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The expansion of Hall-Littlewood functions in
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Abstract. A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions
was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion
of stable Grassmannian Grothendieck polynomials into monomials was first given by Buch, using set-valued tableaux.
The dual basis of the stable Grothendieck polynomials was given a combinatorial expansion into monomials by Lam
and Pylyavskyy using reverse plane partitions. We generalize charge to set-valued tableaux and use all of these
combinatorial ideas to give a nice expansion of Hall-Littlewood polynomials into the dual Grothendieck basis.

Résumé. En associant une charge à un tableau, une formule combinatoire donnant le développement des polynômes
de Hall-Littlewood en termes des fonctions de Schur a été obtenue par Lascoux et Schützenberger. Une formule
combinatoire donnant le développement des polynômes de Grothendieck Grassmanniens stables en termes des fonc-
tions monomiales a quant à elle été obtenue par Buch à l’aide de tableaux à valeurs sur des ensembles. Finalement,
une formule faisant intervenir des partitions planaires inverses a été obtenue par Lam et Pylyavskyy pour donner le
développement de la base duale aux polynômes de Grothendieck stables en termes de monômes. Nous généralisons
le concept de charge aux tableaux à valeurs sur des ensembles et, en nous servant de toutes ces notions combinatoires,
nous obtenons une formule élégante donnant le développement des polynômes de Hall-Littlewood en termes de la
base de Grothendieck duale.
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1 Introduction
The Hall-Littlewood functions are symmetric functions with a wealth of applications. In various forms,
they interpolate between the complete homogeneous and Schur basis of symmetric functions, provide
a polynomial realization of the Hall algebra, and have several interpretations as characters of represen-
tations. Lascoux and Schützenberger gave an expansion of the Hall-Littlewood functions into Schur
functions, in terms of a statistic on tableaux called charge [LS78]. We write this expansion as

Hµ[X; t] =
∑
λ

∑
T∈SST (λ,µ)

tch(T )sλ (1)

where SST (λ, µ) is the set of all semi-standard tableaux of shape λ and evaluation µ. From this expan-
sion, the following properties of the Hall-Littlewood function are more or less immediate:
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• the coefficient of sλ is a polynomial in t with non-negative integer coefficients,

• specializing t = 1 gives Hµ[X; 1] = hµ, the complete homogeneous symmetric function, and

• specializing t = 0 gives Hµ[X; 0] = sµ.

See [Mac95] for more details about Hall-Littlewood functions.
The Grothendieck polynomials were introduced by Lascoux and Schützenberger [LS83] as power se-

ries representatives for the K-theory classes of the structure sheaves of Schubert varieties. The stable
Grothendieck polynomials introduced by Fomin and Kirillov [FK94] are the stable limit of these as the
number of variables approaches infinity. These functions, written Gλ, are non-homogeneous symmet-
ric functions, which cannot be written as a finite sum of Schur functions. The function Gλ is equal
to sλ in its lowest degree homogeneous component, and (in terms of Schur functions or monomials) is
sign-alternating by degree in the higher homogeneous components. Buch gave an expansion of the sta-
ble Grothendieck polynomials into monomial symmetric functions by introducing set-valued tableaux
[Buc02]. We write this expansion as

Gλ =
∑
µ

(−1)|µ|−|λ|kλ,µmµ (2)

where kλ,µ denotes the number of set-valued tableaux of shape λ and evaluation µ.
Lam and Pylyavskyy studied the dual basis to the stable Grothendieck polynomials under the Hall

inner product [LP07]. They expanded these into monomials using a special evaluation of reverse plane
partitions. We denote the dual basis to {Gλ} by {gλ}. These are Schur positive, non-homogeneous
symmetric functions, with gλ equal to sλ in the top degree. We note that equation 2 and a simple fact
about dual bases immediately implies

hµ =
∑
λ

(−1)|µ|−|λ|kλ,µgλ . (3)

In this work, we give a generalization of the charge statistic to set-valued tableaux. In particular, we
define the reading word of a set-valued tableau, and then define the charge to be the charge of the reading
word. We then prove the common generalization of equations 1 and 3:

Hµ[X; t] =
∑
λ

(−1)|µ|−|λ|
∑

T∈SV T (λ,µ)

tch(T )gλ (4)

where SV T (λ, µ) denotes the set of set-valued tableaux of shape λ and evaluation µ. We find it re-
markable that such a nice formula exists, as we are unaware of any direct connection between the Hall-
Littlewood functions and K-theory.

