dans le cas des suites I' = (I'1, I'2, ..., I'5,) de variables aléatoires
identiquement distribués et indépendants avec une distribution géométrique.

Keywords: compositions, generating functions, geometric random variable, Mellin transform, Poisson transform,
multiplicity

1 Introduction

In this paper we derive generating functions for random compositions (ordered partitions) of a positive
integer n in which no parts occur exactly j times, where j belongs to a specified finite ‘forbidden set’ A
of multiplicities. For notational convenience we shall refer to such compositions as being ‘A-avoiding’.
We go on to find the probabilities that compositions and samples of geometric random variables are A-
avoiding.
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As a simple example of a forbidden set, we may wish to consider a sample where none of the n elements
occur exactly a times. In this case A = {a}. Another example is when a letter can occur only a times or
more (or not at all), i.e., A = {1,2,...,a — 1}, for a > 2. Note that we do not allow 0 in the forbidden
set.

Previously in [6] [12]], geometric samples with the multiplicity constraint that certain values must occur
at least once were studied. These were called ‘gap-free’ and ‘complete’ samples. A gap-free sample has
elements whose values form an interval, namely if elements 2 and 6 are in the sample, then so are 3, 4 and
5. A complete sample is gap-free with minimal element 1.

In this paper we drop the ‘interval’ restriction, hence no value 0 in our forbidden sets. Here we are more
interested in the number of times the elements do occur than in the values of the elements. However, in
Section |2} the idea of forbidden sets is generalised even further when we allocate each value a different
forbidden set. For example, one could provide the restriction that the value 2 is not allowed to occur once,
but that the number of times that 5 can occur is anything except 2, 3 or 6 times. We denote the forbidden
set for the value ¢ by A;, so in this case, we have Ay = {1} and A5 = {2, 3,6}.

The paper begins with a discussion on compositions (Section [2)), where explicit generating functions
are derived for A-avoiding compositions and particular forbidden sets are highlighted. In Section
the link between compositions and samples of geometric random variables is explained. Section []is
devoted to geometric samples, and Theorem 2| gives the probability that a geometric sample is A-avoiding,
along with some further examples of specific forbidden sets. Finally in Section[5] we state the result for
compositions - i.e., the probability that a random composition of n is A-avoiding. Some of the longer
proofs, in particular, the proof of Theorem 2]in Section ] will be detailed in the full version of this paper.

2 Compositions

In this section we investigate the generating function for the number of A-avoiding compositions of n,
that is the number of compositions of n such that each part does not appear exactly j times, where j € A.
We then go on to generalise this by allowing a different forbidden set for each value, as described in the
introduction.

Let C4 q(x; m) be the generating function for the number of A-avoiding compositions of n with exactly
m parts from the set [d] = {1,2,...,d}. If o is any A-avoiding composition with m parts in [d], then o
contains the part d exactly j times with 7 € A and 0 < j < m. Deleting the parts that equal to d from o
we get an A-avoiding composition ¢’ of m — j parts in [d — 1]. Thus, rewriting the above rule in terms of
generating functions we get that

Caalz;m) =Y (?) 2 Cp a1 (zsm — ),

j=0
JgA
which is equivalent to
Ca,a(x;m N a¥ Cpgo1(vsm — 7
alaim) _ §na Cpge(aim =) 0
m! = 4! (m — j)!

JgA
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We denote the exponential generating function for the sequence C4 d(x; m) by C4 4(z,y), that is,

Caa(z,y) = ZCAdem

m>0

Therefore, the recurrence in (1)) can be written as

dj g J
d T
Caa(r,y) =Cag1(z,y) | Y — Z ly ’
jea T
which implies that
d kj g3
Ty
CAd 55 y H Z 4! ’

JEA
for all d > 1. Hence, we can state the following result.

Proposition 1 The generating function Ca(x,y) =, <o Ca(x; m)% is given by

Ca(z,y) = H ey Z

E>1 jEA

ki

4!

where C s (x;m) is the generating function for the number of A-avoiding compositions of n with exactly
m parts in N.

Let C' 4 (n, m) be the number of A-avoiding compositions of n with m partsand Ca(n) =, -, Ca(n,m)
be the number of A-avoiding compositions of 7. a

Corollary 1 The generating function C's(x) =3 _, ., Ca(n)x™ is given by

o= [ | -X 0

|
k>1 jea

kj yj

dy.

Proof: We use the fact that [~ e=¥y™dy = m!. Then

/ e VCa(x,y)dy = Z Z OA (n,m /C>o y"e Vdy = ZC’A(n)x".
0 0

n>0 m>0 n>0

Example 1 Let A; = {1} for all i, then the above proposition gives that
k
Cay(z,y) = [J(e"? - z*y).
k>1

and Corollary 1 gives
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Similar techniques as before show the following general result.

Proposition 2 The generating function Da, a,,.. (€, y) =Y ,.~0 DAy, 4,,..(2; m)% is given by

A, Kigi
Daga(wy) = [T [ = 30 =5 |

|
k>1 JEAL J:

where D 4, a,.. (x;m) is the generating function for the number of compositions o of n with exactly m
parts in N such that if o contains the part i exactly d; times, then d; ¢ A;. Furthermore,

o kjoi
_ k X
Daas(o) = [ e L | = 30
0

k>1 JEAL J:

dy.

Example 2 For instance, let Ay = {1} and A; = 0 for i > 2, then the above proposition gives that
2

F({E,y) = D{l},@,@,...(‘rvy) = (ewy - :Ey)e%

If we expand F (x,y) as a power series at x = y = 0, then we obtain that

.%‘jyj $2jyj
F - T —_—
j=0 j=>0

which implies that

M x2m—1
-m .
(1—x)m (1—x)m-1
Summing over all m > 0, we get that the ordinary generating function for the number of compositions o
of n such that the number occurrence of the part 1 in o does not equal 1 is given by

Dy g, (x;m) =

1—x (1 —x2)?
1-2z (1—z—22)?

Note that it is not hard to generalize the above enumeration to obtain that the ordinary generating function
for the number of compositions o of n such that the number occurrence of the part 1 in o does not equal
{ is given by

1—= | (1 — x)t*!

1-2z (1—ax—a2)tHt

Example 3 For instance, let Ay = Ay = {1} and A; = 0 for i > 3, then the above proposition gives that

3

G(x,y) = D1y 11,00, (2, ) = (€% — ay)(e” ¥ — ay)ei==.

If we expand G(x,y) as a power series at x = y = 0, then we find that

Day.1y.00,. (z3m)
r 2™t (1 — a4 2?)m ! g1 L33

B e L (e T (e
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Summing over all m > 0, we get that the ordinary generating function for the number of compositions o
of n such that the number occurrence of the part i, 1 = 1,2, in o does not equal 1 is given by

11—z (1 —2)? 22(1 — 2)? n 223(1 — )3

1-2z (1—-z—22)2 (1—-2z+22—25)2  (1—xz—a3)3

Theorem 1 Fixa € N. Let A; = {a} foralli =1,2,... £ and Apy; = O for all i > 1. The ordinary
generating function for the number of compositions m of n such that 7 does not contain part i exactly a
times forallt = 1,2, ... 0 is given by

4
S Damm) =1 4> Y (1

. VAR
m>0 J=11<i1 <o << <L (1 — 1% + Ziﬂ :r/“k)

jla® Sihor ik

The proof of this result will be given in the full version of this paper. From the theorem we can deduce
the following result.

Corollary 2 The ordinary generating function for the number of {a}-avoiding compositions of n is given
by

O D ) LG el

1-2z aj+1°
421 BCN, |B|=j (1 — 5=+ s xb)

Even in this simple case of A = {a} it does not seem easy to find asymptotic estimates for the co-
efficients from the generating functions appearing in either Corollary 1 or Corollary 2. Instead we will
exploit the correspondence between compositions and geometric random variables of parameter p = 1/2,
as detailed in the next section.