2 Definitions and notation
2.1 Symmetric function basics
We begin by setting our notation with some standard definitions. An introduction to symmetric functions
can be found in [Mac95] or [Sta99].
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Definition 1 The Young diagram of a partition λ = (λ1, λ2, · · · , λk) is a left- and bottom-justified array
of 1 × 1 square cells in the first quadrant of the coordinate plane, with λi cells in the ith row from the
bottom.

Example 1 The Young diagram of the partition (3, 2) is .

Definition 2 A semi-standard tableau of shape λ is a filling of the cells in the Young diagram of λ with
positive integers, such that the entries

• are weakly increasing while moving rightward across any row, and

• are strictly increasing while moving up any column.

Example 2 A semi-standard tableau of shape (3, 2) is 2 3
1 1 2

.

The evaluation of a semi-standard tableau is the sequence (αi)i∈N where αi is the number of cells
containing i. The evaluation of the tableau in example 2 is (2, 2, 1) (trailing 0’s have been omitted, as is
customary). We use the notation SST (λ) to mean the set of all semi-standard tableaux of shape λ, and
SST (λ, µ) to mean the set of all semi-standard tableaux of shape λ and evaluation µ.

The Schur functions have many definitions, one of which is in terms of semi-standard tableaux.

Definition 3 The Schur function sλ is defined by

sλ =
∑

T∈SST (λ)

xev(T ) .

The notation xev(T ) means xα1
1 xα2

2 · · · , where (α1, α2, · · · ) is the evaluation of T . The Schur functions
are elements of C[[x1, x2, · · · ]], the power series ring in infinitely many variables, and are well known to
be a basis for the symmetric functions (i.e., those elements of C[[x1, x2, · · · ]] which are invariant under
any permutation of their indices).

Example 3 The Schur function s(2,1) can be written as

s(2,1) = x21x2 + x1x
2
2 + 2x1x2x3 + · · ·

corresponding to the tableaux
2
1 1

2
1 2

3
1 2

2
1 3

· · · .

Another basis for the symmetric functions is the monomial symmetric functions.

Definition 4 The monomial symmetric function mλ is defined by

mλ =
∑
α

xα ,

where the sum is over all sequences α which are a rearrangement of the parts of λ. (Here λ is thought of
as having finitely many non-zero parts, followed by infinitely many 0 parts.)
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Example 4 The monomial symmetric function m(2,1) can be written as

m(2,1) = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 + . . . .

The Kostka numbers give the change of basis matrix between the Schur and monomial symmetric
functions. For two partitions λ, µ, we define the number Kλ,µ to be number of semi-standard tableaux of
shape λ and evaluation µ. From the previous definitions, one can see that a consequence of the symmetry
of the Schur functions is that

sλ =
∑
µ

Kλ,µmµ . (5)

There is a standard inner product on the vector space of symmetric functions (known as the Hall inner
product), defined by setting

〈sλ, sµ〉 =

{
1 if λ = µ

0 otherwise.

The following proposition is a basic, but very useful, fact of linear algebra.

Proposition 1 If ({fλ} , {f∗λ}) and ({gλ} , {g∗λ}) are two pairs of dual bases for an inner-product space,
and

fλ =
∑
µ

Mλ,µgµ ,

then
g∗µ =

∑
λ

Mλ,µf
∗
λ .

We define the set of homogeneous symmetric functions, {hλ}, to be the dual-basis to the monomial
symmetric functions. An immediate consequence of proposition 1 is that

hµ =
∑
λ

Kλ,µsλ . (6)

2.2 Hall-Littlewood symmetric functions
The Hall-Littlewood functions belong to the space C[t][[x1, x2, . . . ]] of formal power series in infinitely
many variables with coefficients in the polynomial ring C[t]. There are multiple (unequal, but related)
definitions of these functions in the literature. The version we concern ourselves with here are most
commonly written as Hλ or Q′λ. In [LS78], Lascoux and Schützenberger found a purely combinatorial
presentation of these functions. The key notion is a statistic on semi-standard tableaux known as charge.
Before defining charge, we need the notion of the reading word of a tableau.

Definition 5 The reading word of a tableau T , which we denote byw(T ), is the sequence (w1, w2, . . . , wn)
obtained by listing the elements of T starting from the top-left corner, and reading across each row and
then continuing down the rows.

Example 5 We have w
(

2 3
1 1 2

)
= (2, 3, 1, 1, 2).
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We will first define the charge of a word, and then define the charge of a tableau to be the charge of
its reading word. For our purposes, it will be sufficient to define charge only on words whose evaluation
is a partition. While this can be extended to all semi-standard tableau, this requires a substantially more
complicated definition. We begin by defining the charge of a permutation; this is a word with evaluation
(1, 1, . . . , 1). If w is a permutation of length n, then the charge of w is given by

∑n
i=1 ci(w) where

c1(w) = 0 and ci(w) is defined recursively as

ci(w) = ci−1(w) + χ (i appears to the right of i− 1 in w) . (7)

Here we use the notation that when P is a proposition, χ(P ) is equal to 1 if P is true and 0 if P is false.

Example 6 A straightforward computation shows that

ch(3, 5, 1, 4, 2) = 0 + 1 + 1 + 2 + 2 = 6.

We will now describe the decomposition of a word with partition content into charge subwords, each of
which are permutations. The charge of a word will then be defined as the sum of the charge of its charge
subwords. To find the first charge subword w(1) of a word w, we begin at the right of w (i.e., at the last
element of w) and move leftward through the word, marking the first 1 that we see. After marking a 1, we
continue to travel to the left, now marking the first 2 that we see. If we reach the beginning of the word,
we loop back to the end. We continue in this manner, marking successively larger elements, until we
have marked the largest letter in w, at which point we stop. The subword of w consisting of the marked
elements (with relative order preserved) is the first charge subword. We then remove the marked elements
from w to obtain a word w′. The process then continues iteratively, with the second charge subword being
the first charge subword of w′, and so on.

Example 7 We illustrate the first charge subword of w = (5, 2, 3, 4, 4, 1, 1, 1, 2, 2, 3) by labeling the
relevant elements in bold: (5,2, 3, 4,4, 1, 1,1, 2, 2,3). If we remove the bold letters, and bold the second
charge subword, we obtain (3,4, 1,1, 2,2). It is now easy to see that the third and final charge subword
is (1,2). Thus we have the following computation of the charge of w:

ch(w) = ch(5, 2, 4, 1, 3) + ch(3, 4, 1, 2) + ch(1, 2)

= (0 + 0 + 1 + 1 + 1) + (0 + 1 + 1 + 2) + (0 + 1)

= 8

We can now define the Hall-Littlewood polynomials.

Definition 6 The Hall-Littlewood polynomial Hλ[X; t] is defined by

Hµ[X; t] =
∑
λ

∑
T∈SST (λ,µ)

tch(T )sλ

Note the similarity of this definition and equation (6). In particular, if we set t = 1 in definition 6, we
obtain equation (6) exactly.
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2.3 Grothendieck polynomials
To define the Grothendieck polynomials, we need first need a definition of set-valued tableaux, due to
Buch [Buc02].

Definition 7 A set-valued tableau of shape λ is a filling of the cells in the Young diagram of λ with sets of
positive integers, such that

• the maximum element in any cell is weakly smaller than the minimum element of the cell to its right,
and

• the maximum element in any cell is strictly smaller than the minimum entry of the cell above it.