3 Reduction of compositions to geometric samples

In order to derive asymptotic estimates, it will be convenient to adopt a probabilistic viewpoint. That is,
rather than think of the proportion of A-avoiding compositions we will equip the set of all compositions
of n with the uniform probability measure and will be interested in the probability that a randomly chosen
composition of n is A-avoiding. In that setting, compositions of n are closely related to the special case
for geometric random variables when p = 1/2, as shown in [[7,[8] and again in this section.

The starting point for reducing compositions to samples of geometric random variables is the following
representation of compositions of n (see e.g., [2]]). Consider sequences of n black and white dots subject
to the following constraints

(i) the last dot is always black
(i1) each of the remaining n — 1 dots is black or white.

Then there is a 1-1 correspondence between all such sequences and compositions of n. Namely, part sizes
in a composition correspond to “waiting times” for occurrences of black dots. For example, the sequence

e O O e O e e e O e O o
~ — T T N
1 3 2 1 1 2 2
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represents the composition of 12 into parts (1,3,2,1,1,2,2). As discussed e.g. in [7,[8] this leads to the
following representation of random compositions. Let p = 1/2 and define

T=1,=inf{k>1: Ty +Ts+---+T% >n}.

Then a randomly chosen composition « of n has distribution given by
T—1 L _
k=1l ..., Dron—» Tj) = (4, Ty, Ty).
j=1

Furthermore, 7 has known distribution, namely,

1
721+ Bin(n — L3):

where Bin(m, p) denotes a binomial random variable with parameters m and p and 2 stands for equality in
distribution. Hence, 7 is heavily concentrated around its mean. Specifically, since var(7) = var(Bin(n —
1,1/2)) = (n — 1) /4, for every t > 0 we have (see [1| Section A.1])

2

2t
P(lr — Er| > t) < 2exp{— ]
n—

}.

In particular, for ¢,, ~ venlnn,

1
B(|7 — Er| > t,) = O (n) :
for any ¢ > 0.
Let P(k € C) be the probability that a random composition is A-avoiding. We proceed by series of
refinements exactly as in [6]. Set m_ to be

_ Ln—kl J
m, = —in |-
2

As shown in [6], with overwhelming probability,  is A-avoiding if and only if the first m,, of its parts
are A-avoiding. In [6] the property considered is “complete” rather than “A-avoiding”, but the arguments
remain unchanged.

Ultimately we obtain, exactly as in [6],

In?/?

IP’(meC):IP’((Fl,...,Fm;)EC)+O< \/ﬁn)

thereby reducing the problem to samples of geometric random variables.
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4 Geometric random variables

Following the discussion in Section [3]above it is natural to start the investigation for the probability that a
composition is A-avoiding with samples of geometric random variables with arbitrary parameter p, where
0 < p < 1. There is now an extensive literature on the combinatorics of geometric random variables and
its applications in Computer Science which includes [13} 15 16} [11} [12} |13 14].

LetT' = (T'y,[s,...,T,) be a sample of independent identically distributed (i.i.d.) geometric random
variables with parameter p, that is, P(I; = k) = pgé~1, with p + ¢ = 1, where k = 1,2,... and
1 =1,2,...,n. We shall restrict the multiplicity of elements in a sample of length n by prohibiting any
occurrences of exactly j entries of a given size, for j a natural number belonging to a specified finite set
of excluded numbers A, the forbidden set. We also call such a random sample of n geometric variables
A-avoiding.

The method used in [6] can be applied to the problem described above. We start with a recursion for
the probabilities that depends on the set A and then use Poissonisation and Mellin transforms followed by
de-Poissonisation to obtain our asymptotic estimates.