Another way to think about this definition is that if we select a single element from each cell (in any
possible way) we will always end up with a semi-standard tableau.

Example 8

A set-valued tableau of shape (3, 2) is
3 4, 5, 6

1, 2 2, 3 3

.

We have omitted the set braces, ‘{’ and ‘}’, here and throughout for clarity.
The evaluation of a set-valued tableaux S is the composition α = (αi)i≥1 where αi is the total number

of times i appears in S. For example, the evaluation of the tableau in example 8 is (1, 2, 3, 1, 1, 1). The
collection of all set-valued tableaux of shape λ will be denoted SV T (λ) and the collection of all set-
valued tableaux of shape λ and evaluation α will be denoted SV T (λ, α). We write kλ,µ for the number
of set-valued tableaux of shape λ and evaluation µ.

We will use set-valued tableaux to define the Grothendieck polynomials.

Definition 8 We define the polynomials Gλ(X) by

Gλ =
∑
µ

(−1)|µ|−|λ|kλ,µmµ

We note that when |µ| = |λ|, we must have one element in every cell; hence Gλ is equal to sλ plus higher
degree terms. Since the Gλ are known to be symmetric functions, they must therefore form a basis.

Applying proposition 1 to this definition gives

hµ =
∑
µ

(−1)|µ|−|λ|kλ,µgλ (8)

where the {gλ} are the dual basis to the {Gλ}.
The dual Grothendieck polynomials gλ were studied by Lam and Pylyavskyy [LP07]. They gave an

expansion of the gλ into monomials via reverse plane partitions.

Definition 9 A reverse plane partition of shape λ is a filling of the cells in the Young diagram of λ with
positive integers, such that the entries are weakly increasing in rows and columns.
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Example 9 A reverse plane partition of shape (3, 2) is 1 2
1 1 2

.

Following Lam and Pylyavskyy (and differing from some other conventions) we define the evaluation
of a reverse plane partition P to be the composition α = (αi)i≥1 where αi is the total number of columns
in which i appears. For example, the evaluation of the reverse plane partition in example 9 is (2, 2). The
collection of all reverse plane partitions of shape λ will be denoted RPP (λ) and the collection of all
reverse plane partitions of shape λ and evaluation α will be denoted RPP (λ, α).

Theorem 1 (Lam-Pylyavskyy) The polynomials gλ have the expansion

gλ =
∑

T∈RPP (λ)

xev(P ) .

We note that when |µ| = |λ|, the entries must be strictly increasing up columns; hence gλ is equal to sλ
plus lower degree terms.

3 Main result
Before we can state our result, we must define the charge of a set-valued tableau. This is accomplished
by defining the reading word of a set-valued tableau.

Definition 10 The reading word of a set-valued tableau T , which we denote by w(T ), is the sequence
(w1, w2, . . . , wn) obtained by listing the elements of T starting from the top-left corner, and reading each
row according to the following procedure and then continuing down the rows. In each row, we first ignore
the smallest element of each cell, and read the remaining elements from right to left, and from largest to
smallest within each cell. Then we read the smallest element of each cell from left to right, and proceed
to the next row.

Example 10 The reading word of

3 4, 5, 6

1, 2 2, 3 3

is (6, 5, 3, 4, 3, 2, 1, 2, 3).

We now define the charge of set-valued tableau to be the charge of its reading word. We may now state
our main theorem.

Theorem 2 We have the following expansion of Hall-Littlewood functions into dual Grothendieck func-
tions:

Hµ[X; t] =
∑
λ

(−1)|µ|−|λ|
∑

S∈SV T (λ,µ)

tch(S)gλ . (9)
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As this is an extended abstract, we provide only a sketch of the proof. Expanding the sλ on the right
hand side of equation 1 gives

Hµ[X; t] =
∑
λ

∑
T∈SSY T (λ,µ)

tch(T )sλ (10)

=
∑
λ

∑
T∈SSY T (λ,µ)

tch(T )
∑

Q∈SSY T (λ)

xev(Q). (11)

If we expand the gλ in (9) according to theorem 1, we obtain

Hµ[X; t] =
∑
λ

(−1)|µ|−|λ|
∑

S∈SV T (λ,µ)

tch(S)
∑

R∈RPP (λ)

xev(R) . (12)

Now we define Sµ to be the set of pairs (S,R) where S is a set-valued tableau of evaluation µ and R is
a reverse plane-partition of the same shape as S. We define the sign of such a pair to be (−1)|µ|−|λ| (where
λ is the mutual shape of S and R) and the weight of such a pair to be tch(S)xev(R). Comparing (10) and
(12), we see that we can complete the proof by finding a sign-reversing, weight-preserving involution on
Sµ whose fixed points are pairs (S,R) where both S and R are semi-standard in the usual sense. We
describe this involution below.

3.1 Definition of the involution
Given a pair (S,R) we wish to construct a pair ι(S,R) = (S′, R′) of opposite sign and equal weight. We
start from the top of both tableaux and work our way down until we find the first row where at least one
of the following conditions hold:

1. A cell in S contains more than one element.

2. A cell in R contains the same element as the cell immediately above it.

If no such row exists, the pair is a fixed point. Otherwise, we define row(S,R) to be this row. If only
condition (1) holds in row(S,R), we will perform an operation we call expansion to define (S′, R′).
Alternatively, if only condition (2) holds in row(S,R), we perform an operation called contraction to
define (S′, R′). If both conditions hold, we will either expand or contract; the method for determining
which will be described following the description of the operations.

We first describe expansion, beginning with the construction of S′. Let i = row(S,R), and define
x(S,R) to be the largest element in row i of S which is contained in a multi-element cell (henceforth,
multicell). Let Ŝ be the semi-standard tableau consisting of the rows of S which are strictly above row i.
We form S′ from S by removing x(S,R) from the multi-cell in row i which contains it, and replacing Ŝ
with the Schensted insertion x(S,R) → Ŝ. Let c be the cell S′ \ S. We form R′ from R by placing an
empty marker in the cell c and sliding this marker to the south-west using jeu-de-taquin. When the marker
reaches row i of R, we replace it with the entry in the cell directly above it. This is R′.

We now describe contraction, beginning with the construction of R′. Again, we let i = row(S,R). We
begin by replacing with an empty marker the rightmost cell in row i + 1 of R which has the same value
as the cell immediately below it. Using reverse jeu-de-taquin, slide this marker up and to the right until it
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exits the diagram. This isR′. Let c be the cellR\R′. To construct S′, we again let Ŝ be the semi-standard
tableau consisting of the rows of S which are strictly above row i. Then we perform reverse Schensted
insertion on the element in cell c to get a semi-standard tableaux Ŝ′ and an element y(S,R). Finally, we
place y(S,R) inside an existing cell in row i; there will be a unique cell in this row into which we can
place y(S,R) so that the result is a valid set-valued row. S′ is then defined by placing Ŝ′ on top of this
modified row i, on top of the remaining lower rows of S.

If both conditions 1 and 2 hold in row row(S,R), we must decide whether to perform expansion or
contraction. We expand if x(S,R) ≥ y(S,R) and contract otherwise. This justifies the claim that, in the
contraction case, there is a unique cell in row i into which we can place the element y(S,R); there will
never be an element ≥ y(S,R) in a multi-cell in row i. Thus y(S,R) can placed (and must be placed) in
the rightmost cell such that all of its elements are ≤ y(S,R). Such a cell must exist since in S, y(S,R)
was an element of row i+ 1.

As this is an extended abstract, we omit the proof that this is a weight-preserving sign-reversing invo-
lution. However, we give a simple example below.

Example 11 The involution ι exchanges the two pairs below:

(
3, 4 5

1 1, 2 2
,
1 2

1 1 2

)
↔

 4

3 5

1 1, 2 2

,

1

1 2

1 1 2


These pairs have opposite sign, and common weight t2x21x

2
2.
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