Using this approach, the following main result for geometric random variables will be proved in the

full version of this paper. We define xj, := 13(’617;2 ;-

Theorem 2 Let A be any finite set of positive integers. The probability p,, that a geometric sample of
length n has no letter appearing with multiplicity j, for any j € A is (asymptotically as n — o)

7+(0)

Pn = 1- m - 5(10g1/q(n/Q)) + O(n_1)7
with ) )
. +]
T*0)= ) 1 Y " —— (n . ) )
j;A 7; n-+j J
and ]
6 — T* —2kmix
)= iz 2w
where ] N
T'(00) = X 5 S p ST+, for keZ\0) 3)

jeA " n>0
Here 0(x) is a periodic function of x with period 1, mean 0 and small amplitude.

The corresponding result for compositions of n is given in Section[5]

4.1 Examples of finite forbidden sets A

In the sections above we mentioned a few specific examples that would satisfy this definition of the
forbidden set. Here we simplify the 7% (0) and T () formulae from Theorem 2|for a few specific cases.
The simplest case for A is a singleton set consisting of one value a. If A = {a}, then

« L (n+a . p* q"
T*(0) =p“2pnq"n+a( " ) and  T"(xx) = EanHF(nJraerk)-
n>0 n>0
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If we consider the case where A = {1,...,a — 1}, then
. 1 (n+j ] < p 7"
T( Zp > png" . and  T*( Z > b D0+ 5+ ).
n+j J
J=1 n>0 " n>0

In particular if we want the probability that no element occurs exactly once (all elements must occur at
least twice if they occur at all), we have a main term for p,, of

1/q anq

This main term is plotted as a function of p in Figure[I]

1

Fig. 1: Plot of the non-oscillating limit term for py, for 0 < ¢ < 1.

The corresponding picture for the probability that no element occurs exactly twice is given in Figure[2]

0.2 0.4 0.6 0.8 1

Fig. 2: Plot of the non-oscillating limit term for p,, for 0 < q < 1.

In spite of what the Figures [[]and [2] tend to suggest for ¢ near 1, the main term here is strictly greater
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than zero for every 0 < p < 1 as

1 n+a
T*O:a nn
()prqn+a<a>

n>0

1 (n+a (1—¢q)@
< po n — e
<p"d g n+a( . ) P

n>0
<1<1In(1/g).

We observe also that the sequences (p,,) in this section do not have a limit, but exhibit small oscillations
where both the period and amplitude of the oscillations depend on p. Such oscillations are almost ubig-
uitous in problems solved using Mellin transform techniques. For example, Figures [3] and [4] (Section [5)
show these oscillations in the case that no element occurs exactly once (twice) when p = 1/2.

5 Compositions revisited

From Section 3] we conclude that probabilities for compositions can be reduced to probabilities for sam-
ples of geometric random variables. This result together with the special case p = ¢ = % in Theorem
leads to the following corollary.

Corollary 3 Let A be any finite set of positive integers. The probability p,, that a composition of n has
no part appearing with multiplicity j, for any j € A is (asymptotically as n — o0)

7(0) %% n
=1- —4(1
Pn In2 5(°g2n)+0< N A
with
1\J I\ 1 (n+j
T°0)=> (5) Dorals ( . ) )
ey (2) 50 (2) n+y J
and
_ 1 * —2kmix
§(z) = 2 ZT (xk)e
k0
where X = 21’;’; and

T (xi) = 26;4 % (%)] Z:O B (%)"r(n Y idxa), for kezZ\{o) 5)
J n>

Asin Theorem d(x) is a periodic function of 2z with period 1, mean 0 and small amplitude. In Figures

[3|and[] we plot the probabilities that no element occurs exactly once (twice) in compositions of n.

In particular, we see that the probabilities p,, that a composition is A-avoiding, do not converge to a
7(0)
In2

limit as n — oo, but instead oscillate around the value 1 —
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0.188214¢"
0.188212}
A\ N
\/2\(7 4Vo No\foo
0.188208[ .5 |
i
0.188206¢.
Fig. 3: Plot of p, forb =1 and 1 < n < 1000.
0.4491;°
' 200 400 600 800 1000
0.4489 [\
0.4488}. 4
0.4487 .
Fig. 4: Plot of p», forb =2 and 1 < n < 1000.
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